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Abstract 

Hydrogen is an attractive source for zero-emission energy because of its usefulness in fuel 

cell batteries. However, traditional methods to capture hydrogen for use in these cells, such as 

steam reforming, produce greenhouse gases. Ammonia decomposition is a promising method to 

produce hydrogen, and our research explored the possibility of using catalyst-coated microreactors 

to improve the decomposition reaction. Microreactors have unique benefits over traditional 

reactors such as their mass and heat transport properties, precision controls, and improved safety. 

In our project, we created stainless steel tubular microreactors that are wall-coated with a nickel 

alumina catalyst. In lieu of testing the physical reactors because of laboratory constraints, we 

varied parameters of the microreactors by modeling heat transfer properties.     
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Section 1: Introduction 

1.1 Ammonia Decomposition for Hydrogen Production 

Hydrogen is an attractive source for zero-emission energy because of its usefulness in fuel 

cell batteries. Those fuel cells have potential to power transportation, consumer goods, and even 

entire grids, if utilized correctly. However, the current methods for producing hydrogen create a 

number of undesirable byproducts. The most common hydrogen production method is steam 

reformation, which produces CO2 and CO. Other methods for production of hydrogen, such as the 

electrolysis of water, do not produce unwanted products, but can be costly and have low efficiency 

(Dincer & Acar, 2014). Once the hydrogen is produced, it can pose a challenge to store, as 

hydrogen requires specialized storage equipment and transportation, which can increase costs and 

expend more energy (Dincer & Acar, 2015).  

 Ammonia decomposition is a promising method to produce hydrogen for fuel cells. During 

the ammonia decomposition process, ammonia is broken down to produce gaseous hydrogen and 

nitrogen. Unlike methane capture, the products of ammonia decomposition do not inhibit hydrogen 

production; CO2 and CO byproducts during methane capture inhibit steam reformation (Adiya et 

al., 2017). Additionally, ammonia has a higher energy density and is easier to transport, which 

would allow for possible on-site production of hydrogen for fuel cells.  

Ammonia is one of the most significant chemicals for worldwide use—especially in 

nitrogen-based fertilizers, which are necessary for food production. The ammonia synthesis 

process was scaled up to an industrial size by Fritz Haber and Carl Bosch (ergo the Haber-Bosch 

process) in the early twentieth century but requires high temperatures and pressures, usually 400 

to 500℃ and 150 to 400 atm respectively, due to the reluctance of nitrogen gas to react. Although 

the Haber-Bosch process remains relatively unchanged over 100 years later, more than 175 million 
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metric tons are produced per year (Pattabathula & Richardson, 2016). This ammonia could be 

decomposed into hydrogen for the fuel cells, however traditional ammonia decomposition 

equipment and plants can be large and bulky. A more energy-efficient approach to ammonia 

decomposition is utilizing microreactors with wall-coated catalysts, as opposed to a packed-bed 

reactor in which a gas flows over a solid catalyst. In this project, we explore the potential of 

manufacturing wall-coated microreactors to increase the energy efficiency of ammonia 

decomposition. 

1.2 Microreactors in Industry 

Microreactors are generally considered to be a reactor that has a channel length of less than 

1 millimeter. While microreactors can be a variety of geometries, most microreactors are typically 

a series of small channels or tubes. Currently, microreactors are predominantly used in analytical 

equipment and in small-scale synthesis of products. Unfortunately, they are not yet widely used in 

production or synthesis capacity, which can be attributed to the difficulty of scaling up laboratory 

results into effective processes (Watts & Wiles, 2007). Other sources suggest that patents on 

microreactors prevented widespread investigation and implementation, but recent expiration of 

these patents could be part of the resurgence of the microreactor (Tanimu et al., 2017).  Cost 

remains a largely prohibitive factor, as microreactors are newer in the field and require significant 

advantages to be implemented (Roberge et al., 2008). Scaled up production can be a barrier to 

implementation of microreactors, and reliable production methods are needed (Kockmann & 

Roberge, 2011). 

1.2.1 Analytic Equipment 

 In addition to synthesis of products, microreactors are often used for analytics for various 

reactions and processes. According to Haswell and Watts, microreactor research has mainly 
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focused on creating Miniaturised Total Analytic Systems, which would allow for localized sample 

testing (2003). Microfluidics can be studied through microreactors, which can explore the reaction 

kinetics of a particular process (Mozharov et al., 2011). The fluid flow and reactor conditions can 

be precisely controlled, which allows for better analysis of reaction kinetics. Gas chromatography 

is one of the most prominent analytical techniques that uses microreactors, as the process requires 

the gaseous components to interact with catalyst-coated reactor walls (Li & Liu, 2019). Gas 

chromatography analyzes small amounts of gas and is the only technique that allows for specific  

study of gases at low concentrations like ethylene (Yahia et al., 2019). Microreactors have small 

volumes and precise controls that allow for optimal gas chromatography analysis. Compared to 

other analytical techniques such as fractional distillation and column chromatography, gas 

chromatography is generally carried out on a smaller scale, making it ideal for microreactors (Li 

& Lui, 2019). Pyrolysis has also been coupled with microreactor technology since as early as the 

1960s for better analysis of thermal decomposition (Cox & Ellis, 1964).  Noninvasive Raman 

spectroscopy can be performed in tandem with the microreactor, as the Raman spectrometer can 

directly analyze the small amounts of products that emerge from the microreactor (Mozharov, 

2011).  

1.2.2 Microreactor Application in Pharmaceuticals 

 An estimated 50% of current pharmaceutical reactions have the potential to benefit from 

implementation of microreactor technology (Roberge et al., 2005). Microreactors are especially 

useful for gas exchange reactions, gas/liquid, or liquid/liquid exchanges, which would be 

beneficial to the pharmaceutical industry. However, the lack of a solid interface is prohibitive to 

some processes.  These types of reactors are particularly useful because of the high local heat 

density within microreactors, which can reduce reaction selectivity for specific products (Roberge 
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et al., 2005). Microreactors allow for safer handling of specific reactions because of the small 

volume of reactants used (Kockmann & Roberge, 2011). Since the pharmaceutical industry can be 

fast-moving, microreactors can be beneficial for competitive products that have a quick 

turnaround, which can reduce costs overall (Wong-Hawkes et al., 2007).  

1.3 Green Chemistry 

 The concepts of Green Chemistry are becoming more prevalent in the chemical 

engineering industry, as companies and researchers look to minimize impact on the environment 

while improving process efficiency (Haswell & Watts, 2003). Green Chemistry is the idea that 

chemical processes should minimize negative damage on the environment.  In 1998, Anastas and 

Warner wrote “Green Chemistry, Theory and Practice” which outlines 12 principles for Green 

Chemistry that could help the chemical industry become more environmentally conscious, 

sustainable, and safe. Microreactors alone can directly contribute towards the fulfillment of 6 of 

these goals: Atom Economy, Design for Energy Efficiency, Catalysis, Inherently Safer Chemistry 

for Accident Prevention, and Prevent Waste. The unique properties of microreactors lend 

themselves well to Green Chemistry.  

