Design of a Cricket Game Using
FPGASs

Ronald J. Egyir and Ryan P. Devendorf
Department of Electrical and Computer Engineering Class of ‘20 & ‘21
Under the Guidance of Dr. Maqsood Mughal

June 2020

Design of a Cricket Game Using FPGAs 1

Acknowledgements

We would like to thank Worcester Polytechnic Institute for giving us the opportunity to
conduct our Major Qualifying Project research on the “Design of a Cricket Game Using
FPGAs”.

The Completion of this project could not have been made possible without the guidance
and support we have received throughout our time at WPI. A special thanks is owed to Dr.
Magsood Mughal for overseeing our efforts throughout this project.

Abstract

Within this project, we have broken down our approach to implementing a realistic
cricket game onto a Basys 3 FPGA board. Using Verilog, we created a pseudorandom number
generator using an LFSR (Linear Feedback Shift Register) and assigned probabilities to the
outcomes in order to closely reflect a real cricket game. Through various logical elements, we
have utilized components such as push buttons to take in user input and have developed a lifelike
cricket scoreboard to keep track of things like number of runs, current ball count etc. You will
find explanations on various aspects of digital design such as button debouncing, using a
pseudorandom number generator, slowing a clock using a counter, converting data for
seven-segment led display and of course how to tie them all together in order to form a
functioning circuit. All code written for this project is referenced in text and can be found in the
appendix at the end of the paper.

Department of ECE, Worcester Polytechnic Institute

Design of a Cricket Game Using FPGAs

Table of Figures

Occuring from LFSR Output

Figure Number Figure Name Page Number
1 Cricket Scoreboard Shows 6
Runs(177), Wickets (6), and Balls
Left (74)
2 Key Elements in the Game of 7
Cricket
3 Basys 3 Board with Labeled 9
Components in Use
4 Entire Cricket Game Functionality | 11
5 Functional Block Diagram of 12
Overall Game Flow
6 Verilog Schematic of Top 12
Module
7 Timing Diagram to Generate Slow | 13
Clock from System Clock
8 Block Diagram of Debounce 14
Module
9 Timing Diagram for Generic Button | 14
Debouncing
10 Block Diagram of Simplified 15
Cricket Game Module
11 Verilog Schematic of Cricket Game | 16
Module
12 Block Diagram of LFSR Module 17
for Random Number Generation
13 Pseudorandom Numbers Generated | 17
from an LFSR
14 Top 20 Highest Inning Totals for 18
Twenty20 Cricket
15 Score Results with Probability of | 19

Department of ECE, Worcester Polytechnic Institute

Design of a Cricket Game Using FPGAs

16 Block Diagram of Data From Game | 20
Module to Seven Segment display

17 Verilog Schematic of Seven 20

Segment Display
18 Timing Waveform - End of Team | 21
I’s Inning
19 Timing Waveform - Switching 22
Teams

20 Timing Waveform - End of 22

Team2’s Inning and the End of the
Game

21 Design Utilization 23

22 Team 1 with 198 runs, 5 Wickets 23
and 119 Balls (leds = 7b1110111)

23 ‘IO’ Indicating Team 1’s ‘Inning | 24

Over’ (notice ball count = 120)
24 Switch to Team 2(swO0 slider 24
switch is pushed from 0 to 1)
25 Team 2 with 136 Runs, 9 Wickets | 25
and 112 Balls
26 Team 1 Wins the Game 25

Department of ECE, Worcester Polytechnic Institute

Design of a Cricket Game Using FPGAs

Appendix Figures

Appendix Number Figure name Page Number
A-1 Cricket.v (top module) 27
A-2 debounce.v 28
A-3 D FF.v 28
A-4 cricketGame.v 29
A-5 Ilfsr.v 30
A-6 score_and_wickets.v 31
A-7 Score_and_wickets.v cont. 32
A-8 score_comparator.v 33
A-9 led controller.v 34
A-10 Scroll _leds.v 35
A-11 slow _Clock 10Hz.v 35
A-12 bed _Display.v 36
A-13 binary to BCD.v 37
A-14 slow _Clock 1KHz.v 38
A-15 two_bit_Counter.v 38
A-16 decoder2to4.v 39
A-17 mux4tol.v 39
A-18 bcd7seg.v 40

Department of ECE, Worcester Polytechnic Institute

Design of a Cricket Game Using FPGAs

Table of Contents

Section Name and Number

TITLE PAGE
Acknowledgments
Abstract
Table of Figures
Table of Appendix Figures
Table of Contents
1. Introduction
2. The Game Of Cricket
2.1 Overview
2.2 Structure of the Game
2.3 Scoring Runs
2.4 Wickets
3. Implementation
3.1 Scope
3.2 Game Flow
3.3 Modules
3.3.1 Slow Clock Module
3.3.2 Debounce Module
3.3.3 Cricket Game Module
3.3.4 LFSR Module
3.3.5 Score, Wickets and Comparator
3.3.6 BCD to Display Module
4. Results and Conclusion
4.1 Design Simulation
4.2 Design Utilization
4.3 Final Scoreboard Snapshots
5. References

6. Appendix

Department of ECE, Worcester Polytechnic Institute

Pg. Number

NI “A- -~ -REN B BN - N0 I L

NN N NN N e e e e e e
A W W m = S 0N N A W W

27-40

Design of a Cricket Game Using FPGAs 6

1. Introduction

With the ability to become any digital circuit, the FPGA (Field Programmable Gate
Array) allows for tighter security, lower power consumption, higher data reliability as well as
being the fastest way to integrate a specific digital design into a device. It is no wonder that
many of the leading technology fields such as industrial, medical, aerospace, and defense have
all been finding more and more ways to utilize them. Whether you are programming a rocket or
simulating the wonderful game of cricket each of these complex tasks can be broken down into
their many simpler parts. The goal of this project is to combine basic digital circuits such as
flip-flops, decoders, comparators, counters etc. in order to create a functioning simulation of the
sport cricket. This project is intended for anyone with basic knowledge of digital design and can
aid as a detailed project for both students and individuals excited to jump into programming
FPGAs.

