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Abstract 

To protect public health, drinking water systems are monitored for indicator organisms 

that correlate with fecal contamination and suggest the presence of human pathogens. 

Total coliforms, fecal coliforms, and E. coli are the most commonly used indicator 

organisms. These bacteria generally colocate with fecal pollution, but some limitations 

exist. In particular, the ability of indicator bacteria to predict the presence of enteric 

viruses is questionable because of distinct transport and survival characteristics of 

bacteria and viruses. Although viral indicators of enteric viruses have been proposed, 

none have been implemented into the current regulatory framework. In this thesis, the 

correlation of bacteria and viruses in drinking water sources and treatment systems is 

reviewed, and the potential of Torque Teno virus (TTV) to qualify as an indicator virus is 

discussed. TTV is unique among enteric viruses as it infects approximately 80% of 

healthy individuals worldwide, is transmitted by the fecal-oral route, causes no 

observable illness, and lacks seasonal fluctuations. 
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CHAPTER 1 – INTRODUCTION 

Drinking water contamination with fecally deposited bacteria, parasites, and viruses 

presents a consistent and significant threat to public health. Regulatory bodies have 

promulgated rules to protect surface water and ground water sources of drinking waters 

from enteric pathogens. These rules depend on monitoring water bodies and treatment 

systems for indicator organisms that are expected to colocate precisely with fecal 

pollution. Total coliforms, fecal coliforms, and E. coli are the most commonly used 

indicator organisms. In theory, routine detection and removal of these bacteria from water 

supplies ensures that colocated waterborne pathogens will be removed as well. 

 

Typically, viruses exhibit greater resistance than bacterial indicators to environmental 

stressors and treatment processes. The small size of viruses compared to bacteria may 

give rise to enhanced transport in surface waters and the subsurface. These characteristics 

lead to instances of virus presence in the absence of indicator bacteria and thus a public 

health risk where none is predicted. Alternatively, the imperfect association of coliforms 

with fecal contamination and the potential of these organisms to replicate in receiving 

waters may lead officials to anticipate a public health risk where none exists. 

 

To more accurately detect pathogenic virus presence in drinking waters, bacteriophages 

and representative human enteric viruses have been proposed as alternatives to bacterial 

indicators based on similar sizes and resistance patterns. However, bacteriophages may 

continue to replicate in bacterial hosts following fecal excretion or may be physically 

removed (e.g., by filtration) before egressing from bacterial cells. Therefore, the utility of 
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bacteriophages as indicators of enteric viruses is questionable. The use of a single 

pathogenic enteric virus species to indicate all other enteric viruses has been unsuccessful 

to date because of seasonal fluctuations and epidemic spikes that differ across members 

of this virus group. Instead of colocating precisely and consistently with fecal pollution, 

enteric viral pathogens are only present when fecal contamination is derived from 

infected individuals. These caveats have precluded viral indicators from being 

implemented as a monitoring strategy to complement bacterial indicators. 

 

The recently described Torque Teno virus (TTV) is unique among enteric viruses. TTV is 

a small, unenveloped DNA virus that infects approximately 80% of healthy individuals 

worldwide. It elicits persistent, productive infections in various human tissues but is not 

associated with illness. TTV is transmitted primarily by the fecal-oral route, and it is 

neither demographically localized nor does it exhibit seasonal variance. A small number 

of studies have been conducted to assess the indicator potential of TTV. Although 

standard, accepted protocols for TTV detection using cell culture and polymerase chain 

reaction (PCR) are still in the development phase, preliminary results support the utility 

of TTV as an indicator virus. 

 

In this thesis, source water contamination with viruses and consequent waterborne 

disease outbreaks are reviewed in light of regulations that focus on monitoring and 

removal of indicator bacteria. The usefulness of viral indicators, particularly TTV, is 

discussed, and a monitoring strategy for TTV in source waters and treatment systems is 

proposed. 
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CHAPTER 2 – PUBLIC DRINKING WATER SYSTEMS 

Most U.S. residents obtain drinking water from the 156,000 public drinking water 

systems distributed throughout the United States (U.S. Environmental Protection Agency 

[USEPA] Factoids, 2007). Public water systems supply drinking water to at least 25 

people or have at least 15 service connections. They are further classified as community 

water systems (CWS), nontransient noncommunity water systems (NTNCWS), or 

transient noncommunity water systems (TNCWS). CWS serve 25 or more year-round 

residents. Noncommunity water systems include NTNCWS, in which 25 or more people 

are served for at least 6 months in any given year (e.g., schools, hospitals), and TNCWS, 

which provide drinking water to people on a very short-term basis (e.g., campgrounds). 

 

Approximately 286 million people in the United States depend on CWS for potable 

water. Large systems that serve more than 10,000 residents each supply the majority of 

consumers, with 8% of systems providing water to 82% of the population. Drinking 

water systems are sourced by surface water—such as lakes, rivers, and reservoirs—or 

ground water. Whereas ground water is used as the source for most (78%) CWS, a 

majority (68%) of the U.S. population is served by surface water systems. Surface water 

bodies may interact significantly with ground water aquifers via runoff, percolation, 

recharge, or depletion. These interactions involve an exchange of solutes and volume.  
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Table 2.1. Types of drinking water systems across population size and water source. 

CWS = community water system; NTNCWS = nontransient, noncommunity 

water system; TNCWS = transient noncommunity water system. Adapted 

from USEPA Factoids, 2007. 

  Serving  
≤ 500 

Serving 
501 -
3,300 

Serving  
3,301 -
10,000 

Serving 
10,001 -
100,000 

Serving 
> 100,000 

Ground 
Water 

Systems 

Surface 
Water 

Systems 

CWS 

Systems 29,282 13,906 4,822 3,702 398 40,646 11,449 
Population 4.86 x 106 1.98 x 107 2.79 x 107 1.05 x 108 1.29 x 108 9.05 x 107 1.96 x 108 
% Systems 56 27 9 7 1 78 22 

% Pop. 2 7 10 37 45 32 68 

NTNCWS 

Systems 16,034 2,662 120 22 1 18,151 679 

Population 2.25 x 106 2.71 x 106 6.40 x 105 5.34 x 105 2.03 x 105 5.50 x 106 7.88 x 105 

% Systems 85 14 1 0 0 96 4 

% Pop. 35 43 10 8 3 87 13 

TNCWS 

Systems 81,873 2,751 102 15 3 82,851 1,878 

Population 7.23 x 106 2.68 x 106 5.46 x 105 4.25 x 105 2.87 x 106 1.11 x 107 2.67 x 106 

% Systems 97 3 0 0 0 98 2 

% Pop. 53 19 4 3 21 81 19 

  

2.1. Drinking Water Contamination 

Water pollution can originate from point and nonpoint sources. Point source pollution 

generally describes pollutant discharge from industrial or sewage treatment plants that is 

released from a conduit such as a pipe. Point source pollution levels are federally 

regulated through the National Pollutant Discharge Elimination System (NPDES) 

permitting program. Nonpoint source pollution is more difficult to track and characterize. 

In this case, pollutants are collected and carried by runoff from rain or snowmelt into 

surface and ground waters. Individual states develop and implement programs to control 

nonpoint source pollution. 
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Water may become contaminated chemically or microbiologically; in both cases, humans 

may become ill from ingestion, dermal exposure, or inhalation of droplets. Chemical-

induced illness is likely to be chronic and may occur via ingestion of copper in corrosive 

water; lead leachate from lead-soldered pipe; or nitrate, soap concentrate, or fluoride 

following back siphonage of water (Craun et al., 2002). Microbiological contamination 

most often occurs via introduction of feces from individuals infected with pathogenic 

viruses, bacteria, protozoa, or helminths (Bull et al., 1990). Infection and illness may 

result when fecally contaminated water is ingested (i.e., the fecal-oral, or enteric, route). 

Microbiologically derived illnesses typically are acute and self-limiting. The scope of this 

thesis is limited to the detection of virological pollution in drinking water. 

 

The USEPA Information Collection Rule (ICR, see Section 4.6) reported that source 

waters were positive for virus contamination at more than 80% of 207 surface water 

treatment plants that conducted monthly monitoring (Shaw et al., 2003). Quantifying 

viruses by the Most Probable Number (MPN) method (see Section 3.3), half of the 

treatment plants measured virus concentrations higher than 0.4 MPN/100 L. Ten percent 

detected virus above 5 MPN/100 L. A subset of the 207 treatment plants also measured 

virus in finished waters. Of these, 16% reported at least one virus-positive result. 
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CHAPTER 3 – INDICATOR ORGANISMS 

More than 150 known enteric pathogens may be present in untreated waste (Gerba and 

Smith, 2005; Reynolds et al., 2008), and this may include more than 100 different species 

of enteric viruses alone (Glass, 1995; Macler, 1995). Infectious enteric viruses have been 

isolated from various water sources, including rivers, streams, coastal waters, ground 

water, treated sewage, aerosols, and wells. From a strictly public health standpoint, direct 

monitoring of waterborne enteric pathogens may be the ideal option to detect 

contamination and protect water supplies (Yates, 2007). However, the number of enteric 

microbial species—particularly viral species—that may be present in a fecally 

contaminated water sample makes it economically impractical and time-prohibitive to 

test directly for each pathogen. In addition, tissue culture, which informs water utility 

managers about virus infectivity, is beyond the technical capabilities of some water utility 

laboratories. Moreover, certain waterborne pathogenic viruses of great public health 

significance (e.g., norovirus) have not been adaptable to facile tissue culture methods 

(Nuanualsuwan and Cliver, 2002). Norovirus recently has been cultured using a three-

dimensional organoid model of human small intestine epithelium (Straub et al., 2007), 

but this technique is beyond the analytical capabilities of typical water testing 

laboratories. Instead, water quality professionals monitor for surrogate organisms, called 

indicators, that are expected to colocate with waterborne pathogens transmitted by the 

fecal-oral route. The presence of indicator organisms in a water sample suggests fecal 

contamination and potential pathogenic risk. 
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3.1. Indicator Organism Criteria 

In 1966, Bonde described the requirements for an appropriate indicator organism, 

including that the indicator should: 

(1) be exclusively and predictably associated with pathogenic species whenever 

pathogens are present to such a degree that the public health is at risk; 

(2) exist more abundantly than pathogens in environmental waters and be as 

resistant to disinfectants and environmental stressors as the most resistant 

correlated pathogen; and 

(3) grow readily and independently of other organisms and be uniformly 

distributed in samples to facilitate unambiguous, straightforward identification 

in the laboratory. 

Since then, others have amended Bonde’s criteria, adding that indicators should exhibit 

similar transport characteristics to pathogens, correlate only with infectious (rather than 

inactivated) pathogens, be cost-effective to monitor, allow for rapid presence/absence 

measurement, and be of low risk to the analyst (i.e., the indicator is not itself pathogenic) 

(Payment et al., 2003; National Research Council [NRC], 2004; Yates, 2007). Some 

researchers have supported the selection of indicator organisms from innocuous gut 

microbes that happen to correlate with illness (Cabelli et al., 1979; Seyfried et al., 1985a; 

Seyfried et al., 1985b, Zmirou et al., 1987; Cheung et al., 1990; Payment et al., 1991; 

Payment et al., 1997; Hellard et al., 2001; Colford et al., 2002). Others have proposed 

choosing potential indicators among any of the microbes that happen to be detected 

during conditions of elevated pathogen concentration (Gerba et al., 1979; LaBelle et al., 

1980; Robertson, 1984; Seyfried et al., 1984; Havelaar, 1993; Leclerc et al., 2000). 
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Notably, the colocation of an indicator with one pathogenic species does not translate to a 

correlation between the indicator and all pathogenic species (Yates, 2007), nor does it 

guarantee that the indicator is exclusively associated with a given pathogen at all times 

and in all geographic locations. 

 

In some cases, the viability of the pathogen (i.e., its capacity to cause infection) is more 

important than its presence/absence. For instance, in a treatment system, an appropriate 

indicator should only be detected when pathogens to which it is correlated are infectious. 

Ideally, the indicator would be absent if a treatment system were effectively inactivating 

pathogens, regardless of whether the pathogens were being physically removed from the 

water. Alternatively, in ground water sources, even the threat of contamination—

evidenced by viable and nonviable pathogens—should correlate with indicator presence 

in order to identify a putative “path of contamination” (Yates, 2007). 

