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Abstract 

Phospholipase Cβ1 (PLCβ1), most notably a member of the mammalian 

phosphoinositide pathway, has functions that extend beyond its phospholipid hydrolysis and 

calcium release induction in cells. Research has shown that PLCβ1 has been implicated in cancer 

cell proliferation, psychological disorders such as schizophrenia, and gene-silencing through 

RNA interference. The ability to accurately visualize PLCβ1 in cells without changing 

endogenous levels of the enzyme is paramount for biophysical experimentation. With the help of 

the CRISPR-Cas9 genome editing machinery, a GFP-PLCβ1 fusion protein was incorporated 

into the genome of cultured cells. The GFP-tagged PLCβ1 protein was visible in human neuronal 

cells and now allows us to characterize its function in the cytoplasm and nucleus of these cells. 
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Background 

Phospholipase Cβ1 (PLCβ1) is a major component of the phosphoinositide pathway 

which, in neuronal cells, ultimately results in a release of intracellular calcium that facilitates 

cell-to-cell communication. PLCβ1 is an enzyme that is activated by Gαq when hormones or 

neurotransmitters (such as dopamine or acetylcholine) bind the G protein-coupled receptor. 

PLCβ1’s most notable function is the hydrolysis of phosphatidylinositol 4,5-bisphosphate (PIP2). 

This hydrolysis results in the formation of diacylglycerol (DAG) and inositol 1,4,5-triphosphate 

(IP3). It is the cellular re-localization of the IP3 to the endoplasmic reticulum that causes the 

intracellular calcium release (Kadamur, 2013). This hydrolysis of PIP2 is said to happen in the 

TIM domain of the PLCβ1 enzyme which is where the catalytic site is located (see Figure 1).  

 

Figure 1: 3D Tertiary Structure of the PLCβ1 Enzyme – The PH domain rests at the N-terminus 

of the enzyme while the C2 domain rests at the C-terminus of the enzyme. 
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 Extensive research within the Scarlata lab into the function of PLCβ1 and has revealed 

that PLCβ1 is responsible for far more than simply the hydrolysis of PIP2. Research suggests that 

PLCβ1 is also a binding partner of Component 3 Promoter of the RNA induced silencing 

complex (C3PO). This finding introduces the potential for PLCβ1 to be involved in RNA 

interference machinery. Evidence suggests that a cytosolic population of PLCβ1 will bind to 

C3PO and hinder C3PO’s nuclease activity therefore suppressing the silencing of specific genes 

(Scarlata, 2016). It was also found through immunoprecipitation experiments and mass 

spectrometry analysis that PLCβ1 binds to cyclin-dependent kinase 16 (CDK16). Through this 

interaction, once PLCβ1 is bound to CDK16, neuronal cell proliferation slows and cells begin to 

terminally differentiate. The converse is also true which means that, if PLCβ1 levels are 

decreased, CDK16 is free to promote neuronal cell proliferation. This interaction has been 

connected to G-protein signaling which supports the hypothesis that cellular differentiation and 

proliferation is controlled, at least in part, by external stimuli (Garwain, 2018). Moreover, there 

is ongoing research into PLCβ1’s involvement in stress granule formation (Singla, Scarlata et al, 

unpublished). This research looks specifically at stress granules that form as a consequence of 

osmotic stress. As this research is ongoing in the Scarlata lab, the data offer yet another function 

for the PLCβ1 enzyme. All of these potential pathways means that PLCβ1 is doing much more 

than simply hydrolyzing PIP2 in order to release intracellular calcium. With all of these new 

potential pathways (see Figure 2), it became paramount to be able to visualize PLCβ1 at its 

endogenous levels and in order to do that, the CRISPR-Cas9 gene editing technique was used. 
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Figure 2: Suggested PLCβ1 Pathways – Implicated in more than just the phosphoinositide 

pathway, PLCβ1 has been shown to have a role in RNAi machinery, stress granule formation, 

and neuronal cell proliferation and differentiation. 

 

CRISPR, which stands for Clustered Regularly Interspaced Short Palindromic Repeats, 

was first discovered as a prokaryotic immune defense against bacteriophages. When a 

bacteriophage injects its foreign DNA into the prokaryotic cell, cas enzymes and their requisite 

RNA scaffolds will insert part of the bacteriophage DNA into the genome of the prokaryotic cell. 