The board used throughout this project is the Digilent Basys 3 prototyping board which
contains the Xilinx Artix-7 FPGA. All programming has been completed using Verilog
Hardware Description Language (HDL) through Vivado Design Suite. A Digital Schematic Tool
(DSCH) was also used in order to create timing waveforms to help us validate the architecture of
the logic circuit prior to moving into design.

To provide a breakdown of the project and understand the steps we have taken, in the
following sections you will find a brief overview of the important aspects of the game of cricket,
various block diagrams and RTL (Register Transfer Level) schematics representing the Verilog
modules to help you understand how the logic is interconnected, a flowchart to explain the full
functionality of the game and what to expect, all of our code is included in the appendix with
detailed comments to further explain functionality, as well as DSCHs to visualize the game

functioning properly.

Figure 1: Cricket Scoreboard Shows Runs(177), Wickets (6), and Balls Left (74)

Department of ECE, Worcester Polytechnic Institute

Design of a Cricket Game Using FPGAs 7

2. The Game of Cricket

\

\\
(4 '.II

Ball

Bowler \ ?

Batsman

Figure 2: Key Elements in the Game of Cricket
2.1 Overview

The game of cricket is played with a bat and ball on a large field between two 11 player
teams. The objective in cricket is for the batting team to score as many runs as they can and for
the fielding team to prevent them from scoring. As a batsman there are various ways to score
runs but in general when the game is finished the team with the most runs wins. There are many
variations of the way cricket is played but for the purposes of this project we will stick to the
basics in order to maintain a good grasp on the rules of the game while keeping the majority of
the information adhered to the project's implementation. Below you will find further information
on the rules of the game and how it is played.

2.2 Structure of the Game

Typically the game of cricket will be made up of two innings. Before the game starts
there is a coin toss to determine which team will bat or field first. Each team has the opportunity
to score as many runs as they can before one of two things occurs that ends the inning. The first
way this can occur is that one team has been delivered all 120 balls by the opposing team. The
other way is that the fielding team has managed to get 10 out of the 11 players on the batting
team out. It is important to note that when a fielding team gets a batsman out it is referred to as a
‘wicket’. Once both teams have had a chance to bat the score will be compared and the team
with the higher score is the winner. If the score happens to be a tie then the game will then go for
another two innings, however each team will only be delivered 6 balls each before the score is
compared again [7].

Department of ECE, Worcester Polytechnic Institute

Design of a Cricket Game Using FPGAs 8

2.3 Scoring Runs

The most common way of scoring runs in cricket is when the batsman hits the ball within
the field, they must run to the other end (bowling end) to complete a run and can continue back
to where they started to score more runs if one of the bowlers hasn’t regained possession of the
ball. In the later, failing to make it back to the batting position or falling short of the crease will
result in one run only with batsmen ruled out if the bails are removed before the batsmen goes
across the batting crease. It is possible for the batsmen to continue running and score up to three
or more runs from one hit. More ways a batsman can score is if he hits the ball hard enough to
reach the boundary. If the ball bounces on the field and then hops over the boundary the team is
awarded 4 runs and if the ball makes it beyond the boundary without touching the field the team
is awarded 6 runs. If either of these two cases are to occur then the batsmens holds the strike and
doesn’t need to run. More possible ways of a team scoring runs is from the extras. Extras results
from a bowler violating the cricket rules while bowling. Examples of this include bowling above
waist height which is considered a “No Ball”, and an extra run is awarded to the opponent team.
Similarly, If a bowler delivers the ball from the wrong position such that his foot lands outside of
the crease the ball will also be called a ‘No Ball’ by the umpire. If the ball is declared as being
too far away from the batsman it will be considered a ‘“Wide Ball’. A ‘No Ball’ and a “Wide Ball’
both fall into a category referred to as ‘Extras’ and when that occurs the batting team will be
awarded 1 run, and additionally that bowl is not considered legal and will not count towards the
120 balls, instead being rebowled. To summarize the possibilities of scoring, for any particular
delivery the batsman can score 0, 1, 2, 3, 4, or 6 runs and that's unless of course the fielding
team gets the batsman out [7].

2.4 Wickets

Just like there is more than one way to score runs as a batsman, there are also multiple
ways for the fielders to get the batsman out. To list a few common ways a fielder can get a
batsman out there is ‘Bowled’, ‘Caught’, run out, and ‘Leg Before Wicket’. If a batsman is
bowled out it means that the ball has knocked the stumps behind the batsman shown in figure 2.
If the batsman hits the ball and it is caught before touching the ground it is referred to as
‘Caught’. ‘Leg Before Wicket’ refers to when a batsman is hit by the ball without it touching the
bat but only if the ball was going to hit the wickets had it not been obstructed by the body of the
player. As a reminder going forward, when a batsman gets out for whatever reason it is counted
as a ‘wicket’ against their team. If the wicket count reaches 10 the inning ends and the other
team gets to bat no matter how many balls have been delivered [7].

Department of ECE, Worcester Polytechnic Institute

Design of a Cricket Game Using FPGAs 9

3. Implementation

Within this section, you will find the scope of the project where we have laid out what
components on the Basys 3 board we will be using for the game. You will find detailed
explanations with flowcharts and diagrams that express the overall game functionality as well as
thorough breakdowns of the individual modules. All commented code for these modules can be
found in the appendix section.

3.1 Scope

[smn ™Y | UNIVERSITY PROGRAM
] A | (-

« ’j 4o

g A | |1) —

I y N Q.
BASYS 3 ity

Figure 3: Basys 3 Board with Labeled Components in Use

1. We are using the micro-USB port for both programming and powering the board. The
two blue jumpers you see along the top of the board will be set to ‘USB’ and ‘JTAG’
from left to right respectively. You should notice that the image shown in figure 3 does
NOT have both jumpers in the proper position.

2. The first three digits on the seven segment display is used to display a team's current
number of runs in decimal and can range from 0 runs to 255 runs.

3. The last digit on the seven segment display is used to display the number of wickets
against the same team that has their runs displayed.