 

Indicator organisms can be chosen for a number of purposes, including detection of (1) 

fecal contamination; (2) wastewater contamination; (3) correlated pathogenic organisms; 

(4) treatment system efficiency; and (5) subsurface transport (Yates, 2007). Whereas the 

same indicator organism may suffice for more than one of these purposes, the intent of a 

given water monitoring process must be considered before an indicator is chosen. For 

instance, similar sensitivity and resistance to manmade treatment processes is particularly 

important when an indicator is used to determine treatment system efficiency, whereas 

similar size, electrostatic properties, and environmental decay rates are important if an 

indicator is used for information about subsurface transport of a pathogen. 
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3.2. Coliform Bacteria 

In 1892, Schardinger proposed that fecal contamination—and by extension, potential 

pathogenic contamination and human health risk—could be inferred by collecting water 

samples and assaying for the ability of Escherichia coli to ferment glucose and lactose 

(Feng et al., 2002). E. coli is almost exclusively of fecal origin, so in theory, this method 

was expected to be sufficient to detect all fecal contamination without generating false-

positives. In practice, this method was complicated because other bacteria exhibit similar 

phenotypes and fermentation properties to E. coli. This includes several nonfecally 

derived genera within the family Enterobacteriaceae, such as Escherichia spp., 

Citrobacter, Klebsiella, and Enterobacter. As a result, these similar bacterial genera were 

grouped under the term “coliforms” and a single assay was used to enumerate all of them 

without distinction (i.e., total coliform).  

 

Coliforms are defined as Gram-negative, nonsporulating, rod-shaped, facultative 

anaerobes that ferment lactose with acid and gas production within 48 hours at 35°C. 

This bacterial group generally is nonpathogenic to humans, and the presence of coliforms 

in water indicates a broad range of bacteriological contamination. However, because 

coliforms include bacterial species that are indigenous to soil, water, vegetation, and the 

digestive systems of humans and animals, coliforms do not specifically and exclusively 

detect human fecal contamination (Toranzos and McFeters, 1997; Craun et al., 2002; 

NRC, 2004). 
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The subset of coliform species that populates the intestinal tracts of humans and animals 

and is abundant in feces is termed fecal coliforms. Escherichia spp. (mainly E. coli) as 

well as Klebsiella spp. and Citrobacter spp. compose the fecal coliforms. Sixty to ninety 

percent of total coliforms in contaminated waters are fecal coliforms, and Escherichia 

spp. compose 90% or more of the fecal coliforms (American Public Health Association 

[APHA] et al., 1992). This subgroup grows and ferments lactose at 44.5°C rather than 

35°C, hence its alternate name, thermotolerant coliforms. The bacterial species that are 

grouped as fecal coliforms correlate more precisely with fecal contamination than do total 

coliforms. However, even fecal coliforms do not exclusively indicate fecal pollution 

(Feng et al., 2002). For instance, some Klebsiella species are associated with textile and 

paper mill wastes.  

 

Total coliforms and fecal coliforms have been isolated from tropical waters far removed 

from human activity. These isolates likely were deposited by animals or birds and 

multiplied in receiving waters (Santiago-Mercado and Hazen, 1987). For instance, geese 

and swans may shed 107–109 fecal coliforms per day (Hussong et al., 1979). In addition, 

Leclerc et al. (2002) reported that 30% of drinking water samples that tested positive for 

fecal coliforms since 1962 contained strains of the environmentally ubiquitous 

Aeromonas bacterium that would have triggered a coliform-positive result even in the 

absence of fecal contamination. Other researchers substantiated this report (Burke et al., 

1984; Havelaar et al., 1990; Schubert, 1991). False-positive results likely would cause 

drinking water utilities to accrue unnecessary costs in excessive filtration and disinfection 

procedures. 
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Methods have been developed that rapidly and specifically identify E. coli, consequently 

reintroducing this species as a recommended indicator of recent fecal contamination. Yet 

the strategy of solely relying on bacterial indicators for all fecally derived 

microbiological contamination remains inadequate because waterborne viruses and 

protozoa exhibit different transport and survival characteristics from bacteria (see Section 

5.4). 

 

3.3. Laboratory Detection of Total Coliforms, Fecal Coliforms, and E. coli 

The two approved methods for coliform monitoring under the USEPA Total Coliform 

Rule (TCR) (see Section 4.4) are the Most Probable Number (MPN) method (a.k.a. 

Multiple Tube Fermentation [MTF]) and the Membrane Filtration (MF) technique. By the 

MPN method, serial dilutions of water samples are prepared and coliform 

positive/negative responses are recorded for each dilution after the appropriate culture 

conditions are met. Statistical tables then are consulted to estimate the coliform, fecal 

coliform, or E. coli density in the original sample (APHA et al., 2005). 

 

The MPN method detects total coliforms based on the coliform group’s ability to ferment 

lauryl tryptose broth or lactose broth and produce acid and gas within 24 ± 2 hours or 

48 ± 3 hours at 35 ± 0.5°C (Standard Methods 9221B and 9221C, APHA et al., 2005). 

Serial dilutions of a sample are inoculated into nutrient broth, and gas-positive dilutions 

are scored. However, several Gram-positive organisms also produce gas under these 

conditions, and therefore a presumptive positive result must be confirmed. This is 

accomplished using brilliant green lactose bile (BGLB), which inhibits growth of Gram-
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positive, noncoliform bacteria. BGLB is not used for the initial test because it is toxic to 

low densities of bacteria and to injured, but viable, bacteria. Once confirmed, coliform-

positive results can be further substantiated by streaking samples on eosin ethylene blue 

agar and verifying microscopically that the bacteria are Gram-negative, nonsporulating 

rods.  

 

The presence of fecal coliforms is determined by inoculating E. coli (EC) broth with an 

aliquot of each presumptive sample, incubating at 44.5 ± 0.2°C, and assaying for gas 

production within 24 ± 2 hours. E. coli is identified by inoculating presumptive positive 

samples into media containing 4-methylumbelliferyl-β-D-glucuronide (MUG) substrate 

(Standard Methods 9221F, APHA et al., 2005). E. coli expresses the glucuronidase 

enzyme, which hydrolyzes MUG substrate, resulting in turbidity and fluorescence under 

a long wavelength ultraviolet (UV) lamp. 

 

The MF method involves passing a water sample through a 0.45 μm filter, which traps 

bacteria and other particulate matter, and transferring the filter to a saturated pad of 

m-Endo or Lawrence Experimental Station (LES)-Endo broth (for total coliforms) or 

m-FC broth (for fecal coliforms) in a Petri dish (Standard Methods 9222B and 9222C, 

APHA et al., 2005). Petri dishes are incubated at 35 ± 0.5°C (for total coliforms) or 

44.5 ± 0.2°C (for fecal coliforms). After 24 ± 2 hours on m-Endo or LES-Endo broth 

pads, total coliforms appear as pink or dark red colonies with a metallic green surface 

sheen. Colonies are counted under a dissecting microscope and reported as colony 

forming units (cfu) per 100 mL sample. Fecal coliforms are identified as blue colonies on 
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m-FC broth pads and contrast with gray or cream-colored nonfecal coliforms. E. coli is 

confirmed by subculturing colonies onto nutrient agar containing MUG substrate 

(Standard Method 9222 G, APHA et al., 2005). Samples are incubated for 4 hours at 

35 ± 0.5°C during which E. coli-positive colonies become delineated with blue 

fluorescence. 

 

3.4. Other Bacterial Indicator Systems 

Fecal streptococci and fecal enterococci occur in the intestinal tracts of humans and many 

animals and rarely multiply in the environment. These bacteria are more resistant to 

treatment systems and environmental stressors and persist longer than coliform bacteria 

(Yates, 2007). Fecal streptococci and fecal enterococci are generally employed as 

indicators in marine waters where the concentration of other bacterial indicators is low, 

but the USEPA also has suggested their use as fecal indicators in ground water (USEPA, 

2000). 

 

The ratio of fecal coliforms to fecal streptococci previously was thought to be useful in 

determining whether fecal contamination was human- or animal-derived. Ratios higher 

than 4 were considered human fecal contamination, whereas ratios below 0.7 were 

considered animal fecal contamination. This method is now obsolete because of its 

inability to indicate contamination type for ratios between 0.7 and 4 and the observation 

that the FC/FS ratio demonstrates significant spatial and temporal variability. The latter 

occurs because fecal coliforms and fecal streptococci exhibit different survival and 
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regrowth rates (Gannon and Busse, 1999) and react differently to temperature and 

sediment particle size (Howell et al., 1996). 

 

Heterotrophic plate count (HPC) bacteria are defined as the aerobic and facultatively 

anaerobic bacteria that obtain carbon and energy from organic sources (Bartram et al., 

2003). The HPC bacteria test is used to enumerate pathogenic and nonpathogenic 

microorganisms alike. A high HPC result does not necessarily suggest a public health 

risk, although sudden changes in HPC may suggest contamination of a water source. 

Interestingly, HPC bacteria grow well at point-of-use filters and may out-compete 

pathogenic bacteria (Yates, 2007). 
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CHAPTER 4 – DRINKING WATER REGULATIONS IN THE UNITED STATES 

Contaminated drinking water has been recognized as a vector for disease spread since 

1855, when the epidemiologist John Snow demonstrated that cholera was transmitted by 

common use of a polluted well. In the 1880s, Louis Pasteur described the germ theory of 

disease, in which contagious microscopic organisms—later identified as bacteria, viruses, 

and protozoa—could be spread through water and other media. These discoveries led to 

the realization that pathogens or indicators of pathogens could be monitored in water 

sources to protect the nation’s drinking water supplies. 

 

In 1914, the U.S. Public Health Service adopted the strategy of removing coliform 

bacteria from drinking water. This indirectly protected the public from the threat of 

correlated pathogens (Feng et al., 2002). However, the legislation only applied to water 

supplies serving interstate transportation and was meant to safeguard travelers (Pontius 

and Clark, 1999). Subsequent revisions of the U.S. Public Health Service legislation set 

the framework for contaminant limits in drinking water and monitoring of bacteriological 

presence. By 1962, the legislation had expanded to include regulation of 28 waterborne 

contaminants (U.S. Department of Health, Education, and Welfare, 1969). Yet the 

potential health detriment from pollutants that entered source waters through factory 

discharges, farm runoff, and sewage leaks continued to concern citizens. The federal 

government responded by performing a number of analyses of the nation’s drinking water 

systems. In 1969, the U.S. Public Health Service reported that 40% of the nation’s water 

systems were substandard, and many suffered from severe deficiencies in treatment (U.S. 

Department of Health, Education, and Welfare, 1970). 
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4.1. The Safe Drinking Water Act 

As a response to intensifying concerns about the environment, the USEPA was formed on 

December 2, 1970, as a centralized federal agency for environmental research, 

monitoring, and regulation. Control of drinking water was transferred to the USEPA from 

the Bureau of Water Hygiene of the Department of Health, Education, and Welfare. On 

December 16, 1974, the Safe Drinking Water Act (SDWA) was passed in response to 

foul odors and tastes and increased recognition of the health effects of putative 

carcinogens, lead, and waterborne pathogens in the waters of urban and rural 

communities (USEPA, 1994). The intent of the SDWA was to treat and maintain the 

quality of the nation’s drinking waters. Contaminant limits were to be set after the states, 

public utilities, scientists, environmentalists, and consumers provided insight into the 

necessary balance of needs and capabilities to maintain water quality. In addition, the 

National Academies was to conduct a study of water contaminants and the contaminant 

concentrations that could exist in water without posing a health hazard. The SDWA 

arranged a program to protect ground water aquifers, thus preventing source 

contamination before water reaches the treatment stage. In addition, 80 cities were 

selected for water sampling and analysis to detect organic chemicals, such as chlorine 

byproducts. 

 

On June 25, 1977, the Safe Drinking Water Standards went into effect. Requirements 

included regular sampling of the 40,000 community drinking water systems and the 

200,000 other public water systems. Consumers were to be notified if sampling or 

standards were not met. Standards addressed microbiological contamination—using 
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coliform bacteria as indicators—as well as pollution from inorganic chemicals, organic 

pesticides, turbidity, and radioactivity.  

 

4.2. National Primary Drinking Water Regulations 

The SDWA gave rise to the National Interim Primary Drinking Water Regulations 

(NIPDWR) in 1975, which put forth the maximum contaminant levels (MCLs) for a 

number of drinking water-associated chemicals. These standards consider both public 

health and cost-effectiveness and are enforced and met by water providers. Maximum 

Contaminant Level Goals (MCLGs), which also were introduced in the NIPDWR, do not 

account for economic feasibility and were considered nonenforceable ideal contaminant 

levels. In 1985, the NIPDWR transitioned to the National Primary Drinking Water 

Regulations (NPDWR).  

 

4.3. SDWA Amendments 

In 1986, amendments to the SDWA were signed into law. Under these amendments, 

certain water systems using surface waters were required to treat by filtration, and certain 

ground water systems were required to use disinfection treatment. MCL-setting was 

required for 83 contaminants within the first 3 years following the 1986 amendments, and 

MCLs were required for no fewer than 25 contaminants during each subsequent 3-year 

period. Additional amendments in 1996 established the framework for future MCLs 

including that enforceable levels would be established after considering public input. The 

amendments also mandated public water systems to distribute consumer confidence 

reports to the public. 
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4.4. The Total Coliform Rule 

The Total Coliform Rule (TCR) was passed in June 1989 to control fecal contamination 

in drinking waters by monitoring and controlling indicator bacteria (USEPA, 1989a). 

