
 

 

 
 

Automated Design of Planar Linkages: 
Slider-Crank Analysis  

A report submitted to the Faculty of the WORCESTER POLYTECHNIC INSTITUTE in partial 
fulfillment of the requirements for the Degree of Bachelor of Science. 

 

Written By: 

 

 Albert Nana Beka (ME)  

Advisors:  

PROFESSOR D. BROWN PROFESSOR P. RADHAKRISHNAN 

DATE: November 04, 2019 

 

This report represents work of WPI undergraduate students submitted to the faculty as evidence 
of a degree requirement. WPI routinely publishes these reports on its web site without editorial 

or peer review. For more information about the projects program at WPI, see 
http://www.wpi.edu/Academics/ProjectsCRN: 11868



i 
 

 
Copyright Information 

The work presented here is copyrighted by Albert Nana Beka and Professors Brown and 
Radhakrishnan. 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



ii 
 

Abstract 

The Planar Mechanism Kinematic Simulator (PMKS) is an important software tool for the 

kinematic analysis of planar linkages. The tool is also capable of carrying out force analysis of 

linkages with revolute joints. In order to enhance the capability and carry out force analysis of 

slider-crank linkages, this major qualifying project was involved in developing static and 

dynamic equations of four-bar and six-bar slider-crank linkages that could be implemented 

within PMKS. Equations were sourced from standard text-books. These equations were 

evaluated and implemented in MATLAB and tested on multiple example problems. These 

examples linkages were also recreated in Working Model 2-D software to compare results.  
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Chapter 1: Introduction  

The Planar Mechanism Kinematics Simulator (PMKS: 

https://designengrlab.github.io/PMKS/ ) is a browser-based tool that can be used to analyze the 

kinematics of links and joints and the forces at joints in planar linkages.   The tool was originally 

developed by Professor Matthew I. Campbell of Mechanical Engineering Department at Oregon 

State University, as a kinematic simulator that can generate position, velocity and acceleration of 

links and joints in single-degree of freedom planar linkages. The tool can animate these linkages 

as well as generate all the position, velocity and acceleration data into a comma separated value 

(CSV) file. The tool was used as a teaching tool at WPI in ME 3310 Kinematics of Mechanisms 

in 2015, 2016 and 2017 in the courses taught by Prof. Pradeep Radhakrishnan due to this 

association with the development and usage of the software. The primary usage of the tool was 

to help students design planar linkages, generate kinematics and compare those values obtained 

using manual and implementations in MATLAB.  

Automated Design Planar Linkages (Andrews et al, 2018) added several capabilities to 

PMKS such as the ability to carry out static force analysis and dynamic force analysis of linkages 

with revolute joints. Through these force analyses, the joint forces and the input torque at the 

motor can be computed. These two features meant that the tool must allow users to specify 

forces, link dimensions, geometry and material and thus those features was incorporated into the 

tool. In addition, the tool can also compute stress analysis of links and joints and determine the 

instantaneous center of rotation of linkages with revolute and prismatic joints. These additions 

allowed the tool to be used in senior level courses such as ME/RBE 4322 Modeling and Analysis 

of Mechatronic Systems and ME 4320 Advanced Engineering Design. In those courses, students 

can compare their solutions to linkage dynamics problems using PMKS.    

While PMKS is a valuable tool in education, there are a lot of features that have to be 

incorporated so that its design and analysis capabilities can enhance outcomes in a number of 

Mechanical Engineering courses. The features that are majorly lacking in PMKS compared to 

similar tools are: (i) the ability to add a force onto a pin, (ii) the static, dynamics and stress 

analysis of a slider crank mechanism, (iii) force analysis of a parallel four-bar linkage and (iv) 

the ability to incorporate different link geometry. In order to enhance the capabilities of PMKS, 

this MQP proposes the following 

1. Understand the capabilities of PMKS with respect to slider-crank mechanisms 
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2. Identify the equations related to static, dynamic and stress analysis of links in a slider-

crank mechanism 

3. Implement the equations in MATLAB and verify solutions for various test cases with 

similar software 

Once the equations have been thoroughly tested as part of this MQP, they can be coded into the 

PMKS software. The analysis of slider-crank was selected in this MQP since this is one of the 

most commonly used mechanisms on campus and will be a valuable addition to PMKS.  

This MQP report is organized as follows. Chapter 2 will discuss some of the background 

related to slider-crank linkages. This will be followed by Chapter 3 where the methodology 

adopted to solve the linkage will be discussed. Chapter 4 will list out all the equations and the 

test cases will be discussed in Chapter 5. Chapter 6 will present concluding remarks and 

recommendations for future work.  
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Chapter 2: Background 

 In this chapter, all the necessary background related to slider-crank mechanisms will be 

presented.  

  

2. 1. Slider-Crank Mechanism 

 

 The slider crank mechanism has been introduced in to PMKS to mimic the movement of 

diesel and petrol engines used in the industry. Its idea originates from Scotch Yoke mechanism 

which converts the linear motion of a mechanism to rotational motion and vice versa ( Hastürk, 

2016). A sample Scotch mechanism is shown in Figure 1.  

 

  

 

Figure 1: Scotch Yoke mechanism 

Source: Scotch Yoke Mechanism Working Principle. (2017). Retrieved from https://techminy.com/scotch-yoke-mechanism/  

 

There are various examples of four-bar slider crank applications in real life. One of the common 

examples of a four-bar slider crank is the pump jack as shown in Figure 2.  
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Figure 2: A pump jack in an oil field 

Source: Hanania, J., Stenhouse, K., & Donev, J. (2015). Pump jack. Retrieved from 

https://energyeducation.ca/encyclopedia/Pump_jack  

 

The device is composed of long heavy beam which is moved by an external power source 

causing the end of the beam to rise and fall. As the beam rises and falls, a series of sucker rods, 

which acts like the slider piston dips in and out of the well increasing the pressure inside.  