This insert of the bacteriophage DNA will allow for the prokaryotic cell to recognize that 

bacteriophage DNA again in the future and, in doing so, it confers a resistance to that particular 

bacteriophage (Barrangou, 2007). This ability of the prokaryotic cell to perform reactions that 
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allow for adaptive immunity was soon recognized for its eukaryotic genome editing potential. 

Edits were made to the cas9 endonuclease and its guide RNA scaffolds in order to optimize the 

system for eukaryotic use. These edits include the addition of two nuclear localization signals to 

ensure the correct localization of the endonuclease into the eukaryotic nucleus (Cong, 2013). 

Once the endonuclease and its guide RNAs could access the nucleus and make the specified 

double-stranded cut, the cell has two options with which to repair the break: non-homologous 

end joining (NHEJ) or homology-directed repair (HDR) (Doudna, 2014). With non-homologous 

end joining, the DNA is simply ligated back together which often results in either the insertion or 

deletion of a single base pair which leads to a frame shift. This frame shift likely renders the 

downstream protein non-functional. Homology-directed repair is when the cell uses nearby DNA 

as a template for the break repair. This is a good technique for when the insertion of a specific 

base pair or set of base pairs is desired. The nearby DNA can be introduced as a plasmid via 

transfection into the cell and, with the proper length of homology arms (the bigger the desired 

insert, the longer the homology arms), integrated into the eukaryotic genome (Shrivastav, 2016).  

The CRISPR/Cas9 genome editing technology was perfect for the creation of an 

enhanced green fluorescent protein (eGFP) and PLCβ1 fusion protein. The eGFP would be 

situated on the N-terminus of the PLCβ1 enzyme so as not to interfere with the enzyme’s 

catalytic activity (see Dowal et al, 2006). The guide RNAs were designed to target the 

transcriptional start site of the PLCβ1 gene and, due to the sheer size of the eGFP protein 

sequence (717 bps), 900 bps of homology to either side of the transcriptional start site were used 

to anchor the eGFP sequence. A diagram illustrating the proposed sequence of molecular events 

can be seen in Figure 3.  
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Figure 3: Illustration of the proposed sequence of events for the CRISPR-Cas9 insertion of 

eGFP before the PLCβ1 transcriptional start site. 
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Project Purpose 

 In an effort to visualize endogenous phospholipase Cβ1 (PLCβ1) and facilitate 

biophysical studies into its functions within and in addition to the phosphoinositide pathway, 

CRISPR-Cas9 mutagenesis was used to mutate the endogenous PLCβ1 locus. The mutation was 

made via co-transfection of a plasmid expressing the Cas9 endonuclease and a separate plasmid 

that could be utilized by the cell to undergo homology-directed repair (HDR) of the double-

stranded break made by the Cas9 enzyme. The rescue vector that was used for the HDR was 

designed in such a way that the eGFP sequence would be inserted directly before the 

transcriptional start site (at the N-terminus of the protein) and would therefore be expressed 

along with the PLCβ1 gene under the control of the PLCβ1 promoter. Successful creation of the 

PLCβ1-eGFP fusion protein was visualized in cells using confocal microscopy and mutated cells 

were separated from non-mutated cells via chemical selection with puromycin and fluorescence-

activated cell sorting in order to create a novel cell line.  
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Methods 

Cell type. The SK-N-SH cell line is a human neuroblastoma cell line derived from a 4-year old 

female. Its morphology is such that there is a mixture of cells in different states of differentiation. 

(SK-N-SH ATCC HTB-11™) This cell line was used so that future studies in the lab could be 

conducted in neuronal cells that are of human origin. 

Cell culture. SK-N-SH cells were seeded in Falcon cell culture dishes and maintained in 

GIBCO’s Dulbecco Modified Eagle Medium (DMEM) that was supplemented with 10% Fobium 

Fetal Bovine Serum (FBS) and 5% antibiotic (penicillin/streptomycin). When the cells needed to 

be split into new dishes, 2mL of trypsin was added to each 100mm dish. The dish was then 

allowed to sit in the incubator for approximately 15 minutes while the cells detached. Sufficient 

cell detachment was determined via visualization under a light microscope at 10X magnification. 

