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ABSTRACT 
 

Diffusion studies allow scientists to gain a better understanding of the function 

and structure of membranes.  However, these diffusion studies can be time consuming and 

costly when using current devices on the market. By designing and validating an affordable 

high-throughput molecular diffusion system time and money needed to characterize 

membranes can be reduced. Our device was validated using glucose (180 D), bovine serum 

albumin (BSA, 50,000 D), and gamma globulin (150,000 D); three molecules with a large 

range in molecular size. After comparison of calculated diffusion coefficients using our 

device and a marketed device, diffusion coefficients were shown to be the same for both 

devices.  Using our device, membrane diffusion trials could be carried out simultaneously 

using 10 membranes compared to the current device which only allows one. The calculated 

coefficients were 5.58 x10-6 cm2/s, 7.08 x10-8 cm2/s, and 4.83 x10-8 cm2/s for glucose, BSA, 

and gamma globulin, respectively.  These findings are comparable to published diffusion 

coefficient values, suggesting that our device will serve as a facile tool to rapidly 

characterize membranes being developed for the design of engineered tissues. 
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1.0 INTRODUCTION 
The basal lamina is a thin layer of extracellular matrix proteins that separates 

sheets of cells from the surrounding connective tissue within many organs [1-3].  This 

matrix component provides the foundation for cells to grow and differentiate upon and 

maintains the structural support system for the surrounding tissue.  Its structure varies 

depending on its location within the body, such as in epithelial tissue, muscle and skin [1].  

In addition to the basal lamina’s physical support for the surrounding tissue and new 

tissue growth, it also acts as a selectively permeable barrier to various molecules within 

the body [1, 3, 4].   

Any damage that afflicts various tissues and organs may affect the performance of 

the basal lamina.  The basal lamina can even loose its ability to maintain the normal 

tissue structure and prevent the re-growth of new tissue within the area.  Tissue engineers 

are currently researching means to treat this problem.  Their ultimate goal is to develop a 

synthetic material that can be placed within the body to replace the natural basal lamina 

when it is harmed and can no longer carry out its functions.  However, tissue engineers 

have made minimal progress in the development of a material/structure that is able to 

provide the necessary support to the surrounding tissue, create a selective barrier for 

molecules and allow new cellular/tissue growth to occur.   

Tissue engineers are in the progress of trying to understand the basic functions of 

the basal lamina before developing a structure that can be placed within the body to 

repair the loss of the basement membrane and carry out its specific functions [5].  In 

order to begin the development stage of a synthetic basal lamina, these researchers have 

focused on studying the diffusive properties of these membranes.  The in vitro studies on 

various types of porous membranes that have a similar structure and porosity to the basal 
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lamina have been conducted by tissue engineers and may provide the desired results.  

These tests may uncover the information needed to develop a material that can act as a 

barrier for certain molecules while allowing others to enter and exit the surrounding 

tissue and organs for a particular area of the body.   

Currently, many types of diffusion studies are being performed on various types 

of membranes in order to achieve this goal.  These studies use different molecules, 

membrane materials, and porosities to better understand the diffusion processes that 

occur within the body. These in vitro experiments also help tissue engineers to 

specifically create a material that has similar diffusion properties to the basal lamina.  

Many diffusion chambers have been created and are marketed to carry out these studies.  

One particular device is the PermeGear Side-by-Side Diffusion Chamber created by 

PermeGear, Inc [6].  This device places the membrane of choice between a donor and 

receiver chamber that can be filled with a molecular solution of known concentration and 

a buffer solution in order to create a concentration gradient that drives diffusion through 

the membrane.  However, it is difficult to simultaneously carry out multiple experiments 

due to the fact that this device only has one set of chambers. Harvard Apparatus has a 

system that allows three studies to be performed simultaneously but the device is very 

expensive. Also, its user-friendliness and reliability have also been found to be 

problematic; therefore, there is a demand for a different type of device that allows for 

more testing to be carried out concurrently.  

The goal of our project is to develop a high-throughput device to study the 

diffusion rate of various molecules through membranes.  The project specifically aims to 

quantitatively define diffusion through collagen membranes to establish a more definitive 
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understanding of its functions and to develop a basal lamina for skin substitutes.  The 

steps of engineering design will be utilized in order to develop and validate a diffusion 

system that meets our client’s needs and desires.  To do this, we constructed a high-

throughput molecular diffusion device to characterize molecular diffusion through 

membranes.  In order to validate the system, various experiments were conducted with 

the device using molecules of varying molecular weight to study their diffusion rates 

through both dialysis and collagen membranes.  The dialysis membrane studies acted as a 

standard for the rate of diffusion for each of the molecules used within the studies.  

Diffusion studies were performed using the PermeGear® device to act as a standard for 

our device.  The data was analyzed and the diffusivity of each molecule through the 

collagen membranes is reported.  This data helps in characterizing the collagen 

membranes and is carried out in a more timely fashion with use of the multi-chamber 

system that can carry out multiple diffusion experiments simultaneously.   
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2.0 BRIEF CLINICAL AND ENGINEERING MOTIVATION FOR PROJECT 
 

2.1 Basal lamina scaffold 
 
The basal lamina is a thin layer of extracellular matrix proteins in tissue that 

separates sheets of cells from the surrounding connective tissue within many organs [1-3].  

It has been found that this layer usually develops from parenchymal cells [1].  One layer 

of the surface provides the ability for cells to grow and differentiate, while the other 

provides support and adherence to the surrounding connective tissue [4].  The basal 

lamina has a distinct structure and a variety of functions that are dependent on its 

surrounding tissue. 

2.1.1 Structure of basal lamina 

 There are three different forms the basal lamina takes on in its locations within the 

body.  The structure may surround cells, reside underneath epithelia, or develop between 

cell sheets as seen in Figure 1 [1].    

 

Figure 1: Organization of the Basal Lamina [1] 
 

The basal lamina has a central dense region referred to as the lamina densa and a 

less dense region known as the lamina lucida [3].  The lamina lucida abuts the plasma 

membrane.  When the basal lamina is located between cell sheets, the side adjacent to the 
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plasma membrane is the lucida interna while the opposite side is the subbasal lamina.  

The thickness of the basal lamina varies, depending on the tissue it resides within.  For 

example, the thickness of the basement membrane within the kidneys ranges from 240 to 

340 nm while that of the skin is 50 to 90 nm [3].  This size difference correlates to the 

different structures and organization of the tissues, as well as the functions the basal 

lamina performs in each location. 

 The porosity of the basal lamina varies depending on the area that the scaffold is 

located within the body. In previous studies, researchers have tried to develop membranes 

with a specific pore size similar to the area where the membrane would be located [7].  

However, none of the current types of matrices are able to be applied and used as a basal 

lamina due to the need for the basal lamina to be able to work with the surrounding tissue 

and respond to various signals that may be sent to the area. 

 The basal lamina within some tissue has a more complex three dimensional 

structure.  These structures can contain invaginations, referred to as rete ridges and 

papillary projections, which increase the surface area of the tissue.  The role of these 

invaginations is to increase the biomechanical stability of the scaffold.  Invaginations can 

effect cell proliferation and differentiation within the tissue as well [2].  Overall, the basal 

lamina contains various components that assist the basement membrane to maintain its 

form. 

2.1.2 Composition of basal lamina 

 Although the composition of the basal lamina varies from tissue to tissue, there 

are a few main components that reside within all forms.  During initial development, 

laminin molecules make up the basal lamina within the body [1].  Laminin plays a key 
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part in the structural role of the basement membrane, specifically for cell attachment.  

Laminin is a large flexible glycoprotein with three polypeptide chains held together by 

disulfide bonds.  After the development phase, it has been found that type IV collagen 

makes up 40-65 % of all basal lamina [3].  Type V collagen has also been found to reside 

within the basal lamina of smooth muscle cells.  The non-collagenous components in 

mature basement membranes including the glycoproteins are laminin, entactin, 

fibronectin, and proteoglycans [3].  Entactin is only located within certain membranes 

such as the nerve, muscles and kidneys but has an unknown function within basal lamina 

at this time.  Fibronectin plays a role in cell attachment and structure of the basal lamina.  

The proteoglycans of the basal lamina dictate the selective filtration of the membrane.  

All of these components of the basal lamina work together to help carry out particular 

functions within the body. 

2.1.3 Functions of basal lamina 

 There are three main functions of the basal lamina.  One of these is its ability to 

act as a scaffold for tissue growth [1, 4].  It maintains the site for tissue re-growth after 

cell loss by allowing new cells grow along this scaffold.  Within this process, the basal 

lamina also guides cell polarity, cell metabolism, and the organization of surrounding 

proteins [1].  If the basal lamina does not remain intact after injury, any new cellular re-

growth will result in scar tissue and loss of function [4].  Another function of the basal 

lamina is to act as a barrier to control the selective permeability of the membrane. Two 

places where the permeability of the membrane is used to control diffusion of dissolved 

molecules are the kidneys and in tubular basement membranes.  Not only does this 

control the filtration aspect of the tissue but also the movement of cells within or around 
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the area [1].  The third function of the basal lamina is that it provides structural support to 

the surrounding area by linking epithelium to the underlying matrix or to another cell 

layer depending on its location within the body.   

2.2. Basal lamina within the body 
 
 Basal lamina resides within many tissues and organs of the body including 

muscles, lungs, kidneys, pancreas, the nervous system, liver, and the skin.  Within each 

area, the basal lamina has a specific role in maintaining the structure of the area while 

providing scaffolding for the surrounding tissue.  Depending on the location within the 

body, there are many differences in interactions between basal lamina and the 

surrounding tissue.  A few examples of this can be shown within the muscle cells, 

kidneys, and epithelium. 

2.2.1 Muscle cells 

 Within muscle, the basal lamina remains the scaffold upon which new cells can 

grow after resulting in an injury.  It maintains the spatial relationship between both 

capillaries and fibers within the muscle [4]. The new growth of cells often results in the 

thickening of the basal lamina which leads to the removal of the older basal lamina.  

During cellular re-growth, muscle cells proliferate through basal lamina tubes which are 

part of the muscle structure.  The basal lamina is able to separate the cells from the 

underlying connective tissue [1].  

2.2.2 Kidneys 

 The basal lamina within the kidneys has a significant role in maintaining the order 

of cell re-growth and participates in their filtering process.  It lies within the glomerulus 
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of the kidneys between direct contact with both blood and urine.  It is a key decision 

maker in choosing which molecules will pass into the urine from the blood [1].  

Molecules that are greater than 7 nm in diameter (anything larger than serum albumin) 

rarely cross through this barrier [3].  Permeability of this barrier is dictated by molecular 

size and charge.  The heparan sulfate proteoglycans of the basal lamina play a key role in 

the filtration function. Without these chains, the lamina’s filtering properties would be 

destroyed [1]. 

2.2.3 Epithelial tissue 

There are two types of epithelial tissue: glandular tissue and covering/lining tissue.  

Glandular tissue is the secreting portion of a gland that is found in such places as the 

thyroid and sweat glands.  Covering and lining tissue can be found within internal organs 

and lining major tracts within the body such as the digestive tract and the respiratory 

tracts.  The basement membrane of epithelial tissue is a layer of extracellular material 

that takes a role in the development of the tissue.  Not only does it act as an anchoring 

system but it also gives the cells an area to grow.  It allows for both the epithelium and 

the connective tissue to remain connected.  It also provides a surface for cell proliferation 

and migration to occur on during growth and wound healing.  The basal lamina also 

prevents the invasion of large molecules into the connective tissue by acting as a selective 

barrier.  For example, the basal lamina prevents fibroblasts in the underlying connective 

tissue from contacting epithelial cells within the skin [1].  However, the basal lamina 

does not prevent the movement of macrophages or lymphocytes.   
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2.2.3.1 Basal Lamina of skin 

One area of focus within research of basal lamina has been the basal lamina acting 

as the connector between the dermal and epidermal layer within skin.  The basal lamina 

not only provides a connection between the layers but also acts as a barrier to different 

cells intermingling, such as keratinocytes and fibroblasts.  The structure permits 

movement of immune cells between the layers.  Also, the basal lamina acts as a guide for 

cell proliferation and differentiation [4].  The proliferation and differentiation of the cells 

within this area is influenced by the topography of the basal lamina [8], [9].   

There is an importance to understanding the mechanism of interaction between the 

dermal fibroblasts, the basal lamina and keratinocytes.  When looking at native skin, 

there are specific keratins that are expressed during keratinocyte proliferation and 

differentiation.  These proteins have been used as markers to study keratinocyte 

proliferation quantitatively.  It has been found that growth factors and cytokines play a 

key role in stimulating the growth of keratinocytes.  Fibroblasts produce these growth 

factors and cytokines which directly correlate to the amount of epithelial re-growth due to 

paracrine signaling [10].  This phenomenon shows the effect that the dermal fibroblasts 

have on epidermal layer growth. Since the basal lamina provides both structural and key 

functions to not only the skin but various parts of the body, it has become a major area of 

research for tissue engineers. 

2.3 Importance of Basal Lamina to Tissue Engineering 
 

Tissue engineers research various materials develop substitutes for injured tissues 

and organs that need repair.  Researchers desire to find a material/design that will allow 

the tissues and organs to heal and return to a state where they can carry out their natural 
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functions [5].  Development of artificial tissues containing basal lamina analogs are very 

important for tissue engineering due to the critical functions they perform. The ability of 

the basal lamina to control the maintenance, regulation, and regeneration of various 

tissues and organs has been the driving force behind tissue engineers to produce a similar, 

synthetic structure that can carry out these functions.  However, limited success has been 

made when trying to develop an engineered material that meets the standards of the basal 

lamina.  It has been difficult for tissue engineers to develop a scaffold that can function as 

a selective barrier.  Some success has been found in substitutes for skin and cartilage 

often using cultured cells and biomaterials [11, 12].   

Due to the complexity of the basement membrane, tissue engineers need to 

understand the details of what this scaffold provides for the body before trying to create a 

material that will be able to support and perform the functions of the basal lamina.  One 

key area of focus is the regulation properties of the membranous structure. Understanding 

the mechanism of molecular diffusion for various membranes in an in vitro environment 

will allow tissue engineers to characterize this property of membranes.  These results can 

lead to the creation of a material that can act as a barrier to some molecules while 

allowing select molecules to enter and exit the surrounding tissues and organs.  By 

researching membranes with porosity similar to various basal lamina and understanding 

their regulation parameters, tissue engineers will be one step closer to creating a scaffold 

that will allow the restoration of various tissues and organs.  Tissue engineers are 

currently carrying out various diffusion studies on membranes in order to apply their 

findings on a larger scale to characterize and develop a synthetic, implantable basal 

lamina.  
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2.4 Characterization of Membranes by Diffusion Studies 

2.4.1 Molecules  

Many studies have been completed using various membranes in order to 

understand their diffusivity properties.  In order to gain a better understanding of the 

membrane’s parameters, various molecules have been used to simulate the size variety of 

molecules that diffuse through the basal lamina allow tissue engineers to gain a better 

understanding of the membrane’s parameters.  The results of these studies also can be 

applied to the basal lamina throughout the body. Each location of the basal lamina in the 

body allows molecules of various sizes and polarity to diffuse through it, depending on 

the basal lamina’s structure and porosity. 

In 1988, Gilbert examined the diffusion properties of collagen matrices in order to 

further the research of developing a drug delivery system that could use macromolecules 

[13].  Collagen was the material that was chosen for the membrane, due to its 

biocompatibility.  Within this study, collagen membranes were designed in a variety of 

ways including native and non-native quaternary structure, porous fibrils, and dense 

aggregate membranes.  Various types of crosslinking were used to create these 

membranes as well.  The constructed membranes were placed within a two-cell diffusion 

chamber and a variety of molecules were used to characterize the parameters of the 

membrane. Samples were taken out of the receiver chamber within the diffusion cell and 

ultraviolet spectroscopy was used to determine the concentrations of the samples.  From 

this data, permeation coefficients were determined from each type of molecule used 

within the study.  The molecules were found to have the diffusion coefficients found in 

Table 1. This study found that membranes that were crosslinked with polyglycerol 
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polyglycidal ether (PPE) had a higher diffusivity coefficient than those that were 

crosslinked with glutaraldehyde. The study suggests that the diffusion coefficients for the 

collagen membranes crosslinked with PPE were higher because the chains were more 

flexible than those in the glutaraldehyde crosslinked membranes.  

Table 1: Diffusion coefficients for various molecules across porous random fibril collagen 
membranes crosslinked with glutaraldehyde and PPE 

Molecule D for Gluteraldehyde 
Crosslinking (cm2/s) 

D for PPE 
Crosslinking (cm2/s) 

BSA 1.48 X 107 3.35 X 107 

Lysozyme 8.19 X 107 8.71 X 107 

Carbonic anhydrase 4.22 X 107 6.49 X 107 

Ovalbumin 2.67 X 107 4.92 X 107 

 
 

Desai reported many findings about fabricated membranes.  Desai developed a 

micromachining method able to develop porous, silicone membranes with controlled 

porosity.  This study determined how various porosity and permeability of membranes 

could help further the creation of an immunoisolation membrane [14].  Within this study, 

membranes were developed with a range of porosities: 18 nm, 66 nm and 78 nm.  These 

membranes each were then characterized by their diffusion parameters.  The permeability 

of insulin, glucose, and immunogamma globulin (IgG) was studied using a mini-diffusion 

chamber.  The membrane was placed in between the two chambers, which allowed 

passive diffusion to occur.  One side of the chamber contained a particular molecule in 

solution and the other contained just the buffer solution.  Samples were taken from the 

buffer solution during the passive diffusion process in order to determine the 

concentration flux occurring over time.  This method was carried out using both glucose 

and insulin; however, IgG was first fluorescently labeled before carrying out the 
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experiment.  A biocapsule was used to study the diffusion rate of IgG through the 

membrane and the samples taken were read with a spectrofluroimeter.  Both insulin and 

glucose were found to diffuse through the membrane at a significant rate when 

comparing each molecule’s concentration of the various samples over time.  IgG was not 

completely blocked but was greatly hindered in its diffusion through the membrane; the 

diffusion rate was less than other studies cited that tried to block IgG.  Although changing 

the pore size of the membrane to a smaller size prevents the diffusion of IgG, it also has 

an effect on the diffusion of both glucose and insulin. Desai stated that the ability to 

maintain the membrane immunoisolation effect long term may be better than to have a 

totally immunoisolation membrane.   

 Desai completed another study to better understand the diffusion parameters of 

membranes.  The goal was to develop a biocapsule that could be used to encapsulate 

insulin-secreting cells [15].  The membranes used within this study had a defined pore 

size of 24 nm.  Using these membranes, the diffusion rate of glucose through the 

membrane was studied using a mini-molecular diffusion device again.  Using a starting 

concentration of 6.66g/dl, diffusion across the membrane was allowed to occur as 

samples were removed from the receptor chamber of the diffusion device.  These samples 

were analyzed using a spectrophotometer.  Glucose studies with albumin in solution were 

also evaluated during these diffusion studies.  Insulin diffusion was examined using a 

similar protocol as well.  From these studies, Desai and Leoni found that the rate of 

glucose diffusion through the membrane was not decreased nor was it impeded in the 

presence of albumin.  This was a key finding because it showed that the membrane may 

sustain and be able to carry out its functions for a longer period of time.  The diffusion of 
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glucose was driven by Fick’s law.  Insulin also was able to easily flow through the 

membrane; however, it initially had a slow diffusion rate that eventually increased.   

 More in vitro studies were completed by Leoni in order better define the diffusion 

parameters of the membrane before in vivo testing was conducted.  The study used a mini 

diffusion chamber to test the diffusion rates for microfabricated membranes with various 

pore sizes: 7 nm, 13 nm, 20 nm, 49 nm [16].  Three different sized molecules were 

chosen to better characterize the membranes.   Glucose (180 D), human albumin (67 kD) 

and immunoglobulin G (150 kD) were individually used to define the diffusion 

parameters.  A colorimetric assay was used to determine the concentration of glucose 

within the receiver chamber. A Bradford assay was used to find the albumin 

concentration, and an ELISA was used to determine the concentration of IgG in the 

samples taken during the experiment.  This data was analyzed with Fick’s first law to 

determine the diffusion rates of each molecule.  The diffusion rate was correlated to the 

pore size of the membrane being used as well.  For both glucose and albumin, the 

diffusion rates increased over time and also linearly increased as pore size increased.  At 

a smaller pore size, the data seem to conflict with the calculations found with Fick’s law.  

This proved that below a certain pore size this law could not be applied to characterize 

diffusion. IgG was excluded from diffusing through the membranes for most of the pore 

sizes.  It was concluded that having a pore size 2-5 times larger than the molecule in use 

will still allow the diffusion of that particular molecule to carry out Fickian diffusion.  At 

too small or too large a pore size, the diffusion of the molecules can be inhibited or 

skewed.        
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 There have been a few diffusion studies focusing on the use of glucose as well.  

Myung et al, studied the diffusion rate of glucose through dialysis membrane (MWCO:14 

kD), finding a diffusion coefficient of 3.4 x 10-7 cm2/s [17].  These dialysis membrane 

findings were used as a benchmark for more glucose diffusion studies through various 

types of corneas within Myung's research. Another study completed by Liu et al. looked 

at the diffusion of glucose and bovine serum albumin (BSA) through collagen 

membranes [18].  The membranes used within these studies were EDC/NHS crosslinked 

membranes.  This, along with many other types of crosslinking, can affect the porosity 

along with the thickness of the membrane, which are just a few parameters the diffusion 

coefficients are dependent on.   

            Lastly, but most importantly, diffusion has been looked at within native skin.  

Khalil et al. studied the diffusion of glucose through various layers of native skin [19].  

Within cadaver dermis, the diffusion coefficient of glucose was found to be 2.64 x 10-6 

cm2/s.  The diffusivity values were also found for various epidermal layers that 

underwent various treatments before being studied, such as tape stripping.  These studies 

were able to determine the diffusion coefficients for each layer of skin while also 

understanding how various structural components of the skin can effect diffusion.  

 All of this research aims to characterize membrane transport using various 

molecules.  In order to determine these transport parameters, validation methods must be 

followed.  These validation techniques are used to determine the concentrations of the 

samples being removed from the chambers of device, which can then be used to calculate 

the diffusion coefficient of the particular molecules used within the study. 
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2.4.2 Validation Methods 

 To characterize the properties of the membranes, protein assays are important to 

determine the concentration, or changes in concentrations, as molecules pass through the 

membrane. There are several methods available to choose from that have been well 

documented and work in different ways. Absorption, colorimetric assays, high 

performance liquid chromatography (HPLC), and gas chromatography are four different 

methods discussed in this section.  

2.4.2.1 Absorption 

 Absorption assays are performed with a spectrophotometer, using different 

wavelengths to measure how much of the light is absorbed. The Lambert-Beer law 

mathematically expresses how light is absorbed by matter. This law relates the amount of 

material in the solution, the distance the light must travel, and the probability that a 

photon will be absorbed by the material. Absorption assays are easier to perform than 

HPLC and gas chromatography but it is harder to control the variables in an absorption 

assay. Because absorption assays measure the difference in absorption of ultraviolet light, 

any impurities in the solution that can absorb UV light will skew the data, such as 

impurities in the water, or other molecules in the solution. However, it is still a fast, 

efficient way to measure the general concentration of molecules in a solution. UV 

spectrophotometry has also been applied to measure proteins of many sizes. These 

proteins include lysozyme, ovalbumin, and bovine serum albumin (BSA) [13].  

2.4.2.2 Colorimetric Assays 

 Colorimetric assays depend on chemical changes and chemical interactions 

between the proteins and the solution used to measure their concentration. Colorimetric 
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assays use a solution and a spectrophotometer as well. The solution is used to either bind 

the proteins or uses the proteins to change a chemical in the solution. The chemical 

change in the solution normally leads to a change in color of the solution. There is a 

standard of known concentration that is used and tests are compared to that standard. An 

example of a colorimetric assay is the bicinchoninic acid (BCA) assay. This assay 

involves mixing the sample solution and the acid. In the acid solution, the copper 

molecules undergo an ionic change from Cu+2 to Cu+1 in the presence of proteins in an 

alkaline solution [20]. The Cu+1 ion in solution has a purple-bluish color in the 

bicinchoninic acid solution (Figure 2). The color absorbance maximum is 562 nm for this 

test. The change in absorbance is directly proportional to the concentration of protein in 

the sample. Pierce sells a BCA kit that has varying range of accuracy depending on the 

procedure used. The kit can measure protein concentrations of 20-2,000 µg/ml using its 

standard procedure. If a smaller concentration needs to be measured, they also include an 

enhanced procedure that measures protein concentrations of 5-250 µg/ml. The accuracy 

of these tests explains why this method is commonly used for the detection of proteins. 

One disadvantage of this assay is that it is non-protein specific, meaning that it will detect 

any protein in the solution. If a test is done using more than one protein, this assay will 

not be able to determine the concentration of just one of the proteins. 

 

Figure 2: Schematic of BCA reaction in the presence of a protein[21] 



 34

 
Another example of a colorimetric assay is the use of Coomassie® Blue G-250 

dye binding process, also known as the Bradford assay. The binding of the dye to the 

protein changes the absorption rate of the dye from 465 nm to 595 nm (Figure 3). The 

change in absorption rates can be measured using a spectrophotometer that measures the 

amount of light absorbed at the frequency of 595 nm. This method is quick, inexpensive, 

and very accurate. Its working range is from 1-20 µg/ml for the micro assay and 20-200 

µg/ml for the macro assay. It also is easily used for different proteins. Leoni et al. used 

the Bradford assay to test for the concentration of albumin [16]. One of the disadvantages 

is that the curve of absorbance is non-linear over a large frequency range. This is due to 

how close the absorbance frequencies for the bound and unbound Coomassie® Blue G-

250 dye are. Due to this, the standard curve is crucial. As with the BCA assay, the main 

disadvantage of this assay is that it is non-protein specific. 

 

Figure 3: Schematic of Coomassie G-250 in the presence of a protein[21] 
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2.4.2.3 Enzyme-linked Immunosorbent Assay (ELISA) 

 Enzyme-linked immunosorbent assays (ELISA) are a specific example of an 

assay that utilizes fluorogenic substrates. They are used to look for certain proteins using 

antibodies that are specifically tailored for a tested molecule. This means that the 

molecule being tested must be able to have an antibody attach to it. However not all 

molecules have antibodies made for them. This method is effective in isolating just one 

molecule by designing the antibody to attach specifically to the tested molecule.  

A common practice is using indirect detection (Figure 4). This method is called 

the sandwich method. Indirect detection works through a several step process. This 

involves initially coating the plate with an antibody to the molecule being tested. This 

coating incubates overnight, and then the plate is washed to remove any excess antibodies 

that are not attached to the plate. The sample of a known or unknown concentration is 

then added. This sample is the molecule being tested. This is allowed to incubate for a 

while to allow binding of the sample and the antibody. The plate is then rinsed again with 

a solution such as phosphate buffer saline (PBS) or another buffer solution, in order to 

remove any of the molecules that did not bind to the antibody. Next, an antibody that is 

labeled with an alkaline phosphate conjugate is added to the plate, which binds to the top 

halves of the tested molecules. Again, the plate is rinsed to ensure no extra unbound 

antibodies are floating around. After the rinsing, a substrate solution is added, such as p-

nitrophenyl phosphate (PNPP), which is activated by the alkaline phosphate group on the 

antibody. This results in the breaking of PNPP. One of the resulting structures of this 

breaking is a colorimetric chemical that turns the solution a color, in the case of PNPP, a 

yellow color. The intensity of the color is dependent on the amount of second labeled 
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antibody that is bound to the sample. The intensity of the color is measured at a specific 

frequency that is dependent of the colorimetric chemical resulting from the breaking of 

the substrate complex. The intensity is measured by putting the plate in an ELISA plate 

reader. This number is compared to standards that are made of the tested molecule. These 

standards are of known concentrations. The assay for the standards are performed as 

explained above. The absorption rates are charted on a graph and the unknown values are 

compared to the standards. 

 

Figure 4: Schematic of an ELISA [22] 
 

Some of the disadvantages of this method are the increased incubation time, as 

well as cross-reactivity with the second labeled antibody. The increase in incubation time 

could hinder how many tests that can be performed in a given time period. The high price 

of antibodies and other molecules required for the tests also limit the utility of this 

technique. However, there are several advantages to this method. Not only has it been 
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well documented and is well establish, but there are several secondary labeled antibodies 

commercially available. This technique is also very versatile. There are many labels for 

the secondary antibody, increasing the number of tests capable of determining the 

concentration of the protein.  

2.4.2.4 High-performance Lipid Chromatography (HPLC) 

 High-performance lipid chromatography (HPLC) is a very versatile technique that 

is commonly used when determining the concentration of a molecule in a solution. The 

process is a complex one, as there are many ways to perform an HPLC test. The reversed-

phase HPLC is the technique used to detect peptides and membrane proteins. HPLC has 

been well documented for the detection of hydrocortisone [23, 24] as well as for 

dopamine [25]. There are two phases used in an HPLC: a stationary phase, and a mobile 

phase. Different materials can be used for each phase, which increases the number of 

tests and molecules this technique can be applied to.  

The reversed-phase chromatography operates by isolating the molecule based on 

the solution’s hydrophilicity. A combination of resins is used to create the hydrophilic 

environment. Resins range in composition but an example would be the stationary phase 

being a silica-based packing with n-alkyl chains covalently bonded. This is hydrophobic, 

which the tested compound is attracted to. Hydrophilic compounds elude faster than 

hydrophobic compounds in this system. HPLC is a way of refining a solution. There is an 

absorption test after the refinement to acquire a concentration. This absorption assay is 

the same as the assay mentioned above but the spectrophotometer is normally built into 

the whole HPLC system.  
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One of the advantages of the HPLC is that it can be manipulated for different 

molecules that need to be tested. Different resins can be used to isolate different 

molecules based on their hydrophilicity. This is very useful when thinking about one 

device to test several molecules. However, due to the fact that different resins are needed 

for different molecules, this does increase the overall cost of the testing portion of the 

device.  

2.4.2.5 Gas Chromatography (GC) 

Gas chromatography mass spectrometry is a unique process to detect different 

molecules. It involves using an oven encased GC column, a mass spectrometer, and a 

computer to analyze the data [26, 27]. The computer presents the data as a measurement 

of the amount of an ion based on a specific mass. The separation that takes place in the 

column and the ionization that takes place in the mass spectrometer allows the detector to 

separate ions. The separation and ionization are the key factors in isolating the different 

ions.  

