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Abstract

This paper describes algorithms for use with the Cryptographic Protocol Shape
Analyzer to automate and simplify tasks relating to cryptographic protocol analysis.
A Python implementation of these algorithms is provided and documented. The tools
developed in this project will be useful to both protocol designers and students looking
to gain an understanding in trust engineering.
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1 Introduction

Cryptographic protocol design is an error-prone process even under the assumptions of
an ideal cryptographic system. For this reason, a method of describing cryptographic
protocols and proving their correctness is of great utility. The Cryptographic Protocol
Programming Language (CPPL) developed by the Mitre Corporation provides the syntax
and semantics necessary to describe nonce-based cryptographic protocols in a manner that
is conducive to compilation [3]. Additionally, the Cryptographic Protocol Shape Analyzer
(CPSA) was developed to allow protocol designers to analyze cryptographic protocols and

prove the protocols fulfill specific security goals.

CPSA allows for the analysis of distributed cryptographic protocols in which partic-
ipants in the protocol may trust other participants for some information but not neces-
sarily all information. Distributed systems based on these cryptographic protocols often
need to coordinate state changes of multiple participants, with each participant possess-
ing knowledge only of what it has sent and received. This notion of analyzing protocol
execution based on the local behavior of single participants allows for security theorems
to be observed while accounting for possible adversarial behavior attempting to interrupt

business-as-usual communication.

1.1 Goals of this paper

CPSA allows the protocol designer to observe or “read off” proof of a cryptographic
protocol’s behavior. For instance, a protocol designer may use CPSA in conjunction
with a particular protocol definition to observe that an adversary cannot gain access to
a particular value being transmitted during the execution of the protocol. Additionally,
the protocol designer can annotate protocols with trust information to indicate what
each participant is promising by sending a message and what each participant learns by
receiving a message. This project was an attempt to improve the usefulness of CPSA
with respect to what information may be “read off” of a cryptographic protocol that is
decorated with trust information after some processing. The protocol designer can use the
tools produced by this project in conjunction with CPSA in order to learn new information
about the protocol she is designing. The information revealed is useful to potentially
two different entities; the human designing the protocol and the protocol participants

themselves.

First, the human who is annotating a protocol stands to gain insight into the interplay



of trust information and protocol execution. Instead of a protocol designer creating a
protocol that appears as if it accomplishes its goals, a protocol designer can gain an un-
derstanding in precisely how the ingredients of a message affect each goal. Such computer
aided discovery reduces the effort required in producing sound protocols of increasingly
more complex systems. In a hypothesis-test-refine workflow, protocol designers can move

confidentially toward achieving their security goals while a system verifies their intuition.

Similarly, the information gleaned from an analysis of a protocol should specify exactly
what information may be used by a particular participant in the protocol at different
points of a protocol execution. This run-time information can serve as the input to the
underlying software implementation of the protocol. The information provides a rulebook
describing the preconditions necessary to continue with a protocol’s execution, branch, or

stop protocol execution altogether.

This project aims to decrease where trust information needs to be added to a protocol
by the protocol designer. Additionally, it seeks to reflect security constraints in a manner
congruent with the execution of a protocol in order to allow the protocol designer to
explore protocol execution in a meaningful way. These goals are further motivated in

Section [ after relevant background knowledge has been introduced in Section

1.2 How this paper is organized

This paper begins by by introducing relevant background knowledge in order to explain
the aforementioned shortcomings of the current use of the CPPL and the corresponding
analysis tool CPSA. This paper motivates these problems further before describing the

solutions derived as part of this project.

The implications and usefulness of each of the solutions provided by this project are
analyzed and discussed. The paper concludes with future work to be done and new

questions that have been discovered as a result of this project’s execution.

1.3 What was learned

In working with a distributed system such as a distributed cryptographic protocol, knowing
what can and cannot be said to be true of the participants in the system is a very powerful
notion. Embodied as we are, evaluating a system that takes place in multiple places at

once possess a challenge unlike that of any system based on a single point of execution.



Such single-point applications can be related to more easily in much the same way we
can imagine following a cake recipe as a means of evaluating whether it will produce the
desired result or if the recipe only appears on the surface to accomplish its goals. How
do we go about evaluating if a cryptographic protocol will produce some desired result
such as fulfil a confidentiality goal when all we have is the raw messages exchanged by
each participant? As the complexity of a distributed system increases, so too do the
demands on the human working with the system who tries to evaluate how and why a
distributed system behaves the way it does. Any effort to simplify this task without

adversely sacrificing expressiveness is useful.

In working with this project I have learned that CPSA provides an intuitive way
to go about analyzing a distributed system. By fixing itself on the point of a single
participant at a particular time, the model used by CPSA has advantages in relating to
our own view of each participant as an individual “black box”. If we allow ourselves
to personify each participant in the protocol: exploring protocol behavior from a single
participant’s local view maps well on to our way of exploring the world; we take input
from our immediate surroundings and attempt to conclude on what else must be true in
the rest of the environment solely from these limited inputs. As I worked with CPSA, 1
found the model it uses to represent protocol behavior is one very compatible with my

way of exploring problems.

Although the idea of exploring protocols from the view of individual participants arose
out of the mathematical assumptions of trust underlying the problem, this nicety in how
it represented problems from single points was one I found particularly helpful in under-
standing how and why protocols behave in a particular way. As we might expect from any
well designed system, CPSA provides the abstractions necessary to allow a complicated

problem to be modeled in a simpler way.

The solutions presented in this paper are logical extensions of this model. The theme
of exploring protocol behavior is emphasized continuously as I have found it to be the way
in which I learn the most about how a protocol works. This observation has led me to
believe that not only will CPSA and the tools presented in this paper be of use to protocol
designers, they can also be useful in teaching protocol behavior and design patterns to
students. By exploring how ingredients of a protocol effect its execution, a student can

gain insight into why existing protocols are designed the way they are.



2 Technical Background

2.1 Cryptography Basics

Cryptography is concerned with the use of messages to securely transmit information
between participants. A cryptographic protocol may have goals such as preserving the
privacy of information and authenticating participants. This paper is concerned with
nonce-based cryptography. Messages in cryptographic systems are composed of various

ingredients combined and manipulated by various cryptographic operations.

The operation of encryption transforms a plaintext into a ciphertext by the use of some
encryption key. The plaintext can be recovered from the otherwise random looking cipher-
text with knowledge of the necessary and corresponding decryption key. In symmetric key
encryption, the keys used to encrypt and decrypt a particular message are identical. Such
a key is commonly referred to as a shared key since the participants wishing to use that
key to transmit information in such a way that others cannot view it must each share the
otherwise secret key and not expose it to adversaries [5]. In this paper and as part of the
input language to CPSA, operations such as the encryption operation will often be written
in prefix function notation, where a function is written before its arguments and wrapped
in parenthesis such as (enc m k) to represent the operation of encrypting message m with
key k.

In contrast to symmetric key encryption, asymmetric key encryption utilizes different
keys for the operations of encrypting and decrypting messages. This form of encryption
is sometimes referred to as public-key encryption as one key (the encryption key) is often
advertised publicly allowing any willing would-be message transmitter to encrypt messages
destined for the owner of the public key. Presumably, the owner alone possess the private
key necessary to decrypt the ciphertext to recover the plainext that was encrypted using
the public key [5].

Asymmetric key encryption is often mentioned along side the operation of signing
which allows a participant to manipulate a message using her private key in a manner that
can be easily checked by others with knowledge of only the signer’s public key. Signing

forms the basis of knowing reliably that a particular participant has said something.

The operation of hashing allows a participant to take a message and modify it in an
irreversible but reproducible way. Conceptually, this is similar to public key encryption for

which no participant possess the corresponding private key. It follows that two participants



could take a piece of plaintext and hash it to produce identical cyphertexts (hashes), but
no participant could use the hash to recover the plaintext that was used as input to the

hash operation.

The simplest of operations would be that of concatenation. Ingredients for a message
may be combined into one either to be transmitted or used as arguments to one of the vari-
ous other cryptographic operations already described. It is assumed here that participants

can decouple message ingredients after receiving the result of their concatenation.

Lastly a nonce is a special message ingredient that can be generated by participants
to serve as a sort of transaction number. Like a transaction number, nonces are freshly
generated on each run of a protocol. Unlike transaction numbers which may be sequential,
knowledge of a nonce generated from one run of a cryptographic protocol does not provide

any way of guessing the nonce generated on another execution of the same protocol.

2.2 Real-world Cryptography

This paper addresses problems relating to protocol insecurity even assuming a perfect
cryptographic system. Such a system has no underlying weaknesses in its implementation.
For instance, although a private key and its corresponding public key must be related
mathematically, we assume that there is no feasible way to deduce the private key from the
public key. The use of prime-number based encryption schemes such as RSA provide a close
approximation of these goals at present. Similarly, we assume that nonces are sufficiently
large random numbers that cannot be reliably guessed. Many hashing algorithms in use
today have a finite output leading to collisions or the same hash output for two different
inputs. Like guessing a nonce, a good hash function will make it mathematically infeasible

to calculate plaintexts to produce a given hash.

It follows that although the encryption, hashing, and signing algorithms may not be
perfect, they provide (at present) the sort of reasonable expectations needed to make
secure communications. CPPL, CPSA, and the problems addressed in this paper are not
concerned with the closeness such implementations are to an ideal cryptographic systems
but instead the weaknesses possible in even a perfect cryptographic system. By extension,
these weaknesses have implications in today’s less-than-perfect cryptographic protocols as

well.

Protocols written against perfect cryptographic systems may still possess weaknesses

due to the nature and meaning of the messages transmitted. Historically, such weaknesses



have been discovered and addressed through lengthy discussion among peers. CPSA at-
tempts to address these weaknesses in a systematic way. CPSA allows a cryptographic
protocol designer to prove security theorems in a protocol and create counterexamples for

protocols with weaknesses.

2.3 CPSA and Strand Spaces

CPSA describes cryptographic protocols with respect to their structure, lending to a
representation known as strand spaces. In this representation, each strand represents
one trace sequence of events (both message receptions and transmissions) of a particular
participant in a nonce-based cryptographic protocol. Each node on the strand represents
only the transmission or reception of a message. The strand and node semantics make no
further assumptions about the message such as where it came from or which participant

should receive it.

This representation clarifies the use of the Strand Space model to account for adver-
sarial behavior. An adversary may, for instance, observe a message in transmission and
potentially decrypt the message if the adversary possess the necessary keys. Similarly, an
adversary could produce messages of its own that look like those originating from well-
behaved participants, providing the adversary has the knowledge necessary to do. This

paper addresses the limitations and abilities of adversaries towards the end of this section.

Messages are constructed from atoms which are instantiated with values during proto-
col execution. Cryptographic operations such as symmetric or asymmetric key encryption,
signing, or hashing (formalized here as asymmetric key encryption for which no partici-
pant possess the private decryption key) may be applied to atoms and the concatenation

of atoms [3].

A particular atom is an ingredient of a message if it is found in the message either
in or outside the application of a cryptographic function. We write, for example, tg C
{Ito"t1|}x to mean that ¢y is an ingredient to the message consisting of the encryption of
the concatenation of ty with ¢; using the key k. Ingredients do not include the keys so
k IZ {|to"t1|}x providing, of course, k [Z ¢ty and k [Z ;.

Strands are depicted horizontally or vertically with nodes as bullets and the transition
between nodes on a single strand drawn with double arrows as in e = e. Strands never
split or join; possible branches of behavior are depicted with separate strands. If a role

could receive one message on one execution of a protocol and another message of different
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Figure 1: The regular strands of a simple example protocol

ingredients on another, two strands would be used to represent the branching behavior
of this role. Note that messages with different ingredients necessitate the use of a new
strand to represent the different behavior. This is not to say that a separate strand is
necessary to represent all the possible values bound to a particular ingredient at runtime.
Ingredients represent the nature of a piece of information carried in a message, such as a

nonce or a text value, and not the actual value bound to it.