Department of ECE, Worcester Polytechnic Institute

Design of a Cricket Game Using FPGAs 10

4. The row of sixteen leds will be used to display the current teams ball count in binary.
Since the maximum ball count is 120 balls, we will only need the right most seven leds
for this, however the remainder of the leds will be used for an end of game celebration.

5. The up pushbutton is used to simulate a delivery from the bowler. When the up button is
pressed, depending on the outcome of the bowl the displays will change accordingly.

6. The middle button is used as a game reset. At any point in the game you can hit the reset
button and the game will start over.

7. The rightmost switch is used as a ‘team switch’. When the switch is in the up position it
means that team 1 is batting and the displays will present team 1’s current score, wicket
and ball count. This is the same functionality in the bottom position for team 2.

More Useful Information:

e The team switch should be in the up position at the beginning of the game and should be
switched to the bottom position when the display says ‘ IO ¢ which denotes ‘inning over’.
This means that team 1 has reached their maximum ball or wicket count and it is time for
the teams to switch. Failure to do this will result in an unfair game and it is recommended
that the reset switch be applied.

e Once both teams have gone the game will automatically compare the two scores and
display the team with the higher score (the winner) on the three rightmost digits of the
seven segment display in the form ‘01’ or ‘t02’ and at the same time the leds will scroll
in a celebratory fashion.

e [f the game results in a tie game the same three digits will display ‘tIE’. The switch will
then be switched back to the team 1 position and the game will be replayed the exact
same way, except this time each team will only receive 6 balls before the score is
compared again.

Department of ECE, Worcester Polytechnic Institute

Design of a Cricket Game Using FPGAs

3.2 Game Flow

START

11

Delivery)
CQ

Y

Assign Randomly
Generated Number
a Value

Yes
Is Value 13 or 147

A

Runs = Runs +

Balls = Balls + 0 (Assigned Value)

Wickets = Wickets+1

v v

v

Extras = Extras + 1 Balls = Balls+1

Balis = Balls+1

| l

J

Does Wickets = 10
or Balls = 1207
(Balls = 6 for Sudden
Death?)

Compare Scores,
Display Winner and
Gameover Celebration

No
Display Current Score

and Wickets

Display "Inning Over"

Both Teams Have Gone?

and Switch Teams

Sudden Death Each

Team Gets 6
Additional Balls

L

Figure 4: Entire Cricket Game Functionality

Department of ECE, Worcester Polytechnic Institute

Design of a Cricket Game Using FPGAs

pushButton_Up

debounce

w

{

12

CricketGame

bedDisplay

Figure 5: Functional Block Diagram of Cricket Top Module

Ll
il
. button_press Ulse_out '
btnl) L B
clk gameQver
_ ed[150)
dkfpga [—— prow difpgs | | imingOver " D
delivery leds[150] ‘ “
reset :> l feset | uns(740) binaryRuns(7.0]
D teamSwitch tickets[3)] binaryWickets 3] an3q] |—D an3q)
) —+
winner ck fpga dp
— b
(ricketGame ey i)
imingOver | seqle]
inner
bedDisplay

Figure 6: Verilog Schematic of Top Module

Department of ECE, Worcester Polytechnic Institute

Design of a Cricket Game Using FPGAs 13

3.3 Modules

3.3.1 Slow Clock Module

The system clock for the Basys 3 runs at a frequency of 100 MHz. Sometimes we are
able to use this frequency for our applications but for others we need to slow this frequency
down to produce the results we need. For instance, in the Basys 3 board reference manual [3]
you will find that the seven segment display leds should run at a frequency between 60 Hz and
1,000 Hz. Anything higher than that can result in unstable transitions and anything lower will
result in a noticeable flicker to the human eye. In order to obtain the desired frequency of the
clocks we can use a simple up-counter. When we give a counter a certain value to reset itself, we
can then count the number of clock ticks of the system clock and generate a different clock pulse
that transitions when we reach the maximum count. Depending how we set the max count value
will determine the frequency of the slower clock. For example, if we set the max count to a value
of 2 it will create a slower clock at half the system clock frequency, as shown in figure 7. Slow
clock modules are shown in figures A-11 and A-14.

clk_fpga 100 MHz
Up-counter / / / / / / / MaxCount = 2
slowClock 50 MHz

Figure 7: Timing Diagram to Generate Slow Clock from System Clock

Department of ECE, Worcester Polytechnic Institute

Design of a Cricket Game Using FPGAs 14

3.3.2 Debounce Module

A common problem found in digital circuits is when a mechanical button is pressed
generally it will make and lose contact multiple times before setting into a steady state. This is
referred to as the button bouncing [4] and in order to not send multiple button press signals from
a single press we have decided to implement a button debouncer shown in figure 8 and
represented in Figures A-2 and A-3.

PushButton_Up > Qi > Q2 Q1 + Q2
DFF_1 DFF_2 >
AND debouncedButton
at’ Q2' >

clk_fpga —>» slowClock_10Hz

Figure 8: Block Diagram of Debounce Module

There are multiple ways of implementing this in a digital circuit but we chose to use a
series of D-flip-flops that are fed with a slower clock frequency making it so the
debouncedButton signal doesn’t change states for multiple .1 second clock periods represented in

figure 9.

Bouncy |N m
Signal In
Clock ||| ||| |||| |||| ||| ||| ||||

Debounced
Out

Figure 9: Timing Diagram for Generic Button Debouncing

Department of ECE, Worcester Polytechnic Institute

Design of a Cricket Game Using FPGAs 15

3.3.3 Cricket Game Module

) \

debouncedButton LFSR
Random
Number Score

Assignment — > Comparator — bedDisplayModule

for Runs

and Wickets

Y
-

. Led
"1 Controller

\

A 4

Figure 10: Block Diagram of Simplified Cricket Game Module

Department of ECE, Worcester Polytechnic Institute

Design of a Cricket Game Using FPGAs 16
il
(amever
03
g ball{ 150
(oe
t froa dk e [amever
f deley gl teanTBal) ringCre ingver
gameliel e Dt 114 tea a1 Wmetlacled
(k foge 3] fy cut0] team2Datg 1] teanZBal)
fegel fegel Hicket3) eam2Data[1 1)
b teanSitch Wiekets3)
deley , ds[150]
= SC0e and ket 507 Cmpate e
teamSilch o Hicket3)
Hiner
t frga
deley
el {150
g te Bl)
fy cuth0] tea Bl 60
e
teamSiich
led controler
(cketGame

Department of ECE, Worcester Polytechnic Institute

Figure 11: Verilog Schematic of Cricket Game Module

Design of a Cricket Game Using FPGAs 17

The cricketGame module consists of the four modules LFSR, score and wickets,
score_comparator and led controller shown in figures A-5, A-6, A-8, and A-9 respectively. As
seen in Figure 11 above, the inputs are the Basys 3 master clock(clk fpga), the debounced up
pushbutton(delivery), the center pushbutton (reset) and the slider switch SWO0 (teamSwitch) . The
outputs of cricketGame are leds, runs, wickets, inningOver, gameOver and winner.

