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Abstract

Traditional encryption protocols are becoming less secure as quantum computing becomes more

viable. Quantum Key Distribution(QKD) uses quantum entanglement to distribute provably secure

encryption keys. Previous QKD protocols have used polarization-entangled photons that can

be easily measured, but cannot be easily transmitted over long distances. This project will use

time-energy entanglement which is more challenging to verify but can be easily transmitted over

long distances. This project demonstrates Time-Energy entanglement and proposes a method of

verifying security independent of Franson interferometry verification.
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I. IMPORTANCE OF QKD

Classical encryption systems use algorithms based on complex prime factorization to

secure data. These systems are secure because classical computers are unable to solve these

problems in a reasonable amount of time. As quantum computers become more and more

viable, this type of encryption is no longer secure. Quantum computers are very adept at

solving these types of factorization problems and can undo traditional public key encryption

quickly. To maintain the security of sensitive information in the age of quantum computing,

encryption methods must adapt. The only provably secure methods of encryption to date

rely on hand-delivered encryption keys, such as in One-Time Pad[1], but these methods

are not currently feasible for secure high-speed transactions. This leaves Quantum Key

Distribution as the next step in secure communications once quantum computing is common.

I present a new Quantum Key Distribution method which doubles theoretical efficiency from

previous methods.

Quantum Key Distribution is a series of protocols that usess entangled photons to dis-

tribute large amounts of random information between two parties. Because the random

information is shared securely between these parties, it can be used to encrypt sensitive

data which can then be transmitted over classical lines. Photon entanglement is a phe-

nomenon where the states of two photons become highly correlated in a way which violates

Bell’s Inequalities [2].

Polarization entanglement is the most common type used for QKD[3], in which two

photons’ polarization states become highly correlated. Measurements of the polarization of

these photons along any basis will be correlated, although entirely random. These photons

maintain their entanglement even over very large distances1. Quantum Key Distribution

exploits this by sending the entangled photons to parties who need to encrypt sensitive

data. Each party measures their photon’s polarization in one of two axes randomly. They

then publish which axis they chose, and discard any photons that are measured in different

axes. In order to verify security, a small portion of the results are published publicly, and

the error rate can be calculated from there. If an eavesdropper is present the entanglement

will be broken, error will be introduced to the measurement and the key can be discarded[3].

1 This is the case in vacuum or any medium through which photon coherence is high. Any interactions con-

stitute ”measurement” and will break entanglement. Free space and fiber optic cabling often approximate

these conditions
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Once an entangled photon has been measured, the entangled photon is broken. Due to the

no cloning theorem, it is impossible for the eavesdropper to recreate that photon’s state and

send it on to the intended recipient. This method is provably secure because no sensitive

data is actually shared until after the security of the key is verified.

Time-Energy(TE) entanglement is a different type of entanglement, but can also be used

for QKD. In TE entanglement, photons have highly correlated time of emission and photon

energy.[4] A single photon is sent through a crystal known as a ”Spontaneous Parametric

Down Conversion”(SPDC) crystal. While the photon travels through the crystal, it spon-

taneously splits into an entangled pair. This type of entanglement is used for QKD by

employing measurements of emission time and filtering on the basis of photon energy. The

current method of TE QKD uses a type of photon interference measurement known as Fran-

son Interferometry, initially described in Franson et. al[4] and demonstrated by Kwiat et

al. [5]. This type of interferometry can be used to distribute random information securely

with extremely high data rates[6]. Time-energy entanglement is robust over long distances,

and can be transmitted through fiber optic cabling making it preferable to polarization

entanglement for earth communications [1].

Unfortunately, Franson interferometers are extremely challenging to build, and become

unaligned easily [7]. The goal of this project is to demonstrate a Franson interferometer and

proposes an alternative to Franson interferometry in TE QKD.

II. ENCRYPTION PROTOCOL

QKD provides two parties with identical strings of random information. One-Time

Pad(OTP) encryption uses this to encrypt information later transmitted over classical chan-

nels. The encryption protocol uses modular arithmetic as shown in Figure 1. In this example,

simple integers are used for both the raw data and the key. Later will be shown an example

where images are encrypted using this method. In that case, each pixel value was encrypted

the same way. OTP is used because there is no positive verification for correct ”guessing”.

Due to the nature of the encryption, a 10 digit cipher could contain any 10 digit number in

existence. The only way to find the correct one is to have the correct key.

5



FIG. 1. One-Time Pad encryption uses modular arithmetic

III. QKD PROTOCOL

The key distribution protocol includes three entities: Alice (A) is transmitting a encryp-

tion key to Bob (B) with an eavesdropper or noise source Eve (E). While keys can technically

be transmitted from a centralized neutral source, this encryption protocol requires Alice to

own the entanglement source.