Microreactors can offer higher yield of products, which is part of the Atom Economy 

principle, which states that processes should minimize wasted reactants when possible. The heat 

transfer rates of microreactors are generally better than standard reactor counterparts, which 

contributes to Design for Energy Efficiency. Wall-coating of tubular microreactors allows for the 

introduction of catalysts into processes, which follows the Catalysis principle. Microreactors have 

smaller volumes and are easily controlled, allowing for inherently safer chemistry for accident 

prevention. Waste can be prevented in microreactors through their overall better efficiency and 

yield.  
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1.4 Ammonia Decomposition Using Microreactors 

Because microreactors offer a myriad of benefits for general reactions and because of the 

potential of hydrogen to be used as a replacement fuel, the goal of our project was to design and 

optimize a microreactor for ammonia decomposition. Ammonia decomposition can be carried out 

on a variety of catalysts, including Ru, Ir, Ni, Rh, Pt, Pd, Fe, Co, and a combination of other 

catalysts (Okura et al., 2016). Researchers have used catalytic microreactors, primarily 

microchannels, to examine the potential for hydrogen production. In our Major Qualifying Project, 

we developed a design for a microreactor through stainless steel tubing. This design was created 

through the development and characterization of a boehmite wall-coating with the intent to use 

incipient wetness impregnation to add Ni/Al2O3 catalyst to the coating. We simulated the heat 

transfer through our reactor design in order to determine the heat transfer properties through the 

system. At the end of this project, we wanted to develop a yield effective and cost effective 

microreactor that could be potentially scaled up for the local production of hydrogen.   
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Section 2: Technical Background and Literature Review 

2.1 Properties of Microreactors 

 Microreactors are generally accepted to be channels or tubes made from glass, ceramics, 

steel, borosilicates, or other materials with diameters less than 1mm. Figure 1 shows a typical 

channel microreactor that can be used for a variety of purposes. There are hundreds of different 

large-scale reactors that have proven successful for many years, but microreactors have some 

advantages over traditional units.  

 

Figure 1. A typical microchannel reactor that is etched into a stainless steel and glass apparatus 

(Amarequip, 2020). 

Within these small reactors, chemical processes can occur rapidly because of fluid flow 

and heat and mass transfer. When looking at the fluid flow and mixing properties of the 

microreactor, it generally has the advantage over traditional reactors. Since microreactors have 

diameters less than a millimeter, the fluid flow generally is in the laminar region. Using the 

Reynolds number, most microreactors have a range of about 10-500, and anything under 2200 is 

considered to represent laminar flow. Since microreactors have a high surface area to volume ratio, 
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more thermal heat is able to diffuse out of the microreactor, making them ideal for exothermic 

reactions (Tanimu et al., 2017). 

Microreactors have very short contact time with reactants, whereas many traditional 

reactors have several hours or days in contact with the reactants (Hessel, 2015). The types of 

reactions occurring in microreactors should be carefully considered, as some reaction chemistry 

will be more effective than others. A study by Lonza Company estimated that of 86 reactions, only 

20% occurred rapidly enough for application in microreactors, but recent work shows that 80% of 

organic reactions can occur in a microreactor (Hessel, 2014).  

2.2 Reactor Design 

 For heterogeneous gas-phase reactions, microstructured reactors can take the forms of plate 

or tubular reactors, with catalyst loading in the form of either packed bed or wall-coated. 

Microchannel plate reactors are usually metallic or ceramic plates with small parallel channels 

etched in (Ying et al., 2016). Packed bed microreactors are microchannels filled with solid catalyst; 

these are potentially superior to normal packed bed systems due to the high surface-to-volume 

ratio and therefore improved mass and heat transfer (Jensen, 2001). Wall-coated microreactors are 

able to lessen the effects of high pressure drops which typically occur in packed bed reactors (Kiwi-

Minsker & Renken, 2005).  

 Stainless steel was chosen as the reactor substrate of interest over ceramics such as quartz 

because it has higher heat tolerance, mechanical strength, and thermal conductivity, along with 

relatively low cost (Novaković et al., 2008; Ying et al., 2016). One of the issues surrounding 

catalyst wall-coating stainless steel substrates is the difficulty in adhering the catalyst to the surface 

of the metal. Ceramic substrates are very porous, which allows for good adhesion of the catalyst; 

metals, however, tend to have smoother surfaces. To provide a rougher, more porous surface, the 
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metallic substrate usually needs to be pretreated and subsequently washcoated with a boehmite 

precursor sol gel (Laguna et al., 2016; Nijhuis et al., 2001). The boehmite precursor undergoes a 

phase transformation to γ-Al2O3 upon calcination, which provides a porous intermediate layer that 

allows for the catalyst slurry to bind better to the surface (Peela et al., 2009). 

2.3 Wall-Coated Microreactors 

 Traditionally, packed bed reactors have been used for catalytic processes in which a 

reactant gas flows over solid catalyst pellets. Packed bed configurations tend to have heat transfer 

limitations, so the temperature of the reactor cannot be easily controlled. They also experience 

high pressure drops due to friction and poor geometry, especially if optimization of the catalyst 

particle sizes, reactor length, and ratio of reactor length to diameter does not occur (Ying et al., 

2016). Further, mass transfer limitations manifest in packed bed reactors as channeling of the 

reactant in which the gas flows along the same path down the reactor, leaving some of the catalyst 

pellets unreacted (Bravo et al., 2004). These conditions may restrict the efficiency of the catalytic 

conversion process, prompting a need for a better reactor configuration. 

2.4 Coating of Microreactors 

2.4.1 Methods for Catalytic Wall-Coating of Microreactors 

 The first step in the coating process is pretreatment of the substrate. For metallic substrates, 

roughening the surface is necessary for improved catalyst adherence. The most commonly used 

methods are anodic oxidation, thermal oxidation, and chemical treatment. Anodic oxidation 

provides a direct current to an electrolytic substance in direct contact with an aluminum-containing 

metal to react and form a porous aluminum oxide layer. Thermal oxidation is a method that tends 

to be used on FeCrAl metals, which develops an aluminum oxide layer upon heating in air to 
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temperatures exceeding 800℃. Chemical treatment involves using dilute HCl, HNO3, or a 

combination of both acids to clean and etch the metallic surface (Meille, 2006) 

 After the metal surface is treated, the catalyst support (boehmite precursor) is most 

commonly deposited as a suspension or sol on the surface via washcoating. The only notable 

differences when utilizing a sol gel over a suspension are the need for peptization of the sol 

precursor (boehmite, given the desired catalyst support is alumina) and the catalyst support is 

dissolved in a solvent prior to gelation (Meille, 2006; Nijhuis et al., 2001).   

 Catalysts can be coated on the surface in similar ways to those previously mentioned, with 

the added methods of electrophoretic deposition (EPD), electrochemical deposition, electroless 

plating, and impregnation. EPD involves applying a direct current to a colloidal suspension to 

favor migration of charged particles to another electrode. Electrochemical deposition is similar to 

EPD, but requires electrolysis of an ionic solution—usually a metal salt—to deposit a film on the 

surface of the substrate. Electroless plating also deposits a metal onto a substrate’s surface, but 

uses a redox reaction instead of electrolysis. Impregnation deposits the catalyst by coating the 

substrate with a catalyst slurry which is subsequently calcined, leaving behind a thin catalyst layer 

(Meille, 2006).   