Cas9 plasmid construction:  

Plasmid. pX330-U6-Chimeric_BB-CBh-hSpCas9 was a gift from Feng Zhang (Addgene plasmid 

#42230). The physical aliquot of the plasmid received by the Scarlata lab came from a stock in 

the McCollum lab at the University of Massachusetts Medical School. See Appendix 1-2 for 

plasmid maps. 

Plasmid Transformation. pX330 was transformed into One Shot Stbl3 chemically competent E. 

coli (Invitrogen) following the protocol provided by Invitrogen. Following overnight growth of 

the transformed colonies, one colony was inoculated and grown up in a flask of 300mL of LB 

broth that was agitated at 37°C overnight. 

Plasmid Maxi-Prep. Preparation of pX330 plasmid stocks was done following the Qiagen Endo-

free Plasmid Maxi-Prep kit and protocols. 
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Design of guide RNAs. Guide RNAs were designed using an online tool developed by the Feng 

Zhang lab out of MIT. The tool can be accessed at the following URL: crispr.mit.edu. The target 

sequence selected was human and ~200 base pairs of sequence surrounding the N-terminus of 

the PLCβ1 gene was entered into the sequence box. A series of potential guide RNAs were 

generated, scored, and listed along with their accompanying PAM sequences (See Appendix 3). 

Three were chosen based on generated score and proximity to the start site of the PLCβ1 gene. 

Guide RNAs were further optimized for easy ligation into the pX330 plasmid: 

5’ – C A C C G (gRNA sequence) – 3’  

3’ C (gRNA sequence) C A A A – 5’  

The following DNA oligos were ordered from Integrated DNA Technologies: 

1. 5’ CACCGCGGGTTGAGCCCCGGCCAT 3’     

     5’ AAACGATGGCCGGGGCTCAACCCGC 3’ 

 

2. 5’ CACCGCAGATGGCCGGGGCTCAAC 3’    

     5’ AAACGGTTGAGCCCCGGCCATCTGC 3’  

 

3. 5’ CACCGTGCACTCCGGGTTGAGCCC 3’   

         5’ AAACGGGCTCAACCCGGAGTGCAC 3’     

DNA Oligo Annealing & Phosphorylation. The oligos were annealed and phosphorylated by 

combining 1uL of each single-stranded oligo in a pair with 1uL of 10X T4 Ligation Buffer 

(NEB), 6.5uL ddH2O, and 0.5uL of T4 PNK (NEB) for a total volume of 10uL. The mixture was 
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then annealed in a thermocycler under the following conditions: 37°C for 30 minutes followed by 

95°C for 5 minutes and then decreased temperature in 5° increments until 25°C was attained. 

Restriction of pX330. 1-3 ug of the pX330 plasmid were digested at 37°C for 60 minutes. The 

reaction mixture was as follows: 1.1-3.3uL pX330, 1uL FastDigest Bbs1 (NEB), 1uL calf 

intestinal phosphatase (NEB), 2uL CutSmart buffer (NEB), and ddH2O up to a volume of 20-

50uL. 

Clean-up of pX330 restriction. Following the restriction reaction of pX330, the total reaction 

mixture underwent PCR clean-up following Qiagen’s QIAquick Gel Extraction Kit protocol.  

Ligation of gRNAs & pX330. The annealed guide RNAs and the pX330 plasmid were ligated 

together in a benchtop ligation reaction that contained the following reaction mixture: 2uL 

(50ng) of Bbs1 digested plasmid, 1uL of annealed oligo duplexes (1:200 dilution), 5uL of 2X 

Quickligation buffer (NEB), and ddH2O to bring the volume up to 10uL. After the ddH2O was 

added, 1uL of Quick Ligase (NEB) was added and the reaction was set to incubate at room 

temperature for 10 minutes.  

Plasmid Transformation. pX330 + gRNAs was transformed into One Shot Stbl3 chemically 

competent E. coli (Invitrogen) following the protocol provided by Invitrogen. Following 

overnight growth of the transformed colonies, one colony was inoculated and grown up in a flask 

of 300mL of LB broth that was agitated at 37°C overnight. 

Plasmid Maxi-Prep. Preparation of pX330 + gRNAs plasmid stocks was done following the 

Qiagen Endo-free Plasmid Maxi-Prep kit and protocols. 
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Rescue vector construction. 

