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Abstract
RNA sequencing has expanded nearly exponentially over the past decade and has

allowed scientists an intimate glimpse into the expression patterns of cells and tissues. These
techniques come in two main forms: bulk tissue RNA seq which captures a wide array of
transcripts at a shallow depth across a tissue sample and single cell RNA seq which captures
transcripts at a greater depth and tags them to individual cells. Here we present Multicell
RNA-Seq, a pipeline of bioinformatics tools which together can be used to bridge the gap
between bulk tissue and single cell techniques. Our approach allowed us to map specific
transcript isoforms to single cell clusters and identify clustering levels beyond which transcript
isoforms are no longer detectable within a single cell dataset.

Introduction
RNA sequencing has expanded nearly exponentially over the past decade as an area of

biological research. It allows scientists to gain an intimate glimpse into expression patterns of
cells or tissue at any given time and is leading the forefront of many different fields (Stark et al.).
From immunological research to oncology and more we see RNA sequencing techniques being
leveraged to explore how we understand the inner workings of cells and particularly their
associated disease states. While RNA sequencing is an umbrella term for these experimental
techniques, they do come in two main forms, bulk tissue sequencing and single cell sequencing,
each of which have their own advantages and disadvantages (Stark et al.).

Compared to biological techniques of the past RNA sequencing allows for researchers to
study hundreds of genes at once. Historically, scientific studies were often limited in their scope
due to the ability to only observe the activity of a potential handful of genes at once, however
modern techniques of RNA sequencing have blown those numbers out of the water. Comparing
within the umbrella of RNA seq techniques you’ll find that bulk seq and single cell seq lend
themselves to different types of studies (Stark et al.). Bulk sequencing allows scientists to
capture a wide array of transcripts across a tissue sample, often sacrificing sequencing depth for
breadth (Thind et al.). However, this allows for the recognition of numerous transcript isoforms
that single cell seq fails to capture. Comparatively, single cell seq allows for the capture of
transcripts at a greater depth and even allows for scientists to associate transcripts with an
individual cell (Haque et al.). Essentially, this allows for the investigation of individual cell states
and expression patterns associated with a cell type, versus the general exploratory nature of bulk
seq signatures which are not tied to a specific cell type.

We aim to introduce a new computational technique called Multicell RNA seq, which
would allow scientists to bridge the gap between single cell and bulk tissue sequencing.
Essentially, it would allow us to trace transcript isoforms captured in bulk tissue seq to a
particular cell type within a single cell seq sample– thereby allowing for the sacrifice of some
depth of single cell seq data, but bolstering it with the breadth provided by bulk tissue seq.
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Additionally, this method relies entirely on preexisting bioinformatics tools, such as a transcript
quantifier and a hierarchical clustering tool. Rather than create our own tool from scratch we
found it simpler to amalgam existing tools together to produce our computationally transformed
data given their acceptance and popularity in the bioinformatics field, however that has also
proven difficult in finding how to fit the pieces together in such a way that this method proves
functional. With that being said, multicell RNA seq provides scientists a novel method of
applying the breadth of information captured in bulk seq techniques to the depth and cell
specificity to single cell seq data and vice versa– enriching both datasets to further aid in all
involved areas of biomedical research.

Background
Multicell RNA seq is a computational method that allows scientists to leverage

previously published and widely used bioinformatics tools in a novel pipeline which can bridge
the advantages of bulk tissue and single cell seq methods together, enriching the analysis of both
datasets. Our pipeline relies on the infrastructure of popular bioinformatics tools and combines a
transcript quantifier and a hierarchical clustering tool with the simple yet clever construction of a
table. Through a unique balance of these tools we have established a novel computational
pipeline which exploits the strengths of each RNA seq technique. As we progress through the
necessary background information we will dive into each RNA seq technique in the context of
this pipeline, alternative splicing in the context of our project, explain our rationale on tool
selection,  and finally provide a short overview of this paper’s organization.

Firstly, RNA seq methods have revolutionized genetic research by expanding the breadth
of genes studied at a particular time from a handful to hundreds within one experiment (Stark et
al.). Rather than expanding upon the specific experimental methods used to capture and sequence
RNA transcripts in single cell and bulk tissue experiments, we wish to delve into the unique
forms of data provided by these techniques which we then leverage computationally for our
pipeline.