2.4.2 Use of Boehmite for Wall Coating Applications 

 Boehmite is an aluminum oxyhydroxide, a crystalline mineral that is, in essence, a hydrated 

form of alumina, taking either the formula γ-AlOOH or Al2O3·H2O (Iijima et al., 2016). Figure 2 

shows the networked boehmite as connected sheets.  
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Figure 2. The boehmite structure as a connected network of sheets (Rajabi & Derakhshan, 2010). 

 At high temperatures, boehmite will dehydrate and convert first to γ-alumina and then to ⍺-

alumina, which is the most stable phase of alumina. The conversion to γ-alumina occurs at 

approximately 500℃ while achieving the ⍺-alumina stable phase requires temperatures upward of 

1000℃ (Lamouri et al., 2017). Figure 3 depicts the phase-change diagram of boehmite. 

 

Figure 3. Phase diagram of boehmite and its transformations at various temperatures and pressures 

(Ghanizadeh et al., 2014). 
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The alumina formed from boehmite has a wide variety of uses and is incredibly versatile 

due to high strength, stability, and hardness at high temperatures (Panda et al., 2006). Boehmite 

itself is effectively used as a binder for the catalyst in the coating medium, as it transitions to 

alumina upon calcination of the coated surface. Boehmite increases the porosity of the coat, which 

improves the adhesion strength of the slurry to the surface, which in this case is stainless steel. 

Further, the addition of acid to a boehmite-water solution will increase viscosity which in turn 

increases the coating thickness on the surface (Bravo et al., 2004). 

2.5  Catalysts for Ammonia Decomposition 

There are various catalysts which may be used for ammonia decomposition, including iron, 

cobalt, nickel, copper, ruthenium, and iridium. Ruthenium and iridium tend to be the most active 

catalysts for the decomposition reaction, but are significantly more expensive than slightly less 

active alternatives like nickel.  However, nickel has comparable hydrogen conversions to 

ruthenium and iridium so is therefore an attractive alternative (Boisen et al., 2005; Choudhary et 

al., 2001; Yin et al., 2004). Ultimately, the same catalysts that work best for ammonia synthesis 

are not always the best for ammonia decomposition 

2.6 Reaction Kinetics for Ammonia Decomposition 

 In our research project, we use the reaction rate constant of ammonia decomposition to 

determine several dimensionless numbers to predict the flow and heat transfer regimes within our 

microreactor. The reaction kinetics and rate expressions for ammonia decomposition depend on a 

variety of factors. Unlike some other reactions, the rate expressions can change for ammonia 

decomposition based on the temperature of the reactor. A paper by Chellappa, Fischer, and 

Thomson states that a large number of ammonia decomposition reactions depend on the 

temperature of the reactor and the hydrogen partial pressures (2001). A summary of generally 
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accepted principles for hydrogen production from ammonia decomposition are summarized: at 

low temperature and hydrogen partial pressures, the decomposition reaction is zero order in terms 

of hydrogen, while decomposition reactions run at low temperatures and high hydrogen partial 

pressure will be a first order reaction with respect to ammonia (Chellappa et al., 2002). They 

further suggest that for high-concentration ammonia decomposition, the reaction should be run at 

temperatures greater than 500°C to minimize the effects of hydrogen inhibition that can occur at 

lower temperatures and pressures. A detailed explanation of the reaction rate constant used in our 

calculations can be found in the Results section of the paper.  

2.6.1 Dimensionless Numbers in Microreactors 

 Because of their geometry, microreactors have unique flow and reaction properties. Within 

the microreactor, there are dimensionless numbers that can help predict flow regimes, mixing, and 

reaction kinetics. How these dimensionless numbers work together contribute to the unique 

properties of microreactors, such as desirable mixing, laminar flow, and having a kinetics-limited 

reaction rather than limited by heat transfer of the reactor. In this project, we specifically wanted 

to examine the relationship between the Biot Number and the Damkohler numbers, which can 

predict if the decomposition reaction within our microreactors would be kinetically limited or 

limited by the heat transfer of the reactor. In order to calculate the Biot and Damkohler numbers, 

additional dimensionless numbers are needed including the Reynolds number, Prandtl number, 

and Nusselt number.  

2.6.2 Reynolds Number 

 The Reynolds number (Re) of a microreactor can predict the flow regime of a particular 

flow through pipes of various diameters. The dimensionless number is the ratio of the inertial 

forces to the viscous forces of the fluid, as seen in Equation 1.  
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                                                                        𝑅𝑒 =  
𝜌𝑢𝐷

𝜇
                                                        Eq. 1 

The Reynolds number relies on the diameter of the tube, the dynamic viscosity of the fluid, the 

fluid speed, and the density of the fluid. When the resulting Reynolds number is larger, generally 

over 2,900, the fluid flow regime can be considered turbulent. If Re is less than 2,300, the flow is 

considered laminar, and Re between 2,300 and 2,900 are considered to be in a transitional regime. 

While the properties of the fluid vary between reactions and conditions, the diameter of the 

microchannel plays a large role in determining the flow regime (Chinnov et al., 2015). 

2.6.3 Prandtl Number 

 The Prandtl number (Pr) is the ratio of the kinematic viscosity over the thermal diffusivity 

of the fluid, as shown in Equation 2.  

                                                                  𝑃𝑟 =  
𝑢𝐶𝑝

𝑘
                                                               Eq. 2 

Pr depends on the kinematic viscosity of the fluid, the specific heat capacity of the fluid, 

and the thermal conductivity of the fluid. The Prandtl number can be considered relatively constant 

for gases even at high temperatures, which makes it an ideal dimensionless number for the 

decomposition of ammonia through our microreactor design. The Prandtl number can be 

considered an intrinsic property of a fluid (Rapp, 2017). Like the Reynolds number, the Prandtl 

number can be used to determine other dimensionless numbers.  

2.6.4 Nusselt Number 

 The Nusselt number (Nu) describes the relationship between the heat transfer of a fluid 

moving in a pipe to the solid pipe. It can also be described as the ratio of the convective heat 

transfer to the conductive heat transfer, as shown through Equation 3.  

                                                               𝑁𝑢 =  
ℎ𝐷

𝑘
                                                                  Eq 3.  
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The Nusselt number can be calculated through the characteristic length of the system, D, 

in this case the thickness of the microreactor wall. It also depends on the heat transfer coefficient 

of the fluid and the thermal conductivity of the fluid. The Nusselt number can also be described 

through relationships between Re and Pr. Unlike Re and Pr, the equations used for the Nusselt 

number depend on geometry, flow regime, and heat transfer of the fluid. The main use of the 

Nusselt number in this study is to determine the heat transfer coefficient of the ammonia through 

our designed microreactor at specific operating conditions.  

2.6.5 Biot Number 

 The Biot number (Bi) can be described as the ratio between the conductive and convective 

heat transfer of a system. A small Bi number indicates a thermal uniformity throughout the reactor. 