Protocols are defined by specifying the trace sequences of sends and receives for the
one or more strands that are necessary to represent the behavior of each participant. Thus
a protocol II is a set of strands for well-behaved participants of a cryptographic protocol.
Such strands are referred to as regular strands [3]. Absent from the protocol definition are
penetrator strands, traces of adversarial participants that may attempt to interfere with
the goals of a cryptographic protocol. We may address nodes on strands by their position

such as with a | 3 to refer to the third node on strand a.

Figure[I]shows the definition of two strands that make up a simple example protocol. In
this example, an initiator sends a nonce encrypted with key k& and receives back the nonce
unencrypted. A responder strand receives a nonce encrypted with key k and transmits
the same nonce. Note that as this figure shows the definition of the protocol and not an
execution of this protocol, the two strands are not connected to each other, as a protocol
definition makes no assumptions as to the messages received by each participant. If we
look at a particular execution of this same protocol, such as in Figure [2] we see the strands
are connected to indicate the message sent from participant was received by the other.
Such an execution could be possible if, for example the responder possessed the shared key
k or already had knowledge of the nonce n. Figure|2|alone does not provide the knowledge
necessary to distinguish between the two different preconditions that could have lead to

the execution observed.

The strand space consists of all strands including legitimate strands specified as part
of the protocol definition and adversarial strands whose trace sequences may take on

any number of configurations. A bundle represents these strands attached by matching
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Figure 2: A simple example protocol execution
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message transmissions and receptions [4].

2.4 CPSA and Shapes

The Cryptographic Protocol Shape Analyzer (CPSA) developed by the Mitre Corpora-
tion enumerates the possible shapes or essentially different executions of a nonce-based
cryptographic protocol. As shown in Figure [2| shapes are concerned with the form of
the messages exchanged and not the various possible values assigned to nonces or other
variable message ingredients; as a result there are often only a small number of shapes
that may result from a particular protocol definition. The small number of shapes make
them useful in exploring the behavior of a protocol and determining if it fulfils particular

goals such as authentication or secrecy [1].

The protocol designer queries CPSA for possible shapes that are compatible with a
particular skeleton. A skeleton is a partial ordering of regular (non-adversarial) strands [2].
When a skeleton is used as a query to CPSA, it represents the observation of a particular
node of interest. That is, a skeleton, predisposes a particular message transmission or
reception, and posits the question “What other strands must have been involved for this
node to have been observed?”. The involved strands may either be legitimate participants
in the cryptographic protocol or penetrators. All participants, however, are bound by
certain assumptions regarding the origination of certain message contents. This origination
information (such as which participants possess which keys) is part of the query skeleton

scenario and is explored in detail shortly.

CPSA searches for the essentially different ways to justify the nodes of the skeleton.
This often involves adding strands that are necessary to explain how a particular strand
received a piece of information necessary to send some message. The result of this ex-
pansion is more skeletons with strands and nodes added to fully explain all messages.
The strands are related by matched message transmissions and receptions between the
strands. Each skeleton produced by a particular skeleton query is a homomorphism. The

skeletons that are realized or result from the execution of a protocol explain all message
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Figure 3: A simple protocol definition with multiple shapes

transmissions and receptions posited by the skeleton query.

As an example, consider Figure [3] which involves an initiator that transmits two dis-
tinct messages each containing the same nonce. The first message is encrypted with the
public key of strand b and the second with the public key of strand c. Two separate
responders receive and decrypt the nonce using their respective private keys and each re-
sponds with the resulting nonce plaintext. The misalignment of the message transmissions
and receptions is intentional here to suggest that these are strand definitions making up a
protocol and not a particular execution of this protocol. What can the initiator conclude
about the behavior of others after observing the reception of a message on its 3rd node of
strand a? If we query CPSA for shapes compatible with a skeleton observing this node
operating under the assumptions of a freshly generated nonce and uncompromised private
keys for b and ¢, two distinct shapes are generated. The two essentially different shapes
represent the two possible executions that could describe the observed message reception

and are shown in Figure

The fact that the keys were uncompromised and the nonce was freshly generated are
details we will refer to as origination information, as it is information concerned with on
which strands information originates. The value of the nonce originates on one strand

so we say it was uniquely originating. The private decryption keys are not found on any
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Figure 4: The shapes resulting from a skeleton observing a | 3 when the nonce is uniquely
originating and private keys of B and C are uncompromised

of the messages in the strands and are therefore non-originating. To better understand
how origination information affects shape discovery, consider the case where no unique
or non-origination information is attached to the query. CPSA generates a single shape
realizing the third node of the initiator without involving other strands as shown in Figure
The realized shape looks similar to the strand definition, showing only that the mes-
sages were sent and received. How can this be? Recall that shapes involve only regular
strands, or strands that are part of the protocol definition itself. Regular strands do not
include the actions of adversaries. If the nonce was not uniquely originating or if the
private decryption keys were compromised, the observed behavior could be achieved with
adversary behavior alone, such as an adversary who knows how to decrypt one or both
of the first messages or possess the nonce in advance. No additional regular strands are
involved in the shape to adequately describe the skeleton observation. The penetrator
strands that implicitly represent adversarial behavior may have received one of the two
messages sent and decrypted it or simply had prior knowledge of the nonce since its value
was not assumed to be uniquely originating on the initiator strand. Both of these possible

scenarios suffice to explain the skeleton without the involvement of regular strands.

Message contents may include information that is either uniquely-originating or non-

originating. Uniquely-originating data originates only in one strand. For instance, a nonce

10
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Figure 5: The single shape resulting from a skeleton observing a | 3 when the nonce is
not uniquely originating and private keys for B and C are compromised

is presumed to be a fresh value generated by a particular participant. Such a value is
unguessable (again, in a perfect cryptosystem) and is not repeated in future executions of
the protocol. Therefore a participant transmitting a certain piece of uniquely-originating
data on a strand other than the one that it originated on must have received this data
on some previous node. Similarly, data that is non-originating appears on no strands. A
private decryption key, for instance, is not known to any other participant and therefore
messages signed with that key could not have been forged and messages encrypted with

the private key’s corresponding public key could not be decrypted by an adversary.

2.5 Penetrator Strands

Penetrator strands represent the behavior of adversaries. Like regular strands, penetrator
strands are composed of a trace mapping for messages sent and received. Penetrator
strands do not make up part of the protocol definition as they are assumed to be unbound
in both their number and possible configurations they can take while abiding by the

origination constraints placed on the protocol definition.

Penetrator strands, then, are limited in their capabilities: they can only decrypt mes-
sages for which they possess the decryption keys for and sign messages for which they
possess the necessary private keys. These penetrators can still perform such operations as

concatenation of known information, encrypting message contents and so forth.

Although the output of CPSA does not include penetrator strands, their behavior
is nonetheless reflected by the realization of regular strand reception nodes without the
expected matching transmission nodes of another regular strand. We saw in Figure
that this may be the result of where information in the messages originate. As a slightly

different example, consider one possible shape generated from CPSA realizing the final

11



Init {|nAmessagel|};C

°
. {|In" message2|};, Resp2
°
M4 H’
{In} pubka)

{\n|}(pubkA)

Figure 6: One possible shape realizing @ | 4. The realization of this node without a
matching regular strand’s transmission hints to adversarial activity

node of the initiator strand when the nonce is uniquely originating and the private keys
are non-originating (uncompromised) as shown in Figure @ The final reception node of
the initiator is realized without involving any further regular strands. The explanation
of this output comes from considering the ability of an adversary to repeat messages it
observes being transmitted even though it cannot decrypt the message or understand its
importance in any way. Note that the messages received on the third and fourth node of
the initiator strand are identical. Even though such an adversary was not able to decrypt
the message and view its content, it could simply relay the message allowing the realization

of this node without further interaction from either responder.

2.6 Rely-Guarantee Method

A protocol definition is concerned only with the form of messages sent and received by
principals; it says nothing of the implications of sending and receiving messages, despite
the fact that such messages have concrete interpretation within the protocol. In a cryp-
tographic money-order protocol, for instance, a bank may commit to transferring funds
from the client to any merchant should the client authorize the transfer and some mer-
chant request the transfer. This commitment by the bank would take place the moment
the bank issues the unendorsed money order to the client. Similarly, when this client
adds a cryptographic signature to the money order, thereby endorsing it, the client has

committed to authorizing the transfer.

To reflect the real-world implications tied to message transmissions and receptions,

CPPL and CPSA adopt a rely-guarantee method of annotating the various nodes of strands

12



that make up a protocol definition. Each message sent can be annotated with a guarantee
and each message received with a rely. These formulas may take on any form as their
meaning is significant only within the protocol. Whenever a principal receives a message
whose corresponding node is annotated with a rely, that principal may use the information
provided in that rely to determine possible branches in execution, such as whether or not
to continue executing the protocol. Such rely formulas bridge the gap between the protocol
definition itself and the trust management systems of the principal executing the protocol.
Guarantees are written as some expression ¢ and relies are written as P says ¢ to express
that a principal P uttered the guarantee ¢. It is up to the trust system of the receiving

principal to determine whether or not to conclude ¢ based on the rely P says ¢.

A protocol is correctly annotated if on each node to which a rely formula was added,
there exists a corresponding guarantee. Thus a correctly annotated protocol proscribes
exactly what information a principal can use upon message reception to determine its own

branching behavior.

Penetrator strands have none of their nodes annotated with rely or guarantee formulas;
this reflects that adversaries do not make commitments that have any meaning in the
protocol execution [3]. This illustrates that a correctly annotated and sound protocol
would not allow a regular strand to rely on a particular formula P says ¢ purely on the
fact that it received a particular message. If an adversary was allowed to construct that
message itself (say, using a previously compromised key) the receiving principal would not
be able to be certain that ¢ was uttered by principal P. A protocol can only be sound if
each node containing a rely such as P says ¢ is preceded by the principal P uttering the

guarantee ¢ on every possible execution of the protocol.

13



3 Syntax of CPSA

CPSA uses an S-expression syntax for both defining protocols and skeletons (queries) to
be expanded into shapes. S-expressions take the form of nested sets of parentheses with

values separated by whitespace.

3.1 Defining protocols

Protocols are defined using the defprotocol keyword. CPSA currently supports two
grammars. The grammar used throughout this paper is the basic grammar. Besides a
name and the basic keyword used to indicate the basic grammar is in use, a protocol
consists of definitions for each of the regular strands that may participate in a particular

run of a protocol.

The structure of an incomplete protocol definition in the basic grammar is shown
below. In an actual protocol definition, role definitions would follow in place of the square-

bracketed text and ellipsis.

Listing 1: An incomplete protocol definition

(defprotocol protocol_-name basic
[role defintion ]
(]

)

Each role is defined using the defrole keyword. A role is made up of a set of variables
to be used in that role, a trace (list) of message transmissions and receptions, and option-
ally a set of annotations. Variables belong to sets such as name, text, data, and skey
(shared key). Traces defined with the trace keyword are made up of an implicitly ordered
set of send and recv expressions for message transmissions and receptions respectively.
The arguments following each send and recv represent the form of the contents of the
message. The message contents may consists of any combination of variables or literals

combined with the concatenation and cryptographic operations such as encryption.

In the incomplete protocol definition below, a role with name Alice is defined which
consists of a set of variables and a trace. The variable line indicates two names a and b,
a piece of text labeled some_data, and a shared key labeled a_key. In the first message,

Alice sends the some_data ingredient along with the key a_key encrypted with the public

14



key of b. Next Alice receives the same ingredient of data back encrypted with the shared
key previously transmitted. In an actual protocol definition, additional roles would be

specified, such as the role represented by the name b in this strand.

Listing 2: Protocol definition with a single role

(defprotocol protocol_-name basic
(defrole Alice
(vars (a b name) (some_data text) (a_key skey))
(trace
(send (enc some_data a_key (pubk b)))
(recv (enc some_data a_key))
)
(-]
)

Lines 5 and 6 of Listing [2] show the operation of encryption, as denoted with the
enc keyword. The last argument to this function is the key to be used. Symmetric and
asymmetric key encryption are performed using the same enc keyword. In the example, the
first use of enc with key (pubk b) represents asymmetric key encryption. A participant
possessing (privk b) can decrypt this message. The second use of encryption with the
key a_key is symmetric. It follows that any participant possessing a_key can decrypt the

second message.