The process involves heating the injection port up to about 300º C to cause the 

injected solution to vaporize. The solution is injected, vaporizes, and then travels 30 

meters though a thin-walled tube that has been chemically treated on the inside. The 

chemical treatment on the lining of the tube separates the molecules based on the 

volatility. Essentially, the smaller molecules travel faster though the 30 meters of tubing. 

The oven is normally heated from 40º to 320ºC. The molecules then pass into a mass 

spectrometer. The mass spectrometer exposes the molecules to electrons, which breaks 

the molecules into ions. These ions pass through a filter, which is a magnetic field that 

slows down larger ions. After the filter, the ions finally hit a mass detector and a mass 
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spectrum is created. This information is sent to a computer, which records the data for 

future analysis.  

One of the advantages is the sensitivity of the detector, whether it is a universal or 

selective detector [26]. It is also useful for many classes of organic compounds. Its 

strongest point is actually its high resolving power due to the number of stationary phase 

materials that can be used for any number of molecules. However, a system like this does 

not come without disadvantages. One of the biggest problems is that the compounds in 

the solution need to be sufficiently volatile [28]. This is essential for their separation. Due 

to the conditions in which they are injected, they also need to be thermally stable so they 

do not degrade when injected. This limits the range to non-polar or slightly polar 

molecules. Also, like the HPLC, the different resins needed to test each molecule would 

increase the cost of running the experiment.  

Using these assays, the concentration of the molecules within the receiver 

chamber of the diffusion devices can be found.  In order to carry out these diffusion 

studies, various devices have been developed over the years and are currently on the 

market to determine the parameters of diffusion for various membranes. 

2.5 Devices 
 

There are multiple devices on the market today that facilitate molecular transport 

through various membranes.  There are currently three main types of molecular diffusion 

devices used for in vitro studies: the vertical type, horizontal type and flow-through type.  

The vertical type holds the membrane being studied horizontally but the direction of 

solution flow is perpendicular to the membrane, and vise versa for the horizontal.    
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 All of the devices consist of two chambers; a donor and receiver.  The donor 

chamber is where the tested molecules are put into the system, and the receptor chamber 

is where the samples are collected from.  Both vertical and horizontal devices are static 

diffusion chambers, whereas the flow-through has a dynamic circulation of solution 

through the receiver chamber.   

Each one of these devices has essential components that allow diffusion studies to 

be done in vitro and be compared to the actual functions of the basal lamina.  Mixing is a 

key component of this device, due to the fact that it allows for solutions placed within the 

donor or receiver chamber to remain homogenous and prevent the formation of a 

boundary layer that can complicate diffusion.  Temperature control is also a main 

function of these devices.  By being able to control the temperature, the diffusion studies 

are run at different temperatures rather than just room temperature.  For example, studies 

can be done at body temperature (37ºC) in order to simulate the diffusion of particular 

molecules at that temperature and see the effects of temperature on the specific 

membrane being studied.  The placement of the membrane is also very crucial for the 

studies. Each of these devices optimizes the surface area of the membrane in contact with 

the solution. It is important to ensure that there is no other diffusion going on in the 

system. Each system should be in a closed system so that there are no outside influences 

that would interfere with passive diffusion. This is not always the case, but it does help 

when applying mass conservation laws. If it is an open system, there should be a way to 

calculate the amount of mass transfer coming in or going out of the system.  

 For the purposes of this project, horizontal and vertical diffusion cells were 

researched more in depth because the client informed us that the flow-through devices 
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were outside the realm of their interests. Our client’s interest is in the interactions 

between the substrate and the cells on top of the membrane in a steady state environment.  

Furthermore, horizontal devices were of greatest interest because they provide a fluid to 

fluid phase system, whereas the vertical provides an air/gas to fluid phase system.  

Information researched includes the types of diffusion cells, the current usage of these 

devices, what is available to purchase today, and the advantages and disadvantages of the 

materials that make up these devices. 

2.5.1 Vertical Type: Franz 

 The vertical diffusion cell is an air/gas to fluid orientated device.  The most 

recognized and used type was developed by Dr. Thomas J. Franz.  This device has a 

static receiver solution reservoir with a side-arm sampling port design as seen in Figure 5. 

The device can be used with the donor chamber cap, at the top of the system, open to 

allow ambient exposure or closed.  The tested membrane determines whether the 

membrane in the donor chamber is exposed to the atmosphere or not.  The bottom half of 

the cell is the receiver chamber where samples are removed.  In the original Franz cell, 

the membrane was held in place by an o-ring between the two chambers and a magnetic 

stir bar was used in the receptor chamber for homogeneous mixing.  A thermal jacket 

surrounded the receiving chamber so its temperature could be maintained by a circulating 

water bath.  In 1975, Franz reported the comparison of his in vitro device measuring 

percutaneous absorption to results from studies which have been done in vivo.  

Quantitatively the permeability of the various molecules did not match exactly, but the 

results paralleled for which molecules had high versus low permeability.  He found that 
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using this device allowed diffusion studies to be compared to natural diffusion within the 

body [29]. 

 

Figure 5: Original Franz Cell [29] 
 

The original Franz cell has been modified for various applications of studying 

molecular behavior through membranes in vitro.  This static, side-arm cell has been used 

to study skin permeability for drug delivery applications and also has been used to study 

enzymatic digestion product release.   

A flat-bottom static diffusion cell, which can be purchased from Hanson Research 

[30], was used by sources to study the in vitro drug release from topical dermatological 

products that have corticosteroids [33].  The diffusion system included six cells in 

conjunction with an autosampler by Microette ® [31].  The cells were very similar to a 

Franz cell but maintained homogenous mixing in the receiver chamber with a stirring 

helix.  The device setup was then modified slightly to use with the MicroettePlus® 

system.  This modification occurred when researchers tried to establish a more in depth 

protocol for measuring in vitro release of semisolid preparations.  The ultimate goal of 
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the work was to develop a standard test for quality control in industry.  The modifications 

can be seen in Figure 6 [31]. 

 

 
Figure 6: Design of the vertical diffusion cell with the MicroettePlus® system [31] 

  
 

A quantitative analysis of enzymatic digestion product release was studied to 

improve the quality of debriding-agents used in the treatment of necrotic wounds [35].  

The in vitro procedure proved to be useful in determining the efficiency of enzymatic 

debridement and provided well controlled pH and temperature, which were within 

physiological values.  This in vitro method utilized a Franz diffusion chamber as well.  
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Figure 7: Cell used for High Throughput Screening [32] 
 

A high-throughput device was designed and developed to see how chemicals 

affect skin permeability (Figure 7) [32]. It was predicted that combinations of these 

chemical “enhancers” may offer a safer formulation to increase skin permeability.  The 

high-throughput screening method allowed researchers to test multiple different 

enhancers in a more efficient manner than the Franz diffusion cell allowed.   It was stated 

by the authors that the disadvantages of the Franz diffusion chamber were that too large 

of a membrane sample needed to be used, the time it took to run the procedure was too 

long, and the time required to reach the steady-state was too long. Although in this article, 

the researchers are specifically interested in skin conductivity and measured it with 

electrodes; the high-throughput device exemplifies the fundamental purpose of efficiency.  

The device was created with Teflon and polycarbonate and the tests were performed with 

pigskin membranes and various enhancers.  The conductivity was measured qualitatively 

with the high-throughput device, but it was concluded that the Franz cell was still 



 45

necessary to find the actual amount of drug delivered across the pigskin sample.  The 

high-throughput device simply helped the researchers choose which enhancers should be 

tested with the Franz in a short amount of time; it avoided wasting time with unnecessary 

tests using the Franz cell [32].  

Overall, the vertical diffusion cell is not desirable for the purposes of the studies 

being performed with our molecular diffusion system.  The directional orientation of the 

device is incorrect for the desired applications of studying the transport rate of various 

molecules through membranes.  The donor chamber is not equivalent in size to the 

receiver chamber, and cannot hold a homogenously mixed solution.  One foreseeable 

problem is that there can be difficultly with air bubbles forming when placing the donor 

chamber on top of the receptor chamber.  The proven reliability of the system to 

characterize in vivo application in an in vitro environment is desirable, as well as the 

system’s ability to regulate temperature and mixing in the receiver chamber. 

2.5.2 Horizontal 

 Horizontal chambers have a fluid to fluid phase system along with equivalent 

donor and receiver chamber sizes, which are both critical for the characterizing of 

different properties of a basal lamina. A fluid to fluid phase system is important because 

it mimics the environment in the body better than exposure to an open environment. 

Equal donor and receiver chambers are important because it allows for diffusion to be 

dependent on the diffusive properties of the membrane and not dependent on the size of 

the chambers. 

   In the previously discussed study by Gilbert, et al., a horizontal diffusion 

chamber was used to characterize porous random fibril collagen membranes crosslinked 
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with glutaraldehyde and PPE.  Desai and Leoni also used a horizontal diffusion chamber 

to complete their studies in order to determine the diffusion parameters of both the 

membranes and biocapsules. Additionally, a polycarbonate horizontal apparatus was used 

to study diffusion through caco-2 cell monolayers.  A diffusion device was developed 

specifically for this study and used a stir plate developed by PermeGear to run three of 

the chambers at the same time with magnetic stir bars [6].  A photo of a single diffusion 

chamber can be seen in Figure 8.  Samples of 200μL of the solution were taken from the 

receiver chamber and tested with scintillation techniques for protein concentration.  The 

device designed was also capable of holding Millicell® inserts and was durable enough 

to be used for four years as an in vitro model of intestinal drug absorption [33].  

 

Figure 8: Diffusion chamber used in Kuhfeld and Stratford studies [33] 
 

 In a research project that studied protein transport and separation properties of 

poly(vinyl-acrylic) (PVA) gel membranes, a glass stirred diffusion cell was used, as seen 
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in Figure 9.  To inhibit protein absorption, Sigmacote® was applied to the walls of the 

cell.  Bovine serum albumin (BSA) and lysozyme were the molecules used in the study to 

show how surface modifications on the PVA membranes affected diffusion [34]. 

 

Figure 9: Glass stirred diffusion cell used by Li and Barbari [34] 

2.5.3 Flow-through  

 Flow-through cells provide an automatic replenishment of receptor fluid.  Sample 

collection is more uniform and the operation of these devices does not need to be 

attended with as much careful observation as the other devices previously mentioned.  

They were designed to be easy to use and maintain tissue vitality.   

 Flow-through devices are described in detail by Frantz in Methods for Skin 

Application [35].  He discusses how the flow rate affects the diffusion and how even 

though blood rates within an in vitro versus and in vivo study are different, diffusion 

devices help in approximating the true conditions of diffusion within the body [35].  It 

was also mentioned that the flow rate through the receptor does not ensure that the 
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chamber is being mixed well.  The use of stirrers may be necessary in some systems, 

depending on the size of the chamber and the rate of flow.   

 An automated, dynamic diffusion cell was developed called the Kelder-cell, 

which was considered an alternative to the Franz cell and can be seen in Figure 10.  

These new cells were used in combination with the automatic sample preparation with an 

extraction columns (ASPEC) system.  The system was developed for in vitro studies of 

transdermal permeation.  The cell was designed to have automated sampling, provide a 

continuous replacement of receptor solution to mimic blood flow beneath the skin, and to 

have an unattended procedure for a period of 24 hours.  The membrane tested was a non-

reinforced silicone membrane, Silastic®.  An anticholinergic, [3H] dexetimide, which has 

been used as an internal standard to correct for variations in skin, was used in the 

experiments.  The variables tested on the system included variability of injection height, 

the volume flowing through the receptor, and the temperature.  An injection height which 

ensured air tightness was found; temperature increase was found to reduce the lag time 

and have no affect on flux; and the increase in collection volume was directly related to 

the increase of permeation.  The Kelder cells were compared to the Franz diffusion 

chambers and it was found that data from each were comparable when the Kelder cells 

were in a pseudo-steady state [36, 37].  
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Figure 10: Cross-section of the Kelder-cell [36] 
Key (A) inlet compartment; (B) donor compartment; (C) receptor compartment; (D) membrane; (E) O-ring; 
(F) inlet channel; (G) outlet channel; (H) outlet tube; (J) polypropylene cap; (K) needle; 1, injection height 

of −32 mm 
 

Another flow-through device was developed by Bronaugh and Stewart.  Their 

device used a minimal volume within the receiver chamber and allowed samples to be 

directly transferred to collecting tubes [38].  The cell was used for drug delivery 

applications.  An automatic fraction collector was used to gather samples from the 

receptor chamber.  A vehicle film was used with the membrane being studied in this 

experiment because the source was interested in aiding in the development of drug 

delivery via ointments and transdermal patches. 

2.6 Current Devices Available to Purchase 
 

There are many different diffusion cells and different approaches companies have 

taken to design diffusion devices. Several companies have modified the initial designs of 

diffusion cells, such as the Franz cell and the horizontal diffusion chamber, and created 

automated testing systems. A further step in the development of diffusion cell designs 
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was to incorporate measuring tools into the systems [39, 40]. All of the diffusion cells 

that were researched allow samples to manually be removed from the device. Information 

from websites for different devices currently available for purchase was also explored, as 

seen in Table 2. Companies that have developed these devices include Logan Instruments, 

Warner Instruments, PermeGear Inc., and Harvard Apparatus. Their devices are outlined 

in Table 2 and are further explained. 

Currently, there are four varieties of joints for the Franz cell: flat ground, flat 

flange, O-ring, and spherical (Figure 11). Different joints are used to hold different 

materials for diffusion studies. For example, spherical joints are used for corneal work 

due to the concave shape of the tissue. However, the joint that is used most often in 

industry is flat ground joint that comes with an O-ring [41]. It is stronger and is used for 

membranes as thick as 4 mm.  The spherical joint is used primarily for corneal work and 

comes in two sizes: 12 and 18 mm. PermeGear, Inc. also carries a nail adapter that allows 

for a fingernail or toenail sample to be tested. 

 

Figure 11: Various Joints for Franz Cell [37] 
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Table 2:Devices Currently on the Market 
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PermeGear, Inc. carries both Franz Cell and side-by-side (horizontal orientation) 

cell designs. All of their devices are hand blown glass. The joint sizes are also variable, 

as mentioned above. The side-by-side devices are water jacketed. The chambers are 

clamped together by a stationary vice that has rubber pads at the contact points of the 

chambers.  The vice is tightened, via a screw, and uses pressure to seal the chambers with 

the membrane between them. PermeGear also sells devices that allow for multiple side-

by-side chambers to be used at one time [42]. PermeGear’s Franz Cells come jacketed or 

non-jacketed. Due to the fact that all of the devices are hand blow glass, the jackets are 

not interchangeable. The device is two pieces: the top (donor) chamber, and the bottom 

(receiver) chamber with or without the jacket. The size of the upper chamber of the Franz 

cell comes in diameters of 5 to 25 mm. The various tops are mentioned above. All of the 

jackets are 30 mm in diameter. The receptor volume varies from 5 to 20 ml.  

Another company has taken a different approach. Logan Instruments Corporation 

has designed two separate systems using diffusion cells. The System-912 is an automated 

system that uses up to twelve Transdermal Diffusion Cells at one time [39] (Figure 12). 

The twelve cells allow for six experiments to be run at one time. The System-902 is also 

an automated system but it utilizes Franz Cells and is connected to an HPLC testing 

system [40]. The testing system reports for percentages of dissolved molecules or the 

amount in milligrams. The system is computer controlled.  
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Figure 12: Logan Instruments System 912 [39] 
 

Warner Instruments has many devices designed to measure diffusion of ions and 

molecules. The U2500 system is a side by side self-contained chamber system that has 

various inserts [43] (Figure 13). The round inserts with and without O-rings range from 

3.8 to 13.5 mm. Warner Instruments also has another Ussing chamber, U9500 [44], that 

comes as part of a kit. The circulation reservoirs are between 4 and 30 ml. The chambers 

are machined, solid, clear acrylic. There are sharp pins that go from one chamber into the 

other in order to clamp down the membrane. Warner Instruments intended this product to 

be used for epithelium research. The U9500 and U2500 have holes drilled into the 

chambers that allow electrodes to take measurements. However, these holes could be 

used for sampling. Warner Instruments has also developed a multi-chamber vertical 

diffusion device. It holds 12 chambers, facilitating 6 experiments. This system is used 

primarily for gas transport. The 12 channel gas manifold distributes gas to each of the 

chambers. Electrode caps allow proper positioning of electrodes within the chambers. 
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The heat block provides precise heating or cooling for the chambers. The heat block is 

regulated using a circulating water bath.  

 

Figure 13: U2500 System by Warner Instruments [43] 

Harvard Apparatus developed a two chamber, thermal controlled system that 

facilitates diffusion. The two Ussing chambers have an EasyMount insert slide for the 

membrane (Figure 14). The inserts are universal for the other devices Harvard Apparatus 

makes. The diffusion chambers vary extremely in size. The smallest is 2 mm in diameter 

and the largest is 12.7 mm diameter. Some of the diffusion chambers are designed 

specifically for a certain type of tissue [45]. The system also can be linked with several 

other chambers in parallel to accommodate high throughput applications. The tissues in 

the insert are easily placed in the chamber by loosening the thumbscrew between the 

chambers and then placing the insert with the tissue between the chambers and 

retightening the thumbscrew. This process helps in the high speed replacement of tissue, 

which makes this system an excellent high throughput device. 
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Figure 14: Diffusion Chamber of the EasyMount Diffusion System [45] 

As stated in the previous sections, there are many types of devices on the market 

that are currently being used to study the diffusion parameters of various membranes.  

Each of these devices uses particular materials that have both advantages and 

disadvantages. Table 3 summarizes the pros and cons of each different types of devices 

discussed. 

Table 3: Pros and Cons of the different devices discussed 
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2.7 Device Materials 
 

A component of designing a molecular transport device is to consider what 

materials would provide a transportable, transparent, water-tight, and cost-efficient 

system which was desired by the clients.  The materials used in devices already available 

on the market and those used in studies previously mentioned were evaluated, including 

acrylic, glass, stainless steel, polystyrene, and polycarbonate.  Other materials that have 

been used include Teflon and silicone, which were used for gaskets and other sealing 

purposes.  There are advantages and disadvantages to all of the materials used for these 

devices. 

 The main advantages of using acrylic for a diffusion system are that the material’s 

integrity will withstand long term use, is transparent, and light weight [46].  Acrylic has 

been compared to glass due to the common use of glass to create the chambers.  Acrylic 

has a higher impact resistance than glass, which means it does not need to be handled as 

fragile as glassware.  On the other hand, glass has more efficient heat transfer properties 

than acrylic.  The transparency of acrylic is beneficial for being able to tell whether or not 

there are air bubbles forming in the system.  It is a lightweight material, about half the 

weight of glass, which increases its portability, and acrylic can easily be machined.  

However, acrylic is non-resistant to chemicals such as ethyl alcohol, and therefore can 

only be cleaned with soap and water.  However, it is able to be sterilized by gamma 

radiation, if necessary.  It is compatible to use in conjunction with other materials and is 

overall very sturdy.  As mentioned above, a horizontal device has been made from acrylic 

and performed well [16].  



 57

 The devices offered by PermeGear® [6, 47], among others mentioned in the 

previous sections, are made from borosilicate glass.  Those made by PermeGear® are 

hand blown and provide seamless joints, which avoids difficulties of having to use 

gaskets and other types of sealants to prevent leakage.  Although heavier than acrylic, 

glass is still a fairly lightweight material.  It is also a translucent material which is 

convenient for observation purposes, and is a material that can be sterilized either by 

chemicals or an autoclave.    

 In the past, stainless steel was used to create some diffusion devices.  These had 

some obvious disadvantages; opaque, heavy, and expensive to create.  Also, stainless 

steel is a bit of a misnomer for its properties because they also had a tendency to rust 

when used long term [29].  This material however is now used as fasteners for some 

existing devices such as those seen at warneronline.com [48].   

 In one study performed to determine the in vitro permeability of the sclera to high 

molecular weight compounds, polystyrene cuvettes were used to create a diffusion 

system.  A window was carved into two cuvettes with a milling machine, and 

cyanoacrylate tissue adhesive was used to seal the sclera into place.  The cuvettes were 

pressed together and served as a sufficient apparatus for diffusion [49] . An example of a 

polystyrene cuvette may be seen in Figure 15. 
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Figure 15: Polystyrene cuvette[50] 
 After examining all aspects of past devices, our group developed an approach and 

plan for our project in order to find out what the client needed and how our ideas could fit 

their needs.  
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3.0 PROJECT APPROACH 
Once the background research was completed, the team brought focus towards the 

project deliverables.  After clarifying this approach, the hypothesis, assumptions and aims 

of the project were defined.   

3.1 Project Objective 
 
 The objective of this project was to design a molecular transport device to 

characterize membrane diffusion.  This device must be capable of holding a variety of 

membranes and allowing the transport of molecules with varying molecular weights.   

Once the device is proven to function properly, it will be transformed into a high-

throughput system.  This system provides the user with a more efficient testing 

environment.   

 Currently, there are fluid-to-fluid phase devices on the market which allow 

passive molecular diffusion. The goal of our device is to mimic this fluid-to-fluid phase 

diffusion. The major limitations of this project are the time and budget constraints. 

However, when these obstacles are overcome, our device will be used to characterize 

diffusion through collagen membranes. Our final project will be able to guide any user 

from the production steps of the device to finally utilizing the device to carry out fluid-to-

fluid diffusion studies through a membrane. 

3.2 Project Assumptions 
 Some assumptions needed to be made in order to meet the previously stated 

objective: 

• Device will allow controlled molecular transport to occur 
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• Collagen membranes being used have a uniform structure, such as 

porosity and cross-linking strength 

• Device users know and understand basic laboratory safety, techniques, and 

equipment 

3.3 Project Aims and Specifications 
 

The overall goal of this project is to develop a high-throughput molecular 

transport system.  The specific aims of this project to complete this goal include: 

• To model in vivo transport in an in vitro environment 

• To create a device with the appropriate materials that are non-porous and 

non-protein binding that develops a high-throughput system 

• To develop strict protocols to assemble and operate the device  

• To develop protocols for performing various experiments depending on 

transported molecules being tested  

• To develop assays specific to each molecule to determine the 

concentration of the molecule within the receiver chamber of each study 

• To generate and conduct analyses to assess the performance of the device 

for homogenous mixing, maintenance of constant temperature, and to not 

leak. 

• To determine diffusion coefficients in membranes 

3.4 Project Approach 
 

In order to meet these goals, the group used previous research about the current 

devices on the market as their foundation.  With this research of devices and materials, 
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the group used the engineering design process to define objectives for their own device.  

These objectives were weighted in order to determine the key factors that should be 

implemented to meet the user needs and requirements.  The specific functions of the 

device were determined and means of implementing the functions were brainstormed.  

Comparisons of the various means were used to determine which mean was the best 

option for each function.  Various design alternatives were defined as well, looking at 

which designs best met the weighted means.  A final design was chosen for production.  

Working together, the team constructed a high throughput system which was then 

validated through testing temperature control, mixing, and leakage. 
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4.0 DESIGN 
The use of molecular diffusion devices is of interest to many researchers within 

the field of tissue engineering.  As previously stated, the basal lamina resides in many 

areas in the body.  Scientists today are researching areas such as the skin, digestive 

system and respiratory tract to learn how the basal lamina affects bodily functions.  The 

device desired by the client would allow researchers to characterize membranes that 

could be used in various areas of the body. This would assist in the research of possible 

substitutes for areas where the structure and function of the tissue is lost.  The 

development of this in vitro device could advance medical research by assisting studies 

that are geared toward implementing a substitute within humans. 

   This project’s device is being designed for specific users: Katie Bush, George 

Pins, Ph.D, and the MQP team. Bush is a graduate student at Worcester Polytechnic 

Institute and UMASS Medical School. She is conducting research on collagen 

membranes that are used for skin substitutes within the laboratory of Dr. Pins, an 

associate professor in the Biomedical Engineering Department at Worcester Polytechnic 

Institute.  Bush’s in vitro testing with the device would provide preliminary information 

about the effect of various membrane characteristics (i.e. pore size, density, thickness) on 

tissue regeneration.  The device will provide a quantitative evaluation of how various 

sized molecules transport through the different membranes.  This data will be analyzed 

and used to infer how cells, specifically keratinocytes and fibroblasts, within the skin 

substitutes, interact with each other via the diffusion of growth factors through the 

collagen membrane.   
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The original client statement was presented to the team on August 28, 2006 which 

read, “Design, develop, and validate a high-throughput device to measure molecular 

transport rates through self-assembled collagen membranes”.  A brief background was 

provided with the statement, as seen in Appendix A, which demanded a need for a 

diffusion device and protocol of how to measure molecular transport rates. The results 

would be used to improve the development of scaffolds that promote tissue regeneration 

to assist Bush’s thesis work.  The importance of making it a high-throughput system is to 

decrease the amount of time it takes to perform these diffusion studies. 

4.1 Clarification of Design Goals 
 
 This section describes the course of action the team took to develop the Revised 

Client Statement.  Overall project goals were identified and mapped out before the design 

process was initiated.  Various methods were used to evaluate and establish the objectives 

of the design and formulate design specifications that shaped the Revised Client 

Statement. 

4.1.1 Establishing Project Goals 

 Initially, the team began research on the topic and searched for information on 

different types of diffusion devices that have been used in the past and are being used 

currently.  This research focused on the motivation of the diffusion studies, the devices 

used, molecules and membranes tested in the studies, and the validation techniques 

performed to produce quantified results.  It was important to differentiate the studies by 

comparing and contrasting them to each other.  Although scholarly articles were the main 
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resources for our research, information from websites for different devices currently 

available to purchase were also explored, as recorded in the background section. 

 Once the client’s desires were better understood and enough information 

regarding the types of diffusion chambers was gathered and organized, a map of what 

needed to be completed for the project was created, as seen in Figure 16. This map details 

our design process. The base of this project began with the research, stated earlier in the 

background section. This section details the next step: the design of the device. The 

figure displays the overall steps of how the team planned to accomplish the task at hand. 
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Figure 16: Map of Project 
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4.1.2 Constraints, User Requirements, and Functions 

 A meeting was set up with Katie Bush for the team to ask some client questions in 

order to grasp a better understanding of specific functions the device should be capable of.  

In this meeting, Katie and Dr. Pins explained the research that they are interested in.  A 

detailed transcript of this meeting can be found in Appendix B.  Also, equipment that is 

in Dr. Pins’ laboratory that is available for the use of our project was shown to the team. 

This equipment included a magnetic stir plate, water bath, and shaker plate.  A brief, 

general demonstration of the horizontal diffusion chamber from PermeGear® [6], seen in 

Figure 17 below, that Katie has been using in the laboratory was performed two days 

later to get a better understanding of what our device would need to be capable of. 

 

Figure 17: Side-Bi-Side Chamber 
 

Katie’s research was described to us in order to help us grasp the purpose for the 

device. Katie is currently working to fabricate collagen with topographical features 

similar to basal lamina in the skin. Keratinocytes would be seeded on this collagen. 

Below the collagen would be a dermal sponge with fibroblasts. The theory is that the 

fibroblasts send molecular signals to the keratinocytes that tells them to proliferate. Our 
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device will help Katie characterize the diffusion of molecular signals through the 

fabricated collagen that has been topographically modified to resemble the basal lamina 

in skin. Once the client’s research was understood, the information pertaining to our 

project was extrapolated from the research materials gathered. 

From the literature review, the advantages and disadvantages of the horizontal and 

vertical devices were established, as described in section 2.4 of the background. In order 

to determine and weigh the objectives of the project, the constraints, user-requirements, 

and general functions were established from this background research and the meeting 

with Katie. They can be seen in Table 4.  

 
Table 4: User Needs, Wants and Constraints 

 

Constraints of the overall project were defined, as well as constraints for the 

creation of the device.  The project constraints included that the amount of money spent 

could not exceed what is reimbursed by the school, which is $468.00.  Also, the project 

needed to be completed in time for Project Presentation Day at Worcester Polytechnic 

Institute, April 17, 2007.  Additionally, the constraints surrounding the design of the 

device include the use of a material that is non-protein binding, non-porous and 

translucent.  All areas of the device must be cleanable and therefore accessible, and the 

device’s cost must not be excessive and it must be able to be reproducible. 
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User-requirements defined by the client were compiled.  The laboratory that the 

device will be used in has a varying environment which this device must withstand.  The 

client desires to use the minimal amount of materials, including molecules and 

membranes. The device must be transportable and must fit on a bench-top in the existing 

laboratory. The high-throughput device should have at least 12 chamber pairs, so the 

bench-top fit became a constraint.  Also, it is preferred that the donor and receptor 

chambers are equivalent in size, which should be between 3-5 milliliters a piece. The size 

of the chambers was determined by the assays that would be used to detect the molecular 

concentration. The assays require approximately 100 µl to be run. The chambers should 

be translucent for clear observation, and the system must be easily assembled, operated 

and cleaned. 

The device functions were then defined, and can be seen in Table 5.  It was 

decided that the device must control a temperature of 37º C for the in vitro environment 

accurately and keep solutions in both the donor and receiver chambers homogenously 

mixed.  The device must stand on its own and also secure a fixed position of the 

membrane between the chambers.  Finally, the device must produce repeatable results 

(self- accuracy) and allow accessible extractions for sampling from the receiver chamber. 
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Table 5: Function Details 
Function Parameters 

2 symmetric 3-5 mL chambers that do not leak 
Molecular diffusion through membrane 

Means of holding membrane 50-200 µm thick between 
chambers 

Temperature control of chambers Chamber temperature achieves steady-state 25-40°C 

Mixing of chambers Solution and molecules homogenously mixed together 

Chambers accessible for sampling Port to each chamber large enough for 500µL pipette 
tip to fit 

4.1.3 Weighing Objectives 

From constraints, user-requirements, and basic functions the team began to 

formulate objectives for the design of the molecular transport device.  The objectives 

created by the team originally are as follows: 

Table 6: Objectives 
 Accurate  Versatile 
 Durable  Safe 
 Affordable  Efficient 
 Easily Used  High- throughput 

 

These objectives were expanded upon and assigned into four tiers and then 

evaluated in a client meeting with Dr. Pins and Katie.  Many of the team’s original 

objectives were maintained, but were rearranged and clarified.  Once the objective tree 

was finalized, a glossary of terms (Appendix C) was supplemented with definitions of 

any terms that could be misinterpreted.  The glossary was especially helpful for Dr. Pins 

and katie to use when filling out the pair-wise comparison charts (PCCs) to quantitatively 

weigh the importance of the objectives against each other.    