 

 

2.2. Four-bar slider-crank mechanism 

 

A sketch of a slider-crank mechanism is shown in Figure 3. The sketch shown in Figure 3 

was created using SolidWorks.  

 

Figure 3: A four-bar slider crank mechanism in SolidWorks 

 

The flat surface is the ground. It is considered as one link. The input link is the link connecting 

revolute joints O and A and the input is attached to the joint O. The coupler link is the link 

formed by connecting revolute joints A and B, and the slider is the piston with a joint at B. The 

slider has another joint, which is the prismatic joint between the sliding block and the surface 

against which it is sliding. The input can also be the slider instead of the revolute joint at O. An 
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internal combustion engine is an example of a slider-crank mechanism where the piston (slider) 

is the input.  

Such mechanism has wide range of criteria, but one of the beauty we noticed is that it produces a 

high torque with a small size of size of piston cylinder and spent more time on the top than on 

other part during the movement. This situation increases the engine efficiency. Additionally, its 

piston motion is a pure sine wave which occurs overtime and give a constant rotation speed.  

 

 2. 3. Six-bar slider crank mechanism 

 

 Various examples of six-bar slider crank applications can be seen in mechanical or 

manufacturing engines. One example of 6-bar slider crank is the double dwell six-bar linkage 

shown in Figure 4 below.  

 

 

 

Figure 4: Double Dwell six bar linkage on S. Wang software . 

Source: Norton R. L (2003). Design of Machinery, 3rd Edition. Retrieved from: https://slideplayer.com/slide/3449547/  

 

It is composed of two binary links (shown in red) OA and BE, one ternary link (shown in 

yellow) ABD and a sliding member at its extremity. Three motion functions follow each other 

and then repeat: a dwell, a rise and a return function (Norton, 2003) during the movement of this 

linkage.  

 

 In this chapter, a brief overview of slider-crank mechanisms is presented. In the next 

chapter, the project methodology will be presented.   
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Chapter 3: Methodology 

 In this chapter, the steps undertaken to fulfill the requirements of this project will be laid 

out. 

 

 3.1. Analysis for Slider Crank 

 

  3.1.1. Force Analysis of Four-Bar and Six-Bar Slider Crank mechanisms  

 
Currently, PMKS is able to compute the kinematics of slider-crank mechanisms. 

However, force analysis cannot be done. Equations for forces analysis on slider-crank linkages 

will be sourced from Kinematics and Dynamics of Machinery from R. L. Norton, 2009,  on 

forces produced within a slider-crank and verify using MATLAB  before implementing into 

PMKS. Afterward, 4-bar and 6-bar slider-cranks will be created in Working Model. All software 

implementations will be verified to be matching. To start the work on the four and six-bar slider 

crank mechanism, we found necessary to begin on the statics and dynamics analysis of a four-bar 

slider crank mechanism, then finish with the statics and dynamics analysis of a six-bar slider 

crank mechanism. Two different cases were attempted: one with known input force at the slider 

and unknown torque at the crank, and the other with unknown input force at slider piston and 

known torque at the slider.  

 

  3.1.2. Determination of Joints Forces in Linkages using the Principle of Virtual 
Work 

 
The principle of virtual work is an attempt to characterize unequivocally an equilibrium 

configuration of a mechanical system by observing its reaction to a small kinematical 

perturbation (Epstein, 1970). Virtual work can be applied on all types of linkages and an input 

force need to be applied on the slider piston. The benefit of using this principle over the Norton’s 

Design of Machinery book equations analysis is the consideration of a virtual small displacement 

where the mechanism seems to move creating an energy.  It will be used to determine the value 

of the force when applying known torque on the 4 and 6-bar slider crank mechanism.  

 In this chapter a brief overview of the roadmap of this project is presented. In the next 

chapter, we will discuss about the equations statics and dynamics equations to be implemented. 
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Chapter 4: Slider Crank Forces Analysis  

 

In this chapter, details on the force analysis of four-bar and six-bar slider crank 

mechanisms are discussed. We do not include the weight of each link and the friction applied on 

joints neither on statics nor dynamics analysis, but if they have to be considered, the set of 

equations on this chapter will be different. Additionally, we did not take in consideration 

slippering case. It would change the whole state of equations in the slider crank portion and the 

values we could get on reactions. 

 

 4.1.  Possibilities of Forces Analysis on the Four Bar and Six Bar Slider Crank 
Slider Crank 

 There are multiple possibilities for determining the force analysis in the slider crank four-

bar and six-bar mechanisms.  

 

4.1.1. First Possibility: Applying a Constant Input Force on the Piston 
 

The application of a constant input force, Fp, at the piston of the slider mimics the force 

experienced by a piston in an internal combustion engine. Shown in Figure 5 are two figures of a 

four-bar slider-crank mechanism with an applied force at the slider.  

 

 

5.a  
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5.b  

 

Figure 5: four-bar slider-crank mechanism with input force applied at the slider piston 

 

In Figure 5.a, the simple representation of the input force applied, Fp, on the mechanism on point 

B is shown while in Figure 5.b, the decomposition on x and y axis of that same force is 

presented.  Typically, the applied force can remain at the same angle or can vary as the linkage passes 

through various positions. In the case of slider-crank linkages, the applied force at the slider being at the same 

angle would be an accurate representation of forces in similar systems. 

The coordinate system orientation will be on the way shown above; however, the origin can 

be  the location where the force is applied. In this scenario, the solver would be used to 

determine all the joint forces and the torque at the crank.   

 

  4.1.2. Second Possibility: Applying a Constant Input Torque on the Input Link 
  

 

 The second possibility is the application of a constant input torque at the crank and then 

the solver can be used to determine all the joint forces and the force at the piston.  
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Figure 6: Four-bar slider-crank mechanism with constant input torque applied at the 

input link 

 

In Figure 6, the direction of the torque is counterclockwise, and it does not produce any angular 

acceleration because of the constant angular velocity. The axis will stay fixed at the lower 

extremity of the joint where the torque is applied.   