Total coliforms, fecal coliforms, and E. coli were chosen as indicators of fecal pollution, 

and all public water systems are required to sample for coliforms at representative sites in 

the distribution system. Individual states may choose which indicator organism is most 

appropriate for their monitoring practices (Yates, 2007). The frequency of routine 

monitoring depends on the population serviced by the water system and ranges from 1 

sample per month for systems serving 25–1,000 residents to 480 samples per month for 

systems serving more than 3.96 million consumers.  

 

The USEPA set a MCLG of zero for coliforms. The MCL was based on the presence or 

absence of total coliforms (i.e., a positive or negative result using a variation of the MPN 

technique with a single sample) rather than a measure of the coliform concentration, 

although the USEPA also has approved quantitative measures of coliform density. For 

small systems that sample fewer than 40 times per month, any more than one coliform-

positive sample is considered a violation of the MCL. Systems serving larger populations 

that consequently sample more frequently are allotted no more than 5% of samples to be 

positive for total coliforms. Some researchers have noted that the monthly frequency of 

water monitoring for small systems is too low to foresee a waterborne disease outbreak 

because most cases of fecal contamination occur as transient spikes rather than protracted 

high densities of fecal indicators (Craun et al., 2002). During 1991–1998, only 22% of 
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CWS outbreaks and 9% of NTNCWS and TNCWS outbreaks had violated the USEPA’s 

MCL for coliforms in the 12-month period before the outbreak (See Section 5.5). 

 

If a routine sample is positive for total coliforms, then the culture is to be further tested 

for fecal coliforms or E. coli, and repeat sampling upstream and downstream of the 

positive site is performed 3–4 times within 24 hours (USEPA, 2001a). Samples then are 

taken at least five more times during the following month. The MCL violation is 

considered acute if fecal coliforms or E. coli are detected upon repeat sampling or if a 

fecal coliform/E. coli-positive routine sample is followed by a total coliform-positive 

repeat sample. In both cases, the public and state are to be notified of the MCL violation. 

 

4.5. The Surface Water Treatment Rule 

Concurrent with the TCR, the Surface Water Treatment Rule (SWTR) was promulgated 

in 1989 (USEPA, 1989b). The SWTR requires filtration and disinfection of all surface 

water systems and ground water systems in which the ground water interacts directly 

with surface water (i.e., ground water under direct influence of surface water [GWUDI]). 

The GWUDI classification is determined if a microscopic particulate analysis (MPA) of 

the ground water indicates the presence of algae, rotifers, Giardia, or other 

microorganisms common to surface water (USEPA, 1992). Notably, this method may be 

flawed in assessing viral pathogen risk because the MPA indicators are 100–1,000 times 

larger than viruses and might be selectively filtered (Borchardt et al., 2004). 

 



20 
 

The SWTR set MCLGs of zero for waterborne viruses, Giardia lamblia, and Legionella. 

In place of MCLs, the SWTR specifies treatment techniques (e.g., filtration and 

disinfection) that translate to log reduction and/or inactivation “credits.” The rule 

required Giardia to be reduced by 3 log (or 99.9%) and viruses to be reduced by 4 log (or 

99.99%). Any log reduction of Giardia and viruses that is not achieved by filtration credit 

is accomplished by disinfection. If a water system employs alternative practices to 

remove pathogens, it can receive credits that translate to log reduction rates (USEPA, 

1995). Filtered water turbidity must be maintained below 5 nephelometric turbidity units 

(NTU) in 100% of the samples and 0.5 NTU in 95% of the samples. Water systems can 

receive a waiver from filtration if: 

(1) the source water demonstrates acceptable coliform levels and turbidity is less than 

5 NTU; 

(2) the disinfection plan is effective at reducing Giardia by 99.9% (3-log reduction) 

and viruses by 99.99% (4-log reduction); and 

(3) a 0.2 mg/L disinfectant residual is maintained throughout the distribution system, 

which includes the pumping, piping, and storage networks. 

Moreover, the system needs to have a watershed control program, demonstrate two or 

fewer coliform MCL violations in any given year, and have no regional history of 

waterborne disease. Coliforms are monitored at least weekly with increased monitoring 

for larger systems.  

 

The Science Advisory Board announced in 1990 that drinking water contamination was 

one of the greatest current environmental risks and cited microbiological pollution as the 



21 
 

greatest health risk among the nation’s potable waters (USEPA, 1990). In 1995, the 

USEPA put forth an “Agenda for Action” to protect drinking water against 

microbiological contaminants. The USEPA partnered with water suppliers to assess 

operations, maintenance, and management. However, the SWTR requirements for viruses 

are met on the basis of treatment alone; that is, there are no specific monitoring practices 

to verify that virus inactivation and/or reduction actually results from a treatment method. 

Depending on the source water quality, some utilities may be treating unnecessarily and 

other may be removing virus insufficiently. 

 

4.6. The Information Collection Rule 

In July 1997, the USEPA began an 18-month monitoring period for infectious bacteria, 

viruses, and protozoa in an effort to study the benefits and risks of disinfecting drinking 

water. Included in monitoring were water systems that use surface water and serve at 

least 100,000 people and water systems that use ground water and serve at least 50,000 

people. For viruses, these systems were required to monitor their source water by 

inoculating buffalo green monkey kidney (BGMK) cells and assaying for virus 

replication. Systems finding more than one infectious enteric virus per liter were required 

to monitor finished water as well. Resulting information regarding pathogen 

contamination at specific water systems was made available to the public so that people 

could determine whether their local water quality utilities were functioning appropriately 

and comparably to other water quality utilities across the United States. The ICR reported 

that more than 80% of source waters were positive for virus during monthly sampling at 
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207 surface water treatment plants (Shaw et al., 2003). Of a subset of plants monitoring 

for virus in finished waters, 16% detected virus at least once. 

 

4.7. Enhanced Surface Water Treatment Rules 

The Interim Enhanced Surface Water Treatment Rule (IESWTR), promulgated in 

December 1998, recognized that: 

(1) disinfection reduced waterborne disease outbreaks but may inadvertently generate 

disinfection byproducts such as trihalomethanes and haloacetic acids that are 

deleterious to human and environmental health; and 

(2) pathogens such as Cryptosporidium had emerged as resistant to chlorine 

disinfection leading to twelve outbreaks in the late 1980s and early 1990s 

(USEPA, 2002).  

The IESWTR mandated that public drinking water systems using surface water or 

GWUDI and serving a population of 10,000 or greater must achieve a 2-log reduction of 

Cryptosporidium by filtration. The turbidity requirements were lowered from 0.5 to 

0.3 NTU for 95% compliance and from 5 to 1 NTU for maximum turbidity with 

monitoring of individual filters rather than blended water.  

 

The Stage 1 Disinfection/Disinfectant Byproduct Rule (D/DBP) simultaneously limited 

chlorine residuals and disinfectant byproducts in drinking water to increase protection 

from chemical exposure (USEPA, 1998). The Long Term 1 Enhanced Surface Water 

Treatment Rule (LT1), passed in January 2002 and effected in January 2005, extended 

the IESTWR to smaller water systems servicing fewer than 10,000 people. 
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The Long Term 2 Enhanced Surface Water Treatment Rule (LT2), published in January 

2005, addressed the need for additional protection measures among public water systems 

at high risk for microbiological contamination where a 2-log reduction of 

Cryptosporidium may be insufficient. High-risk systems include all unfiltered systems 

and filtered systems with high levels of Cryptosporidium in the source water. Some of 

these water systems are required to enhance or add treatment processes to achieve an 

additional 1–2.5 log reduction of Cryptosporidium. Large, high-risk systems must 

monitor Cryptosporidium directly, whereas smaller, filtered systems are given the less 

expensive option to sample E. coli as an indicator of Cryptosporidium. Systems that 

employ the maximum level of treatment are exempt from monitoring. However, the 

USEPA acknowledged that the options for Cryptosporidium control are costly. They 

include covering reservoirs to protect source water, treating reservoir discharge, 

upgrading filters, and adding UV or ozone disinfection. 

 

Concurrent with increased protection against Cryptosporidium contamination, extended 

exposure to high concentrations of disinfectant byproducts were identified as a health 

risk. Therefore, enhanced chlorine disinfection is not approved as a method to improve 

water quality. In addition, the Stage 2 D/DBP, published simultaneously with the LT2, 

increased the stringency of DBP compliance by requiring that individual monitoring 

locations in the distribution system remain below a specific DBP concentration average 

rather than allowing a treatment system to average all locations (USEPA, 2005). 
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4.8. The Ground Water Rule 

To address public health issues in drinking water systems using ground water sources, the 

Ground Water Rule (GWR) was published in November 2006 and should be fully 

effected in 2009. The GWR focuses on the subset of ground water sources that are 

susceptible to fecal contamination and on mixed surface water and ground water systems 

in which the ground water is not treated. Private ground water wells are not included in 

the GWR and instead are the responsibility of individual homeowners. 

 

Under the GWR, sanitary surveys and triggered source monitoring are required. Sanitary 

surveys are conducted by state regulators to determine the physical, managerial, and 

operational quality of their treatment systems. Triggered source monitoring involves 

sampling source water only if a system obtains a coliform-positive sample. Before the 

GWR was enacted, treated drinking water typically was monitored instead of source 

water (Yates, 2007). Triggered source monitoring applies only to systems that do not 

already achieve 4-log virus reduction and that cannot attribute the coliform-positive 

sample to a distribution system failure. 

 

4.9. Current Drinking Water Quality Issues 

The American Academy of Microbiology has reported that drinking water is not safe in 

terms of viral, bacterial, and protozoan pathogens (Ford and Colwell, 1996). More 

recently, the USEPA reported that 94% of the U.S. population was served by a CWS 

compliant with drinking water standards of treatment and source water protection 

(Reynolds et al., 2008). However, an internal audit estimated that the actual value was 
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81% (USEPA, 2004). Populations that are not served by public water systems generally 

do not perform monitoring, and information is lacking from this demographic regarding 

exposure to pathogens (Reynolds et al., 2008). As the concern about waterborne disease 

illness increases, regulatory frameworks based solely on monitoring bacterial indicators 

may need to be reassessed. 
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CHAPTER 5 –COLIFORMS AND VIRAL PATHOGEN RISK 

The use of fecal indicators facilitates timely and cost-effective monitoring of water 

sources, whereas direct measurement of every known waterborne pathogen is not feasible 

as a monitoring strategy. During the past few decades, the USEPA has promulgated 

regulations based on coliform monitoring to assess the quality of the nation’s drinking 

waters and to ensure that water systems are compliant with current, accepted treatment 

practices. In some instances, however, coliform indicators do not colocate with viruses or 

protozoa because of differences in size and resistance to environmental conditions and 

water treatment processes. Consequently, coliforms may be absent, suggesting that water 

is potable, even in the presence of viral or protozoan pathogens. Conversely, the natural 

occurrence or regrowth of coliforms in water sources (Caplenas and Kanarek, 1984) may 

imply a public health risk where none exists. Researchers have proposed alternative 

indicators, specifically for enteric viruses (See Section 6.2), but none have been adopted 

for widespread usage. Current research supports the inadequacy of bacteria as an 

indicator system for protozoa and viruses. The proposal of a more relevant viral indicator 

is the focus of this discussion. 

 

5.1. Virology Primer 

Viruses are astoundingly diverse and pervasive. In fact, for every organism on the planet, 

there exists one or more viruses that have evolved to infect it (Flint et al., 2004). 

Collectively, viruses are obligate intracellular parasites that exist extracellularly as 

colloidal particles ranging in size from 20–350 nm. The mature virus particle is 

composed of nucleic acid—RNA, DNA, or a combination of these—surrounded by a 
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proteinaceous capsid. The capsids of many viral species are icosahedral, although other 

geometries exist. In some cases, a host-derived lipid envelope surrounds the capsid. 

Exterior proteins projecting from the viral capsid or envelope often are amphoteric, 

which allows the virus to interact with cellular receptors and other substances over a 

range of pH levels. 

 

The viral infectious cycle in a host cell includes binding, entry, replication of the viral 

genome, assembly of new particles, and egress (Flint et al., 2004). Depending on the 

virus species and host immune status, viral infections may be acute, latent, or persistent. 