As previously noted, RNA sequencing techniques allow scientists to capture and
sequence the RNA transcripts of tissues and individual cells at a variety of depths and breadths
(Stark et al.). These datasets are then leveraged by computational and bioinformatics tools for
analysis given their sheer size and complexity, which would render this data simply
unmanageable in their absence. Specifically, our methods leverage data from single cell RNA
seq and bulk tissue seq experiments. Single cell RNA sequencing allows scientists to capture
RNA transcripts at a great depth while also associating each transcript to a single cell within the
sample (Haque et al.). These datasets allow researchers to delve into the expression patterns of
individual cells for the exploration of specific cell types, subtypes, and states given the particular
state of a sample whether diseased, healthy, cancerous, or otherwise. Essnetially, it gives
scientists a snapshot of the gene expression of cells given a particular condition which has been
leveraged in most reaches of biology to gain a more intimate glimpse at the genetic workings of
disease and other biological processes (Haque et al.).
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Conversely, bulk tissue RNA sequencing techniques capture a wide breadth of RNA
transcripts across a tissue sample (Thind et al.). This allows for scientists to even observe unique
transcript isoforms within an experimental sample, however unlike single cell seq these
techniques do not allow scientists to associate these transcripts with specific cells. The strength
that bulk tissue seq allows scientists a wide breadth of sequencing which captures and observes
numerous expression signatures and potential expression patterns, essentially providing a unique
method of exploratory genetic analysis whose insights easily inform more targeted future
experiments (Thind et al.).

The purpose of our method is truly to trace the alternative splicing of transcripts from one
type of RNA seq data to the other. Basically, we wish to use our pipeline to define a level of cell
clustering within single cell data which maintains a signal of alternative splicing when treating
that data as if it were bulk RNA seq data, which adequately captures transcript isoforms. Our
motivation for doing so is honestly quite simple. The alternative splicing of  RNA transcripts has
major implications for cell function and gene expression and while research within the RNA seq
space has been exploring the implications of RNA expression for cell function such experiments
have a great potential in understanding alternative splicing events (Zhao). While interest in
alternative splicing events captured within RNA seq data has been increasing it largely remains
an area of research with much untapped potential (Zhao). Thus, the method we present would
give researchers a method into which they could explore the alternative splicing of transcripts
within any given tissue or disease state for which they possessed the necessary datasets. This
would allow for a unique perspective into the mechanics of cell function or disease and a closer
more intimate look into how alternative splicing affects these processes– similar to how methods
of RNA seq originally granted a more intimate look into how gene expression related to specific
cell states.

Moving forward to computational tools utilized in our method we first start with a
transcript quantifier. Transcript quantifiers take the raw reads from RNA seq experiments and
perform a series of alignments and computations, allowing scientists a wide variety of
information on the ubiquity of transcripts in the sample and allows for the annotation of those
reads (Zhang et al.). These tools come in two varieties: those which rely on alignment to a
reference file and those which use methods of pseudoalignment (Zhang et al.). We decided upon
Kallisto for use in our pipeline because of its pseudo alignment  based methods. Kallisto allows
for transcript quantification of both forms of RNA seq data relevant to our method, while also
not needing a reference genome to work with our data– as is the nature of pseudo alignment
methods (Bray et al.). Our choice of Kallisto compared to other contemporary quantification
methods came from its unique position in the bioinformatics world. The popularity of Kallisto
means that its outputs are not only easily integrated into other tools published by the same lab,
but that they are also easily used as inputs for a wide variety of tools within the bioinformatics
space. This proves uniquely well suited for our task since we aimed to structure Multicell RNA
seq as a novel combination of previously published tools to take advantage of their scientific
acceptance to exploit and manipulate data in a novel manner. Additionally, we decided on
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Kallisto as it does not require a reference file to generate transcript abundances from the input
RNA seq data (Bray et al.). Meaning, our pipeline would then not rely on the existence of a high
quality reference genome for a specific organism to be used on unique RNA seq datasets. This
not only expands the use of our pipeline to less well characterized organisms, but frees it from
the reliance of the existence of yet another high quality piece of data further expanding its use
cases by reducing the resources necessary to run it.