Alice’s source will emit two photons with emission uncertainty of ∆τ1 and frequency

uncertainty ∆ν1. Current systems often use SPDC sources as they fit the requirements of

this application. However, it is possible to use any source which emits two photons, one of

which has an emission time uncertainty much larger than the second. For typical SPDC

sources, the emission uncertainty ∆τ is determined by the length of the crystal [4].

Both Alice and Bob have Single Photon Detectors and timing systems with binning

capabilities of ∆τ2 such that ∆τ1 � ∆τ2 with a minimum requirement ∆τ1
∆τ2

> 2. For the

sake of security, we will assume that Eve has access to a perfect timing system, which allows

them to measure the intercept time exactly.

Alice and Bob share a sync pulse which can either be through a classical channel, or

an optical pulse through the fiber channel. Eve has access to this sync pulse as well, and

compares any intercepted photons to this sync pulse for time tagging purposes. Alice begins

by emitting a pair of entangled photons. She separates the photons and observes one. This

observation will fall within one sync cycle. The sync cycle is broken down into bins with

width ≥ ∆τ2. Each bin represents one ”letter” of the encryption key alphabet.
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A. The Franson Method

In the Franson Method, the second photon is observed by Bob. Both parties send their

photons through separated Mach-Zehnder interferometers shown in Figure 2. These inter-

ferometers are set up in such a way that there is no single-photon interference observed,

typically by a path length difference exceeding 100µm. For the imbalanced Mach-Zehnder

systems used in the Franson method, the path length difference is typically large, on the

order of several centimeters. After passing through these systems, 3 types of coincidence

measurements can be made: long-long(l-l), short-short(s-s), and long-short(l-s). The l-l and

s-s cases are indistinguishable and make up 50% of all received photons. The l-s and s-l

cases are non-interfering background as the photons travel separate paths. They are easily

filtered since there is a large delay in arrival times. This filtering caps efficiency at 50% As

one leg of one of the Mach-Zehnder systems is changed in micron-level steps, a sinusoidal

change in coincidence counts determines a non-local change in the wave function. This vi-

olates Bell’s inequality [5] [2] and verifies integrity of the entanglement. Fringe visibility

above 50% exceeds the classical limit and is required for this validation. If an eavesdropper

had observed any of the photons, the fringe visibility would drop, and both parties would

immediately be alerted to the attack.

FIG. 2. An unbalanced Mach-zehnder interferometer consists of two beamsplitter cubes and a

retroreflector. This system has a large path length difference which prohibits self-interference
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IV. METHODOLOGY

QKD requires that the key be the same size as the data being transmitted [1]. In order

for Time-Energy systems to be viable, entanglement sources must emit large numbers of

photons pairs. These types of sources are known as ”high-brightness”. This project tested

a high-brightness source to demonstrate TE entanglement and verify the source for future

experimentation.

A. Franson Method

The source used was a periodically poled MgO-doped LiNbO3 (MgO:LN) non-degenerate

photon pair source. This source exhibits spontaneous parametric down conversion (SPDC),

a non-linear optical response that generates two entangled photons from a single photon.

The crystal was pumped with 532nm photons from an Nd:YAG fiber coupled laser. Photon

pairs consisted of 794nm and 1614nm photons.

FIG. 3. The sorting optics for the pair detection system

The sorting optics are shown in Figure 3. Two filters are used, one high reflective 532nm

filter to remove unconverted pump photons, and one 1064nm filter to remove pump photons

from the source laser. A dichroic mirror splits the photons into two beams, one of 794nm

photons and one of 1614nm photons. The 794nm photons were measured using a Silicon

Avalanche Photodetector (Si APD) calibrated for 800nm. The 1614nm photons were mea-

sured using a Superconducting Nanowire Single Photon Detector (SNSPD). The function

and calibration of the SNSPD is described in Appendix B. Outputs of these detectors were

connected to a time tagging device to measure coincidences.

Preliminary verification of photon entanglement was achieved through direct coincidence

counting. Normally distributed coincidences would imply that photon emission times were
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at least highly correlated, and acted as an equipment test. The preliminary un-adjusted

measurements showed maximum true coincidences of 350kHz at an SNR above 1 [8]. This

showed photon emission times were at least highly correlated. It is important to note that

this does not verify entanglement as no violation of Bell’s inequality can be proven. To prove

entanglement, an interferometer setup based off of Franson et. al was used.[4] Two separate

but nearly identical Mach Zehnder interferometers were built, one for each wavelength of

interest. The short path measured approximately 10cm, and the long path approximately

30cm. This ensured that there was no single photon interference while staying within the

crystal’s coherence length. The retroreflector of the long arm of the 1614nm interferometer

was moved using a stepper motor with 0.5nm resolution. 5 microns were scanned with 10nm

resolution. Fringe visibility of 58% was observed which is a violation of Bell’s inequality [9].