An acute infection involves rapid replication in an index host and transmission to other 

hosts before immunological clearance or host death occurs. Viruses that induce latent 

infections may remain with the host for life, either integrating into the host cell genome 

or remaining unintegrated in the cell as a circular episome. A host infected with a latent 

virus may not show any symptoms of infection, but the viral genome may be triggered 

(e.g., by host stress or illness) to replicate and generate progeny virions (i.e., mature virus 

particles) for transmission to other hosts. Persistent viral infections last for long periods 

because the virus is capable of evading the immune system. For instance, the virus may 

circulate at extremely low titers or continually undergo mutation of its capsid proteins 

during a persistent infection. Alternatively, host immune dysfunction may allow a virus 

to infect persistently. 
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5.2. Enteric Viruses 

Viruses from the families Picornaviridae (e.g., hepatitis A virus and the enteroviruses, 

poliovirus, coxsackie virus, and echovirus), Adenoviridae (e.g., enteric adenovirus), 

Caliciviridae (e.g., the noroviruses: Norwalk and Norwalk-like virus), Astroviridae 

(e.g., astrovirus) and Reoviridae (e.g., rotaviruses and reoviruses) are classified as enteric 

viruses (Flint et al., 2004). The genomes of most enteric viruses are composed of single-

stranded RNA (ssRNA), although adenoviral genomes are double-stranded DNA 

(dsDNA). Enteric viruses are specialized to be transmitted via the fecal-oral route—

infecting and replicating in the host gastrointestinal tract following ingestion of 

contaminated water or food.  

 

Even at low exposure doses, enteric viruses may infect and manifest as gastroenteritis 

with diarrhea and/or vomiting (Abbaszadegan et al., 1993; Griffin et al., 2003; Fong and 

Lipp, 2005). In immunocompetent individuals, enteric virus infections are self-limiting 

because illness symptoms serve to purge virus particles from the host. However, for 

pregnant women, the elderly and very young, and the immunocompromised and 

immunosuppressed, these infections may lead to chronic or fatal secondary infections of 

the skin, respiratory system, and circulatory system as well as conjunctivitis, hepatitis, 

meningitis, encephalitis, and paralysis (Macler and Merkle, 2000; Fout et al., 2003; 

Griffin et al., 2003; Fong and Lipp, 2005; Gerba and Smith, 2005; Reynolds et al., 2008; 

Table 5.1). 
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Table 5.1. Waterborne enteric viruses of public health concern and their associated 

illnesses. Adapted from Reynolds et al., 2008. 

Virus Family Virus Group/Species Associated Illness(es) 

Adenoviridae Enteric adenovirus Diarrhea, upper respiratory disease, eye 
infections, heart disease 

Astroviridae Astrovirus Diarrhea 

Caliciviridae Noroviruses (e.g., 
Norwalk virus) Diarrhea, flu-like symptoms, vomiting 

Picornaviridae 

Enteroviruses (e.g., 
poliovirus, coxsackie 
virus) 

Diarrhea, fever, upper respiratory disease, 
meningitis, encephalitis, myocarditis, birth 
defects 

Hepatitis A virus Hepatitis, liver damage 
Reoviridae Rotavirus Diarrhea 

 
Different virus species are associated with different infectious doses, measured in the 

laboratory as a particle-to-plaque forming unit (PFU) ratio. A plaque is an isolated region 

of cell death in culture; it indicates that a productive virus infection had occurred. The 

particle-to-PFU value indicates how many virus particles are necessary to initiate a 

productive infection in cell culture. The ratio translates to the exposure level that would 

be sufficient to establish an infection in a host organism. For poliovirus, the particle-to-

PFU ratio ranges from 30 to 1,000, for adenovirus it ranges from 20 to 100, and for 

reovirus it is 10 (Flint et al., 2004). A high ratio may indicate that the virus is highly 

mutable and many nonviable progeny are created with each infectious cycle. It may also 

indicate that virus particles were unsuccessful to initiate a full infectious cycle, which is a 

very complex set of biochemical reactions. Alternatively, it may indicate that virus 

particles were damaged during replication or sample purification in the laboratory.  

 

In general, the infectious dose for enteric viruses is very low, and in the case of rotavirus, 

may even approach one particle (Ward et al., 1986; Payment and Morin, 1989). This 
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indicates that exposure to extremely dilute enteric virus could lead to an infection 

(Leclerc et al., 2002). The infectious dose of most enteric bacteria (e.g., Salmonella, 

Shigella, and E. coli) is remarkably higher than that of viruses, approaching 107–108 

cells, although certain bacterial species can establish an infection upon host exposure to 

only a few hundred cells (e.g., Shigella spp., Campylobacter spp., and E. coli O157:H7) 

(Leclerc et al., 2002). Although enteric bacteria exhibit a replication preference for the 

host intestine, they may multiply in receiving waters if temperature and nutrient 

conditions are favorable. Viruses, in contrast, are completely inert outside of a 

susceptible host. 

 

Individuals with viral gastroenteritis may shed 105 to 1011 virus particles per gram of 

stool (Bosch, 1998; Leclerc et al., 2002). In raw sewage, 102 to 103 infectious enteric 

viruses (i.e., PFU) may be detected per liter (Gerba et al., 1979; Leclerc et al., 2002). 

Primary and secondary wastewater treatment and disinfection may reduce the virus level 

to 0.6 PFU/L, and tertiary treatment may effectively eliminate virus altogether. However, 

tertiary treatment is uncommon (Azadpour-Keeley et al., 2003). In drinking water 

treatment facilities, researchers have demonstrated that detectable virus persists in 

finished waters (Payment and Armon, 1989).  

 

Although no virus is capable of replication outside of a host cell, infectious enteric virus 

particles may persist in the environment for long periods. Once excreted, enteric viruses 

have been found to remain infectious for 130 days in seawater, 120 days in fresh water 

and sewage, and 100 days in ambient soil (Fong and Lipp, 2005). Whereas many 



31 
 

waterborne pathogens are endemic among cattle herds and poultry flocks and can be 

transmitted to humans as zoonotic infections (e.g., Cryptosporidium, Campylobacter, 

Salmonella, Listeria, E. coli O157:H7, and Giardia) (Gerba and Smith, 2005), enteric 

viruses are specialized to exist in human hosts and, in most cases, only originate from 

sources of sewage (Reynolds et al., 2008). 

 

5.3. Detection of Viruses in Environmental Waters 

Viruses were first isolated from water sources in the late 1930s. Scientists measured 

enteroviruses, specifically poliovirus, in feces and wastewater (Bosch, 1998; Griffin et 

al., 2003). Viruses were gathered and concentrated by passing water through a gauze pad. 

The crude sample subsequently was inoculated onto a culture of monkey kidney cells. As 

interest in environmental virology blossomed and virus recovery methods improved 

between the 1960s and the 1980s, researchers discovered that rotavirus and norovirus 

also contaminate water sources (Metcalf et al., 1995; Griffin et al., 2003). 

 

In 1970, the American Society of Civil Engineers concluded that the methods for 

identifying and quantifying viruses in water were inadequate (Hill et al., 1971). Cell 

culture was the only assay for virus detection in environmental waters, despite the 

existence of immunological assays used routinely to identify viruses in a clinical setting. 

The extremely dilute concentration of virus in environmental samples precluded less 

sensitive immunological detection methods. The only alternative was electron 

microscopy, which required much more technical expertise than cell culture 

(Griffin et al., 2003), or assays employing nucleotide hybridization or antibody-based 



32 
 

detection. For these reasons, cell culture was the most widely used assay for virus 

detection until the 1990s (Abbaszadegan et al., 1993) when molecular methods such as 

polymerase chain reaction (PCR) were introduced (See Section 7.2). 

 

5.4. Correlation Among Indicator Bacteria and Enteric Viruses 

For bacterial indicators and viral pathogens to correlate in the environment and in 

treatment systems, the indicators would have to occur exclusively with pathogenic 

viruses in feces and exhibit identical resistance and susceptibility responses to 

environmental stressors, filtration, and disinfection. Although a number of researchers 

have reported correlations among bacterial indicator density and enteric viruses 

(Bergeisen et al., 1985; Lawson et al., 1991; Gersberg et al., 2006), many others have 

failed to find a strong association between bacteria and viruses in surface water, ground 

water, and treatment systems (Gerba et al., 1979; Labelle et al., 1980; Payment and 

Armon, 1989; Havelaar et al., 1993; Nasser et al., 1993; Scandura and Sobsey, 1997; 

Nasser and Oman, 1999; Borchardt et al., 2004; Jiang and Chu, 2004; Skraber et al., 

2004a).  

 

It is now widely recognized that traditional indicators such as total coliforms, fecal 

coliforms, and E. coli do not respond to environmental conditions or treatment processes 

in the same manner as human enteric viruses (Gerba et al., 1979; Griffin et al., 1999; 

Jiang et al., 2007; Borchardt et al., 2004; Francy et al., 2004). Coliform bacteria are more 

susceptible than enteric viruses to conventional disinfection chemicals such as chlorine, 

coagulants such as alum, and extremes in pH, salinity, and temperature 
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(Metcalf et al., 1995; Bosch, 1998; Fong and Lipp, 2005). Bacteria, which are 2.5- to 

more than 100-fold larger than viruses, are more easily filtered in engineered filtration 

systems and some natural aquifers (Macler and Merkle, 2000; Azadpour-Keeley et al., 

2003; Reynolds et al., 2008). Ultimately, bacterial indicators may expire or be removed 

from water sources at different rates than viral pathogens, giving rise to viral outbreaks in 

water supplies that had been deemed acceptable by fecal coliform counts (Fong et al., 

2005; See Section 5.5) or inappropriately indicating a public health risk in the absence of 

pathogenic viruses. This lack of correlation has led researchers such as Nwachuku and 

colleagues (2002) to conclude that monitoring as regulated by the TCR is an inadequate 

rubric to protect public health. However, alternative indicators for enteric viruses have 

not been adopted. 

 

5.4.1. Surface Water 

Enteric viruses in wastewater may contaminate surface waters used for drinking, 

recreation, and fish harvesting. Ninety percent of treated wastewater is discharged to 

marine surface waters in the United States as a result of coastal development. This 

translates to 1010 gallons of treated wastewater entering coastal waters daily (NRC, 

1993), some of which is not disinfected (Griffin et al., 2003). Analyses of virus 

concentrations measured by cell culture have detected 1.82 x 102 to 9.2 x 104 particles/L 

in untreated wastewater and 1.0 x 10-3 to 1.0 x 102 particles/L in treated wastewater or 

polluted surface water (Rose, 1986; NRC, 1993; Rose et al., 1996). Because enteric 

viruses have been found to remain infectious for 130 days in seawater and 120 days in 
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fresh water and sewage (Fong and Lipp, 2005), the impact of this virus load must be 

monitored accurately. 

 

Griffin et al. (1999) ranked 19 water samples obtained from the canals of the Florida 

Keys in terms of the presence of bacterial indicators such as Enterococcus spp. At the 

same sites, these researchers assayed for enterovirus, hepatitis A virus, and Norwalk virus 

and compared the water quality rankings to the presence or absence of virus. Only three 

sites exceeded guidance levels set by the USEPA for enterococci; however, at 18 of 19 

sites, enterovirus, hepatitis A virus, and/or Norwalk virus genomes were detected by 

reverse-transcriptase (RT)-PCR (See Section 7.2) and dot blot hybridization. In coastal 

waters off western Florida, six watersheds were sampled for fecal coliforms, enterococci, 

and Clostridium perfringens and compared to the presence of infectious enteroviruses 

(Lipp et al., 2001). Bacterial indicator densities varied (from less than 10 to 

4488 cfu/100 mL) and at some sample sites were elevated significantly over others as 

determined by one-way ANOVA. In contrast, infectious enteroviruses were detected at 

low levels between 0.17 and 0.59 infectious units/100 L in five of six watersheds. No 

significant difference in virus concentration was detected among the watersheds. Cluster 

analysis demonstrated that no indicator density threshold existed above which virus was 

always detected; instead, viruses were detected at both “low risk” and “high risk” sites. 

 

Total and fecal coliforms incorrectly estimated viral pollution in source river water used 

for drinking water production. Using regression analysis, Skraber et al. (2004b) showed 

that, in water samples collected during the winter (held at 4, 18, or 25°C), infectious 
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poliovirus survived up to 1.5-fold longer in river water than fecal coliforms. The opposite 

was observed in summer waters (held at 4, 18, or 25°C) when infectious poliovirus 

exhibited almost 2-fold faster die-off than fecal coliforms. These authors reported that 

although the seasonal composition of river water samples significantly affected survival 

rates, the temperatures at which the samples were held did not. In the urban rivers and 

creeks of southern California, investigators observed that fecal indicator bacteria and 

other water quality indicators did not correlate with adenovirus, enterovirus, or 

hepatitis A virus genetic material (Jiang and Chu, 2004). When researchers ranked the 

sampling sites in terms of bacterial water quality indicators, the lowest-quality site was 

free of virus, whereas the second highest-quality site was positive for virus. 