The PCCs are tables that are used to compare the objectives within each tier of the 

objectives tree against each other.  The final PCCs can be found in Appendix D.  In the 
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tables, a one assigned to a box means that the objective in that row was rated more 

important than the objective compared to it in the appropriate column.  A zero means that 

the objective in the column was more important than that in the row, and a half of a point 

was used to establish that the objectives were equally important.  The points for each 

were tallied, as seen in Appendix E, and then weighted.  Katie Bush’s input from the 

PCCs was weighted 100% because of her direct involvement with the device to be 

created and experience using her horizontal device from PermeGear [6].  The team’s 

PCCs were weighted 75% total (25% each) because the team’s understanding of the 

devices based on research, as seen in the previous sections.  Finally, Dr. Pins’ charts were 

weighted 50% because of his expertise in the studies carried out in his lab and knowledge 

of the device but limited experience directly using them.  Once all of the PCCs were 

totaled and weighted, the objectives were weighted.  Each objective was given two 

percentages, x | y, where x represents the percentage of the objective in relation to the 

other objectives within its tier and y is the percentage of the objective in relation to the 

preceding tier.  The first tier of objectives rated in order from highest to lowest priority: 

effective, durable, easily used, safe, and practical to make.  A tree with all of the 

objectives associated with these five and with their appropriate weights can be seen 

below in Figure 18. This figure also shows that versatility was a very important objective 

for us to meet. In its tier, leaking was found to be the most important objective to keep in 

mind. These objectives helped us when designing for the needs of our users. We also 

found from this weighted objective tree that it would not be as crucial for the device to be 

cell co-culture compatible, as this objective scored extremely low within its tier and as a 

whole. The most important objectives were to effectively carry out the desired functions, 
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for its durability to be reliable both long term and short term, and for its assembly, clean 

up and general size to be convenient.  Table 7 below shows the first and second tier 

objectives which scored the highest in their comparison to the other objectives within 

their tier. 
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Figure 18: Weighted Objectives Tree 
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Table 7: Highest Ranked Objectives 
First Tier Second Tier 

Versatile 0.221 Effective 0.331 Efficient 0.110 
No Leakage 0.050 Durable 0.229 Long Term 0.046 
Easy to Clean 0.053 Easy to Use 0.205 Easy to Assemble 0.059 

4.1.4 Revised Client Statement 

Developing design specifications was the next step in the design process in order 

to establish the final Revised Client Statement.  These included prescriptive, procedural, 

and performance specifications.   

The prescriptive specifications are those which specify values for attributes of 

what is being designed.  These include that the chambers will be translucent, non-protein-

binding, and each (donor and receiver) will be about 3-5 mL.  The cost of designing and 

developing the device will be less than $468.00.  The device will fit on a bench-top about 

2 ft2 and able to be cleaned.  

 The procedural specifications include that sample sizes extracted from the 

receiver chamber will be between 25- 500 μl.  The buffer solution used in tests will be 

phosphate buffered saline (PBS).  The device must be capable of maintaining temperature 

in the range of 25-40°C.  Duration of experiments must be no longer than three days.  

The main assays being used will include the Bicinchoninic Acid (BCA) and Glucose 

Hexokinase assays, depending on the molecule.   

The performance specifications include that the device should hold membranes of 

varying thickness, usually about 100 μm, but within the range of 50-200 μm.  The 

receiver chamber must allow samples of 0.3 mL to be removed at a time.  After 

researching the size of various molecules used within diffusion studies, the molecules for 
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our studies were chosen (molecule research see Appendix F).  The molecules that can be 

tested include glucose, BSA, IgG, cytochrome C, and myoglobin.  Finally, the device 

must homogenously mix the solutions in both the donor and receiver chamber and there 

is no specific stirring speed necessary. 

 Through the design techniques previously explained, the team was able to 

generate a revised client statement. The revised client statement: 

Design a high-throughput device with 12 chambers to quantitatively characterize the 

rate of molecular transport via assays for glucose, equine myoglobin, BSA and IgG 

through self-assembled collagen membranes ranging from 50- 200 μm thick. The 

easily operated, assembled and cleaned device must have non-protein binding 

chambers, fit within one square foot area, and provide a controlled temperature 

environment (25-40°C) for testing. The developed device will have homogeneously 

mixed chambers between 3 and 5 mL, require a minimal use of materials of interest, 

and cost less than $468. The validation protocol of this device will follow a molecule 

dependent assay requiring a sample amount between 25 μl – 500 μl for maximum 

experiment duration of three days. 

4.2 Brainstorming 
 
 After the Revised Client Statement was established, brainstorming sessions could 

begin for the design of the device.  The purpose of the brainstorming sessions was to 

create a morphological chart of features and functions and the various means that could 

be used to implement them.  From this chart, the pros and cons of each component could 

be evaluated to begin the conceptual design phase. 
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4.2.1 Brainstorming Sessions 

 There were three main brainstorming sessions organized by the team for the 

design of the device.  The first was held on October 9, 2006 with Bush, Dr. Pins, and all 

three team members.  At this session the features/ functions brainstormed on included 

temperature control, having an adjustable chamber size, homogeneous mixing, multiple 

chamber system (high-throughput), and materials for the chambers.  The adjustable 

chamber size idea was very creative but not incorporated within the functions/ features 

that needed to be evaluated because it was outside the scope of what the device needed to 

perform.  In Table 8 below, the possible means of the adjustable chamber that were 

brainstormed can be seen. 

 
 

Table 8: Brainstorming Means of an Adjustable Chamber Size 

 

 The second session was held among the three team members on October 27, 2006 

and focused on the donor/ receptor chamber engagement, how the device may hold 

membranes of varying geometry, and the sampling ports.  During this session all of the 

brainstorming ideas for the major features and functions thus far were complied into a 

morphological chart. 
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 The final brainstorming session was held at Ximedica, a medical device design 

company in Providence, RI.  Three designers/developers that work for the company 

brainstormed with the team on the design of the system using the functions means charts.  

From the brainstorming session the team decided to avoid having any extra areas that 

could leak.  It was noted that motors would add many holes in the chambers of the system 

which would need a sealant and create more potential for leaking. 

4.2.2 Morphological Chart 

 Upon completion of the brainstorming sessions, the means of each function/ 

feature that the molecular transport device should contain were put together as seen in 

Tables 9, 10, and 11 below. 

Table 9: Functions Means Chart for Temperature Control, Engagement, and How to Hold 
Membranes 
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Table 10: Function Means Chart for Multiple Chamber System and Mixing 
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Table 11: Function Means Chart for Materials and Sampling Port 

 

4.2.3 Pros and Cons of Means for Each Function/ Feature 

 Each of the possible means for each feature/ function was evaluated and a detailed 

list of each of their advantages and disadvantages was recorded which helped to 

determine the best possible means to accomplish the desired functions of the device.  

Listed below are the seven features/ functions that were identified during brainstorming, 

a brief description of each mean possible to implement them and summaries of the pros 

and cons of each (Tables 12-17).  

1. Temperature Control (means within Table 9) 
 Temperature can be controlled through two mediums: water and air. There are 

various ways these mediums can be applied to a molecular transport device. 
 A. Snake – A solid block of material drilled out to allow water to flow 

through tube on each side of the chambers with use of a water bath and 
peristaltic pump. The flowing water will keep the chambers at the desired 
temperature by thermal diffusion. 
B. Plate - A heating plate will be placed beneath the system to control the 
temperature of the chambers.  
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C. Water Bath – The chambers would be submerged in a temperature 
controlled water bath 
D. Water Jacket – A sleeve will be built around the chambers to hold 
flowing water to control the temperature within the chambers—used with 
peristaltic pump and water bath. 
E. Incubator - The device will be placed in an incubator to keep it at a 
constant temperature.  
 

Table 12: Temperature Control Pros/ Cons 
1. Temperature Control Pros Cons 

Snake 
 Controlled use of water 
 Simple design 
 Adjustable temperature 

 Does not heat from all sides 

Plate  Adjustable temperature 
 Available in laboratory 

 Heats from one direction 
 Cannot work in conjunction 

with some mixing means 

Water Bath 
 Heating from all sides 
 Available in laboratory 
 Adjustable temperature 

 Higher potential of leakage 
 Contamination of tests 
 Cannot work in conjunction 

with multiple mixing means 

Water Jacket 

 Constant temperature 
control 

 Heating from all sides 
 Adjustable temperature 

 Manufacturing difficult — 
keeping jacket stationary 
around chamber 

 Needs more ports to seal 
 Possible contamination 

Incubator 

 Available in laboratory 
 Adjustable temperature 
 Accurate temperature 

settings 

 Time to normalize each time 
incubator opened 

 Door must be opened each 
time samples taken 

 Cannot work in conjunction 
with multiple mixing means 

 
 
2. Donor and Receptor Engagement (means within Table 9) 

The two chambers need to be fitted together water tight in order for controlled 
transport to take place.   

A. Draw Latch - A latch with tension on top of one chamber that hooks 
into the other chamber. 
B. Screw- lock - Each chamber machined to have an interlocking 
component that, when the chambers are twisted, will pull the two 
chambers together.  
C. Manual Screw - One of the chambers will be stationary and the other 
chamber will be pushed against it and screwed into compression—a vice 
system. 
D. Slide – One chamber is stationary, the second is in a groove and slides 
up into a fixed position against the stationary chamber. 
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Table 13: Donor and Receptor Engagement Pros and Cons 
2. Donor and Receptor 

Engagement Pros Cons 

Draw Latch 

 Easy/ quick to use 
 Simple design 
 Usable in conjunction 

with gaskets/ o-rings for 
sealing 

 
 Bottom half bulging open 
 Cannot be put on either side 

if parallel arrangement 
 Additional part to purchase 

and attach 
 

Screw- lock  Locking system built in – 
no extra parts 

 
 Difficult to machine 
 Requires twisting of 

chambers 

Manual screw 

 Easy/ quick to use 
 Usable in conjunction 

with gaskets/ o-rings for 
sealing 

 Even compressive force 
 Good alignment 

 Extra component to design 
or purchase 

Slide  Good alignment  Weak compressive force 
 

 
3. Holds Membranes of Varying Geometry (means within Table 9)  
 The device must hold the membrane stationary and secure during testing.  Also, 

membranes can be created in various shapes and sizes.  The device could allow 
various sized membranes to be used. 

A. Teeth Cartridge – A system in which all membranes being 
tested could be lined up at once and pressed between two slabs; 
this entire system could slide into place with each membrane 
between chamber pairs. 
B. O-Ring – This piece could be used to press the membrane into 
place on the face between chamber pairs – currently how 
PermeGear side-bi-side system works.  
C. Individual Cartridge – Similar to teeth cartridge, but placed in 
between chambers separately—not all chambers connected. 
D. Press-fit – Similar to individual cartridge except that the hole on 
each side of the two pieces is what seals the membrane and presses 
it into place. 
E. Multi-shape Cartridge – Similar to “teeth cartridge” but would 
have two different pieces available; one to hold a larger membrane 
and one to hold multiple smaller membranes. 
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Table 14: Holds Membrane of Varying Geometry Pros and Cons 
3. Holds Membrane of 

Varying Geometry Pros Cons 

Teeth Cartridge 

 Membranes all set up in 
one system 

 Seal around membranes to 
prevent leakage 

 No size variability 
 Takes up whole system 

O-ring  Proven to work 
 Guarantees seal 

 Material degradation 
 Strain on membrane when 

pushed into place – could 
tear when putting in place 

Individual Cartridge 

 Easy to slide membrane 
into place 

 Seal around membrane to 
prevent leakage 

 Need more components 
made 

 No size variability 

Press-fit  Seal around membrane 
 Easy to assemble 

 Could tear membrane 
 No size variability 
 Needs to be slid between 

chamber pair carefully to 
maintain alignment 

Multi-shape Cartridge  Size variability 
 One large membrane could 

have leaking 
 Takes up whole system 

 
 
4.  Multiple Chamber System (means within Table 10) 

The chamber pairs can be aligned in different orientations in order to make this a 
full high-throughput system. 

A. Parallel-Vertical – Stacking parallel chambers on top of one another 
B. Parallel-Horizontal – Lying chamber pairs next to one another 
C. Series – Aligning chamber pairs end to end 
D. Parallel and Series – Aligning chamber pairs in grid-like fashion 
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Table 15: Multiple Chamber System Pros and Cons 
4. Multiple Chamber 

System Pros Cons 

Parallel-Vertical  Takes up less bench-top 
space 

 Need to sample from the 
side 

 Need a fixture to balance 

Parallel-Horizontal 

 Chamber pairs can be 
more independent from 
one another 

 Easily accessed ports 

 Consumes more bench-top 
space 

Series 

 May be easier to create 
temperature control water 
flow system 

 Easy access to all areas of 
chambers 

 Not an efficient use of space 
 May limit what temp. 

control may be used due to 
space consumption 

Parallel and Series  Efficient use of space 
 

 Efficient use of space 
 Chambers in center difficult 

to access and observe 
 Chambers would be as 

independent 
 
 
5. Homogenous Mixing (means within Table 10) 
 Both the donor and receiver chambers will hold a solution that need to maintain 

homogenously mixed in order to reduce boundary layer formation.  
A. Shaker Plate – Entire system can be placed on shaker plate and set at 
constant rate to agitate solution. 
B. Rocking Stirrers - Simple hinge flapping back and forth with shaker 
plate that would increase solution movement. 
C.  Inflatable Balloon – If the chambers are in a water bath, a balloon 
could be placed in the bottom that inflates and deflates to push each 
chamber pair up and down to agitate the fluid. 
D. Stir Bars – Magnetic stir bars are placed in each chamber and system 
put over a magnetic plate. 
E. Small Mechanical Stirrers – Each chamber gets a motorized stirrer that 
can be attached to the sampling port cap. 
F. Large Mechanical Stirrers – Motorized stirrers go through all receptor 
chambers/ all donor chambers — a long shaft that rotates. 
G.  Stirrers with Retractable Fans – It’s the same concept as large 
mechanical stirrers but have fans on the shaft that go into each chamber 
and retract when shaft is removed from system for cleaning. 
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Table 16: Homogeneous Mixing Pros and Cons 
5. Homogenous Mixing Pros Cons 

Shaker Plate  Available in laboratory  Securing system 

Rocking Stirrers  Easy to manufacture  Difficult to clean 
 Securing system 

Inflatable Balloon  Rate of bobbing easily 
controlled 

 Chambers need to be 
submergible 

 Major space consumption I 
water bath 

Stir Bars  Easily used 

 High- throughput system 
cannot be placed on a single 
magnetic plate and ensure 
controlled stirring 

Small Mechanical Stirrers  Easily cleaned 
 Taken out when samples 

extracted 
 Motors could get wet 

Large Mechanical Stirrers  Few motors to control 
system 

 Need multiple sealing points 
 Contamination from sealant 

debris 

Stirrers with Retractable 
Fans 

 Few motors to control 
system 

 More surface area stirring 
chambers to ensure 
homogeneous 

 Need multiple sealing points 
 Contamination from sealant 

debris 

 
6.  Material for Chambers (means within Table11)  
 Acrylic, or Plexiglas, is a good material due to its availability. It does meet the 
transparent requirements. However, it’s not known how well proteins don’t bind to it. 

Polycarbonate was found to be more expensive than acrylic. It also has been used 
in previous devices. Polycarbonate is also available. 
 
7. Sampling Ports (means within Table 11) 
 The device can either have open ports that would need to have a removable cover, 
or a rubber stopper to use with a syringe. 

Table 17: Sampling Ports Pros and Cons 
4. Sampling Ports Pros Cons 

Open Slot 

 No obstruction during 
sampling 

 Can use with pipette tips 
 No extra parts 

 Splashing 
 Need to remove and replace 

cover for each sample 
extracted 

 Splashing may cause some 
solution to be lost 

Rubber Syringe  No splashing 
 No cover 

 Must use needle syringe 
rather than pipette 

 Degradation of material 
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4.3 Preliminary Design 
 

Once the team had an idea of the various means to carry out specific functions of 

the device, each previously defined objective was reviewed in order to create a ranking 

system metric.  This system would be used to rank how each means of carrying out a 

specific function would meet each objective.  Every objective was looked at individually 

in order to develop a quantified ranking system.  Due to the fact that some of the first tier 

objectives were very broad, the second or third tier of the objectives tree was used to 

develop the metrics.  The metrics were based on qualitative and quantitative 

measurements of the objectives for the device.  They allowed the team to see which 

means are most favorable for the final design proposal or at least narrow down choices to 

bring focus to what should be prototyped.  The development of the metrics is also what 

led to the generation of full conceptual design alternatives, which consisted of putting 

together of various means for the different components to see how an entire system could 

work.  These conceptual designs can be found in Figures 20-25 below, along with the 

pros and cons of each system in the corresponding tables (Tables 18-23).  The pros were 

based on whether or not the design would satisfy the objectives of the first tier. 
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Figure 19: Conceptual Design I 

 
 

Table 18: Pros and Cons of Conceptual Design I 
Conceptual Design I 

Pros Cons 
 Effective 
 Practical to make 
 Easy to use 

 Larger membrane may not be 
conservative use of materials 

 Motors in water 
 Possibility of leaking 
 Cartridge implementation may be hard 

to seal 
 

 
Figure 20: Conceptual Design II 
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Table 19: Pros and Cons of Conceptual Design II 
Conceptual Design II 

Pros Cons 
 Safe 
 Practical to make 
 Durable 

 Variation in temperature 
 No change in membrane size 
 Possible leakage due to improper 

engagement or weak compression 
 Necessary for user to hold donor and 

cartridge while trying to latch receptor 
 g

3 parallel tubes 3 parallel tubes 
with 3 sets of cellswith 3 sets of cells
Membrane slides Membrane slides 
in across the 3 in across the 3 
tubestubes
Stir bars that go Stir bars that go 
through all through all 
chamberschambers
Water bathWater bath

 
Figure 21: Conceptual Design III 

 
 

Table 20: Pros and Cons of Conceptual Design III 
Conceptual Design III 

Pros Cons 
 Effective 
 Easy to clean 
 Easy to use 

 No change in membrane size 
 Many parts 
 Motor in water 
 Many openings to seal 
 User required to assembly and clean 

many pieces 
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Figure 22: Conceptual Design IV 

 
Table 21: Pros and Cons of Conceptual Design IV 

Conceptual Design IV 
Pros Cons 

 Safe 
 Easily Used 
 One base can fit several sets of 

chambers  

 No mixing 
 No varying membrane size 
 Possible material damage due to press 

fit 
 Hard to bend material to make press fit 

 

 
Figure 23: Conceptual Design V 

 
Table 22: Pros and Cons of Conceptual Design V 

Conceptual Design V 
Pros Cons 

 Effective 
 Safe 
 Durable 
 Practical to make 
 Easy to use 

 Various membranes 
 Various number of tests 
 Minimal leakage  
 Stirrer inserts 
 Easy for user to slide/manipulate 
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Figure 24: Conceptual Design VI 

 
 

Table 23: Pros and Cons of Conceptual Design VI 
Conceptual Design VI 

Pros Cons 
 Effective 
 Safe 
 Durable 
 Practical to make 

 One membrane size 
 Very safe for user 
 Possible leakage 
 Not as easy for user to assemble/clean 

4.3.1 Metrics 

 In creating the metrics, we further analyzed and defined the objectives we had 

identified earlier in the design process.   Metrics were scored on a variety of scales; each 

scale has the lowest number denoted as being the worst and the highest as being the most 

favorable.  The rankings led to the determination of the most favorable means of the 

features and functions desired for the design of the device.  The best design was 

formulated from the implementation of these metrics to the means because it incorporated 

the components that score the highest in the rankings. 

 For two main objectives, controlling temperature and homogeneously mixing, 

sub-objectives/metrics needed to be defined due to the fact that each function 

(temperature control and mixing) could not be solely weighted against the general 
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objective.  For example, to meet the specific function of controlling the device’s 

temperature, more variables needed to be taken into account such as the ability to evenly 

distribute heat, not allow infiltration of water, maintain temperature within two degrees of 

the actual setting, and allow the use of a range of temperatures. All metrics that were 

developed and justified can be found in Appendix G and H, respectively. 

4.3.2 Decision Matrices 

Once all of the metrics were developed, each possible mean previously defined 

for each specific function was weighted using the metrics (Appendix I).  First, the weight 

for each objective was obtained from the weighted objectives tree.  Next, this weight was 

multiplied by the highest possible ranking that the objective could obtain.  For example, 

the high throughput objective was weighted 7.9 percent.  It could receive the highest 

ranking for 4, on a 1 through 4 scale.  The weighted percentage was then multiplied by 4 

to calculate the highest ranked weighted percentage (7.9% x 4 = 31.6%).  For each 

objective, the highest ranked weighted percentage possible was computed to find the total 

possible weighted percentage an ideal device’s function could have.  Each means for a 

particular function was first ranked based on the metrics.  These rankings were then 

weighted and summed for all of the objectives for each means.  The sums of each mean’s 

weighted total percentages were then compared to the total possible weighted percentage 

that a mean in that category (function) could obtain.  The mean with the highest summed 

weighted percentage was defined as the best mean to carry out that particular function.  

This process was carried out for each function. 

 Particularly for two functions, extra information needed to be compiled.  In order 

to actually weigh each mean that affordability was applicable to, outside research needed 



 90

to be compiled.  Various prices were found for each mean, and an average price was 

calculated which was used in the affordability ranking (see Appendix J).  Also, for the 

ability to control temperature for the two materials that were compared (acrylic and 

polycarbonate), crude temperature calculations were carried out to see which material 

was a better conductor of heat (see Appendix K).   

4.4 Proposed Final Design 
 
 From the evaluation of the various means for each feature and function, the final 

components desired for our device were established and can be seen in Table 24. The 

next step was to itemize how each one of these components would be implemented in the 

design.  

Table 24: Results of Rankings 
Function/ Feature Means 

Temperature 
Control 

Snake 

Engagement Screw 
Hold Membranes Single Cartridge 

Mixing Shaker Plate 
Multi- Chamber Parallel 

Chambers 
Materials Polycarbonate 
Sampling Open ports 

 
 The first feature the team focused on was the snake for controlling temperature.  

Originally the team thought that all of the chambers would be cut out of a single block 

and there would be a passage for water flow carved through around the chambers.  This 

concept changed slightly when the client desired to have each experiment being tested 

independent from one another.  For example, if one diffusion experiment was being 

carried out and there was a problem with bubbles or leakage, the client would not want to 
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have to interrupt all of the other tests in progress.  If the chambers and temperature 

control system were all connected this would create an issue for being able to control 

each experiment independently.  Therefore the team discussed how water from a bath 

could be run through the entire system while keeping each donor/receiver pair 

independent from one another.  From this, the team decided to have each chamber pair 

separate from one another and use tubing to connect the water bath together.  There 

would need to be further research on various means to connect tubing from each water 

flow path carved, which is detailed in the following Section 4.4.2. 

 The engagement of the two chambers together with a screw mechanism as 

described earlier essentially calls out for some type of vice or clamping system.  The 

group decided to explore various products available on the market in order to implement 

this component. 

 The single cartridge to hold each membrane would need to serve two purposes.  

Each side of the cartridge would have to come together tightly to hold the membrane 

securely in place and there would need to be a way for it to connect to the donor/receiver 

system.  The team decided there would also need to be some type of sealant between the 

cartridge sides and where piece of the device would be against the donor and receiver 

parts.  

 From this simple analysis of how each feature and function would be 

implemented, the team began to compile research on ways to implement tubing for the 

temperature control, various sealants, and ways to clamp the system together.  First, a 

simple model of the main components of the design was created in order to provide the 

team and clients with a hand on visual aid of the concepts discussed above.  
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4.4.1 Model 

 Before creating the model, CAD models were created for dimensions.  The 

drawings were completed with metric units and did not include any tolerances.  The 

purpose of this model was purely for a better conceptual understanding of each 

component.  The specific sizes of each part were negligible. The dimension of the two 

blocks clamped together was 50 X 60 X 50 mm (1.97 X 2.36 X 1.97 in). 

 A model of the donor and receiver portions of the device was constructed from 

rigid polyurethane foam.  The pieces used were from a scrap bin.  Scrap pieces of 

unknown plastic were used to implement the portion of the donor chamber to hold the 

membrane cartridge.  Scrap pieces of wood and a bolt were used to display a clamping 

mechanism.  Figure 26 shows a schematic of the components. The bottom of both 

chambers also featured a thin, rectangular extrusion through the middle that fit into a 

trough of the clamp which was intended to help guide the two blocks together with 

proper alignment (Figure 27). Also, tabs on each side of the front face of the receiver 

blocks matched with two cuts holes on the donor block to be sure there was proper 

alignment when they clamped together.   

 
Figure 25: Model constructed from rigid foam, plastic, and wood 
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Figure 26: Receiver (left) and donor (right) models: A. flow path for water bath, B. receiver chamber, 

C. sample port, D. tabs for fitting together, E. cartridge holder, F. donor chamber 
 

 
Figure 27: Trough of clamping system for model 

 
 Once the model was created, it was decided that flexible tubing would be used to 

connect the snake temperature control system.  In order for this to occur, connectors were 

needed for each of the inlet and outlet sites on each block. The team decided that the 

inlets and outlets of each end of the path for water could be tapped and luers could be 

fixed into place permanently.  Silicone would be used in the threads of the luers in order 

to prevent leakage in the temperature control snake. The water would run through the 

system as seen in the schematic below (Figure 28).   
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Figure 28: Arrows denote the flow from water bath to control temperature; red oval indicate where 

tubing connectors would be fixed into block 
 
 It was also decided that the connectors on the top of the block should be angled so 

that the tubing between them could be fed around the sample port.  If straight connectors 

were used, such as that in Figure 29, the tubing would run orthogonal to the block and 

possibly obstruct the sample port.  The team looked various at companies that sold such 

luers including Qosina, Value Plastics, Cole Parmer, McMasterCarr and Home Depot.   

  
 

 
Figure 29:  Example of the luer fitting[51] 

 
 The two types of flexible tubing that the team desired to use were latex and 

polyvinyl chloride (PVC).  The PVC had slightly more rigid properties, so the team 

decided it should be used to connect the two tubing connectors on the top of the block, 
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because this tubing would be permanently fixed.   It was desired that the tubing in 

between blocks could be disconnected to make cleaning purposes easier for the user.   

 The next component of the system the team evaluated from the model was how to 

prevent leakage between the cartridge pieces and the interface between the two blocks.  

The system would need some type of sealant.  O-rings were chosen as an appropriate 

component to do this. The team decided that a series of three o-rings would effectively 

seal the system; between the sides of the cartridge, and between the cartridge and blocks 

on each side.  In Figure 30 of the cartridge, the grooves around the hole in the middle 

where the membrane is exposed between the chambers are where the o-ring between the 

two cartridge sides would be placed.  These drawings of the cartridge were made to fit 

the model, although a physical representation of them was not created.   

   
Figure 30: Cartridge design for model with o-ring grooves 

4.4.2 Additional Constraints 
 
 The team became aware that the weight tolerance and size of the pad of the shaker 

plate in Dr. Pins’ laboratory must be known before specific dimensions of the device 

could be made. The VWR DS-500 Orbital Shaker Plate present in the laboratory (Figure 

31) has a platform area of 10 ½ X 12 ½ in (27 X 32 cm) and a weight capacity of 16kg 

(35lbs.).   
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Figure 31: VWR DS-500 Orbital Shaker Plate 

 
 These constraints had the most effect on the final component of the system that 

needed to be explored which was how the two blocks and membrane would be clamped 

together.  The team made the decision that it would be best to modify an existing clamp 

or vice on the market for the system.  From basic searches through catalogs, it was 

identified that vices are rather heavy, expensive tools because many are made from steel 

or thick aluminum.  These tools are also bulky and would use up too much of the limited 

space on the shaker plate. The team therefore began to look into multiple different types 

of clamps and vices including bar clamps, C-clamps, and a variety of vices.  The team 

decided to use an aluminum corner clamp from Home Depot. The corner clamp features 

two simple clamps to set pieces of wood orthogonal to one another in order to create a 

frame.  The team decided that this clamp could be modified to use with the design system 

and that each clamp could be cut in half and one side could be used for each set of donor/ 

receiver blocks (Figure 32).   
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Figure 32: Top view of how corner clamp would be split in half 

 
 The limited space of the shaker plate platform for the system also required the 

team to evaluate the best way the chambers should be lined up.  The team decided that 

there would be two columns of chambers parallel to each other.  A schematic of this 

layout can be seen in Figure 33 below. 

 

 
Figure 33: Layout of chamber pairs on shaker plate; R is receiver chamber, D is donor chamber 

4.5 Development 
 
 Once each component of the device was discussed, the team decided to consult, 

Mike O’Donnell, head of the WPI manufacturing laboratory.  The first suggestion that 

was given to the team was to make all parts with English units because the machine 

laboratory had limited tools and hardware in metric sizes.  Also, the team was informed 

that scrap materials in the stock rooms and/or hardware within the shop was available for 
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se.  More specific design modifications from this consultation are described in Section 

4.5.1.1. 

 A major constraint arose from this first meeting with O’Donnell.  He was 

informed that the team’s goal was to produce twelve copies of each part in the system; he 

replied that there were limited amounts of people working on parts for projects on 

campus.  He estimated that that volume of parts that the team demanded would take until 

about May to produce because there were many steps involved in the process of creating 

them and their small size and tolerances would require careful attention that would be 

very time consuming. 

 At this point in the design process, the team decided it would be necessary to 

appoint each member to specific portions of the project.  Christina and Tom would work 

together on the experimental design of the project, which included the development of 

protocols for how the system would be operated, tested, and evaluated.  Rachael’s task 

was to oversee the development of the device, which included learning how to operate 

the appropriate machinery to create the parts needed.   