Lastly, optional relies and guarantees may follow the annotation keyword and consist
of numbers indicating the 0-based node of the strand the annotation is associated with
followed by the annotation itself. Formulas attached to transmission nodes are guarantees
and formulas attached to reception nodes are relies. Relies are written in the form of P
says ¢ to reflect that guarantees such as ¢ are uttered by principals. Recall that this
notation says nothing of whether or not the receiving principal trusts what was said by

the principal making the utterance.

In Listing 3] the two nodes of the Alice stand are annotated.
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Listing 3: Protocol definition with annotations

(defprotocol protocol_-name basic
(defrole Alice
(vars (a b name) (some_data text) (a_key skey))
(trace
(send (enc some_data a_key (pubk b)))
(recv (enc some_data a_key))
)
(annotations a
(0 (guaranteel))
(1 (says b (guarantee2)))

)

On the first node (a transmit node) Alice is making the guarantee guaranteel, signi-
fying that the guaranteed expression is true when the first message is transmitted. The
second node (a receive node) has a rely that indicates by receiving that message, principal

b has uttered the guarantee guarantee?.

3.2 Defining Skeletons

When a protocol designer wishes to query CPSA for behavior compatible with a particular
message, the designer must first create a skeleton that represents that some message
transmission or reception has taken place and pass this along with the protocol definition
to CPSA. CPSA will expand the skeleton in all of the essentially different ways possible
under the constraint information found in the skeleton. Recall that this process will
generate the different shapes of the protocol execution that explain the behavior of the
skeleton. The shapes allow the protocol designer to observe the possible ways in which a

protocol can execute.

A skeleton is defined with the defskeleton keyword. Within the defskeleton are
declarations of the name of the protocol being instantiated, variables to be used, strand def-
initions, and origination constraint information. Strands are defined with the defstrand
keyword and consist of a strand name, 1-based node number, and variable bindings. The
bindings map from the variables of the skeleton to the variables of the defrole in the
corresponding protocol definition. The defstrand represents which node of the strand
needs to be justified by CPSA. Optional origination information may follow using the

non-orig and uniq-orig keywords.
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Listing 4: A skeleton for the epmo protocol

(defskeleton epmo (vars (b ¢ m name))
(defstrand bank 1 (b b) (¢ ¢) (mm))
(non—orig (privk b) (privk c¢)))

In Listing [4] a skeleton is shown for a protocol named epmo that will be explored
in Section [5| of this paper. The skeleton defined in this listing shows that the first node
of a bank strand has taken place and specifies that the private keys of b and ¢ do not
originate on any strand of the protocol. In this paper, since skeletons used as queries will
always contain only one defstrand, the variable bindings will consist only of pairs of each

variable found in the skeleton.
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4 Goals

This project attempted to solve two problems regarding the usefulness of CPSA. First,
it is possible for a protocol designer to create an unsound rely-guarantee formula assign-
ment by performing this process by hand. CPSA would be more useful if an algorithm
could correctly assign rely formulas from an assignment of guarantee formulas. Second,
the branching information of non-originating and uniquely-originating data should not re-
side as part of the protocol definition or a specific query to CPSA. Instead this branching
information should somehow be meshed with the run-time language of the relies and guar-
antees. This will allow a more congruent interaction between the two pieces of information

responsible for branching behavior in the participants.

4.1 Generation of rely formulas

Leaving the protocol designer to annotate both the rely and guarantee formulas for all
the principals allows her to make these assignments in an unsound way. For instance, the
protocol designer may annotate a particular receiving node n with formula P; says ¢;
even though there exists a shape realizing a skeleton observing n where P; had not uttered
¢;. If this mistake was allowed to go unchecked, the principal receiving the message may
go on to make branching decisions based on unsound data, that is, data that does not

reflect the shared state of all principals.

It would be better if the protocol designer merely had to annotate what is guaranteed
by each message transmission. An algorithm would then use CPSA to determine the
guarantees that must have preceded each message reception. Such a change would ensure
that protocols are always annotated in a sound fashion. It would also provide a sort of
check for the protocol designer to see that the anticipated information is placed as relies
on the relevant nodes. If the protocol designer expected a participant to be able to make a
decision at a particular node and the algorithm’s output shows the necessary information
to make that decision is not present as a rely, the protocol designer can investigate how

to modify the protocol to ensure that rely at the time of message reception.

4.2 Restructuring origination information

As it stands, information regarding where message contents and keys originate is pro-

vided by a set of keywords attached to the protocol definition or a specific query for
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CPSA. In practice, this syntax is used to denote, for instance, that a certain principal’s
private decryption key is not compromised (non-originating with respect to all principals
participating) or that a certain nonce appearing in a message was freshly generated and
not guessable (uniquely-originating from one principal and known at first only by that

principal).

Data regarding the unique-origin or non-origin of items such as message nonces or
keys is useful for determining the branching behavior of particular principals at runtime.
Such information should therefore be placed with other runtime branching information
such as the rely-guarantee formulas. This project will seek to expand the language of the
rely-guarantee formulas to accurately represent this origination data in a manner that is

semantically congruent with formulas used to describe protocol shapes.
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5 Rely Generation

Since a sound assignment of relies and guarantees means that relies are always matched
with corresponding guarantees when a protocol is executed, it makes sense for a protocol
designer to annotate only the guarantees attached to each message transmission. An
algorithm can then determine the guarantees that must have been uttered by the time a

particular message is received.

A principal may guarantee that some expression ¢ is true when sending a message.
Relies on reception nodes that must have been preceded by such a guarantee should
reflect this necessary ordering. This is not to say that the principal receiving the message
should be able to directly conclude ¢. The guarantee must state which principal uttered
the expression. For this reason relies make use of the says verb, to indicate not that a
formula is true, but that some other participant believes (or wants the receiving principal

to believe) that the formula is true.

This notion of relies signifying only the utterance of guarantees codifies the fact that not
all information from all participants may be trusted. Trust information maintained by each
principal separately is combined with relies to derive knowledge necessary to determine
what message, if any, should be sent next. Such trust information is not described here as
it could take many forms and may persist over protocol executions and change over time.
Trust information may include any local data store the principal has access to. If one
principal was in the business of selling access to a paid service, such information might
include subscription lists for paid services, or perhaps a record of which subscribers have
made late payments in the past and therefore are more likely to make late payments in
the future.

Eventually, a particular principal is likely to make use of its local data store to
determine whether something uttered by another principal is true. For example, if a
particular participant has as part of its trust management system the expression For
all ¢ if P says ¢, then ¢ and has received a message on a node with rely P says
moneyTransferred, the participant in question can use these two pieces of information
together to conclude that payment for the product in question has been transferred and

that, perhaps, it is now safe to ship the product that was being sold.
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5.1 Algorithm Design

An algorithm to automatically assign relies from a set of guarantees must ensure that each
reception node is annotated with no further assumptions about which message transmis-
sions or receptions have also occurred. Recalling that a skeleton can be used as a query
to CPSA to probe for the essentially different ways participant behavior can result in a
particular node taking place, a query can be used to derive the different possible orderings
of nodes necessary to explain one particular node. This observation hints to a solution uti-
lizing a skeleton to query each node to be annotated individually. As each shape produced
by the query reflects the essentially different executions that could explain the skeleton,
we know that during execution exactly one of the shapes has occurred when a message is
received. Once the nodes preceding the node to be annotated have been determined, the

annotations associated with these nodes can be extracted from the protocol definition.

After extracting the relies associated with nodes known to precede a node being an-
notated, one possible approach for combining this information is to take the intersection
of the guarantees that must have been uttered for each shape realized. Although this in-
tersection would necessarily represent guarantees that are always uttered before message
reception, this intersection could likely be the empty set. Although an assignment of the
empty set to the rely formula of any particular node would be true, it would not be very
useful in allowing the receiving principal to conclude anything more interesting than what

it could conclude before the message was received.

As a compromise, the algorithm proposed here makes clear the notion that it is possi-
ble for different sets of participant behavior to precede a particular node. In the event only
a single shape was realized for a skeleton querying a node, the result is an unambiguous
statement of what nodes (and relies) preceded the node. If two or more shapes are pro-
duced from the query, the output of the algorithm reflects the fact that there are multiple
sets of relies that may have preceded the node. For the nodes that can be explained by
multiple shapes, the output preserves the ability of the receiving participant to use the
information gleaned from the rely in any manner it sees fit, whether this means taking the

intersection of the possible sets of compatible behavior or not.

5.2 Algorithm Implementation

The algorithm presented here takes as input a protocol definition and a set of shapes

produced by CPSA in the S-expression input/output language of CPSA. The shapes are

21



the result of CPSA expanding query skeletons written by the protocol designer. By cre-
ating skeletons observing each reception node in the protocol, the algorithm will extract
the guarantees that must have preceded each reception node and generate the appropri-
ate relies based on the shapes produced by CPSA. The algorithm produces as output
the S-expression protocol definition augmented with rely formulas on each receiving node

queried for in the skeletons used as input to CPSA.

The algorithm enumerates the reception nodes and determines the annotations that
can be assigned to them. It does so by constructing a disjunct of conjuncts, each dis-
junct representing one shape derived from the skeleton for a particular message reception
and each conjunct representing a guarantee observed in that shape. The guarantees are
determined by inspecting the list of “precedes” (pairs representing ordering of messages)
generated by CPSA. These pairs are searched to reconstruct all possible message trans-

missions that must have occurred before the message reception being annotated.

5.2.1 Determining message order

For each shape processed, the algorithm must first determine all message transmissions
preceding the queried strand. This can be accomplished by utilizing two pieces of infor-

mation together.

First, as a strand is a trace sequence of message transmissions and receptions, for any
strand s with nodes n and n — 1, if node n has been observed then node n — 1 must also
have been observed. This information may be extracted from the individual strand trace
definitions. As a protocol is made up of a set of strands, this ordering holds for all shapes

of that protocol.

Second, as a shape is a partial ordering of nodes, CPSA produces a precedes line as
part of the skeleton-to-shape expansion. The precedes line provides the information con-
cluded by CPSA regarding which nodes precede which other nodes under the origination
constraints placed on the query. The precedes line takes the form of a set of pairs of nodes.

Each pair (nl,n2) representing the fact that node n2 is preceded by node nl.

To combine these two pieces of information the precedes line is searched to determine
nodes that must have occurred before the node being annotated. At start, the algorithm
knows only of the node n being annotated and can check the precedes line to see if it
contains a pair (precedingNode, n). If so the node precedingNode is also checked for in

the precedes line to determine further nodes preceding n. Additionally, each time a node
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is checked for in the precedes line, the node occuring before that node on the same strand

can also be checked for.

In the implementation, a list is maintained containing the working set of all nodes
that precede the goal node. Assume that the query node being annotated is gnode and
the precedes list item (n1,n2) represents that node nl precedes node n2 in the shape and

that all nodes are a (strand, node Number, annotation) tuple. The algorithm is shown in
Algorithm

Algorithm 1 annotationsBefore(a node gnode, a shape shape) — list of annotations

Let answer be a list of annotations
Let inProgress be a stack of nodes
inProgress.push(gnode)
while inProgress is not empty do
n = inProgress.pop()
if n is a transmit node then
answer.add(n.annotation)
end if
for all (nl,n) in shape.precedes do
inProgress.push(nl)
end for
if n.nodeNumber > 0 then
inProgress.push(nodePreceding(n))
end if
end while
return answer

By the end, the list answer contains all the relevant annotations preceding the original
node gnode. The implementation as described above assumes no changes in the veracity
of guarantees over time. Once a principal makes a guarantee, that guarantee is assumed

to hold until the end of the protocol’s execution.