 

Virus decay is defined by: (1) virus removal through loss of infectivity; (2) virus removal 

(i.e., filtering) by irreversible attachment to sediments and settling; and (3) virus 

retardation by reversible attachment to sediments and release (Schijven and 

Hassanizadeh, 2000). Total decay rates (kD) for enteric viruses and coliform bacteria have 

been measured and reported in the primary literature (reviewed in Azadpour-Keeley et 

al., 2003). Decay rates vary based on environmental conditions and experimental 

methods, but similar measurement methods generally indicate that bacteria degrade with 

different kinetics than viruses. For instance, a comparison of the survival of indicator 

bacteria, MS2 male-specific coliphages (i.e., the bacteriophage subgroup that infects 

coliform bacteria via the “male” F-pilus), and enteric human viruses in river water 

demonstrated that coliphage survival was similar to that of poliovirus 1 (Springthorpe et 
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al., 1993); however, E. coli had variable survival rates and a potential for regrowth, 

making it unsuitable as an indicator of virus presence or absence. 

 

5.4.2. Ground Water 

Until recently, ground water was considered a more protected source of drinking water, 

often requiring no treatment (Azadpour-Keeley et al., 2003). Experts believed that 

ground water was free of pathogens because of the natural filtration capacity of the 

subsurface and the extended distance a microorganism would have to cross to reach the 

water table (Amundson et al., 1988). Moreover, even if it became contaminated, experts 

hypothesized that ground water would be purified as it flowed through the aquifer 

because pathogens would be subject to microbial protease and nuclease activity and 

stagnation (Cliver and Herrmann, 1972; Dizer et al., 1984; Azadpour-Keeley and Ward, 

2005). Current research has challenged this assumption, and the USEPA now estimates 

that 168,000 viral illnesses occur each year because of improperly treated ground water 

sources of drinking water (USEPA, 1996). In addition, the current regulatory approach of 

treating GWUDI as more likely to be contaminated than ground water that does not 

interact with surface water (i.e., the SWTR) may be incorrect. Researchers have observed 

viruses in ground water wells regardless of the level of surface water contribution 

(Borchardt et al., 2004). 

 

Depending on the hydrogeological settings and climate, viruses can be introduced into 

ground water via failed septic systems, underground storage tank and sewer line leaks, 

sewage lagoons, pit latrines, and landfill leachates (Macler and Merkle, 2000; Azadpour-
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Keeley et al., 2003; Gessel et al., 2004). Viruses also can infiltrate ground water when 

partially treated and untreated wastewater and solids are discharged to the land 

(Azadpour-Keeley and Ward, 2005). Sludge generated during wastewater treatment may 

contain viruses associated with suspended solids; these may adsorb to crops or percolate 

to ground water when sludge is land-applied (Metcalf et al., 1995; Gerba and Smith, 

2005). Viruses have been reported to persist 100 days in soil (Fong and Lipp, 2005) so 

percolation of infectious virus to ground water is possible even if a precipitation event 

does not happen immediately. In contrast, in dry soil that had been land-applied with 

manure, the bacteria Salmonella anatum persisted only 27 days (Johnston et al., 1996). 

This bacterial species as well as fecal coliforms persisted only 6–10 days in the soil-

runoff mixing zone after manure application (Gessel et al., 2004). Others have reported 

that although bacteria may persist for up to 1 year in soil, they generally survive no 

longer than 2 months. In contrast, viruses commonly survive for 3 months but may persist 

for up to 6 months (Gerba and Smith, 2005). Primary and secondary treatment followed 

by disinfection can lower the concentration of viral contamination to negligible levels. 

However, wastes destined for land application rarely undergo these processes. As with 

drinking waters, viral pathogens in treated sewage are not measured directly; rather, virus 

risk is monitored by bacterial indicators (Griffin et al., 2003; Gerba and Smith, 2005). 

 

Bacteria are more easily filtered than viruses through some natural aquifers (Macler and 

Merkle, 2000; Azadpour-Keeley et al., 2003). Research has demonstrated that in ground 

water systems, viruses are generally more mobile and persistent than indicator bacteria 

(Bitton et al., 1983; Scheuerman et al., 1987; Nasser and Oman, 1999; Pang et al., 2004). 
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In particular, sand, sand/gravel mixtures, and fissured limestone with larger pore sizes are 

likely to facilitate virus transport but retard bacterial transport. (Metcalf et al., 1995; 

Woessner et al., 2001; Abbaszadegan et al., 2003; Azadpour-Keeley et al., 2003). 

Scandura and Sobsey (1997) found that norovirus is poorly filtered by many soil types. 

Thus, virus may pass to water intakes despite coliform bacteria being filtered out. 

Conversely, E. coli exhibited a larger velocity than MS2 male-specific coliphage through 

alluvial aquifers (Sinton et al., 2000). MS2 was used as a model for enteric viruses 

because it approximates Norwalk virus in size (Havelaar et al., 1993). In this case, the 

extremely small pores in the aquifer size-excluded E. coli, but MS2 were small enough to 

be trapped in the pores, thus slowing their relative velocity. Nasser and Oman (1999) 

demonstrated that hepatitis A virus and poliovirus 1 exhibited similar inactivation 

patterns in ground water and wastewater effluents at various temperatures. In constrast, 

E. coli were inactivated at significantly faster rates in ground water at 4 and 37°C and at 

lower temperatures were inactivated faster regardless of water type. 

 

The interaction of viruses with substrates governs the persistence and extent of virus 

transport in the subsurface. Viruses adsorb to and detach from aquifer sediments via 

electrostatic interactions and hydrophobic effects. Exterior proteins projecting from the 

viral capsid or envelope are amphoteric, which allows the virus to interact with 

substances in the subsurface over a range of conditions (Flint et al., 2004; Azadpour-

Keeley and Ward, 2005). For most viruses, exterior proteins carry a net surface charge of 

zero between pH 3 and 7. Between pH 4 and 9, most sediments are negatively charged. If 

a particular virus has zero net charge at pH 6, then at pH 5, it would have a net positive 
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charge and would adsorb to sediments in the aquifer. In this situation, transport would be 

diminished (Azadpour-Keeley et al., 2003). The buffering capacity and high organic 

content of clays and sandy loams contribute to virus retention by providing hydrophobic 

surfaces to which viruses adsorb (Dizer et al., 1984; Kinoshita et al., 1993; Azadpour-

Keeley et al., 2003). Consequently, these substances are likely to hinder virus transport. 

 

Adsorption of viruses to soils and retardation of transport should not be equated with 

virus inactivation. Rather, adsorption to solids may increase virus persistence by 

shielding infectious particles from degradation via microbial proteases and nucleases 

(Bosch, 1998; Fong and Lipp, 2005). The cool temperatures of soil also are favorable to 

virus persistence because they aid in maintaining capsid protein integrity. Virus sorption 

to soils is reversible under certain ionic and pH conditions, and the actions of percolating 

virus-free water can promote virus release (Bales et al., 1993). In the case of poliovirus, 

reversible sorption from clay resulted in the release of infectious particles (Carlson et al., 

1968). Under some pH and hydrophobicity conditions, sandy soils can release virus for 

days to weeks into virus-free water (Kinoshita et al., 1993). E. coli, by comparison, is 

inactivated 10 times faster than poliovirus in ground water (Bitton et al., 1983). 

 

Locas et al. (2007) sampled ground water from wells across Quebec, Canada, and 

reported that total coliforms were always present in conjunction with culturable enteric 

viruses but that in two instances, infectious enteric viruses were present in the absence of 

the fecal indicators E. coli and enterococci. Of four well sites that were negative for all 

fecal indicators and total coliforms during a year of sampling, norovirus RNA was 
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detected twice by RT-PCR. The infectivity of this virus could not be ascertained because 

a cell culture system was not available. These investigators also reported that total 

coliforms and enterococci were regularly isolated from sites that were absent of 

culturable enteric viruses and norovirus RNA, suggesting that these bacterial indicators 

were inadequate at correlating with either the presence or the absence of virus 

contamination. 

 

In a Wisconsin study of municipal ground water well contamination, enteric viruses such 

as enteroviruses, rotavirus, hepatitis A virus, and norovirus were detected by RT-PCR in 

50% of wells prior to chlorination at the wellhead (Borchardt et al., 2004). Infectious 

hepatitis A virus also was confirmed by cell culture in 3 of the 48 wells analyzed. Total 

coliform bacteria, E. coli, and fecal enterococci were absent from all 48 wells. A survey 

of 448 ground water utility wells across 35 states reported that enterovirus, rotavirus, 

and/or hepatitis A virus genetic material was present in 32% of ground water wells, 

suggesting that whether or not the viruses were viable, the well waters were exposed to 

virus contamination (Abbaszadegan et al., 2003). Fout et al. (2003) observed that 21 of 

29 U.S. utility wells were positive for enterovirus, reovirus, norovirus, or hepatitis A 

genetic material. 

 

5.4.3. Water Treatment Systems 

In a treatment system, positive coliform results may be obtained as a result of a variety of 

water system deficiencies. Treatment processes may be inadequate for removal or 

inactivation of coliform bacteria, which may include inadequate primary disinfection, 
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filter breakthrough, or loss of disinfectant residual within the distribution system 

(McFeters et al., 1986; Hrudey et al., 2003). Even when a treatment system is operating 

properly, however, contaminated water may enter a distribution system through leaks, 

water main breaks, or repairs conducted without disinfectant flushing (Geldreich et al., 

1992). 

 

The passage of coliforms through drinking water treatment plants does not correlate to 

the passage of viral pathogens. Several researchers have concluded that the differential 

susceptibilities of viruses and bacteria to water treatment processes make the sole use of 

bacterial indicators inappropriate (Azadpour-Keeley et al., 2003; Fong and Lipp, 2005; 

Yates, 2007). The ability of disinfection, coagulation, clarification, and filtration to 

eliminate bacteria was well established in the earlier part of the twentieth century 

(Logsdon, 1990). However, inactivation and removal of viruses through treatment 

systems is more challenging (Nasser et al., 1995). 

 

In terms of disinfection, Sobsey (1989) reviewed the characteristics that make traditional 

indicators more sensitive to disinfection than enteric viruses. Free chlorine is known to 

inactivate coliforms and pathogenic bacteria (USEPA, 1989b; Johnson et al., 1997; Rice 

et al., 1999). However, doses of chlorine that inactivate bacteria are inadequate for 

hepatitis A virus, enteroviruses, rotavirus, and noroviruses (Melnick et al., 1978; 

Keswick et al., 1985; Bosch et al., 1991), possibly because these viruses are protected by 

aggregation and association with submicron-sized particles in wastewater (Hejkal et al., 

1981). For instance, in 1984, residents of Braun Station, Texas, who were served by a 
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chlorinated artesian well experienced a Norwalk virus outbreak. Although the untreated 

well water had coliform levels up to 2,600 cfu/100 mL, tap water samples were negative 

for coliforms (D’Antonio et al., 1985). This outbreak highlights the fact that chlorine, 

while effective for inactivating coliforms, may not be adequate for viruses. UV 

disinfection also does not inactivate bacteria and viruses identically. Chang et al. (1985) 

observed that poliovirus and rotavirus require approximately 3 and 4 times greater 

fluence than E. coli for 99.9% inactivation. Adenoviruses, which have stable, dsDNA 

genomes, also have demonstrated resistance to UV disinfection (Reynolds et al., 2008). 

 

Under the SWTR, direct filtration receives less log credit for removal of viruses than for 

removal of protozoa. Only 1–2 log reduction of enteric viruses through conventional 

treatment would be expected for properly operating filters (Havelaar et al., 1995) 

compared to 5-log reduction of protozoa (Nieminski and Ongerth, 1995). Ultrafiltration 

and microfiltration membranes can provide an absolute barrier to bacteria and protozoa 

(Jacangelo et al., 1991). In contrast, virus removal through membranes varies depending 

on the type of membrane used. For instance, whereas an ultrafiltration membrane with a 

nominal pore size of 0.01 μm can provide more than 6.5-log removal of MS2 coliphage, 

less than 1-log removal of MS2 was demonstrated for three different microfiltration 

filters with nominal pore sizes ranging from 0.1 to 0.2 μm (Jacangelo et al., 1995). 

 

Payment and coworkers (1985) studied the decreases in concentrations of various fecal 

indicator bacteria—including total coliforms, fecal coliforms, and fecal streptococci—

and viruses throughout sequential treatment processes at seven water treatment systems 
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across Montreal, Canada. These authors reported that raw water contained 105 to 

106 cfu/L of total coliforms and 3.3 most probable number of cytopathogenic units 

(MPNCU) of virus per liter. In finished water, indicator bacteria were uniformly absent; 

however, infectious viruses were detected in 11 of the 155 finished water samples (7%). 

