
SDN-Controlled Isolation Orchestration to Support End-User Autonomy

A Major Qualifying Project Report

Submitted to the Faculty of

WORCESTER POLYTECHNIC INSTITUTE

In partial fulfillment of the requirements for the

Degree of Bachelor of Science

in

Computer Science

by

Jake Backer

Lia Davis

Nour Elmaliki

December 16, 2021

APPROVED:

Professor Craig A. Shue, Project Advisor

This report represents the work of one or more
WPI undergraduate students submitted to the
faculty as evidence of completion of a degree
requirement. WPI routinely publishes these re-
ports on the web without editorial or peer re-
view.

Contents
1 Introduction 4

2 Background and Related Work 6
2.1 Access Control Mechanisms . 6
2.2 SELinux . 7
2.3 Data Loss Prevention & Intrusion Detection Systems 8
2.4 Data Provenance . 10
2.5 Virtual Machines and Containers . 11
2.6 Software-Defined Networking . 14

3 Design 17
3.1 Policy Manager . 19

4 Implementation 20
4.1 Virtualization Scheme . 20
4.2 Provenance Updater . 20
4.3 Provenance Communicator . 23
4.4 Networking Control and SDN . 26

4.4.1 SDN Agent . 26
4.4.2 SDN Controller . 27

5 Results 29
5.1 Stress Test . 29
5.2 AuditD Processing Overhead . 29
5.3 Provenance Communicator Overhead . 30

6 Discussion 33
6.1 SELinux . 33
6.2 AuditD . 34
6.3 Develop MAC Policy on Clients . 34
6.4 Integrate SDN as Access Control Enforcement 34
6.5 Conclusion . 35

7 References 36

2

Abstract

Numerous data breaches and ransomware attacks in recent history have highlighted the im-
portance of data security. There is always a trade off between security and end-user autonomy.
Organizations need methods of securing data without overly hindering productivity. Current
systems either do not provide enough control over data usage or overly restrict users and hinder
productivity.

This project designs and implements a system intended to provide fine-grained control over
data while allowing end-users more freedom over their systems. Our system leverages the con-
fidentiality benefits of virtualization to provide end-users with multiple environments to work.
These environments are protected by security controls proportional to the data contained within.
Users are allowed environments for high-risk activity and are confined to interact with sensitive
data in low-risk environments. We built a data provenance tracking system to label, update,
and transmit data provenance labels. Provenance labels will be used to determine how data is
distributed among different risk environments.

We performed benchmark testing on the data provenance tracking system and determined
that its overhead does not pose a threat to the usability of the systems it governs. We evaluated
the mechanism that transmits provenance labels and likewise concluded that it does not impede
the usability of the system or the network on which it transmits.

This paper is a snapshot of the project mid-development. One of the team members is grad-
uating and this deliverable represents the work performed thus far.

3

1 Introduction

With the rise of data breaches and ransomware attacks in recent years, the importance of
data security in the 21st century is clear. Data breaches and ransomware attacks can cost or-
ganizations large amounts of money and recovery time, potentially harming their day-to-day
operations. In 2020, ransomware payments increased by 311% from previous years to a total
amount of $350 million [1].

The COVID-19 pandemic has also sparked a movement of large numbers of people to fully
remote work preventing them from being connected directly to a corporate network and poten-
tially leaving themselves and the data they are handling vulnerable on a home network. Current
solutions for this problem involve difficult-to-use security controls that can impede day-to-day
work [2]. Organizations also must maintain the confidentiality, integrity, and availability of
their user’ data. This must be done with access controls to ensure the data is only accessed
when it needs to be and by the processes and people that need to access it. Though proper ac-
cess controls greatly reduces potential attack surface, they can make it difficult to work with the
data.

Current access control mechanisms do not offer the flexibility and security needed to keep
up with these modern issues. In this paper, we are leveraging multiple isolated environments
to separate various levels of sensitive information. We are also developing a centralized orga-
nizational access control system to integrate with and broker information access and migration
between environments. We measure file and network access events in each environment and
send these events to the centralized access control system. This system will make decisions on
whether or not the actions are permitted, which is then forwarded to the environments to enforce
the decisions.

In traditional systems, access controls decisions are made and enforced on endpoints. This
system will enable security administrators to influence when information can cross boundaries
by combining a network based, centralized access control system along with Mandatory Access
Controls to ensure policy is enforced. Additionally, the isolation of data into separate environ-
ments along with data provenance tracking helps to ensure data does not become contaminated
with more sensitive data without also changing the data’s provenance level.

Despite these benefits to our system, there are operational and financial costs associated with
implementing it. First, all endpoints must be capable of running multiple Virtual Machines.
This requires a significant amount of processing power that may not be included with a typical
workstation. Each endpoint must also maintain a constant network connection to communicate
with the centralized access control system. Additionally, the centralized access control system
must be capable of processing large amount of incoming data and the network that supports the
system must be capable of transferring the data with little latency.

The remainder of the paper is structured as follows. In Section 2, we discuss background
information on access control mechanisms, virtualisation, as well as works related to this paper.

4

In Section 3, we discuss the design of the centralized access control system as well as a high
level overview of the data provenance system that is run on each endpoint. Section 4 includes
details about the proof of concept we built to implement our design. In Section 5, we discuss the
tests we ran to measure behavior of our implemented system and analyzed the results. Finally,
we discuss lessons learned, future work, and the implications of our work in Section 6.

Note: this paper is a work in progress. One member of the team will be graduating during
the project, therefore a preliminary version of the report was produced. A final version of the
report will occur in the Spring of 2022.

5

2 Background and Related Work

This research focuses on methods to transmit and maintain data provenance while minimiz-
ing organization overhead and maintaining user autonomy. To provide the reader with a better
understanding of the landscape, we introduce the concepts of access control mechanisms and
data provenance. We also report on similar works in the fields of data loss prevention, intrusion
detection systems, virtualization, and software-defined networks.

Private organizations have long lacked a mechanism to securely store and regulate access to
data of multiple sensitivities when stored on an individual’s machine. Popular access control
schemes do not offer the fine-grained control in a modern work environment (Bell-LaPadula or
Role-based Access Control), or require significant overhead to maintain the system (Attribute-
based Access Control)[3][4][5].

2.1 Access Control Mechanisms

Access control mechanisms provide a way to ensure data confidentiality and integrity. There
exists a large variety of different mechanisms, each with different configurations. With all of
these schemes, different systems can use different configurations and mechanisms for their spe-
cific needs. This paper is based around Mandatory Access Control and a variation of Attribute-
Based Access Control.

Currently, Discretionary Access Control (DAC) is one of the most common schemes for ac-
cess control. DAC governs the access of information based on the user’s identity, authorization,
the information itself, and whether the user is requesting to read, write, or execute the informa-
tion [6]. Any subject in a DAC system can pass its access, or a subset of its access, to any other
subject [7]. For example, the user “user” in a Linux system could grant everyone access to a
file it is the owner of. Because of this, DAC is much more flexible than other mechanisms and
is therefore used widely in standard operating systems such as Microsoft Windows and Linux
[8]. Unfortunately, it is simple to bypass DAC, as once a user has a piece of data, there is no
restriction on its usage. As such, a user could simply re-distribute the data to users who were
not authorized to read the data by the original owner [7].

In contrast, Mandatory Access Control (MAC) is a high security access control scheme that
allows security administrators to define a policy that is guaranteed to be enforced for all users.
These security policies are arbitrated by a “reference monitor” [4], or an authoritative system
that enforces policy. With MAC, users do not have the ability to override security controls.
With DAC, a user could modify the controls on the SSH configuration file which could allow
unauthorized users access to the user’s SSH keys, creating a severe security vulnerability. MAC
allows a security administrator to enforce controls, preventing users from creating insecure con-
trols on files. With MAC, users without sufficient authorization cannot grant more access to an
object, preventing a central issue with DAC.

6

One key implementation of MAC is the Bell-LaPadula Model (BLP). BLP was designed
to be used by the US military to formalize the Department of Defense Multi-Level Security
policy [9]. BLP focuses solely on data confidentiality and does not look at data integrity. There
are three primary security properties that define BLP: The Simple Security Property prevents
a user from reading an object at a higher security level, the Star Security Property prevents a
user from writing to an object at a lower security level, and the Discretionary Security Policy
allows further restriction of access using an access matrix [3]. These three rules are more simply
stated as “read down, write up”, which means that a person at a specific security level can read
from any lower security level and write to any higher security level. There is also a Strong Star
Property which allows a subject to only write to their security level, but not a higher or lower
level [10]. This property allows for a higher level of integrity than typical BLP provides.