 

4.1.3. Third Possibility: The Applied Force is not at the Slider Piston 
 

The application of the constant input force at another location other than the piston is also 

a case to be considered.  
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7.a 

 

7.b  

 

Figure 7: 4-bar slider crank mechanism with constant input torque applied at the input 

link 

 

As shown in Figure 7, the input force, F, can be applied either on the input link, 7.a,  or on the 

coupler link, 7.b.  

 

 4. 2. Analysis Equations for Four-Bar Slider-Crank  

 

The general process in static and dynamic analysis involves the drawing of free body 

diagrams, which will be followed by deriving equations and subsequently solving them.  

 

  4.2.1. Free Body Diagrams  
 

Consider the following four-bar slider-crank mechanism shown below,  
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Figure 8: SolidWorks outline of a 4-bar slider crank mechanism with a known input 

force Fp  

  

 

 

Figure 9: Free body diagram of four-bar slider crank 

 

 Figures 8 and Figure 9 present successively the SolidWorks outline and the free body 

diagram decomposition of the four- bar slider-crank mechanism. Although the properties of the 

links such as mass, volume and length are going to vary from mechanism to mechanism, the 

decomposition and the resolution of linear equations are going to be the same. .  
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  4.2.2. Obtention of Static Equations  
                                                                                        

Once the free body diagrams have been drawn, the next step would be to derive the 

necessary equations. For a four-bar slider-crank mechanism, there are eight equations. Three 

equations for the first link and the second link each. The slider link will only have two 

equations.    

 

 

 

 

                                 

         

          The statics equations for the input link are: 

              ∑ F =  0    →    Fo +  FA =  0 

             ∑Mo =  0  → Torque + [ rAOX     rAOY     0] x [AX   AY   0 ] =  0 
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The statics equations for the follower link are: 

∑ F =  0     →   FA +  FB =  0 

∑MB =  0   →  [ rBAX     rBAY     0] x [BX   BY   0 ] =  0 

 

 

 

 

 

 

 

The statics equation for the slider is 

 ∑ F =  0    → FB +  Fp + Friction + weight_slider +  N  =  0 
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Figure 10: Static equilibrium equations of a four-bar slider-crank mechanism with an 

applied force at the slider 

 

 In the above equations, FO =  Ox  i   + Oy  j  is the vector force applied at joint O.  Ox 

and Oy are its x and y components.   FA =  Ax  i   + Ay  j  is the vector force applied at joint 

A.  Ax and Ay are its x and y components.  FB =  Bx  i   + By  j is the vector force applied on 

joint B. Bx and By  are its x and y components.  

rAOX = (XA-XO), rAOY = (YA-YO) , rBAX  = (XB-XA), rBAY = (YB-YA) are the x and y coordinates of the 

position of input and follower links, OA and AB respectively.  

  Fp = Fpx  i   + Fpy  j  is the input vector force applied on the slider crank piston.  Friction is the 

vector friction force applied on the slider and it is opposite to its movement.  Friction is directed 

along the x axis.  weight_slider is the vector weight force of the slider. It applies at its center of 

gravity and it is directed on the y axis.  N is the normal vector force applied by the horizontal 

surface on the slider and directed on the y axis. It is linked to the friction force by the formula, 

Friction = 𝛍*N.  If the weight of each link was to consider, those equations set would be different 

  

 

  4.2.3. Solving Equations 
 

The above equations are decomposed into scalar form and solved simultaneously using the 

A*X=B format depending on the input. Here A is the 8x8 input coefficient matrix, B is the 8x1 

know matrix and X is the 8x1 matrix of unknown values. We have two cases. 
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Case 1: Fp is known and the torque at the crank is unknown quantity that needs to be 

determined as shown in Figure 11.  

 

 

Figure 11:  Linear matrix equation decomposition for a four-bar slider-crank mechanism: 

statics analysis with Fp known and the torque is unknown 

 

The entries of the third and sixth rows are the ones for the moment equations applied on links. 

rAOX , rAOY , rBAX , rBAY , 𝛍,  weight_slider, Fpy , Fpx are known values. The unknowns values 

to  find are the reaction forces coordinates at each joint: Ox, Oy, Ax, Ay, Bx, By, on the 

mechanism as well as the normal force N applied by the plan on the slider and the Torque on the 

piston on point O.  

 

 Case 2:  Fp is unknown that needs to be determined in Figure 12 and the torque at the 

crank is known quantity  

 

  

 In this case, the equations from the case 1 are going to be valid here. It is just that the equations have 

to be rearranged and solved. 

 

Where A2 is the 8x8 input coefficient matrix, B2 is the 8x1 know matrix and X2 is the 8x1 matrix 

to be determined. For the above 4-bar slider crank mechanism 
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Figure 12:  Linear matrix equation decomposition of matrix for a 4-bar slider crank 

mechanism: statics analysis with Fp unknown and the torque is known 

 

rAOX , rAOY , rBAX , rBAY , 𝛍,  weight_slider, Torque are known values. The unknowns values to 

find are the reaction forces coordinates at each joint: Ox, Oy, Ax, Ay, Bx, By, on the mechanism 

as well as the normal force N applied by the plan on the slider and the Fpy , Fpx on the piston on 

point B. 

 

 4. 3. Dynamics Analysis Equations for Slider-crank 

 

The overall process for dynamic analysis is similar to static analysis. However, angular 

velocities and angular accelerations of links, acceleration at the mass centers of each link, the 

mass and the mass moment of inertia of each link needs to be determined. Currently, PMKS can 

methods to calculate all the aforementioned quantities. During the process, the joints are 

assumed to be frictionless. 