Plasmid. The eGFP rescue vector was built and designed in VectorBuilder software. The vector 

was designed to have 900bp of homology on either side of the transcriptional start site for 

PLCβ1 with the 717bp sequence for eGFP in between the two homology arms (See Appendix 4). 

The homology arms were mutated slightly at the PAM sequences of the gRNAs to ensure that 

the Cas9 endonuclease would not be able to cut the same chromosome a second time (See 

Appendix 5). 

Plasmid Transformation. The eGFP rescue vector was transformed into One Shot Stbl3 

chemically competent E. coli (Invitrogen) following the protocol provided by Invitrogen. . 

Following overnight growth of the transformed colonies, one colony was inoculated and grown 

up in a flask of 300mL of LB broth that was agitated at 37°C overnight. 

Plasmid Maxi-Prep. Preparation of the eGFP rescue vector plasmid stocks was done following 

the Qiagen Endo-free Plasmid Maxi-Prep kit and protocols. 

Mammalian Cell Mutagenesis. 

Cas9/Rescue vector co-transfection. SK-N-SH and HEK-293 cells were co-transfected with the 

Cas9 endonuclease plasmid and the eGFP rescue vector using Lipofectamine 3000 

(Thermofisher) using the suggested transfection conditions provided by Thermofisher. For a 

standard 35mm glass bottom dish: 250uL Opti-Mem (Gibco), 7.5uL of Lipofectamine 3000, 5uL 

of eGFP rescue vector, and 4uL of Cas9 endonuclease plasmid. 

Chemical selection. SK-N-SH cells were chemically selected with 2ug/mL of puromycin in order 

to select for the cells that were actively expressing the Cas9 endonuclease as this plasmid also 

conferred puromycin resistance. 
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Visualization of GFP+ cells. Cells were visualized on the ISS Alba FCS/FLIM microscope using 

the GFP filter to detect GFP fluorescence in the cells following co-transfection. 

FACS analysis. Fluorescence-activated cell sorting was performed at the University of 

Massachusetts Medical School’s Flow Cytometry Core. Cells were detached and transported to 

UMass Medical in PBS supplemented with 5% FBS. Cells were first sorted by cell size and 

granularity to ensure that only cells of healthy size were sorted for fluorescence. Cells were then 

sorted by intensity of FITC fluorescence (as a measure of GFP intensity) against APC 

fluorescence (as a measure of auto-fluorescence). Cells expressing GFP were sorted into a 96-

well plate in media that was supplemented with 20% FBS. 
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Results 

 The ultimate purpose of this project was the creation of a novel human cell line that 

would express endogenous fluorescent PLCβ1 protein. Following the restriction and ligation of 

the pX330 plasmid with the designed gRNAs, successful insertion of the gRNAs was determined 

by success of the colony growth following inoculation and through sequencing of the plasmid 

that the colonies took up. Following transformation, the transformation reaction was plated onto 

ampicillin plates and allowed to culture overnight. The following morning we visualized a lawn 

of bacteria indicating successful ligation (see Figure 4).  

 

         

 

 

 

 

 

Figure 4: Growth of a Bacterial Lawn Indicating Successful Ligation – the gRNAs were 

successfully inserted into the pX330 plasmid and taken up by the One Shot Stbl 3 E. coli. 

 

Once the cultures were grown, a single colony was inoculated, grown up in LB broth, maxi-

prepped, and a fraction of the plasmid stock was sent to Eton Biosciences for sequencing. 

Plasmid sequencing revealed successful integration of two of the three guide RNAs into the 
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pX330 vector (see Figure 5). gRNA 3 was not available in a high enough concentration 

following maxi-prep. 

 

Figure 5: Sequence confirmation of the successful ligation of gRNA 1 & gRNA 2 
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Once the ligation of the gRNAs into the pX330 plasmid proved successful, both the pX330 

plasmid with the newly introduced guides and the rescue vector were co-transfected into HEK 

293 cells, HeLa cells, and SK-N-SH cells. The HeLa cells did not survive post-transfection. The 

HEK 293 cells grew rapidly and were brought to the University of Massachusetts Medical 

School to be sorted. The HEK 293 cells were brought the UMass Flow Cytometry Core to 

undergo fluorescence activated cell sorting. The HEK 293 cells were first sorted for cell size and 

granularity (SSC vs. FSC) in the non-transfected population (see Figure 6) and the co-transfected 

population (see Figure 7). 