Equation 4 shows the equation used to calculate the Biot number 

                                                    𝐵𝑖 =  
𝜏𝑐𝑜𝑛𝑑𝑢𝑐𝑡𝑖𝑜𝑛

𝜏𝑐𝑜𝑛𝑣𝑒𝑐𝑡𝑖𝑜𝑛
=  

ℎ∗𝐿

𝑘
                                                  Eq. 4 

Bi uses the thermal conductivity of the microreactor walls, the characteristic length L or 

the thickness of the reactor walls, and the heat transfer coefficient of the fluid as calculated by the 

Nu number. By calculating Re, Pr, and Nu, the heat transfer coefficient for the ammonia in the 

microreactor can be calculated.  

2.6.6 Damkohler Numbers 

 The Damkohler number (Da) is the final dimensionless number used in this project to 

determine the relationship between kinetics and heat transfer within our designed microreactor. 

DaI is the ratio of the reaction rate over the convective mass transport rate, while DaII is the ratio 

of the reaction rate to the diffusive mass transfer rate. The expressions for both of the Damkohler 

numbers are shown in Equation 5 and 6: 
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                                                     𝐷𝑎𝐼 =  
𝜏𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛

𝜏𝑐𝑜𝑛𝑑𝑢𝑐𝑡𝑖𝑜𝑛
=  

𝑘

𝜌∗𝐶𝑝∗𝐿2∗𝑘𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛
                       Eq. 5 

                                                    𝐷𝑎𝐼𝐼 =  
𝜏𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛

𝜏𝑐𝑜𝑛𝑣𝑒𝑐𝑡𝑖𝑜𝑛
=  

ℎ

𝜌∗𝐶𝑝∗𝐿∗𝑘𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛
                      Eq. 6 

The Damkohler number uses the reaction rate constant k, the thermal conductivity of the 

fluid, the density of the fluid, the specific heat of the fluid, and the characteristic thickness of the 

reactor tubing. Damkohler numbers less than 1 indicate that the microreactor is kinetically limited, 

while those larger than 1 indicate that the reaction is limited by heat transfer. The ratio of the 

Damkohler numbers becomes the Biot number, which makes these three dimensionless numbers 

useful in comparisons. The Damkohler numbers in conjunction with the Biot number can 

determine if our microreactor design can theoretically operate isothermally, as seen in Figure 4.  

 

Figure 4. A graph showing the results of graphing the Pyrolysis numbers, which is the same as the 

Damkohler number in this case, against the Biot number for reactors of varying sizes (Mettler et al., 

2012). Our target microreactor design would fall into the upper left section of the graph. 
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2.7 Heat Transfer Properties 

Significant advantages of stainless steel microreactors with respect to heat transfer are the 

isothermal nature of them, along with their efficient heat transfer abilities (Bravo et al., 2004). 

Microreactors are also suitable for highly exothermic or endothermic reactions and allow for 

operation at more intense conditions (Kiwi-Minsker & Renken, 2005). 
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Section 3: Methodology 

To prepare the best coating of boehmite into steel capillary microreactors, we ran several 

experiments. To achieve our goal of designing and optimizing a catalytic microreactor for the 

decomposition of ammonia, we developed 4 main steps for our methodology: 

1. Thin Film Coating of Metal and Glass Slides 

2. Characterization of Thin Film 

3. Cylindrical Coating of Stainless Steel Microreactors 

4. Mass and Heat Transport Modeling 

Our first set of experiments tested boehmite gel coating on steel plates and wall-coating 

the inside of microreactors. We characterized the properties of the gel coating through X-ray 

diffraction and optical 3D profilometer. We simulated heat loss through a single and bundled 

capillary during ammonia decomposition using COMSOL modeling.   

3.1 Section: Preparation and Characterization of Boehmite Gel 

3.1.1 Initial Gel Preparation 

 Our control experiment polymerized boehmite without using a catalyst or any heating 

elements. Based on previous research and suggestions from researchers in the Teixeira laboratory, 

0.5 grams of boehmite was added to a five-dram vial. 10 mL of deionized (DI) water was added 

to the boehmite, and the vial was capped and shaken until the boehmite was fully dissolved. Three 

three-dram vials were prepared using this method. With a disposable Pasteur pipette, ten drops, 

two drops, and no drops of concentrated 37% HCl were added to each dram, respectively. The 

contents of the dram vials were then mixed again for several minutes until gelation began to occur. 
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Observations were made immediately after polymerization and then again 24 hours later after the 

polymerization. We used paper pH strips to test the pH levels of the slurry after 24 hours. 

3.1.2 Determining Acid Polymerization Threshold 

 To determine the amount of HCl needed to begin polymerization, we added increasing 

amounts of HCl to dram vials. Following the aforementioned procedure, we prepared nine three-

dram vials with 0.5 grams boehmite and 10 mL of DI water. We then added increasing amounts 

of HCl to each dram, starting with three drops in dram 1, then four in dram 2, up to eleven drops 

in dram 9. Instead of a disposable glass Pasteur pipette, we used a bottle with a dropper cap to drop 

HCl into the boehmite solution. Appendix A shows the calculations for determining the amount of 

acid added per drop. 

We mixed the contents in each vial for several minutes and recorded initial observations 

about viscosity. After 24 hours, we made more observations about the resulting polymerization 

viscosities and took pH readings using paper strips. 

3.1.3 Pretreatment of Metal Substrates 

Two different substrate geometries were utilized in this study:  

(1) 0.03-inch-thick 304 stainless steel plates (McMaster-Carr) which were cut to approximate 

microscope slide dimensions of 1 inch by 3 inches.  

(2) 304 stainless steel hypodermic tubes, 400um ID, 500um OD (Microgroup), approximately 

2 inches in length 

The steel substrates were pretreated to enhance the adhesion of the coating, as metals do 

not have prominent pores in which the boehmite gel can bond (Ma et al., 2019). Therefore, metals 

are not as common for use as microreactors, because adhesion of the boehmite after calcination—

a ceramic, alumina—will not necessarily hold up.  
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The pretreatment was performed by placing the slides in a diluted HCl bath (~3%) for ten 

minutes at approximately 80 ± 10℃. DI water was used to wash off the HCl, and then the clean 

plates were placed in an acetone bath for thirty minutes. They were dried in an oven overnight at 

120℃.  

3.1.4 Coating Boehmite Gel on Metal Slides 

Initially, 1 inch by 1 inch squares were sectioned off in each slide using autoclave tape 

available in the lab. We applied a thin coating of one of the slurry mixtures to the steel plates 

between the tape pieces and used a razor blade to level off the coating. This procedure was repeated 

with each of the slurry mixtures and at two tape thicknesses 0.147 mm and 0.254 mm (one and 

two pieces of autoclave tape). The metal plates were allowed to dry completely, and then the acid 

was removed from the slurry by running DI water over the dried mixture until the runoff water had 

a pH of 7. We then placed the metal slides into the oven overnight at 120℃.  