Though DAC and MAC are both valid access control schemes on their own, it is more com-
mon to implement them using a higher level scheme such as Role-Based Access Control (RBAC)
or Attribute-Based Access Control (ABAC). RBAC is a method to implement MAC or DAC by
assigning users to “roles” where each role has a specific set of permissions. RBAC is currently
the gold standard for access control in many organizations as it is easy to implement and pro-
vides sufficient security [4]. A major drawback of RBAC is that it is not fine-grained. To provide
small changes in access control, new roles must be created which can cause an unmanageable
number of roles to exist. In contrast to the coarse-grained control of RBAC, ABAC provides
much more fine-grained control. With ABAC, objects are controlled using an access control
equation, allowing complex decisions to be made on whether a user is authorized to access the
object [5]. For example, an object could be made to be accessible by all users in organization
A, all users in organization B that also have a specific level of clearance, or a specific person in
organization C. With RBAC, this would be very difficult to implement in an efficient manner,
but ABAC allows for fine-grained control [4]. Though ABAC allows for very fine-grained con-
trol, implementing ABAC on an enterprise level can incur large development, implementation,
and performance costs due to its high complexity [5].

2.2 SELinux

Security-Enhanced Linux (SELinux) allows security administrators to implement MAC poli-
cies on a Linux device. SELinux was originally developed by the NSA to implement the De-
partment of Defense’s Multi-Level Security (MLS) system into Linux [11][9]. SELinux is com-
monly configured via targeted policy or MLS mode. Targeted policy contains a large selections
of policies for common Linux applications. MLS allows for classification levels for users and
files and implements the Bell-LaPadula model. MLS mode is typically only used my govern-
ment organizations due to its complexity [11]. Everything in a system with SELinux has a label
- including files, processes, and ports. Labels are comprised of an SELinux User, role, type,
and level. The SELinux user is conceptually similar to a normal Linux user, SELinux maintains

7

a mapping of SELinux user to regular Linux user. In targeted mode, type is the most important
part [11]. SELinux’s type enforcement applies policies that define whether a process running
with a certain type can access a file labeled with a certain type [11].

2.3 Data Loss Prevention & Intrusion Detection Systems

Organizations that store important data have been increasingly targeted by cyber criminals
in recent years. The Department of Health and Human Services (HHS) estimates that almost
30 million patient records were breached in 2020 [12]. In response to the increase of cyber
crime, organizations have invested in Data Loss Prevention (DLP) tools. A DLP tool identifies
data on a system, organizes that data into classifications, and enforces organizational policies
on sensitive data [13]. Corporate data generally exists in the following locations: large cen-
tralized/distributes file at rest, moving throughout the network and with external devices, and
on endpoints such as laptops and USB drives [14]. For our purposes we will mainly focus on
securing data at endpoints, specifically end-user machines.

DLP products faces two main challenges: volume and accuracy. DLP tools are required
to process terabytes of stored data, analyze the network traffic of the entire network, and track
activity for thousands of endpoints [13]. It is essential that the identification process is efficient
and scalable. These products generally use pattern matching and hashing to identify data types.
The issue arises when data is reformatted or transformed in a way that avoids programmatic
detection [13]. Allowing users to manually classify data is also problematic; human error poses
threats to accuracy and consistency. Lastly, a DLP tool must be able to understand and enforce
policy requirements as specified by the organization.

An example of such a tool is UC4Win. UC4Win is a data loss prevention solution for Mi-
crosoft Windows. Like our project, it uses system calls to provide fine-grained policy protection.
UC4Win also shares goals with this project - “the enforcement of a defined policy concerning the
usage of sensitive data” [15]. UC4Win accomplishes this by modifying Windows system calls
to interpose itself between applications and the operating system [15]. However, our project
monitors the system through Linux’s logging module. One benefit of this approach is that it
takes advantage of native Linux functionality and does not require modifications to the operat-
ing system. Due to the difference in mechanisms, UC4Win benefits from increased visibility
into user actions and has the ability to block system calls before they happen. UC4Win uti-
lizes Obligation Specification Language (OSL) - a mechanism to encode policy requirements
into a machine readable format. One of the biggest limitations of DLP enforcement systems is
that they “might not be able to withstand sophisticated attacks, and thus may not be suitable to
defend against data disclosure by malicious attackers such as hackers” [15]. For that reason,
organizations often employ intrusion detection systems (IDS).

There are three main methodologies for detecting intrusions: signature detection, anomaly
detection, and stateful protocol analysis [16]. Different implementations of an IDS will have

8

unique mechanisms of event gathering, storage, and processing. Signature detection, also known
as “knowledge-based detection”, searches for patterns that have been recorded in previous at-
tacks [16]. Anomaly detection creates a profile of expected behavior from monitoring normal
day-to-day activity and flags abnormal behavior as potential attacks. Stateful protocol analy-
sis, also known as “specification-based detection”, is similar to anomaly detection – it relies on
knowledge of specific protocols to create rules that determine if activity may be malicious [16].

Demand for IDS tooling has increased in response to the rise of cyber crime. Accenture’s
Cyber Investigations, Forensics and Response team found a 125% increase in cyber crime in
the first half of 2021 [17]. CrowdStrike Falcon is a popular suite of enterprise cyber security
tools. CrowdStrike installs hosts on all endpoints that monitor events, analyzes the endpoints
for abnormal activity, and stores that activity in “Threat Graph”[18]. Threat Graph is a pro-
prietary data structure that summarizes a device into a “state.” That state is stored as the graph
node and events are stored as the transitions between nodes [19]. Since Crowdstrike falcon is a
commercial product, detailed information of how it works is limited beyond the filed patent.

There are two relevant subsets of intrusion detection systems: host-based intrusion detection
systems (HIDS) and network-based intrusion detection systems (NIDS). HIDS is a variant of
IDS that generally monitors activity on an end user’s operating system. HIDS often relies on
a kernel level event audit system to generate system logs, process logs, user commands, and
file access logs [20]. Audit software can be resource intensive but it has high visibility into a
system [20]. NIDS monitors network traffic flows on a device. NIDS consumes less resources
than HIDS but only having visibility into network traffic reduces accuracy [20].

AlarmNet is a combined host-based IDS and network-based IDS that utilizes a neural net-
work to process event data. AlarmNet is not unique in this. Machine learning is an extremely
common tool to process data for an IDS [21] . AlarmNet uses “word embedding methods and
convolution neural network” to transform data into an intermediate state to be consumed by the
decision making neural network [22]. Once the decision making neural network is sufficiently
trained, it is put into a decision making module that detects malicious activity on a system. Our
system processes the same data as AlarmNet, however, we employ an algorithm to parse event
data. We use that data to detect when data crosses a boundary based on a set of predetermined
rules. Host event data is collected by AuditD for our system and AlarmNet [22].

AuditD is a component of the Linux auditing system that can be configured to produce logs
of specific events on the system [23]. Specifically AuditD refers to the audit daemon that com-
municates messages from the Linux kernel to the user. The specifics of delivery can be config-
ured from /etc/sysconfig/auditd and /etc/auditd.conf [24]. Audit rules are contained
in /etc/audit.rules. These rules configure which messages should be delivered from the
kernel. AuditD can be configured to transmit a variety of messages. We will focus on two types
of rules: actions and watches.

Actions log system calls (syscall), which is how an application interacts with the operating
system. Common use cases include requesting disk IO and network resources AuditD can be

9

configured to log syscalls made by the operating system and can be filtered by: the specific
syscall, the arguments of the system call, and the file system (if relevant) among other things.
The alternate approach to using AuditD is to implement “watches”, which logs whenever a
“watched” file is accessed. Watches and actions generally accomplish the same goal. Figure 1
shows an example of how AuditD logs an application opening a file.

Figure 1: How AuditD Logs File Interactions

Similar to AlarmNet, our proposed system utilizes AuditD, but for a different purpose. We
propose the use of AuditD to log file access syscalls, linking them to the application and targeted
file. This allows us to determine when files are accessed by multiple applications and use that
information to define access controls.

2.4 Data Provenance

Our project shares similar goals, complications, and mechanisms with both DLP and IDS
systems: the intent to minimize data loss and the need to efficiently and accurately classify
information. However our system does not process information at a data element level. Instead,
we focus on the origination and purpose of the data, also known as data provenance. “In its
strongest form, data provenance supports information and process integrity by documenting the
entities, systems, and processes that operate on and contribute to data of interest. This serves as
an unalterable historical record of the data’s lifetime and its sources” [25]. Recent research has
included applications in operating systems and security [26] [25].

Some of the limitations of data provenance include integrity and storage. Relying on prove-
nance metadata can be risky if the authenticity of the metadata cannot be verified [25]. Ad-
ditionally, a data set will accumulate metadata throughout its life cycle. It is risky to trim the
associated metadata since it is impossible to determine what part of the history will be relevant
in the future, [25]. We propose a solution to mitigate this limitation in specific situations by
adopting a practice commonly used in data taint analysis and employing a variation of RBAC.

When using data provenance for access controls for data loss protection - it is essential to
know what types sensitive data may be at risk within a given data set. We claim that in that
situation, knowing the order in which the data set was manipulated is irrelevant - the important

10

information is the potential sum of the data within. For example, there are three data sets: the
first containing first names, the second containing last names, and the third containing social
security numbers. Separately, these data sets are important but not critical. However, if these
data sets were combined it would be considered personable identifiable information (PII)[27].
The order in which these data sets are combined does not matter in this context, only the fact that
the data set now contains PII and must be subject to organizational security controls accordingly.