        

 

 

 

 

 

 

Figure 6: Non-transfected HEK cell sort for cell size and granularity 
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Figure 7: Co-transfected HEK cell sort for cell size and granularity 
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Healthy cells were sorted again, measuring for FITC fluorescence and APC fluorescence. The 

FITC fluorescence was used as a measure of GFP intensity and the APC fluorescence was a 

control that measured for auto-fluorescence in the cells. The non-transfected HEK cells, as 

expected, showed no fluorescence (see Figure 8). The co-transfected HEK cells showed GFP 

fluorescence at a very low efficiency (> 0.1% of cells were positive for GFP expression) (see 

Figure 9). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8: FITC vs. APC fluorescence of non-transfected HEK cells 
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Figure 9: FITC vs. APC fluorescence of co-transfected HEK cells 

 

The HEK 293 cells did not survive the FACS sort but the sort did verify the success of the 

pX330 and rescue vector co-transfection. Co-transfections were then exclusively carried out in 

SK-N-SH cells due to their large populations of PLCβ1. Co-transfection success of the SK-N-SH 

cells was determined after puromycin selection by visualization of the GFP with a confocal 

microscope (see Figure 10; for additonal images see Appendix 6). 
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Figure 10: DIC, eGFP, and DIC/eGFP overlay images of PLCβ1 fluorescence  
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Discussion 

 In this experiment, we attempted to insert the eGFP sequence before the transcriptional 

start site of the PLCβ1 gene. It was decided that the eGFP sequence would be placed on the N-

terminus of the PLCβ1 protein because sites for G protein activation, C3PO binding, nuclear 

localization and alpha-synuclein binding are mapped to the C-terminus. Past studies in the 

Scarlata lab indicated that the attachment of a GFP fluorophore to this enzyme would not impact 

its localization, activity or ability to be activated by G proteins (Dowal et al, 2006). The ultimate 

goal of this post-translational modification was to gain the ability to visualize endogenous 

PLCβ1 within live cells. With PLCβ1 having a variety of functions that exist beyond its well-

known function in the phosphoinositide pathway, including a role in RNA interference and 

control of neuronal cell proliferation and differentiation, this ability to visualize PLCβ1 was 

paramount.   

 With the SK-N-SH cells now expressing an obvious GFP-tagged protein, it is crucial that 

the next phase of this experiment be the confirmation that what is fluorescing in the cells is 

PLCβ1. This can be done in a multitude of ways, the easiest being either western blot or reverse 

transcriptase polymerase chain reaction (RT-PCR). With western blotting, cells would be lysed 

and run on a polyacrylamide gel. The resulting protein configuration would be transferred to a 

membrane which would be blotted for PLCβ1. If the PLCβ1 is attached to the GFP, a band shift 

should be visible on the membrane showing that PLCβ1 has increased in size. We could also blot 

for GFP and look for signal above where the typical bands for PLCβ1 would be. With RT-PCR, 

a primer for the GFP sequence would be used to determine the presence of the GFP sequence as 

well as, theoretically, the beginning of the PLCβ1 sequence upstream of the GFP sequence. This 

would ensure that what is visible in the cells is, in fact, fluorescent PLCβ1.  
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 With the CRISPR system introduced to the lab, other mutations can be made to facilitate 

research into the new and existing PLCβ1 pathways. By simply making edits to the gRNA 

sequences and targeting the Cas9 endonuclease to the catalytic site of the PLCβ1 enzyme, single 

stranded (or double-stranded) oligonucleotides can be introduced to engineer a point mutation in 

the catalytic site. This point mutation would render the PLCβ1 enzyme inactive and allow for 

more in-depth study into the role of PLCβ1 with respect to its phospholipid hydrolysis. There is 

also a lot of experimental potential within the novel SK-N-SH cell line itself as now the 

endogenous levels of PLCβ1 do not have to fluctuate and accurate PLCβ1 localization can be 

determined. This novel cell line opens up a lot of exciting possibilities for the continued study of 

PLCβ1 but more experiments will need to be done to verify the accuracy of this CRISPR 

mutation.  



