Cardiac Scaffold for Human Mesenchymal Stem Cell Facilitated Autonomous Pacing

April 23rd, 2009

Helena Alfonzo Syed Ali Brian Almeida Katie Flynn

Professor Glenn Gaudette

Clinical Significance

- Cardiac disease accounts for over 700,000 deaths/year
 leading cause of deaths in United States¹
- Arrhythmia abnormal or disrupted propagation of the electrical impulses
- Roughly 400,000 pacemakers implanted each year²

1. Center for Disease Control, 2008. Available online at http://www.cdc.gov/heartdisease/

2. Ide, Hiroo. Price differences between Japan and the US for medical materials and how to reduce them. Health Policy Volume 28, 2007. Page 71.

3. Image available online from < http://www.ohiohealth.com/>

Current Solution

Electrical Pacemakers

- Proven effective
- Limitations
 - Battery Life
 - Sensitivity to magnetic fields
 - Lead failure
 - Complications with implantation
 - Does not respond to physiological changes

1

1. Image available online from <http:// services.epnet.com/GetImage.aspx>

Rosen, M. R., Brink, P. R., Cohen, I. S., & Robinson, R. B. (2004). Genes, stem cells and biological pacemakers. *Cardiovascular Research*, 64(1), 12-23.
 Image Retrieved 19-Mar-2009 from http://cache.daylife.com/imageserve/0eVO4EY9yTcTM/610x.jpg

Objective

- Mesenchymal Stem Cell Migration Inhibiting Scaffold
 - Prevent Migration of Stem Cells

• Permanent and Durable

Allow Gap Junction Formation

• Minimally Invasive Delivery

hMSC Migration Assay

- Methodology
 - Pore sizes of 0.4, 3.0, 8.0 μm diameter
 - Which pore size inhibits migration?
 - Fibroblast Growth Factor
 - Incubate for 3 Days
- Evaluation
 - Staining to quantify migration
 - DAPI stain for the nuclei
 - Phalloidin stain for cellular cytoplasm

Corning Transwell® Permeable Supports

Pore Size – Representative Images

8.0 Micron Pores

0.4 Micron Pores

Deflection of a hMSC

1. Heineman, F. W., & Grayson, J. (1985). Transmural distribution of intramyocardial pressure measured by micropipette technique. American Journal of Physiology of Heart and Circulatory Physiology, 249(6), 1216-1223.

2. Tan, S., Pan, W., Ma, G., Cai, N., Leong, K., & Liao, K. (2008). Viscoelastic behaviour of human mesenchymal stem cells. BME Cell Biology, 9, 1-7.

Objectives

- Mesenchymal Stem Cell Migration Inhibiting Scaffold
 - Prevent Migration of Stem Cells
 - Permanent and Durable Scaffold
 - Allow Gap Junction Formation

Minimally Invasive Delivery

Materials

- Our choice Currently used in cardiovascular a Advanse Polyurethane Dacron
 - - Good mechanical properti ePTFE

1

- Biocompatibility and Nitinol hemocompatibility
- Polyurethane . Corrosion and wear

- http://www.alibaba.com/product/in102647177-101650137-100652054/coronary_stents.html
- http://www.biomed.metu.edu.tr/courses/term_papers/Blood-Vessel-Substitutes_durmus.htm 2.
- http://www.advbiomaterials.com/images/clearpelletstop.gif 3.

Manufacturing Process

Electrospinning – Creating a memb² by applying high voltages to liquid PU

Capillary Advantages

• Allows manufacturing of thin porous

Cost effective

Disadvantage

• Pore size not precisely controlled Counter electrode

WPI

1. Image Retrieved 2-April-2009 from < http://www.urethanespecialties.com/sheetsandpads1.jpg>

2. Image Retrieved 2-April-2009 from http://www.uni-marburg.de/fb15/ag-wendorff/research/Electrospinning/es-setup

Objectives

- Mesenchymal Stem Cell Migration Inhibiting Scaffold
 - Prevent Migration of Stem Cells
 - Permanent and Durable Scaffold
 - Allow Gap Junction Formation
 - Minimally Invasive Delivery

Cell Viability

Live Control

Dead Control

Sample Results

Gap Junction Formation through Pores

- Custom Gaudette-Pins Dual Wells
- hMSC On Both Layers of Scaffold
- Connexin 43 Immunohistochemistry for Gap Junction Formation

Results

hMSC Migration – Polyurethane Scaffold

- hMSCs seeded on top layer of scaffold
- Staining of Scaffold Revealed no Cell Migration
- Gap Junctions Formed Through Scaffold Membrane

Top Layer

Reverse Side

Objectives

- Mesenchymal Stem Cell Migration Inhibiting Scaffold
 - Prevent Migration of Stem Cells
 - Permanent and Durable Scaffold
 - Allow Gap Junction Formation
 - Minimally Invasive Delivery

Final Design

Catheter Delivery

A Special Thanks To...

Glenn Gaudette Jacques Guyette

Ira Cohen Joe Dell'Orfano Yang Yun Matt Phaneuf Saif Pathan Jack Ferraro Vicky Huntress Stephanie Kaszuba Meghan Pasquali George Pins Michael Rosen Jill Rulfs Sharon Shaw Lisa Wall

Questions?

Future Recommendations

- In vitro studies proving cell viability in the final design configuration
- In vivo functional testing with canine or murine models
- Mechanical testing to ensure long term viability of scaffold in vivo
- Catheter delivery mechanism

Deflection of a hMSC

1. Heineman, F. W., & Grayson, J. (1985). Transmural distribution of intramyocardial pressure measured by micropipette technique. American Journal of Physiology of Heart and Circulatory Physiology, 249(6), 1216-1223.

2. Tan, S., Pan, W., Ma, G., Cai, N., Leong, K., & Liao, K. (2008). Viscoelastic behaviour of human mesenchymal stem cells. BME Cell Biology, 9, 1-7.

Supplemental Slides

Moment of Inertia

Supplemental Slides

Area of a Cell

$$A_{cell} = \pi r^2$$

where $r = 0.5 \mu r$

Surface Area needed for Scaffold

$$A_{cell} = \pi r^2 * 700,000$$
Need 700,000 cells to allow for a safety factor of 2
$$A_{cell} = 55.0 \text{mm}^2$$

hMSC Migration Assay - Scraping

0.4 µm Pre-Scraping

3.0 µm Pre-Scraping

0.4 µm Post-Scraping

3.0 µm Post-Scraping