In data taint analysis: when a suspicious data element comes into contact with other ele-
ments in the system, those elements are deemed equally suspicious[28]. In a system that cannot
determine with certainty whether the suspicious data element compromised another, any inter-
actions must be assumed to be malicious. In that same vein, we propose the use of that doctrine
with the interactions of data provenance.

RBAC commonly chosen over ABAC because the functional use of ABAC requires pro-
hibitive overhead [5]. Therefore we propose a system akin to RBAC that employs the data
provenance doctrine ascribed previously to dictate access controls throughout an organization.
The “roles” represent the security requirements associated with that data set.For example: Pay-
ment Card Information (PCI) requires specific security controls and by definition must contain
certain data elements [29]. Therefore a data set containing PCI would also carry metadata
declaring as such. For the remainder of this paper, we will refer to a data set’s role as its clas-
sification. Depending on the setting, users may be required to interact with data sets that have
varying classifications. It could be useful to have a system minimizes contamination between
classifications but allows a user to access their entire workflow without interruption.

2.5 Virtual Machines and Containers

Virtualization refers to to the technique of creating isolated environments within a physical
computer. These isolated environments are usually virtual machines or containers. The virtual
machine, also known as a guest, behaves as if it is a physical machine but all the physical com-
ponents are simulated by the real physical machine (also known as the host) [30]. The program
that manages virtual machines is known as a “Virtual Machine monitor” or more commonly,
as a “hypervisor.” There are two types of hypervisors: Type 1 hypervisors are “bare-metal”
and host the virtual machine directly on physical hardware, Type 2 hypervisors run on top of
an operating system. Generally Type 1 hypervisors are faster since there is no host operating
system.

Containers function differently from virtual machines. Containers are isolated instances of
an operating system that share a kernel [30]. This difference makes containers faster. Often
containers are used in situations that require instantiating numerous virtual environments si-
multaneously. However, containers require a host operating system and the containers must be
the same operating system, since kernels are not cross-compatible with other operating systems.
Since containers share code, there is always a risk that malicious code within a container will

11

spread to other containers or escalate privileges into the host OS [31].

Figure 2: Virtualization Infrastructures

Virtual machines were created to partition IBM mainframes into logical segments and quickly
caught on as an efficient mechanism for running multiple applications at the simultaneously [32].
In addition to performance benefits, virtualization offers isolation. In a traditional system, ap-
plications on a system can see each other and interact with shared resources. In a virtual system,
every virtual instance is cut off from the other, only the virtualization engine can see and inter-
act with the virtual systems. Security researchers leverage this feature constantly. Malware is
often examined within virtual machines so that any damage is contained to the virtual machine.
Additionally, relying on isolation can improve existing security policy [33].

Because virtualization relies on isolation, if an attacker can break isolation they can leverage
their access and infect other virtual machines or the host operating system [32]. Often systems
are configured to intentionally break isolation. For example VirtualBox provides the capability
of sharing clipboards between machines, this makes it easier to work with, however an attacker
could leverage that to spread malicious code or exfiltrate data [34].

Qubes OS is an operating system that leverages the isolation capabilities of a type-1 hy-
pervisor to provide unique security capabilities to the end-user. The goal of Qubes OS is to
minimize the impact of insecure applications by isolating insecure activities from critical data.
Each isolated container is known as a “qube.” Qubes instantiates one qube known as dom 0 that
serves as the buffer between other qubes and the hypervisor and acts as a qube manager. Each
qube has access to a suite of virtualized devices, each abstracted into a qube itself [35].

Qubes OS has been used as the basis for a variety of systems that can utilize isolation or im-
prove user experience. SAFE-OS is a patented system that builds on Qubes by creating the Dom
U, a variant of Dom0, designated for untrusted materials. SAFE-OS also abstracts away the iso-
lation components from the user interface, presenting a unified view to the user [36]. However,
Qubes OS is not stable enough for enterprise and only works on specific sets of hardware. The
difficulties of installing and configuring Qubes OS may be prohibitive. Our proposal seeks to
demonstrate security controls designed around virtualization without the use of Qubes-OS.

Bitvisor is a system developed by a multitude of universities and companies at the behest
of the National Information Security Center (NISC) of Japan [37]. This system introduces a
hypervisor that provides encryption/decryption for storage devices and network connections.
Bitvisor aims to minimize data loss from end-user devices for government and corporate orga-

12

nizations [38]. Specifically, data loss that originates from unauthorized use of USB drives or
physical theft of the laptop [39]. Bitvisor is similar to our project in that it leverages virtual-
ization to minimize data ex-filtration.However, we propose a virtualization scheme that focuses
on minimizing software and network level data ex-filtration and Bitvisor aims to minimize data
ex-filtration through hardware.

Hysolate is a commercial product that isolates end-user machines into a non-persistent “risky
zone” and a “secure zone.” The “risky zone” enables employees of an organization to browse
the internet, handles device IO, and exercises minimal security controls in the name of end-user
autonomy. The “secure zone” stores all the organization’s critical applications and data. Net-
working and on-device controls configured by a cloud hosted control panel. Hysolate’s features
are extremely limited in scope. The virtualized machine can only be a non-persistent version
of Windows 10. Therefore, any data saved only the hard drive is lost on reboot and a new
Windows 10 image must be requisitioned at start time. Organizations cannot configure an OS
image ahead of time. Any changes to the image must occur every time an end-user installs the
image. Additionally, the system only creates one boundary on the end-user system. This limits
organizational policy to essentially a boolean operation of “is this secure” or “is this untrustwor-
thy”, there is no mechanism to enforce unique security controls based on the classification of
data [40]. Our project explores the security benefits of using virtualization as an access control
boundary, but with persistent hosts and multiple boundaries.

Shamon is a system that utilizes a Type 1 hypervisor, SELinux, and IPsec tunnels to enforce
MAC controls on a group of computers on an untrusted network. The goal of this system is to
extend the fine-grained control of SELinux and RBAC to a distributed system. Generally, RBAC
schemes do not lend themselves well to large networks as they quickly require too many roles
to be feasible. This system presents the concept of using virtual machines as a mechanism to
simplify RBAC implementations [41]. Shamon allows for the assurance that MAC policies are
enforced across systems and that distributed computations can be protected. Shamon assumes
that the network between physical machines is untrusted but offers a trustworthy mechanism
for communication between virtual machines sharing a host. We share this concept of using
isolation to simplify access control models and apply it to a different use case: a system of
virtual machines across a trusted network but with the added responsibility of maintaining data
provenance throughout the system. Virtual machines in our system interact in the same fashion,
regardless the underlying physical machine.

For this paper, we chose to use VirtualBox, a Type 2 hypervisor. We considered both Docker
containers as well as Xen and QubesOS, but decided to use VirtualBox. Docker containers
provide ease of use as they are small and lightweight, but do not provide the same security
benefits and extensibility as a Type 1 or Type 2 hypervisor. We decided against Docker as
we wanted to avoid container kernel security vulnerabilities [31]. Also, since OpenVSwitch
requires kernel modules, it must be installed on the host and the Docker container must run in
privileged mode [42]. Docker privileged mode allows processes inside the docker container

13

to access all devices on the host as if it were root. This can result in security problems if the
container were to become compromised [43]. Type 1 hypervisors provide the security benefits
of a hypervisor without the performance costs of a Type 2 hypervisor, but they can be more
difficult to work with. Since the hypervisor engine is not run on top of an operating system, it
can be more difficult to configure. When investigating Type 1 hypervisors, we were working of
off QubesOS. Though QubesOS provide immense security benefits over other options, it does
not function on all hardware and is difficult to configure and use.

2.6 Software-Defined Networking

Software-Defined Networking (SDN) is a networking paradigm that increases flexibility in
network management by abstracting the control system away from vendor-specific technology
[44]. SDN provides a centralized programmable platform that can control an unlimited num-
ber of networking devices. Each networking device communicates with the SDN controller to
receive configuration changes and packet flow control information. The SDN controller also
receives analytical traffic data from the networking devices, enabling visibility into the traffic
flowing in the network.

Software-Defined Networking is the culmination of three decades worth of research into
making computer networks more programmable [45]. Motivated by the desire for fine-grained
control, dynamic operation, rapid development of network services, and research experimenta-
tion at scale, so called “Active Networks” became the foundation of what we now know as SDN.
Much of the promises of Active Networking still apply to SDN; primarily, unified control over
networking devices across vendors and models [46].

The most common protocol used for SDN is OpenFlow [45]. The OpenFlow protocol de-
fines a standardized mechanism by which networking devices can be controlled dynamically and
programmatically. The rapid growth in popularity of OpenFlow can be attributed to the Open-
Flow community’s focus on backwards-compatibility with existing protocols and technologies.
OpenFlow-enabled switches store one or more tables of packet-handling rules that define how
the switch should handle a packet that matches the rule. When there are no rules defined the
switch requests a flow decision from the controller [47]. Upon receiving such a decision, the
switch stores the rule in its table and handles the packet accordingly.