This verified the entanglement of the source.

This is necessary to prove entanglement in sources of this nature but has several draw-

backs. Primarily, these Franson interferometers are challenging to build and maintain. Ex-

treme precision is required to balance the interferometers, which is challenging when the

systems are separated by long distances. Additionally, nm size steps in prism location are

required to verify visibility. While possible in a laboratory setting, applying this system in

an application with vibration or large changes in temperature is challenging. Attempts have

been made to create a fiber-only system[7][1] using fiber heating to increase path length, but

many of the existing challenges remain. These drawbacks mean that Franson interferometry

is challenging with current technologies.

B. Proposed Method

I propose a new method of key distribution which does not employ Franson Interferom-

etry. In order to verify key integrity without Franson interferometry, a monochrometer is

employed. Here, Bob sends the photons he receives from Alice through a monochrometer

with a bandwidth of ∆νb where

∆νb =
1

4π∆τ1

(1)

This makes use of Heisenberg uncertainty. Franson et. al. discuss a two-level system,

from which two photons are emitted. The first state has a lifetime of τ1 and the second

has lifetime of τ2 where τ1 � τ2. Franson states the uncertainty of the emission time of
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the photon pair is initially τ1, but when one photon is observed the wave function collapses

nonlocally, and thus the time of emission of the other photon is immediately known to

within τ2. This two level system is interchangeable with SPDC sources[5]. Because the time

uncertainty is defined by the crystal, it is much larger than the binning capability of the

timing system. Because time uncertainty is large, the energy can be known very accurately.

It is important to note that not all sources will take full advantage of this, so sources that

have a very small known bandwidth are needed.

Since information is sent as single photon packets, Eve can not simply be a passive

observer. Any photons she absorbs will be removed from the set that Bob measures, and

he can then see that the integrity of the encryption has been compromised. To avoid this,

Eve absorbs and re-emits the photons she receives as quickly as possible, hoping to pass

them off as the originals. Assuming a worst-case scenario, she receives the photons at the

beginning of every bin and has the full bin width to re-emit the imposter photon. Since the

imposter photon has a much smaller time uncertainty, the energy uncertainty must be large.

This increase in energy uncertainty is an increase in bandwidth, and imposter photons can

therefore be filtered out easily using the monochrometer. All original photons pass through

the monochrometer without issue.

Assuming that the sync pulse travels the same distance as the entangled photon, or that

the difference in travel time is known, Bob will receive the second entangled photon and

bin it in the same ”letter” as Alice. Alice and Bob then take turns verifying the integrity

of a subset of their key over the classical channel. This verification is simple, requiring one

party to state the time stamp of the sync pulse of a certain letter of the key. The other

party will then respond with the letter they received during that sync cycle. As long as

this verification is successful to the degree required by the encryption algorithm (typically

no greater than 20% noise)[6], both parties can be sure that the keys are secure and shared

only between themselves.

C. Protocol Security

This key distribution protocol is proven secure against both passive AND active eaves-

dropping attempts. Passive security is relatively simple and is based entirely off of the

single-photon nature of the key distribution. Since the parties are verifying both ways
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across a public channel, if Eve is passively eavesdropping, she is observing the photons and

Bob will therefore not receive them. This verification ratio then ensures that if Bob is losing

enough photons for Eve to gain any usable information, Alice and Bob can both tell stop

transmission. Additionally, only random data is being distributed, not the actual sensitive

information. The sensitive data is only encrypted and transmitted after key integrity has

been verified.

Preventing against active eavesdropping is of course harder. With traditional polarization-

entangled QKD, the random basis of the measurement acts as a barrier for the re-emission

of the photons. The eavesdropper may re-emit a photon polarized correctly in the basis she

measures in, but that photon will not share a state with the other photon, meaning that if

Bob measures it in a different basis he will get the wrong answer. Without the Franson in-

terferometers, we are not measuring in randomized bases. In order to ensure security in the

case of an active eavesdropper we add a monochrometer with bandwidth ∆νb. The increased

energy uncertainty of imposter photons means that they are filtered by the monochrometer,

and the error rate properly reflects the number of true photons received.