Throughout treatment steps, these investigators detected infectious poliovirus, coxsackie 

virus, echovirus, and poliovirus. Whereas sedimentation followed by filtration removed 

95.15% and 99.97% virus, respectively, ozonation and final chlorination were not 

effective at removing the remaining infectious virions. Moreover, the 6-log reduction of 

indicator bacteria did not correlate with the 4–5 log reduction of virus. Instead, the 

density of virus particles in finished waters tended to correlate with the virus density in 

raw source waters. Source waters containing high concentrations of virus tended to give 

rise to finished water containing residual virus despite being deemed potable by the 

absence of indicator bacteria (Payment et al., 1985). Similarly, Keswick et al. (1984) 

tested concentrated raw, clarified, filtered, and chlorinated finished drinking water 

samples derived from heavily polluted source water for viruses and total coliform 

bacteria. They reported that during dry conditions, four of nine finished water samples 

were positive for infectious viruses. In contrast, none of these samples contained 

detectable coliforms. 

 

Rather than underestimating the presence of viral pathogens, coliforms sometimes may 

overestimate pathogenic contamination by occurring independently of fecal pollution. 

Drinking water distribution systems may test positive for coliforms because of regrowth 

of microorganisms that were injured through treatment but remained viable 
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(LeChevallier, 1990). Alternatively, sloughing of biofilms in a distribution system can 

reintroduce microorganisms, including coliforms. In these cases, a coliform assay would 

give a positive result in the absence of recent fecal pollution. Such a result may require a 

water treatment system to incur unnecessary costs. 

 

5.5. Coliform Prediction of Waterborne Disease Outbreaks of Viral Etiology 

Since 1971, the Centers for Disease Control and Prevention (CDC), the USEPA, and the 

Council of State and Territorial Epidemiologists have consolidated and maintained the 

Waterborne Disease Outbreak Surveillance System, which compiles voluntarily reported 

data on waterborne disease outbreaks. For an event to be classified as a waterborne 

disease outbreak, two or more people must experience the same or similar symptoms of 

illness (Blackburn et al., 2004). This stipulation can be waived and a single case can be 

considered an outbreak if the case is laboratory-confirmed primary amebic 

meningoencephalitis or if it is a case of chemical poisoning confirmed by water quality 

monitoring. 

 

Public health departments across the nation are expected to detect and investigate 

outbreaks in their localities and report outbreaks to the surveillance system. In addition to 

reporting an outbreak, public health departments may provide water quality data in which 

the water supply implicated in the outbreak is analyzed for total coliforms, fecal 

coliforms, E. coli, and/or a suspected infectious agent of bacterial, parasitic, or viral 

etiology. Because surveillance is passive and reporting is not mandated, the waterborne 

disease outbreak incidence compiled by the surveillance system is predicted to be a gross 
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underestimate (Craun et al., 2002; Craun et al., 2006). Craun (1990) suggested that as 

little as one-tenth to one-half of waterborne disease outbreaks in the United States are 

reported.  

 

Public health breakdowns take place even when coliforms are monitored. Disease 

outbreaks have occurred in water supplies for which bacterial indicator levels were within 

regulatory compliance. For instance, enteric viruses were isolated from water samples 

during a hepatitis outbreak at a military camp, even though the samples were consistently 

free of indicator bacteria (Bosch et al., 1991). Conversely, cases of indicator counts 

exceeding the public health risk threshold are not always associated with subsequent 

disease outbreaks (Craun et al., 1997; Hrudey and Hrudey, 2007). 

 

The implementation of a more accurate indicator of virus presence or absence is 

becoming even more crucial as sensitive subpopulations are growing larger (Reynolds et 

al., 2008). Sensitive subpopulations include those who are more susceptible to severe 

illness or death from enteric virus infections, such as the elderly, organ transplant 

patients, and HIV/AIDS patients. This demographic currently totals 20–25% of the U.S. 

population. Consequently, future waterborne disease outbreaks are expected to have an 

even greater impact on public health (Craun et al., 2006). 

 

From 1971–2002, viral pathogens were confirmed to cause 8% of the 764 reported 

waterborne disease outbreaks in the United States (Reynolds et al., 2008). However, 47% 

of these outbreaks were reported as unknown acute gastrointestinal illness, and many of 
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these mimicked a viral etiology (Leclerc et al., 2002). It is likely that greater than 8% of 

outbreaks result from viral agents because (1) nonculturable or slow-replicating viruses 

may have been unrecognized as the causative agents, and (2) public health utilities often 

omit virus testing even if implicated water supplies are negative for pathogenic bacteria 

and protozoa (Craun et al., 2002; Reynolds et al., 2008). Some researchers have 

suggested an upper bound of 19.5 million cases/year of viral illness associated with 

drinking water in the United States (Reynolds et al., 2008). 

 

From 1991 to 1998, 35 reports of outbreaks of viral or unknown etiology included water 

quality data. These data indicated that 81% of viral or unknown outbreaks among all 

water systems co-occurred with elevated coliform counts (Craun et al., 2002). Of the two 

outbreaks in CWS in which a viral etiology was determined, coliforms were not detected 

in the finished water (0% correlation). Of the five CWS outbreaks of unknown etiology, 

coliforms were only detected for three (60% correlation). Notably, total coliforms were 

detected in 100% of the outbreaks in which a bacterial pathogen was the causative factor. 

This suggests that putative indicators may be best suited for use with pathogens of similar 

sizes and infectious cycles. That is, bacterial indicators may be most likely to colocate 

with bacterial pathogens, viral indicators with viral pathogens, and protozoan indicators 

with protozoan pathogens. 

 

Whereas the proportion of waterborne disease outbreaks related to contaminated, 

untreated surface waters has decreased since 1971, the proportion related to untreated 

ground water has remained relatively constant (Craun et al., 2006). Aquifers act to 
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naturally filter bacterial pathogens but are more susceptible to virus infiltration (See 

Section 5.4.2). For instance, Scandura and Sobsey (1997) reported that norovirus is 

poorly filtered by most soil types, which could allow passage of this virus species to the 

water table. Indeed, of the five outbreaks from 2001 to 2002 in which norovirus was 

confirmed to be the causative agent, all were associated with ground water systems 

(Yoder et al., 2004). 

 

Deficiencies related to treatment systems have decreased since the late 1990s. However, 

distribution system contamination (both microbial and chemical) has become a greater 

concern (Reynolds et al., 2008). Of the one million miles of distribution networks in the 

United States, 20% are considered to be in poor working order (American Water Works 

Service Company, 2002) leading to an increase in water main breaks. Lower levels of 

disinfectant residuals are maintained in the distribution system to limit DBP production, 

and pressure fluctuations in the systems can cause back siphonage and cross-

contamination of nonpotable and potable water. For instance, a cross-connection from a 

nonpotable, untreated pond led to a norovirus outbreak in the reporting period 2003–2004 

(Liang et al., 2006). Moreover, low or negative pressure could draw in untreated ground 

water if leaky distribution piping exists below the water table. Disease outbreak statistics 

indicate that current water treatment regulations have not been effective at reducing the 

number of distribution system-related outbreaks (Reynolds et al., 2008; Craun and 

Calderon, 2001; Levy et al., 1998). 
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During the summer of 2004, a waterborne disease outbreak occurred in Ohio, affecting 

approximately 1,450 people with gastroenteritis (Fong et al., 2007). A mixture of 

bacterial, viral, and parasitic pathogens were isolated from patients. A subsequent 

investigation of total coliforms, E. coli, enterococci, and Arcobacter indicated substantial 

contamination of untreated well water. The contamination likely was caused by 

interactions between ground water and surface water resulting from overflow from 

wastewater treatment plants and septic tanks during an extreme precipitation event. 

Notably, the wells containing the highest densities of total coliforms (90 and 38 cfu/100 

mL) were not associated with virus contamination. Similarly, the wells containing the 

highest E. coli densities (4 and 2.6 cfu/100 mL) were negative for enteric viruses. 

Norovirus was cultured from infected patients, but was not isolated from the well water 

implicated as heavily contaminated by coliforms. This led Fong et al. (2007) to conclude 

that bacterial indicators may colocate with viral pathogens in some instances, but 

candidates from their suite of bacterial indicators often occurred in the absence of viral 

pathogens (14 of 16 samples) leading to a high proportion of false-positives. 

 

Figure 5.1 depicts the etiologies of reported waterborne disease outbreaks between 1930 

and 1996 (Leclerc et al., 2002). The earliest data suggest that bacterial outbreaks were by 

far the most commonly reported, possibly because viral and parasitic disease courses 

were less well understood at the time. Consequently, a bacterial indicator was most 

reasonable to signify the presence of pathogens. Since 1930, however, outbreaks of 

bacterial etiologies have plummeted as a result of filtration and disinfection treatments. In 

contrast, outbreaks of unknown etiologies—which often are suspected to be virus-
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caused—and protozoan outbreaks both exhibit more erratic patterns. Detection of 

coliform bacteria is effective at indicating bacterial contamination (Craun et al., 2002), 

and Figure 5.1 supports the presumption that controlling coliform levels has, in turn, 

controlled levels of pathogenic bacteria. However, evidence that pathogenic outbreaks of 

nonbacterial etiologies can be predicted or controlled by monitoring coliforms is much 

less clear. The results instead support the development and use of indicators specific to 

nonbacterial pathogens. Regarding viral outbreaks, the most logical indicator would be a 

ubiquitous, nonpathogenic, seasonally consistent virus that exhibits the same transport 

and resistance characteristics as pathogenic enteric viruses. 

 

Figure 5.1. Historical depiction of the etiologies of waterborne disease outbreaks in 

the United States. Reproduced with permission from Leclerc et al., 2002. 
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CHAPTER 6 – ALTERNATIVES TO COLIFORMS: INDICATOR VIRUSES 

Reports finding a lack of correlation between bacterial indicators and viral pathogens as 

well as the occurrence of waterborne disease outbreaks without concomitant coliform 

elevation support the argument that bacteria are incapable of always indicating virus 

contamination in source waters, treatment systems, and finished waters. As an alternative, 

coliphages and representative enteric virus species have been proposed as putative 

indicators of pathogenic viruses. 

 

6.1. Coliphages 

The coliform viruses, coliphages, have been investigated as possible fecal indicators 

since the 1980s (Osawa, 1981; Furuse, 1987). In particular, coliphages appeared to be 

well suited to indicate enteric viruses in ground water systems based on similarities in 

environmental survival (Donnison and Ross, 1995; Long and Sobsey, 2004; USEPA, 

2006) and size (Abbaszadegan et al., 2003). The size similarity between enteric viruses 

and coliphages is particularly important when transport through an aquifer is considered. 

However, there are shortcomings associated with using coliphages as an indicator 

organism, and some researchers have recommended coliphage monitoring in conjunction 

with, but not in place of, coliform monitoring (Long and Dewar, 2008). Unlike enteric 

viruses, coliphages may continue to replicate in surviving bacterial hosts after being shed 

in feces (Havelaar and Pot-Hogeboom, 1988; Nasser and Oman, 1999). Indeed, 

researchers have observed a proliferation of coliphages in sewage water (Snowdon and 

Cliver, 1989; Borrego and Cornax, 1990; Armon and Kott, 1995). Consequently, 

coliphage quantities and persistence in environmental waters may significantly exceed 
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the quantities of human enteric viruses and incorrectly suggest contamination of water 

sources (Nasser and Oman, 1999; Pang et al., 2004). Alternatively, coliphages associated 

with bacterial hosts may be removed when bacteria are filtered during water treatment or 

passage through an aquifer. Consequently, coliphages may be absent despite the presence 

of enteric viruses. 

 

A number of publications have supported the argument that coliphages alone are not ideal 

indicators of enteric viruses. For instance: 

(1) Following a massive outbreak of viral, bacterial, and parasitic etiologies affecting 

1,450 people in Ohio during 2004, coliphages were isolated from untreated well 

water, but neither total coliphages nor male-specific coliphages colocated 

exclusively with human adenovirus (Fong et al., 2007). Contaminated ground 

water samples were obtained that were either negative for total or male-specific 

coliphage and positive for adenovirus (two well sites) or were positive for total or 

male-specific coliphage but negative for adenovirus (four well sites). At nine well 

sites, both adenoviruses and coliphages were undetected. 

(2) A ground water study in Canada reported that culturable human enteric viruses 

occurred in 2 of 12 untreated well sites that were free of male-specific coliphages 

(Locas et al., 2007). 

(3) In Wisconsin, researchers sampled four GWUDI wells monthly for 1 year to 

detect viral genetic material or culturable, infectious viruses. They reported virus 

presence in 24 of 48 samples obtained prior to chlorination at the wellhead. In 

contrast, neither male-specific nor somatic coliphages (i.e., the subset of 
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coliphages that infects bacteria via the cell membrane) were enumerated in any of 

the well samples (Borchardt et al., 2004). 

(4) Coliphage survival in soil after manure application varied by coliphage species. 

Whereas male-specific coliphages exhibited similar die-off to fecal coliforms (6–

10 days), somatic coliphages persisted as long as 143 days (Gessel et al., 2004). 