Standard SDN implementations with OpenFlow focus on controlling the networking hard-
ware, primarily switches, that handle network traffic [48]. These implementations are simple
to deploy, but only allow a coarse level of control over the network traffic. Host-based SDN
extends the traditional SDN to include control over each host that is connected to the network
[49]. A host-based SDN implementation allows much finer control over what network traffic is
allowed or denied based on what application process is operating on the network traffic, which
user executed the application, as well as which device the traffic is originating from [48]. Host-
based SDN is implemented by deploying an agent to each endpoint device that will connect to

14

the network. The endpoint-host routes all communications through the agent, enabling the agent
to report on the traffic being sent and the applications or process that are sending it. Since our
design relies on OpenFlow to regulate network connectivity between clients, we must be able
to assume that OpenFlow is trustworthy.

One tool that assists in deploying SDN is FRESCO. FRESCO is “an OpenFlow security
application development framework designed to facilitate the rapid design, and modular com-
position of OF-enabled detection and mitigation modules” [50]. FRESCO provides a set of
simple software libraries that enable network and security administrators to build custom net-
work protection applications. With FRESCO, administrators can build firewalls, filters, detec-
tion systems, and other network protection applications. FRESCO integrates with the popular
NOX OpenFlow controller to provide a Development Environment and a Resource Controller.
Since we rely on OpenFlow, we need it to be trustworthy. The existence of FRESCO as a means
to create security tools helps demonstrate OpenFlow as trustworthy and reliable.

Figure 3: Architecture of Scotch overlay network. The vSwitch Mesh acts as an overflow buffer
for when the physical switch’s connection to the OpenFlow Controller gets saturated. Each
vSwitch is also configured to overflow to one of its neighbors. vSwitches can dynamically be
added and removed by the cloud service

A similar research project on SDNs is Scotch. The Scotch research team endeavored to
develop a solution to dynamically scale the capacity of the control plane’s path throughput [51].
They accomplish this by forwarding packets from the overloaded phyical switches to virtual
switches which have non-congested control-plane paths to the SDN controller. The mesh of
virtual switches acts as backup for the physical switches, allowing them to offload to the vSwitch
mesh and still ensure the packets will be routed correctly.

This solution helps prevent DOS attacks which could exploit the limited bandwidth capacity

15

of the physical switch’s control plane, which typically has a smaller bandwidth than the data
plane. The solution also supports more specific OpenFlow flows, which can be leveraged to
provide a finer-grain access control scheme, that require more bandwidth to direct traffic. At
scale, our project would likely benefit from an implementation of the Scotch project, as our
control plane will likely become saturated with requests for each process.

Another research team worked to improve the Scotch project, and in the process created
SDNShield. The SDNShield project provides a solution to defend against the potential DDOS
vulnerabilities of the OpenFlow control plane [52]. SDNShield works by filtering traffic, to
reduce congestion and remove malicious packets. By filtering packets on the control plane,
SDNShield is able to prevent edge switches and the SDN controller(s) from being overwhelmed
by control traffic. SDNShield utilizes a similar architecture to Scotch (shown in Figure 3), but
adds a set of virtual machines running filtering algorithms connected to each virtual switch.
These filtering algorithms are used to reduce the amount of malicious traffic flowing on the
network. For any network that is planning to scale, SDNShield is a necessary component to
safeguard the core networking infrastructure from malicious actors as well as inevitable device
failure. A real life implementation of our design would require an SDNShield-like architecture
to overcome vanilla OpenFlow’s traditional availability concerns.

16

3 Design

In this Section we describe the design of our infrastructure explaining our intentions, deci-
sions, and assumptions. We complement the information with diagrams to elucidate our infras-
tructure design. We created a proof of concept for our design, details for which can be found in
Section 4.

Since security goals often motivate organizations to limit user autonomy on corporate de-
vices, this paper blueprints a system that leverages data provenance to maximise user autonomy
without sacrificing confidentiality, integrity, or availability. Users within an organization would
have machines capable of virtualization, a suite of virtual machines specified to a purpose, and
a interactive experience that abstracts away the complexities of working with multiple virtual
machines simultaneously (inspired by Qubes). For the remainder of this paper, virtual machines
will be referred to as clients. Each client should have a specific use case, can only store data
required to fulfill that goal, and has security controls proportional to the criticality of the data
within. For our purposes, it is irrelevant whether the clients share a physical system or not.

Figure 4: File crosses client boundary and is allowed or blocked dependent on provenance.

This system enforces two sets of boundaries: between applications and between clients.
Each client will have a administrative service known as the Provenance Updater monitoring file
access events. When data crosses the application boundary, we store data related to its data
provenance. The Provenance Communicator is a similar administrative service monitors net-
work activity and supplies relevant provenance metadata to a centralized decision-making entity
when that data crosses the client boundary. The decision making entity decides if the data is
allowed to cross the boundary or not as shown in Figure 4. When data is allowed to transi-
tion between clients, the appropriate provenance metadata is communicated from the decision
making entity to the receiving client’s Provenance Communicator to ensure consistency across

17

clients. The client boundary is enforced by network switches completely invisible to the client
as shown in Figure 13.

When data attempts to cross a boundary, its permission to do so is verified by access control
policies configured by the organization. The contributing factors to the decision to pass through
a client boundary is the destination client and the provenance of the data itself as demonstrated
in Figure 4.

When data passes through the application boundary, its provenance may be updated to reflect
the change in sensitivity for the data within the file. As shown in Figure 5, the new provenance
is dependent on the which application’s boundary is being crossed. We assume that any given
interaction transmits all potential data available to that application during its lifetime to the file
that it is interacting with.

Figure 5: File crosses application boundary and its provenance is updated.

This system requires visibility into clients’ in order to track provenance transitions at the
application barrier. For this purpose we suggest adopting techniques common in host based
intrusion detection systems and data loss prevention tools to detect when the contents of a file
require an update to its provenance. We suggest the use of AuditD systems to detect boundary
crossings. AuditD can provide file access events, giving us the ability to know every time a
file is accessed and by which application - which is enough information to determine if and
how the application boundary has been crossed. We also propose the use of Linux’s Extended
File Attribute system to maintain persistence of provenance metadata. It is possible that other
mechanisms are better suited to the task, in Section 6.2 we discuss the benefits and limitations
of our chosen tools.

To meet our confidentiality expectations we rely on the trustworthiness of the Provenance
Updater and the Provenance Communicator. The principle of least privilege [53] requires that an
application only access the resources that are required for its function. Following that principle:
all applications with administrative access, have it because it is required for that application to
function. The Provenance Updater and communicator are set administrative services on every
client because they require administrative access to modify file provenance data. But they do no

18

not have the unnecessary power of a driver or kernel module. Relying on the principle of least
privilege allows us to assume that these services are trustworthy. The untrusted zone is the user
space on an end user machine, which we have segmented into smaller parts using virtualization.
This segmentation reduces the impact if one of the untrusted zones is compromised.

The next question is: How do we create a centrally-managed boundary between every client
on any number of physical hosts? We suggest taking advantage of the benefits of programmable
networks such as SDN. With SDN we have centrally managed and dynamically modifiable con-
trol over client agents (acting as firewalls) to reflect the organization’s access control policy. All
client agents rely on a centrally located SDN controller to configure rules that dictate how to
manage communications with other clients. This system ensures that all communications are
subject to organization access controls as shown in Figure 13.

The integrity and availability of the system rely upon trusted network communication be-
tween the Provenance Communicator and the SDN controller as facilitated by SDN endpoints
and OpenFlow. OpenFlow is known to be susceptible to DDOS [52], but technologies such as
Scotch and SDNShield that OpenFlow can be trustworthy if modified. Further, the ability to
easily create security tooling through FRESCO demonstrates that the OpenFlow environment
is robust enough to be trusted in a system with high confidentiality and integrity requirements.

3.1 Policy Manager

Given that we have the ability to dynamically control the network activity of all clients from
a single controller, how do we decide which boundary crossings to allow and which to prevent?
We propose the use of an access control matrix to dictate allowed transitions. The component
that contains this matrix would be called the Policy Manager. Due to the early graduation of
one of the members of the team, development of the Policy Manager is not completed. Future
iterations of the paper will have integrated a Policy Manager into the SDN controller, allowing
for fine-grained access control and ensured confidentiality.

In the next Section we will describe the technical details of our design and walk through
how we built a proof of concept.

19

4 Implementation

In this Section we describe the design of our system by explaining each component in de-
tail and expanding on how the components interact. We provide flow charts and diagrams to
accompany each component.

Our goal was to design a system that enabled centralized, fine-grained access control based
on data provenance. In service of that goal, we built a proof-of-concept from open source
components and leveraging features of the Linux operating system.