The other backbone of our method is DUSC, an approach for cell type profiling within
single cell data (Srinivasan et al.). Essentially, this method allows us to construct a cell type
hierarchy of our single cell data, which we then utilize the various levels within that hierarchy to
process as our pseudobulk data when compared to true bulk RNA seq data (Srinivasan et al.).
The idea being that when comparing to bulk RNA seq transcript abundances we can find the
level of cell type clustering within single cell data that still maintains a reasonable signal of
alternative splicing of transcripts, whether that is at the level of cell super type, cell type, cell
subtype, etc.  DUSC allows us to construct this hierarchy as it first relies on a deep learning
feature selection method, DAWN, which finds a number of latent features to allow for the
accurate clustering of single cell data (Srinivasan et al.). Important to note, DUSC is also an
unsupervised method which not only outperforms other unsupervised methods within this space,
but whose accuracy actually approaches that of supervised methods (Srinivasan et al.). Similar to
that of Kallisto, the use of an unsupervised method was important to our team because it would
expand the use cases of our pipeline since it would not rely on the existence of some high quality
reference data to operate.

Finally, as we progress through this paper we will discuss the construction and workflow
of our pipeline, and its application to mouse sensory neuron datasets. Then we will explore
further uses of multicell RNA seq, its limitations as a method, and our insights on potential next
steps of our pipeline’s use in research and future iterations of it.

Methods
To formulate the problem multicell RNA seq aims to address more specifically, we are

establishing a pipeline of pre-existing bioinformatics tools to leverage single cell seq and bulk
tissue seq datasets to then exploit the strengths of one dataset and apply them to the other,
thereby bridging the gap between the two methodologies. With this method scientists could
specifically trace the transcript isoforms captured by the breadth of bulk tissue seq to the specific
cell types captured within the depth of single cell seq datasets. As we move forward we will first
introduce our datasets of interest, then the workflow of our data processing pipeline, and finally
the visualizations and analysis possible with Multicell RNA-Seq. However, for brevity, an
overview of our pipeline can be seen below in Figure 1.
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Figure 1. Overview of the Multicell RNA-Seq pipeline. A cell x gene matrix is
obtained for the single cell dataset, along with the raw reads for both the single
cell and bulk RNA-seq experiments. DUSC is then used to create a hierarchical
clustering for the single cells, and clusters are created. Transcript abundances in
TPM for all raw data files are obtained using Kallisto, and a master transcript
abundance table is produced. This table can then be used for data analysis, to
quantify and trace detectable transcripts or study variation of abundances of
alternative splicing isoforms for specific genes.

Dataset Acquisition
In order to build and test our pipeline, we needed robust datasets. In an ideal situation,

both the bulk and single cell datasets used for our study would have originated from the same
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source, but we settled for two publicly available RNA-seq datasets from peer-reviewed
publications. It is important to note that both RNA-seq datasets were drawn from the same tissue
type, namely mouse sensory neurons, and that they came in the form of fastq files. We obtained
raw RNA reads from two separate experiments: a single cell RNA study by Usoskin et al. from
2014 (with 863 cells sequenced) and a bulk RNA study by Zheng et al. in 2019. Obtaining raw
RNA-seq reads was crucial to our process, as the merging of single cell RNA-seq data by our
pipeline to amplify signals required reads, rather than abundances. Additionally, we also
obtained a cell x gene matrix for the single cell dataset.

In order to download and store these large datasets on our server, we used the SRA
accession codes provided in the original publications, along with the SRA Explorer tool. This
allowed us to generate and run downloading scripts, leading to an easy and automated process.

Generating Hierarchical Clustering
We started our process by generating a hierarchical clustering of the cells in the single

cell dataset using the DUSC tool (Srinivasan et al.).. To do so, we processed the cell x gene
matrix, removing unnecessary columns and transposing it, leaving only the numerical expression
values in the format required by the tool. We then ran the feature learning part of DUSC, Dawn,
on this cell x gene matrix, resulting in the production of latent features that could be utilized for
hierarchical clustering. Then, these latent features were transferred to Weka to generate the
hierarchical clustering assignments. We selected Weka’s hierarchical clusterer with the filtered
distance function and Ward linkage, as this combination of parameters resulted in the best
separation of clusters. This resulted in the production of a stable hierarchy for our single cells,
and cluster assignments for different levels of clustering were obtained for each cell. Overall, we
selected a range of clustering levels: 2, 4, 16, 64, and 128 clusters per level respectively. Each
cell’s cluster assignment for each clustering level was recorded in a comprehensive csv file, for
ease of use later on. These clusters followed a custom naming convention, with N# being the
total number of clusters at that level, and c# being the individual cluster number. As an example,
the N2c0 cluster belonged to the clustering level containing 2 clusters, and was the first cluster of
this level.