5.2.2 Constructing relies

Utilizing Algorithm [I] for determining all the guarantees that precedes a node in a par-
ticular shape, the generation of sound relies is straightforward from input containing the
result of CPSA processing skeletons querying each receiving node in the protocol defi-
nition. The resulting rely assigned to each transmission node is (at most) a disjunction
of conjunctions. Each disjunct represents one of the shapes realized by CPSA and each
conjunct is a rely in the form P says ¢ where ¢ was asserted by some guarantee on a

node preceding the reception node. The algorithm is shown as Algorithm
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Algorithm 2 annotateNodes(list of nodes nodes, list of shapes shapes) — list of nodes

let answer be a list of annotated nodes
for all n in nodes do

n.annotation = \/ /\ g

s realizing neshapes \ge annotationsBefore(n,s)

answer.add(n)
end for
return answer

For protocols containing one or fewer shapes, or shapes in which one or fewer relies were
observed to precede a transmission node, the formula may be further simplified utilizing

the logical rules for disjunction and conjunction.

5.3 Algorithm Analysis
5.3.1 Termination

Proving that Algorithm [2] terminates is simple since it calls Algorithm [I} once for every
node passed as input. Therefore we only need to prove that Algorithm [I]always terminates.

The proof of this follows.

Sketch of the proof: In any shape used as input to the algorithm, there exists a finite
number of strands 57...5,. Each strand S; has a finite number of nodes S;y;,...S;y,, The

total number of nodes is the product of two finite terms and is therefore also finite.

The algorithm terminates when the inProgress stack becomes empty. At start this
stack contains exactly one node. In each iteration of the main loop, the algorithm first
pops a node off of the stack and then may optionally add one or more nodes to the stack.
The nodes to be added are from one or both of two sets. A node added may be from the

precedes list or a node in the strand preceding the node.

A node added to the stack from the first set states that a node on a strand a is preceded
by a node on strand b. Since the precedes list represents a partial ordering of nodes, in
each iteration of the loop processing the new node, a node will never be added that was

observed in execution after the current node.

A node added to the stack from the second set is a node on strand a that precedes
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the node on strand a. Similarly, in each iteration of the loop processing this new node, a

node will never be added that is found after the current node on the strand.

Since there are a finite number of nodes and the result of processing a node in each
iteration against each of the sets adds only nodes occurring before the node being pro-
cessed, the possible number of nodes to be added to the stack decreases in each iteration.
The total number of nodes to be added to the stack is therefore finite, as it is the sum
of decreasing integers. Since the total number of nodes to be added to the stack over all
iterations is finite and one node is popped from the stack on each iteration, the stack will

eventually be empty and the algorithm will terminate.

5.3.2 Soundness

An assignment of relies and guarantees is sound if every guarantee is true in all executions

of the protocol.

Sketch of the proof: Since the guarantees assigned are in the form of a disjunction of
conjunctions, with each disjunction resulting from one shape of the protocol’s execution,
and since exactly one of the shapes must be observed in any protocol execution, the

algorithm is sound if each conjunction is sound for at least one shape.

Each guarantee in each conjunction must have been uttered in the shape used to derive
that conjunction before the rely in order for the algorithm to be sound. For each node
queried as part of a skeleton expansion, the precedes list is checked for nodes preceding
the goal node. Each node read from the precedes list has been uttered, and the burden
of proof falls on CPSA. Since a trace ordering dictates a transitive relation between all
nodes observed, any node resulting from the precedes list can also be checked against the
precedes list. Since strands are linear, if a node S;y has been observed then every node

Sing ---Sin,_, has also been observed.

5.4 Algorithm Architecture

The algorithm is implemented as a set of three Python scripts. One script is responsible
for parsing the S-expression output of CPSA into nested data structures (Python classes).
A second script developed by Elliott Franco Drabek and placed in the public domain is
responsible for the low-level parsing of S-expressions into Python lists and atoms, some-

what analogous to the Scheme read function. The last script is responsible for actually
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performing the steps of the algorithm. See Section [A] for code listing.

5.5 Example Execution
5.5.1 Basic Example

Consider a protocol in which an initiator sends two distinct messages to two distinct
responders, similar in spirit to Figure |3} Each message contains the same uniquely orig-
inating nonce. These responders then respond with that nonce. We would expect that
although the initiator knows that each response came from one of the responders, the ini-
tiator would not be able to match responses to responders. If we encode the three strands
in the CPSA input language and annotate the responders message transmissions we might

do so as shown in the following snippet:
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Listing 5: An example protocol with guarantees

(defprotocol examplel basic
(defrole init

(vars (a b ¢ name) (k n text))

(trace
(send (enc n a "textl” (pubk b)))
(send (enc n a "text2” (pubk c)))
(recv (enc k n (pubk a)))
(recv (enc k n (pubk a)))

)

(defrole respl
(vars (a b ¢ name) (k n text))
(trace
(recv (enc n a ”textl” (pubk b)))
(send (enc k n (pubk a)))
)
(annotations b
(1
(responder_l_repeats_the_secret)))
)
(defrole resp2
(vars (a b ¢ name) (k n text))
(trace
(recv (enc n a "text2” (pubk c)))
(send (enc k n (pubk a)))
)
(annotations c
(1

(responder_-2_repeats_the_secret)))
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Listing 6: Continued from Listing 5: example protocol query skeletons

;5 Query node 3 of strand a

(defskeleton examplel
(vars (a b ¢ name) (k n text))
(defstrand init 3 (a a) (b b) (c ¢) (n n) (k k) )
(non—orig (privk a) (privk b) (privk c))
(uniq—orig n)

)

;35 query node 4 of strand a

(defskeleton examplel
(vars (a b ¢ name) (k n text))
(defstrand init 4 (a a) (b b) (¢ ¢) (n n) (k k) )
(non—orig (privk a) (privk b) (privk c))
(unig—orig n)

)

The value of the annotation for each responder is written as to be descriptive of the
action being performed on that message transmission. For instance, the guarantee “re-
sponder_1_repeats_the_secret” indicates that the transmission of that message means that
the first responder has generated a message containing the nonce. The second responder
is similarly annotated. In this way, when we analyze the automatically-generated rely
formulas for nodes on the initiator strand receiving the nonce back, we can read off from

the annotation which responder was responsible for repeating the secret nonce.

CPSA will use the two skeletons present in the input as starting points to expand into
realized shapes. These skeletons represent the observation of a particular node on the
strand (counting from one) and include the origination constraints to place on the query.
In both queries, the nonce is fixed as a uniquely-originating value and each private key
is fixed as a non-originating value (representing an uncompromised key). CPSA’s output
from processing these two queries can be passed to the rely-generation algorithm, which
in turn emits a new protocol definition with relies added to the two message receptions

on the initiators strand that were originally queried.
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Listing 7: Example protocol after rely assignment

(defprotocol examplel basic
defrole init
(
(vars (a b ¢ name) (k n text))
(trace (send (enc n a ”textl” (pubk b)))
(send (enc n a "text2” (pubk c))) (recv (enc k n (pubk a)))
(recv (enc k n (pubk a))))
(annotations
(2
(or (says b (responder_1l_repeats_the_secret))
(says ¢ (responder_2_repeats_the_secret))))
(3
(or (says b (responder_l_repeats_the_secret))
(says ¢ (responder_2_repeats_the_secret))))))
(defrole respl
(vars (a b name) (k n text))
(trace (recv (enc n a ”textl” (pubk b))) (send (enc k n (pubk a))))
(annotations b (1 (responder_l_repeats_the_secret))))
(defrole resp2
(vars (a ¢ name) (k n text))
(trace (recv (enc n a "text2” (pubk c¢))) (send (enc k n (pubk a))))
(annotations ¢ (1 (responder_2_repeats_the_secret)))))

The output properly reflects the fact that each message reception could have been
due to the reception of the nonce from either of the responders. For this reason, each
of the last two nodes on the initiator strand now contain the expression (or (says b
(responder_1 repeats_the secret)) (says c (responder 2 repeats_the secret))).
It is important to note that the annotations reflect what did happen, but not necessarily
how. Recalling Figure [6] we know that the shape generated for the observation of the last
node of the initiator strand actually includes adversarial behavior. Adversarial behavior
in this case does not change the output as one of the responders still must have sent the
corresponding message. The relies reflect the greatest amount of information that can
be reliably known from other principals but says nothing of, for instance, what strand

(legitimate or penetrator) was responsible for the message that was received.

This example also illustrates the degenerative form of the automatically generated
relies for when only one guarantee is made for each shape. Generally, automatically gen-
erated relies take the form of a disjunction of conjunctions. In this example, since each
shape produced only a single annotation, we are left with simply a disjunction. Each
disjunct represents a guarantee that was uttered by some principal during the realization
of that shape.
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Figure 7: The EPMO protocol (money order mo = [[hash(C"N."N," Ny,)||5)

5.5.2 EPMO example

In a more complicated example, the rely-generation algorithm may be used along with
CPSA to annotate multiple principals in a protocol definition. The protocol definition in
Listing[8|and queries in Listing[9 will serve as input to generate relies for a protocol named

“Flectronic Purchases using a Money Order”. An execution of this protocol is shown in
Figure [7]

This protocol allows a customer to agree on a price with a merchant for some set of
goods. The customer may then have a bank reserve funds from an account as payment to
the merchant. The bank issues a money order that can be endorsed by the customer and

cashed by the merchant in exchange for shipping the goods.

In such an exchange, each participant needs to be sure exactly what they are commit-
ting to by sending a particular message and conversely what they learn about other par-
ticipants upon receiving a message of particular ingredients. The rely-guarantee method
allows these trust issues to be encoded in a manner that could be combined with each par-
ticipant’s trust policies. Not shown in an annotated protocol would be information such
as the merchant knowing the bank is reliable, the customer utilizing a database of “good
merchants” to decide to do business with this merchant and other pieces of information

that may be part of the trust management policy used by each principal.
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The annotations express statements such as the merchant’s promise to ship goods
should any bank transfer the funds to the merchant’s account. Similarly, by issuing a
money order the bank promises that should the customer authorize the transfer of funds
(by endorsing the money order) and should the merchant request the transfer (by cashing
the money order), the bank will in fact transfer the reserved funds from customer to

merchant.

Such promises can be seen in the annotations added to the send nodes of the strands
making up EPMO. Similarly, relies (whether hand written or automatically generated)
should express the unknown veracity of each guarantee with the says keyword. For
this example, relies have been borrowed from the paper [4] from which this protocol was

presented in.
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Listing 8: EPMO with guarantees

;53 Electronic Purchase with Money Order protocol annotated with trust
;535 management formulas.

(defprotocol epmo basic
(defrole bank
(vars (b ¢ m name) (hash akey) (nc nm nb data) (price text))
(trace
(recv (enc ¢ nc nm price (pubk b)))
(send (cat (enc (enc ¢ nc nb nm price hash) (privk b))
(enc nc nb (pubk c¢))))
(recv (enc (enc b nb nm hash) (privk m))))
(non—orig (invk hash))
(unig—orig nb)
(annotations b
(1
(forall ((pm name))
(implies
(and (says c¢ (transfer b price pm nm))
(says pm (transfer b price pm nm)))
(transfer b price pm nm))))
)
(defrole customer
(vars (b ¢ m name) (hash akey) (nb nc nm data) (goods price text))
(trace
(send (enc ¢ nc goods price (pubk m)))
(recv (enc nc nm m goods price (pubk c¢)))
(send (enc ¢ nc nm price (pubk b)))
(recv (cat (enc (enc ¢ nc nb nm price hash) (privk b))
(enc nc nb (pubk c))))
(send (cat (enc (enc ¢ nc nb nm price hash) (privk b)) nb)))
(non—orig (invk hash))
(unig—orig nc)
(annotations c¢
(4 (transfer b price mnm))))
(defrole merchant
(vars (b ¢ m name) (hash akey) (nb nc nm data) (goods price text))
(trace
(recv (enc ¢ nc goods price (pubk m)))
(send (enc nc nm m goods price (pubk c)))
(recv (cat (enc (enc ¢ nc nb nm price hash) (privk b)) nb))
(send (enc (enc b nb nm hash) (privk m))))
(non—orig (invk hash))
(unig—orig nm)
(annotations m
(1
(forall ((pb name))
(implies (transfer pb price m nm) (ship m goods c))))
(3 (and (transfer b price m nm) (ship m goods ¢))))))
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Listing 9: Continued from Listing 8: EPMO query skeletons