4.1 Virtualization Scheme

This proof of concept leverages VirtualBox, a Type 2 hypervisor that supports the creation
of multiple concurrent virtual machines. We configured a Debian Linux virtual machine with
the appropriate settings and installed/developed the software required to maintain our proposed
system. Modifications are described in the next subsection. We used VirtualBox’s import/export
functionality to create copies of our virtual machine. Throughout this Section, all references to
“virtual machines”, “containers”, and “client” refer to a virtual machine that used this image.

This system relies on the ability for each user to support a suite of clients, each configured
for a specific use case. The virtualization design assumes that: the clients cannot communicate
except through monitored network channels, that network communication is managed by SDN
flows, each clients is running security software, a configured vSwitch Additionally, we created
two systems to be installed on all clients: The Provenance Updater, and the Provenance Com-
municator. Both of these rely on AuditD logs and we created a program to interpret those logs,
turn them into event classes, and call the relevant provenance tool as shown in Figure 6.

Figure 6: Provenance Updater and Provenance Communicator Flow Chart

4.2 Provenance Updater

We created the Provenance Updater to track when an file crosses the application boundary.
We do this by processing AuditD logs to track when an application accessed a file. As shown
in Figure 7, When a file is accessed, we update its provenance to reflect the potential changes in
content. Since applications will interact with many files throughout their life cycles, application

20

boundaries are stored in memory and are also updated on file access. When a file crosses the
network boundary and, because it is being sent by a program, it will trigger the Provenance
Updater. In those situations, the Provenance Updater communicates with the program handling
the inter-client boundary called the Provenance Updater to ensure that any incoming data is
correctly tagged.

Figure 7: How Provenance Updater Handles Events

File provenance is stored using the Linux Extended File System, which allows users and
applications to attach arbitrary data to files in the same manner that the operating system as-
signs tags such as “Date Created” and “Date Last Modified.” Once set, a file is linked to its
provenance as long as it stays on that client, when a file is transmitted to another client the
Provenance Communicator interacts with the recipient client’s Provenance Communicator to
maintain integrity.

As shown in Figure 7, the Provenance Updater acts on incoming events. These events are
instantiated from AuditD’s logs via Python script. The functionality of the Python script is
visualized in Figure 8. With a fully configured AuditD, an event will generate multiple logs that
are can be tied together by a unique identifier (UID). Regardless of the event, AuditD will issue
a log messaged “PROCTITLE” when an event is done being logged. The log processor parses
log messages, storing relevant data by UID, until it reaches the “PROCTITLE” message. When
a “PROCTITLE” occurs, the event associated with that UID is sent to the appropriate next party.

It is essential to properly configure the AuditD logs to properly log events of interest without

21

overwhelming the system. We used auditctl, a command line tool, to configure AuditD. Action
rules generate “SYSCALL” logs detailing which syscall was used and which process called it.
To create a rule use: auditctl -a always, exit. This tells AuditD to always log syscalls
on their exit. There are other options for -a but thye are not important to understand this paper.
To prevent the volume of log entries from overwhelming the system, each rule has a filter that
only tracks events that occur in the home directory or subdirectories.The -F parameter allows for
filtering action logs by the argument. For example: -F dir=/home/user would limit logging
to syscalls that impacted a file within the home directory or a subdirectory of home. -S allows
filtering based on specific syscalls; -S connect only logs the ‘connect’ syscall. This system
relies on the following action rule:
auditctl -a always,exit -F dir=/home/user -F perm=wawhich logs all syscalls within
the user home directory.

Figure 8: Processing AuditD Logs into Events

Watch rules generate “PATH” logs that communicate when and which file has been accessed
with a matching Linux permission (read, write, executable, etc). Watch rules are created with au-
ditctl’s -w option, with the directory as an argument. For example: auditctl -w /home/user

will create a watch in the home directory. watch only takes two optional arguments: -p and -k.
-k functionality is the same as in action rules. -p specifies which permissions to watch for. -p w

sets a watch for any writes to a file. This project uses two watches:
sudo auditctl -w /home/user -p w -k process_monitor and
sudo auditctl -w /home/user -p r -k process_monitor. They are identical except
one watch is for writes and the other uses -w r to watch for reads.

22

Employing watches and action rules provides enough data to the Provenance Updater to
detect when a file crosses the application boundary. A drawback to using logging as the mecha-
nisms for enforcing a boundary is that we only know about events after they happen and therefore
cannot take preventative action. Further discussion on the limitations of retroactive enforcement
can be seen in Section 6.2.

4.3 Provenance Communicator

We created the Provenance Communicator to transmit file provenance to other clients and
the Policy Manager.

Figure 9: How the Provenance Communicator Handles Events

As shown in Figure 9 The Provenance Communicator uses AuditD to detect when a process
opens a socket. AuditD is configured with the following rule: auditctl -a always,exit -F

arch=b64 -S connect -S bind -S socket -S accept -k socket_monitor

When the socket is opened, the Provenance Communicator transmits the file provenance of
all the potential files that may be sent through that connection. The SDN controller then commu-
nicates that information to the receiving party, which has their own Provenance Communicator
installed. The Provenance Communicator also listens for incoming provenance metadata from
the controller, and assigns the appropriate provenance to files as they are transmitted through
the socket.

When the client and server are initialized, the client first forms a connection with the server
on port 1338 (by default). This connection will later be used to send data to the client. The
socket monitor script parses logs from AuditD to capture when a socket is opened. The
socket monitor script also keeps track of files opened by processes. When a socket is opened by a

23

process, the socket monitor script sends all files the process opened, along with their provenance
levels and the source and destination IP addresses and ports, to the client script. The client script
uses two background threads to manipulate, parse, and send and receive data to and from the
server in the background without disrupting AuditD log parsing. After data is sent to the client
script, the sender thread will parse and send data to the server over port 1337 (by default).

Figure 10: Sender Provenance Communicator Flow Diagram

The server contains three threads. One thread for sending data to clients, one thread from
receiving data from clients, and one thread for initializing the connections on port 1338. This
model allows for the fewest amount of bottlenecks while processing data. After the receiving
thread receives data from the client, it will store the data into a location that the Policy Manager
can access. The Policy Manager can then poll the server script and make decisions on whether
or not it will accept the traffic. If it accepts the traffic, the server script will tell the sender thread
to forward the data to the receiving client. If it rejects the client, the server script will simply
discard the data.

24

Figure 11: Server Provenance Communicator Flow Diagram

When the receiving client receives the data, it will parse it and send to the socket manager
script. This script will find the received files and edit their labels according to the sensitivity
labels that were provided by the server.

25

Figure 12: Recipient Provenance Communicator Flow Diagram

4.4 Networking Control and SDN

We implemented a programmatic network control system using two simple components;
SDN agents, and an SDN controller.

4.4.1 SDN Agent

Every client has a virtual switch associated with it, also known as an SDN agent. This
agent handles all network traffic from its corresponding machine, and enforces network controls
communicated from the SDN controller. The SDN agent abstracts the network policy away from
the client (see Figure 13). Our SDN agent of choice for this project was Open vSwitch, as it is
the most popular OpenFlow virtual switch [54]. We configured the switch to communicate with
our controller (see Section 4.4.2) to receive flow rules. Configuration is minimal, but followed
these steps:

1. Install Open vSwitch (OVS):
sudo apt-get install openvswitch-switch openvswitch-common

2. Ensure OVS is running:
sudo /usr/share/openvswitch/scripts/ovs-ctl start

3. Add a bridge to the switch:
sudo ovs-vsctl add-br main2

26

4. Add the primary NIC to the switch as a port:
sudo ovs-vsctl add-port main2 enp0s3

5. Set the controller for the switch:
sudo ovs-vsctl set-controller main2 tcp:{ip address}:{port, typically 6653}

6. Remove the ip address assigned to the NIC:
sudo ip a flush dev enp0s3

Note: This command will likely make Debian believe that it does not have access to the
Internet. Even though an alert may pop up, the client has connection to the Internet after
running the rest of the commands

7. Set the bridge as the active NIC:
sudo ip link set main2 up

8. Set the DHCP client to use the bridge NIC to obtain a new IP:
sudo dhclient main2

Figure 13: SDN Agent Flow

4.4.2 SDN Controller

The SDN controller manages all communications between clients and contains network pol-
icy elements that define how source and destination environments can communicate. The SDN
controller can manage communication between two containers of the same compliance, differ-
ent but compatible compliance, or between a clients and an unmanaged environment, i.e., the
Internet. Policy is abstracted out to a separate entity known as the Policy Manager (See Section
3.1). The SDN controller we chose was RYU, due to it’s friendliness for researchers as it is
simple to use and modify, and it is written in Python [55]. Configuration of the RYU controller
was as follows:

27

1. Install RYU into the user’s home directory on a dedicated server
git clone git://github.com/osrg/ryu.git

cd ryu; Python3 ./setup.py install

2. Configure the controller. A template to modify can be found at:
ryu/ryu/app/

We recommend simple switch 13.py as it supports OpenFlow v1.3

3. Navigate back to the main folder and run install again:
cd ~/ryu; Python2 ./setup.py install

4. Run the SDN controller with the now-modified configuration:
ryu-manager ryu.app.simple_switch_13

For the purposes of this paper, the SDN controller was left to the default configuration of sim-
ple switch 13.py; that is, a simple L2 switch. In future works, we plan to integrate the SDN
controller with the Policy Manager (see Section 3.1) to provide dynamic control over which
connections are allowed or denied.