 4.5.1 Prototypes 
 
 The next step of the development process of the device was to construct a 

prototype of the design.  This would give the team feedback on which components would 

function appropriately.  The prototype would be tested for its ability to homogenously 

mix the solutions in the chambers, maintain a controlled temperature in the chambers, 

and to establish any leakage issues in both the snake system and chambers. 
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4.5.1.1 Initial Design Modifications 
 
 The first manufacturing issue that the team needed to adjust the design for was on 

the donor chamber.  After the consultation with O’Donnell, the team was informed that 

the current donor design would be impossible to create.  The block would have to be 

made in three pieces and fixed together (Figure 34).  It was decided that the best way to 

do this would to have the sides of the block which hold the cartridge for the membrane 

made into separate pieces from the chamber itself and then screwed into place.  The 

screws would have to be stainless steel to avoid corrosion and their heads would be 

countersunk into the sides of the donor in order to save on space. 

 The next grouping of changes that needed to be made were to add a radius to 

multiple corners of the design.  The most important radius was for the o-ring groove.  

When an o-ring is used to seal similar to our application, the entire outside surface area of 

the o-ring needs to be touching the surface it is sealing.  Without a radius, this would not 

occur.  A detailed explanation of how the o-ring should fit into the groove can be found 

in Appendix L.  Other radii needed to be added where the milling tool would be unable to 

make a sharp edge.  For example, the holes on the donor block for the tabs on the receiver 

to fit into could not be made with sharp edges.  Therefore, a radius was added the corners 

of tabs themselves so they would fit into the holes appropriately. 
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Figure 34:  Modifications of the donor block for prototype 

 
 Specific modifications of the corner clamps being used had to be made at this 

time.  The major change of the clamps was to add a piece of aluminum to the sides of the 

clamp because they were not the same height as the blocks.  It was feared that the sides 

would only apply pressure to the bottom point of the two blocks.  The pressure needed to 

be applied in the middle of the block, specifically where series of o-rings are in place to 

seal the membrane between the chambers.  Therefore, taller pieces of aluminum were 

screwed onto the sides of the clamp.  This piece could not be a solid block, because there 

needed to be clearance for the luers to be exposed.  Even with this additional piece of 

aluminum, each clamp for the blocks was weighed at only about 188.5g (0.42lbs). 

 During the design of the prototype, final dimensions of the system were decided 

upon.  The factors that affected these decisions were the orientation of the devices on the 

shaker plate and the sizes of tubing, luers, and o-rings could be purchased.  The layout of 

all devices was the first consideration.  The optimal goal was to create a system with 

twelve pairs of donor/ receiver chambers.  The excess space being occupied by the 

clamping system adapted would not allow the team to fit the twelve chamber pair system 

on the shaker plate platform.  With this system, the team would only be able to fit a ten 
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chamber pair system on the platform, even with making the dimensions of the blocks as 

small as possible. 

 The two dimensions that drove all other dimensions were the sizes of o-rings 

available and the need for a 5mL chamber.  It was found that 1” outer diameter (OD), 7/8 

inner diameter (ID) with thickness of 1/16” were the best o-rings to use for the 5mL 

chamber.  This would shorten the length of the blocks so their dimension together was 

2.2 X 1.9 X 2in.   

 4.5.1.2 Prototype I 
 
 During the creation of the first prototype, machining the parts became a challenge.   

The main issue when milling was with the plastic being too pliable for the power of the 

machine.  The milling machines being used are not specialized to cut plastic, they are 

meant to cut metals.  Problems with plastic deformation occurred only with the cartridge 

pieces and the sides of the donor due to their thickness (0.20in).  When the parts were 

loaded in the vice, they to be held tight enough so that the milling bits did not just toss the 

part from the jaws, but loose enough that they did not warp the shapes desired.  It was 

found that as material was removed from a face of the part, the grip of the vice would 

begin to deform the plastic because it was loosing material to withstand the stress of 

being held.  It was decided that all of the cartridge pieces and donor sides would have to 

be stuck down directly to the flat surface of the vice in the machine with double-sided 

tape.  This would add a great deal of time to the process of machining because each part 

would have to be stuck down, then the tape residue would have to be cleaned thoroughly 

from the vice and each part.  Although it would make the task of creating the parts more 

time consuming, it was necessary to avoid deformation. 
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 When the prototype was complete, it was tested for leakage in the temperature 

system and between the chambers.  A silicone in Pins’ laboratory, Dow Corning Silastic 

Medical Adhesive Silicone Type A, had been used on the luers and was only given about 

30 minutes to cure.  The team was unaware that recommended cure time for the amount 

of silicone used is approximately 24 hours. 

 It was found that the chamber system leaked immediately.  There was a 

significant gap between the cartridge and blocks near the top as you can see in Figure 35 

by the paper that could be slid in between this interface.  Also, the addition piece of 

aluminum added to the clamping system can be seen in this figure.  The point of pressure 

was still too low on the system.  When the temperature system was tested there was a 

small volume of leakage at the seams of the luers and face of the block.  The team 

realized soon after testing that this was due to the fact that the silicone was not given 

enough time to vulcanize.  Due to the fact that the chambers could not hold liquid, the 

team was unable to test the ability of the snake to control the temperature within the 

chambers. 

 
Figure 35: Prototype I - gap between cartridge and faces of receiver chamber 

 
 Another reason that the chamber system was unable to hold liquid was due to the 

fact that an o-ring could not be placed between the cartridge and donor block.  The design 

intended the cartridge to slide down into the slots in the block, flush to the surface of the 
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donor block.  The team did not realize until the prototype was created that this would not 

allow an o-ring to be put in between. See Figure 36 for a visual of how the o-ring cannot 

be placed at the appropriate interface. 

 

Figure 36: Prototype I - the cartridge slides into place and an o-ring cannot be placed in between 
donor block and cartridge 

 
 Another issue that occurred during these preliminary tests was the lack of tubing 

reducers available in the laboratory.  The luers purchased required the use of 1/8” inner 

diameter tubing for the snake system.  The tubes connected to the water bath were both 

7/16” inner diameter.  After a vast amount of searching, it was established that there is 

not a tubing reducer on the market that tailors a 7/16” diameter to a 1/8” diameter.  

Luckily, the team was able to use an outside resource to have a part turned for no cost.  A 

drawing of this piece can be found in Appendix M. 

          4.5.1.2 Prototype II 
 
 Due to the unfortunate results of the first prototype tests, the team needed to 

proceed with a second prototype phase.  The main components that were changed in the 

design were the way the blocks were clamped together and its cartridge holder on the 
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donor chamber.  These were both considered the key features that hindered the function 

of the first prototype. 

 The first component of how the blocks clamped together that was changed was 

the tabs.  It was found that these tabs did not align themselves as well as the team had 

hoped.  This was mostly due to the fact that there were problems with plastic deformation 

for the sides of the donor.  The tabs were so small that the slight bend in the plastic did 

not allow them to align properly.  Although there was going to be the new technique of 

double sided tape used to machine the parts, the team was still skeptical about any 

deformation ruining the purpose of the tabs.  Therefore, the shape of the receiver chamber 

was changed to fit into the donor block and push the cartridge into place (Figure 37).  

This also took down the length of the two chambers together.  

 

   
Figure 37: Donor/ Receiver block engagement without cartridge 

  
 Not only did this design change provide a proper alignment between the two 

chambers, it also improved the design of the cartridge holder.  The cartridge would now 

be positioned between the two chambers when they were apart and pushed back into 

place by the two chambers being clamped together.  This would allow an o-ring to be 
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placed between the cartridge and donor face.  The image on the left in Figure 37 depicts 

the channel in the donor block where the cartridge would slide into place.   

 The next element of design that had to be changed was the clamping system.  The 

team still desired to use the corner clamps due to their low cost and light weight.  It was 

decided that two clamps should be used for each block pair; one on each side.  This 

would provide uniform pressure across the system to prevent leakage.  The downside of 

this design was that each clamp would have to be modified a great deal to allow clearance 

for the luers.  Also, since the clamps would have to lie on their side for this to occur, then 

brackets would be needed for the clamps to stand vertically on either side of the blocks.  

It was decided that corner braces (Figure 38) would be fixed to the clamp in order to give 

them something to stand on.  It was also decided at this time that some type of fixture 

would have to be developed for each of the clamps to stay permanently in place on.  

Details of the fixture were not decided upon because the team wanted to see if the 

prototype would pass testing.  The modified clamping system for the second prototype 

can be seen in Figure 39. 

 
Figure 38: Corner brace needed for clamping 
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Figure 39: Clamping on either side of the blocks with corner braces- Prototype II 

 
 A few minor changes were made to the cartridges during this phase of 

development.  A chamfer was added to the pieces that mate the sides of the cartridge 

together around the perimeter of the membrane.  This was due to the fact that the sharp 

edge was creating interference when the two were put together.  A cut was made at the 

top of the cartridge on the side that would be pressed against the donor face.  This was so 

the user would be able to easily pull the cartridge away from the face once an experiment 

was complete.  Finally, the sides of the cartridges were altered so they would fit into the 

new channels on the donor sides.  One side of the cartridge was made so that there were 

two tabs on each piece that could be used to pull apart the sides of the cartridge.  A visual 

of these modifications is provided in Figure 40.  An example of how the membrane fits 

between the two sides of the cartridge can be seen below this figure. 
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Figure 40: Cartridge modifications 

 
Figure 41: Example of how membrane fits into cartridge 

 
 The second prototype testing produced positive results.  Both the chamber system 

and temperature system did not leak.  A new silicone, GE II from Home Depot, was used 

on the luers and was cured for 24 hours before testing this time.  This silicone is much 

less expensive than the medically regulated silicone used on the first prototype.  This 

prototype was used to calculate the time the system takes to achieve a steady-state 

temperature within the chambers also.  See section 5.0 for details on testing this system. 

4.5.2 Budget 

 The team had to be very careful with the budget during the development phase 

because it was one of the major constraints of the project.  The Department of Biomedical 
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Engineering only provides the team $468.00, which is very little when it is considered 

that the team must purchase polycarbonate and testing materials.   

 During the development stage, the team was resourceful and gathered scrap 

materials from Ximedica, as described in the creation of the model.  Also, the prototypes 

brought forth changes in the manufacturing design.  The team knew very little about 

manufacturing parts before undertaking the development of the project.  It was not 

realized until the first prototype was created that it would be easier to make the 

dimensions of the part in available stock sizes when possible.  During the design changes 

for prototype II, the thickness of the cartridges and donor sides were made so ¼” 

polycarbonate stock could be used.  Also, when additional polycarbonate was purchased 

for the donor and receiver blocks, the thickness of the stock was less than the original 

purchase for the first prototype.  This is because thicker stock was found to be 

significantly more expensive. 

 Another decision during the development stage that saved money was for all of 

the luers to be elbowed.  The luers could only be purchased in large packages, so the 

team decided it would be best to simply make all of the luers used one type to save on 

additional purchases. The budget during the development stage can be found in Appendix 

N.  This budget displays all materials purchased for the final design also which totals 

$568.81.  This total is just over one hundred dollars of the given budget by the school, 

which means the team must contribute out-of-pocket to the project. 
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4.6 Final Design 

             4.6.1 Modifications/ Improvements 

 The last stage of design refinement was during the creation of the final product.  

The only two components that changed were the cartridge engagement with the donor 

block and the clamping system.  These changes were made to improve the ease of 

operation for the user. 

 During the development of Prototype I, there were issues with the cartridge 

engagement not allowing an o-ring between the face of the cartridge and the donor block.  

In the prototype II design this was changed so that the cartridge slid back into place.  It 

was found that it was difficult to slide the cartridge into place because in the clamping 

system the receiver and donor blocks were too close together before being clamped.  The 

team decided that the cartridge would need to slide into place from the top as they 

originally planned.  The team re-designed the cartridge so that it could slide down from 

the top and then be pushed back into place by clamping the two blocks together.  Figure 

42 shows how the sides of the donor are milled differently, and a simple step by step 

process of how the cartridge is aligned.  The figure also depicts where the o-ring is in 

place for the system and a removable stopper in the sample port that was used to occlude 

the chambers during testing. 
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Figure 42:  Donor block with sides [left]; donor block with one side of cartridge sliding down 

[middle]; donor block with both sides of cartridge in place [right] 
 

The clamping system was re-designed based on the decision that the development 

for the second prototype was not user friendly.  It would require the user to spin two 

screws to clamp the system together for each pair of blocks.  This would be time 

consuming.  Also, the clamping system would require more space, which with the 

constraint of the shaker plate the team did not have.  Finally, the clamping system was 

not aesthetically pleasing, which was not a directly an objective of the project, but relates 

having a simple design. 

 The team decided to design a custom clamping system for all ten of the chamber 

pairs.  It was verified that if a single point of pressure was applied directly in line with the 

chambers, then the system would not leak.  This was done by a simple test with a C-

clamp as seen in Figure 43. 

 

Figure 43: Prototype with C-Clamp 
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 Once this was verified, a design was developed and machined that required the 

purchase of bolts and ergonomically styled handles to tighten them.  Also, a type of 

rubber cap, neoprene, was purchased to fit on the end of the bolt that would touch the 

blocks.  The final system with this clamping device can be seen in Figure 44.  The 

decision to not use the corner clamps also decreased the final budget as seen in Appendix 

O. 

 A final view of the donor and receiver chambers along with the cartridge to hold 

the membrane can be seen in Figure 45.  Also featured in this picture are the rubber 

stoppers purchased for the sampling ports and the o-rings used in the system.  The sides 

of the cartridge are open in front of the two chambers. 

 
Figure 44: System featuring 5 out of the 10 chamber pairs and clamping system 

 
Figure 45: Final Receiver [left], donor [right] and cartridge sides [front] 
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4.6.2 Components of System 
 The final system comprised of multiple components which are detailed in Table 

25.  Each component contributed to the integrity of the system. The components of the 

system that were machined are detailed in Computer Aided Design drawings as seen in 

Appendices P-AC.  These drawings include all tolerances and specifications necessary 

for reproducing their fabrication.  

 
Table 25: Final System Components 

Product Use 
Polycarbonate Milled into 10 sets of donor and receiver 

blocks, both sides of cartridge, and sides of 
donor 

Rubber Stoppers Occluded chamber during testing and allow 
samples to be taken from chamber; removable 
piece in sample port hole 

Elbow Luers Connects temperature control snake system to 
the blocks; 4 luers on each donor and receiver 
block. 

Silicone Sealed luers into place on blocks 

O-rings Series of three on interfaces of cartridge and 
blocks for each system pair 

Anti-seize Prevented the bolts of clamping system 

Bolts with handle Clamped the blocks together 

Fasteners Screws for clamping system, donor sides, and 
buts to fit cap on bolts for clamping system 

Neoprene caps Caps on the end of bolts for clamping system 

Aluminum Milled into clamping system 

Tubing PVC between luers on top of blocks; silicone 
between block pairs and to water bath 

Water Bath Provided controlled temperature of water flow 
through snake system 

Shaker Plate Homogenously mix solutions in chambers 

 



 113

5.0 METHODOLOGY 
 

Once the high-throughput system was completed, various types of testing needed 

to be conducted in order to validate our device and characterize the collagen membranes.  

Molecules for the diffusion studies needed to be chosen and preliminary validation 

testing needed to be completed on the high-throughput system.  These preliminary studies 

were used to make sure it could fully function for testing.  Experiments were then 

conducted on both the PermeGear® device along with the high-throughput system and 

samples were collected and analyzed to determine the diffusion coefficients of each type 

of membrane and molecule studied. 

5.1 Molecules for Studies 
 

The team compiled a list of molecules to decide which molecules could be used in 

the studies to characterize membrane transport.  From the literature gathered, a list of all 

the types of molecules tested was compiled.  This list includes the molecule, molecular 

weight, and molecular radius (as previously described in Appendix F).  From this table,  

the following molecules were selected to be used within our diffusion studies: glucose, 

cytochrome c, myoglobin, bovine serum albumin (BSA), and gamma globulin which 

have molecular weights of about 180, 13000, 18000, 50000, 150000 Daltons, respectively.  

These molecules were chosen due to their large range of molecular weights, which would 

allow for better characterization of the membranes.   

 The cost of the molecules, however, changed the desire for cytochrome c.  From 

Table 26 below, one may see that the cost of myoglobin is significantly lower than that of 
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cytochrome c.  Since they are similar in molecular weight, it was decided that it was 

unnecessary to use cytochrome c, and that equine myoglobin would be sufficient.   

 
Table 26: Comparison of Cytochrome C to Myoglobin 

Molecule Price Type Company 
$89.50/ 100mg  
$285.00/500mg horse ~90% 
$77.20/100mg  
$134.00/250mg bovine ≥60% 

$425.50/ 250µg 
human -- 

lyophilized powder 

Sigma-Aldrich, 
St. Louis, IL 

  
  

$139.00/ kit  
$84.00/kit 

250tube/ 
5000plate  

250tube/2500plate 
Pierce, 

Rockford, IL 

$279.00/ 150 µg human 85% 
Calbiochem 
La Jolla, CA 

$360.00/ 10 µg human 
R&D Systems 

Minneapolis, MN 

 
Cytochrome C 

 
 
 

$185/ 250mg purified horse 
Biogenesis 
Raleigh, NC 

$139.00/ kit  
$84.00/kit 

250tube/ 
5000plate  

250tube/2500plate 

Pierce 
Rockford, IL 

$120.00/ 1mg > 60% human 

Fitzgerald 
Industries 

International 
Concord, MA 

$37.50/ 250mg  
$109.00/ 1g equine 95% 

$41.50/ 250mg  
$122.00/ 1g equine 90% 

$178.00/ 250µg human 95% 

Sigma- Aldrich 
St. Louis, IL 

$62.00/ 250mg  
$172.00/ 1g equine  90% 

 
Myoglobin 

$218.00/ 1mg 
Recombinant 

human 

USB Corp. 
Cleveland, Ohio 

 

After looking at the duration of time left to complete this project, it was then 

decided that the group would be unable to complete all of the appropriate testing for all 

four molecules that were previously chosen.  Myoglobin was eliminated as a molecule 

that would be used for testing.  This still gave the team three molecules to study and keep 

a large range of molecular radii to better characterize the membranes.  Also, glucose, 
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BSA and gamma globulin have been used as three main characterization membranes in 

previous studies, as stated in the background section. 

Validation methods for each of the desired molecules were also researched.  It 

was found that the Bradford or BCA protein assay can be used to determine concentration 

of bovine serum albumin (BSA), and gamma globulin.  Glucose HK assay can be used to 

detect glucose which was acceptable[52].   

5.2 Assay for testing 
 
 Various assays needed to be developed in order to determine the concentration of 

the molecules with the receiver chamber during the experiments conducted on the device.  

Two assays were acquired and adapted: the BCA assay and the Glucose HK assay.  Each 

of these assays work with specific molecules to not only read the concentration of the 

experimental samples collected but also to create a standard concentration curve to use as 

a comparison to the concentration of the collected samples.   

 5.2.1 BCA Assay Protocol 
 
 The BCA assay was used for both BSA and gamma globulin samples.  It requires 

a mixing of two reagents (A and B) in order to make the working reagent. Reagent A is a 

solution containing sodium carbonate, sodium bicarbonate, bicinchoninic acid, and 

sodium tartrate in 0.1 M sodium hydroxyl (Pierce Biotechnologies Product # 23227). 

Reagent B is a solution of 4% cupric sulfate (Pierce Biotechnologies Product # 23227). 

The two need to be mixed in a ratio of 50 parts A to 1 part B. This mixture can remain 

viable at room temperature for several days in a closed container. Even though it can be 

stored, there should only be enough reagent mixture made for the tests that need to be 
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completed within a day. The equation to calculate how much reagent to make is as 

follows:  

(# standards + # unknowns) x (# of replicates) x (200 µl of Reagent per sample) = 

Total volume of Reagent needed 

 It is very important to ensure accurate pipetting, so a 20-200 µl pipette should be 

used for the sampling from the receiver chamber. Only 25 µl of a sample taken during an 

experiment is used to run the BCA assay.   The sample, however, needs to be large 

enough to run the sample in triplicate for the assay. In total, the net volume of sample 

should be 150 µl.  

 From the 150 µl sample, 25 µl is removed placed in triplicate in a 96-well plate. 

Each well with a sample should be filled with 200 µl of the reagent mix previously 

described. The 96-well plate should be covered, stirred on a shaker plate for 30 seconds, 

and incubated for 30 minutes at 37º C. The plate is removed from the incubator and 

cooled to room temperature. This is then placed in the plate reader (Molecular Devices, 

Spectra Max 250, serial # S01539) (see plate reader protocol Appendix AO) and read at 

562 nm.  

 5.2.2 Glucose HK Assay Protocol 
 
 In order to determine the concentration of glucose within a solution, the Glucose 

HK Assay (Sigma-Aldrich, Product GAHK20) was used.  Within this assay, a standard is 

created using the specific protocol and the sample reading is compared to this standard.  

The original protocol was altered based on our design and also to use the resources of the 

kit in a resourceful manner.  
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 To create the standard, dilutions are made using the glucose standard solution and 

PBS within epindorph tubes (A-E).  The concentration of glucose within each test tube 

increases from A to E.  Next, an equal amount of the assay reagent was added to each test 

tube.  The test tubes are then incubated for fifteen minutes at room temperature.  Samples 

were taken from each epindorph tube and place within a plastic cuvette and read using a 

plate reader program within a UV spectrophotometer (Beckman DU® 640 

spectrophotometer, serial # 4314297) to determine the absorbance value within each 

cuvette(see standards results Appendix AP).   

 Once all the samples have been taken throughout the testing period, 100 μl of the 

diluted sample is then placed within a new epindorph tube and used to determine the 

concentration of the receiver chamber throughout the experiment.  Again, 1 mL of the 

HK assay reagent is added to each epindorph tube, which is then vortexed.  All of the 

tubes are incubated at room temperature for fifteen minutes.  1 mL is then removed from 

the epindorph tube and place within a plastic cuvette.  The plate was then read using the 

UV spectrophotometer and compared to the standard results. 

 This assay’s results were given in the form of absorbance values.  These values 

needed to be converted into a concentration using the conversion equation provided 

within assay instructions.  All data was converted before using it to determine the 

diffusion coefficient for glucose through either of the devices.  

 Before conducting any tests on our device, it was important to complete some 

preliminary tests using the device to test for any problems regarding leakage, mixing and 

temperature control.  Also, preliminary testing was done using the previously described 
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PermeGear® device.  These studies would be used as a comparison for our studies 

conducted on both previously characterized membranes and collagen membranes.   

5.3 Preparation of Self-Assembled Collagen (SAC) Membranes 
 
 Collagen membranes were prepared from RTT collagen using a concentration of 

collagen of 10 mg/ml and went through a self-assembly process [53] (See Appendix AD).    

These membranes were stored in desiccators and were hydrated in PBS before being used 

for an experiment.   

 5.3.1 Membrane Pore Size 
 
 The collagen membrane pore size needed to be determined in order to properly 

characterize the membranes.  SEM images of the membranes were taken at a very high 

resolution.  These images were then analyzed with image software (ImageJ, 1.37v).  

Using this software, the area of the individual pores could be determined.  The area of 50 

pores were determined within the picture and reported in pixels.  This number was then 

converted to the correct units (nanometers) based on the scale of the picture.  The amount 

of pixels of the scale bar represented the conversion factor (ex. 126 pixels = 5 μm).  This 

conversion factor was used to obtain the radius of the average pore size, which could be 

used to determine the pore diameter.  This allowed the average pore size to be determined 

to better characterize the membranes. 

5.4 Device Assembly 
 
 This section describes the steps to assemble each system.  The PermeGear® is a 

simple system due to its use of only one chamber set.  The high-throughput system uses a 
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multi-chamber set-up to conduct multiple experiments simultaneously.  Protocols were 

developed for each system’s assembly. 

5.4.1 PermeGear® 
 
 A protocol for setting up the PermeGear® diffusion chamber was created for the 

preliminary diffusion studies (see Appendix AE).    Initially, a SAC membrane was 

hydrated in phosphate buffer solution for thirty minutes while the user was setting up the 

diffusion chambers.  A water bath was connected via a connector and silicone tubing to 

the PermeGear® device to create a closed system for water flow.  The water bath was 

turned on and set to a temperature of 37ºC.  The chamber set was then allowed to heat for 

30 minutes.  The stir bars were placed within each side of the chambers.  Once the 

membrane was fully hydrated after 30 minutes, the membrane was placed between the 

donor and receiver chambers and was sealed by tightening the fixture around the two 

chambers. Liquid could now be added to each of the chambers.  The proper fluids 

(molecular solution and PBS) were heated for 30 minutes in a heated water bath (set at 

37ºC).  The molecular solution was placed within the donor chamber of the device (3.4 

mL) and PBS was added to the receiver chamber of the device (3.4 mL) when ready to 

carry out the experiment.  Both chambers ports were closed with plugs once the solutions 

were placed within them.   
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Figure 46: PermeGear® Device Set-up 

5.4.2 High-throughput System 
 
 A protocol was also developed for the high-throughput system (see Appendix AF). 

Ten SAC membranes were hydrated in PBS for 30 minutes.  Using specialized 

connectors, the laboratory water bath was connected to the system and set to 45ºC.  The 

system was allowed to heat for the specific amount of time in order for it to reach 37 ºC.  

Also, the system was placed on a VWR 5000 Orbital Shaker for mixing purposes.   Once 

the membranes were fully hydrated and the system was at the correct temperature, the 

membranes were placed within cartridges.  These cartridges were then placed within the 

proper donor-receiver chamber set and clamped shut with each set’s individual clamping 

system.  The molecular solution (5 mL) was placed within the donor chamber and PBS (5 

mL) was placed within the receiver chamber when the testing was ready to be started.  

Silicone stoppers were placed within the sampling ports during testing to prevent any 

other materials from entering the solution.     
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Figure 47: High-throughput System Set-up 

5.5 Preliminary Validation 
 
 Various types of validation were completed before the device was actually used 

for experimentation.  The device was tested for the following: leakage, control of 

temperature, and ability to mix and keep chamber solutions homogenous. All tests were 

completed on the prototype. In addition to these tests, a temperature test was completed 

using the completed high-throughput system due to multiple chambers within the system. 

 5.5.1 Leakage 
 
 In order to make sure our device did not leak, both the water system and the 

chamber system needed to be analyzed.  The heated water bath system located within the 

laboratory was connected to our prototype to test the water system used to heat the 

prototype and entire high-throughput system.  The device was connected to the water 

system for three hours, and was checked each half hour for any leakage that might have 

occurred from any of the luer connectors.   

 Our device was also tested for leakage between the chambers.  For this test, a 

fully hydrated membrane was placed within the cartridge and the device was completely 

assembled without being connected to a water bath.  This would show any leakage 

between the chambers that was independent of the water bath.  The device was press-fit 
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using the clamps of the device system and 5 mL of PBS was placed within each chamber.  

The device was then inspected over 2 hours to see if any leakage occurred. 

 5.5.2 Temperature Control 
 
 The ability of our device to control and maintain the temperature of the inner 

chambers was also tested.  The chamber system was assembled (as explained in the 

assembly protocol) and 5 mL of PBS was placed within the donor and receiver chamber.  

The water bath was turned on, set at 37ºC and allowed to flow through the prototype.  A 

thermometer was placed within the first, third, and fifth receiver chambers of the system 

and paraffin was used to cover the receiver sampling port with the thermometer 

submerged within the PBS inside.  The temperatures were recorded every 10 minutes.  

Once the chambers reached a steady-state temperature lower than the needed temperature, 

the duration of time it remained at the steady state was recorded. 

 Once having this information, another temperature test was completed with the 

believed set temperature of 47ºC that would produce a temperature of 37ºC within the 

chamber of the device. Again, the water bath temperature was set at 47ºC and a 

temperature probe was placed within one chamber of the device containing PBS solution.  

The water bath was allowed to circulate through the device in order to heat it.  

Temperature readings were taken every 10 minutes until the temperature of the device 

reached a steady state.  From this data, a temperature test needed to be completed at the 

45 ºC.  This temperature was used to conduct a temperature test on the high-throughput 

system. 

 A temperature study was also completed using the PermeGear® device.  This 

study was used to compare our temperature studies to a device already on the market.  It 
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would be used to compare the time it took for our prototype to reach a steady state and 

compare the steady-state temperature between the prototype and this device.  It was 

carried out using the same previous steps described for the high-throughput system 

temperature test.   

 5.5.3 Mixing 
 
 In order to determine if the high-throughput system would remain homogenously 

mixed, a mixing study needed to be completed with the prototype as well.  For this test, 

phenol red (Sigma Aldrich, P4633) was used in order to show that the liquid within the 

system was being completely mixed when on the shaker plate.  The prototype device was 

assembled as if a normal diffusion study was being carried out; however, 5 mL of water 

was placed within the donor and receiver chambers.  Water turns yellow when phenol red 

is completely dissolved within it.  A small amount of phenol red was added into each 

chamber.  The prototype was then placed on the VWR orbital shaker, which was set to 

150.  An initial sample was taken from the stationary chamber, using a capillary tube, and 

then the shaker plate was turned on to allow the liquid within the system to be mixed.  

Samples were taken every 30 seconds until the solution turned completed yellow, 

stopping the shaker plate each time a sample was taken.  Pictures were taken of both the 

sample capillary tubes and the chamber of the device each time the shaker plate was 

stopped to sample. 

5.6 Experiments using PermeGear® and the High-throughput System 
 

Testing was completed on the previously described PermeGear® device to use as 

a control for the experiments using the high-throughput system.  Tests were completed on 
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the PermeGear® using the same protocols used for testing the high-throughput system.  

All three molecules were tested using the PermeGear® and the BCA or glucose assay 

was used to analyze the results.  Collagen membranes were used in these studies.   

Testing of the high-throughput system was completed using all three molecules as 

well.  Dialysis and collagen membranes were studied using this device.  Tests were 

completed for each molecule based on each molecule’s protocols.   

 5.6.1 Experiment Preparation 
 

Before beginning an experiment, the proper solutions were made with the 

particular molecule of choice for the study.  Each solution was made at a concentration of 

5 mg/mL of the molecules (see protocol about how to make solutions in Appendix AG).  

These solutions were made in bulk and either stored within glass containers or made into 

aliquots and frozen until they were ready to be used. 