;5 Query node 0 of the bank strand

(defskeleton epmo (vars (b ¢ m name) (goods name))
(defstrand bank 1 (b b) (¢ ¢) (mm))
(non—orig (privk b) (privk c)))

;5 Query node 2 of the bank strand

(defskeleton epmo (vars (b ¢ m name) (goods name))
(defstrand bank 3 (b b) (¢ ¢) (mm))
(non—orig (privk b) (privk ¢) (privk m)))

;3 Query node 1 of the customer strand

(defskeleton epmo (vars (b ¢ m name))
(defstrand customer 2 (b b) (¢ ¢) (mm))
(non—orig (privk c) (privk m)))

;3 Query node 3 of the customer strand

(defskeleton epmo (vars (b ¢ m name))
(defstrand customer 4 (b b) (¢ ¢) (mm))
(non—orig (privk b) (privk ¢) (privk m)))

;: Query node 0 of the merchant strand

(defskeleton epmo (vars (b ¢ m name))
(defstrand merchant 1 (b b) (¢ ¢) (mm))
(non—orig (privk c¢) (privk m) ))

;5 Query node 2 of the merchant strand

(defskeleton epmo (vars (b ¢ m name))
(defstrand merchant 3 (b b) (¢ c¢) (mm))
(non—orig (privk b) (privk c¢) (privk m)))

The automatic rely-guarantee generation algorithm produces the following result:

Listing 10: EPMO after rely assignment

(defprotocol epmo basic
(defrole bank
(b ¢ m name)
(hash akey)
(nc nm nb data)
(price text)
(trace (recv (enc ¢ nc nm price (pubk b)))
(send
(cat (enc (enc ¢ nc nb nm price hash) (privk b))
(enc nc nb (pubk c¢))))
(recv (enc (enc b nb nm hash) (privk m))))
(annotations b (0 true)
(1
(forall ((pm name))

(implies
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(and (says c¢ (transfer b price pm nm))
(says pm (transfer b price pm nm)))

(transfer b price pm nm))))

(2
(and
(says m
(forall ((pb name))
(implies (transfer pb price m nm) (ship m goods c))))

(says m (and (transfer b price m nm) (ship m goods c¢)))
(says ¢ (transfer b price mnm))))))
(defrole customer
(b ¢ m name)

(hash akey)

(nb nc nm data)

(goods price text)
(trace (send (enc ¢ nc goods price (pubk m)))
(recv (enc nc nm m goods price (pubk c¢)))
(send (enc ¢ nc nm price (pubk b)))
(recv
(cat (enc (enc ¢ nc nb nm price hash) (privk b))

(enc nc nb (pubk c))))
(send (cat

(annotations c

(1

(enc (enc ¢ nc nb nm price hash) (privk b)) nb)))

(says m
(forall ((pb name))
(implies (transfer pb price m nm) (ship m goods c)))))
(3
(and
(says m
(forall ((pb name))
(implies (transfer pb price m nm) (ship m goods c))))
(says b
(forall ((pm name))
(implies

(and (says ¢ (transfer b price pm nm))
(says pm (transfer b price pm nm)))
(transfer b price pmnm))))))
(4 (transfer b price m nm))))
(defrole merchant
(b ¢ m name)
(hash akey)
(nb nc nm data)

(goods price
(trace (recv

(send (enc
(cat

(send (enc

(recv

(annotations
(1
(forall

(2
(and

text)
(enc ¢ nc goods price (pubk m)))

(pubk c)))
(enc (enc ¢ nc nb nm price hash)

(enc b nb nm hash) (privk m))))
m (0 true)

nc nm m goods price
(privk b)) nb))

((pb name))

(implies

(transfer pb price m nm) (ship m goods c))))
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(says b
(forall ((pm name))
(implies
(and (says ¢ (transfer b price pm nm))
(says pm (transfer b price pm nm)))
(transfer b price pm nm))))
(says ¢ (transfer b price mnm))))
(3 (and (transfer b price m nm) (ship m goods c¢))))))

In this more complicated example, it is worth looking at each automatically-generated
annotation and comparing this to how the authors of the protocol annotated it in their

paper in order to be sure the two agree logically.

On the final node of the bank strand, a human might annotate to indicate that on
message reception, the bank learns that both the customer and the merchant have re-
quested the bank to transfer the amount of money agreed on. Listing [T1] captures this as

a formula in CPSA syntax.

Listing 11: Node 3 of bank strand in EPMO

(and (says ¢ (transfer b price m nm))
(says m (transfer b price mnm)))

The generated rely reflects that this same fact must have occurred but also introduces
other guarantees that must have happened. As the algorithm has no knowledge of how
the relies will be used, it presents more information than what the bank would be con-
cerned with in this implementation. Here, we see that the bank knows information about
the merchant, such as that the merchant will ship goods if any bank transfers the funds.
Although not needed, we know that such statements are true since they must have hap-
pened in the one shape that could have possibly resulted in this message reception by the
bank. Unlike the previous example, because only a single shape was produced, no disjunct
exists at the top level of any of the annotations. Instead each annotation is made up of a

conjunction of all preceding guarantees for the one single shape observed.

For the customer, on the first receiving node, a human annotator would likely indicate
that by receiving a confirmation on the price of goods, the seller agrees to ship the goods

after payment has been made by any bank as promised by the merchant in its guarantee.
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Listing 12: Node 2 of customer strand in EPMO

(says m
(forall ((pb name))
(implies (transfer pb price m nm) (ship m goods c))))

This is the exact result produced by the algorithm since in this case it was the only

guarantee observed in the single shape produced by CPSA.

When the customer receives the “money order” on the next reception, we expect it to
learn that the bank has promised to pay any merchant should that merchant request the

transfer and should the customer authorize it as in Listing

Listing 13: Node 4 of customer strand in EPMO

(says b
(forall ((pm name))
(implies
(and (says c¢ (transfer b price pm nm))
(says pm (transfer b price pm nm)))

(transfer b price pm nm))))

Here too the algorithm aligns with expectations, adding that the merchant’s promise to

ship the goods has been uttered, as already determined on its previous message reception.

On the last message received by the merchant (the endorsed money order), a likely
annotation would indicate that the merchant knows the bank will transfer money to any
merchant providing that the customer has authorized the transfer and the merchant has
requested it. Such an annotation would also express that the merchant knows the customer
has requested the transfer, thus the bank has promised the transfer to take place providing
the money order is cashed. The below annotation would be all that is needed to express

these facts.
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Listing 14: Node 3 of merchant strand in EPMO

(and
(says b
(forall ((pm name))
(implies
(and (says c¢ (transfer b price pm nm))
(says pm (transfer b price pm nm)))
(transfer b price pm nm))))
(says ¢ (transfer b price mnm)))

As we would expect the annotations emitted by the algorithm align with these expec-

tations.

5.6 Discussion

Although the algorithm produces a sound assignment of rely formulas, it is clear from the
above example that often times these formulas are more detailed than necessary. Fortu-
nately, such additional information does not subtract from the programmatic usefulness

of the relies with respect to their implementation on distributed machines.

The algorithm is currently limited to processing protocols written in the basic grammar
and must be used in conjunction with CPSA in order to process skeletons into shapes. As
the algorithm is implemented completely separately from CPSA, there is a small amount

of computational overhead in reparsing the protocol and reparsing the shapes.

What is not clear from the output are the origination constraints that lead to such a
sound assignment. Indeed, the assignment of relies and guarantees is only sound under
a particular set of origination constraints not shown. These constraints were part of the
queries that were written by the protocol designer in order to produce the CPSA output
that serves as input to this algorithm. A solution to this emerges as part of the second

goal addressed in the next section of this report.

It is worthwhile to note that the algorithm filters out guarantees made by the strand be-
ing annotated with relies. Turning such filtering off makes it explicit that at each message
reception, the strand still knows what it previously derived. Should the participants be
completely stateless with respect to individual message transmissions and receptions, the
principals would still have the information necessary to make branching decisions. Such
a stateless, continuations-based implementation of a protocol participant may lessen the

resource requirements of participating in multiple simultaneous executions of the protocol.

37



This algorithm’s repetition of already observed guarantees clarifies that these guarantees

can still be used on later nodes of the strand.
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6 Origination Information

CPSA allows for cryptographic protocol designers to annotate transmission nodes with
trust formulas and derive, using Algorithms [1| and [2] presented in the previous section, a
sound assignment of trust formulas to receiving nodes under certain constraints. These
constraints state that certain pieces of information are either uniquely originating or non-
originating on the participating strands. Currently, this origination-constraint information
is specified either as part of the protocol description or (as we saw in Listings @ and @
the skeleton used as a query to CPSA. As mentioned in the last section, this way of
using CPSA does not make it clear how origination information can affect the branching
behavior of a protocol. This section presents a method to introduce trust information into
the language of the relies and guarantees to allow such information to interact with the

branching-dependent trust formulas assigned to each node.

A representation of uniquely originating and non-originating information that views
this information as something that can change over the time a protocol executes could be
combined in sensible ways with trust systems such as the Public Key Infrastructure. This
would be possible if the origination information was integrated into the rely-guarantee
language. In that way, the constraint information would be free to be determined at

run-time as opposed to statically at compile-time.

As an example, suppose partway through the execution of a protocol a participant
learns from a certificate authority that a particular key has been compromised and it is
now possible for an adversary to forge message signatures for the key’s owner and decrypt
messages destined to the key-holding principal. It is important for each principal involved
in cryptographic exchanges with the compromised client to know whether or not it is safe
to continue executing the protocol, branch to some other behavior, or abort altogether. If
the principal knew the conditions under which each received message implied that a rely
was uttered, that principal could determine if those conditions are met and if the rely can

be safely combined with local trust information.

In this way, principals executing the protocol will not be confined to simply trusting
some or all information from other principals. Instead, (with the help of the protocol
designer) these principals will be able to know under what run-time conditions they may

conclude guarantees made by those principals they do trust.
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6.1 Algorithm Design

Origination information is used differently from trust information. Information uttered
by a principal may be trusted or not depending on what the receiving principal knows
about the transmitting principal. One might consider allowing principals to make a guar-
antee such as key k is non-originating and allow corresponding relies to look like P
says key k is non-originating. However, unlike a guarantee P_requests_resource_x
that has a self certifying rely P says P_requests_resource_x, the trust-information-
containing rely formulas may be true or false due to external factors beyond the control
of the principal involved in the transmission. Accordingly, it would not make sense to
trust or not trust a principal’s statements regarding the strands on which information

originates.

Origination information behaves more like a contract, specifying under what precon-
ditions certain other pieces of information become true. Therefore, the language of the

relies and guarantees needs to be expanded to allow for this conditional nature.

Ideally, on the reception of a particular message, the principal could choose to accept
or reject a set of conditions regarding the ingredients (such as nonces) and non-ingredients
(keys) of a message and based on that understanding, conclude which bits of previously-
uttered relies it would like to trust or not trust using the same local logic system outlined

in the previous section.

6.2 Algorithm Implementation

The algorithm presented here takes as input a protocol definition annotated by the human
protocol designer with trust formulas as guarantees (as before) and origination formulas
as a predicate for a trivially true implication as explained shortly. The algorithm will
produce output containing query skeletons for use in CPSA. The implication placed on
the receiving nodes is of a specific form that does not allow the protocol designer to acci-
dentally create an unsound rely-guarantee assignment (as not to regress from the first goal
of this paper). Before processing, a guarantee on a node may take the form of (implies
(and (uniq nonce;...nonce,) (non-orig key;...keyy)) true). Writing the origina-
tion information in this manner posits this information more like a question asking “Given
this set of origination information is true, what else is true?”. Before executing the al-
gorithm, the trivially true value true is left as a placeholder on the right side of the

implication. After using this algorithm in conjunction with CPSA and the rely-generation
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algorithm, the true will be replaced by a stronger statement representing what relies must

have been involved under those conditions to explain the node being annotated.

As aslight enhancement, we allow the origination constraints unig-orig and non-orig
in guarantees as well. Although this information is of no use to other participants for the
reasons already stated, it represents that the principal believes these statements to be
true before transmitting. The is purely for convenience; it allows the protocol designer to
annotate the protocol in a more intuitive way. When the algorithm is generating queries,
the constraint information found in the first half of the rely will be used along with any

constraint information in guarantees that come previously on the same strand.