Aggregation of Clusters
We then set out to merge our single cell data according to the cluster assignments

obtained from DUSC. Due to the nature of our dataset, it was not uncommon to have duplicate
files for individual cells. In order to match the cluster assignment to only one file per cell, we
opted to use the first raw reads file matching each cell. While this may not be the best method to
deal with duplicate files in single cell experiments, we opted to do so due to time constraints and
ease of implementation. Future refinement of our pipeline may lead to changes in the handling of
duplicates, such as merging them or going through a more rigorous selection process.

In order to implement the merging of single cell data to create raw data files for our
clusters, we built a custom python script and ran it on our server. This script iterated through the
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csv containing the single cells’ cluster assignments, and merged them accordingly. This resulted
in each cluster having its own fastq file, a collection of all the raw reads belonging to all cells in
the cluster. We also created a pseudobulk file by merging the raw reads for all the cells in the
dataset (equivalent to a clustering level with only one cluster).

Transcript Quantification
The next step in our pipeline was to produce abundance files. We used Kallisto to do so, a

well known tool used to quantify transcript abundance from raw reads of both bulk and single
cell RNA-seq experiments (Bray et al.). As a well established and versatile tool, Kallisto is
widely used to generate transcript abundance files from RNA-seq data, and requires only raw
data files along with a reference index file for the organism being considered. We obtained the
Ensembl Mus musculus GTF file and used it to create the index required by Kallisto, before
processing all raw data files including the previously created cluster files.

Aggregation of Results and Visualization
We then created a master transcript abundance table to carry out our analysis. This table

was created using a custom python script and the transcript abundance files from Kallisto, with
the metric being used for abundance being transcripts per million (TPM). This script iterated
through kallisto abundance files and recorded their TPM column, using the custom cluster
number as an identifier. With it, we were able to quickly and efficiently assess the differences in
transcript abundances between clusters or clustering levels. A major part of our analysis was
looking at the proportion of detectable transcripts (with TPM above zero), along with tracing
detectable transcripts from the bulk dataset to different clustering levels. Custom python scripts
were used to do so, recording a list of detectable transcripts for each cluster before making use of
them to make comparisons across clusters and clustering levels.

Results
As a team we created Multicell RNA-Seq to be a pipeline which could investigate

alternative splicing events captured by bulk experiments within a single cell dataset, thereby
leveraging the strengths of one dataset to bolster the other. This is especially the case when
considering through the tracing of alternatively spliced isoforms, we can now identify the cell
type from which those expression signatures are coming from, which traditionally is information
that is unavailable from a standalone bulk RNA seq dataset. The importance of our method also
highlights the fact that existing gold standard bioinformatics tools may be repurposed or
combined in novel ways to create a new scientific product. Not every method needs to reinvent
the wheel or establish the next big algorithm to have a measurable impact on the scientific
community.

Moving forward we would like to frame the structure of this section. Understandably,
since Multicell RNA-Seq is a computational pipeline our results section will read unlike other
traditional articles which are concerned with the analysis of a particular dataset. Rather than
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display specific findings, we will outline a variety of applications for this method and comment
on limitations faced by the current iteration of Multicell RNA-Seq.

Current Applications
Broadly, Multicell RNA-Seq allows us to detect and trace alternative splicing events from

bulk RNA seq and single cell RNA seq datasets, assuming they come from the same tissue types.
This analysis truly comes in a few main branches which can be applied in scientific
investigations. These branches being: transcript isoform detection, transcript isoform tracing, and
genetic and specific transcript isoform investigation. Generally, these branches are all steps in a
workflow of exploratory data analysis and are by no means the limits of the applications offered
by Multicell RNA-Seq, though they are likely the first steps in any application of this pipeline.