 When beginning the experiment once the assembly was complete, whether for 

PermeGear® or the high-throughput system, the solution of molecules needed to be 

heated to 37ºC before being placed within the chambers of the respective devices.  The 

molecular solution and PBS were heated in a water bath to have the temperature of the 

liquids at the same temperature as the device.  Also during this preliminary period, 

microcentrifuge tubes were labeled with the appropriate times on the top of the tubes 

signifying the time at which the sample was taken (ex. 30 on top of the tube means 

sample was taken 30 minutes into the study) 

 Once the solutions were heated, they could be added to their proper chamber 

within either device.  For the PermeGear® device, 3.4 mL of the molecular solution was 

placed within the donor chamber and 3.4 mL of PBS was placed within the receiver 
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chamber.  For the high-throughput system, 5 mL of the molecular solution was placed 

within the donor chamber and 5 mL of PBS was placed within the receiver chamber.  200 

μL samples were removed from the receiver chamber at the proper sampling time for the 

specified experiment.  The volume of the receiver chamber was then stored with 200 μL 

of PBS.  Each diffusion study had a proper protocol that was followed to carry out the 

experiment (see Appendix AH - AJ).  Samples were taken every minute for the first 10 

minutes and at 30 minutes for glucose studies.  For BSA studies, samples were taken 

every half hour over the course of four hours.  For the gamma globulin studies, samples 

were taken every two hours over the course of eight hours.  A longer period was 

necessary due to the increase in the size of the molecules being used, which lengthens the 

time it takes the molecules to travel through the membrane.  Each sample was kept within 

a freezer until ready to be used to carry out the analysis (BCA or glucose HK assay 

depending on the molecule of the study).   

 5.6.2 PermeGear® Trials  
 
 Trials were conducted on the PermeGear® device using collagen membranes 

made of rat tail tendon collagen at a concentration of 10 mg/mL.  Glucose, BSA and 

gamma globulin diffusion studies were carried out using this device.  A standard curve 

was also created for each molecule which could be used for both the PermeGear® and the 

high-throughput trials.  The data from the trials was necessary in order to compare the 

performance of the high-throughput system to that of the PermeGear® device.  The 

samples taken from these studies were then analyzed using the proper molecular assay 

previously described. 
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5.6.5 High-Throughput System Trials 
 
 Once the high-throughput system validation was completed, various tests were 

conducted.  Diffusion studies were carried out using a dialysis membrane as a standard 

for diffusion rates.  A dialysis membrane is a characterized membrane that would be used 

as a standard for the diffusion rates of molecules within our device system.  Once these 

studies were completed, diffusion studies were carried out using SAC collagen 

membranes. Multiple chamber sets were assembled, as previously described, to carry out 

more studies over a shorter time period.  For one experiment, three sets of chambers were 

assembled for each molecule that was studied.  During each experiment, samples were 

taken from the receiver chambers of the devices at the necessary times dictated within the 

protocol.  These samples were then analyzed once the tests were completed using the 

previously described assays (BCA and glucose HK).  

5.6.2 Determining Sample Concentrations 
 
 Once the diffusion study was completed, samples were frozen until needed for the 

assays previously discussed.  Samples were thawed in a water bath when the assays were 

ready to be carried out.  The BCA protocol (Appendix AK and AL) was followed to 

determine the concentration of BSA and gamma globulin within the receiver chamber of 

both the PermeGear and high-throughput system.  The glucose HK assay (Appendix AM) 

was used to determine the concentration of glucose.  These protocols were followed and a 

plate reader was used to measure the absorbance values of the samples using the BCA 

assay (see Appendix AN for plate reader protocol).  A UV spectrometer was used to 

analyze the samples using the HK assay.  The trial results were then compared to each 

other for a particular molecule and device.  Average trial results between the 
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PermeGear® and high-throughput system were also compared.  Using these sets of data, 

the diffusion coefficients were calculated for each molecule.   

 5.6.3 Calculations for Diffusion Coefficient  
 

In the PermeGear® and high-throughput system studies, there are a few 

assumptions that needed to be made in order to calculate the diffusion coefficient. The 

diffusion can be considered steady state diffusion due to the negligible concentration 

change within the donor chamber; the donor chamber acts as an infinite source of solute. 

It is also assumed that the mixing in the chambers prevents any boundary layer from 

forming, therefore making the concentration of the solution at the membrane surface 

equal to the concentration of the solution in the bulk chamber. This assumption also 

makes the samples removed from the receiver chamber a good representation of the 

concentration in the receiver chamber. For our studies, the process of diffusion of a 

molecule in solution across a collagen membrane between the two chambers (A and B) 

can be described by Fick’s first law for diffusion across a thin film:  

( )
L

CCADJ baeffeff −×
=                                      [Eq.1] 

where J is the molar flux, Deff is the effective diffusion coefficient, Aeff is the membrane 

cross sectional area that is in contact within the liquid of the chambers, L is the 

membrane thickness (assumed 100 μm), and C is the measured concentration in the 

chambers. There also needs to be a mass balance equation for this problem. Using the 

molar flux, this is found to be: 
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( ) ( )
dt
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CVdJ aabb ×−
=

×
=            [Eq. 2] 

where VA and VB are the volumes of the donor and receiver chambers, respectively. The 

volumes in this experiment are kept constant so, the only change is the concentration.  

The diffusivity can be calculated using Fick’s Law and then applying a mass 

conservation equation to Fick’s Law to come up with the equation [16]: 
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         [Eq. 3] 

where CA0 is the initial concentration in the donor chamber (5 mg/ml) and CB is the 

measured concentration in the receiver chamber at time t. By plotting the combined 

Fick’s Law and mass balance against time, the diffusion coefficient can be determined.  

This is a linear curve for the measured values over time t. A linear trendline is applied to 

this curve and the slope of this line is the effective diffusivity. This method was used for 

determining the diffusion coefficient for each molecule tested. 
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6.0 RESULTS 
 After completing all the necessary preliminary and trial studies, all data was 

collected and analyzed.  The preliminary trials were able to prove that our device 

functioned properly.  The trials completed on the PermeGear® and high-throughput 

systems were then each used to determine the diffusion coefficients for each molecule 

studied. 

6.1 Specifying Membrane Porosity  
 An important factor to consider when characterizing the rate of molecular 

diffusion through self-assembled collagen membranes is the membrane porosity, which 

can be defined by the size of pores and the fraction of void space of the material.  

Scanning electron microscopy (SEM) is a common technique that is utilized to determine 

the pore size of materials because 

of its ability to capture high 

resolution images under high 

magnification.  SEM was 

performed and using Image J, we 

analyzed the pore size of a self-

assembled collagen membrane at 

5000x magnification (n=1) (Appendix AO).  This image can be seen in Figure 47.  The 

areas of 50 pores within the membrane were analyzed to determine the average pore 

diameter of the pores within the membrane assuming a circular area.  The average pore 

diameter was calculated to be 344 nm.   

Figure 48: SEM of Collagen Membranes (5000x) 
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6.2 Preliminary Validation Results 
 Before testing our high-throughput system, a variety of preliminary studies were 

necessary to complete.  The prototype needed to initially be tested before mass producing 

the device to ensure: 1) no leakage, 2) ability to control and maintain temperature at 37ºC, 

and 3) homogenously mix chambers.  Also, using the PermeGear® side-bi-side device, 

diffusion studies needed to be completed to act as a standard which the high-throughput 

system could be measured against.  These studies and their results would be used as the 

benchmark for the diffusion studies carried out using the high-throughput system. 

 6.2.1 Leakage 
 
 In order to make sure that our device did 

not leak, the water bath was connected to the 

heating system of our device to check for any 

leakage around the luers.  After allowing the 

water system to run for an hour, no leakage was 

seen from any of the luers after inspection.  The 

system was allowed to continue to run for 

another hour.  The luers still did not show any 

sign of leakage.  

 Our device was also tested for leakage by adding liquid into the donor and 

receiver chamber once the full device was assembled with a hydrated membrane.  This 

test was used to see if the chambers within the device had trouble holding the necessary 5 

mLs of liquid.  Five mLs of phosphate buffer solution (PBS) were placed within the 

donor and receiver chambers of the assembled device.  The height of the solution within 

Figure 49: Example of Luers Checked 
During Leakage Study 
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the chambers was then watched over time.  The prototype was shown to hold and 

maintain the 5 mLs of PBS within each chamber.   

 6.2.2 Temperature Control 
 
 For the first initial temperature test for the prototype, the water bath was set at a 

temperature of 37ºC.  Temperature recordings were taken every 10 minutes over the 

course of 100 minutes.  By the end of 60 minutes, the temperature had equilibrated and 

reached a temperature of 26.9 ºC.  It was believed that there was a 10° difference between 

the temperature setting on the water bath and that of the actual prototype.   

 Another temperature test was completed, after reviewing this data, using a water 

bath temperature of 47 ºC.  The previous steps were followed again and the temperature 

was recorded for 100 minutes. The temperature was seen to remain constant again for 40 

minutes.  This temperature was shown to be 39ºC.  A temperature study was also 

performed with the PermeGear® device for comparison purposes.  The PermeGear was 

seen to reach its steady state temperature in approximately 25 minutes.  Figure 49 shows 

the graph of all tests completed (prototype and PermeGear®), displaying the temperature 

plotted against time (see Figure 50).  This graph also shows the required temperature line 

of 37 ºC (plotted in green).  
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Figure 50: Temperature Validation Test 
 After having both data sets, a linear interpolation was used to calculate the 

specific temperature that the bath needed to be set at in order to have the temperature of 

the chamber remain at 37 ºC.  The following equation was used: 

 y= ya  + [(x- xa )( yb- ya )]/( xb - xa )    [Eq. 4] 
 
 where y is the needed temperature (37ºC), ya represents the temperature within the 

chamber at equilibrium when the bath was set at 37ºC, x represents the unknown water 

bath temperature, xa is the set temperature of water bath for first experiment (37ºC),  

xb is the set temperature of water bath for second experiment (47ºC), ya is the final 

temperature at equilibrium of first experiment (26.9ºC), and yb is the final temperature at 

equilibrium of second experiment (39ºC).  When solving for x, the temperature calculated 

was found to be 45.35 ºC.  This temperature represents the temperature the bath needs to 

be set at in order to reach a final equilibrium temperature of 37 ºC.  

 A test was completed with the high-throughput system at this temperature in order 

to check this interpolation and determine the time it took for the system to reach 37 ºC 
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(see Figure 50).  It was found that it took the system took approximately 40 minutes to 

reach 37ºC.  Considering this is 10 chambers heating up in comparison to just one device, 

these temperature results are comparable to that of PermeGear ®.  

 

Figure 51: Determination of Water Bath Temperature 

 6.2.3 Mixing 
 
 Phenol red was used to determine if the solution within the high-throughput 

chambers was being mixed properly.  Phenol red is a chemical commonly used to test pH 

in pools. It turns a yellowish color when mixed in a solution with a pH of 6.5. The results 

of the mixing test using the prototype can be seen below.  Figure 51 shows the capillary 

tube samples, with the first tube representing water without any phenol red added and the 

other tubes representing the samples taken at each time point. Figure 52 shows the 

pictures of the chamber taken at each sample time.  It was found that using the shaker 

plate set at 150 RPM the solution was completely mixed which can be seen by the yellow 

color of the solution in the sample.   
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Figure 52: Capillary Tube Samples for Mixing Study 
 

 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 53: Mixing Test - Liquid in Chambers.  A) Water only, B) Water and Phenol Red, C) 
Chamber at 30 seconds, D) Chamber at 1 minute 

 
   

 Just water 0 second sample 30 second sample 60 second sample 

A B 

C D 
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6.3 PermeGear® Studies 
  
 Trials were completed using the PermeGear® Device using self-assembled 

collagen membranes.  Each molecule was tested using this device. The samples were 

collected and frozen at -20ºC until ready to be analyzed.  Each specific molecule was 

analyzed with its applicable assay (glucose – glucose HK assay, BSA and gamma 

globulin – BCA assay).  Raw data for each molecule tested can be found within 

Appendices AQ-AS.  This data is then manipulated in order to determine the diffusion 

coefficient.   

6.4 High-throughput Experimental Results  
  

Trials were also completed using the high-throughput system.  Trials were 

performed using both dialysis membrane and self-assembled collagen membranes.  The 

Specta/Por® Dialysis Membrane (MWCO: 14,000) was used as the standard for diffusion; 

however, due to its molecular weight cut off, data could only be collected for glucose 

using this membrane.  All three molecules were tested using the self-assembled collagen 

membranes.  The raw data from these collected samples can be seen in Appendix AT-

AW for both the dialysis and SAC membrane trials. 

6.5 Graphical Representation of Diffusion Studies 
 

The raw data previously collected using the PermeGear® and high-throughput 

system was used to calculate the diffusion coefficient for each particular molecule 

through a specific type of membrane.   
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6.5.1 Glucose 
 

Once all of the data was collected and converted from absorbance values to 

concentrations using the conversion equation provided by the assay and a standard curve, 

the glucose data could be used to determine the diffusion coefficient.  Each concentration 

value found for each specific sample time point was substituted within the Eq. IV(see 

Appendices AX-BA) previously discussed.  These calculated values were then plotted 

against time, producing a linear curve.  This was completed for each trial (n=3) for each 

device.  All three trials per device were plotted on the same graph for comparison 

purposes but remain distinguishable due to difference in line color (see Figures 53 and 

54).   

      
Legend for all graphs 

 

Figure 54: A) PermeGear® Glucose Diffusion Results using SAC membranes B) High-throughput 
System Glucose Diffusion Results using SAC Membranes 

 
 

A B 
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Figure 55: High-throughput System Glucose Diffusion Results Using Dialysis Membranes 
 

Once plotting this data, a linear trend line was added to each trial’s plot.  This 

trend line’s slope is defined as the diffusion coefficient for that trial.  This was completed 

for every trial for both devices used within these studies (see Figures 55 and 56) 

 

Figure 56: A) PermeGear® Diffusion Coefficients for Glucose Trials using SAC Membranes B) 
High-throughput System Diffusion Coefficients for Glucose using SAC Membranes 

 

A B 
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Figure 57: High-throughput System Diffusion Coefficients for Glucose Using Dialysis Membranes 

 

6.5.2 BSA 
 
 Each trial carried out using BSA was graphed for both the PermeGear® device as 

well as the high-throughput system after substituting and manipulating the data using the 

previously described Eq. IV.  Only collagen membranes were studied within these 

experiments due to the molecular cut-off of the dialysis membrane being smaller than the 

size of BSA.  A graphical representation of each trial can be seen in Figure 57.  A linear 

trend line was then added to each trial order to determine the diffusion coefficient for 

each. Figure 58 show the diffusion coefficients for each trial using the PermeGear® 

device and those using the high-throughput system.    
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Figure 58: A) PermeGear® Diffusion Results for BSA B) High-throughput Diffusion Results for BSA 
 

 

Figure 59: A) PermeGear® Diffusion Coefficients for BSA Trials B) High-throughput System 
Diffusion Coefficients for BSA Trials 

6.5.3 Gamma Globulin 
 
 The steps previously described to obtain the graphical results for BSA were used 

for gamma globulin.  All data was graphed for each trial carried out on each specific 

device.  Only two trials could be completed on the PermeGear® device using gamma 

globulin due to time constraints.  Linear trend lines were added to each of these graphs in 

order to determine the diffusion coefficients for each trial.  Figure 59 show the graphical 

results while Figure 60 contains the trend lines used to determine the diffusion 

coefficients for each trial.   

A B 

A B 
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Figure 60: A) PermeGear® Diffusion Results for Gamma Globulin B) High-throughput Diffusion 

Results for Gamma Globulin 
 

 

 
Figure 61: A) PermeGear® Diffusion Coefficients for Gamma Globulin Trials B) High-throughput 

System Diffusion Coefficients for Gamma Globulin Trials 

6.6 Calculated Diffusion Coefficients 
 
 Using all of the previously analyzed data, the average diffusion coefficient for 

each type of molecule tested using the high-throughput system was calculated.  These can 

be found in Table 27.   

Table 27: Calculated Diffusion Coefficients 
 

A B 

A B 
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Further data analyses were completed to determine if there was a statistical 

difference between the PermeGear® and high-throughput system trials.  Also, these 

calculated diffusion coefficients were compared to previous diffusion studies using 

collagen membranes to see if previous results were comparable to the high-throughput 

system findings. 
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7.0 ANALYSIS AND DISCUSSION 
 
An analysis needed to be completed for all of the experimental trials using both of 

the devices. The preliminary studies needed to be reviewed in order to make sure the 

high-throughput system functioned properly. The diffusion trials completed using either 

device needed to be compared in order to prove the functionality of the high-throughput 

system and the reproducibility of the trials.  Lastly, the calculated diffusion coefficients 

needed to be compared to previous research using the same molecules of study.   

7.1 Preliminary Trials 
 
 All preliminary trials were successfully completed to prove that the high-

throughput system could be for molecular diffusion experiments.  After visual inspection, 

no leakage was found around any of the components of the device when water was 

placed within the snake system, which controls temperature; or the chambers, which hold 

molecular solution.  The snake temperature system was able to produce and maintain a 

necessary temperature of 37ºC for testing.  Also, the solution within the chambers was 

found to be homogenously mixed after placing the system on a shaker plate.  These 

findings all supported the reasoning that this device would function properly during the 

diffusion studies using the three molecules of choice. 

7.2 Diffusion Trial Comparisons 
 
 After determining the diffusion coefficient for each trial carried out using the 

PermeGear® or the high-throughput system, the trials for a specific device were 

graphically and numerically compared.  It was found that each trial produced a similar 

diffusion coefficient that was carried out on a specific device.  For example, all three 
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trials carried out on the high-throughput device using gamma globulin produced similar 

diffusion coefficients as seen in Table 28. These trials are all comparable to one another.  

This similarity was found for each of the trials carried out on the PermeGear® or high-

throughput system using one of the specified molecular solutions.  This proved the 

reproducibility of the high-throughput system by producing similar results for each trial 

using a particular molecule.  It was also important to test the functionality of one device 

to another.  A statistical analysis was completed to compare the trials carried out with the 

PermeGear® device and those carried out with the high-throughput system for a specific 

molecule in order to try and prove that the devices were comparable to each other.  

Table 28: Diffusion Coefficients Calculated from Trials for Gamma Globulin 
Experiment Calculated Diffusion Coefficient (cm2/hour) 

1st experiment 1.67 x10-4 

2nd experiment 1.93 x 10-4 

3rd experiment 1.62 x10-4 

7.3 PermeGear® vs. High-throughput System 
 
  A statistical analysis was completed in order to compare the trials, and overall 

performance, of the high-throughput system to that of the PermeGear®.  A student’s t-

test was used to compare the average diffusion coefficient for a specified molecule found 

from the PermeGear® trials to that of the average diffusion coefficient calculated from 

the high-throughput trials (n=3 for each device).  These trials used collagen membranes 

for their studies.  This was completed for each molecule tested (glucose, BSA, and 

gamma globulin).  No statistical test was completed using the dialysis membranes due to 

the fact that dialysis membrane is a previously characterized membrane and did not need 

to be tested with the already marketed PermeGear® device.  Appendices BB-BD have the 
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calculated student’s t-test results for each molecule tested using collagen membranes.  It 

was found, for all three molecules, that there was no statistical difference (p<0.05) 

between the diffusion coefficients calculated from the PermeGear® trials and the 

diffusion coefficients calculated from the high-throughput system trials.  These findings 

statistically prove that our device produces statistically similar diffusion results to that of 

the PermeGear® diffusion trials.  It also supports that our device can be comparable to 

the PermeGear® due to the similarity in the produced results.  These results are also 

graphically shown in the comparisons found in Figures 61 - 63 for each type of molecule 

used within these studies.   

 

Figure 62: Comparison of Glucose Diffusion Coefficients 
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Figure 63: Comparison of BSA Diffusion Coefficients 
 

 
Figure 64: Comparison of Gamma Globulin Diffusion Coefficients 

 
 By comparing the PermeGear® device and the high-throughput system, it was 

found that the device could produce similar results.  This proves that the high-throughput 

system is comparable to the PermeGear® device.  After proving the high-throughput 

system’s performance, it was necessary to compare the calculated data found for collagen 

membranes to data from previous studies.  This evaluation will determine whether the 

studies of glucose, BSA and gamma globulin through collagen membranes would 
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compare to previous studies, proving the success of the experiments using the high-

throughput system. 

7.4 Comparison to Previous Research 
 
  Previous studies were found for each type of diffusion study and a numerical 

comparison was used to see how well our studies compared to previous research.   

By comparing the calculated results to the previous research, we could determine if our 

results were comparable to previous studies.  If the results were found to be similar, we 

could assure these findings would be helpful in characterizing these membranes.   

 7.4.1 Glucose 
 

Glucose was the only molecule in which the diffusion studies could be compared 

to previous research for both the dialysis and collagen membranes.  Myung et al, 

previously studied the diffusion of glucose through dialysis membrane (MWCO: 14 kD), 

finding a diffusion coefficient of 3.4 x 10-7 cm2/s[17]. The calculated value using the 

high-throughput system was 1.26 x10-6 cm2/s.  These values are comparable to each other 

but not exactly the same due to the type/brand of dialysis membrane used for each of 

these studies.   

Glucose diffusion studies have also been completed previously on collagen 

membranes.  Within the study performed by Liu, a glucose diffusion coefficient was 

found to be 2.70 x 10–6 cm2/s[18]. The calculated value using the high-throughput system 

was 5.58 x10-6 cm2/s.  In these results the orders of magnitude are the same, showing 

similarity.  One reason there is a difference in the coefficients could be due to the fact 

that Liu cross-linked the membranes using an EDC/NHS treatment before performing the 
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diffusion studies.  Cross-linking can affect many parameters such as membrane thickness 

and porosity [54, 55].  Changing these parameters can also change the diffusion 

coefficient for the membrane.  This is can be shown by directly looking at the variables at 

the rearranged Fick’s law previously described in Section 5. 

The diffusion of glucose was also previously studied within native skin.  Khalil et 

al, studied the diffusion of glucose through various parts, such as the dermis and 

epidermis, using the PermeGear® device used within our studies[19].  A diffusion 

coefficient of 2.98 x 10–6 cm2/s was found for cadaver dermis.  This number is extremely 

close to the number calculated (5.58 x10–6 cm2/s) using the high-throughput system 

through collagen membranes. Although these collagen membranes are trying to be used 

to mimic the basal lamina of skin, the diffusion coefficient calculated within the high-

throughput system experiments were compared to that of the cadaver dermis due to the 

thickness of the collagen membrane actually being tested (100 μm).  The basal lamina of 

native skin is much thinner then the tested collagen membranes; therefore, the diffusion 

coefficient of the dermis was a better comparison to our studies.  The slight difference 

between the calculated number and that found in Khalil’s study may be due to the fact 

that many components of native skin, such as glycoproteins and glycoaminoglycans, can 

hinder the diffusion of polar molecules. These components are space filters which is why 

smaller molecules may have a harder time diffusing through the interstitial matrix of 

native skin. 

7.4.2 BSA 
 

BSA could only be studied through collagen membranes due to its large 

molecular size.  The diffusion coefficient calculated using the high-throughput system 
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trials is 7.08 x10-8 cm2/s.  Previous studies have found the diffusion of BSA through 

collagen membranes to have been 1.48 X 10–7 cm2/s and 1.60 x 10–7 cm2/s after cross-

linking these membranes with glutaraldehyde and EDC/NHS respectively [13, 18].  As 

previously stated, cross-linking can directly effect the diffusion coefficient of a 

membrane.  This treatment may account for the difference between the calculated 

diffusion coefficient and that found in previous studies.  The orders of magnitude of the 

calculated diffusion coefficient and the diffusion coefficients of the previous studies are 

very similar, thereby, supporting that the high-throughput system’s functionality and 

ability to help in characterizing the collagen membranes. 

7.4.2 Gamma Globulin 
 

Although a diffusion coefficient was able to be calculated for gamma globulin 

using the high-throughput system, many previous studies focus on inhibiting the transport 

of gamma globulin through collagen membranes.  Within many of these studies, diffusion 

coefficients are calculated but represent only a small amount of gamma globulin that was 

transported because these studies were preventing its diffusion through the membrane.  

Due to this preventative theme throughout previous studies, the calculated diffusion 

coefficient using the high-throughput data could not be compared to previous studies.   
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8.0 CONCLUSIONS  
 
Using engineering design, a high-throughput system was created.  This device 

was able to meet the needs, wants and constraints of the clients and was able to perform 

the necessary functions previously discussed within the design section.  This device and 

all of its main functions were evaluated through preliminary studies which proved that 

the device functioned properly. 

 Experimental trials were carried out using the device to study the molecular 

diffusion of glucose, BSA, and gamma globulin through both dialysis and collagen 

membranes.  The samples taken from these trials were used to analyze the diffusion 

coefficients of each particular molecule through the tested membrane.  When these trials 

were compared to one another, it was found that each trial produced similar results, 

supporting the reproducibility of studies using the high-throughput system. 

 The diffusion coefficients calculated for collagen membranes using the high-

throughput system were compared to those calculated using the Side-Bi-Side 

PermeGear® device.  Using a Student’s t-test, no statistical difference was found 

between the results produced from using the two different devices.  These findings prove 

that the high-throughput system is comparable to the PermeGear® device already 

available on the market.  The high-throughput system, however, allows multiple studies 

to be run at one time and decreases the experimental time needed. 

 Previous molecular diffusion research completed using collagen membranes was 

compared to the calculated diffusion coefficients using the high-throughput system trial 

results.  Although the diffusion coefficients were not exactly the same due to differences 

in membrane treatment, the diffusion coefficients were comparable to one another.  These 
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findings helped validate the diffusion studies completed with the designed device and 

meet the ultimate goal of characterizing self-assembled collagen membranes. 
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9.0 FUTURE RECOMMENDATIONS 
 

The diffusion coefficients calculated within this project help to quantitatively 

define self-assembled collagen membranes.  However, these studies are only the initial 

steps to characterize them.  There are many other studies that can be carried out to better 

define the parameters of diffusion for these membranes. 

 For example, as previously discussed, some studies have looked at the diffusion 

of molecules through cross-linked membranes.  Cross-linking can effect many variables 

of collagen membranes which dictate molecular diffusivity, such as membrane thickness 

and pore size.  The team suggests using self-assembled collagen membranes that have 

been crosslinked using a variety of established techniques to understand the effects of 

crosslinking on the diffusion rates of the molecules studied within this project.   These 

studies can help better characterize these membranes and may determine how 

crosslinking effects molecular diffusion. 

 The team also suggests possibly using a wider variety of molecules within its 

diffusion studies.  By understanding the diffusion properties of more molecules, the more 

specific a collagen membrane can be defined.  For example, the skin allows many 

different types of molecules to diffuse between the epidermal and dermal layer via the 

selective-permeable barrier known as the basal lamina.  By studying the diffusion rates of 

more molecules through collagen membranes, a tissue-engineered basal lamina may be 

produced sooner that will better mimic that of natural skin.  This substitute will be able to 

control paracrine signaling between the dermal and epidermal layer of the skin, while 

also providing structural support for tissue re-growth. 
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Appendix A – Original Client Statement 
 
Designing a High-Throughput Device to Characterize Molecular Transport through 
Collagen Membranes (GXP-0702) 
 
Date: August 28, 2006 
 
Client Statement: 
Design, develop and validate a high-throughput device to measure molecular transport 
rates through self-assembled collagen membranes. 
 
Background 
 Characterizing molecular transport through membranes with precisely designed 
porosities (e.g. pore size, density, thickness) is essential for the development of scaffolds 
that promote tissue regeneration.  Membrane porosity and molecular transport are 
important to provide space and surface area for cell seeding before implantation.  
Controlled transport also plays an important role in delivery of nutrients and removal of 
waste, while maintaining a separation barrier similar to that of a basal lamina in native 
tissue.  Finally, a bioengineered membrane with controlled transport properties will 
provide significant utility for the design of tissue scaffolds that deliver therapeutic 
proteins and/or growth factors.  Consequently, there is a need to develop a device and a 
testing protocol that will facilitate systematic studies that characterize the relationships 
between the materials properties and the molecular transport properties of collagen 
membranes. 
 

The goal of this project is to design, develop and validate a testing system to 
conduct biological transport analyses through collagen membranes.  Students will use 
CAD design to construct the device, and biomaterials processing techniques to fabricate 
the scaffolds.  Students will also use biochemical analyses to measure and transport 
through to the materials.  This project has application to biomaterials, drug delivery, 
tissue engineering and regenerative medicine. 
 
Research/Design Considerations: 
 Rationale for a specific method of developing a testing system 
  Client needs 
  Manufacturing methods  

Advantages/Limitations 
Biological transport calculations associated with methods for characterizing 

transport through the collagen membranes 
 Biochemical analyses of membrane transport 

What ECM molecules/peptides are important to study? 
What experimental/practical parameters must be considered when selecting 

these materials? 
What is the most efficient method for methods for measuring transport 

through the membrane? 
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What techniques can be developed to facilitate “high-throughput” screening of 
the system? 

What statistical analyses should be considered to analyze this system?  
   
Deliverables: 
General 

• Quarterly: MQP reports following BME MQP format 
• Quarterly: Laboratory notebook for team (submit with report) 
• Weekly progress reports and presentations 
• Participation in BME Project Presentation Day (including abstracts and resumes) 

 
Minimum Milestones for Quarterly Deliverables 
1st term 

• Introduction – background and significance 
• Design – revised client statement, clear objectives, weighted 
• Gantt Chart for remainder of project 

o Timeline, deadlines 
o Breakdown of responsibility (personal and group) 
o Types of modeling/testing/analysis 

2nd term 
• Reduce design to practice 
• Experimental design 
• Development of analysis methods 
• Detailed report of proposed testing methods 

 
3rd term/4th term 

• Develop prototype device 
• Develop method to measure transport through collagen membranes 
• Biochemical analyses of molecular transport in response to precisely designed 

membranes 
• Recommendations for future developments of the scaffolds 

 
Expectation of work 

• 17 hrs/week per student x 4 = 68 hrs/wk 
• Work as team 
• Individual responsibilities 
• Grading policy 

A. exceed stated objectives and advisors expectations (take control of project)  
B. complete stated objectives and meet advisors expectations (follow advisors 

advice well) 
C. complete stated objectives below advisors expectations 
NR. do not complete stated objectives 
The advisors reserve the right to grade the group as a team or to grade each 
student individually as appropriate. 
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Budget 

• $156-*/person reimbursed by BME Department at the end of the project 
(additional funds may be available) 

 
Website  

• Set up a website for the MQP team on myWPI 
 
Academic Dishonesty and Plagiarism 
In your Campus Planner and Resource Guide (p. 91-92 or 
www.wpi.edu/Pubs/Policies/Judicial/sect5.html) there is a statement regarding Academic 
Honesty.  You should read and understand this policy and the implications for any 
violation of that policy.  Understand that all of the work you present as your own, must 
be your own, and not the work of anyone else.  Use of reference materials from research 
literature and Websites MUST be cited and referenced appropriately.     
 