3.3.4 LFSR Module

clk_fpga

A 4

A5

A 4

Ad

h 4

A3 » A2

Y

Al

h 4

A0 » Qutput Bits

A

\

A

Figure 12: Block Diagram of LFSR Module for Random Number Generation [9]

A linear feedback shift register is used in /fsr.v (figure A-5) to provide a pseudorandom 4
bit number for the assignment of scores and wickets. Shown in figure 12 above, a shift register of

length 6-bits is used to increase the period, where the maximum period of an n-bit long Ifsr is
equal to 2" - 1 [8]. Figure 13 shows the result of a linear feedback shift register that uses an
XOR sum and starts with a seed of 6’b1111111(15d). The period of this sequence is 31 :
(15,15,7,3,9,12,6,11,5,2,9,4,2,1,0,8,4,10,5,10,13,14,7,11,13,6,3,1,8,12,14).

Department of ECE, Worcester Polytechnic Institute

Design of a Cricket Game Using FPGAs 18

3.3.5 Score, Wickets and Comparator

ESriiCrICINTO Livescores Series Teams Features Videos —Stats

RECORDS /7 TWENTY20 INTERNATIONALS / TEAM RECORDS / HIGHEST INNINGS TOTALS

Highest totals

Team Score Overs RR Inns Opposition Ground Match Date Scorecard
Afghanistan 278/3 20.0 13.90 1 vlreland Dehradun 23 Feb 2019 T20I # 746
Czech Rep. 278/4 20.0 13.90 1 v Turkey Ilifov County 30 Aug 2019 T20I # 872
Australia 263/3 20.0 13.15 1 v Srilanka Pallekele 6 Sep 2016 T20I # 565
Sri Lanka 260/6 20.0 13.00 1 vKenya Johannesburg 14 Sep 2007 T20I # 27
India 260/5 20.0 13.00 1 v Srilanka Indore 22 Dec 2017 T20I # 634
Scotland 252/3 20.0 12.60 1 v Netherlands Dublin (Malahide) 16 Sep 2019 T20I # 884
Australia 248/6 20.0 12.40 1 v England Southampton 29 Aug 2013 T201I # 328
Australia 245/5 18.5 13.00 2 v New Zealand Auckland 16 Feb 2018 T20I # 649
West Indies 245/6 20.0 12.25 1 vIndia Lauderhill 27 Aug 2016 T20I # 562
India 244/4 20.0 12.20 2 v West Indies Lauderhill 27 Aug 2016 T20I # 562
New Zealand 243/5 20.0 12.15 1 v West Indies Mount Maunganui 3Jan 2018 T20I # 638
New Zealand 243/6 20.0 12.15 1 v Australia Auckland 16 Feb 2018 T20I # 649
South Africa 241/6 20.0 12.05 1 v England Centurion 15 Nov 2009 T20I # 125
England 241/3 20.0 12.05 1 v New Zealand Napier 8 Nov 2019 T20I # 1008
Namibia 240/3 20.0 12.00 1 v Botswana Windhoek 20 Aug 2019 T20I # 856
India 240/3 20.0 12.00 1 v West Indies Mumbai 11 Dec 2019 T20I # 1024
Austria 239/3 20.0 11.95 1 v Luxembourg Ilifov County 31 Aug 2019 T20I # 873
Singapore 239/3 20.0 11.95 1 v Malaysia Bangkok 3 Mar 2020 T20I # 1071
West Indies 236/6 19.2 12.20 2 v South Africa Johannesburg 11 Jan 2015 T20I # 414
Nepal 236/3 20.0 11.80 1 v Bhutan Kirtipur 5Dec2019 T20I # 1018

Figure 14: Top 20 Highest Inning Totals for Twenty20 Cricket

The pseudorandom number sequence generated by /fsr.v (figure A-5) is used to assign the
score and wickets for each delivery of a ball(up push button). The scores for Twenty 20 cricket
tend to rarely exceed 256, as seen in figure 14 [10]. Teams also usually end their innings because
they reached 120 balls, rather than by losing 10 wickets. The random number assignment
shown in figure 15 below was carefully chosen in order to achieve realistic scores [2].

Department of ECE, Worcester Polytechnic Institute

Design of a Cricket Game Using FPGAs

19

ballCount + 1

LFSR Random Number Assigned Value Based on Probability of Receiving Score
Output 0-15 LFSR Output from any one Delivery
0,1,2 Dotball: Runs + 0 18.75%
ballCount + 1
3,4,5,6 Single: Runs + 1 25%
ballCount + 1
7,8,9 Double: Runs + 2 18.75%
ballCount + 1
10 Triple: Runs + 3 6.25%
ballCount + 1
11 Four: Runs + 4 6.25%
ballCount + 1
12 Six: Runs + 6 6.25%
ballCount + 1
13 WideBall: Runs + 1 6.25%
ballCount + 0
14 NoBall: Runs + 1 6.25%
ballCount + 0
15 Wicket: wicketCount + 1 6.25%

Figure 15: Score Results with Probability of Occuring from LFSR Output

As shown in figure A- 8, score comparator.v takes the scores, wickets, and balls,

accumulated by each team in score _and wickets.v (figure A-7) and compares them to determine

if an inning is over, if the game is over, and if so determine who is the winner.