28

5 Results

To test the feasibility of the system, we ran several stress tests, latency tests, and modified
the system to record relevant statistics. Our stress testing was performed by executing a Python
script that caused files to rapidly cross the application barrier and the client barrier. During
that stress test we recorded statistics and observed the behavior of the Provenance Updater,
Provenance Communicator, and an unfinished version of the Policy Manager configured to allow
all connections.

5.1 Stress Test

The stress test was performed by a Python script that created and modified a preset number
of files in a given amount of time in order to generate many events in short periods of time. The
script generated up to hundreds of events a second forcing the Provenance Updater to handle
dramatic changes in the amount of events to process at once. The script also caused files to
cross the client boundary interacting with the central server and other clients. We did not detect
any server bottleneck. The server and SDN controller could handle transmitting provenance
metadata between multiple clients.

5.2 AuditD Processing Overhead

We analyzed the latency of how long it took our system to respond to an event. We recorded
the exact time of the event as reported by AuditD and recorded the exact time that we finished
processing the event. We compiled that latency by how many events were occurring at the time.
The goal of this analysis is to determine if there is a relationship between the frequency of events
and latency. Essentially, does our system lag behind when many events happen simultaneously?

Figure 14 shows that the Provenance Updater can take up to 20 seconds to process events.
There is a distinct trend line between the frequency of events and the processing time. It is
evident that processing AuditD logs introduces latency, but there is not enough data to prove
that the relationship is causal. We hypothesized that additional latency is introduced when many
files cross the network boundary at the same time.

To investigate that hypothesis, we recorded latency in the same fashion as the last trial. The
latency was measured against the number of files crossing the network boundary as a result of
the event.

As seen in Figure 15, the overhead quickly increases as the number of files crossing the
boundary increases, but not consistently. There appears to be a trend, but the data set is unevenly
skewed. There are relatively few instances of the Provenance Communicator transmitting many
bytes at once. In the future, additional trials with balanced samples could and allow for stronger
conclusions.

29

Figure 14: Overhead of processing AuditD logs

Figure 15: Internal Latency of Transmitting File Metadata

5.3 Provenance Communicator Overhead

A system that adds overhead to every network connection must be relatively lightweight
since the overhead will be applied many times and may exacerbate network congestion or over-
load servers. We modified the system to report the amount of bytes that had to be sent to com-
municate file provenance data to other clients. We recorded that data in conjunction with the
amount of files who’s provenance metadata had to be transmitted.

As seen in Figure 16, there is a very noticeable consistent relationship between the amount of
bytes transmitted and the number of files sent, with the largest transmissions approaching 2,000

30

bytes. As a result of our reliance on the AuditD system, the size of the transmission is directly
proportional to the application sending data and how many files have crossed that application’s
boundary during its lifetime. As shown in Figure 17, the majority of transmissions were smaller
than 750 bytes.

Figure 16: Network Overhead of Transmitting File Metadata

Figure 17: Network Overhead of Transmitting File Metadata

We noticed that web browsers generate the most traffic. Our system ran Firefox and we
noticed that Firefox frequently makes outgoing connections and constantly interacts with op-
erating system. Since web browsing is one of the most common use cases for a computer, we
can expect that any implementation of this system would need to, at the minimum, handle the

31

amount of events generated by a program like Firefox. Even at its worst, Firefox only required
the transmission of 175 file provenances with a negligible overhead of around 2,000. Modern
devices and networks can trivially handle that level of overhead, and we detected no significant
performance penalties related to the transmission of file provenance.

32

6 Discussion

This Section is dedicated to elements of our project that are not evaluated in experiments, but
nonetheless may be insightful for individuals interested in continuing this research. We discuss
limitations of our work, what we learned during the development of this project that may be
useful to others, and ideas on how to extend this research.

6.1 SELinux

While developing this project, we encountered many difficulties with SELinux, QubesOS,
VirtualBox, and AuditD. After switching away from QubesOS when prototyping our initial
ideas, we switched to Linux Mint VirtualBox VMs. At this point, we began to use SELinux as a
replacement for MAC enforcement in QubesOS. This combination of technologies caused prob-
lems as SELinux is not entirely supported on Linux Mint and other Ubuntu based distributions.
In particular, we discovered that Linux users could not be assigned to SELinux users. This was
problematic as this is critical functionality in SELinux. After noticing this problem, we switched
to Debian VMs, as Debian explicitly does support SELinux. Though our previous problem was
solved, we quickly discovered that the ‘se-troubleshoot‘ and ‘se-troubleshoot-server‘ packages
were not available to be installed on Debian, only on Red Hat Enterprise Linux (RHEL). These
packages are essential to troubleshooting issues with SELinux as they provide human-readable
explanations of SELinux errors. After realizing this, we finally switched to RHEL to investigate
SELinux configurations.

SELinux’s targeted policy mode does not easily support the type of access control needed
for our system. We attempted to create an SELinux user for a Privileged Access Workstation
(PAW) model as the SELinux reference policy did not have a user suitable for this purpose.
This user would have extremely restricted access to the file system and the network to create a
user that can absolutely perform only the tasks it needs to and nothing more. This turned out to
be difficult with SELinux. Typically, SELinux policies are configured using booleans (policies
built into the SELinux reference policy than can be turned on and off), file labeling, and local
policies. Allowing a specific user to access only a small set of files would require significant
relabeling of the file system as well as a custom policy. It is important to ensure all system
critical executables and files are still accessible by the restricted user. A final important note
with SELinux is that SELinux users and roles are not used by targeted policy by default. We
spent a significant amount of time trying to use SELinux users to accomplish our goals while
reading misleading and confusing documentation relating to them.

To implement MAC enforcement in the future, SELinux or AppArmor should be investi-
gated more to create an explicit policy for different data protection models. SELinux can be
more powerful than AppAmor, but AppArmor is simpler to create manual policies.

33

6.2 AuditD

Throughout the creation of our proof of concept, we wanted to determine the usefulness
of AuditD in creating access control boundaries. As documented in Section 4, AuditD can
be configured to provide suitable insight into a system to create application boundaries and
transmit data required for client boundary transitions. However, since AuditD logged events
after they happened, our implementation could only enforce access controls retroactively which
allows for any manner of race condition and inconsistent behavior. Especially since, as shown in
Section 5.2, relying on AuditD cannot guarantee the speed desired to reliably maintain accurate
data provenance. Future implementations of this system should investigate alternate methods,
we suggest modifying System calls as described in the UC4Win paper [15] to ensure timely
detection and the ability to proactively enforce access controls.

6.3 Develop MAC Policy on Clients

To improve the on-device security controls, developing and implementing MAC security
policies for different types of clients (such as a PAW, Payment Card Industry (PCI) compliance,
and Personally Identifiable Information (PII) compliance) is required. This could be imple-
mented with SELinux or an alternative such as AppArmor[56]. These MAC policies can en-
sure that data is being handled in an allowed manner on the device, as with the current system
policies are only enforced when transmitting data over a network.

6.4 Integrate SDN as Access Control Enforcement

Currently, the SDN controller automatically approves all flows to the requested destination.
In order to use the SDN controller as an access control enforcement mechanism, the SDN con-
troller will have to integrate with a Policy Manager (see Section 3.1). As an initial goal, the Pol-
icy Manager will combine the request from the SDN controller with a matching request from the
Policy Communicator (see Section 4.3), and determine if the communication is allowed based
on the access control matrix. If the flow is allowed, the SDN will send the appropriate flow to
the requesting switch, and the Policy Manager will send the file provenance information to the
destination client (if that client is registered with the system). If the flow is not allowed, the
SDN will send a flow to the switch denying the communication, and the Policy Manager will
not send any information.

Another area in which to improve this work would be to modify the SDN agent running on
each client to send the file provenance information along with the flow request to the SDN con-
troller (by modifying the OpenFlow packet, as described in [47]). Sending the file provenance
information in the OpenFlow packet removes potential blocking behavior in the Policy Manager
as it awaits a second packet containing the provenance information for the flow request (see Fig-
ure 18). We expect that this modification would greatly improve the reliability, integrity, and

34

performance of the Provenance Communicator.

Figure 18: Modifying the SDN agent to send a modified OpenFlow packet removes a blocking
step, a second packet, and likely will improve integrity, reliability, and performance

6.5 Conclusion

In this paper we created a fine-grained access control system based on data provenance
and outlined how to implement such a system. We built a proof-of-concept and benchmarked
the data provenance tracking systems. The provenance tracking system was accompanied by a
virtualization scheme designed to isolate trusted zones connected through a software defined
network.