We trust that each of you will exhibit academic honesty and you will not tolerate 
dishonesty.  If we discover obvious violations of the Academic Honesty policy, our 
response will be a grade of zero for that assignment.  Additionally, any occurrences of 
academic dishonesty will be reported to the Department Chair and the Dean of 
Student Life, as required by WPI. 
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Department of Biomedical Engineering Major Qualifying Project 
Syllabus – 2006/2007 

 
This document outlines the requirements for completing a Major Qualifying Project 
(MQP) in the Department of Biomedical Engineering (BME) at WPI.  The full 
requirements can be found on the BME Department’s website on the Student Resources 
page (http://www.wpi.edu/Academics/Depts/BME/Resources/project.html).  There is also 
a tutorial for writing your MQP report, also on the Student Resources page, under “MQP 
Report Information Packet”.  Taken together these documents allow you to plan ahead for 
your project deadlines.   
 
Briefly, the requirements for completing an MQP are: 
 
1) Keep a notebook (one per project group) of all design work used in your project.  This 
notebook is to be turned in to the BME office at the conclusion of your project. 
 
2) Write a report that documents your MQP using the format outlined in the MQP report 
tutorial. 
 
3) Present your project at Project Presentation Day, either at the BME event or in the 
department of your major (WPI) advisor.  You are required to stay for the entire event 
unless your group is presenting in another department as well. 
 
Important Dates for 2006/07 MQP’s: 

• February 5, 2007: MQP Titles submitted to the BME department 
• March 20, 2007: Resumes (One page, no set format) submitted to the BME 

department 
• March 27, 2007: Abstracts (Two page, IEEE format) submitted to the BME 

department 
• March 27, 2007: (optional) Digital photographs of your project submitted to the 

BME department 
• April 17, 2007: Project Presentation Day 
• April 26, 2007, CDR deadline (IMPORTANT NOTE:  I will NOT sign CDR 

forms without verification from Lisa Wall, Lab Manager that the Team’s 
benchspace in the MQP Lab has been cleaned-up). 
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Appendix B – Meeting with Katie Bush 
 
Date: September 18, 2006 
Time: 2:00 pm   All group members present 
Scribe: Rachael Buteau 
 

Client meeting with Katie Bush 
 

Katie first described some of the key components of the device.  She discussed 
the development of the collagen membranes and gave us a range of membrane thickness 
between 50 to 200 microns.  These membranes were described as being a “snot like” 
material that could withstand various pressures, such as binder clips used during the 
drying process.  The membranes were usually made around a mesh Nytex material as 
well to help in the handling process.  The membranes sometimes have topographical 
features on them, using a negative replicate method; however, our studies would just be 
focusing on flat membranes.  For testing, these membranes would first be placed in a 
phosphate buffer solution (PBS) that did not contain any type of cations to hydrate. 

 
Katie also described the chamber system to us.  She requested that the donor and 

receiver chamber remain the same size and should hold 3-5 mL.  These chambers would 
need to be this size due to the fact that various assays required samples of approximately 
100 μl to be removed during testing.  These chambers would also need to be non-protein 
binding as well and allow pipette tips to be placed in and out of the chambers for 
sampling.  Katie’s current device, PermeGear Horizontal Diffusion Cell, would be 
demonstrated to the group at a later time.   

 
The research that was currently going on in the lab was also discussed.  Katie is 

working to fabricate collagen with topographical features that are similar to the natural 
skin.  This topographical feature represents the basal lamina of the natural skin.  
Keratinoctyes would be seeded onto this to allow for proliferation.  Below this 
topographical collagen would be a dermal sponge.  This sponge would need to contain 
fibroblasts due to the fact that is hypothesized that fibroblasts send signals to 
keratinocytes in order for proliferation to occur.  In order to understand and characterize 
this process, it is necessary to understand diffusion through collagen.  Currently, EGF, 
KGF and interlukin-1 are thought to help in this process.  With this information, Katie 
suggested that we look more into the assays in order to see what molecules could be used 
within our system along with the proper way to validate the system.  Both the Bradford 
and BCA protein assays were suggested as a starting point.  By looking at these assays, 
we could also decide a specific pore size necessary for the collagen membranes we would 
be testing. 

 
A secondary meeting would be held September 20, 2006 to see the PermeGear 

demonstration.   
 
Meeting adjourned 3 pm.  
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Appendix C – Glossary of Terms for the PCC 
 
Tier 1 
 
Effective – able to be developed to use minimal materials (small amounts of membranes 
and molecules) while being able to use a range of different materials as well (different 
types of membranes, different molecules); the device must effectively measure molecular 
transport rate of various molecules through a variety of membranes. 
 
Durable – can withstand multiple uses, cleanings, and transport; can be maintained 
throughout the usual wear and tear of device usage 
 
Safe- can in no way harm the user while using the device for testing; for example, no 
sharp edges 
 
Easily used – is able to be assembled, tested and cleaned by the user in a simple, straight-
forward manner without complicated steps that one would need training for 
 
Practical to make – device needs to be realistic in terms of cost, material(s) and time to 
be designed, developed and validated  
 
Tier 2 
 
Versatile – device is able to use multiple types of molecules and membranes 
 
Efficient – device uses minimal amount of materials to obtain quality results 
 
Organic resistant – can withstand the use of organic materials (will not degrade when 
used with organic solvents) 
 
Sterilizable – able to be sterilized, not just cleaned 
 
No leakage – device will not leak when chambers are filled and membrane is placed in 
between and clamped; device will be sealed to prevent loss of solution which may alter 
testing; and also sealed from outside environment 
 
Non-porous – material(s) of device will not contain any type of pores that may absorb 
solution used in diffusion 
 
Long-term – can withstand use over an extended period of time (undefined 
quantitatively) 
 
Acid/Base resistant – material is able to be used with acid and base solutions for testing 
or cleaning and not affect the material(s) or its performance 
 
Easily to clean – can simply take pieces apart and clean thoroughly 
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Portable – can be moved within the lab and to other labs easily 
 
User-independent – the device needs to be user-friendly enabling it to have any user 
who will understand how to operate tests and obtain samples/results from it 
 
Easily assembled – pieces must be simple and put together by user without a struggle to 
utilize tested materials and membranes; the device will hold together sturdily 
 
Bench-top fit – device must be able to be placed on lab bench and take up minimal space 
for convenience 
 
Affordable – the device must remain within a price range that the client considers lower 
cost in comparison to other devices on the market 
 
Simple design – design of device must be something that designers can actually develop 
and implement  
 
Tier 3 
 
Controls mixing – device must have ability for the user to define the mixing rate to 
provide homogeneous solutions in the donor and receiver chambers 
 
Controls temperature – device have the ability for the user to control the temperature of 
testing conditions 
 
High-throughput – device must be able to run multiple tests at the same time with 
multiple molecules 
 
Compatible cell co-culture – device must be made of material in which cells can be 
cultured in as well 
 
Conservative use of materials – amount of materials used, including membranes and 
molecules, is minimal but still enough to perform testing 
 
Ethanol resistant – device material(s) not degraded by the use of ethanol for cleaning 
purposes 
 
Gamma resistant – the quality of device material(s) are not affected by gamma radiation 
 
Autoclavable – the device material(s) can withstand temperatures for sterilization in an 
autoclave 
 
Sterilizable – the device material(s) can withstand sterilization techniques done over an 
extended amount of time (not yet quantitatively defined) 
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Acid-cleaned – the device material(s) can maintain quality with the use of acids to clean 
 
Soap and hot water – the areas of the device can be accessed to clean thoroughly with 
soap and hot water 
 
Tier 4 
 
Spectrophotometry – the system will be large enough to allow samples (~1 ml) and the 
device won’t compromise the liquid’s composition that would alter a spectrophotometry 
test 
 
ELISA – the system won’t excrete, absorb, alter, or denature proteins that would 
interfere with an ELISA test; device must also allow for several samples 
 
HPLC – the system won’t alter, absorb, or excrete chemicals of any kind that might 
interfere with HPLC testing 
 
Range of Membrane Geometry - device can hold membrane that vary in thickness and 
general shape 
 
Various Molecules – the device can transport multiple molecules as well as some 
simultaneously 
 
Accuracy – the device will produce results that are repeatable 
 
Precision – the device will perform compatibly with other devices 
 
Sterilizable – the device can be cleaned by sterilization techniques 
 
Biocompatible – the device will not adversely affect biological components added to the 
system; the device may provide favorable conditions for the biological components added 
 
Small area membrane – tested materials that will be conservatively used 
 
Least amount of molecules – tested materials that will be conservatively used 
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Appendix D – Final Pair-wise Comparison Charts 
 

Katie Bush – weighted 100% 
 

Tier 1       

OBJECTIVES Effective Durable Safe Easily Used 
Practical 
to Make 

Total 

Effective  0.5 1 0.5 1 3.0 

Durable 0.5  0.5 0.5 1 2.5 

Safe 0 0.5  0.5 0.5 1.5 

Easily used 0.5 0.5 0.5  1 2.5 

Practical to Make 0 0 0.5 0  0.5 
 

Tier 2    

Objectives for Effective Versatile Efficient Total 

Versatile  1 1.0 

Efficient 0  0 
 

Tier 2        

Objectives for Durable 
Chemical 
Resistant Sterilizable 

No 
leakage 

Non-
porous 

Long 
term 

Acid/Base 
Resistant 

Total 

Chemical Resistant  0.5 0 0 0 0 0.5 

Sterilizable 0.5  0 0.5 0 0.5 1.5 

No leakage 1 1  0.5 0.5 0.5 3.5 

Non-porous 1 0.5 0.5  0.5 0.5 3.0 

Long term 1 1 0.5 0.5  0.5 3.5 

Acid/Base Resistant 1 0.5 0.5 0.5 0.5  3.0 
 

Tier 2       

Objectives for Easily Used 
Easy to 
clean Portable 

User-
independent 

Easily 
assembled Benchtop fit 

Total 

Easy to clean  1 1 0.5 0.5 3.0 

Portable 0  1 0.5 0.5 2.0 

User-independent 0 0  0 0 0 

Easily assembled 0.5 0.5 1  1 3.0 

Benchtop fit 0.5 0.5 1 0  2.0 
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Tier 2    

Objectives for Practical to 
Make Affordable 

Simple 
Design 

Total 

Affordable  1 1.0 

Simple Design 0  0 
 

Tier 3    

Objectives for Versatile 
Uses Various 
Membranes 

Various 
Assays 

Total 

Uses Various Membranes  0 0 

Various Assays 1  1.0 
 

Tier 3       

Objectives for Efficient 
Controls 
Mixing 

Controls 
Temperature 

High-
throughput 

Compatible 
cell 

coculture 

Conservative 
Use of 

Materials 

Total 

Controls Mixing  0.5 0.5 1 0.5 2.5 

Controls Temperature 0.5  0.5 1 0.5 2.5 

High-throughput 0.5 0.5  1 0.5 2.5 
Compatible cell 

coculture 0 0 0  0 
0 

Conservative Use of 
Materials 0.5 0.5 0.5 1  

2.5 

 
Tier 3     

Objectives for Sterilizable 
Ethanol 
resistant 

Gamma 
resistant Autoclavable 

Total 

Ethanol resistant  1 1 2.0 

Gamma resistant 0  0 0 

Autoclavable 0 1  1.0 
 

Tier 3     

Objectives for Cleaned Sterilizable Acid-cleaned 
Soap and hot 

water 

Total 

Sterilizable  0.5 0.5 1.0 

Acid-cleaned 0.5  0.5 1.0 

Soap and hot water 0.5 0.5  1.0 
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Tier 4       

Objectives for Various 
Assays Spectrophotometry ELISA HPLC 

Total 

Spectrophotometry  1 1 2.0 

ELISA 0  0 0 

HPLC 0 0  0 
 

Tier 4      

Objectives for Uses Various 
Materials 

Range of 
Membrane 
Geometry 

Various 
Molecules 

Total 

Range of Membrane 
Geometry  0 

0 

Various Molecules 1  1.0 
 

Tier 4      

Objectives for Various High 
throughput Accuracy Precision 

Total 

Accuracy  0.5 0.5 

Precision 0.5  0.5 
 
 

Tier 4      

Objectives for Compatible 
with Cell coculture Sterilizable Biocompatible 

Total 

Sterilizable  0.5 0.5 

Biocompatible 0.5  0.5 
 

Tier 4      

Objectives for Conservative 
Use of Materials 

Small area 
membrane 

Least amount 
of molecules 

Total 

Small area membrane  0.5 0.5 

Least amount of molecules 0.5  

0.5 
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Rachael Buteau – weighted 25% (75% MQP team) 

 
Tier 1             

OBJECTIVES Effective Durable Safe Easily Used 
Practical 
to Make 

Total Weighted 
Total 

Effective   1 1 1 1 4.0 1.0 

Durable 0   1 0 0 1.0. 0.25 

Safe 0 0   1 0 1.0 0.25 

Easily used 0 1 0   0.5 1.5 0.375 

Practical to Make 0 1 1 0.5   2.5 0.675 
 

Tier 2       

Objectives for Effective Versatile Efficient 
Total Weighted 

Total 
Versatile   1 1.0 0.25 

Efficient 0   0 0 
 

Tier 2         

Objectives for Durable 
Chemical 
Resistant Sterilizable 

No 
leakage 

Non-
porous 

Long 
term 

Acid/Base 
Resistant 

Total Weighted 
Total 

Chemical Resistant   0.5 0 0 0 0 0.5 0.125 

Sterilizable 0.5   0 0 0 0.5 1.0 0.25 

No leakage 1 1   0 1 1 4.0 1.0 

Non-porous 1 1 1   1 1 5.0 1.25 

Long term 1 1 0 0   1 3.0 0.75 

Acid/Base Resistant 1 0.5 0 0 0   1.5 0.375 
 

Tier 2        

Objectives for Easily Used 

Easy 
to 

clean Portable 
User-

independent 
Easily 

assembled 
Benchtop 

fit 

Total Weighted 
Total 

Easy to clean   1 0 0.5 0 1.5 0.375 

Portable 0   0 0.5 0.5 1.0 0.25 

User-independent 1 1   1 1 4.0 1.125 

Easily assembled 0.5 0.5 0   0 1.0 0.25 

Benchtop fit 1 0.5 0 1   2.5 0.675 
 

Tier 2       

Objectives for Practical to 
Make Affordable 

Simple 
Design 

Total Weighted 
Total 

Affordable   0.5 0.5 0.125 

Simple Design 0.5   0.5 0.125 
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Tier 3     

Objectives for Versatile 
Uses Various 
Membranes 

Various 
Assays 

Total Weighted 
Total 

Uses Various Membranes   0.5 0.5 0.125 

Various Assays 0.5   0.5 0.125 
 

Tier 3        

Objectives for Efficient 
Controls 
Mixing 

Controls 
Temperature 

High-
throughput 

Compatible 
cell 

coculture 

Conservative 
Use of 

Materials 

Total Weighted 
Total 

Controls Mixing   0.5 1 1 0.5 3.0 0.75 

Controls Temperature 0.5   1 1 0.5 3.0 0.75 

High-throughput 0 0   1 0.5 1.5 0.375 

Compatible cell 
coculture 0 0 0   1 

1.0 0.25 

Conservative Use of 
Materials 0.5 0.5 0.5 0   

1.5 0.375 

  
Tier 3      

Objectives for Sterilizable 
Ethanol 
resistant 

Gamma 
resistant Autoclavable 

Total Weighted Total 

Ethanol resistant   1 1 2.0 0.5 

Gamma resistant 0   0.5 0.5 0.125 

Autoclavable 0 0.5   0.5 0.125 
 

Tier 3        

Objectives for Cleaned Sterilizable Acid-cleaned 
Soap and hot 

water 

Total Weighted 
Total 

Sterilizable  0.5 1 1.5 0.375 

Acid-cleaned 0.5  0.5 0.5 0.125 

Soap and hot water 0 0.5  0.5 0.125 
 

Tier 4        

Objectives for Various 
Assays Spectrophotometry ELISA HPLC 

Total Weighted 
Total 

Spectrophotometry  1 1 2.0 0.5 

ELISA 0  0.5 0.5 0.125 

HPLC 0 0.5  0.5 0.125 
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Tier 4       

Objectives for Uses Various 
Materials 

Range of 
Membrane 
Geometry 

Various 
Molecules 

Total Weighted 
Total 

Range of Membrane 
Geometry  0.5 

0.5 0.125 

Various Molecules 0.5  0.5 0.125 
 

Tier 4       

Objectives for Various High 
throughput Accuracy Precision 

Total Weighted 
Total 

Accuracy  0.5 0.5 0.125 

Precision 0.5  0.5 0.125 
 

Tier 4       

Objectives for Compatible 
with Cell coculture Sterilizable Biocompatible 

Total Weighted Total 

Sterilizable  1 1 0.25 

Biocompatible 0  0 0 
 

Tier 4       

Objectives for Conservative 
Use of Materials 

Small area 
membrane 

Least amount 
of molecules 

Total Weighted 
Total 

Small area membrane  0 0 0 

Least amount of molecules 1  

1 0.25 
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Thomas Jenket  -- weighted 25% (75% MQP team) 
 

Tier 1             

OBJECTIVES Effective Durable Safe Easily Used 
Practical 
to Make 

Total Weighted 
Total 

Effective  0.5 1 0.5 0 2.0 0.5 

Durable 0.5  1 0.5 0.5 2.5 0.675 

Safe 0 0  0.5 0 0.5 0.125 

Easily used 0.5 0.5 0.5  0.5 2.0 0.5 

Practical to Make 1 0.5 1 0.5  3.0 0.75 
 

Tier 2       

Objectives for Effective Versatile Efficient 
Total Weighted 

Total 
Versatile  0.5 0.5 0.125 

Efficient 0.5  0.5 0.125 
 

Tier 2         

Objectives for Durable 
Chemical 
Resistant Sterilizable 

No 
leakage 

Non-
porous 

Long 
term 

Acid/Base 
Resistant 

Total Weighted 
Total 

Chemical Resistant  1 0 0 0.5 0.5 2.0 0.5 

Sterilizable 0  0 0.5 0 0.5 1.0 0.25 

No leakage 1 1  1 1 1 5.0 1.25 

Non-porous 1 0.5 0  0.5 1 3.0 0.75 

Long term 0.5 1 0 0.5  1 3.0 0.75 

Acid/Base Resistant 0.5 0.5 0 0 0  1.0 0.25 
 

Tier 2        

Objectives for Easily Used 

Easy 
to 

clean Portable 
User-

independent 
Easily 

assembled 
Benchtop 

fit 

Total Weighted 
Total 

Easy to clean   1  0.5 0.5 0.5 2.5 0.675 

Portable 0   0 0.5 0.5 1.0 0.25 

User-independent 0.5 1   0 0.5 2.0 0.5 

Easily assembled 0.5 0.5 1   1 3.0 0.875 

Benchtop fit 0.5 0.5 0.5 0   1.5 0.375 
 

Tier 2       

Objectives for Practical to 
Make Affordable 

Simple 
Design 

Total Weighted 
Total 

Affordable  0.5 0.5 0.125 

Simple Design 0.5  0.5 0.125 
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Tier 3     

Objectives for Versatile 
Uses Various 
Membranes 

Various 
Assays 

Total Weighted 
Total 

Uses Various Membranes    0 0 0 

Various Assays 1   1.0 0.25 
 

Tier 3        

Objectives for Efficient 
Controls 
Mixing 

Controls 
Temperature 

High-
throughput 

Compatible 
cell 

coculture 

Conservative 
Use of 

Materials 

Total Weighted 
Total 

Controls Mixing  0.5 0.5 1 0 2.0 0.5 

Controls Temperature 0.5  0.5 1 1 3.0 0.375 

High-throughput 0.5 0.5  1 0.5 2.5 0.675 
Compatible cell 

coculture 0 0 0  0 
0 0 

Conservative Use of 
Materials 1 0 0.5 1  

2.5 0.675 

  
Tier 3      

Objectives for Sterilizable 
Ethanol 
resistant 

Gamma 
resistant Autoclavable 

Total Weighted Total 

Ethanol resistant    1 1 2.0 0.5 

Gamma resistant 0   0 0 0 

Autoclavable 0 1   1.0 0.25 
 

Tier 3        

Objectives for Cleaned Sterilizable 
Acid-

cleaned 
Soap and 
hot water 

Total Weighted 
Total 

Sterilizable  1 0 1.0 0.25 

Acid-cleaned 0  0 0 0 

Soap and hot water 1 1  2.0 0.5 
 
 

Tier 4        

Objectives for Various 
Assays Spectrophotometry ELISA HPLC 

Total Weighted 
Total 

Spectrophotometry  1 1 2.0 0.5 

ELISA 0  1 1.0 0.25 

HPLC 0 0  0 0 
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Tier 4       

Objectives for Uses Various 
Materials 

Range of 
Membrane 
Geometry 

Various 
Molecules 

Total Weighted 
Total 

Range of Membrane 
Geometry  0.5 

0.5 0.125 

Various Molecules 0.5  0.5 0.125 
 

Tier 4       

Objectives for Various High 
throughput Accuracy Precision 

Total Weighted 
Total 

Accuracy  0.5 0.5 0.125 

Precision 0.5  0.5 0.125 
 

Tier 4       

Objectives for Compatible 
with Cell coculture Sterilizable Biocompatible 

Total Weighted Total 

Sterilizable  0.5 0.5 0.125 

Biocompatible 0.5  0.5 0.125 
 

Tier 4       

Objectives for Conservative 
Use of Materials 

Small area 
membrane 

Least amount 
of molecules 

Total Weighted 
Total 

Small area membrane  0 0 0 

Least amount of molecules 1  

1.0 0.25 
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Christina Mezzone -- weighted 25% (75% MQP team) 

 
Tier 1             

OBJECTIVES Effective Durable Safe Easily Used 
Practical 
to Make 

Total Weighted 
Total 

Effective  1  1 1 1 4.0 1.0 

Durable         0   0  1  1 2.0 0.5 

Safe  0   1  1  1  3.0 0.75 

Easily used  0 0  0  1  1.0 0.25 

Practical to Make  0  0 0   0  0 0 
 

Tier 2       

Objectives for Effective Versatile Efficient 
Total Weighted 

Total 
Versatile    0.5 0.5 0.125 

Efficient  0.5   0.5 0.125 
 

Tier 2         

Objectives for Durable 
Chemical 
Resistant Sterilizable 

No 
leakage 

Non-
porous 

Long 
term 

Acid/Base 
Resistant 

Total Weighted 
Total 

Chemical Resistant    1  0  0  0  1 2.0 0.5 

Sterilizable  0    0  0  0  1 1.0 0.25 

No leakage  1  1    0.5  1  1 4.5 1.125 

Non-porous  1  1  0.5    1  1 4.5 1.125 

Long term  1  1  0  0    1 3.0 0.75 

Acid/Base Resistant  0  0  0  0  0   0 0 
 

Tier 2        

Objectives for Easily Used 

Easy 
to 

clean Portable 
User-

independent 
Easily 

assembled 
Benchtop 

fit 

Total Weighted 
Total 

Easy to clean   0  0.5  0  0  0.5 0.125 

Portable  1    0  0  .5 1.5 0.375 

User-independent 0.5  1    1  1  3.5 0.875 

Easily assembled  1 1  0     .5 2.5 0.675 

Benchtop fit 1   0.5  0 0.5    2.0 0.5 
 

Tier 2       

Objectives for Practical to 
Make Affordable 

Simple 
Design 

Total Weighted 
Total 

Affordable    0.5 0.5 0.125 

Simple Design  0.5   0.5 0.125 
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Tier 3     

Objectives for Versatile 
Uses Various 
Membranes 

Various 
Assays 

Total Weighted 
Total 

Uses Various Membranes   0 .5 0.5 0.125 

Various Assays 0.5    0.5 0.125 
 

Tier 3        

Objectives for Efficient 
Controls 
Mixing 

Controls 
Temp 

High-
throughput 

Compatible 
cell 

coculture 

Conservative 
Use of 

Materials 

Total Weighted 
Total 

Controls Mixing    0.5 0.5  1   0.5 2.5 0.675 

Controls Temperature  0.5    0.5  1  0.5 2.5 0.675 

High-throughput  0.5 0.5    0  1 2.0 0.5 
Compatible cell 

coculture  0 0   1    0 
1.0 0.25 

Conservative Use of 
Materials  0.5  0.5 0   1   

2.0 0.5 

  
Tier 3      

Objectives for Sterilizable 
Ethanol 
resistant 

Gamma 
resistant Autoclavable 

Total Weighted Total 

Ethanol resistant    1  1 2.0 0.5 

Gamma resistant  0   0  0 0 

Autoclavable 0  1    1.0 0.25 
 

Tier 3        

Objectives for Cleaned Sterilizable Acid-cleaned 
Soap and hot 

water 

Total Weighted 
Total 

Sterilizable   0.5   0.5 1.0 0.25 

Acid-cleaned  0.5    0 0.5 0.125 

Soap and hot water  0.5 1   1.5 0.375 
 

Tier 4        

Objectives for Various 
Assays Spectrophotometry ELISA HPLC 

Total Weighted 
Total 

Spectrophotometry    1  1 2.0 0.5 

ELISA  0    0 0 0 

HPLC  0  1   1.0 0.25 
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Tier 4       

Objectives for Uses Various 
Materials 

Range of 
Membrane 
Geometry 

Various 
Molecules 

Total Weighted 
Total 

Range of Membrane 
Geometry    0 

0 0 

Various Molecules  1   1.0 0.125 
 

Tier 4       

Objectives for Various High 
throughput Accuracy Precision 

Total Weighted 
Total 

Accuracy    0.5 0.5 0.125 

Precision  0.5   0.5 0.125 
 

Tier 4       

Objectives for Compatible 
with Cell coculture Sterilizable Biocompatible 

Total Weighted Total 

Sterilizable    0 0 0 

Biocompatible  1   1.0 0.25 
 

Tier 4       

Objectives for Conservative 
Use of Materials 

Small area 
membrane 

Least amount 
of molecules 

Total Weighted 
Total 

Small area membrane    0.5 0.5 0.125 

Least amount of molecules  0.5   

0.5 0.125 
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George D. Pins, Ph.D. – weighted 50% 
 

Tier 1             

OBJECTIVES Effective Durable Safe Easily Used 
Practical 
to Make 

Total Weighted 
Total 

Effective   1  1  1  1 4.0 2.0 

Durable  0   1  1  0.5 2.5 1.25 

Safe  0  0   0  0.5 0.5 0.25 

Easily used  0  0  1   1 2.0 1.0 

Practical to Make  0  0.5  0.5  0  1.0 0.5 
 

Tier 2       

Objectives for Effective Versatile Efficient 
Total Weighted 

Total 
Versatile    0 0 0 

Efficient  1   1.0 0.5 
 

Tier 2         

Objectives for Durable 
Chemical 
Resistant Sterilizable 

No 
leakage 

Non-
porous 

Long 
term 

Acid/Base 
Resistant 

Total Weighted 
Total 

Chemical Resistant    0  0  0  0  0 0 0 

Sterilizable  1    0  0  0  0 1.0 0.5 

No leakage  1  1    0.5  1  0.5 4.0 2.0 

Non-porous  1  1  0.5    1  0.5 4.0 2.0 

Long term  1  1  0  0    0 2.0 1.0 

Acid/Base Resistant  1  1  0.5  0.5  1   4.0 2.0 
 

Tier 2        

Objectives for Easily Used 

Easy 
to 

clean Portable 
User-

independent 
Easily 

assembled 
Benchtop 

fit 

Total Weighted 
Total 

Easy to clean    1  1  0.5  1 3.5 1.75 

Portable  0    0  0  0 0 0 

User-independent  0  1    0  1 2.0 1.0 

Easily assembled  0.5  1  1    1 3.5 1.75 

Benchtop fit  0  1  0  0   1.0 0.5 
 

Tier 2       

Objectives for Practical to 
Make Affordable 

Simple 
Design 

Total Weighted 
Total 

Affordable    0.5 0.5 0.25 

Simple Design  0.5   0.5 0.25 
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Tier 3     

Objectives for Versatile 
Uses Various 
Membranes 

Various 
Assays 

Total Weighted 
Total 

Uses Various Membranes    0 0 0 

Various Assays  1   1.0 0.5 
 

Tier 3        

Objectives for Efficient 
Controls 
Mixing 

Controls 
Temp 

High-
throughput 

Compatible 
cell 

coculture 

Conservative 
Use of 

Materials 

Total Weighted 
Total 

Controls Mixing    0.5  0.5  1  0.5 2.5 1.25 

Controls Temperature  0.5    0.5  1  0.5 2.5 1.25 

High-throughput  0.5  0.5    1  0.5 2.5 1.25 
Compatible cell 

coculture  0  0  0    0 
0 0 

Conservative Use of 
Materials  0.5  0.5  0.5  1   

2.5 1.25 

  
Tier 3      

Objectives for Sterilizable 
Ethanol 
resistant 

Gamma 
resistant Autoclavable 

Total Weighted 
Total 

Ethanol resistant    1  0 1.0 0.5 

Gamma resistant  0    0 0 0 

Autoclavable  1  1   2.0 1.0 
 
 

Tier 3        

Objectives for Cleaned Sterilizable 
Acid-

cleaned 
Soap and 
hot water 

Total Weighted 
Total 

Sterilizable    0  0 0 0 

Acid-cleaned  1    0.5 1.5 0.75 

Soap and hot water  1  0.5   1.5 0.75 
 

Tier 4        

Objectives for Various 
Assays Spectrophotometry ELISA HPLC 

Total Weighted 
Total 

Spectrophotometry    1  1 2.0 1.0 

ELISA  0    1 1.0 0.5 

HPLC  0  0   0 0 
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Tier 4       

Objectives for Uses Various 
Materials 

Range of 
Membrane 
Geometry 

Various 
Molecules 

Total Weighted 
Total 

Range of Membrane 
Geometry  0 

0 0 

Various Molecules 1  1.0 0.5 
 

Tier 4       

Objectives for Various High 
throughput Accuracy Precision 

Total Weighted 
Total 

Accuracy    0.5 0.5 0.25 

Precision  0.5   0.5 0.25 
 

Tier 4       

Objectives for Compatible 
with Cell coculture Sterilizable Biocompatible 

Total Weighted Total 

Sterilizable  0 0 0 

Biocompatible 1  1.0 0.5 
 

Tier 4       

Objectives for Conservative 
Use of Materials 

Small area 
membrane 

Least amount 
of molecules 

Total Weighted 
Total 

Small area membrane  0.5 0.5 0.25 

Least amount of molecules 0.5  

0.5 0.25 
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Appendix E -  Weighted Totals from PCCs for Weighted Objectives Tree 
 

Tier 1  

OBJECTIVES 
Total with 

weights 
Effective 7.5 
Durable 5.175 

Safe 2.875 
Easily used 4.625 

Practical to Make 2.425 
 22.6 

 
Tier 2  

Objectives for Effective 
Total with 

weights 
Versatile 1.5 
Efficient 0.75 

 2.25 
 

Tier 2  

Objectives for Durable 
Total with 

weights 

Chemical Resistant 1.625 
Sterilizable 2.75 
No leakage 8.875 
Non-porous 8.125 
Long term 6.75 

Acid/Base Resistant 5.625 
 33.75 

 
Tier 2  

Objectives for Easily Used 
Total with 

weights 

Easy to clean 5.925 
Portable 2.875 

User-independent 3.5 
Easily assembled 6.55 

Benchtop fit 4.05 
 22.9 
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Tier 2  
Objectives for Practical to 

Make 
Total with 

weights 
Affordable 1.625 

Simple Design 0.625 
 2.25 

 
Tier 3  

Objectives for Versatile 
Total with 

weights 
Uses Various Materials 0.25 

Various Assays 2.0 
 2.25 

 
Tier 3  

Objectives for Efficient 
Total with 

weights 

Controls Mixing 5.675 
Controls Temperature 5.55 

High-throughput 5.3 
Compatible cell coculture 0.5 

Conservative Use of Materials 
5.3 

 
22.325 

 
Tier 3  

Objectives for Sterilizable 
Total with 

weights 
Ethanol resistant 4.0 
Gamma resistant 0.125 

Autoclavable 2.625 
 6.75 
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Tier 3  

Objectives for Cleaned 
Total with 

weights 
Sterilizable 1.875 

Acid-cleaned 2.0 
Soap and hot water 2.75 

 6.625 
 

Tier 4  

Objectives for Various Assays 
Total with 

weights 
Spectrophotometry 4.5 

ELISA 0.875 
HPLC 0.375 

 5.75 
 

Tier 4  

Objectives for Uses Various 
Materials 

Total with 
weights 

Range of Membrane Geometry 0.25 
Various Molecules 1.875 

 2.125 
 

Tier 4  
Objectives for Various High 

throughput 
Total with 

weights 
Accuracy 1.125 
Precision 1.125 

 2.25 
 

Tier 4  
Objectives for Compatible with 

Cell coculture 
Total with 

weights 
Sterilizable 0.875 

Biocompatible 1.375 
 2.25 
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Tier 4  

Objectives for Conservative 
Use of Materials Total 

Small area membrane 0.875 

Least amount of molecules 1.375 

 2.25 
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Appendix F – Molecules Chart 
 
All information found on Sigma Aldrich and Pierce websites 
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Appendix G– Metrics for Rankings 
 
EFFECTIVE 
Versatile  
Objective: Compatible to various assays 
Units: Ranking the versatility on a scale of 1 (meets none) to 3 (meets all) 
Metric: Measure the versatility of the device by seeing how many types of assays can be 
carried out using the device out of the assays specified by our objectives.  On a scale of 1 
to 3, assign the following ratings: 1 – can be used for one, 2 – can be used for two, 3 – 
can be used for all three assays 
  
Objective: Uses various materials 
Units: Ranking the variety of materials able to be used on a scale of 1 (meets none) to 3 
(meets all) 
Metric: Measure the variety of materials able to be used by deciding if the device can 
hold various sized membranes and use a variety of molecules.  On a scale of 1 to 3, 
assign the following ratings: 1 – Can not hold various membrane sizes or use a variety of 
molecules, 2 – may be able to hold various membrane sizes or use various molecules, 3 – 
can hold various membranes and various molecules. 
 