(5) In Barcelona, Spain, a study of bacteriophage survival through drinking water 

treatment processes reported that somatic coliphages, male-specific coliphages, 

and bacteriophages infecting the intestinal bacterium Bacteriodes fragilis were 

removed at different treatment stages (Jofre et al., 1995). Enteric viruses existed 

in the treatment plants at extremely low numbers and were not correlated with 

bacteriophage survival. 

 

6.2. Human Enteric Viruses 

Some researchers have suggested using one enteric virus species to indicate other enteric 

pathogens (Kopecka et al., 1993; Metcalf et al., 1995). Adenovirus has been proposed as 

an indicator because of its remarkable resistance characteristics and lack of seasonal 

variability. However, this virus did not correlate with hepatitis A virus or enteroviruses in 

urban waterways (Jiang, 2002). Other pathogenic enteric viruses exhibit epidemiological 

patterns, occurring epidemically in short bursts or with seasonal fluctuations. For 

instance, enterovirus infections peak in summer or fall (Skraber et al., 2004a; Tani et al., 

1995) and noroviruses and reoviruses in winter (Tani et al., 1995; Haramoto et al., 2006). 

This makes it difficult to assign a single pathogenic indicator to the global, year-round 

enteric virus population (Diniz-Mendes et al., 2008). In addition, Skraber et al. (2004a) 
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were unable to culture enteroviruses, and a facile culture system is not available for 

norovirus. Thus, infectivity of these proposed indicators cannot be assessed, and therefore 

the utility of such an indicator in treatment systems would be questionable. Other enteric 

viruses are highly correlated with socioeconomic status (e.g., hepatitis A virus), giving 

rise to endemic conditions in regions with poor sanitation regardless of the degree of 

drinking water contamination (Fernandez-Molina et al., 2004). 

 

Given these caveats, an enterically transmitted virus that is neither seasonally nor 

demographically distributed and that is shed in large quantities without pathological 

consequences or immune clearance may best serve as an indicator of enteric viruses. 
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CHAPTER 7 – METHODS FOR DETECTING VIRUSES IN ENVIRONMENTAL WATERS 

Ideally, indicator bacteria inform water quality officials about breaches in water treatment 

systems or contamination of water sources before a public health crisis occurs. However, 

total and fecal coliforms and E. coli can be misleading indicators of viral pollution. If a 

virus species is to be used as an indicator of other viruses, then sensitive, specific, and 

robust tools must be available to assess the presence or absence of the indicator.  

 

The two primary methods in practice today for virus identification are cell culture and 

PCR. Susceptible and permissive cells in culture, when inoculated with infectious virus, 

may manifest signs of cell dysfunction or death and may release replicated virus progeny 

into the culture supernatant. The lack of morphological changes in the culture suggests 

that the virus preparation was not infectious. When compared to molecular methods, cell 

culture is time-consuming, costly, less sensitive (sensitivity is a function of the particle-

to-PFU ratio; See Section 5.2), and requires highly developed skills and sterile technique. 

It generally takes 1–3 weeks to assay for infectious virus by this method.  

 

PCR involves the enzyme-catalyzed amplification of a specific region of a DNA 

template. PCR is rapid, sensitive, specific, cost-effective, and simple to perform. Results 

are obtained within hours, and in some cases, the resolution of this technique approaches 

a single molecule of template DNA. Recently, PCR has been adapted to detect viral 

nucleic acid from environmental water samples (Abbaszadegan et al., 1999; Cho et al., 

2000; Taylor et al., 2001; Fout et al., 2003). However, the fundamental drawback of PCR 

is that virus infectivity cannot be ascertained. 
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7.1. Cell Culture 

Environmental water samples often need to be collected in large volumes (e.g., hundreds 

of liters) because virions in environmental waters are very dilute. Consequently, the first 

step in cell culture (and similarly for PCR) is concentration and purification, by as much 

as four orders of magnitude (Griffin et al., 2003). This can be accomplished by passing 

water samples through positively or negatively charged filters, ultracentrifugation, 

ultrafiltration, or precipitation with polyethylene glycol (PEG). Viruses can be eluted 

from filters with a beef extract solution. Additional concentration may be accomplished 

by flocculation (USEPA, 1994). The percent recovery during concentration/purification 

can be determined by processing a known concentration of virus stock (e.g., poliovirus) 

in parallel with the experimental samples (Abbaszadegan et al., 1999; Fuhrman et al., 

2005). 

 

The next step in cell culture is to inoculate the concentrated virus sample onto a culture of 

cells. For enteric viruses, the BGMK cell line often is used (USEPA, 1987); this cell line 

is capable of replicating adenoviruses and some enteroviruses. (No cell line is capable of 

replicating all enteric virus species.) Cells are grown in a buffered medium containing 

antibiotics and a nutrient cocktail that mimics conditions in the intact host organism. If 

the cells are capable of being infected by the virus(es) present in the sample, they will 

respond in a dose-dependent way—they may lyse, change in morphology, or fuse into 

syncytia. All of these ramifications are classified as cytopathic effects (CPE). CPE may 

be visible under a dissecting microscope or even by the naked eye within days, although 

some slow-growing viruses may take weeks to elicit CPE. Notably, some virus species do 
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not produce CPE (e.g., parainfluenza), and would give a false-negative result in culture. 

Alternatively, coconcentrated nonviral toxins in the sample may be lethal to the cells and 

mimic CPE, leading to false-positive results. Positive CPE results suggest virus presence 

but do not necessarily identify the virus species because some viruses elicit the same 

CPEs. 

 

In a water sample in which the contaminating viruses are not known, serum neutralization 

tests can be used. In this technique, the virus sample is combined with serum containing 

antibodies against known viral antigens (e.g., against poliovirus antigens). Subsequent 

loss of infectivity (i.e., absence of CPE) indicates that the antibody recognized and 

neutralized the viral antigens and thus identifies the virus species. Alternatively, a cell 

line that amplifies only a single virus species may be selected. The most important 

limitation of cell culture is that host cell lines have not been identified for some enteric 

viruses. In these cases, cell culture techniques cannot be used (Noble et al., 2003; Fong 

and Lipp, 2005). 

 

7.2. PCR 

All cellular organisms use DNA polymerase to replicate their DNA in preparation for cell 

division. PCR harnesses DNA polymerase to amplify target nucleic acid sequences to 

detectable levels. In 1983, Kary Mullis recognized that DNA could be duplicated by 

intentionally heat-denaturing the double helix and adding short nucleotide segments (i.e., 

primers), free nucleotides, and DNA polymerase to restore each denatured strand to a 

double helix consisting of one strand of original template and one strand of newly 
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synthesized DNA (Mullis et al., 1986). By designing primers complementary to the DNA 

sequences upstream and downstream of the target, the target DNA sequence can be 

preferentially amplified. After about 30 rounds of heat denaturation and polymerization, 

the target DNA sequence is so abundant—generally reaching a 106-fold amplification of 

the original template concentration—that the post-reaction sample is effectively pure 

target DNA. 

 

Originally, PCR was conducted using E. coli-derived DNA polymerase. This procedure 

required that the researcher “recharge” the reaction with fresh polymerase after each 

cycle because the heating step denatured the enzyme irreversibly (Saiki et al., 1985). The 

process of PCR became much simpler and of higher fidelity when E. coli polymerase was 

replaced with Thermus aquaticus DNA polymerase (a.k.a. Taq polymerase) (Saiki et al., 

1988). T. aquaticus inhabits hot springs, and its proteins have evolved extreme 

thermostability. The Taq polymerase protein is capable of maintaining its conformation 

throughout each heat denaturation step. 

 

PCR of virus DNA from environmental samples requires liberation of viral nucleic acid 

from the capsid. This traditionally is accomplished by extracting with guanidium 

thiocyanate and passing the sample through a silica column to remove the dissociated 

capsid proteins (Griffin et al., 2003). This method purifies both RNA and DNA, which is 

particularly pertinent to the isolation of enteric viruses, most of which have RNA 

genomes. PCR can only detect DNA sequences, so detection of enteric viruses with RNA 

genomes must be preceded by a process called reverse transcription, in which purified 
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retroviral reverse transcriptase (RT)—an RNA-dependent DNA polymerase—is 

incubated with an RNA template and free nucleotides to generate double-stranded, 

complementary DNA (cDNA). 

 

Environmental waters accumulate humic and fulvic compounds and metal ions as a result 

of biosynthetic and biodegradative processes (Abbaszadegan et al., 1993). The process of 

sample concentration in preparation for PCR (or cell culture) concomitantly concentrates 

organic compounds that may inhibit active enzymes needed for RT and/or PCR (Wilson, 

1997). To remove organic acids and metals, a number of methods such as phenol-

chloroform extraction, precipitation, chelation, biotinylation, chromatographic separation, 

ultracentrifugation through a sucrose gradient, or immunomagnetic separation are 

available (Schwab et al., 1995; Ijzerman et al., 1997; Fout et al., 2003). Alternatively, it 

may be sufficient to dilute the PCR sample slightly (e.g., 1:10), thus lessening the 

inhibition effect enough that amplification can be detected. 

 

One method to check for false-negative PCR results is to test half of a water sample as 

normal and seed the other half with the virus of interest (Schwab et al., 1997; Borchardt 

et al., 2003; Fout et al., 2003; Borchardt et al., 2004). If neither sample amplifies, then 

inhibitors are present. Alternatively, false-positives may occur as a result of laboratory 

contamination. In this case, the DNA template is volume-replaced by water and used as a 

negative-control sample to ensure that contamination did not occur (Borchardt et al., 

2004; Fuhrman et al., 2005). 
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PCR can identify any pathogen in a water sample as long as some of the pathogen’s 

genetic sequence is known. In the case of virus identification, primers can be designed 

complementary to conserved or variable regions of the genome to amplify entire virus 

orders or specific virus species. However, PCR cannot determine whether the pathogen 

was active or infectious at the time of sampling (Scott et al., 2002; Griffin et al., 2003; 

Fong and Lipp, 2005). Because PCR only indicates the presence or absence of a target 

sequence, it would yield a positive result for a noninfectious virus if the virus particle’s 

genetic material was intact. In some cases, viral nucleic acid, particularly DNA, may 

persist even after the viral envelope or capsid is disrupted and infectivity is lost (Straub et 

al., 1995; De Serres et al., 1999). For this reason, PCR detection is limited in the 

information it can provide, for example, it may underestimate the inactivation of viruses 

through a treatment system (Sobsey et al., 1998; Yates, 2007). 

 

In ground water, PCR detection of viral genetic material confirms that a “path of 

contamination” exists and that virus—whether viable or not—is capable of reaching the 

water table (Yates, 2007). In addition, surface water studies have reported similar results 

for virus detection by RT-PCR and tissue culture in the Florida Keys (Griffin et al., 1999) 

and the Sarasota Bay estuary (Lipp et al., 2001), respectively, suggesting that although 

PCR may overestimate virus presence in some cases, it can be a valid and useful 

technique for virus monitoring. 

 

The inability of PCR to determine infectivity has led to debates about whether a positive 

PCR result is sufficient to cause public health alarm. Some investigators contend that 
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RNA genomes degrade rapidly and thus would not be detected by PCR as free nucleic 

acid from an inactivated virus (Kopecka et al., 1993). Others caution that even an intact 

virus with a preserved genome may be damaged and incapable of entry into a host cell, 

thus precluding infection but remaining detectable by PCR (Nuanualsuwan and Cliver, 

2003). Gassilloud et al. (2003) monitored RNA viruses for infectivity and positive PCR 

detection in mineral ground water and reported that temperature had a marked effect on 

virus infectivity but not on RNA genome persistence. For instance, poliovirus was 

inactivated linearly at 35°C, whereas its genome persisted much more robustly and 

degraded according to logarithmic kinetics at this temperature. At 10°C, however, 

poliovirus infectivity and genome integrity persisted to a similar extent. This research 

studied water samples similar to commercial bottled water, which is quite different from 

raw source water, and likely different from finished drinking water. In river water, 

Skraber et al. (2004b) observed that poliovirus genomic RNA persisted two-fold longer 

than infectious poliovirus. Enriquez et al. (1993) reported that infectious poliovirus and 

its genome declined in parallel in well water and dechlorinated tap water at 15°C and 

37°C. However, poliovirus and its genome did not decline in parallel in autoclaved well 

water or phosphate buffer. The presence of proteases, RNases, and DNases likely plays a 

large role in the persistence of genomes from nonintact virus. These enzymes are copious 

in environmental waters but would be denatured during the autoclaving process. 