3.2 Calcination and Characterization of Thin Films 

3.2.1 Calcination of Boehmite on Metal Slides – XRD Confirmation 

Improving on this previous method, plates were cut in half lengthwise to accommodate the 

tube furnace and coated in the same manner as outlined above. The plates were dried and loosely 

covered overnight at room temperature. Of the prepared slides, the slide that was treated with 9 

drops of HCl and prepared with one layer of tape was calcined in flowing air at 500℃ for 3 hours 

with a ramp time of 45 minutes. Later, the adherence and consistency were tested. 

3.2.2 Adherence and Consistency on Metal Slide – Optical Profilometry Confirmation 

 To test the properties of the slurry, we observed the overall adhesion to the plate. We 

initially weighed each slide before testing the adhesion properties, however, the mass 

measurements were not accurate enough to discern major differences. Adhesion was tested by 
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tapping the plates on the lab bench and observing the approximate amount of coating that fell off. 

Consistency of the coating was examined using the optical 3D profilometer in Washburn Shops. 

3.3 Preparation of Stainless Steel Microreactors 

3.3.1 Wall-Coating through Gas Displacement Method  

The stainless steel tubes used in this experiment were purchased from Microgroup from 

Medway with a steel type of ##304H25XX. The tubes have an inner diameter of 400 micrometers 

and an outer diameter of 500 micrometers. The stainless steel tubes came in 1 ft lengths and were 

cut down using a handheld rotary tool to lengths of approximately 5.1 cm. These cut lengths of 

tubes were then subject to the same steel pretreatment method as outlined in section 3.1.3.  

To coat the inside of the stainless steel tubes, a wall-coating method involving pressurized 

air. The general principle of this wall-coating technique is that pressurized air forces gel through 

the desired microreactor tube, which deposits a thin film of the gel along the interior of the tube. 

A schematic of the wall-coating apparatus can be seen in Figure 5 below.  

 

Figure 5. A schematic of the wall-coating apparatus used to add a thin coating of boehmite to the inside of 

the microreactors. 
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A small quantity of boehmite gel is loaded into a chamber with two openings. At the top 

opening, a prepared microtube is held in place so that its bottom portion is held within the gel 

reservoir while the top of the tube is open to the ambient air. The second opening feeds pressurized 

air at 60 psi into the side of the gel reservoir, which forces air through the gel and out through the 

tube. The air moves the gel along the inside of the tube, depositing a thin coating of the gel on the 

interior of the rube. This apparatus was constructed by Cameron Armstrong, a PhD candidate in 

Professor Teixeira’s laboratory, for his own research.  

 

3.3.2 Adding Rigidity to Microreactors for Analysis 

To observe the thickness and adherence of the boehmite gel within the capillary tubes, we 

added rigidity to allow for a cross-sectional analysis. We melted paraffin wax around 70℃ and 

then added the coated capillaries to the wax for about 15 minutes to allow for the wax to be drawn 

inside. The tubes were then removed and cooled to room temperature. 

 

Figure 6. The coated capillaries were placed in melted paraffin wax to allow the wax to be drawn into the 

capillaries. 



28 
 

 

 

3.4 Decomposition of Ammonia in Microreactors 

In the final stage of this project, we had intended to run ammonia decomposition reactions 

through the coated catalytic microreactors. Reactor conditions would have been varied to favor 

conversion to nitrogen and hydrogen gases, with a starting flow of 5 sccm at 500℃. The goal of 

this would have been to test 1) how effectively the catalyst was coated onto the inside of the reactor 

and 2) whether or not the chosen nickel-based catalyst could yield a reasonable conversion. 

Conversion would have been analyzed using a micro-gas chromatograph. Figure 7 below shows 

Armstrong’s laboratory setup, which our reactor setup would follow. 

 

 

Figure 7. (Top) A photograph of a metal microreactor inside a quartz reacting aparatus. (Bottom) A 

schematic for the reactor design, showing the inlet and outlet for the coolant as well as the reaction flow 

direction. The reactor setup for a similar reactor. Ima 
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3.5 Modeling Heat Flux Through Microreactors 

COMSOL Multiphysics was used to model the heat transfer through stainless steel 

microreactors in lieu of running ammonia decomposition reactions. A 1D axisymmetric model 

with heat transfer in solids was used. For simplicity, the alumina layer was considered negligible 

so the only solid was 304 stainless steel. The length of the reactor was assumed to be 1 meter, with 

an assumed velocity of 0.633 m/s (5 sccm). The heat transfer was specified as external forced 

convection at both points, with velocity inside the tube fixed and outside the tube variable; initial 

temperature and wall thickness were also variable in order to show how changing these parameters 

affects heat transfer. Initial temperature was assumed to be ambient (273.15 K) and pressure at 1 

atm. Figure 8 below shows the 1D axisymmetric model, in which the wall thickness (left) is seen 

to be 50 nm and the right image shows the 2D cross-section of the tube. Parametric sweeps were 

run for initial temperature, external velocity, and wall thickness to show the heat transfer effects. 

 

Figure 8. (Left) The wall thickness setup for the reactor system. (Right) The 2D cross section of the reactor tube. 
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Section 4: Results and Discussion 

4.1 Development of Boehmite Thin Film Coatings 

4.1.1 Gelation Point of Boehmite Coating 

 From our initial control trials, we determined that boehmite polymerization occurred with 

10 drops of HCl. We determined the level of polymerization in this trial with observations about 

the viscosity of the resulting solution. The mixture that was just boehmite and DI water did not 

have any noticeable changes in viscosity. Since HCl was not present to initiate polymerization, we 

expected this result. In the original report detailing how to prepare and coat the tubes, Cameron 

Armstrong suggested using 2 or 3 drops of HCl to initiate polymerization. However, the boehmite 

required more HCl to initiate polymerization, as it came from an older stock. We confirmed these 

results in this initial control trial, as complete boehmite polymerization did not occur with only 3 

drops of HCl. Figure 9 highlights the results of the polymerization without HCl.  

 

Figure 9. (Left to Right) Vials containing 0 drops, 3 drops, and 10 drops of concentrated HCl added to 

polymerize boehmite into a gel. 

No  

 



31 
 

 

 

4.1.2 Determination of Acid Threshold for Gelation 

 After initial experimentation with boehmite gelation, we expected to find a specific amount 

of HCl needed to polymerize the boehmite. The boehmite gelled noticeably thicker at around the 

6-7 drops of HCl range.  In this experiment, we determined the amount of HCl needed for full 

polymerization of the boehmite. Immediately after the polymerization and 24 hours after 

polymerization, we observed the relative viscosities of each slurry (Figure 10). From our 

observations, the boehmite began polymerization after the addition of 7 drops of HCl, which 

corresponds to 315 μL added.  

We noticed that the slurries appeared gel-like for the gels with drops 7-11 of HCl and could 

be inverted with little running. However, when the vials were agitated, the slurry would turn back 

into liquid. We suspect the boehmite gels exhibit shear thinning properties, as they became more 

viscous while under application of force, and then would reform into the original viscous gels after 

the force was removed and time had passed.  