Efficient 
Objective: High throughput 
Units: Ranking the ability to place the device in a high-throughput system on a scale of 1 
to 4 
Metric: Measure the ability to be a high-throughput device based on number of actual 
devices used in a system.  One a scale of 1 to 4, assign the following ratings: 1 – 6 
devices, 2 – 12 devices, 3 – 18 devices, 4 – 24 devices 
 
Objective: Controls temperature 
Units: Ranking the devices ability to control temperature on a scale of 1 (can not) to 3 
(can) 
Metric: On a scale of 1 to 3, assign the following ratings to temperature control: 1 – can 
not control temperature, 2 –variable temperature between 25-40 C, 3 – maintains constant 
temperature between 25-40 C 
 
** For the specific function of controlling temperature, more variables within the 
objective needed to be taken into account.  A binary system (0,1) was used to assign 
weather the device was able to meet specifics within the objective.  See Below: 
  
 Sub-Objective: Even distribution of heat from all sides 
 Metrics: Assign the following ratings: 0 – means can not evenly distribute heat 

from all sides, 1 – means can evenly distribute heat from all sides 
 
 Sub-Objective: No infiltration of water into system 

Metrics: Assign the following ratings: 0 – infiltration into the device could occur 
which could effect testing, 1 – no infiltration will occur into the device 
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Sub-Objective: Maintains temperature within 5 degrees of setting within 5 
minutes 

 Metrics: Assign the following ratings: 0 – means of temperature control can not 
maintain the temperature within 5 degrees of setting within 5 minutes, 1 – means 
of temperature control can maintain the temperature within 5 degrees of setting 
within 5 minutes 

 
 Sub- Objective: Range of temperature can be set between 25-40 C 

Metrics: Assign the following ratings: 0 – variable temperatures within the 25-40 
C range can not be set, 1 – variable temperatures within the 25-40 C range can be 
set by the means  
 

** Due to the fact that not all means of mixing were compatible with some means of 
temperature control, a yes/no system was used to determine which means of each 
function were compatible to each other.  This would be used to determine the ranking of 
temperature control for the function-means of mixing. 
 
 Objective: Controls temperature (specific to mixing) 

Units: Ranking the means ability to control temperature on a scale of 1 (Mixing 
compatible to one type of temperature control) to 4 (mixing compatible to all 
types of temperature control) 
Metrics: On a scale of 1 to 4, assign the following rankings: 1 –mixing 
compatible to one type of temperature control, 2 – compatible to two types of 
temperature control, 3 – compatible to three types of temperature control, 4 – 
compatible to all types of temperature control 
 

Objective: Compatible cell co-culture 
Units: Ranking the devices ability to allow cell culture on a scale of 1 (meets none) to 3 
(meets all) 
Metric: Measure the devices ability to allow for cell culture based on whether it is 
sterilizable and biocompatibile.  On scale of 1 to 3, assign the following ratings: 1 – is 
neither sterilizable or biocompatible, 2 - can be sterilizable or biocompatible, 3 – is both 
sterilizable and biocompatible 
 
Objective: Homogeneously mixes 
Units: Ranking the ability of the device to mix the chambers of 1 (can not mix) to 3 
(homogenously mixes) 
Metric: Measure the devices ability to homogenously mix based on amount of time it 
takes to mix chambers.  On a scale of 1 to 3, assign the following ratings: 1 – can not 
homogenously mix, 2 – takes more than 5 minutes to mix, 3 – takes less than 5 minutes to 
mix 
 
** For the specific function of homogeneously mixing, different means of mixing could 
not be easily weighted against the general objective of homogeneously mixes.  This 
objective needed to be broken down for this specific function-means.  See below: 
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 Sub-Objective: Even mixing 

Units: Ranking the ability of the means to mix the chambers on a scale of 0 (can 
not) to 1(can always) 
Metrics: Assign the following rankings: 0 – means can never evenly mix, 0.5 – 
means may be able to evenly mix, 1 – means will definitely/always evenly mix 
 
Sub-Objective: Control rate of mixing 
Units: Ranking the ability of the means to control the rate of mixing in the 
chambers on a scale of 0 (can not) to 1(can always) 
Metrics: Assign the following rankings: 0 – means can never control mixing, 0.5 
– means may be able to control rate of mixing, 1 – means can control rate of 
mixing 
 
Sub-Objective: Compatibility of mixing device to water 
Units: Ranking the ability of the means to be compatible with water on a scale of 
0 (can not) to 1(can always) 
Metrics: The compatibility of the type of mixing was ranked based on what types 
of temperature control the mixing was compatible with from previously 
comparing each temperature control means to each mixing means (ex. the motor 
was ranked for compatibility using water based on its use with a water jacket, 
plate and snake system only).  Assign the following rankings: 0 – means is not 
compatible, 0.5 – means may be compatible with water, 1 – means is always 
compatible with water 
 

** Due to the fact that not all means of temperature control were compatible with some 
means of mixing, a yes/no system was used to determine which means of each function 
were compatible to each other.  This would be used to determine the ranking of 
homogeneous mixing for the function of temperature control. 
 
 Objective: Homogeneously mixes (specific to temperature control) 

Units: Ranking the means ability to homogeneously mixed on a scale of 1 
(temperature control compatible to one type of mixing) to 4 (temperature control 
compatible to all type of mixing) 
Metrics: On a scale of 1 to 4, assign the following rankings: 1 - compatible to one 
type of mixing, 2 – compatible to two types of mixing, 3 – compatible to three 
types of mixing, 4 – compatible to all types of mixing 

 
Objective: Conservative use of materials 
Units: Ranking the conservativeness of the device on a scale of 1 (meets none) to 3 
(meets all) 
Metric: Measure the ability for the device to conserve materials based on its minimal use 
of membranes and molecules.  Minimal use of membranes is determined by complete 
membrane placed in system will be in contact with diffusion fluid when used.  Minimal 
use of molecules is determined by amount of fluid in chambers actually necessary to 
drive diffusion.  On a scale of 1 to 3, assign the following rankings: 1 – uses large amount 
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of molecules and membranes, 2 – uses a minimal amount of molecules or membranes, 3 
– uses both minimal amounts of membranes and molecules. 
 
SAFE 
Objective: Safe 
Units: Ranking the safety on a scale of 1 (worst) to 3 (best) 
Metric: Measure the safety of the device by determining if the device contains any sharp 
edges.  Sharp edges are defined as any portion of the device that can cut the user. On a 
scale of 1 to 3, assign the following ratings: 1 – more than 5 places with sharp edges , 2 – 
between/= 3 to 5 places with sharp edges, 3 – less than 3 places with sharp edges 
 
DURABLE 
Objective: Chemical resistant 
Units: Ranking the resistance on a scale of 1 (worst) to 3 (best) 
Metric: Measure the resistance of the device by determining if the device materials will 
be affected by chemicals.  On a scale of 1 to 3, assign the following ratings: 1 – device 
deteriorates/degrades and is no longer usable, 2 – evidence of deterioration/degradation 
after exposure to chemicals but still usable, 3 – devices functions and materials remain 
unchanged if chemicals used 
 
Objective: Long term 
Units: Ranking the duration of the device on a scale of 1 (worst) to 3 (best) 
Metric: Measure the duration of the device based on the number of times it can be used.  
On a scale of 1 to 3, assign the following ratings: 1 – can be used less than 20 times, 2 – 
can be used between 20 times to 40 times years, 3 – over 40 times 
 
Objective: No leakage 
Units: Ranking the leakage on a scale of 0 (leaks) to 1 (no leaks) 
Metric: Assign the following ratings: 0 – device will leak, 1 – device will not leak.   
 
Objective: Non-Porous 
Units: Ranking the porosity on a scale of 0 (no) to 1 (yes) 
Metric: On a scale of 0 to 1, assign the following: 0 – the device will allow the infiltration 
of molecules, 1 – it will not allow the infiltration of molecules 
 
Objective: Sterilizable 
Units: Ranking the ability to sterilize the device on a scale of 1 (meets none) to 3 (meets 
all) 
Metric: Measure the ability to sterilize the device based on its ability to be sterilized with 
ethanol, gamma, or autoclaving method. On a scale of 1 to 3, assign the following ratings: 
1 – can be sterilized by </= one method, 2 – can be sterilized by more than one method, 3 
– can be sterilized by all methods 
 
Objective: Acid-Base Resistant 
Units: Ranking the resistance of the device on a scale of 1 (worst) to 3 (best) 



 189

Metric: Measure the resistance of the device  based on how the device will be effected by 
the chemicals.  On a scale of 1 to 3, assign the following ratings: 1 – device 
deteriorates/degrades and is no longer usable, 2 – evidence of deterioration/degredation 
after exposure to chemicals but still usable, 3 – devices functions and materials remain in 
tact if chemicals used.   
 
PRACTICAL TO MAKE 
 
Objective: Affordable 
Units: Ranking the affordability the device on a scale of 0 (expensive) to 1 (inexpensive) 
Metric: Measure affordability based on the price of the component of the device in 
question.  Each component will be looked at separately and will be ranked on the specific 
price range that component may fall in ( ex. – mixing – price and categorize each means 
of mixing  On a scale of 0 to 1 assign the following: \ 

0 – component cost > $100 
0.1 – component cost between $90-100 
0.2 – component cost between $80-90 
0.3 – component cost between $70-80 
0.4 – component cost between $60-70 
0.5 – component cost between $50-60 
0.6 – component cost between $40-50 
0.7 – component cost between $30-40 
0.8 – component cost between $20-30 
0.9 – component cost between $10-20 
1 – component cost < $10   

 
Objective: Simple design 
Units: Ranking the simplicity the device on a scale of 1 (complex) to 3 (simple) 
Metric: Measure simplicity of the device by the number of parts/pieces that are major 
components of the device.  This includes stirrers, chambers, membrane holder and ports.  
On a scale of 1 to 3 assign the following: 1 – more than 10 pieces, 2 – between 5 and 10 
pieces, 3 – less than 5 pieces. 
 
EASILY USED 
 
Objective: User-Independent 
Units: Ranking how easy it would be for any user to use the devices on a scale of 1 
(multiple interactions) to 3 (few interactions) 
Metric: Measure dependency on based on the number of user/device interactions in 
protocol to reduce human error.  On a scale of 1 to 3, assign the following values: 1 – 
more than 16 interactions, 2 – between 8-16 interactions, 3 – less than 8 interactions 
 
Objective: Portable 
Units: Ranking how portable the device is on a scale of 1 (fixed) to 3 (portable) 
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Metric: Measure portability based on the size of the device.  On a scale of 1 to 3 assign 
the following: 1 – bigger than 4’x4’, 2 – size between 2’x2’ and 4’x4’, 3 – size smaller 
than 2’x2’. 
 
Objective: Easy to clean 
Units: Ranking how easy it is to clean the device on a scale of 1 (hard) to 3 (easy) 
Metric: Measure how easy it is to clean based on time to clean the device.  On a scale of 
1 to 3, assign the following ranking: 1 – more than 30 minutes, 2 –between 15-30 minutes, 
3 – less than 15 minutes. 
 
Objective: Easily assembled 
Units: Ranking the ease to assemble the device 1 (hard) to 3 (easy) 
Metric: Measure ease to assemble the device based on the time needed to assemble 
device. On a scale of 1 to 3, assign the following rating: 1 – more than 1 hour, 2 – 30 
minutes to an hour, 3 – less than 30 minutes. 
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Appendix H – Justifications of Metrics 
 
User Independent: 

User independence is defined as having the testing protocol and the device work 
as intended regardless of who uses it. This does assume that the user has basic laboratory 
common sense (i.e. how to use a pipette, etc.). User independence is measured based on 
the amount of interactions a user has with the device. Lowering the number of 
interactions decreases the opportunities for error on the user’s part, thereby increasing the 
device’s independence. 
 
Compatible to Various Assays: 
 There are three assays that should be able to be done with this device: ELISA, 
spectrophotometry, and HPLC. The metric is set up to measure the number of assays the 
device will be able to accommodate. The more assays that it can accommodate, the more 
versatile it is. Certain assays need a certain volume of solution in order to be used, this 
can dictate the size of the chambers needed as well as the sampling ports necessary. 
 
Compatible Cell Co-cultures: 
 The device would potentially have the ability to host live cells in it. This would 
mean that the device would have to be sterilizible. This could be done through a chemical 
means or putting it through an autoclave. The device must also be biocompatible, which 
means that it should not be made out of toxic material.  
 
Homogenously Mixing: 
 The device needs to be able to mix the chambers well enough so that no boundary 
layers at the membrane interface. Homogenously mixing takes care of the boundary layer 
by making sure that there are no concentration gradients within one single chamber, 
whether it is a donor or receptor chamber. This is meant to try to mimic the body’s 
environment. The receptor chamber is supposed to impersonate the body, which would 
redistribute the molecules evenly. This device measures just passive diffusion, so no 
conductive or cell mediated diffusive forces are taken into account.  

Another feature that is desired is to be able to control the rate of the mixing. This 
is important to ensure that the mixing doesn’t compromise the membrane’s integrity.  

There was also a question of which mixing methods can be combined with which 
heating mechanisms. For example, a water bath cannot be used when a large stir rod is 
used for the stirring mechanism because the motor would short circuit when exposed 
directly to water. 
 
Chemical Resistant: 
 The chambers must be chemically resistance to different solutions. The chambers 
cannot show signs of degradation or deterioration due to exposure to solvents or cleaning 
agents. If the chamber degrades too much then there’s a risk of cross contamination from 
the heating source or leaking from the chamber. This can be determined by its ability to 
maintain a smooth surface on the face of the device and also by the seal between the 
connectors and the actual chambers. 
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Sterilizable: 
 The device must be able to be sterilized in order to ensure that there are no other 
factors contributing to the diffusion. The sterilization methods are by ethanol, gamma, or 
autoclaving. 
 
Simple Design: 
 This is a common concept for engineers. Engineers strive to keep things in their 
simplest forms. This metric measure the number of pieces the device actually has. Fewer 
pieces are desired. 
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Appendix I – Weighted Function Means 
 

 
 

 
 

 
 

Temperature Control 
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Donor and Receiver Engagement  

 
 
 

Holding Membrane 

 
 

Mixing 

 



 195

Multi-Chamber System 

 
 

Materials 
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Sampling port 
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Appendix J – Price Information Used in Affordability Ranking 
Product Distributor Dimensions Price 

O-ring Allorings.com ID: 7/8’’ 
OD: 1’’ 
W: 1/16’’ 

50 @ $9.90 

    
3 Blade Propeller Cole-Parmer 1’’ dia x 5/16’’ bore 

diam 
$24.00 each 

Paddle Propeller Cole-Parmer ¼’’ x 2-5/8’’ x 15’’ $24.00 each 
4 Blade Propeller Sciencelab.com 50 diam x 350 mm long $91.00 each 
12V Air Pump Aquatic Eco-systems, inc. 12V 

25 W 
$87.78 each 

    
2’’ Thick Polycarb http://www.mcmaster.com/ 1’ x 1’ $188.46 
 Plastics Unlimited 1’ x 1’ $219.00 
 GE Polymershapes 1’ x 1’ $235.00 
 Precision Punch and Plastics 12’’ x 24’’ $421.00 
 Total Plastics 10’’ x 32 ¾’’ $379.88 
    
Bessey Adjustable 
Clamp 

McFeelys.com 2.5’’ x 12’’ $10.43 

Adjustable Knuckle 
Catch 

HomeDecorHardward.com  $6.40 

Adjustable Catch Neilsen Sessions ~5’’ x 3’’ $9.80 
Draw Catch Nielsen Sessions 5.07’’ x 2.36’’ $3.99 
Nylon Snap Joiners Woodworker’s Supply 3/8’’ diameter 

3/8’’ deep 
10 @ $6.99 

    
Polypropylene Non-
threaded leurs 

Home Depot ¼’’ OD x 1/8’’ ID $2.47 

  3/8’’ OD x ¼’’ ID $3.23 
Polypropylene 
Threaded leurs 

Home Depot ¼’’ OD x 1/8’’ ID $2.59 

  3/8’’ OD x ¼’’ ID $2.55 
  ½’’ OD x 3/8’’ ID $2.99 
  3/8’’ OD x 3/8’’ ID $2.80 
    
Clear Vinyl Tubing Home Depot OD x ID (inch) x Length Price 
  5/8’’ x ½’’ x 10’ $3.49 
  5/8’’ x ½’’ x 20’ $5.79 
  ¾’’ x ½’’ x 10’ $5.99 
  ¾’’ x 5/8’’ x 10’ $4.98 
  ¾’’ x 5/8’’ x 20’ $8.99 
  3/8’’ x ¼’’ x 10’ $2.39 
  3/8’’ x ¼’’ x 20’ $3.99 
Polyethylene tubing 
(non clear) 

Home Depot OD x ID (inch) x Length Price 

  ½’’ x 3/8’’ x 25’ $6.49 
  3/8’’ x ¼’’ x 25’ $4.99 
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Appendix K – Temperature Calculations for Polycarbonate and Acrylic 
 
November 13, 2006, 11:30am- 12:20pm 
Meeting with Brian James Savilonis, Mechanical Engineering Professor at Worcester Polytechnic Institute 
 
Team member present : Rachael Buteau 
 
Objective:  To understand the fundamentals of thermal resistance to determine whether machine-grade 
polycarbonate would be efficient to provide controlled temperature with a flowing water jacket. 
 
System simplified to a one dimensional conduction problem to analyze. 
 
 

T1 = 20 °C 
 

Δ x1 = .005m 

T2 = 30 °C 
 

Δ x2 = .015m 
 

k (machine grade 
polycarbonate) =  
0.2 W/ (m*°C) 
k (acrylic) = 1.4 (m*°C) 

 
Qdot = ΔT/ R and R = Δx/ k  k= Thermal Conductivity - ASTM C177 Standard 
 
(T2 – T1)/ (R2) = (T-T2)/ (R1) 
 
Solve for T. With k (machine grade polycarbonate) 
R1 = .005/ 0.2 = .025 m2* °C/ W 
R2 = .015/ 0.2 = .075 m2* °C/ W 
 
T= T2 + [(T2-T1)/R2]*R1 =  33.33 °C 
 
Therefore, for polycarbonate if the desired temperature of the chamber is 30°C, then the water bath should 
be set at about 33.33°C; this is only about a 10% difference, and acrylic is about the same.  

 

polycarbonate 
H2O 
T2 

H2O 
T 

Δ x1 
Δ x2 

Air 
T1 

Chamber water bath flow 
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Appendix L – O-ring Seal 
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Appendix M – Tubing connector 
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Appendix N - Budget 
 

Product Qty Description 
Retailer/ 
Distributor 

Purchased 
by Price 

Tube Fitting 90 
Deg Elbow  100 

1/8" NPT polyethylene; PN 
2808K49 

McMaster 
Carr  Mezzone $61.60 

PVC Tubing  100ft Tubing 1/8"; PN 5233K52 
McMaster 
Carr  Mezzone $10.00 

O- ring Dash # 
020 50 Silicone; PN 9396K104 

McMaster 
Carr  Mezzone $7.42 

shipping on above three items $8.50 
Corner Clamp  1 Pony 3" Home Depot Mezzone $8.49 

Polycarbonate 2 
2"thick; 4.875" X 7" and 4" 
X 9"  

Plastics 
Unlimited Jenket $100.00 

Gamma 
Globulin 1 

Bovine blood; PN G5009-
1G 

Sigma- 
Aldrich Account $41.68 

Polycarbonate 1 Clear 1/4" thick; 12" X 24" MSC Direct Account $16.52 
Corner Clamp  10 Pony 3" Home Depot Rachael $93.87 
Corner Braces  4 1"; packs of 4 Home Depot Rachael $7.10 
Silicone 1 GE Silicone II;  Clear Home Depot Rachael $5.66 
Caulk Gun 1   Home Depot Rachael $2.18 

Polycarbonate 1 .75" thick; 7" X 8" 
Plastics 
Unlimited Rachael $33.34 

Rubber 
Stoppers 25 PN L-MS-1 

Astro- Tex 
Company Rachael $39.25 

Screws for 
donor chamber 100 

8-32 1/2" stainless socket 
head cap  MSC Direct Account $6.27 

Tube Fitting 90 
Deg Elbow  10 

1/8" NPT polyethylene; PN 
2808K49 

McMaster 
Carr  Jenket $10.68 

Silicone Tubing 25ft 1/8" ID , PN 51135K16     
McMaster 
Carr  Mezzone $15.25 

Glucose HK 
Assay 2 

G 3293 - 50 mL assay 
Reagent 

Sigma- 
Aldrich Account $101.00 

    TOTAL $568.81 
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Appendix O – Final Budget 
     
Product Qty Description Retailer/ Distributor Price 
Tube Fitting 90 Deg Elbow  100 1/8" NPT polyethylene; PN 2808K49 McMaster Carr  $61.60 
PVC Tubing  100ft Tubing 1/8"; PN 5233K52 McMaster Carr  $10.00 
O- ring Dash # 020 50 Silicone; PN 9396K104 McMaster Carr  $7.42 
Shipping  $8.50 
Corner Clamp  1 Pony 3" Home Depot $8.49 
Polycarbonate 2 2"thick; 4.875" X 7" and 4" X 9"  Plastics Unlimited $100.00 
Gamma Globulin 1 Bovine blood; PN G5009-1G Sigma- Aldrich $41.68 

Polycarbonte 1 Clear 1/4" thick; 12" X 24" 
MSC Industrial 
Direct Co., Inc. $16.52 

Corner Clamp  1 Pony 3" Home Depot $9.38 
Corner Braces  1 1"; packs of 4 Home Depot $1.78 
Silicone 1 GE Silicone II;  Clear Home Depot $5.66 
Caulk Gun 1   Home Depot $2.18 
Polycarbonate 1 .75" thick; 7" X 8" Plastics Unlimited $33.34 
Rubber Stoppers 25 PN L-MS-1 Astro- Tex Company $39.25 

Screws for donor chamber 
100 

8-32 1/4" stainless socket head cap 
screw; PN 5667050  

MSC Industrial 
Direct Co., Inc. $6.27 

Glucose HK Assay 
2 G 3293 - 50 mL assay Reagent Sigma- Aldrich $101.00 

Head Screws 
1 

18−8 STAINLESS STEEL SOCKET 
HEAD CAP SCREW, 3/8"−16 
THREAD, 1−1/2" LENGTH McMaster Carr  $18.63 

Plastic Thumb Heads 1 

PLASTIC PRESS−FIT THUMB 
SCREW HEAD, TEE, BLACK, FITS 
3/8" SCREW, 1−3/4" A, 15/32" B McMaster Carr  $6.39 

Silicone Tubing 25ft 1/8" ID , PN 51135K16     McMaster Carr  $15.25 

Round Spindle cap tip 10 neoprene; 3/8-16; PN 97434617 
MSC Industrial 
Direct Co., Inc. $5.50 

Anti-seize 1   AutoZone $3.14 
Fasteners     I. B. Barrows CO. $7.61 
Tube Fitting 90 Deg Elbow  10 1/8" NPT polyethylene; PN 2808K49 McMaster Carr  $10.68 
    $520.27 
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Appendix P – Donor Base 
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Appendix Q – Donor, Side Right 
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Appendix R – Donor, Side Left 
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Appendix S – Cartridge Side 1 
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Appendix T – Cartridge, Side 2 
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Appendix U – Cartridge Sub- assembly 
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Appendix V – Receiver 
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Appendix W – Full Assembly 
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Appendix X – Full Assembly Exploded 
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Appendix Y – Clamp Lift 
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Appendix Z – Clamp side with clearance 

 
 



 214

Appendix AA – Clamp side with bolts 
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Appendix AB – Clamp Base 
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Appendix AC – Clamp Assembly 
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Appendix AD – Rat Tail Tendon Collagen Membrane Protocol 
Protocol: To create RTT Collagen Membranes 
Protocol obtained from: Katie Bush 
 
Materials: 

• 13 Rat Tails 
• Phosphate Buffer Solution (1x) 
• Hemostat 
• 3% acetic acid ( 48 ml acetic acid +1552 ml H2O) 
• Cheese cloth and funnel 
• 2 L Beaker 
• 4 rotor bottles 
• Stir plate 
• Dripping flask 
• 30 % NaCl solution (96g/320 ml) 
• 0.6% acetic acid (2.4 ml acetic acid in 397.6 ml ddH2O) 
• Dialysis bags and clips 
• 1mN HCl (4ml/4L) 
• Metal tray 
• Freeze dryer 
• 5mM HCl 

 
RTT Collagen 

1) Thaw 13 rat tails in 1x PBS (non-sterile).  Squeeze out as much blood as possible 
2) Pull tendons using hemostat. Avoid getting bloody tendons 
3) Place tendon strands in 1xPBS 
4) Put rinsed tendons into 1000ml of 3% acetic acid and stir overnight at 4 C. 
5) Filter solution through 4 layers of cheese cloth using a funnel into a 2L beaker.  
6) Pour filtrate into rotor bottle and centrifuge for 2 hours at 4 C at 8590 RPM 
7) Decant supernatant into 2L beaker discarding pellet 
8) At 4 C, drip 320 ml (~350 ml/hr) of 30 % NaCl solution into supernatant and 

allow to sit for at least 1 hour (can go overnight). 
9) Pour entire solution and precipitate into rotor bottles and spin at 4960 RPM at 4 C 

for 30 minutes. 
10) Decant supernatant and discard.  Save any gelatinous material and any pellet. 
11) In 2L beaker, re-suspend pellets in 400 mL of 0.6% acetic acid and spin overnight 

at 4 C or as long as necessary to dissolve pellet. 
12) Place collagen solution into dialysis bags (slightly longer that 1 ft.) and double 

clip bags.  In 4L flask, dialyze collagen into 1mN HCl five times with a minimum 
of 4 hours changing the dialysant.   