Our network configuration provides increased insight into each software process that sends
data across the network. Our system correlates file transfers across containers to the originating
processes in order to accurately mark and classify files on recipient containers for appropriate
data provenance tracking. We collected and analyzed test data, and concluded that the addition
of basic metadata into the flow protocol did not significantly impact the performance of the
network.

This paper is a snapshot of our progress thus far, as one of the members of this project is
graduating two-thirds of the way through the project. The remaining members will continue
developing the proof of concept to expand upon the use of the software defined network as a
mechanism for enforcing access control policies. In doing this research, we observed several
areas in which future work can be conducted; including process monitoring improvements, on-
device policy management, policy as a means for access control, policy enforcement with the
SDN controller, boundary precision, and network stack complexity. More information about
these potential future research areas are outlined above.

35

7 References
[1] B. Stackpole, “Symantec security summary – february 2021.” [Online]. Available:

http://symantec-enterprise-blogs.security.com/blogs/feature-stories/
symantec-security-summary-february-2021

[2] Hysolate, How Chief Information Security Officers Are Balancing Enterprise Endpoint
Security and Worker Productivity in Response to COVID-19, Oct 2020. [Online].
Available: https://go.hysolate.com/hubfs/Content/Survey%20Report%20The%
20CISOs%20Dilemma%20Oct.%202020.pdf

[3] D. Bell, “Looking back at the bell-la padula model,” in 21st Annual Computer Security
Applications Conference (ACSAC’05), Dec 2005, p. 15 pp. – 351.

[4] M. Nyanchama and S. Osborn, Modeling Mandatory Access Control in Role-Based
Security Systems, ser. IFIP Advances in Information and Communication Technology.
Springer US, 1996, p. 129–144. [Online]. Available:
https://doi.org/10.1007/978-0-387-34932-9 9

[5] V. C. Hu, D. Ferraiolo, R. Kuhn, A. Schnitzer, K. Sandlin, R. Miller, and K. Scarfone,
Guide to Attribute Based Access Control (ABAC) Definition and Considerations.
National Institute of Standards and Technology, Jan 2014. [Online]. Available:
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-162.pdf

[6] M. Su, F. Li, Z. Tang, Y. Yu, and B. Zhou, “An action-based fine-grained access control
mechanism for structured documents and its application,” TheScientificWorldJournal,
vol. 2014, p. 232708, 2014, date completed - 2015-04-22; Date created - 2014-08-20;
Date revised - 2021-05-07; Last updated - 2021-05-16. [Online]. Available:
http://ezproxy.wpi.edu/login?url=https://www.proquest.com/scholarly-journals/
action-based-fine-grained-access-control/docview/1554940591/se-2?accountid=29120

[7] D. D. Downs, J. R. Rub, K. C. Kung, and C. S. Jordan, “Issues in discretionary access
control,” in 1985 IEEE Symposium on Security and Privacy, 1985, pp. 208–208.

[8] S. Govindavajhala and A. W. Appel, “Windows access control demystified,” Princeton
university, 2006.

[9] D. o. D. United States, Trusted Network Interpretation of the Trusted Computer System
Evaluation Criteria, dod-5200.28-std ed. United States, Department of Defense, Jul
1987, vol. NCSC-TG-005.

[10] E. E. Moe and M. M. S. Thwin, Effective Security and Access Control Framework for
Multilevel Organizations. Cham: Springer International Publishing, 2019, pp.
267–288. [Online]. Available: https://doi.org/10.1007/978-3-030-30436-2 13

[11] R. Hat, “What is selinux?” Aug 2019. [Online]. Available:
https://www.redhat.com/en/topics/linux/what-is-selinux

[12] H. H. S. C. Program, “2020: A retrospective look at healthcare cybersecurity,” Feb 2021.
[Online]. Available: https:
//www.hhs.gov/sites/default/files/2020-hph-cybersecurty-retrospective-tlpwhite.pdf

36

http://symantec-enterprise-blogs.security.com/blogs/feature-stories/symantec-security-summary-february-2021
http://symantec-enterprise-blogs.security.com/blogs/feature-stories/symantec-security-summary-february-2021
https://go.hysolate.com/hubfs/Content/Survey%20Report%20The%20CISOs%20Dilemma%20Oct.%202020.pdf
https://go.hysolate.com/hubfs/Content/Survey%20Report%20The%20CISOs%20Dilemma%20Oct.%202020.pdf
https://doi.org/10.1007/978-0-387-34932-9_9
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-162.pdf
http://ezproxy.wpi.edu/login?url=https://www.proquest.com/scholarly-journals/action-based-fine-grained-access-control/docview/1554940591/se-2?accountid=29120
http://ezproxy.wpi.edu/login?url=https://www.proquest.com/scholarly-journals/action-based-fine-grained-access-control/docview/1554940591/se-2?accountid=29120
https://doi.org/10.1007/978-3-030-30436-2_13
https://www.redhat.com/en/topics/linux/what-is-selinux
https://www.hhs.gov/sites/default/files/2020-hph-cybersecurty-retrospective-tlpwhite.pdf
https://www.hhs.gov/sites/default/files/2020-hph-cybersecurty-retrospective-tlpwhite.pdf

[13] M. Hart, P. Manadhata, and R. Johnson, “Text classification for data loss prevention,” in
Privacy Enhancing Technologies, ser. Lecture Notes in Computer Science,
S. Fischer-Hübner and N. Hopper, Eds. Springer, 2011, p. 18–37.

[14] S. Liu and R. Kuhn, “Data loss prevention,” IT Professional, vol. 12, no. 2, p. 10–13, Mar
2010.

[15] T. Wüchner and A. Pretschner, “Data loss prevention based on data-driven usage
control,” in 2012 IEEE 23rd International Symposium on Software Reliability
Engineering, Nov 2012, p. 151–160.

[16] H.-J. Liao, C.-H. Richard Lin, Y.-C. Lin, and K.-Y. Tung, “Intrusion detection system: A
comprehensive review,” Journal of Network and Computer Applications, vol. 36, no. 1, p.
16–24, Jan 2013.

[17] Aug 2021. [Online]. Available:
https://cybernews.com/security/first-half-of-2021-sees-triple-digit-rise-in-cybercrime/

[18] Crowdstrike, “Stopping breaches with threatgraph.” [Online]. Available:
https://go.crowdstrike.com/rs/281-OBQ-266/images/WhitepaperThreatGraph.pdf

[19] D. T. Martin and D. F. Diehl, “Event model for correlating system component states.”
[Online]. Available: https://patents.google.com/patent/US9477835B2/en?q=ids&
assignee=crowdstrike&oq=crowdstrike+ids

[20] J. Liu, K. Xiao, L. Luo, Y. Li, and L. Chen, “An intrusion detection system integrating
network-level intrusion detection and host-level intrusion detection,” in 2020 IEEE 20th
International Conference on Software Quality, Reliability and Security (QRS), Dec 2020,
p. 122–129.

[21] Y. Xin, L. Kong, Z. Liu, Y. Chen, Y. Li, H. Zhu, M. Gao, H. Hou, and C. Wang,
“Machine learning and deep learning methods for cybersecurity,” IEEE Access, vol. 6, p.
35365–35381, 2018.

[22] J. Liu, K. Xiao, L. Luo, Y. Li, and L. Chen, “An intrusion detection system integrating
network-level intrusion detection and host-level intrusion detection,” in 2020 IEEE 20th
International Conference on Software Quality, Reliability and Security (QRS), Dec 2020,
p. 122–129.

[23] Linux, “Audit daemon - linux man page.” [Online]. Available:
https://linux.die.net/man/8/auditd

[24] L. Zeng, Y. Xiao, and H. Chen, “Linux auditing: Overhead and adaptation,” in 2015
IEEE International Conference on Communications (ICC), Jun 2015, p. 7168–7173.

[25] P. McDaniel, “Data provenance and security,” IEEE Security Privacy, vol. 9, no. 2, p.
83–85, Mar 2011.

[26] K.-K. Muniswamy-Reddy, D. A. Holland, U. Braun, and M. I. Seltzer,
“Provenance-aware storage systems.” in Usenix annual technical conference, general
track, 2006, pp. 43–56.