Department of ECE, Worcester Polytechnic Institute

Design of a Cricket Game Using FPGAs 20
3.3.6 BCD to Display Module
Team Score Wickets
_L NF_JE
—> Binary to
Binary to »| 4-to-1 ~| Seven
GameData —~—» BCD o/ MUX |7 7|Segment| —>{ ANOD | ANO1 | ANO2 | ANO3
Converter N Display
A A A
A A
2-Bit g
clk_fpga —» slowClock_1KHz gl Decoder
ounter .

Figure 16: Block Diagram of Data from Game Module to Seven Segment Display [1]

il
. i g)
t t t
biarfung] bnaryRuns[I:m' hundiecs 3] ABU}' enﬂﬂ}']
binaHickes o bkt e B b
o fos gameDler le[3] (B 13
decoder2od
gamedve ingve wdeg]l = OB
0 Yimet) i
— '
hiray 0.0 mudol y[}ﬂ]' wh) | bl
dt e d ik
b3 il
. sowClck Kz rE o
Inng0ve
- dk 1)
Wi
o bt counter
bedDiply

Department of ECE, Worcester Polytechnic Institute

Figure 17: Verilog Schematic of Seven Segment Display

Design of a Cricket Game Using FPGAs 21

The bcdDisplay.v module shown in figure A-12 along with its submodules (figures A-13
to A-18) convert the binary runs and wickets from cricketGame.v (figure A- 4) to BCD (Binary
Coded Decimal) and display them on the seven segment leds on the Basys 3 board [5]. The block
diagram and verilog schematic of the bed display system are shown in figures 16 and 17 above.

4. Conclusion and Results

In the following section you will find our simulated digital schematics with explanations
of what is being displayed. You can also find the design utilization report from our finished
project in Vivado Design Studio and photographs of the Basys 3 board while the game is in
process.

4.1 Design Simulation

Figure 18 shows that on the rising edge of the delivery at 2510 ns, the Ifsr output is 15
resulting in another wicket being taken. On the next free clock cycle at 2525 ns, the number of
wickets goes from 9 to 10. Once the wickets are at 10 or the ball count reaches 120, ‘inningOver’
value goes high as seen at 2535 ns. Despite new delivery attempts, the runs, wickets, and balls of
Team 1 are no longer allowed to be incremented in this state (inningOver = 1) [6].

2,470.000 n: 2,500,000 n: R, 2,620,000 ns 2,530.000 ns 2,540.000 ns 4550, ns

& delivery
.
> Wlfsrout[20]] 15
adothell
4single
' double

atriple
3 fours

i!:'i‘

Figure 18: Timing Waveform - End of Team 1’s Inning

Department of ECE, Worcester Polytechnic Institute

Design of a Cricket Game Using FPGAs 22

Figure 19 below shows what happens when the teams are switched. The second team’s
runs, wickets and balls all start from zero.

2,900.000 ns 2,950,000 ns
Uk |
“reset

i delivery

\

Wifsr out[30] [b7 a1 Ve (el 5 ()30 f2]6)n

dotball |
asingle ‘
@ double ‘
8triple ‘
afours ‘
'8 wideball 1

@ noball

asixes | ‘
— I I | I I

8 wicket
¥ runs[7:0]
> Wwickets[3:0]
> Whalls[15:0]
ginningOver | 1
8 gameQver | 0

@ winner

Figure 19: Timing Waveform - Switching Teams

Figure 20 below shows the second team completing their inning, which ends the game.
Team 2 (sw = 1) delivers 120 balls and thus their inning is over (updated on next clock cycle in
simulation). The game ends immediately because both teams' innings are over (team 1 took 10
wickets and team 2 delivered 120 balls). Gameover goes to 1 and since Team 2 had 203 runs
while Team 1 had 184 runs, Team 2 is declared the winner(‘winner’ changes from don’t care(x)
to 1, instead of going to 0) [6].

5,430,000 ns 5,435.000 ns 5,440.000 ns E,445.000 ns 5,450.000 ns 5,455.000 ns 5,460.000 ns 5,465.000 ns 5,470,000 ns

drest
& delivery
s

> Wifsr_out[3:0]
8 dotball

asingle

'8 double
4 triple
8 fours
8sixes
wideball
'8 noball
@ wicket

> Wruns[70]

B winner

Figure 20: Timing Waveform - End of Team2’s Inning and the End of the Game

Department of ECE, Worcester Polytechnic Institute

Design of a Cricket Game Using FPGAs 23

4.2 Design Utilization

Figure 21 shows a summary of the post-implementation design utilization on a Basys 3 board.

Utilization Post-Synthesis | Post-Implementation
Graph | Table

Resource Utilization Available Utilization %
LUT 177 20800 0.85
FF 155 41600 037
10 32 106 30.19
BUFG 2 32 6.25

Figure 21: Design Utilization

4.3 Final Scoreboard Snapshots

Snapshots of the game in action are shown below:

Figure 22: Team 1 with 198 runs, S Wickets and 119 Balls (leds = 7b1110111)

Department of ECE, Worcester Polytechnic Institute

Design of a Cricket Game Using FPGAs

LN

INERSIT

Figure 23: ‘1O’ Indicating Team 1’s ‘Inning Over’ (notice ball count = 120)

=~ Ay, (R

2 XILINK

Figure 24: Switch to Team 2 (sw0 slider switch is pushed from 0 to 1)

Department of ECE, Worcester Polytechnic Institute

Design of a Cricket Game Using FPGAs 25

LZNDIGILENT®

Figure 25: Team 2 with 136 Runs, 9 Wickets and 112 Balls

Figure 26: Team 1 Wins the Game

Department of ECE, Worcester Polytechnic Institute

Design of a Cricket Game Using FPGAs 26

5. References

[1] Chakraborty Rajat Subhra, and Palchaudhuri Ayan. “ARCHITECTURE AND DESIGN
AUTOMATION OF HIGH PERFORMANCE LARGE ADDERS AND COUNTERS ON FPGA
THROUGH CONSTRAINED PLACEMENT.” 18 May 2017: n. pag. Print.