13) Pour collagen solution onto metal tray in freeze dryer and run program 2. 
14) Store collagen at 4 C and measure out and dissolve in 5 mM HCl to obtain desired 

concentration. 
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.Appendix AE – PermeGear® Assembly Protocol 
 
Purpose: Instructions to assemble PermeGear Diffusion Chamber 
 
Materials: 

• Water Bath 
• PeremeGear Device – Side-by-Side Horizontal ® 

o Clamping fixture 
o Glass donor chamber 
o Glass receiver chamber 
o Two stir bars 
o Two port pluds 

• ¼” ID silicone tubing 
• 2 x ¼” to 7/16” tube reduction connectors 
• Small stir plate 

 
Protocol: 
 

1. Place chamber fixture on small stir plate 
2. Put two chambers next to each other and connect the two water ports 

closer together using silicone tubing 
3. Attach 4” of silicone tubing to the smaller end of each tubing connector 
4.  Attach the 4” tubing and connector to each of the remaining water ports. 
5. Attach water bath tube to the larger end of the tubing connector to develop 

a closed system. 
6. Place mechanical stir bars individually within the donor and receiver 

chamber  
7. Place membrane in between donor and receiver chamber once it has been 

fully hydrated (refer to Diffusion Assay for particular molecules) 
8. Push two chambers together and hold as you place chambers within their 

fixture 
9. Secure chambers within fixture and seal chambers by tightening the screw 

on the fixture 
10. Place the appropriate amount of solution with each of the chambers based 

on the molecule being studied. 
Donor: Glucose solution; Receiver: PBS: 3.5 mL per chamber 
Donor: BSA solution; Receiver: PBS: 3.5 mL per chamber 
Donor: Gamma Globulin solution; Receiver: PBS: 3.5 mL per 

chamber 
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Appendix AF – High-Throughput System Assembly Protocol 
 
Purpose: Instructions to assemble High-Throughput System 
 
Materials: 

• Water Bath 
• High-throughput system 

o Clamping fixture 
o 10 polycarbonate donor chambers 
o 10 polycarbonate receiver chambers 
o 10 cartridges 
o 20 sampling port plugs 

• 1/8” ID silicone tubing 
• 2 x 7/16” to 1/8” tube reduction connectors 
• 6 Y-connectors 
• Shaker Plate(VWR Orbital Shaker DS-500) 

 
Protocol: 
 

1) Place 5 donor and receiver chamber pairs within each  row of the clamping fixture 
2) Slide each individual donor chamber back through the spaces in the side plate of 

each row of the clamping fixture 
3) Allow each receiver chamber to abut the claming device 
4) Attach snake system tubing using following method: 

a. Donor-to-donor, leaving each end connector unattached 
b. Receiver-to receiver, leaving each end connector unattached 

5) Attach end connectors based on the following diagram: 

 
6) Allow water to flow through system for 40 minutes for heating while hydrating 10 

collagen membranes for 30 minutes 
7) As system is heating, place entire system on top of VWR Orbital Shaker Plate 
8) Once membranes fully hydrated, place one collagen membrane in one cartridge by 

pressing the two sides of the cartridge together 
9) Slide cartridge down and back into its appropriate donor chamber (labeled on top) 
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10) Press-fit cartridge in by pushing receiver chamber into it and clamping donor and 
receiver chamber together 

11) Place the following amounts of  pre-heated solution individually within each 
chamber: 

a. Donor chamber: 5 mg/ml molecular solution – 5 mL 
b. Receiver chamber: Phosphate Buffer Solution (PBS) – 5 mL 

12) Place rubber stoppers in each sampling port  
13) Being mixing the entire system at shaker plate setting of 150 
14) Sample each receiver based on appropriate molecular diffusion study 
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Appendix AG – Protocol for Making Solutions of 5 mg/ml 
 
Purpose: To make solutions with a definitive concentration fore testing purposes 
 
Materials: 

• Dry protein product  
 Bovine Serum Albumin – Sigma Aldrich 
 D +/-Glucose – Sigma Aldrich 
 Gamma Globulin - Pierce 

• Phosphate Buffer Solution as diluents (non-sterile) 
• Scale (preferably digital) 
• Stir Plate and Stir Bar 
• Graduated Cylinder 
• Refrigerator 

 
Protocol: 

• Weigh 1 gram of dry protein product on the scale. 
• Measure 200 ml of PBS using the graduated cylinder. 
• Dissolve the protein in the PBS solution in the graduated cylinder until there is no 

solid matter using the stir plate. 
• Place in labeled, glass container and refrigerate until ready for use.  
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Appendix AH - Diffusion Assay for Glucose 
 

Purpose: To carry out an experiment to study the diffusion of a particular molecule 
through collagen membranes 
 
Materials: 

• Set-up diffusion device/ high-throughput system 
• Microcentrifugation tubes (VWR) 
• Pipette tips (small – yellow, large – blue) 
• Glucose solution 5mg/ml – refer to solutions protocol 
• 1x Phosphate buffer solution (PBS) non-sterile 

 
Protocol: 

1) Set-up diffusion device/system with appropriate protocol 
2) Heat appropriate amount of glucose solution and PBS depending on device being 

used for 30 minutes before testing: 
PermeGear: 
Glucose solution– 5 mL 
PBS – 8 mL 
 
High-throughput device: 
Glucose Solution – 6 mL/donor chamber per chamber being used 
PBS – 10 mL/receiver chamber per chamber being used 

 
3) Take a 300 μL sample from receiver chamber at time 0, every minute over the 

course of 10 minutes and at the 30 minute mark, placing each sample taken into a 
labeled microcentrifuge tube with proper pipette 

4) Refill receiver chamber with 300 μL of PBS after taking each sample to restore 
the original amount of solution within the receiver chamber. 

5) Once all samples have been taken, remove all liquid from both the chambers. 
6) Disconnect the water bath system 
7) Dismantle and clean high-throughput system as stated in the cleaning protocol.  
8) Freeze microcentrifuge tubes at 4ºC until ready to carry out assay. 
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Appendix AI - Diffusion Assay for Bovine Serum Albumin (BSA) 
 

Purpose: To carry out an experiment to study the diffusion of BSA through collagen 
membranes 
 
Materials: 

• Set-up diffusion device/ high-throughput system 
• Pipette tips 
• BSA solution (5 mg/ml) – refer to solutions protocol 
• 1x Phosphate buffer solution (PBS) non-sterile 

 
Protocol: 

1) Set-up diffusion device/system using appropriate protocol 
2) Heat appropriate amount of BSA solution and PBS depending on device being used 

for 30 minutes before testing: 
PermeGear: 
BSA solution– 5 mL 
PBS – 8 mL 
 
High-throughput device: 
BSA Solution – 6 mL/donor chamber per chamber being used 
PBS – 10 mL/receiver chamber per chamber being used 
 

3) Take a 150 μL sample from receiver chamber at time 0 and every half hour over the 
course of 4 hours, placing each sample taken into a labeled microcentrifuge tube 
using a pipette 

4) Refill receiver chamber with 150 μL of phosphate buffer solution after taking each 
sample to restore the original amount of solution within the receiver chamber. 

5) Once all samples have been taken, remove all liquid from both the donor and 
receiver chamber. 

6) Disconnect the water bath system 
7) Dismantle and clean high-throughput system as stated in the cleaning protocol.  
8) Freeze microcentrifuge tubes at 4ºC until ready to carry out assay. 
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Appendix AJ - Diffusion Assay for Gamma Globulin 
 

Purpose: To carry out an experiment to study the diffusion of a particular molecule 
through collage membranes 
 
Materials: 

• Set-up diffusion device/ high-throughput system 
• Pipette tips  
• BSA solution (5 mg/ml) – refer to solutions protocol 
• 1x Phosphate buffer solution (PBS) non-sterile 

 
Protocol: 

1) Set-up diffusion device/ high-throughput system with appropriate protocol 
2) Heat appropriate amount of Gamma Globulin solution and PBS depending on 

device being used for 30 minutes before testing: 
PermeGear: 
Gamma Globulin solution– 5 mL 
PBS – 8 mL 
 
High-throughput device: 
Gamma Globulin Solution – 6 mL/donor chamber per chamber being used 
PBS – 10 mL/receiver chamber per chamber being used 

 
3) Take a 150 μL sample from receiver chamber at time 0 and every two hours over 

the course of 8 hours and at 24 hours, placing each sample taken into a labeled 
microcentrifuge tube using a pipette. 

4) Refill receiver chamber with 150 μL of phosphate buffer solution after taking 
each sample to restore the original amount of solution within the receiver chamber. 

5) Once all samples have been taken, remove all liquid from both the donor and 
receiver chamber. 

6) Disconnect the water bath system 
7) Dismantle and clean high-throughput system as stated in the cleaning protocol.  
8) Freeze microcentrifuge tubes at 4ºC until ready to carry out assay. 
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Appendix AK – BCA Protocol for BSA 
 
Purpose: To measure the concentration of BSA in a solution. 
Reference:  Pierce- BCA Protein Kit  http://www.piercenet.com/files/1745dh5.pdf  
 
Materials: 

• 1x Phosphate buffer solution (PBS) as diluents 
• BSA ampules (1 ml @ 2 mg/ml) 
• Pipette tips 
• 96 Well Plate and covers 
• BCA Reagent A and B (50:1 ratio of A:B) 
• Spectrophotometer (96 well plate reader) and Softmax Pro software 

 
Protocol: 
Standard Dilutions: 
Vial Volume of 

Diluents 
(µl) 

Volume and Source of 
Protein 

Final Protein 
Concentration (µg/ml) 

Total Final 
Volume (µl) 

A 0 150 µl of Stock 2,000 150 
B 50 150 µl of Stock 1,500 100 
C 200 200 µl of Stock 1,000 200 
D 100 100 µl of vial B dilution 750 200 
E 200 200 µl of vial C dilution 500 200 
F 200 200 µl of vial E dilution 250 200 
G 200 200 µl of vial F dilution 125 350 
H 200 50 µl of vial G dilution 25 250 
I 200 0 0 200 

1.  Mix Reagent A and B to a 50:1 ratio with the following formula:  
(# standards + # unknowns) x (# of replicates) x ( 200 µl of Reagent per sample) 

= Total volume of Reagent needed 
2. Pipette 25 µl of the protein sample into one well of the 96 well plate and add 200 

µl of the Reagent A and B mix and mix for 30 seconds on a shaker plate. 
3. Cover and incubate for 30 minutes at 37º C. 
4. Cool plate to room temperature  
5. Read 96 well plate in spectrophotometer at 562 nm. 
 

Samples: 
1. Pipette 200 µl of PBS into a well to act as a control for this reading. 
2. Pipette 25 µl of solution with unknown concentration into one well of the 96 well 

plate. 
3. Add 200 µl of the Reagent A and B mix and shake on a shaker plate for 30 

seconds. 
4. Cover and incubate for 30 minutes at 37º C. 
5. Cool plate to room temperature. 
6. Place 96 well plate in the plate reader and read at 562 nm. 
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Appendix AL – BCA Protocol for Gamma Globulin 
 
Purpose: To measure the concentration of gamma globulin in a solution. 
Reference: Pierce- BCA Protein Kit  http://www.piercenet.com/files/1745dh5.pdf  
 
Materials: 

• 1x Phosphate buffer solution (PBS) as diluents 
• Gamma Globulin - Bovine blood; Sigma-Aldrich PN G5009-1G  
• Pipette tips 
• 96 Well Plate and covers 
• BCA Reagent A and B (50:1 ratio of A:B) 
• Spectrophotometer (96 well plate reader) and Softmax Pro software 

 
Protocol: 
Standard Dilutions: 
Vial Volume of 

Diluents 
(µl) 

Volume and Source of 
Protein 

Final Protein 
Concentration (µg/ml) 

Total Final 
Volume (µl) 

A 0 150 µl of Stock 2,000 150 
B 50 150 µl of Stock 1,500 100 
C 200 200 µl of Stock 1,000 200 
D 100 100 µl of vial B dilution 750 200 
E 200 200 µl of vial C dilution 500 200 
F 200 200 µl of vial E dilution 250 200 
G 200 200 µl of vial F dilution 125 350 
H 200 50 µl of vial G dilution 25 250 
I 200 0 0 200 

1. Mix Reagent A and B to a 50:1 ratio with the following formula:  
(# standards + # unknowns) x (# of replicates) x ( 200 µl of Reagent per sample) 

= Total volume of Reagent needed 
2. Pipette 25 µl of the protein sample into one well of the 96 well plate and add 200 

µl of the Reagent A and B mix and mix for 30 seconds on a shaker plate. 
3. Cover and incubate for 30 minutes at 37º C. 
4. Cool plate to room temperature. 
5. Read plate using spectrophotometer at 562 nm. 

 
Testing an unknown protein concentration: 

1. Pipette 200 µl of PBS into a well to act as a control for this reading. 
2. Pipette 25 µl of solution with unknown concentration into one well of the 96 well 

plate. 
3. Add 200 µl of the Reagent A and B mix and shake on a shaker plate for 30 

seconds. 
4. Cover and incubate for 30 minutes at 37º C. 
5. Cool plate to room temperature. 
6. Place 96 well plate in the plate reader and read at 562 nm. 
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Appendix AM- Glucose (HK) Assay 
 
Protocol: To measure the concentration of glucose in a solution 
Reference: Sigma Aldrich (HK) Assay Kit Bulletin – Product Code: GAHK-20 
  http://www.sigmaaldrich.com/sigma/bulletin/gahk20bul.pdf  
Materials: 

• Glucose (HK) Assay Kit 
o Glucose (HK) Assay Reagent (Produce Code G3293) 
o Glucose Standard Solution (Product Code G 3285) 

• 96-well plate 
• Epindorf tubes 
• Plastic cuvets  
• Pipette tips 
 

Protocol: 
Standard 

1) Pipette the following amount into labeled glass test tubes 

Tube 
Water 

(μl) 
Glucose Standard 

(μl) 
Obtained 

Concentration 
A 250 0 0.00  g/L 
B 245 5 0.02 g/L 
C 240 10 0.04 g/L 
D 235 15 0.06 g/L 
E 230 20 0.08 g/L 

 
2) Add 500 μl of assay reagent into first tube, cap tube and vortex  
3) Repeat for each test tube 

a. Allow 30-60s between additions to each test tube 
4) Incubate tubes for 30 minutes at 37 ºC 
5) Starting with tube A,  add 500 μl of 12 N H2SO4 into each tube 

a. Allow 30-60s between additions to each test tube 
6) Vortex each tube carefully 
7) Remove 100 μl sample from each tube and place in well 

a. Vortex each tube before sampling 
8) Read plate at 540 nm. 

 
Sample 

1) Pipette water into one glass test tube as a control 
2) Take 100 μl of each sample collected and place in epidorf tube. 
3) Add 1 ml of assay reagent into epindorf tube with sample.  
4) Repeat for each sample taking during test 

a. Allow 30-60 s between additions to each test tube 
5) Incubate tubes for 15 minutes at room temperature (between 18-35ºC) 
6) Vortex each tube carefully. 
7) Remove 1 ml sample from each tube and place cuvet. 
8) Read cuvet with proper UV reader at 340 nm. 
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Appendix AN - Plate Reader and Softmax Pro Software Protocol 
 

Purpose: Directions for using spectrophotometer for all standards and experiments 
 
Protocol: 

1) Turn on spectrophotometer by flipping switch located in rear of machine 
2) Log-in to the computer  
3) Open program 

Click Programs 
Find spf312(softmax pro) and click to open 

4) Once program is opened, highlight plate 1 
5) Click Setup on the menu bar and adjust the wavelength to the proper wavelength 

needed to test specific molecule in use: 
a. Glucose = 540 nm 
b. BCA Assay molecules = 562 nm 

6) Under automixing and blanking: 
a.  Check automixing box (make sure time = 5 seconds) 
b. Turn blanking off 
c. Click O.K. 

Standards 
7) Click Template on the menu bar 

a. Choose group standards 
b. Type in specific concentrations of each well of 96 well plate 

i. High-light well 
ii. Type in concentration (from protocol) 

iii. Click assign 
c. High-light well with no assigned concentration 

i. Click group  blank 
d. Click O.K. to complete   

 
Samples 

8) Click Experiment on the menu bar 
a. Click new plate and add another plate to the file 

9) High-light newly added plate 
10) Click Template on the menu bar 

a. Choose group  samples 
 
Reading Plate 

11) Place standard plate into plate reader 
12) Click on standard plate within document 
13) Click Read on the menu bar 
14) Repeat 11 through 13 for sample plate as well 
15) Results will be recorded, *Results will graph when linear fit chosen* 
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Appendix AO – Pore Size Analysis 
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Appendix AP – Standard Results for Glucose, BSA, and Gamma Globulin 
 
Glucose Standard Readings 

 
 
Glucose Standard Curve 
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BSA Standard Readings 

 
 

BSA Standard Graph 
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Gamma Globulin Standard Readings 

 
 
Gamma Globulin Standard Curve 
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Appendix AQ – Results for PermeGear® Trials: Glucose 
Abs = Absorbancy 

Trial 1 
Time (mins) Abs 1 Abs 2 Abs 3 Avg Abs Concentration (mg/ml) 

2 0.2498 0.2494 0.2494 0.250 0.072 
4 0.6154 0.6154 0.6149 0.615 0.178 
6 0.7336 0.7336 0.7349 0.734 0.213 
8 0.8604 0.8614 0.8613 0.861 0.249 

10 1.3159 1.3171 1.3159 1.316 0.381 
       

Trial 2 
Time (mins) Abs 1 Abs 2 Abs 3 Avg Abs Concentration (mg/ml) 

2 0.3048 0.3053 0.3053 0.305 0.088 
4 0.4265 0.4262 0.4265 0.426 0.124 
6 0.8407 0.841 0.841 0.841 0.244 
8 1.2468 1.2472 1.2468 1.247 0.361 

10 1.5299 1.5305 1.5299 1.530 0.443 
       

Trial 3 
Time (mins) Abs 1 Abs 2 Abs 3 Avg Abs Concentration (mg/ml) 

2 0.4917 0.4921 0.4932 0.492 0.143 
4 0.7764 0.7758 0.7778 0.777 0.225 
6 1.0878 1.0878 1.0878 1.088 0.315 
8 1.4074 1.4074 1.4074 1.407 0.408 

10 1.7545 1.7545 1.761 1.757 0.509 
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Appendix AR – Results for PermeGear® Trials: BSA 
 
** Only hour increments used to calculate diffusion coefficients (rows B, D, F and H)** 
 
Trial 1 Absorbance Values 
 

 
 
Trial 2 Absorbance Values 
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Trial 3 Absorbance Values 
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Appendix AS – Results for PermeGear® Trials: Gamma Globulin 
 

 
Trial 1       Trial 2 
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Appendix AT – Results for High-throughput System: Glucose Using Dialysis 
Membrane 
 
Abs = Absorbancy 

Trial 1 

Time (mins) Abs 1 Abs 2 Abs 3 
Avg 
Abs Concentration (mg/ml) 

2 0.0970 0.0971 0.0970 0.097 0.028 
4 0.4620 0.4617 0.4617 0.462 0.134 
6 0.8948 0.8957 0.8939 0.895 0.259 
8 1.1879 1.1879 1.1879 1.188 0.344 
10 1.3476 1.3501 1.3451 1.348 0.391 
30 2.4000 2.4000 2.4000 2.400 0.696 

            
Trial 2 

Time (mins) Abs 1 Abs 2 Abs 3 
Avg 
Abs Concentration (mg/ml) 

2 0.0950 0.0949 0.0947 0.095 0.028 
4 0.4010 0.4007 0.4016 0.401 0.116 
6 0.6421 0.6421 0.6426 0.642 0.186 
8 1.0428 1.0415 1.0415 1.042 0.302 
10 1.2077 1.2058 1.2095 1.208 0.350 
30 2.1402 2.1402 2.1402 2.140 0.621 

            
Trial 3 

Time (mins) Abs 1 Abs 2 Abs 3 
Avg 
Abs Concentration (mg/ml) 

2 0.1032 0.1032 0.1036 0.103 0.030 
4 0.4467 0.4470 0.4474 0.447 0.130 
6 0.7854 0.7847 0.7833 0.784 0.227 
8 0.9985 0.9974 0.9985 0.998 0.289 
10 1.1775 1.1792 1.1792 1.179 0.342 
30 2.3765 2.3765 2.4045 2.386 0.692 
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Appendix AU – Results for High-throughput System: Glucose Using SAC Membranes 
Abs = Absorbency 
 

Trial 1 
Time (mins) Abs 1 Abs 2 Abs 3 Avg Abs Concentration (mg/ml) 

2 0.3671 0.3673 0.3679 0.367 0.107 
4 0.7417 0.743 0.7417 0.742 0.215 
6 1.3847 1.3903 1.3903 1.388 0.403 
8 1.7744 1.7812 1.7812 1.779 0.516 

10 2.2382 2.2798 2.3018 2.273 0.659 
            

Trial 2 
 Time (mins) Abs 1 Abs 2 Abs 3 Avg Abs Concentration (mg/ml) 

2 0.424 0.424 0.4237 0.424 0.123 
4 1.217 1.217 1.217 1.217 0.353 
6 2.1656 2.1656 2.21826 2.183 0.633 
8 2.6263 2.7355 2.5806 2.647 0.768 

10 2.6775 2.6775 2.6775 2.678 0.776 
            

Trial 3 
 Time (mins) Abs 1 Abs 2 Abs 3 Avg Abs Concentration (mg/ml) 

2 0.9984 0.9884 0.9906 0.992 0.288 
4 2.1656 2.1492 2.1826 2.166 0.628 
6 3.2796 3.2796 3.2796 3.280 0.951 
8 3.4345 3.4345 3.5014 3.457 1.002 

10 3.6775 3.8024 3.8024 3.761 1.091 
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Appendix AV – Results for High-throughput System: BSA Using SAC Membranes 
 

  Trial 1 Absorbance Values          Trial 2 Absorbance Value 

    
 
 

Trial 3 Absorbance Values 
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Appendix AW – Results for High-throughput System: Gamma Globulin Using SAC 
Membranes 

 
 

Trial 1 Absorbance Values     Trial 2 Absorbance Value 

         
 

Trial 3 Absorbance Values 
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Appendix AX – Rearranged Fick’s Law Variable Substitutions 
 
 

 
 

• L = Membrane thickness= ~ 100 um 
• V = Chamber volume  

o PermeGear = 3 mL 
o High-throughput System = 5 mL 

• C = Concentration, Ca = 5 mg/ml, C b = unknown 
• A = Area of the membrane effected by diffusion = opening of chamber in 

contact with membrane 
o PermeGear = 0.6364 cm2 
o High-throughput system = 3.29867 cm2 

• t = time 
• D = Diffusion Coefficient  
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Appendix AY – Calculations for Rearranged Fick’s Law: Glucose  
 
PermeGear ®       
 Concentrations in mg/ml  Rearranged Ficks Law (cm2) 
Time Trial 1 Trial 2 Trial 3   Trial 1 Trial 2 Trial 3  

2 0.072292 0.0884 0.142634  6.92E-04 8.49E-04 1.38E-03 
4 0.17824 0.123533 0.225009  1.74E-03 1.19E-03 2.22E-03 
6 0.212657 0.243618 0.315147  2.10E-03 2.42E-03 3.18E-03 
8 0.24945 0.36125 0.407739  2.48E-03 3.68E-03 4.20E-03 
10 0.381346 0.443286 0.508925  3.90E-03 4.60E-03 5.36E-03 

        
High-Throughput       
 Concentrations in mg/ml  Rearranged Ficks Law (cm2) 
Time Trial 1 Trial 2 Trial 3   Trial 1 Trial 2 Trial 3  

2 0.106556 0.123 0.287815  3.30E-04 3.82E-04 9.27E-04 
4 0.215219 0.353 0.628082  6.82E-04 1.15E-03 2.19E-03 
6 0.402646 0.633 0.951084  1.33E-03 2.21E-03 3.63E-03 
8 0.515891 0.768 1.002472  1.75E-03 2.78E-03 3.88E-03 
10 0.659247 0.776 1.090622  2.32E-03 2.82E-03 4.34E-03 

        
Dialysis Membrane       
 Concentrations in mg/ml  Rearranged Ficks Law (cm2) 
Time Trial 1 Trial 2 Trial 3   Trial 1 Trial 2 Trial 3  

2 0.02814 0.027511 0.030  8.58E-05 8.39E-05 9.14E-05 
4 0.133922 0.116319 0.130  4.17E-04 3.61E-04 4.04E-04 
6 0.259492 0.186257 0.227  8.31E-04 5.87E-04 7.23E-04 
8 0.344491 0.302161 0.289  1.12E-03 9.76E-04 9.33E-04 
10 0.390804 0.350223 0.342  1.29E-03 1.14E-03 1.11E-03 
30 0.696 0.620658 0.692  2.47E-03 2.16E-03 2.46E-03 
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Appendix AZ – Calculations for Rearranged Fick’s Law: BSA 
 
PermeGear®       
 Concentrations in mg/ml  Rearranged Ficks Law (cm2) 
Time Trial 1 Trial 2 Trial 3   Trial 1 Trial 2 Trial 3  

1 0.0268 0.04244 0.04791  2.54E-04 4.04E-04 4.56E-04 
2 0.05079 0.074463 0.077679  4.84E-04 7.13E-04 7.44E-04 
3 0.073847 0.104216 0.087629  7.07E-04 1.00E-03 8.41E-04 
4 0.091116 0.121855 0.102514  8.75E-04 1.18E-03 9.87E-04 

        
High-Throughput       
 Concentrations in mg/ml  Rearranged Ficks Law (cm2) 
Time Trial 1 Trial 2 Trial 3   Trial 1 Trial 2 Trial 3  

1 2.26E-04 3.87E-04 2.72E-04  6.86E-07 1.17E-06 8.23E-07 
2 4.42E-04 4.90E-04 6.74E-04  1.34E-06 1.48E-06 2.04E-06 
3 7.15E-04 7.18E-04 9.63E-04  2.17E-06 2.18E-06 2.92E-06 
4 9.39E-04 9.66E-04 1.27E-03  2.85E-06 2.93E-06 3.84E-06 

 



 244

Appendix BA – Calculations for Rearranged Fick’s Law: Gamma Globulin 
 
PermeGear       
 Concentrations in mg/ml  Rearranged Ficks Law (cm2) 
Time Trial 1 Trial 2   Trial 1 Trial 2  

1 0.057198 0.0292   5.46E-04 2.77E-04  
2 0.09459 0.057199   9.09E-04 5.46E-04  
3 0.159464 0.07061   1.55E-03 6.75E-04  
4 0.188805 0.0947   1.85E-03 9.10E-04  

        
High-Throughput       
 Concentrations in mg/ml  Rearranged Ficks Law (cm2) 
Time Trial 1 Trial 2 Trial 3   Trial 1 Trial 2 Trial 3  

1 0.440473 0.408999 0.400985  1.47E-03 1.35E-03 1.32E-03 
2 0.566038 0.518257 0.525953  1.95E-03 1.76E-03 1.79E-03 
3 0.65898 0.591142 0.614102  2.32E-03 2.04E-03 2.14E-03 
4 0.692376 0.712945 0.651235  2.46E-03 2.54E-03 2.29E-03 
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Appendix BB –Analysis of PermeGear® vs. High-throughput System: Glucose 
 
Data source: Deff Comparison in Glucose Statistical Analysis 
 
Normality Test: Passed (P = 0.520) 
 
Equal Variance Test: Passed (P = 0.834) 
 
Group Name N  Missing Mean Std Dev SEM 
P- Avg KD 3 0 0.000451 0.0000806 0.0000465 
HT - Avg KD 3 0 0.000335 0.0000873 0.0000504 
 
Difference 0.000116 
 
t = 1.698  with 4 degrees of freedom. (P = 0.165) 
 
95 percent confidence interval for difference of means: -0.0000740 to 0.000307 
 
The difference in the mean values of the two groups is not great enough to reject the 
possibility that the difference is due to random sampling variability. There is not a 
statistically significant difference between the input groups (P = 0.165). 
 
Power of performed test with alpha = 0.050: 0.183 
 
The power of the performed test (0.183) is below the desired power of 0.800. 
Less than desired power indicates you are more likely to not detect a difference when one 
actually exists. Be cautious in over-interpreting the lack of difference found here. 
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Appendix BC –Analysis of PermeGear® vs. High-throughput System: BSA 
 
Data source: Deff Comparison in BSA Statistical Analysis 
 
Normality Test: Passed (P = 0.559) 
 
Equal Variance Test: Passed (P = 0.469) 
 
Group Name N  Missing Mean Std Dev SEM  
KD - P 3 0 0.000213 0.0000464 0.0000268  
KD - HT 3 0 0.000255 0.0000667 0.0000385  
 
Difference -0.0000421 
 
t = -0.897  with 4 degrees of freedom. (P = 0.420) 
 
95 percent confidence interval for difference of means: -0.000172 to 0.0000882 
 
The difference in the mean values of the two groups is not great enough to reject the 
possibility that the difference is due to random sampling variability. There is not a 
statistically significant difference between the input groups (P = 0.420). 
 
Power of performed test with alpha = 0.050: 0.050 
 
The power of the performed test (0.050) is below the desired power of 0.800. 
Less than desired power indicates you are more likely to not detect a difference when one 
actually exists. Be cautious in over-interpreting the lack of difference found here. 
 

 



 247

Appendix BD –Analysis of PermeGear® vs. High-throughput System: Gamma 
Globulin 
 
Data source: Deff Comparison in GG Stat Analysis 
 
Normality Test: Passed (P = 0.501) 
 
Equal Variance Test: Failed (P < 0.050) 
 
Group Name N  Missing Mean Std Dev SEM  
P- Avg KD 2 0 0.000165 0.0000898 0.0000635  
HT - Avg KD 2 0 0.000164 0.00000354 0.00000250  
 
Source of Variation  DF   SS   MS    F    P   
Between Groups 1 1.323E-023 1.323E-023 3.277E-015 1.000  
Residual 2 0.00000000808 0.00000000404    
Total 3 0.00000000808     
 
The differences in the mean values among the treatment groups are not great enough to 
exclude the possibility that the difference is due to random sampling variability; there is 
not a statistically significant difference  (P = 1.000). 
 
Power of performed test with alpha = 0.050: 0.058 
 
The power of the performed test (0.058) is below the desired power of 0.800. 
Less than desired power indicates you are more likely to not detect a difference when one 
actually exists. Be cautious in over-interpreting the lack of difference found here. 
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