 

   4. 3.1. Free body Diagram of the above Four-Bar Slider Mechanism 
 

 The dynamics free body diagram is very similar to the static free body diagrams. The 

difference will be that the center of mass and the accelerations at mass centers are displayed as 

shown in Figure 14.  Also, the angular accelerations can also be displayed for each link For the 

slider, the same forces decomposition is displayed like in statics; however, its translational 

acceleration vector is added and displayed this time.  
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  4.3.2. Obtention of Equations on each Link 
 

The equations are based on Newton’s second law and are listed 

below.  

 

 

The dynamics equations for the input link are 

 ∑ F = m2* aCoM2  →  Fo +  FA =  m2* aCoM2 

∑MO =  I2*𝜶2          →  Torque + [ rAOX     rAOY     0] x [AX   AY   0 ] = I2*𝜶2 
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The dynamics equations for the follower link are: 

∑ F = m3* aCoM3  →    FA +  FB =  m3* aCoM3 

∑MB =  I3*𝜶3             → [ rBAX     rBAY     0] x [BX   BY   0 ] = I3*𝜶3 

 
   

 

 

 

    ∑ F = mslider_crank *  aCoM4      → FB + Fp + Friction + weight_slider +  N = mslider_crank * aCoM4 

 

Figure 13: Free body diagram of a 4-bar slider crank mechanism and equations on each link: 

dynamics analysis  
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  4.3.3. Solving Equations 

 
  The decomposition shown in the statics case for the force vectors   ⃗Fo,  ⃗FA,  ⃗FB,   ⃗Fp  

applies in the dynamics case. ⃗Friction is the vector friction force applied on the slider and it is 

opposite to its movement.  ⃗Friction is directed alongth x  axis.  ⃗weight_slider is the vector 

weight force of the slider. It applies at its center of gravity and it is directed along the y axis.  ⃗N 

is the normal vector force applied by the horizontal surface on the slider and directed along the x 

axis. It is linked to the friction force by the formula Friction = 𝛍*N. rAOX = (XA-XO), rAOY = (YA-

YO) , rBAX  = (XB-XA), rBAY = (YB-YA) are the x and y coordinates of the position of input and 

follower links, OA and AB respectively. m2, I2, aCoM2 ,𝜶2, are respectively the mass, moment of 

inertia, linear acceleration at its center of mass and angular acceleration of the input link on the 

4-bar slider crank mechanism while m3, I3, aCoM3 ,𝜶3 are respectively the mass, moment of inertia, 

linear acceleration at its center of mass and angular acceleration of the follower link. m slider, and 

aCoM4  are the mass and the acceleration at the center of mass of the slider.  

 Fo +  FA =  m2* aCoM2            (1) 

Torque + [ rAOX     rAOY     0] x [AX   AY   0 ] = I2*𝜶2             (2) 

FA +  FB =  m3* aCoM3                (3) 

[ rBAX     rBAY     0] x [BX   BY   0 ] = I3*𝜶3            (4) 

FB +  Fp + Friction + weight_slider +  N  =   mslider* aCoM4               (5) 

By solving those equations using linear equations calculations, we got A*X = B; 

This time the intensities forces at joints and the torque would be different from the ones in statics 

analysis.   

 

Case 1: Fp is known and the torque at the crank is unknown quantity that needs to be 

determined as shown in Figure 14. 
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Figure 14:  Linear matrix equation decomposition of matrix for a four-bar slider-crank 

mechanism: dynamics analysis with Fp known and the torque is unknown 

 

Where A2 is the same 8x8 input coefficient matrix as in statics analysis, B3 is the 8x1 know 

matrix and X3 is the 8x1 matrix to be determined. rAOX , rAOY , rBAX , rBAY, 𝛍, weight_slider, Fpy , 

Fpx , I2, I3, 𝞪2, 𝞪3are known values. The unknown values to be  found are the reaction forces 

coordinates at each joint: Ox, Oy, Ax, Ay, Bx, By, on the mechanism as well as the normal force 

N applied by the plan on the slider and the Torque on the piston on point O.  

 

 Case 2: Fp is  unknown that needs to be determined in Figure 15 and the torque at the 

crank is known quantity  

  

 

 Here, the same set of equations can be used as in case 1. It is just that the knowns and unknowns 

change. rAOX , rAOY , rBAX , rBAY , 𝛍,  weight_slider, Torque  are known values. The unknowns 

values to find are the reaction forces coordinates at each joint: Ox, Oy, Ax, Ay, Bx, By, on the 

mechanism as well as the normal force N applied by the plan on the slider and the Fp y , Fpx on the 

piston on point B. 

By solving all those equations we got the linear matrix equation we got A2*X4 = B4  where A2 is 

the same 8x8 input coefficient matrix as in statics analysis, B4 is the 8x1 know matrix and X4 is 

the 8x1 matrix to be determined.  
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Figure 15: Linear matrix equation decomposition for a four-bar slider-crank mechanism: 

dynamics analysis with Fp unknown and the torque is known 

 

rAOX , rAOY , rBAX , rBAY , 𝛍,  weight_slider, Torque  are known values. The unknowns values to 

find are the reaction forces coordinates at each joint: Ox, Oy, Ax, Ay, Bx, By, on the mechanism 

as well as the normal force N applied by the plan on the slider and the Fpy , Fpx on the piston on 

point B. 

 

 4.4. Generic Case of the Four-Bar Slider-Crank 

 

 The generic case of the 4-bar slider crank is when we have the slider on an oblique 

direction to its axis of reference, the horizontal x-axis.  