For simplicity of presentation, we now allow each node to be a tuple (strand, node-
Number, annotation). The annotations are allowed to be the same context-free grammar
as before with the addition of keywords unig-orig and non-orig to represent uniquely
originating and non-originating information respectively. These conjunctively-joined verbs
are the origination constraints on that node. At the start, all transmission nodes are anno-
tated and all receiving nodes have the trivially true statement consisting of a conjunction
of one or more origination constraints implying true. Using Algorithm [3] to generate
queries and a modified form of Algorithm [2| (shown as Algorithm [4]) to process the output
from CPSA, the right hand side of each implication will be filled with the guarantees
that may be accepted if the key infrastructure or other mechanisms used by a principal
can successfully validate the left hand side of the implication at the time the message is

received.

Algorithm 3 generateQueries(list of strands strands) — list of skeletons

Let answer be a list of skeletons
for all strand in strands do
for all node in strand do
if node is a transmit node then
Let query be a query skeleton for node node
query.constraints =

(node.annotation.antecedent N constraintsBe fore(strand, node))

answer.add(query)
end if
end for
end for
return answer
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Algorithm 4 annotateNodes(list of nodes nodes, list of shapes shapes) — list of nodes

let answer be a list of annotated nodes
for all n in nodes do
n.annotation =

(n.annotation.antecedent) — \/ /\ g
s realizing neshapes \ge annotationsBefore(n,s)

answer.add(n)
end for
return answer

6.3 Algorithm Analysis
6.3.1 Termination

Algorithm [3] terminates as it loops over every node of all strands exactly once. Algorithm
terminates as it calls annotationsBefore exactly once for each node being annotated.
The annotationsBefore function is expected to return the annotations found on each
transmission node on the strand before the current node. Since strands are finite this

function will always terminate.

6.3.2 Soundness

Algorithm [3| generates one query for every node. This query has as its constraints the
constraint-half (the first half) of the user supplied implication of the node joined con-
junctively with any constraints found on transmission nodes occurring before the node.
The algorithm is sound providing we specify that guarantees remain true over the time a

protocol executes.

Algorithm [4] is sound for the exact reasoning that Algorithm [2] is sound, with the
addition that the rely is placed in the second half of the implication, indicating its veracity

is dependent on the origination constraints found in the implication.
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6.4 Algorithm Architecture

This algorithm was implemented using Python and expanded on the work of the previous
goal. The low-level S-expression parsing script by Elliott Franco Drabek along with the
more high-level CPSA parsing script previously developed has been adapted to also be used
by the script implementing the below algorithm. A copy of this script and an explanation

of its function can be found in Appendix [B]

6.5 Example Execution

Let us consider a protocol where clients may request market data from a provider. Home
clients use this service for free and as a consequence receive market data back that is
approximately correct. Corporate clients have a paid account with the provider and as a
result receive more accurate data back from the queries made providing that their account

still exists.

In this protocol, the client (home or corporate) first agrees with the server on a shared
key with which to continue execution of the protocol. The client will then make the request
encrypted with this key. The messages from a corporate client and a home client have
identical ingredients. The server decides to send an approximate data value or an exact
data value based on the presence of an account for the value bound to the name identifier

of previous messages.

The branching behavior of the server is represented by separate strands, one for each
of the two branches possible. If the server determines (by querying some local data store)
that the client making the request is a home user, it can reply with a message containing
ingredients that reflect the fact that it is destined for a home user. This is represented by
the string literal ”approx_data_is”. Otherwise, if the local data store indicates that the
requesting client is a corporate subscriber, the data ingredient is reported along with the
"data_is” literal. The annotations attached to the data value transmitted by the server
indicate the assertion that the client’s identity has been determined and that the data
value being returned is either exactly or approximately equal to the value found in the

message.

In order to explore behavior compatible with particular origination constraint infor-
mation, the protocol designer might wish to annotate the protocol as in Listing[15] placing

an empty trust implication on each receive.
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Listing 15: Stock server protocol before processing

(defprotocol branchl basic
(defrole corp_client
(vars (a b name) (n_a d v text) (k skey))
(trace
(send (enc n-a a d (pubk b)))
(recv (enc n-a k b (pubk a)))
(send (enc k (pubk b)))
(recv (enc ”data_is” v k)))
(annotations a
(0 (requests b d n.a))
(1 (implies (and (non—orig (privk a) (privk b)) (unig—orig n-a)) true))
(3 (implies (and (non—orig (privk a) (privk b)) (unig—orig n-a k)) true))
))
(defrole home._client
(vars (a b name) (n_a d v text) (k skey))
(trace
(send (enc n-a a d (pubk b)))
(recv (enc n-a k b (pubk a)))
(send (enc k (pubk b)))
(recv (enc ”approx-data_is” v k)))
(annotations a
(0 (requests b d n.a))
(1 (implies (and (non—orig (privk a) (privk b)) (unig—orig n-a)) true))
(3 (implies (and (non—orig (privk a) (privk b)) (unig—orig n-a k)) true))
))
(defrole server_corp_branch
(vars (a b name) (n-a d v text) (k skey))
(trace
(recv (enc n-a a d (pubk b)))
(send (enc n-a k b (pubk a)))
(recv (enc k (pubk b)))
(send (enc ”data_is” v k)))
(annotations b
(2 (implies (and (non—orig (privk a)) (unigq—orig k)) true))
(3 (and (corp-subscriber a d) (curr.val d v n_a)))
))
(defrole server_home_branch
(vars (a b name) (n-a d v text) (k skey))
(trace
(recv (enc n_a a d (pubk b)))
(send (enc n-a k b (pubk a)))
(recv (enc k (pubk b)))
(send (enc ”approx-data_is” v k)))
(annotations b
(2 (implies (and (non—orig (privk a)) (unig—orig k)) true))
(3 (and (home_subscriber a d) (approx.val d v n_a))))))

After processing Listing [15] with both algorithms, the output shows each implication
has been filled in with the strongest statement possible. This can be seen in Listing
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Listing 16: Stock server protocol after processing

(defprotocol branchl basic
(defrole corp_client
(a b name)
(n_a d v text)

(k skey)
(trace (send (enc n-a a d (pubk b))) (recv (enc n_a k b (pubk a)))

(send (enc k (pubk b))) (recv (enc ”data_is” v k)))
(annotations a (0 (requests b d n.a))
(1
(implies (and (non-—orig (privk a) (privk b)) (unigq—orig n_a))
true))
(3
(implies (and (non—orig (privk a) (privk b)) (unigq—orig n-a k))
(says b (and (corp-subscriber a d) (curr_-val d v n.a)))))))
(defrole home_client
(a b name)
(n-a d v text)

(k skey)
(trace (send (enc n_a a d (pubk b))) (recv (enc n_a k b (pubk a)))

(send (enc k (pubk b))) (recv (enc ”approx_data_is” v k)))
(annotations a (0 (requests b d n.a))
(1
(implies (and (non-—orig (privk a) (privk b)) (unigq—orig n-a))
true))
(3
(implies (and (non—orig (privk a) (privk b)) (unigq—orig n.a k))
(says b (and (home_subscriber a d) (approx_.val d v n_a)))))))
(defrole server_corp_branch
(a b name)
(n-a d v text)
(k skey)
(trace (recv (enc n_a a
(recv (enc k (pubk b))
(annotations b (0 true)
(2
(implies (and (non-—orig (privk a)) (uniq—orig k))
(says a (requests b d n.a))))
(3 (and (corp-subscriber a d) (curr.val d v n_a)))))
(defrole server_home_branch

d (pubk b))) (send (enc n_a k b (pubk a)))
) (send (enc ”data_is” v k)))

(a b name)
(n-a d v text)
(k skey)
(trace (recv (enc n-a a
(recv (enc k (pubk b))
(annotations b (0 true)
(2
(implies (and (non-—orig (privk a)) (uniq—orig k))
(says a (requests b d n.a))))
(3 (and (home_subscriber a d) (approx.-val d v n_a))))))

d (pubk b))) (send (enc n-a k b (pubk a)))
) (send (enc "approx_data_is” v k)))
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The implications on the last node of both the home_client and corp_client reflect that
the participants can conclude that the corresponding guarantees were uttered by the server
as long as the origination information in the first half of the implication can be verified.
Assuming that the clients trust the server, each client would be able to conclude that
they were receiving the information they expected to receive. In particular, the corporate
subscriber would be certain that the server was aware that the requesting participant was
a corporate subscriber and that this participant was getting the accurate information that

presumable the subscriber is paying for.

6.6 Discussion

As with the rely-generation algorithm in the previous section, the work presented in this
section benefits both the human designing the protocol and the implementation of each
participant in the protocol. The protocol designer can add reasonable constraints to
different nodes in order to explore the resulting behavior without having to write each

query manually.

For the protocol participant, the algorithm presented in the paper makes clear the exact
requirements necessary to draw a conclusion based on a particular message reception. The
semantics make it clear how relies could be integrated with a key distribution/revocation
system such as the Public Key Infrastructure. Furthermore, the implications in the rely-
guarantee language allows CPSA to agree semantically with the syntax of CPPL, which
specifies the preconditions and post conditions of cryptographic routines. Integrating
CPSA and CPPL will allow for a more unified approach to protocol design, analysis, and

implementation.
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7 Further Enhancements

As an improvement on Algorithm [3] this project investigated a combinatorial approach to
determining possible shapes that can be produced by a particular protocol. In this mod-
ification, the protocol designer does not add any origination constraints to the protocol.
Instead of generating a single skeleton query for each reception node in the protocol, we

instead generate each possible query combination for each reception node.

7.1 Algorithm Implementation

The algorithm presented here takes as input a protocol definition annotated by the human
protocol designer with only trust formulas assigned as guarantees. The algorithm produces
as output a set of skeletons queries for use in CPSA. Instead of producing one query for
each reception node, each possible query is generated from a set of possible constraints.
The set of possible constraints considers the inverse of each key used as a candidate for
inclusions as non-originating in the query and each message ingredient as candidate for

uniquely originating in the query.

7.2 Example Execution

Returning to the quote server of Example suppose we start instead with simply the
protocol annotated with rely formulas similar to what would be used as input to the

original rely-generation algorithm presented in Section
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Listing 17: Stock server protocol before processing

(defprotocol branchl basic
(defrole corp_client

(vars (a b name) (n.a d v text)

(trace
(send
(recv
(send
(recv

(enc
(enc
(enc
(enc

(annotations
(0 (requests b d n.a))

))

(k skey))

n_a a d (pubk b)))
n_a k b (pubk a)))
k (pubk b)))
?data_is” v k)))

a

(defrole home_client

(vars (a b name)

(trace
(send
(recv
(send

(recv

(enc
(enc
(enc

(enc

(annotations
(0 (requests b d n.a))

))

(n-a d v text) (k skey))
n_.a a d (pubk b)))

n_.a k b (pubk a)))

k (pubk b)))
”?approx-data_is” v k)))

a

(defrole server_corp_branch

(vars (a b name) (n-a d v text)

(trace
(recv
(send
(recv

(send

(enc
(enc
(enc

(enc

(annotations

(3 (and (corp-subscriber a d)

)

(k skey))

n_a a d (pubk b)))

n_a k b (pubk a)))

k (pubk b)))

?data_is” v k)))

b

(curr-val d v n.a)))

(defrole server_home_branch

(vars (a b name)

(trace
(recv
(send
(recv
(send

enc
enc

(
(enc
(

(enc

(annotations

(3 (and (home_subscriber a d)

(n.a d v text) (k skey))

n_a a d (pubk b)))

n_a k b (pubk a)))

k (pubk b)))

?approx-data_is” v k)))

b

(approx.val d v n_a))))))

Using the modified scripts to brute force all combinations of constraints, annotations

are emitted with implications that resulted in interesting behavior. The annotation gen-

erated for the final receive node of the corporate client is shown in Listing [I§]
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Listing 18: Annotation generated for final receive node of corporate subscriber

(or
(implies
((non—orig (privk a) (privk b)) (unig—orig n_a d a k))
(says b (and (corp_subscriber a d) (curr_val d v n_.a))))
(implies ((non—orig (privk a) (privk b)) (unigq—orig n-a b k))
(says b (and (corp_-subscriber a d) (curr_-val d v n.a))))
(implies
((non—orig (privk a) (privk b)) (unig—orig n_a a b k))
(says b (and (corp_subscriber a d) (curr_val d v n_.a))))
(implies ((non—orig (privk a) (privk b)) (unigq—orig n_a a k))
(says b (and (corp-subscriber a d) (curr-val d v n.a))))
(implies
((non—orig (privk a) (privk b)) (unig—orig n.a d b k))
(says b (and (corp_subscriber a d) (curr_val d v n_a))))
))

(implies ((non—orig (privk a) (privk b)) (unig—orig n_a k

(
(says b (and (corp_subscriber a d) (curr_val d v n_.a))))
(implies ((non—orig (privk a) (privk b)) (uniq—orig n-a d k))
(says b (and (corp_-subscriber a d) (curr-val d v n_a))))))))

The output shows that seven different combinations of origination constraints produced
a shape involving some guarantee activity. In this case, each interesting result produced
the same shape consisting of the server determining a corporate subscriber was making a
request and returning the current values. Inspecting these results we see that the least
constrained value is the sixth implication, whose antecedent is exactly the one explored
in the previous section. All other implications produced had slightly more constrained

behavior and resulted in the same rely assignment.