 

Figure 10. (Top) Boehmite immediately after polymerization with concentrated HCl. (Bottom) Boehmite 

24 hours after polymerization with HCl. Numbers at bottom of image indicate number of drops of HCl 

added. 
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4.1.3 Determination of pH of Boehmite Gel 

Since there was a noticeable difference between the viscosities of the gels depending on 

the amount of HCl added, we wanted to determine if there was a pH threshold that gelation 

occurred.  We also determined the pH of each slurry using paper pH strips. However, all of the 

gels tested as the lowest pH possible on the scale, so we were not able to determine a threshold 

pH for gelation.  A more precise pH digital reader may provide more insight about the pH 

variation between the gels. 

4.2 Thin Film Coating of Steel Plates 

4.2.1 Subsection: Initial Coating 

After finding a range of viscous boehmite gels, we began refining our coating process on 2D 

plates. We ran initial coating trials with the gel from the 7-11 drops of HCl at 0.147mm and 

0.254 mm thickness. After drying in the oven, we observed the coatings on all of the plates 

appeared clear and uniformly distributed across the plate (Figure 11) 

 

 

Figure 11. The initial trial of coating the plates with boehmite gels showed uniform coatings and colors, 

independent of the amount of HCl added to each gel. 
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4.2.2 Replicating Coating of Thin Film Plates 

After our initial observations coating the plates, we replicated our experiment after 

creating a fresh batch of boehmite gels following the same procedure as before. The plates were 

dried and placed into an oven overnight. After the plates were removed from the oven, they sat 

loosely covered for several days. At the end of several days, the coatings on the plates turned 

orange and began flaking off of the slides (Figure 12). The flakiness increased in the gels that 

were prepared with higher amounts of HCl and were made at 0.254 mm thickness. Some of the 

flakes washed off of the plates using DI, but the flakes remained in the water.  

 

 

Figure 12. These are the slides coated with freshly prepared boehmite gel as outlined in the procedure. 

The plates show significant flaking after being left covered for several nights. 
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4.2  Thin Film Coating on Glass Slides 

To determine the cause for the yellowing of the boehmite gel, we also deposited a thin film 

using the same thin film procedure for the steel plates. The resulting coatings were comparable for 

the same amount of HCl added and thickness of coating. Flaking was more common in the thicker 

layers of boehmite, the same as the steel coated plates (Figure 13).  

 

Figure 13. The slides prepared with 10 drops of HCl boehmite gel. Both sets of slides were dried 

overnight in the oven, and both slides show similar flaking. There was no color present in the boehmite 

coating on the glass slides, while the coating turned orange for the steel slides. 

We suspect the boehmite coating became flaky partially because of buckling from the 

furnace. Because the flakiness occurred most with the thicker layers of boehmite, it is possible that 

excess boehmite that does not adhere to the plate will flake when water evaporates out.  

There was no observable yellowing of the boehmite gels on the glass slides. This leads us 

to believe that the iron ions from the steel slides leeched into the boehmite gel which caused 

oxidation. This occurred in the slides that were left overnight in an air-circulating oven. To combat 
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the oxidation, we suggest placing coated slides into a furnace immediately after preparation. We 

suspect that if the furnace runs nitrogen over the samples, rather than oxygen-containing air, the 

boehmite coating may not oxidize.  

We also noted that the slides seemed to oxidize faster and to a greater extent when prepared 

with boehmite gels that were fresh. When we coated the slides with gel that had aged more than a 

week, there seemed to be less oxidation. 

4.3 Calcination and Characterization of Coated Slides 

4.3.1 Preparation of Slides to be Calcined 

To calcine our slides in the tube furnace, we repeated our process of coating slides with 

freshly prepared boehmite gels onto steel plates of 0.5 in width. Our initial slides immediately after 

preparation showed uniform color and coating, but after drying overnight, the slides showed some 

faint yellowing and flaking. As we determined from the glass slides, the yellowing is due to 

oxidation. Once the slides were placed into the furnace overnight, the 10 drops of HCl slides 

showed significant yellowing compared to the gel made with 9 drops of HCl. Figure 14 shows the 

progression of the slides from freshly prepared, dried overnight, and then after drying in the oven. 
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Figure 14. This image shows the progression of the flaking and color of the thin films prepared with 9 and 

10 drops of HCl. The first column shows the slide coatings immediately after preparation. The middle 

column shows the films after sitting loosely covered overnight. The right column shows the films after 

left drying in the oven for 24 hours. 

  

4.3.2 Calcination of Thin Film Coated Slides 

We calcined the slide that was treated with 9 drop HCl applied at 0.147 mm thickness. This 

coated slide showed the least flaking and yellowing of the slides we prepared. After calcination, 

the slide showed discoloration throughout, and the coating became a darker orange color. Figure 

15 highlights the differences between the slide after calcination. 
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Figure 15. (Top) The coated slide that was treated with 9 drop HCl boehmite gel before calcination. 

(Bottom) The same slide after calcination at 550 C. The entire slide discolored, and the coated section 

darkened to a stronger orange color. 

The thin film coating on the calcined slide darkened slightly, but otherwise remained 

visually the same as before calcination. Because the steel plates were pretreated to allow for better 

adhesion of the metal, the slides are easily oxidized at higher temperatures and discolor more 

readily. On different slides, we observed fingerprints were etched into the slide after going through 

the steel treatment process. 
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4.3.4 XRD Data of Calcined Boehmite  

 X-ray powder diffraction was utilized to validate the calcination methodology, ensuring 

that on heating to 500℃ for about four hours the boehmite would change phases to (gamma) 

alumina, Al2O3. Figure 16 shows the boehmite in the crucible before and after calcination. 

 

 

 

Figure 16. (Top) The fresh boehmite powder before calcination treatment at 550 C. (Bottom) The 

calcined boehmite powder, while it seems more yellow in the photo, is due to ambient light. 

 

To analyze the phase changes, the data points from the XRD readings were run through 

Jade software. The Jade software was able to identify the characteristic peaks of fresh boehmite 

that typically occur around 10, 20, 35, and 45, as shown in Figure 17.  
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Figure 17. The XRD patterns for fresh and calcined boehmite powder. The faint vertical lines on each 

curve are the expected peak locations from Jade software. 

The calcined powder subsequently shows two strong characteristic peaks around 40 and 65 

with more noise than seen in the fresh boehmite powder. Within Figure 17, the faint vertical lines 

within each peak show where the Jade software would expect the peaks to appear. When compared 

to the predicted peaks from Jade, the fresh boehmite peaks matched the expected values better. 

The calcined boehmite has more noise in the XRD, and there are a few places the Jade software 

predicted a higher, more defined peak, like at 50 theta. The difference in predicted peaks and the 

actual peaks could be that the gamma translation did not fully occur. The boehmite powder was 

placed into a ceramic crucible at a depth of 1 cm, so the developed calcination treatment for the 

thin film on steel may not be as effective for the powder in the crucible. XRD confirming the phase 

change of the boehmite on the steel plate was planned, but was unable to occur due to campus 

closing.  
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4.3.5 Optical 3D Profilometry of Calcined Slide 

We examined the consistency and thickness of the calcined slide coating using optical 

profilometry. Figure 18 below shows the profilometry image of the calcined slide. The darker left 

side of the image shows the steel plate. The darker line shows the split between where the coat 

was placed and the clean metal. The thin film is not entirely uniform, as shown by the small dark 

spots on the right side of the image. This was expected as the excess gel was scraped off with a 

razor, and the slide may have experienced some mild abrasion, which can explain the 

inconsistencies the coating.  