  

  4.4.1. Statics 

 

   4.4.1.1. Free Body Diagram of the Four Bar Slider Mechanism 
 

 The same process of generating equations as on section 4.2 applies here. However, the 

angle formed by the slider and the horizontal axis, x, need to be considered as it varies. The 

joints still assumed to be frictionless. 
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          The statics equations for the input link are: 

 ∑ F =  0      →    Fo +  FA =  0 

∑MO =  0  → Torque + [ rAOX     rAOY     0] x [AX   AY   0 ] = 0 

 

 

 

The statics equations for the follower link are: 

∑ F =  0      →    FA +  FB =  0 

∑MB =  0  →  [ rBAX     rBAY     0] x [BX   BY   0 ] = 0 
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The statics equation for the slider is 

∑ F =  0  →  FB +  Fp + Friction + weight_slider +  N  =  0 

Figure 16: Free body diagram of a four-bar slider crank mechanism and equations on 

each link: statics analysis generic situation 

 

 

  4.4.1.2. Solving Equations 
 

 The same decomposition in statics from section 4.2 of forces vectors   ⃗Fo,  ⃗FA,  ⃗FB,   

⃗Fp  applies here.  ⃗Friction = Frictionx  i + Frictiony  j is the vector friction force applied on 

the slider and it is opposite to its movement. ⃗weight_slider is the vector weight force of the 

slider. It applies at its center of gravity and it is directed on the y axis.  ⃗N = Nx i+ Ny  j = -N* 

sin(ɸ)  i  +  N * cos(ɸ) j is the normal vector force applied by the horizontal surface on the 

slider. It is linked to the friction force by the formula Friction = 𝛍*N. rAOX = (XA-XO), rAOY = (YA-

YO) , rBAX  = (XB-XA), rBAY = (YB-YA) are the x and y coordinates of the position of input and 

follower links, OA and AB respectively. mslider  is the mass of the slider.  
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 Fo +  FA =   0            (1) 

Torque + [ rAOX     rAOY     0] x [AX   AY   0 ] = 0             (2) 

FA +  FB =  0               (3) 

[ rBAX     rBAY     0] x [BX   BY   0 ] = 0             (4) 

 FB +  Fp + Friction + weight_slider +  N  =   0              (5) 

By replacing the equations of  ⃗Friction and  ⃗N, and using linear equations calculations, we got 

the matrix equation: A*X = B; 

 

 

  

Case 1: Fp is  known and the torque at the crank is unknown quantity that needs to be 

determined as shown in Figure 17. 

 

 

  

Figure 17:  Linear matrix equation decomposition of matrix for the general four-bar 

slider crank mechanism: statics analysis with Fp known and the torque unknown in generic 

situation 
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A3 is the same 8x8 input coefficient matrix as in statics analysis, B1 is the 8x1 know matrix and 

X1 is the 8x1 matrix to be determined. rAOX , rAOY , rBAX , rBAY, 𝛍, mslider, weight_slider, Fpy , Fpx are 

known values while the forces: Ox , Oy , Ax, Ay, Bx, By, N and Torque are unknowns. 

 

 Case 2: Fp is  unknown that needs to be determined in Figure 18 and the torque at the 

crank is known quantity  

 

The equations on section 4.4.1.2 still applied here.  However, there are changes on unknowns and 

knowns. Knows are: rAOX , rAOY , rBAX , rBAY , 𝛍,  weight_slider, Torque  are known values. The 

unknowns values to find are the reaction forces coordinates at each joint: Ox, Oy, Ax, Ay, Bx, 

By, on the mechanism as well as the normal force N applied by the plan on the slider and Fp y , 

Fpx on the piston on point B. 

 

 

Figure 18:  Linear matrix equation decomposition of matrix for the general four-bar 

slider crank mechanism: statics analysis with Fp unknown  and the torque known in generic 

situation 

 

By solving the linear matrix equation, A*X = B. We got A4 which is the 8x8 input coefficient 

matrix as in statics analysis, B4 is the 7x1 know matrix and X4 is the 8x1 matrix to be 

determined.  
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  4.4.2. Dynamics 
 

   4.4.2.1. Free Body Diagram of the Four-Bar Slider-Crank Mechanism 
 

 The same process of generating equations with slider inclined to the horizontal axis 

applied in the dynamics for the input and follower link. However, the angle formed by the slider 

and the horizontal axis, x, need to be considered as it varies in the dynamics situation too. The 

joints are still assumed to be frictionless. 

 

   4.4.2.2. Obtention of equations on each link 
 

 

The dynamics equations for the input link are 

∑ F = m2* aCoM2  →  Fo +  FA =  m2* aCoM2 

∑MO =  I2*𝜶2          →  Torque + [ rAOX     rAOY     0] x [AX   AY   0 ] = I2*𝜶2 
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The dynamics equations for the follower link are: 

∑ F = m3* aCoM3  →    FA +  FB =  m3* aCoM3 

∑MB =  I3*𝜶3             → [ rBAX     rBAY     0] x [BX   BY   0 ] = I3*𝜶3 

 

  

  

 

 

                The dynamics equation for the slider is 

 

∑ F = mslider_crank *  aCoM4      →  FB + Fp + Friction + weight_slider +  N =  mslider_crank *  aCoM4 
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Figure 19: Free body diagram of a four-bar slider-crank mechanism and equations on each link: 

dynamics analysis 

 

   

   4.4.2.3. Solving Equations 
 

 The decomposition as in section 4.4.1.2 of forces vectors   ⃗Fo,  ⃗FA,  ⃗FB,   ⃗Fp  applies 

here. Friction force decomposition, weight_slider and normal force are the same as in 4.4.1.2. 

rAOX, rAOY, rBAX , rBAY are the x and y coordinates of the position of input and follower links, OA 

and AB respectively. mslider  is the mass of the slider.  