This example shows that a combinatorial approach to analyzing protocols can eluci-
date how ingredients modify the behavior of a protocol’s execution. In this example, the
uncompromised keys and non-origination of both the nonce n, and the shared key k were
critical in the corporate client being able to conclude that the server had established its

identity correctly as a paying customer.

7.3 Discussion

This combinatorial approach to determining sufficient constraints necessary to generate
certain guarantees will further aid the protocol designer in determining how individual
message contents affect the shapes that can be generated. Such a tool could be useful for
both a protocol designer working on a new protocol and a student attempting to gain an

understanding on how an existing protocol works.
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8 Conclusions

The method for automated rely-generation presented in this paper has been shown to
generate a fully annotated protocol from a protocol decorated with guarantees only. Not
only should this algorithm reduce the amount of effort required on behalf of the protocol
designer to make sound rely-guarantee assignments, the output of the algorithm should
aid in the implementation of the protocol. The output presents precisely the information

each participant is allowed to conclude on each message reception.

By using implications to introduce the trust constraints of skeleton queries into the
language of the relies and guarantees, the implementation requirements for each principal
are made explicit. The output shows exactly which propositions need to be confirmed or
assumed in order for a principal to conclude anything useful about the other participants
based solely on the form of the ingredients in the received message. This improvement
more tightly couples the interaction between the (CPSA-proven) protocol behavior and

the trust management logic contained in each principal’s implementation.

The integration of the solutions for the two above goals serve to both increase the clarity
of the output and decrease the work required from the protocol designer in automatically
generating relies. The ambiguity introduced in the output of the automatically generated
relies not hinting to the assumptions for which they hold is solved by moving the constraint
information into the relies and guarantees. As the origination-information script also
automatically generates the query skeletons to be used, the protocol designer needs only
to annotate guarantees and make sane assumptions on origination information in either

the relies or guarantees.

The tools developed in this paper should also serve well the student studying cryp-
tographic protocols. In particular, the combinatorial approach to constraint information
explored towards the end of this project shines light on the exact manner in which ingre-
dients affect protocol behavior in a way that is clear and concise. Such a tool could be

useful in teaching protocol design.

8.1 Future Work

As CPPL is concerned with compiling protocol descriptions into working implementations
of the protocol, a valuable future project would include a CPPL-to-CPSA converter. Such
a converter would allow a protocol designer to write their protocol definition in CPPL.

This definition could be compiled down to CPSA for analysis by using the tool before
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processing with CPSA and the scripts presented in this paper. After any number of
revisions necessary to elicit the desired behavior from the analysis, the protocol designer
could simply compile the CPPL protocol description down to an implementation. The
constraint-containing implications of the relies would mesh well with the preconditions

specified as part of routines in CPPL.

As it stands, the use of standard input and output for passing information between
CPSA and the scripts developed in this project results in these programs performing
multiple parsing operations on the same data. If performance proves to be a concern in
the future, the logic of the solutions outlined in this paper could be integrated with CPSA.

In testing, the performance decrease was not so large as to be any bother.

It would be worth investigating how the combinatorial approach to constraint gener-
ation could be improved. As it stands, the output only states the conclusions that can
be drawn from each combination of constraint information. If this can be automated,
perhaps the need and placement of nonces can be automated as well in order to reach

goals specified by the protocol designer.
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A Rely Generation Code

A.1 Source

The first script developed by Elliott Franco Drabek is used for the low level parsing of the
S-expression language used as both the input and output language of CPSA.

Listing 19: S-expression parsing script, written by Elliott Franco Drabek: s_expr_gen.py

Super—primitive Python s—exzpression parser by FElliott Franco Drabek

This might save you the two hours it took me to put it together, test it, and
(moderately) speed it up.

It only understands lists and atoms. It understands atoms to be consecutive
runs of non—whitespace, non—parenthesis characters. It converts all—digit

atoms into ints.

Public domain

FHHRHRHRHRRHRR R

# No guarantees

RS

# Last modified Fri Aug 29 13:57:25 EDT 2003

import sys

def _gen_tokens(file):
for line in file:
line_-len = len(line)
left =0

while left < line_len:
¢ = line [left ]

if c.isspace ():
left +4=1
elif ¢ in () ’:
yield c
left +=1

else:
right = left + 1
while right < line_len:
¢ = line[right]
if c.isspace() or ¢ in ’()’:
break

right +=1
token = line[left:right]
if token.isdigit ():
token = int (token)
yield token
left = right

def read-all(file=sys.stdin):
stack = []
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for token in _gen_tokens(file):
if token = ’(’:
stack .append ([])

elif token = ’)’:
top = stack.pop()
if len(stack) = 0:
yield top
else:
stack[—1].append(top)

else:
stack[—1].append (token)

assert len(stack) = 0

One script is responsible for parsing the input expressions into the internal represen-
tation of the protocol and shapes. This script can serve as the base for future work with
CPSA in Python.

Listing 20: CPSA language parsing script: parse.py

#! Jusr/bin/env python

from types import x*
import s_expr-gen

def s_expr_to_str(e):
if type(e) is ListType:
return (%s)’ % ’.’.join (map(s_expr_to_str, e))

else:
return str(e)
protocol = None

class Precedes:
def __init-_(self, s):
self.list = []
for sub in s:
if type(sub) is ListType:
self.list .append(sub)

class Skeleton:
def __init__(self, s, p):
self.protocol = p
self.precedes = None
self.is_shape = False
self.constraints = []
self.def_strands = []

self.query_role_name = 77 #the first defstrand
self.query_role_node = —1 #the first defstrand
for sub in s:
if sub[0] == ”precedes”:
self.precedes = Precedes(sub)
if sub[0] == ”shape”:
self.is_shape = True
if sub[0] = ”uniq—orig” or sub[0] = ”non—orig”:
self.constraints.append(sub)
if sub[0] = ”defstrand”:

#the strand indices are the order in which we read them
#NOTE WELL: the mnodes are 1 based!
self.def_strands.append(sub[1])

if self.query_role_.name = ’’ and self.query_role_.node =— —1:
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self.query_role_.name = sub[1]
self.query_-role_.node = sub[2] — 1
def get_query_node(self):
#this functio nreturns the query that resulted in this shape
return (self.query_role.name, self.query_role_node)
def get_precedes(self):
#this function returns a list like (((resp, 0),(resp2 1)), ((),()), (().()))
list = []
if (self.precedes != None and len(self.precedes.list) > 0):
for ((sl, nl),(s2, n2)) in self.precedes.list:
list .append (((self.def_strands[sl], nl),(self.def_strands[s2], n2)))
return list
def get_all_guarentees_before(self, role.name, node_index):
precedes_line = self.get_precedes|()
answers = {}
in_progress = []
in_progress.append ((role.name, node_index))
while len(in_progress) > 0:

(name,node) = in_progress.pop(0)

#if this is a node of interest (semnd) and has a non—trivial annotation, add it

if ((self.protocol.get_role_.by_name (name).trace.messages|[node].type = ’send’) and
(node in self.protocol.get_role.by_name (name).annotations) and
(self.protocol.get_role_by_name (name).annotations [node] != 7 (true)”)):
role = self.protocol.get_role_by_name (name)
answers [ (name,node)] = [”says”, role.annotation_label, role.annotations[node]]

#go through the precedes line and add any that precede this mnode
for ((namel, nodel), (name2, node2)) in precedes_line:
if name2 == name and node2 == node:
in_progress .append ((namel, nodel))

#if this is not the first node on this role, put the previous one on
if node > O0:
in_progress .append ((name, node — 1))
return answers.values ()

class Message:
def __init__(self, s):
self .type = s[0]
self.value = s[1]
def to_string(self):
return 7 (%s %s)” % (self.type, s_expr_to._str(self.value))

class Trace:
def __init__(self, s):
self.messages = []
for sub in s:
if sub[0] = ”send” or sub[0] = "recv”:
self.messages.append (Message (sub))
def to_string(self):
messages_string = 7’
for message in self.messages:
messages_string += message. to_string ()
return " (trace %s)” % messages_string

class Role:
def __init-_(self, s):
self .name = s[1]
self .trace = None
self.vars_string =
self .annotation_label = 7’
self.annotations = {}
for sub in s:
if sub[0] = ”vars”:
self.vars_string = s_expr_to_str (sub)[6: —1]

’
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if sub[0] = 7trace”:

self.trace = Trace(sub)
if sub[0] = ”annotations”:
self.annotation_label = sub[1]

for sub2 in sub:
if type(sub2) is ListType:
self.annotations [sub2[0]] = sub2[1]
#this function returns all the constraints uttered on
# message sends by this strand before node n. They must
# be true (for the same strand) and therefor can be
# used for shape generation
def get_constraints_before(self, n):
constraints = []
for (message_index , message) in enumerate(self.trace.messages):
if message_index < n and message.type = ”send” and message_index in self.annotations:
#extract any origination infomation from this node’s annotation
constraints += extract_constraints_from_guarantee(self.annotations [ message_index])
return constraints

def to_string(self):
trace_string = self.trace.to_string ()
annotations_string = ’’
for node_index in self.annotations.keys():
annotations_string 4= 7 (%d -%s)” % \
(node_index, s_expr_to_str(self.annotations|[node_index]))
if len(annotations_string):
annotations_string = ” (annotations %s %s)” % \
(self.annotation_label , annotations_string)
return 7 (defrole %s %s -%s %s)” % \
(self .name, self.vars_string, trace_string, annotations_string)

class Protocol:
def __init__(self, s):
self .name = s[1]
self .grammar = s[2]
self .roles = []
self.shapes = []

if self.grammar = ’basic’:
for sub in s:
if sub[0] = ’defrole’

self.roles.append(Role(sub))
else:
print ”Erorr!”

def get_role(self, shape_index, strand_index):
#each shape wuses different indices

role_name = self.shapes|[shape_index].def_strands[strand_index]
for role in self.roles:
if role_name == role .name:

return role
return None

def get_role_by_name (self , name):
for role in self.roles:
if role.name = name:
return role
return None

def to_string(self):

roles_string = "’
for role in self.roles:
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roles_string += role.to_string()

string = ”(defprotocol %s %s %s)” % (self.name,

self.grammar, roles_string)
return string

AR Utility functions

#takes a parsed s—ezxzpression and simplifies it

# (and) goes to true
# (and expr) goes to expr
# (or) goes to false
# (or expr) goes to expr

def simplify(e): #an exzpression, may be a
if type(e) is ListType:
length = len(e)
if e[0] == Yand”:
if length = 1:
return ”true”
elif length =— 2:
return simplify (e[1])
else:
return map(simplify , e)
elif e[0] == "or”:
if length = 1:
return ”false”
elif length =— 2:
return simplify (e[1])
else:
return map(simplify , e)
else:
return map(simplify , e)
else:
return e

list or a single item

#take a guarantee amnotation and extracts origination constraints
def extract_constraints_from_rely (annotation):
#NOTE — assumes that if an implication is found
# on a rely it is of the form ”constraints —> True”
if annotation[0] == ”implies”:
annotation = annotation [1]
if annotation[0] = ”and”:
return annotation [1:]
else:
return annotation
return 7”7

def extract_constraints_from_guarantee (annotation):
#NOTE — assumes that a guarantee 1is

# either an atom or comjunction of atoms

constraints = []

if annotation [0] = ”uniq—orig” or annotation[0] == "non—orig”:
constraints .append(annotation)

elif annotation[0] = ’and’:

for sub in annotation:

constraints += extract_constraints_from_guarantee (sub)
return constraints

Lastly, the rely generation itself is performed in a third script that utilizes the data

structures created by the parsing code to carry out the high-level tasks of the algorithm
implementation.