First off our method relies on setting a TPM cut off for transcript detection within a
sample. Showcased below in Figure 2, this allows you to account for the number of transcripts
which are reliably detectable at each sample level. This step in the exploratory workflow allows
you to establish a baseline for your intersample comparisons and familiarize yourself with the
distribution of the newly generated dataset. Generally, you should see trends as you do in the
figure below where the bulk and pseudobulk levels of clustering should have the most detectable
transcripts. From there you should see a steady decline of detectable transcripts between each
new level of clustering, though it is normal to see decent variation of detectable transcripts
within a clustering level. While this branch is admittedly poor in groundbreaking scientific
insights it allows users to establish a ground truth for their dataset and see greater trends within
the behavior of transcript isoforms at a cell type/subtype level in their data.



Cazaubiel & Tourtillott 10

Figure 2. Bar chart showing the number of detectable transcripts (with TPM > 0)
for each cluster.  This allows investigators to account for the number of transcripts
which are reliably detectable at each sample level. Most datasets should see the
most detectable transcripts at the bulk and pseudobulk levels of clustering and
from there you should see a steady decline of detectable transcripts between each
new level of clustering, though it is normal to see decent variation of detectable
transcripts within a clustering level. Such a visualization allows investigators to
establish a ground truth for detectable transcript distributions at cell clustering
levels within their dataset.

Moving forward in the workflow, the next step would be to identify traceable transcripts
within your sample. Essentially, a transcript is traceable from your bulk dataset to a specific level
of clustering within your single cell dataset if it is detectable at the bulk level and every other
level of clustering up to that specific level. This is the truly novel application of Multicell
RNA-Seq. What you will notice in using this analysis in your own datasets is that at some level
of single cell clustering there will be a sheer drop off of traceable transcripts. This is likely due to
the sparse nature of single cell data, because for a transcript to be traceable to a particular level
the combined signal of expression from all cells in that cluster must be loud enough to be
detected. However, given the sparsity of single cell data at lower levels of clustering the signal
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simply will not be strong enough to be detected. Such a behavior can be seen below in Figure 3,
where a massive drop off of traceable transcripts takes place between the 16 and 64 clustering
levels. The point of such an analysis then is to find the sweet spot between signal and noise for
transcript tracing, where we can trace as many transcripts from bulk datasets to clusters of single
cell without succumbing to the noise of housekeeping genes or being lost to the granularity and
sparsity of single cell data. After which investigators would be able to delve into the unique
transcript isoform behaviors displayed in particular cell clusterings.

Figure 3. Bar plot showing the number of traceable transcripts between clustering
levels. This plot depicts the number of traceable transcripts at a particular level of
clustering. A transcript is traceable from a bulk dataset to a specific level of
clustering within a single cell dataset if it is detectable at the bulk level and every
other level of clustering up to that specific level. As can be seen above, at a
particular level of cell clustering there will be a dramatic drop off of traceable
transcripts. This behavior is likely due to a loss of signal for transcripts at lower
levels of single cell clustering due to the sparsity of such datasets.

In a similar vein, our method is uniquely suited for the investigation of individual genes
and more specifically the different isoforms of the transcripts for said gene which occur due to
alternative splicing events. Likely the most common and first step in these types of investigations
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will be through the comparison of expression patterns of each transcript isoform, an example of
which can be seen in Figure 4. The gene of interest in this figure is the eukaryotic translation
elongation factor 2 (Mus musculus, ensembl genome browser 106) and the multiple transcript
isoforms of the gene appear to be highly expressed somewhat consistently at all levels of
clustering of the dataset. However, of note such a visualization is vital in seeing differences in
isoform expression as is the case of the second isoform from the other two which appears to be
uniquely expressed in a few cell clusters compared to its other two relatives. Such a behavior
could denote unique expression patterns in specific cell types and subtypes and could be the
beginnings of an investigation into the expression patterns and biological implications of
alternative splicing events in this gene of question.

Figure 4. Heatmap showing the abundance in TPM of three alternative splicing
isoforms of the Eef-2 (eukaryotic translation elongation factor 2) gene in all
clusters. The lighter the band, the more this particular transcript is expressed in
that cluster. This allows for a quick visualization of the differences in expression
levels for isoforms of the same gene, and allows mapping of specific expression
patterns to singular clusters. As an example, we can see that the second transcript
is only expressed in a select few clusters, hinting at different expression patterns
in cellular types or subtypes.
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Of note, these applications described above are merely the beginnings of possible
investigations of transcriptomics data using Multicell RNA-Seq. They truly all fall in the realm
of exploratory data analysis and the true strengths of this method can only be leveraged through
the targeted application of analysis. With that in mind we suggest that investigations into
alternative splicing events and isoform expression are in the best setting to leverage the analysis
that Multicell RNA-Seq makes possible and that such analyses could likely benefit from being
combined with traditional methods of single cell or bulk RNA seq analysis.