 

 Fo +  FA =  m2* aCoM2 

Torque + [ rAOX     rAOY     0] x [AX   AY   0 ] = I2*𝜶2 

FA +  FB =  m3* aCoM3 

[ rBAX     rBAY     0] x [BX   BY   0 ] = I3*𝜶3 

 FB + Fp + Friction + weight_slider +  N =  mslider_crank *  aCoM4 

 

Case 1: Fp is  known and the torque at the crank is unknown quantity that needs to be determined 

as shown in Figure 19 

 

Using the relationship Friction = 𝛍*N  → Frictionx  i  + Frictiony  j = 𝛍* (Nx i + Ny j),  

on the x axis: ∑Fx = (𝛍 + 1)Nx + Bx - Fpx         (a)      

on the y axis: ∑Fy = (𝛍 + 1)Ny - weight_slider - By + Fpy         (b) 

By replacing N coordinates in both equations,  

we got ∑Fx = -(𝛍 + 1)Nsin(ɸ) + Bx - Fpx   
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∑Fy = (𝛍 + 1)Ncos(ɸ) - weight_slider - By + Fpy  

Applying dynamics equations ∑Fx = mslider* aCoM4X and ∑Fy = mslider* aCoM4Y  on the previous equations,  

By solving the linear previous equations, we get the linear matrix equations A*X = B. We got A5 

is the 8x8 input coefficient matrix, B5 is the 8x1 know matrix and X1 is the 8x1 matrix to be 

determined.  

 

 

Figure 20:  Linear matrix equation decomposition of matrix for the general four-bar 

slider crank mechanism: dynamics analysis with Fp known  and the torque unknown in generic 

situation 

 

rAOX , rAOY , rBAX , rBAY , 𝛍,  weight_slider, Torque  are known values. The unknowns 

values to find are the reaction forces coordinates at each joint: Ox, Oy, Ax, Ay, Bx, By, on the 

mechanism as well as the normal force N applied by the plan on the slider and Fp y , Fpx on the 

piston on point B. 

 

Case 2: Fp is  unknown that needs to be determined in Figure 21 and the torque at the crank is 

known quantity  

 

Here, the above equation in section 4.4.2.3 need to be arranged. Changes happen on 

known and unknown values. rAOX , rAOY , rBAX , rBAY , 𝛍,  weight_slider, Torque  are known 

values. The unknowns values to find are the reaction forces coordinates at each joint: Ox, Oy, 
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Ax, Ay, Bx, By, on the mechanism as well as the normal force N applied by the plan on the 

slider and Fpy , Fpx on the piston on point B. 

  

 

Figure 20:  Linear matrix equation decomposition of matrix for the general 4-bar slider 

crank mechanism: statics analysis with Fp unknown and the torque known in generic situation 

 

rAOX , rAOY , rBAX , rBAY , 𝛍,  weight_slider, Torque  are known values. The unknowns 

values to find are the reaction forces coordinates at each joint: Ox, Oy, Ax, Ay, Bx, By, on the 

mechanism as well as the normal force N applied by the plan on the slider and Fp y , Fpx on the 

piston on point B 

 

 4. 5.  Analysis Equations for Six-Bar Slider-Crank  

 

The analysis process of equations on the six-bar slider crank is the same as in the four-bar 

slider-crank. However, instead of seven equations and eight unknowns to find, it would be 

eleven equations to developed and 12 unknowns to find. 

 

This chapter presented all the equations required for statics and dynamics analysis of 

four-bar slider-crank mechanism. The equations can be scaled for six-bar slider crank 

mechanisms as well. In the next chapter, the equations are implemented in MATLAB and 

Working Model results of different tests cases discussed.  
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Chapter 5: Implementation of Equations 

 

In this chapter, we are discussing the various implementation of the equations developed 

previously from test cases in MATLAB and Working Model software. 

 

 5.1. MATLAB Implementation and Test Case 

 

To make our MATLAB code work, we made some assumptions. The first assumption was to 

consider the previous distances coordinates of link applied at the middle of joints instead of 

center of gravity. This means 

R12x= (x1 - x2)/2; 

R12y= (y1 - y2)/2; 

R23x= x1 - x2; 

R23y= y1 - y2; 

R32x= -R23x; 

R32y= -R23y; 

R34x= R23x - x3; 

R34y= R23y - y3; 

R43x= -R34x; 

R43y= -R34y; 

 

 The following are the inputs considered:  

 

wAO = 1 rad/s; 

xO=  0 m; 

yO = 0 m; 

xA = 0.016 m; 

yA = 0.012 m; 

xB = 0.049 m; 

yB = 0 m; 

𝝻 = 0.3; 
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𝞱 = 38.2924  ; 

Fpx = -0.087580 N; 

Fpy = -0.133469 N; 

linkDensity = 1 g/cm3; 

pinDensity = 1 g/cm3; 

pinDiameter = 0 m; 

MassOfInputLink = 0.000080 kg; 

MassOfFollowerLink = 0.000140 kg; 

mass_slider = 0.000043 kg; 

 

wAO  is the input angular velocity of the input link. Fpx and Fpy are the coordinates of the 

input forces applying on the slider. Theta is the angle formed by the input link and the ground 

link. We found the following outputs data of forces and torque applied on the 4-bar slider 

mechanism in Figure 21 below 

 

MATLAB outputs 

F12X  0.087569 N 

F12Y -0.03141 N 

F32X -0.04639 N 

F32Y 0.080954 N 

F43X 0.087577 N 

F43Y -0.03357 N 

T12 0.001557 Nm 

 

Figure 21: MATLAB forces outputs 
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We did not get the normal force F14Y applied by the ground link on the slider. The data are 

all in the range of 10E-2. 

 

 5.2. Implementation in Working Model Software  

 

A simulation of the four-bar slider-crank mechanism was implemented in Working 

Model 2-D software as shown in Figure 22. 

 

 

 

Figure 22: Working Model 4-bar slider crank mechanism 

Here are the output forces we got  

 

Working Model outputs 

Ox -0.46992 N 

Oy -0.13924 N 

Ax 0.46992 N 

Ay 0.13924 N 

Bx 0.46992 N 

By 0.13924 N 

Torque 0.005117 Nm 

 

Figure 23: Working Model outputs forces at joints 
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Ox, Oy, Ax, Ay, Bx, By represent the forces coordinates at joints O, A and B respectively. 

 

  

 5.3. Comparison between MATLAB and Working Model Outputs 

 

 On both Working Model and MATLAB, we used the same mass of the slider, 0.000043 

kg; we used the same mass at the input and follower link, 0.00008 kg and 0.00014 kg. We used 

the same input angular velocity on Working Model and MATLAB, 1 rad/s.  