V. SIMULATION

A simulation of the proposed monochrometer system was created in python to demon-

strate the security (Appendix A). This simulation used PNG images as sample data to

encrypt. The image was first turned into an array of pixel values. The photon pairs were

then generated using Python’s random function. This function uses pseudo random num-

bers and is not sufficient for actual cryptography, but is good enough for this demonstration.

Each photon pair is given a value between 1 and 10, and a wavelength. In reality, each pho-

ton pair would consist of two timings and two wavelengths, but it is assumed Alice has

negligible losses due to having the source. The photon wavelength is a random value within

the wavelength uncertainty.

In a true QKD application, the wavelength is not uniformly distributed within the uncer-

tainty. While the time and energy uncertainties are theoretically step functions, real optics

are rarely so linear. For this application however this assumption is suitable.

The key is then transmitted to Bob, at which point eve is able to disrupt it. Assuming

for security that eve collects every lost photon up to a given noise level, she re-emits each.
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At this point, photon wavelength of the imposter photons is calculated using the new time

uncertainty.

For the sake of security, we assume a worst-case scenario in which Eve receives each

photon at the beginning of the bin, and takes the entire bin width to re-emit the imposter

photon. This gives her the maximum possible time uncertainty and the most wavelength

precision. After all photons have been recorded, Alice and Bob compare a subset of their

photons. The error rate is calculated, and the key is rejected if it is above 20%.

The image is then encrypted using the accepted key. Each pixel is defined by 4 values:

Red, Green, Blue, and Opacity. Each of these values is an 8-digit decimal ranging between 0

and 1. One-Time Pad encryption was employed using a 108 digit alphabet for convenience.

Python’s modular arithmetic handling required a modulation about 1.000000001 to avoid

errors with values of 1 and 0.

VI. RESULTS

A. Franson Interferometry

The Fringe visibility was 58%, shown in Figure 4. This exceeds the classical limit of 50%,

proving that the source is a valid entanglement source. The measured maximum of 350kHz

with an SNR above 1 means that this source is a valid high-brightness source.

FIG. 4. Fringe visibility is shown exceeding 50%, violating Bell’s inequality[9]

This verification means that this high-brightness, low SWaP source is suitable for space

applications, and shows promise in future space-based applications.
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B. Proposed Monochrometer Method

The simulation was used to verify encryption integrity in high and low error scenarios.

The first, shown in Figure 5 used an error rate of 17% and a worst-case scenario in which all

error was due to Eve. Bob was able to measure a noise level of 16.6%, showing that almost

all imposter photons were filtered out. The following images are visual representations of

the encryption process, and the ”Bob” image shows the fidelity of Bob’s key. The proof

of the security is that at higher error rates, Bob’s image loses fidelity. If Eve’s imposter

photons were able to pass through the monochrometer, Bob’s image would look exactly

like the original. The fact that Bob loses every photon that Eve gains shows that the

monochrometer is accurately filtering the imposter photons.

FIG. 5. These images were encrypted using an error rate of 17%. A phantom of the image can be

seen in the Eve image, however the 20% error cited includes key obfuscation.

The second, shown in Figure 6 used an error rate of 1% and the same worst-case scenario.

Bob’s measured error rate was 0.9%, again showing that almost all imposter photons were

filtered.

FIG. 6. These images were encrypted using an error rate of 1%. No phantom can be seen in Eve’s

image, but some pixels are lost.

The third, shown in Figure 7 used an error rate of 0.01%. Bob’s measured error rate was

0.012%. This is interesting as it is higher than the induced error for the first time. This
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implies that (i) high error rates result in the highest percentage of false positives and (ii)

the introduction of the monochrometer increases random loss even when the bandwidth is

smaller than the monochrometer.

FIG. 7. These images were encrypted using an error rate of 0.01%. No phantom can be seen and

almost no pixels are lost.

VII. CONCLUSION

The simulation of the monochrometer method demonstrates the viability of non-franson

time-energy quantum key distribution. This circumvents the sensitivity of Franson Interfer-

ometers while maintaining the benefits of TE entangled photons for QKD. The monochrom-

eter method had a theoretically low induced error, and the total error was almost entirely

attributed to photons lost pre-monochrometer. This stands in contrast to the Franson

method which has a minimum photon loss of 50% due to discarding the l-s and s-l photons.