Current Limitations
The most glaring limitation we face comes in the form of the metric we use to quantify

RNA abundance in our samples. Currently we use transcripts per million (TPM) which scales the
counts for transcripts within a sample according to their proportion within that individual sample.
However, as noted by current research TPM is a poor metric for intersample comparison of RNA
seq data (Zhao, 2021). The desired metric is normalized counts, a metric which (as the name
suggests) normalizes all RNA transcript counts across samples– allowing for a more reliable
comparison to be made between different Kallisto sample runs.

To achieve such a metric we suggest a method provided by DeSeq2 (Love, 2014). Not
only does this method easily integrate with Kallisto, the output normalized counts can easily be
extracted from this R package and input directly into our table as described previously in the
methods. Correcting this RNA abundance metric will add another step to Multicell RNA-Seq,
however it would keep in line with the original intent of cleverly using gold standard
bioinformatics tools to leverage and analyze data in a new way. It would also shore up the
insights drawn from any analysis performed with Multicell RNA-seq by providing a proper
ground truth to draw intersample relationships from.

In another direction, Multicell RNA-Seq is limited by the availability of similar datasets.
Ideally, this method would be employed on bulk and single cell datasets which were derived
from the same tissue sample or from the same tissue type of the same host. The more similar the
datasets the more sound the conclusions and insights drawn from the expression patterns will be.
However, such an ideal scenario is unique to say the least. Though in that vein as both forms of
RNA Seq experiments become more abundant and cheaper in cost the abundance of said datasets
will increase. While it will still be rare to see the exact same sample donors, it will hopefully
become more common to have both sets of datasets for organism tissues so that Multicell
RNA-Seq can be employed in those cases.

Conclusions
With the aforementioned limitations in mind, we would finally like to discuss potential

areas of research which could benefit from the application of Multicell RNA-Seq and the future
directions of this pipeline. However, before we move on to future applications we would like to
note one more takeaway from this project. New insights and forms of analysis can be achieved
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through the clever use of published gold standard bioinformatics tools. In some areas of the
scientific community there may be pressure to create the next tool or write the next breakthrough
algorithm, but to achieve new insights from data we need only get clever not invent another
wheel.

Multicell RNA-Seq as a method would be best applied in areas of research interested in
the biological implications of alternatively spliced isoforms on cell types and disease states. That
is the true strength of our method– the ability to trace transcript isoforms from the breadth of
bulk RNA seq to the granularity of single cell RNA seq. To some extent we can not predict
which areas of research in particular will benefit the most from the application of our pipeline,
however, we can make a few educated guesses based on our current understanding of
alternatively spliced isoform behavior. With that in mind, we would think that Multicell
RNA-Seq would be the most beneficial in the investigation of developmental biology as well as
any number of disease states since alternatively spliced isoforms remain a largely untapped area
of biology (Zhao).

Finally, we would like to address the next steps for Multicell RNA-Seq as a project on its
own. While we did address some limitations of our pipeline previously, we would be remiss to
repeat this one in particular. Future researchers should first take our method and adapt it to utilize
normalized counts rather than TPM as the metric used for intersample comparisons. Updating
this comparative metric will only add more weight to the biological insights taken away from the
analyses made possible by our pipeline. Moreover, we would like to suggest the addition of cell
type annotation to the single cell dataset used. As it stands we are able to trace alternatively
spliced isoforms to specific cell clusters, though to easily understand the data we are looking at
in a biological sense we would need to know what cell types are in the cluster that we are
looking at which a method of cell type annotation would provide. In a similar vein, adding a
method of transcript or gene function annotation would add more easily accessible biological
insight to our pipeline and doing so would only further empower investigators in their research.
So in short, we suggest that future directions of this project take the key driver of this pipeline
even further– to empower investigators to delve into the implications of alternatively spliced
isoforms on biological processes.

Github Access:
https://github.com/Jcazaubiel/Multicell-RNA-seq
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