26 
 

Bibliography 

Barrangou, Rodolphe, Christophe Fremaux, Hélène Deveau, Melissa Richards, Patrick Boyaval,  

Sylvain Moineau, Dennis A. Romero, and Philippe Horvath. "CRISPR provides acquired 

resistance against viruses in prokaryotes." Science 315, no. 5819 (2007): 1709-1712. 

 

Cong, Le, F. Ann Ran, David Cox, Shuailiang Lin, Robert Barretto, Naomi Habib, Patrick D.  

Hsu et al. "Multiplex genome engineering using CRISPR/Cas systems." Science (2013): 

1231143. 

 

Doudna, Jennifer A., and Emmanuelle Charpentier. "The new frontier of genome engineering  

with CRISPR-Cas9." Science 346, no. 6213 (2014): 1258096. 

 

Dowal, Louisa, Paxton Provitera, and Suzanne Scarlata. "Stable association between Gαq and  

phospholipase Cβ1 in living cells." Journal of Biological Chemistry 281, no. 33 (2006): 

23999-24014. 

 

Garwain, Osama, Kaitlyn Valla, and Suzanne Scarlata. "Phospholipase Cβ1 regulates  

proliferation of neuronal cells." The FASEB Journal (2018): fj-201701284R. 

 

Kadamur, G., & Ross, E. M. (2013). Mammalian phospholipase C. Annual review of physiology,  

75, 127-154. 

 

Scarlata, Suzanne, Osama Garwain, Leo Williams, Imanol Gonzalez Burguera, Barbara Rosati,  

Shriya Sahu, Yuanjian Guo, Finly Philip, and Urszula Golebiewska. "Phospholipase Cβ 

connects G protein signaling with RNA interference." Advances in biological regulation 

61 (2016): 51-57. 

 

Shrivastav, Meena, Leyma P. De Haro, and Jac A. Nickoloff. "EDITING WITH HOMOLOGY  

DIRECTED REPAIR (CONT)." CRISPR 101: A Desktop Resource: 49. 

 

  



27 
 

Appendix 

 

 

Appendix 1 - Plasmid Map of PX330 (Retrieved from Addgene) 
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Appendix 2 - Digestion Map of Plasmid PX330 (Retrieved from Addgene) 
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Appendix 3 - gRNA Scoring Formulas (Retrieved from crispr.mit.edu) 
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Appendix 4 - eGFP Rescue Vector Design 
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CAAACTCTCAGGCGCGGCCAGGTTTCCTCAAAGAGCCTCTCAACTGCGCTCTTCTCTGCTGATAAATGAT

AATTCTCTTCAAAAAGCTGGTTTGTGGCTGGCGCTGGAGAGCTCCAGCTAGAGCCAAAAGCCAGGGGTTG

CCTCTTTGGTTCCTCCCGATGGGCCCCTTTTCCCAGCCAGTTGGGATCCAAAGACGCTCCGGAGCTCGAG

CCCAAATTCCCAAGAAAACCCCAAAGAGCGTAAGGCTCCTGGGGACCCCTAGCACCTCTGCAACCAGGGC

ACGGGGCATGCTCAGAGCGAATGCGGGAGGCAGGCGTTGGCTGCAATGGGGCTCGGGAGCCAGGAGGTGC

CGCTGCGTCCCCGCTTCCTGGCGCCTGACCCAGCGTGCAAAGTTGGGCTGGGAGCCGCGGGGGGAAGGAA

GGACCCAGCGAGCGAGGGTGGCGGGGAAGGGGGGCGGGGGGGAGGAGGAGGGAGGAGGGAAAAGAGCGGT

TAGGGGGGGCGCCGGGCGTGTGTCACTCGCTCTCTCCCTCTGTGTATAGAGGATGTGCTGAATGGTGCGC

TTTGAGGCGGCGGCGGCGGAGGAGCAGAATCCGCCGCGACTGGCAGCCTCGGCTGACCGGCTCGGCTTCT

CTTCGCCTTCCGAGGCTCCTCATCCACCGCGGGCTCCAGACCTCGCGTCCCGCCCGGGGCATGGCCGGGC

GCTGCGCCCCCGCGCGCTCTGCCTGCTGAGCGGCGCCGGAGGGAGGTGCGGAGGCCGGGAGGCCGGGGAG

GCCGGCGGGGAGCAGAGTCGAGCGCCTCCGGAGCAGAGAAAGGAGCCCGCGCCCCGCGCCCCGCGCCCCG

CGCACGGTCCCCAGTCCCTGCCGCGCTCGCCCGGGCCGCCCGGAGCCCAGATGAGCTCAG – Left 

arm 

 