Here is the comparison we came up with.  

 

 

Table 1: Comparison table between Working Model and MATLAB outputs forces at joints 

  

The sign convention of forces coordinates are not even the same on MATLAB and 

Working Model.  We did not get the chance to establish a MATLAB code with a known input 

torque and compare with the same input torque value at the motor on a  four-bar slider crank. We 

suggest the next team to take a look at it, because we estimated probably data of force could be 

as close as possible. In the meantime, we realized that Working Model is a commercial software 

that we do not actually know the mathematics calculations process behind while MATLAB is a 

commercial tool where we actually wrote the code in order for its to produce such results. So, we 

are not very surprised of the comparison shown on Table 1. 
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Chapter 6: Conclusion and Recommendations 

 

In this major qualifying project, the equations for forces analysis of slider-crank linkages 

that can be implemented within PMKS were investigated. Equations for four-bar and six-bar 

slider-crank mechanisms were sourced from textbooks. The equations were then implemented in 

MATLAB and different slider-crank mechanisms were tested. Those examples slider-crank 

mechanisms were also tested in Working Model 2-D software. Upon comparison of the results, 

there are discrepancies in the joint forces and torque between the two implementations.  

In terms of future work, the goal would be to identify the reasons behind the differences in 

results between the MATLAB and Working Model results. SolidWorks can be used as a third 

software to see the difference around the results of forces found. Additionally. Another approach 

could be to study the slippering case on the slider crank and include the weight and friction forces 

on linkages and joints to see how results vary from what we have found so far. 
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Appendix 

 

 Appendix A: MATLAB Code of Statics and Dynamics Analysis of the Four and Six 
Slider Crank 

 The code has for inputs the different coordinates of joints links, mass of each link, the 

input angular velocity of the coupler, link depth, link width, link density, pin diameter, mass of 

the slider, coefficient of friction, input force applied on the slider and  angle of inclination of the 

coupler link. It starts by asking the user to choose if he is looking to do a four or six bar slider-

crank calculations. From there the user starts enter the known values in order to generate 

reactions intensities at each joint of the link and the corresponding torque applied on the coupler. 

 

% wBA = input ('Enter wBA = '); %constant angular velocity in z direction 

% x1 = input ('Enter x1 = '); 

% y1 = input ('Enter y1 = '); 

% x2 = input ('Enter x2 = '); 

% y2 = input ('Enter y2 = '); 

% x3 = input ('Enter x3 = '); 

% y3 = input ('Enter y3 = '); 

 

wBA = 1; 

x1 = 0; 

y1 = 0; 

x2 = 0.016; 

y2 = 0.012; 

x3 = 0.049; 

y3 = 0; 

 

ABx = x2 - x1; 

mABx = ABx/2; 

ABy = y2 - y1; 

mABy = ABy/2; 



38 
 

BCx = x3 - x2; 

mBCx = BCx/2; 

BCy = y3 - y2; 

mBCy = BCy/2; 

 

% depth = input('depth:   '); % 0.000080 kg 

% width = input('width:   ');  

% linkDensity = input('density of link:  '); 

% pinDensity = input('density of pin:  '); 

% pinDiameter = input('pin Diameter:   '); 

  

depth = 0.004;%m  

width1 = 0.020000;  

width2 = 0.035000; 

linkDensity = 1; 

pinDensity = 1; 

pinDiameter = 0; 

 

% friction_coefficient = input('Enter friction_coefficient = '); %coefficient of friction  

% mass_slider = input('Enter mass_slider = '); %mass_slider 

% theta = input('Enter theta = '); %angle between the ground link and the second link 

% phi = input('Enter phi = '); %angle of inclination of the slider  

% Fpx = input ('Enter Fpx = '); %force on the x direction 

% Fpy = input ('Enter Fpy = '); %force on the y direction 

friction_coefficient = 0.3;  

mass_slider = 0.000043; 

theta = 38.2924; %angle between the ground link and the second link 

phi = 0; %angle of inclination of the slider  

Fpx = -0.087580; 

Fpy = -0.133469; %force on the x direction 
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length1 = sqrt(ABx^2 + ABy^2); 

length2 = sqrt(BCx^2 + BCy^2); 

rectVolume1 = length1 * width * depth; 

rectMass1 = rectVolume1 * linkDensity; 

rectVolume2 = length2 * width * depth; 

rectMass2 = rectVolume2 * linkDensity; 

bigSemiCircVolume = (width/2)^2*pi*depth/2; 

bigSemiCircMass = bigSemiCircVolume * linkDensity; 

pinCircleVolume = pi*(pinDiameter/2)^2 * depth; 

pinCircleMass = pinCircleVolume * pinDensity; 

 

% MassOfLink1 = rectMass1 + 2*bigSemiCircMass - 2*pinCircleMass; 

% MassOfLink2 = rectMass2 + 2*bigSemiCircMass - 2*pinCircleMass; 

MassOfLink1 = 0.000080; 

MassOfLink2 = 0.000140; 

 

%%Rectangle MMoI 

RectMMoI1 = 1/12*MassOfLink1*(depth^2 + width1^2);  

RectMMoI2 = 1/12*MassOfLink2*(depth^2 + width2^2);  

 

%%BigSemiCylinder Mass Moment of Inertia 

semiCylinderMMoI = bigSemiCircMass* power(width/2,2)/2; 

MovedSemiCylinMMoI1 = semiCylinderMMoI + bigSemiCircMass*power(length1/2,2); 

MovedSemiCylinMMoI2 = semiCylinderMMoI + bigSemiCircMass*power(length2/2,2); 

 

%%PinCircles Mass Moment of Inertia 

PinCircMMoI = 1/2*pinCircleMass * power(pinDiameter/2,2); 