Since keys in QKD must be the same size as the data being transmitted, increase in data

rates is the primary goal of new QKD systems. This method doubles the amount of photons

that are used and is limited primarily by the deadtime and saturation points of the single

photon detectors.
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Appendix A: Code

import numpy as np

#np . s e t p r i n t o p t i o n s ( t h r e s h o l d=np . nan)

import pandas as pd

import random as rand

import matp lo t l i b . pyplot as p l t

import matp lo t l i b . image as mpimg

import math as math

c = 3∗10∗∗8

alph = 10

c ry l en = 10 #leng t h o f the c r y s t a l in mm

wl = 800 #wave length o f the 2ndary photon

bint ime = 10∗∗−12

monochrom = 10∗∗−4 #monochrometer s l i t width

a l i c e = ( [ ] )

eve = ( [ ] )

bob = ( [ ] )

c rysk = 1 #The p r o b a b i l i t y t h a t a pa i r w i l l be produced

no i s e = 6 #The p r o b a b i l i t y t h a t a photon pa i r w i l l be i n t e r c e p t e d

img = mpimg . imread ( ’ WPI logo .PNG’ )

imgshape = img . shape

enc = np . z e r o s ( imgshape )

dec = np . z e r o s ( imgshape )

eveim = np . z e r o s ( imgshape )

p l t . imshow ( img )

p l t . show ( )

awl = {}

bwl = {}

def photonwl ( sigmax , wlcent ) :
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temp = ( wlcent ∗∗2)/(4∗ math . p i ∗c∗ sigmax )

return ( rand . uniform ( wlcent−temp , wlcent+temp ) )

#Generates the random key

i = 0

for i in range ( img . s i z e ) :

a l i c e . append (round( rand . uniform ( 0 , 1 ) , 8 ) )

awl [ i ] = photonwl ( cry len , wl )

#Encrypts the image us ing the key

i=0

for x in range ( img . shape [ 0 ] ) :

for y in range ( img . shape [ 1 ] ) :

for z in range ( img . shape [ 2 ] ) :

enc [ x , y , z ] = round ( ( ( img [ x , y , z ] + a l i c e [ i ] )%1 .00000001) ,8 )

i+=1

p l t . imshow ( enc )

p l t . show ( )

#d i s r u p t s key

i=0

for i in range ( len ( a l i c e ) ) :

i f rand . rand int (1 , no i s e ) ==1:

eve . append ( a l i c e [ i ] )

bob . append ( a l i c e [ i ] )

bwl [ i ] = photonwl ( c∗bintime , wl )

else :

eve . append (round( rand . uniform ( 0 , 1 ) , 8 ) )
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bob . append ( a l i c e [ i ] )

bwl [ i ] = awl [ i ]

i+=1

i=0

y = 0

tot = 0

for i in range ( len ( bwl ) ) :

i f i<len ( bwl ) :

i f abs ( bwl [ i ]−wl)<monochrom :

y+=1

tot+=1

else :

t o t+=1

i+=5

print (1−(y/ to t ) )

i f 1−(y/ to t ) < 0 . 2 :

#decryp t s the a l i c e image us ing the key

i=0

for x in range ( img . shape [ 0 ] ) :

for y in range ( img . shape [ 1 ] ) :

for z in range ( img . shape [ 2 ] ) :

i f (abs ( bwl [ i ]−wl)>monochrom ) :

dec [ x , y , z ] = round ( ( ( enc [ x , y , z ]

round( rand . uniform (0 ,1 ) , 8 ) )%1 .00000001) ,8 )

else :

dec [ x , y , z ] =

round ( ( ( enc [ x , y , z ] − bob [ i ] )%1 .00000001) ,8 )

i+=1

p l t . imshow ( dec )
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p l t . show ( )

# decryp t s the eve image us ing the key

i=0

for x in range ( img . shape [ 0 ] ) :

for y in range ( img . shape [ 1 ] ) :

for z in range ( img . shape [ 2 ] ) :

eveim [ x , y , z ] = round ( ( ( enc [ x , y , z ] − eve [ i ] )%1 .00000001) ,8 )

i+=1

p l t . imshow ( eveim )

p l t . show ( )

else :

print ( ’Too much no i s e to v e r i f y s e c u r i t y ’ )

Appendix B: SNSPD

The efficiency setup for the 4-channel Quantum Opus SNSPD is shown in Figure 8.

In order to measure channel efficiency, a 1600nm fiber coupled CW laser was filtered and

attenuated and connected to a 4-way fiber splitter. Splitter attenuation was measured using

the same 1600nm laser and a traditional bucket photodetector, and all outputs were found

to be equivalent. Each output of the splitter was then run through polarization controllers

and connected to each channel of the SNSPD. The outputs were connected to a 4 channel

oscilloscope, and photon flux was compared. The highest efficiency channel was then used

for all future measurements.

FIG. 8. SNSPD channel efficiency measurements [8]
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