Listing 21: Rely generation script: rely_generation.py
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#! /usr/bin/env python

from types import x*
import s_expr-gen
from parse import =*

def input_-to_protocol ():
protocol = None
#parse the input
for s in s_expr_gen.read_all():

if not protocol and s[0] = ’defprotocol ’:
protocol = Protocol(s)

if protocol:
if s[0] = ”defskeleton”:

skeleton = Skeleton (s, protocol)
if skeleton.is_shape:

protocol.shapes.append(skeleton)
return protocol
def main():
protocol = input_to_protocol ()

if protocol:

#gather up a list of receive nodes that need relies
#we may or may not have queries that give these
#given nodes
recieve_nodes = []
for (strand_index, role) in enumerate(protocol.roles):
for (node_index, message) in enumerate(role.trace.messages):
if message.type = "recv”:

recieve_nodes .append ((protocol.roles[strand_index |.name,node_index))

for (role.name, node.index) in recieve_nodes:

disjunction = [’or’]
for (shape_index, shape) in enumerate(protocol.shapes):
if shape.get_query_node() = (role_.name, node_index):
conjunction = [’and’]
guarentees = shape.get_all_guarentees_before(role_name, node_index)
for g in guarentees:

#don’t add things this strand already knows about itself
if not (g[0] = ”says” and
g[1] = protocol.get_role_.by _name (role.name).annotation_label):
conjunction .append(g)
disjunction .append(conjunction)
#we now have the disjunction for this node/index
if len(disjunction) > 1: #dont add an empty one
disjunction = simplify (disjunction)

if node_index in protocol.get_role_by_name(role.name).annotations:
annotation = protocol.get_role_by_name(role.name).annotations|[node_index]

if annotation[0] = ”implies” and annotation[2] == "true”:
annotation [2] = disjunction
protocol.get_role_by_name (role_name ). annotations [node_index] = annotation
else:

#NOTE — blowing over the wvalue that was there

protocol.get_role_by_name (role.name ). annotations|[node_index]

= disjunction
else:

protocol.get_role_by_name (role_name ). annotations [node_index] = disjunction

print protocol.to_string ()

main ()
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A.2 Usage

Suppose we have a protocol definition and some skeletons querying some receive nodes in
a file example.scm. We can use CPSA in combination with the rely-generation script to
produce an annotated protocol as shown in Listing

Listing 22: Calling the rel-generation script

$cpsa example.scm | ./rely—generation.py | cpsapp
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B Origination Code

B.1 Source

In addition to the code in Listings [I9] and the origination information algorithm is
implemented in the following code listing.

Listing 23: Origination information algorithm: origination.py

#! Jusr/bin/env python

from types import x*
import s_expr-gen
from parse import x*

def input_-to_protocol ():
protocol = None
#parse the input
for s in s_expr_gen.read_all():
if not protocol and s[0] == ’defprotocol ’:
protocol = Protocol(s)
return protocol

def main():
protocol = input_to_protocol ()

if protocol:
#enumerate over transmit nodes
for (strand_index, role) in enumerate(protocol.roles):
for (node_index, message) in enumerate(role.trace.messages):
if message.type = "recv”:

constraints = []
#add constraints placed in an implication on this receive
if node.index in protocol.roles[strand_index].annotations:
constraints = extract_constraints_from_rely (
protocol.roles [strand_-index|.annotations [node-index])
#add any constraints placed on sends of this strand before this node
constraints += protocol.roles[strand_index]. get_constraints_before (node_index)

#generate each defskeleton
print 7 (defskeleton Y%s.(vars . %s)” % \
(protocol .name, protocol.roles[strand_index].vars_string)
print 7 (defstrand %s %s -%s)” % \
(protocol.roles[strand_index |.name, node_index + 1,
generate_mappings (protocol.roles [strand_-index ]. vars_string))
print "%s” % s_expr_to_str(constraints)[1l:—1]
print ”)\n”

HA AR helper functions

#take a string of variables like (cat dog) and produces (cat cat) (dog dog)
def generate_mappings(var_string):

ret o ” N
for word in var_string.split(”.”):
if word[—1] != 7)”: #the last word of each set describes the set (key, text, etc)
if word[0] = 7 (7:
word = word [1:]

ret 4= 7 (%s Y%s).” % (word, word)
return ret
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#take a guarantee annotation and extracts origination constraints
def extract-constraints_from_rely (annotation):
#NOTE — assumes that an implication on a rely is of the form ”constraints —> True”
if annotation[0] = ”implies”:
annotation = annotation [1]
if annotation[0] = ”and”:
return annotation [1:]
else:
return annotation
return ””

main ()

B.2 Usage

Suppose we have an input file example.scm that has implications as the annotations
on some receive nodes that look like (implies [constraint information] true). We
would like to generate queries to be used in CPSA. We can do this with the orignation
script as shown in Listing

Listing 24: Calling the origiantion script

$cat example.scm | ./origination.py

We can recombine these questions with the original protocol definition and use CPSA
along with the same rely-generation script as before to annotate the protocol as shown in

Listing

Listing 25: Using the origiantion script in conjunction with the rely-generation script

$cat examples.scm | ./origination.py | cat examples.scm — | cpsa |
./rely—generation.py | cpsapp
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C Combinatorial Approach

C.1 Source

The combinatorial approach is implemented utilizing two scripts shown in Listings [26| and
2]

Listing 26: Origination information combinatorial approach script 1: origination-try-all.py

#! /usr/bin/env python

from types import =*
import s_expr-gen
from parse import x*

def input_to_protocol ():
protocol = None
#parse the input
for s in s_expr_gen.read_-all():
if not protocol and s[0] == ’defprotocol ’:
protocol = Protocol(s)
return protocol

def main():
protocol = input_to_protocol ()

if protocol:
#enumerate over transmit nodes
for (strand_index, role) in enumerate(protocol.roles):
for (node_index, message) in enumerate(role.trace.messages):

if message.type = "recv”:
possible_constraints = {} #using a dictionary to avoid duplicates
for i in range(0,node_index):
message_contents = protocol.roles[strand_index].trace.messages[i].value
for constraint in generate_possible_key_constraints(message_contents):
possible_constraints [s_expr_to_str(constraint)] =1
for constraint in generate_possible_ingredient_constraints(message_contents):
possible_constraints [s_expr_to_str(constraint)] = 1
possible_constraints = possible_constraints.keys ()

#they are different combinations of constraint possibilities
#each possible constraint can be included or excluded
sets = 2xxlen(possible_constraints)
for bit.mask in range(0, sets —1):
constraints = generate_combination(possible_constraints , bit_mask)
#NOTE we are ignoring previous constraints on this strand....
#this makes sense for a combinatorial approach
print ”(defskeleton %s_(vars-%s)” % \
(protocol.name, protocol.roles[strand_index].vars_string)
print 7 (defstrand %s %s %s)” % \
(protocol.roles[strand_index |.name, node_index + 1, \
generate_mappings (protocol.roles [strand-index|. vars_string))
print "%s” % s_expr_to_str(constraints)[1l:—1]
print ”)\n”

AR AR helper functions

def generate_possible_key_constraints(message):
constraints = []
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keys = extract_keys (message)
for key in keys:

constraints.append ([ 'non—orig’, key])
return constraints

def extract_keys (message):
#supports extracting keys from the ”enc” expression

keys = []
if type(message) is ListType and message[0] = ”enc”:
key = message[—1]
if type(key) is ListType and (key[0] == ”pubk” or key[0] = ”privk”):
key [0] = " privk” #set to the decryption key

keys.append (key)
for sub in message[l: —1]:
keys += extract_keys (sub)
return keys

def generate_possible_ingredient_constraints (message):
constraints = []
ingredients = extract_ingredients (message)
for ing in ingredients:
constraints .append ([ unig—orig’,ing])
return constraints

def extract_ingredients (message):
ingredients = |[]
if type(message) is ListType:

if message[0] = ”enc”:

message = message[l: —1] #lose the ”enc” amd the key
if message[0] = 7cat”:

message = message [1:] # lose the cat keyword

for sub in message:
ingredients += extract_ingredients (sub)
else:
if message[0] != : #dont include string literals
ingredients .append (message)
return ingredients

999 9

def generate_combination (choices, bitmask):

ret = []
position = 0
while (bitmask != 0):

if (bitmask & 1):

ret .append(choices|[position])

bitmask >>= 1

position +=1
return ret

#take a string of variables like (cat dog) and produces (cat cat) (dog dog)
def generate_mappings(var_string):

ret — ” N
for word in var_string.split(”.”):
if word[—1] != 7)”: #the last word of each set describes the set (key, text, etc)

if word[0] = 7 (7:
word = word [1:]
ret += " (%s -%s).” % (word, word)
return ret

main ()

Listing 27: Origination information combinatorial approach script 2: rely-generation-all.py

#! Jusr/bin/env python
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from types import x
import s_expr-gen
from parse import =*

def input_to_protocol ():
protocol = None
#parse the input
for s in s_expr_gen.read_-all():

if not protocol and s[0] == ’defprotocol ’:
protocol = Protocol(s)

if protocol:
if s[0] = ”defskeleton”:

skeleton = Skeleton (s, protocol)
if skeleton.is_shape:

protocol.shapes.append(skeleton)
return protocol

def main():
protocol = input_to_protocol ()

if protocol:

#gather up a list of receive nodes that mneed relies
#we may or may not have queries that give these
#given mnodes

recieve_nodes = []

for (strand-index, role) in enumerate(protocol.roles):
for (node_index, message) in enumerate(role.trace.messages):
if message.type = "recv”:

recieve_nodes.append (( protocol.roles[strand-index |.name,node-index))

for (role_.name, node-index) in recieve_nodes:
scenarios = {} #each scenario

is what results from a particular set of constraints for th
for (shape-index, shape)

in enumerate(protocol.shapes):

if shape.get_query_node() = (role_.name, node_index):
constraints = s_expr_to_str (shape.constraints)
conjunction = [’and’]
guarentees = shape.get_all_guarentees_before(role_name, node_index)
for g in guarentees:

if not (g[0] = 7”says” and g[l] = protocol.get_role_by_name(role.name ). annotation_
conjunction .append(g)

if constraints in scenarios:

scenarios [constraints |.append(conjunction)
else:

scenarios [constraints| = [conjunction]

#we now have the all the disjunctions for this node/index stored as scenarios

annotation = [’or’]
for scenario in scenarios:
disjunction = [’or’]

for disjunct in scenarios[scenario|:
if len(disjunct) > 1:
disjunction .append(disjunct)
if len(disjunction) > 1:

annotation.append ([”implies”, scenario, disjunction])
if len(annotation) > 1:

protocol.get_role_by_name (role_.name ). annotations [node_index] = annotation

print protocol.to_string ()

main ()
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C.2 Usage

The first script is used to generate the queries and the second script is used to condense
the output of CPSA to form the relies. Listing [28] shows the combined usage of the two
scripts to annotate a protocol in the file example.scm.

Listing 28: Calling the origiantion script

$cat example.scm | ./origination—try—all.py | cat example.scm —
cpsa | ./rely—generation—all.py | cpsapp
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