ATGGTGAGCAAGGGCGAGGAGCTGTTCACCGGGGTGGTGCCCATCCTGGTCGAGCTGGACGGCGACGTA

AACGGCCACAAGTTCAGCGTGTCCGGCGAGGGCGAGGGCGATGCCACCTACGGCAAGCTGACCCTGAAG

TTCATCTGCACCACCGGCAAGCTGCCCGTGCCCTGGCCCACCCTCGTGACCACCCTGACCTACGGCGTG

CAGTGCTTCAGCCGCTACCCCGACCACATGAAGCAGCACGACTTCTTCAAGTCCGCCATGCCCGAAGGC

TACGTCCAGGAGCGCACCATCTTCTTCAAGGACGACGGCAACTACAAGACCCGCGCCGAGGTGAAGTTC

GAGGGCGACACCCTGGTGAACCGCATCGAGCTGAAGGGCATCGACTTCAAGGAGGACGGCAACATCCTG

GGGCACAAGCTGGAGTACAACTACAACAGCCACAACGTCTATATCATGGCCGACAAGCAGAAGAACGGC

ATCAAGGTGAACTTCAAGATCCGCCACAACATCGAGGACGGCAGCGTGCAGCTCGCCGACCACTACCAG

CAGAACACCCCCATCGGCGACGGCCCCGTGCTGCTGCCCGACAACCACTACCTGAGCACCCAGTCCGCC

CTGAGCAAAGACCCCAACGAGAAGCGCGATCACATGGTCCTGCTGGAGTTCGTGACCGCCGCCGGGATC

ACTCTCGGCATGGACGAGCTGTACAAG 

 

ATGGCTGGGGCTCAACCCGCAGTGCACGCCTTGCAACTCAAGCCCGTGTGCGTGTCCGACAGCCTCAAGA

AGGGCACCAAATTCGTCAAGTGGGATGATGTAAGTATTGGGGCGGCCCGAGTCGGGGCGCTGGCTCGGGC

ACCGGGCAGGGCGGGCGTCGTGGGGGTGGGGCAAGGGGCGCGTTATGCAATGGGCGCACTGGGAGCGGGC

AGGGGCAGCCTCGGGCGCACAGGTTGGCATCTGCCAAAGCGGATGTCCAAGGGCAGAAGCTTTGCGCGCG

CTCCTGTTTCATCGGGCTTCAGTAGTTGCCATCCTTTCTGGGTCTGGCAGGCGCCCCCTGAGGGTCTTAC

ATCTTTTGGGCCAGTGGAGAGGGAGGGGCAAGCTTTGCCTGGTGACAGGTCCTGAGAGTTCGGAAAGTAG

GGAGTGTGAAGTTGGGACCAACTGGAAAGCGCCTGGTGTGAACAAATCGCGTCCCTCTCCGCCTGCGGAC

GCACCCCCTATTACCTCTTTTGCCCGATTTCAAGAAGGAAGGACCTGAAGTTCAAAACACTTTAGTGATT

GCGAACCCTCTTGGCGCTTTTGTGGGAGCCAAGGCGGCGGAGGACACAACGGTCCAGCCAACAGGTGGTC

GTTGATGCCAAACTTCAGCGCCTGGCTCCGGAGTGAGGGTCCCTGAAAAGGGCTGCGGGGACACATCTGG

GGAGGGCGTGAACAGAATGGGGGCCCTTGAGGGGTCCTGGAGGGCTCATGGGCCTGCAGGCAAGTGGGGA

GGGCTGACTTTTGAGAACTGAGCTGATTGGAGTCTTCTGCCTGAAATAGACAGGTTGAGAGTTTGCCCCA

CGATTTACCTGCACCGTTTGCCAGGTAGGGCAGAGCCTAGCCCAGCGCCGGGGTCTCTAA – Right 

arm 

 

Appendix 5 – eGFP Rescue Vector Sequence (edited PAM sequences highlighted in green) 
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Appendix 6 – Composite Images of eGFP-PLCβ1 in SK-N-SH Cells 

 

 

 

 

 

 

  