37

https://cybernews.com/security/first-half-of-2021-sees-triple-digit-rise-in-cybercrime/
https://go.crowdstrike.com/rs/281-OBQ-266/images/WhitepaperThreatGraph.pdf
https://patents.google.com/patent/US9477835B2/en?q=ids&assignee=crowdstrike&oq=crowdstrike+ids
https://patents.google.com/patent/US9477835B2/en?q=ids&assignee=crowdstrike&oq=crowdstrike+ids
https://linux.die.net/man/8/auditd

[27] U. S. N. R. Commission, “Personally identifiable information and privacy act
responsibilities awareness course.” [Online]. Available:
https://www.nrc.gov/docs/ML1530/ML15306A425.pdf

[28] S. Jana, “Taint tracking.” [Online]. Available:
https://www.cs.columbia.edu/∼suman/secure sw devel/taint tracking.pdf

[29] J. Kagan, “Pci compliance,” Mar 2021. [Online]. Available:
https://www.investopedia.com/terms/p/pci-compliance.asp

[30] T. Bui, “Analysis of docker security,” arXiv:1501.02967 [cs], Jan 2015, arXiv:
1501.02967. [Online]. Available: http://arxiv.org/abs/1501.02967

[31] X. Lin, L. Lei, Y. Wang, J. Jing, K. Sun, and Q. Zhou, “A measurement study on linux
container security: Attacks and countermeasures,” in Proceedings of the 34th Annual
Computer Security Applications Conference, ser. ACSAC ’18. Association for
Computing Machinery, Dec 2018, p. 418–429. [Online]. Available:
https://doi.org/10.1145/3274694.3274720

[32] J. S. Reuben, “A survey on virtual machine security,” in Security of the End Hosts on the
Internet, Seminar on Network Security Autumn 2007. Helsinki University of Technology,
Telecommunications Software and Multimedia Laboratory, 2007.

[33] B. D. Payne, R. Sailer, R. Cáceres, R. Perez, and W. Lee, “A layered approach to
simplified access control in virtualized systems,” ACM SIGOPS Operating Systems
Review, vol. 41, no. 4, p. 12–19, Jul 2007.

[34] J. Kirch, “Virtual machine security guidelines,” Aug 2006. [Online]. Available:
https://lasr.cs.ucla.edu/classes/239 1.fall10/papers/CIS VM Benchmark v1.0.pdf

[35] Qubes, “Qubes intro.” [Online]. Available: https://www.qubes-os.org/intro/

[36] F. Lesueur, A. Rezmerita, T. Herault, S. Peyronnet, and S. Tixeuil, “Safe-os: A secure
and usable desktop operating system,” in 2010 Fifth International Conference on Risks
and Security of Internet and Systems (CRiSIS), 2010, pp. 1–7.

[37] S. Soomro, Engineering the Computer Science and IT. BoD – Books on Demand, Oct
2009, google-Books-ID: BSqhDwAAQBAJ.

[38] M. Hirano, T. Shinagawa, H. Eiraku, S. Hasegawa, K. Omote, K. Tanimoto, T. Horie,
K. Kato, T. Okuda, E. Kawai, and et al., “Introducing role-based access control to a
secure virtual machine monitor: Security policy enforcement mechanism for distributed
computers,” in 2008 IEEE Asia-Pacific Services Computing Conference, Dec 2008, p.
1225–1230.

[39] T. Shinagawa, H. Eiraku, K. Tanimoto, K. Omote, S. Hasegawa, T. Horie, M. Hirano,
K. Kourai, Y. Oyama, E. Kawai, and et al., “Bitvisor: a thin hypervisor for enforcing i/o
device security,” in Proceedings of the 2009 ACM SIGPLAN/SIGOPS international
conference on Virtual execution environments, ser. VEE ’09. Association for
Computing Machinery, Mar 2009, p. 121–130. [Online]. Available:
https://doi.org/10.1145/1508293.1508311

[40] Hysolate, “Hysolate,” 2021. [Online]. Available: https://www.hysolate.com/

38

https://www.nrc.gov/docs/ML1530/ML15306A425.pdf
https://www.cs.columbia.edu/~suman/secure_sw_devel/taint_tracking.pdf
https://www.investopedia.com/terms/p/pci-compliance.asp
http://arxiv.org/abs/1501.02967
https://doi.org/10.1145/3274694.3274720
https://lasr.cs.ucla.edu/classes/239_1.fall10/papers/CIS_VM_Benchmark_v1.0.pdf
https://www.qubes-os.org/intro/
https://doi.org/10.1145/1508293.1508311
https://www.hysolate.com/

[41] J. M. McCune, T. Jaeger, S. Berger, R. Caceres, and R. Sailer, “Shamon: A system for
distributed mandatory access control,” in 2006 22nd Annual Computer Security
Applications Conference (ACSAC’06), 2006, pp. 23–32.

[42] OpenVSwitch, “Docker hub.” [Online]. Available:
https://hub.docker.com/r/openvswitch/ovs

[43] T. Bui, “Analysis of docker security,” arXiv:1501.02967 [cs], Jan 2015, arXiv:
1501.02967. [Online]. Available: http://arxiv.org/abs/1501.02967

[44] K. Benzekki, A. El Fergougui, and A. Elbelrhiti Elalaoui, “Software-defined networking
(sdn): a survey,” Security and Communication Networks, vol. 9, no. 18, pp. 5803–5833,
2016. [Online]. Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/sec.1737

[45] N. Feamster, J. Rexford, and E. Zegura, “The road to sdn: An intellectual history of
programmable networks,” SIGCOMM Comput. Commun. Rev., vol. 44, no. 2, p. 87–98,
apr 2014. [Online]. Available: https://doi.org/10.1145/2602204.2602219

[46] D. L. Tennenhouse, J. M. Smith, W. D. Sincoskie, D. J. Wetherall, and G. J. Minden, “A
survey of active network research,” IEEE Communications Magazine, vol. 35, pp. 80–86,
1997.

[47] M. E. Najd and C. A. Shue, “Deepcontext: An openflow-compatible, host-based sdn for
enterprise networks,” in 2017 IEEE 42nd Conference on Local Computer Networks
(LCN), 2017, pp. 112–119.

[48] C. R. Taylor, D. C. MacFarland, D. R. Smestad, and C. A. Shue, “Contextual, flow-based
access control with scalable host-based sdn techniques,” in IEEE INFOCOM 2016 - The
35th Annual IEEE International Conference on Computer Communications, 2016, pp.
1–9.

[49] J. Naous, R. Stutsman, D. Mazieres, N. McKeown, and N. Zeldovich, “Delegating
network security with more information,” in Proceedings of the 1st ACM Workshop on
Research on Enterprise Networking, ser. WREN ’09. New York, NY, USA: Association
for Computing Machinery, 2009, p. 19–26. [Online]. Available:
https://doi.org/10.1145/1592681.1592685

[50] S. W. Shin, P. Porras, V. Yegneswara, M. Fong, G. Gu, and M. Tyson, “Fresco: Modular
composable security services for software-defined networks,” in 20th Annual Network &
Distributed System Security Symposium. Ndss, 2013.

[51] A. Wang, Y. Guo, F. Hao, T. Lakshman, and S. Chen, “Scotch: Elastically scaling up sdn
control-plane using vswitch based overlay,” in Proceedings of the 10th ACM
International on Conference on Emerging Networking Experiments and Technologies,
ser. CoNEXT ’14. New York, NY, USA: Association for Computing Machinery, 2014,
p. 403–414. [Online]. Available: https://doi.org/10.1145/2674005.2675002

[52] K.-y. Chen, A. R. Junuthula, I. K. Siddhrau, Y. Xu, and H. J. Chao, “Sdnshield: Towards
more comprehensive defense against ddos attacks on sdn control plane,” in 2016 IEEE
Conference on Communications and Network Security (CNS), 2016, pp. 28–36.

[53] J. Saltzer and M. Schroeder, “The protection of information in computer systems,”
Proceedings of the IEEE, vol. 63, no. 9, pp. 1278–1308, 1975.

39

https://hub.docker.com/r/openvswitch/ovs
http://arxiv.org/abs/1501.02967
https://onlinelibrary.wiley.com/doi/abs/10.1002/sec.1737
https://doi.org/10.1145/2602204.2602219
https://doi.org/10.1145/1592681.1592685
https://doi.org/10.1145/2674005.2675002

[54] B. Pfaff, J. Pettit, T. Koponen, E. Jackson, A. Zhou, J. Rajahalme, J. Gross, A. Wang,
J. Stringer, P. Shelar, K. Amidon, and M. Casado, “The design and implementation of
open vswitch,” in 12th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 15). Oakland, CA: USENIX Association, May 2015, pp.
117–130. [Online]. Available:
https://www.usenix.org/conference/nsdi15/technical-sessions/presentation/pfaff

[55] R. S. F. Community, “Ryu sdn.” [Online]. Available: https://ryu-sdn.org

[56] AppArmor. [Online]. Available: https://apparmor.net/

40

https://www.usenix.org/conference/nsdi15/technical-sessions/presentation/pfaff
https://ryu-sdn.org
https://apparmor.net/

	Introduction
	Background and Related Work
	Access Control Mechanisms
	SELinux
	Data Loss Prevention & Intrusion Detection Systems
	Data Provenance
	Virtual Machines and Containers
	Software-Defined Networking

	Design
	Policy Manager

	Implementation
	Virtualization Scheme
	Provenance Updater
	Provenance Communicator
	Networking Control and SDN
	SDN Agent
	SDN Controller

	Results
	Stress Test
	AuditD Processing Overhead
	Provenance Communicator Overhead

	Discussion
	SELinux
	AuditD
	Develop MAC Policy on Clients
	Integrate SDN as Access Control Enforcement
	Conclusion

	References