 

Figure 18. This colorized optical profile shows the lowest points in dark blue/indigo and the highest 

points in red. The light blue line at 280 μm shows where the depth readings were taken. 
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Figure 18 is the accompanying depth reading of the slide, which was taken at the thin blue 

reading line at around 280 μm in Figure 19. The graph shows the depth along the blue line. Once 

the profilometry reading reaches the thin coating, a sudden spike is seen on the graph at about 420 

microns on the x axis reading. From the average readings, the graph shows the thin coating is 

approximately 1-2um thick, which was our target thickness. Although the coating started out at as 

0.147 mm, the calcination burned off excess boehmite gel to leave behind the finished coating. 

The viscosity of the gel at 9 drops HCl shows to produce an ideal thickness, as it gives enough 

space within our tubular microreactors to add catalyst in a later step.  

 

Figure 19. The chart shows the depth reading of the calcined slide along the blue line in Figure 19. The 

readings demonstrate an average coating thickness of about 1-2 micrometers. 

 

 

4.4 Decomposition of Ammonia in Microreactors  

 Due to the ongoing worldwide COVID-19 pandemic, we were unable to actually run 

reactions in the lab. As an alternative, we modeled the mass and heat transfer of the system. 
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4.5 Biot and Damkohler Flow Regimes 

The Biot number and the Damkohler numbers were used to predict the flow and heat 

transfer regimes through our designed microreactors. For our calculations, we made several 

assumptions based on our original operating conditions and advice from Cameron Armstrong. Our 

first assumption was that this reaction would take place at about 450°C. This operating temperature 

is slightly below our intended operating conditions but ran calculations at this temperature because 

of available values in literature. This section highlights important key assumptions made to 

produce the Biot and Damkohler plots, but Appendix B contains detailed sample calculations for 

the Prandtl Number, Nusselt Number, Biot Number, and Damkohler numbers.  

 

4.5.1 Nusselt Number Relationship Determination 

 We selected a Nusselt number relationship between Pr and Re based on the resulting values 

and the geometry of fluid through a cylindrical tube. We selected Equation 7 shown below for the 

relationship 

                                                         𝑁𝑢 =  𝑐 ∗ 𝑅𝑒𝑚 ∗ 𝑃𝑟1/3                                                    Eq. 7 

 Equation constants c and m were determined based on the values of Re and Pr; because Re 

was less than 4 and Pr was greater than 0.7 for each thickness, c constant was 0.989 and m constant 

was 0.333. These values calculated the Nu number, which in turn helped determine the heat 

transfer coefficient of ammonia gas as 275.3 W/m^2*K. This calculated value is similar to heat 

transfer coefficients of gases housed inside of tubes, which was confirmation that our initial 

assumptions were correct.  
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4.5.2 Determining Reaction Constant of Ammonia Decomposition 

We assumed a conversion rate of about 50% ammonia based on our temperature and 

similar experimental results of catalytic ammonia decomposition (Wang et al., 1999). From that 

conversion rate, we were able to use Arrhenius equation assumptions for ammonia decomposition 

to find the reaction constant needed for the Damkohler numbers.  

4.5.3 Analysis of Biot Number and Damkohler Numbers Plot 

 To create our plot, we varied the thickness of our microreactor walls from 5 μm to 0.5 

meters. Heat released during the exothermic ammonia decomposition reaction, so this plot could 

determine if kinetics or heat transfer properties limited our reactor wall thickness. Using the 

dimensionless numbers outlined in our methodology, we plotted the Damkohler numbers against 

the corresponding Biot numbers on a logarithmic scale, as shown in Figure 20. 

 

Figure 20. By varying the thickness of reactor walls, a plot of the Biot number vs the Damkohler numbers 

was created to determine the dominating kinetics/heat transfer for wall thicknesses. 
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When the Damkohler numbers are less than 1, it indicates that the wall thickness limits the 

conversion of ammonia in the reactor. When the wall becomes relatively thick compared to the 

operating space within the reactor, the heat generated from the ammonia decomposition takes 

longer to be removed, thus limiting the production of hydrogen. When the Damkohler number is 

larger than 1, the conversion of ammonia into hydrogen is limited by the kinetics of the reaction, 

rather than the heat transfer of the system. A Biot number larger than 1 indicates that the reactor 

system is limited by the rate at which heat can pass through the reactor walls. The reactors with 

wall thicknesses greater than 50 mm will be limited by the amount of heat that can pass through 

the walls of the system, which means it is conduction limited. However, a Biot number less than 

1 shows that the heat removal from the system is limited by the convection of the ammonia within 

the reactor.  

 For our reactor design of wall thickness of 50 μm, we determined that it would be 

kinetically limited and isothermal. This is what we expected based on our research, as our reactor 

walls are thin enough to be limited by reaction kinetics rather than heat transfer. Additionally, 

since the Biot number is less than one for our 50 μm walled reactor, we can assume that the reactor 

will be isothermal. A small Biot number indicates less variation of temperature within the reactor, 

which confirms our goal of designing a reactor that is thermally effective.  

4.6 Modeling Heat Flux Through Microreactors 

Parametric sweeps were run to show how the variation of initial temperature, external fluid 

velocity, and wall thickness may affect how quickly the microreactor is able to cool down from a 

given temperature. The temperature sweep was run from 273.15 K to 800 K at an interval of 10 K. 

The velocity sweep was run from 0 to 10 m/s at an interval of 1 m/s. The wall thickness sweep 

was run at an exponential interval and plotted on a log10 scale: 5 μm, 7 μm, 9 μm, 50 μm, 70 μm, 
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90 μm, 500 μm, 700 μm, 0.5 cm, 5 cm. Each parametric sweep was run at a time step of 5 seconds 

from 0 to 100 seconds. From Figure 21 below, as the initial temperature of the system increases, 

the time it takes to cool to ambient temperature also increases as there is a larger temperature 

differential. In Figure 22, as velocity increases from 0 to 10 m/s, the time it takes to cool to ambient 

decreases as there is an increase in convective flow. In Figure 23, as wall thickness increases, the 

time to cool to ambient increases 

 

Figure 21. COMSOL plot of varying initial temperature with time as the average temperature of the 

reactor decreases. 
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Figure 23. COMSOL plot of varying 

the log base-10 of thickness with time 

as the average temperature of the 

reactor decreases. 