[2] Fokhrulislam, Md., M. A. Mohd. Ali, and Burhanuddin Yeop Majlis. “FPGA Implementation
of an LFSR Based Pseudorandom Pattern Generator for MEMS Testing.” International Journal
of Computer Applications 75.11 (2013): 30-34. Web.

[3] Digilent, “Basys3 Reference Manual,” Basys3 Rev.c Datasheet, August 2014.

[4] Girard III Hilton W, and Christenson Keith A. “Debounce strategy for validating switch
actuation.” 15 Feb. 2012: n. pag. Print.

[5] Chu, Pong P. FPGA Prototyping by Verilog Examples Xilinx Spartan -3 Version . Hoboken,
N.J: J. Wiley & Sons. Print.

[6] Salemi, Ray. FPGA Simulation : A Complete Step-by-Step Guide . S.1: Ray Salemi. Print.

[7] Orr, Graeme. “Test Cricket Versus One-Day Cricket: Regulations and Rhythms.” Alternative
Law Journal 31.1 (2006): n. pag. Print.

[8] Ghelani, Harsh H. et al. “FPGA Implementation of Configurable Linear Feedback Shift
Register Using Verilog.” International Journal of Computer Sciences and Engineering 6.4
(2018): 143—-146. Web.

[9] Cerda, J. C et al. “An Efficient FPGA Random Number Generator Using LFSRs and Cellular
Automata.” 2012 IEEE 55th International Midwest Symposium on Circuits and Systems
(MWSCAS). IEEE, 2012. 912-915. Web.

[10] ESPN. “Records: Twenty20 Internationals: Team Records: Highest Innings Totals:
ESPNcricinfo.com.” Cricinfo, stats.espncricinfo.com/ci/content/records/283218.html. Web.

Department of ECE, Worcester Polytechnic Institute

Design of a Cricket Game Using FPGAs 27

6. Appendix

module Cricket (
input clk_fpga,
input reset,
input btnU,
input sw,

1 button used as

button

output dp, / h il
output [6:0] seg, T o to anode ports defined in S
output [3:0] an, // Q in constraints

output [15:0] led f 48
)i

wire delivery; // debounced up

wire [7:0] binaryRuns; // runs
wire [3:0] binaryWickets; //
wire inningOver; // si 1
wire gameOver; //
wire winner; 24

// debo

the up push button

debounce d0(clk fpga, btnU, delivery):;

cricketGame g0 (clk fpga, reset, delivery, sw, binaryRuns, binaryWickets, led, inningOver, gameOver, winner);

endmodule

Figure A-1: Cricket.v (top module)

Department of ECE, Worcester Polytechnic Institute

Design of a Cricket Game Using FPGAs

module debounce (
input clk 10Hz,
input button, // input bu
output debounced button) ; debounced button

wire Q1;
wire Q2;
wire inbar;

D_FF dl(clk_10Hz, button, Q1);

D FF d2(clk 10Hz, Ql, Q2); // secon
assign Q2 bar = ~Q2; / invert output of second D flip flop
assign debounced button = Q1 & Q2 bar; send 1t debounce

endmodule

Figure A-2: debounce.v

module D FF(

input clk,
input D,
output reg Q
)i
always @ (posedge clk) begin
Q <= D;
end
endmodule

Figure A-3: D _FF.v

Department of ECE, Worcester Polytechnic Institute

Design of a Cricket Game Using FPGAs 29

module cricketGame (
input clk fpga,
input reset,
input delivery,
input teamSwitch,
output [7:0] runs,
output [3:0] wickets,
output [15:0] leds,
output inningover,
output gameOver,
output winner
)i

wire [11:0] teamlData;
wire [11:0] team2Data;
wire [6:0] teamlBalls;
wire [6:0] team2ZBalls
wire [3:0] 1lfsr out;

number g
gl(clk fpga, reset,

a more detailed si

gn sco

score and wicke lfsr out, gameOver, runs, wickets, teamlData, team2Data);

i ¢

and 1

comparator tl ks
score comparator g3 (clk fpga, reset,
U5 v

> 1s over

/ assign Leds based on b

led controller g4(clk fpga, reset, teamswitch, delivery, lfsr out, inningOver, gameOver, leds, teamlBalls, team2Balls);

endmodule

Figure A-4: cricketGame.v

Department of ECE, Worcester Polytechnic Institute

Design of a Cricket Game Using FPGAs 30

module 1fsr(
input clk fpga,
input reset,
output [3:0] g
// for a more detailed simulation uncomment the following:
// input delivery,
// output dotball,single, double, triple, fours, sixes, wideball,noball,wicket,

);

reg [5:0] shift;
wire xor sum;
assign xor sum = shift[1] ~ shift[4]; // feedback taps

always @ (posedge clk fpga) begin
if (reset)
shift <= 6'b111111;
else
shift <= {xor_sum, shift[5:1]}; // shift right
end

assign g = shift[3:01; // output of LFSR

/:{
for a more detailed simulation, uncomment the following:
assign dotball delivery & ((shift[3:0] == 0) | (shift[3:0] == 1) | (shift[3:0] == 2) |);,
assign single = delivery & ((shift[3:0] == 3) |(shift[3:0] == 4) | shift[3:0] == 5) | shift[3:0] == 6));
assign double = delivery & ((shift[3:0] == 7) | (shift[3:0] == 8) | shift[3:0] == 9));
assign triple = delivery & (shift[3:0] == 10);
assign fours = delivery & (shift[3:0] == 11);
assign sixes = delivery & (shift[3:0] == 12);
assign wideball = delivery & (shift[3:0] == 13);
assign noball = delivery & (shift[3:0] == 14);
assign wicket = delivery & (shift[3:0] == 15);
xf
endmodule

Figure A-5S: lfsr.v

Department of ECE, Worcester Polytechnic Institute

Design of a Cricket Game Using FPGAs 31

module scoregandiwickets(
input clk fpga,
input reset,
input delivery,
input teamSwitch,
input [3:0] 1fsr out,
input gameOver,
output reg[7:0] runs,
output reg [3:0] wickets,
output reg [11:0] teamlData, // store

output reg [11:0] team2Data // s
)i

localparam single 16;