MovedPinCircMMoI1= PinCircMMoI + pinCircleMass* power(((length1/2)),2);  

MovedPinCircMMoI2= PinCircMMoI + pinCircleMass* power(((length2/2)),2);  

 

%%Total Mass Moment of Inertia for a Binary Link 



40 
 

BinaryLinkMMoI1 = RectMMoI1 + (2*MovedSemiCylinMMoI1) - (2*MovedPinCircMMoI1); 

BinaryLinkMMoI2 = RectMMoI2 + (2*MovedSemiCylinMMoI2) - (2*MovedPinCircMMoI2); 

 

%V(B/A) + V(B/C) = V_slider 

c1 = [0 0 wBA]; 

c2 = [ABx ABy 0]; 

c3 = cross(c1, c2); 

c4 = [0 0 1]; 

c5 = [BCx BCy 0]; 

c6 = cross(c4, c5); 

wCB = - c3(1,2,1)/c6(1,2,1); 

disp("wCB:   " + wCB); 

 

%AC =                   AB/A     +     AC/B  

%   = AB/At      +     AB/An     +     AC/Bt    +    AC/Bn 

%   = ABA x AB +  w1 x w1 x AB   + alphaCB x BC + w2 x w2 x BC   

alphaBA = 0;%AB/A is zero due to constant angular velocity 

a1 = [0 0 alphaBA]; 

a2 = [ABx ABy 0]; 

a3 = cross(a1,a2); 

a4 = [0 0 wBA]; 

a5 = [ABx ABy 0]; 

a6 = cross(a4, a5); 

a7 = cross(a4, a6); 

a8 = [0 0 1]; 

a9 = [BCx BCy 0]; 

a10 = cross(a8,a9); 

a11 = [0 0 wCB]; 

a12 = [BCx BCy 0]; 

a13 = cross(a11, a12); 

a14 = cross(a11, a13); 
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% alphaCB = -(a3(1,2,1) + a7(1,2,1) + a14(1,2,1))/ a10(1,2,1); 

% disp("alphaCB:   " + alphaCB); 

alphaCB = -0.348660; 

a15 = [0 0 alphaCB]; 

a16 = [BCx BCy 0]; 

a17 = cross(a15,a16); 

% a_slider = a3(1,1,1) + a7(1,1,1) + a17(1,1,1) + a14(1,1,1); 

% aCoM3x = a_slider;  

% disp("a_slider:   " + a_slider); 

% aCoM3y = 0; 

a_slider =-0.081331; 

aCoM3x = -0.081331;  

aCoM3y = 0; 

 

%aCoM1 

a18 = [0 0 alphaBA]; 

a19 = [mABx mABy 0]; 

a20 = cross(a18, a19); 

a21 = [0 0 wBA]; 

a22 = [mABx mABy 0]; 

a23 = cross(a21, a22); 

a24 = cross(a21, a23); 

% aCoM1x = a20(1,1,1) + a24(1,1,1); 

% disp("aCoM1x:   " + aCoM1x); 

% aCoM1y =  a20(1,2,1) + a24(1,2,1); 

% disp("aCoM1y:   " + aCoM1y); 

aCoM1x =-0.008018; 

aCoM1y = -0.005976; 

 

%aCoM2 

 a25 = [0 0 alphaCB]; 
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 a26 = [mBCx mBCy 0]; 

 a27 = cross(a25, a26); 

 a28 = [0 0 wCB]; 

 a29 = [mBCx mBCy 0]; 

 a30 = cross(a28, a29); 

 a31 = cross(a28, a30); 

 a32 = [0 0 alphaBA]; 

 a33 = [ABx ABy 0]; 

 a34 = cross(a32, a33); 

 a35 = [0 0 wBA]; 

 a36 = [ABx ABy 0]; 

 a37 = cross(a35, a36); 

 a38 = cross(a35, a37); 

%  aCoM2x = a27(1,1,1) + a31(1,1,1) + a34(1,1,1) + a38(1,1,1);  

%  disp("aCoM2x:   " + aCoM2x); 

%  aCoM2y = a27(1,2,1) + a31(1,2,1) + a34(1,2,1) + a38(1,2,1);  

% disp("aCoM2y:   " + aCoM2y); 

 aCoM2x =  -0.048703; 

 aCoM2y = -0.005994; 

  

 

R12x= (x1-x2)/2; 

R12y= (y1-y2)/2; 

R23x= x1-x2; 

R23y= y1-y2; 

R32x= -R23x; 

R32y= -R23y; 

R34x= R23x - x3; 

R34y= R23y -y3; 

R43x= -R34x; 

R43y= -R34y; 
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%  F12x   F12y  F32x   F32y   F43x   F43y   F14y   T12 

A = [1     0     1      0            0      0     0    0; 

      0      1         0      1         0      0      0   0; 

    -R12y  R12x  -R32y R32x       0      0      0    1; 

    0         0     -1      0          1      0      0    0; 

    0         0      0      -1         0      1      0    0; 

    0        0      R23y    -R23x  -R43y  R43x  0    0; 

    0        0      0        0        -1      0      𝜣    0; 

    0        0      0        0        0      -1      1    0]; 

 

B = [MassOfLink1*aCoM1x; 

    MassOfLink1*aCoM1y; 

    RectMMoI1*alphaBA ; 

    MassOfLink2*aCoM2x ; 

    MassOfLink2*aCoM2y; 

    RectMMoI2*alphaCB; 

    Fpx + mass_slider*aCoM3x; 

    (weight_slider + Fpy + mass_slider*aCoM3y)];  

 

x = A^-1 * B; 

 

disp("Force Ax:  " + x(1)); 

disp("Force Ay:  " + x(2)); 

disp("Force Bx:  " + x(3)); 

disp("Force By:  " + x(4)); 

disp("Force Cx:  " + x(5)); 

disp("Force Cy:  " + x(6)); 

disp("Force N:  " + x(7)); 

disp("Force M:  " + x(8)); 

 