  

Figure 22. COMSOL plot of varying velocity with time 

as the average temperature of the reactor decreases. 
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Section 5: Conclusions and Suggestions for Future Work 

 Ultimately, thin films can be successfully coated on 304 stainless steel plates and 

microreactors using the aforementioned methodology. Characterization of the thin films confirmed 

the desired phase change of boehmite into alumina. The desired thin film coating of 1 micrometer 

was achieved on the steel plates, as revealed by optical profilometry. The thin film coating method 

can be improved in the future potentially by coating the reactors in an inert atmosphere to prevent 

the yellowing of the steel. Further, we have shown that stainless steel microreactors have superior 

thermal properties over ceramic substrates, along with improved heat and mass transfer. Lastly, 

we have applied reaction engineering and dimensionless analysis to identify the isothermal and 

kinetic operating regime in order to demonstrate the most effective operating conditions for a 

tubular microreactor. From the COMSOL modeling, we suggest operating conditions of greater 

than 500 oC, which would provide a higher conversion rate of ammonia, while also allowing for 

less temperature variation within the reactor. To achieve a isothermal, kinetically limited reactor 

system with a nickel catalyst, the walls of the reactor should be no thicker than 500 μm, based on 

dimensionless parameters and confirmed with COMSOL modeling. While the velocity of the 

ammonia gas through the system can vary, a lower velocity of gas will cause a longer cool down 

time for the reactor system.  

 Because the final stages of testing the microreactors for ammonia decomposition did not 

occur due to campus closure, we suggest future research obtain proof of concept for the 

microreactor design. Without the campus closure, we planned to test the microreactors to obtain 

experimental yields for hydrogen. From those results, operating conditions could be suggested for 

the microreactor. In subsequent research studies, reactor design scale-up should be considered; the 

catalytic conversion of the reactant, i.e. ammonia to hydrogen and nitrogen gas, may be 
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significantly enhanced as opposed to traditional packed bed reactors for industrial purposes. 

Finally, this project assumed nontransient and isothermal conditions for the ammonia 

decomposition reaction. Studying more transient and nonisothermal reactor operations would 

provide a fuller picture of the feasibility of decomposition ammonia using catalytic microreactors 

as an alternative source for hydrogen.  
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Appendices 

Appendix A - Determination of HCl Volume Per Drop 

We polymerized boehmite using a bottle dropper for Initial Control and a Pasteur pipette for our 

Determination of Acid Threshold experiment. To determine the volume of HCl added per drop, 

we counted the number of drops needed to obtain 1mL of water in a graduated cylinder.  

Pasteur pipette: 

33𝑑𝑟𝑜𝑝𝑠

1 𝑚𝐿
∗

1𝑚𝐿

1000 𝑢𝐿
=  29 𝑢𝐿 𝑝𝑒𝑟 𝑑𝑟𝑜𝑝 

 Bottle Dropper: 

22 𝑑𝑟𝑜𝑝𝑠

1 𝑚𝐿
∗

1𝑚𝐿

1000 𝑢𝐿
=  45 𝑢𝐿 𝑝𝑒𝑟 𝑑𝑟𝑜𝑝 
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Appendix B. Sample Calculation for Biot and Damkohler Numbers 

To calculate the Biot and Damkohler numbers, the numbers were calculated in this order 

1. Reynolds Number 

2. Prandtl Number 

3. Nusselt Number 

4. Biot Number 

5. Damkohler 1 Number 

6. Damkohler 2 Number 

Note: All values taken from literature were for at 450 °C 

Step 1: Reynolds Number 

𝑅𝑒 =  
𝜌𝑢𝐷

𝜇
   

p = density ammonia (kg/m^3) = 0.2937 kg/m3 

u = flow speed ammonia (m/s) = 5 cm^3/min *experimental from Cameron 

 5 sccm = 5e-6 m^3 

 5e-6 m^3/ min / (pi*(0.0002)^2) / 60 sec = 0.663 m/sec 

D = diameter (m) = 0.0004 m 

u = dynamic viscosity = 25.32e-6 Ns/m 

 

Re = 3.076 

 

Step 2: Prandtl Number 

 

𝑃𝑟 =  
𝑢𝐶𝑝

𝑘
 

u = dynamic viscosity = 25.32e-6 N s/m^2 

Cp = specific heat of ammonia = 2930 J/kgK  

k = thermal conductivity of ammonia = 0.7822 W/mK 

Pr = 0.948 
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Step 3: Nusselt Number 

Nusslet Number depends on the values of Re and Pr – we are using an equation for Nu that 

applies to flow through cylinders from Cario University: 

𝑁𝑢 =  𝑐 ∗ 𝑅𝑒𝑚 ∗ 𝑃𝑟1/3 

 

Because Re was between 0.4 and 4, coefficients for c and m were 0.989 and 0.33 respectively.  

Nu = 1.408 

We then used the more generalized version of the Nusselt number to determine the heat transfer 

coefficient of the ammonia gas through the reactor at 450 °C 

𝑁𝑢 =  
ℎ𝐷

𝑘
  

h = 275.3 W/m2K 

Step 4: Biot Number 

𝐵𝑖 =  
ℎ ∗ 𝐿

𝑘
 

k = thermal conductivity of the alumina and stainless steel = 14.4 W/mK 

L= thickness of the stainless steel tube = 0.00005 m 

h = heat transfer coefficient of ammonia (calculated from Nu and Re and Pr) 

Bi = (275.3)*(0.00005 m) / 14.4 

Bi = 0.000956 
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Step 5: Calculate Damkohler Number 1 

  

   𝐷𝑎𝐼 =  
𝜏𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛

𝜏𝑐𝑜𝑛𝑑𝑢𝑐𝑡𝑖𝑜𝑛
=  

𝑘

𝜌∗𝐶𝑝∗𝐿2∗𝑘𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛
     

k = thermal conductivity of ammonia = 0.07822 

p = density ammonia (kg/m3) = 0.2937 kg/m3 

Cp = specific heat of ammonia = 2930 J/kg K  

L = Reactor wall thickness (steel thickness) = 50 microns 

 

Kreaction constant = 1 

The conversion of ammonia to hydrogen was assumed to be about 50%, taken from various 

literature, specifically from (Wang et al, 1999). We then assumed the Arrhenius equation for the 

ammonia decomposition reaction at 450 C was comparable to  k = x / (1-x) where x is the 

conversion of ammonia. Our k constant was then 1. Depending on the temperature of the 

reaction, the k value would increase.  

 

Da1 = 0.000366 

 

Step 6: Calculate Damkohler Number 2 

𝐷𝑎𝐼𝐼 =  
𝜏𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛

𝜏𝑐𝑜𝑛𝑣𝑒𝑐𝑡𝑖𝑜𝑛
=  

ℎ

𝜌 ∗ 𝐶𝑝 ∗ 𝐿 ∗ 𝑘𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛
 

 

h = heat transfer between the ammonia gas and the reactor walls 

L = Reactor wall thickness (steel thickness) = 50 microns  

p = density ammonia (kg/m3) = 0.2937 kg/m3 

Cp = specific heat of ammonia = 2930 J/kg K  

p = density ammonia (kg/m3) = 0.2937 kg/m3 

 

To calculate the heat transfer between the ammonia gas and the reactor walls, we used the 

thermal sum of resistances through metal  

1/Rtot = 1/hammonia + L/kstainless steel + 1/hair  

hammonia = 275.33 (calculated from Nu previously 

kstainless steel = 14.4 W/m2K 

hair = 50 W/m2K 

Rtot = h = 42.37 W/K              

DaII =   0.0399                                                  