Il
(&3]
[3e)
-~

localparam double
localparam triple = 48;
localparam four = 64;
localparam six = 96;

// update scores after each delivery (bowl) ba:
always @ (posedge clk fpga, posedge reset) begin
if (reset)
begin
runs <= 0;
wickets <= 0;
teamlData <= 0;
team2Data <= 0;
end
else if (gameOver)
begin
runs <= runs;
wickets <= wickets;
teamlData <= teamlData;
team2Data <= team2Data;
end
else if (delivery)

Figure A-6: score_and_wickets.v

Department of ECE, Worcester Polytechnic Institute

Design of a Cricket Game Using FPGAs

else if(delivery)

begin

if ((~teamSwitch) && (wickets < 10)) increment score of team 1
begin
case (lfsr out) // pseudorar n number from

0,1,2: teamlData <= teamlData; balls

3,4,5,6: teamlData <= teamlData + single;

T 8iGs teamlData <= teamlData + double;
105 teamlData <= teamlData + triple;
11= teamlData <= teamlData + four;

12: teamlbata <= teamlData + six;
13,14: teamlData <= teamlData;
15: teamlData <= teamlData + 1;

endcase

runs <= teamlData[ll:4];

wickets <= teamlData[3:0];

e ball and no balls

end

else if((teamSwitch) && (wickets < 10)) / increment score of team
begin
case (lfsr_out) pseudorandom number from 1 feedback Lf ¥

0,1,2: team2Data <= team2Data; ‘dot balls
3,4,5,6: team2Data <= team2Data + single;

F, 850 team2Data <= team2Data + double;
10: team2Data <= team2Data + triple;
1357 team2Data <= team2Data + four;

12: team2Data <= team2Data + six;

13,14: team2Data <= team2Data;

15: team2Data <= team2Data + 1; //wick
endcase

runs <= team2Datal[ll:4];
wickets <= team2Data[3:0];
end

end

else ‘switching teams back and forth to check scores without a up button press

begin
case (teamSwitch)
0: begin
runs <= teamlData[l1l:4];
wickets <= teamlData[3:0];
end
1: begin
runs <= team2Data[1l1:4];
wickets <= team2Data[3:0];
end
endcase
end

end

endmodule

Figure A-7: score_and_wickets.v cont’d

Department of ECE, Worcester Polytechnic Institute

Design of a Cricket Game Using FPGAs 33

module score comparator (
input clk fpga,
input reset,
input [11:0] teamlData,
input [11:0] team2Data,
input [6:0] teamlBalls,
input [6:0] team2Balls,
input [3:0] wickets,
input [15:0] balls,
output reg inningOver,
output reg gameOver,
output reg winnerLocked

);

always @ (posedge clk_fpga) begin
if ((wickets >= 10) || (balls >= 120))
inningOver <= 1;
else
inningOver <= 0;
end

always @ (pose posedge reset) begin
if (reset)
gameOver <= 0;
else 1f(((teamlData[3:0] >= 10) || (teamlBalls >= 120)) && ((team2Data[3:0] >= 10) || (team2Balls >= 120)))
gameOver <= 1;
else

gameQver <= gameOver;

edge of gameOver, 1

n rising

always @ (posedge gameOver) begin
if (teamlData[11:4] > team2Data[l11:4]) / most runs on gameover wins

winnerLocked <= 0; / eam 1 wins

else

winnerLocked <= 1;

end

endmodule

Figure A-8: score_comparator.v

Department of ECE, Worcester Polytechnic Institute

Design of a Cricket Game Using FPGAs

module led_controller(
input clk_ fpga,
input reset,
input teamSwitch,
input delivery,
input [3:0] 1fsr out,
input inningOver,
input gameOver,
output reg [15:0] leds,
output reg [6:0] teamlBalls,
output reg [6:0] team2Balls
)?

wire [15:0] scroll; // sends values

balls and update the leds

count up the
always @ (posedge clk fpga, posedge reset) begin
if (reset)

begin

leds <= 0;

teamlBalls <= 0;

team2Balls <= 0;

end
else if(gameOver)

leds <= scroll; // use s
else if(delivery)

begin

if ((teamSwitch == 0) && (inningOver == 0)) // increment ba

begin

case (lfsr out) // pseudorandom number from

13,14: teamlBalls <= teamlBalls ; //wide
default: teamlBalls <= teamlBalls + 1;

endcase
leds <= teamlBalls;
end
else if ((teamSwitch) && (inningOver == 0)) // increment
begin

case (lfsr out) // pseudorandom nu ¥
13,14: team2Balls <= team2Balls ; //wid
default: team2Balls <= team2Balls + 1;
endcase

random number Ir

leds <= team2Balls;
end
end
else if(~teamSwitch)
leds <= teamlBalls;
else
leds <= teamZBalls;
end

// supplies a signal of led values called ’'scroll' to the block above.

scroll_Leds gb(clk fpga, scroll);

endmodule

Figure A-9: led_controller.v

Department of ECE, Worcester Polytechnic Institute

balls o

fo

Leds module when

use when

the

the

game 1

game

is

aver

34

Design of a Cricket Game Using FPGAs

module scroll Leds(
input clk fpga,
output reg [15:0] led
)i

wire clk 10Hz; // 10H

ffehd £t an Jled every i
//sSnilit an led every risin

always @ (posedge clk 10Hz)

if (led == l6'hffff)
led <= 16'hfffe; //
else
led <= {led[14:0],
end

slowClock 10Hz cO(clk fpga,

endmodule

module slowClock 10Hz(
input clk fpga, //
output reg clk_10Hz /
)i

I'b1l};

slow clock

g

clk 10Hz});

Figure A-10: scroll_Leds.v

localparam clkdiv = 5 000 000 - 1; /

reqg [22:0] periodﬁcount =0; // ©

// di H
always@ (posedge clk fpga) begin
if (period count clkdiv)

100MHz clock to 10

the

i de

begin
period count <= 0;
clk 10Hz <= ~clk 10Hz;
end
else
begin

period count <= period count + 1'bl;

clk 10Hz <= clk 10Hz;
end
end

endmodule

Figure A-11: slowClock_10Hz.v

Department of ECE, Worcester Polytechnic Institute

35

Design of a Cricket Game Using FPGAs 36

module bcdDisplay(

input clk fpga, // master clock 100Mhz

input [7:0] binaryRuns, // runs from cricket game

input [3:0] binaryWickets, // wickets from cricket game

input inningOver, // show IO on the display

input gameOver, // signals the end of the game

input winner, / locked in winner of the game
output [3:0] an, // drives the anodes

output dp, // decimal point on display

output [6:0] seg // drives the seven-segment cathodes
)i

wire clk 1kHz; //1kHz clock signal from slowClock 1kHz module

wire [3:0] mux out; // sends output of mux to display a specific seven segment parameter
wire [1:0] counter out; /sends output of the 2-bit counter to the mux and decoder
wire [3:0] wickets,ones,tens,hundreds; // sends bcd output from converter to mux

// binary to BCD converter
binary to BCD bl (binaryRuns,binaryWickets, inningOver, gameOver,winner, wickets,ones,tens,hundreds);

// generate a lkHz clock from the 100MHz master clock
slowClock 1kHz b2(clk fpga, clk 1kHz);

// two bit counter at 1lkHz for refreshing anodes

twogbitgcounter b3 (clk 1kHz, counter out);

//turn on one anode and turn off the other three on each 100 Hz tick of the 2-bit counter

decoder2to4d b4(counter_put, dp, an);

//select a bcd digit to display on the anode that is turned on
mux4tol b5 (counter out,wickets,ones,tens,hundreds, mux out);

/* displ

y the digit selected by the mux by using an equivalent 7-bit constant
to drive the seven segment cathodes
*/

bcd7seg bé (mux out, seq);

endmodule

Figure A-12: bedDisplay.v

Department of ECE, Worcester Polytechnic Institute

Design of a Cricket Game Using FPGAs

module binary to BCD(
input [7:0] binaryRuns,
input [3:0] binaryWickets,
input inningoOver,
input gameoOver,
input winner,
output reg [3:0] wickets, ones, tens, hundreds
)i

reg [7:0] data; //temporarily store binaryRuns for calculations

always@ (binaryRuns,binaryWickets, inningOver, gameOver,winner) begin

if (~gameQver) // still playing
begin
if (inningOver)
begin
hundreds <= 4'bl1100; // ', see bcd7seg module in bcdDisplay

tens <= 4'b1l101; // I
ones <= 4'b0000; // O
wickets <= 4'b1110; // '
end

else
begin
data = binaryRuns;
hundreds <= data / 100;
data = data % 100;
tens <= data / 10;

ones <= data % 10;
wickets <= (binaryWickets % 10):

end
end
else //game is over : lock the winner on the screen till the
begin

case (winner) //t

010 or t020. f is swapped for t in bcd7seg

0: begin //t010
hundreds <= 4'bl1111;
tens <= 4'b0000;

ones <= 4'b0001;
wickets <= 4'b0000;
end

1: begin //t020
hundreds <= 4'blll1;
tens <= 4'b0000;
ones <= 4'b0010;
wickets <= 4'b0000;
end

endcase

end

end

endmodule

Figure A-13: binary to BCD.v

Department of ECE, Worcester Polytechnic Institute

reset

button

37

Design of a Cricket Game Using FPGAs

module slowClock 1kHz (
input clk fpga, // 100MHz maste
output reg clk 1kHz //1kHz output clock

)i

localparam clkdiv = 50 000 - 1;
reg [15:0] periodﬁcount =i AL
// divide the 100MHz clock to lkHz
always@ (posedge clk fpga) begin
if (period count == clkdiv)
begin
period count <= 0;
clk 1kHz <= ~clk 1kHz;
end
else
begin
period count <= period count + 1'bl;
clk 1kHz <= clk 1kHz;
end
end

endmodule

Figure A-14: slowClock_1kHz.v

module two bit counter(
input clk, // input cl

output reqg [1:0] Q //
)i

af
oL

always @ (posedge clk) begin
Q L= g - 1."bl;
end

endmodule

Figure A-15: two_bit_counter.v

Department of ECE, Worcester Polytechnic Institute

Design of a Cricket Game Using FPGAs 39

module decoder2tod (
input [1:0] en,
output reg dp,
output reg [3:0] an
)i
cycle through the four an

always@(en) begin

case (en)

0: begin
an = 4'b1110;
dp = 1'b1;
end

1: begin
an = 4'b1101;
dp: = 1'b0; the a point 1
end

2: begin
an = 4"Hl0o11;
dp = 1'bl;
end

3: begin
an = 4'b0111;
dp: = 1'bl;
end

endcase
end
endmodule

Figure A-16: decoder2to4.v

module mux4tol (
input [1:0] sel,
inpat [370] A,;B,€,D;
output [3:0] Y
)i
//selector switches decide what data at the input datalines go through to the output (Y).

assign Y = (sel==0)?A : (sel==1)2?B : (sel==2)2C : D;

endmodule

Figure A-17: muxd4tol.v

Department of ECE, Worcester Polytechnic Institute

Design of a Cricket Game Using FPGAs

module bcd7seq (
input [3:0] vy,
output reg [6:0] segs
)i

//display 7-seg equivalent of 4-bit digit y
always @ (y) begin
case (y)
: segs = 7'b100_0000; //0
segs = 7'blll 1001; //1
segs = 7'b010_0100; //2
segs = 7'b011 0000; //3
segs = 7'b001_1001; //4
segs = 7'b001 0010; //5
segs = 7'b000 0010; //6
segs = 7'blll 1000; //7
segs = 7'b000_0000; //8
segs = 7'b001 0000; //9
10: segs = 7'b000_1000; //A
11: segs = 7'b000 0011; //B
12: segs = 7'bl01_1111; //°'
13: segs = 1°bl100 1111;
14: segs = 7'blll 1101; //°'
15: segs = 7'b000 0111; //t usi
endcase

W 0 oy Ul W N O

end

endmodule

Figure A-18: bcd7seg.v

Department of ECE, Worcester Polytechnic Institute