 

Some researchers have proposed methods to preselect for infectious virus before a PCR 

analysis is performed. Nuanualsuwan and Cliver (2002) demonstrated that hepatitis A 

virus, poliovirus, and a feline calicivirus (a model for norovirus) that were inactivated 
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with UV radiation, heat (72°C), or hypochlorite would not trigger a positive PCR result if 

the virus sample was pretreated with proteinase K (to degrade partially denatured coat 

proteins) and nuclease (to degrade an exposed genome). In contrast, intact, infectious 

viruses were not susceptible to enzyme pretreatment and positive PCR results were 

obtained. The inactivation methods used by these researchers were akin to common 

disinfection processes at water treatment plants and were expected to render the virus 

species noninfectious but not fully degraded or physically removed, much like 

disinfection would accomplish in a treatment system. The researchers suggest that their 

pretreatment methods could be applied to other virus species and other disinfection 

procedures. Other investigators have reported that isolating viral particles on a positively 

charged Sephadex filter and eluting with high ionic strength beef extract selected for 

intact, infectious viral capsids, rather than free viral RNA or damaged particles 

(Abbaszadegan et al., 1999). 

 

7.3. Variations in Cell Culture and PCR 

Neither cell culture nor PCR is without shortcomings. Frontiers in PCR have allowed 

researchers to obtain quantitative results, higher resolution, and simultaneous detection of 

different pathogens. In addition, integration of cell culture and PCR may maximize the 

utility of both procedures while minimizing the drawbacks. Currently implemented 

modifications to cell culture and PCR are discussed below. 
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(1) Real-time PCR involves the detection of a fluorescent signal emitted during the 

amplification reaction. The signal intensity is proportional to the amount of the target 

DNA amplicon. By amplifying a known concentration of control DNA in parallel, the 

ratio of the fluorescent signals allows for quantification of the experimental target 

sample. Results from this type of PCR inform researchers about viral concentration 

and in the future, may be compared to minimum infectious doses to estimate health 

risks (Scott et al., 2002; Griffin et al., 2003). 

 

(2) Nested PCR is a more sensitive version of PCR in which a target sequence is 

amplified and the sample undergoes a second round of PCR to amplify a sequence 

nested within the initial amplicon (Metcalf et al., 1995; Abbaszadegan et al., 1999). 

This approach is taken when an extremely low concentration of template DNA (e.g., a 

single molecule of template in the sample) is expected or when negative results are 

obtained using conventional PCR despite other evidence suggesting presence of 

template DNA in the sample. A variation on the same concept is to follow PCR with 

Southern hybridization, in which radioactively labeled DNA segments (i.e., 

oligonucleotides) are hybridized to the amplicon to confirm its integrity and to 

intensify the positive signal (Abbaszadegan et al., 1999; Noble et al., 2003; Fong et 

al., 2005). For both nested PCR and PCR/Southern, the resolution approaches one 

molecule of template DNA. 

 

(3) Multiplex PCR allows different target DNAs to be detected in the same reaction 

vessel. For instance, if a number of enteric virus species are hypothesized to exist in a 
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water sample, they can be assayed simultaneously in the same sample vial (Formiga-

Cruz et al., 2005). This technique can save time if many samples are to be processed. 

However, it may require a great deal of parameter optimization in order to create 

conditions that are favorable for each template to denature and for each primer to 

anneal specifically and efficiently. For instance, if the primers being used have 

significantly different guanine/cytosine contents, it may be difficult to optimize the 

heating steps, as guanine-cytosine bonds are more heat-stable than adenine-thymine 

bonds. A number of other reaction components also must be optimized for consistent 

replication of each template in the multiplex reaction. This may include varying the 

concentrations of magnesium cations, primers, free deoxynucleotides, and enzymes. 

In some cases, the characteristics of different templates are so diverse that adequate 

optimization is not possible. 

 

(4) Integrated cell culture-PCR (ICC-PCR) combines the best qualities of both techniques 

(Bosch, 1998; Griffin et al., 2003; Fong and Lipp, 2005). In this method, cells are 

inoculated with an environmental water sample, the culture is incubated for 1–3 days 

and cells are harvested before CPE is apparent. The cells are mechanically lysed, 

nucleic acid is isolated, and PCR is performed. This procedure avoids the 1–3 weeks 

of culture maintenance often required for full CPE to occur, yet it also detects 

infectious virus. Theoretically, cells are harvested when virus is actively replicating, 

but noninfectious virus particles already have degraded. This technique also is useful 

in the detection of infectious viruses that may be slow growing or that do not produce 

CPE. 
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CHAPTER 8 –TORQUE TENO VIRUS: A PUTATIVE INDICATOR OF ENTERIC VIRUSES 

Torque Teno virus (TTV) is a small, unenveloped DNA virus that is ubiquitous and 

seemingly innocuous in humans worldwide and may exhibit similar transport and 

survival characteristics to pathogenic enteric viruses. In the following discussion, the 

biological characteristics, isolation techniques, and potential utility of TTV as an 

indicator of enteric viruses is assessed. 

 

8.1. Biology of TTV 

TTV was first identified in 1997 in the serum of a Japanese patient who developed 

hepatitis of unknown etiology following a blood transfusion (Nishizawa et al., 1997). The 

virus was detected by a modified PCR technique called representational difference 

analysis (RDA), in which differences between two DNA samples can be compared by 

restriction endonuclease digestion and subtractive hybridization to enrich for genetic 

sequences that are unique to the experimental sample (Lisitsyn et al., 1993). By this 

method, a viral genome sequence can be sorted from all the genetic material in a human 

cell. Using RDA, researchers obtained a 500 base-pair clone deemed N22 that was absent 

before the patient’s blood transfusion and lacked homology to sequences already reported 

in DNA databases (Nishizawa et al., 1997). The N22 sequence floated at a density of 

1.26 g/cm3 when centrifuged through a sucrose gradient and was resistant to treatment 

with DNaseI. These observations suggested that the sequence was encapsidated within a 

proteinaceous particle and likely was a virus (Nishizawa et al., 1997). The putative virus 

was named “TT” virus after the index patient’s initials.  
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Filtration studies indicate that TTV is 30–50 nm in diameter (Mushahwar et al., 1999). 

Itoh et al. (2000) reported a diameter of 30–32 nm when TTV isolated from fecal 

supernatant was visualized by immunoelectron microscopy (Figure 8.1). 

 

 

Figure 8.1. Micrograph of TTV. Icosahedral virus-like particles of 30–32 nm were 

found to aggregate after human fecal supernatant containing TTV genotype 

1a was incubated with human anti-TTV-1a-specific antibody. Scale bar 

represents 100 nm. Reproduced with permission from Itoh et al., 2000. 

 

Other researchers reported that detergent exposure did not change the density of the 

particle, suggesting that the virus is not enclosed in a host-derived lipid envelope 

(Okamoto et al., 1998b). Moreover, the unencapsidated genome was sensitive to DNaseI 

and mung bean nuclease but was resistant to RNaseA and some restriction 

endonucleases, suggesting that the structure was single-stranded DNA (ssDNA; Okamoto 

et al., 1998b). Genome sequencing, specifically of the GC-rich region, indicated that the 

genome was a covalently closed circle (Miyata et al., 1999). These findings led to the full 
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name of TTV being changed to reflect its genome structure. The “TT” now stands for 

“Torque Teno,” which is derived from the Latin for “thin necklace” (Biagini et al., 2004).  

 

The average genome length of a TTV isolate is 3.8 kilobases (kb); of that, 1.2 kb do not 

appear to code for viral proteins. Hybridization and nuclease protection studies indicate 

that the virus encapsidates its negative strand (Mushahwar et al., 1999), meaning that an 

infected cell must synthesize the complementary strand of the TTV genome before viral 

messenger RNA (mRNA) and proteins can be produced. Three mRNAs are transcribed 

from open reading frames (ORFs) in the viral genome (Kamahora et al., 2000), and six 

proteins with distinct subcellular localizations are translated via alternative splicing and 

alternative translation initiation mechanisms (Qiu et al., 2005; Kakkola et al., 2008). 

 

TTV is classified into the genus Anellovirus but is not yet assigned a virus family 

(Biagini et al., 2004). Phylogenetic analyses of TTV isolates further classify these viruses 

into 5 genogroups differing by more than 50% and 39 genotypes differing by more than 

30% (Peng et al., 2002; Todd et al., 2005). Genogroups 1 and 2 are most prevalent 

worldwide (Abe et al., 1999). Reports of the TTV genome sequence have described it as 

extremely variable across TTV isolates (Tanaka et al., 1998; Viazov et al., 1998; 

Mushahwar et al., 1999). Divergences of 47–70% have been reported at the amino acid 

level (Biagini et al., 1999; Luo et al., 2002). However, the high degree of divergence is 

not distributed evenly over the genome. In all isolates, a GC-rich region of 108–160 

nucleotides is present in the untranslated region (UTR) (Hallett et al., 2000; Heller et al., 

2001; Peng et al., 2002). Also conserved are the poly-A sequence downstream and the 
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TATA box upstream of the coding regions (Erker et al., 1999; Hijikata et al., 1999; 

Hallett et al., 2000; Heller et al., 2001). 

 

Interestingly, the coding regions of TTV are less conserved than the UTR. For instance, 

the coding region of ORF 1 contains three hypervariable regions (HVRs) in tandem 

(Mushahwar et al., 1999; Nishizawa et al., 1999). Variability within ORF 1, which is 

believed to code for the TTV capsid protein, may be crucial to evasion of the host 

immune system (Takahashi et al., 1998b). If the capsid protein varies with each 

infectious cycle, then cellular receptors would be unable to recognize and remove 

circulating TTV particles. The UTR contains conserved stem loop structures (Hijikata et 

al., 1999; Okamoto et al., 2002). The stem loops are the sites of transcription factor 

binding sites, promoters, and enhancer elements that may be crucial for efficient 

replication and transcription (Miyata et al., 1999; Kamada et al., 2004; Suzuki et al., 

2004; See Figure 8.2 for a basic TTV genetic map; See Figure 8.3 for more detail 

regarding stem loops and hypervariable regions of TTV).  
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Figure 8.2. TTV genome map. Depicted are regulatory sequences and structures, open 

reading frames (ORFs), hypervariable regions (HVRs), Chicken anemia 

virus (CAV)-like motifs, and the N22 region, which was used to identify the 

TTV genome as viral. Position of ORF 3 is according to Erker et al., 1999, 

but compare to Figure 8.4. Reproduced with permission from Bendinelli et 

al., 2001. 
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Figure 8.3. Predicted, energetically stable structure of the TTV genome. Created 

using the Mfold Web Server (http://mfold.bioinfo.rpi.edu/) developed by 

Zuker, 2003. Notice the preponderance of stem loop structures among the 

conserved regulatory region (blue) and the relative lack of stem loop 

hybridization among the hypervariable regions (red). 
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In humans, TTV is detected in bone marrow where lymphoid cells of hematopoietic 

origin are immunologically activated. TTV also is detected in adenoids and tonsils, 

saliva, nasal secretions, breast milk, cord blood, plasma/serum, spleen, lung, pancreas, 

kidney, skin, skeletal muscle, thyroid gland, lymph nodes, liver, bile, and stool (Ross et 

al., 1999; Okamoto et al., 2000a; Okamoto et al., 2000b; Okamoto et al., 2001; Pollicino 

et al., 2003; Kekarainen and Segales, 2008). Okamoto et al. (2001) suggest that TTV 

load and genogroup distributions are heterogeneously represented in infected human 

tissues, although these distributions differ by individual. 

 

TTV infections may be acute or persistent (Nishizawa et al., 1997). Persistent infections 

with TTV appear to be lifelong and are the only virus infections described to date in 

which mature virions circulate indefinitely in the blood of infected individuals. In both 

acute and persistent cases, TTV is described as very dynamic with over 90% of virions 

cleared each day and generation of 3.8 x 1010 progeny virions per day in patients treated 

with interferon for concurrent hepatitis C infections (Maggi et al., 2001b).  

 

The method by which TTV establishes persistent infections in otherwise healthy 

individuals is not understood. In some cases, nucleotide sequences of TTV isolates from 

persistently infected individuals have demonstrated stability for years, even within the 

variable coding region (Biagini et al., 1999). However, others have conducted the same 

experiment and reported rapid mutability and sequence evolution over time (Ball et al., 

1999; Gallian et al., 1999; Irving et al., 1999; Leppik et al., 2007). If a cellular DNA 

polymerase is used to replicate the TTV genome (Kakkola et al., 2007), stability would 
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be expected because of the polymerase’s “proofreading” capacity. Alternatively, the 

single-stranded nature of the TTV genome may contribute to elevated mutability; this is 

observed in the single-stranded, linear DNA virus B19 (Shackelton and Holmes, 2006). 

Healthy individuals frequently are infected with multiple genogroups simultaneously. 

Worobey (2000) suggests that extensive homologous recombination among different 

coinfecting genogroups likely maintains variability among TTV isolates. 

 

8.2. Worldwide Prevalence of TTV 

Researchers estimate the occurrence of TTV in national populations by obtaining blood 

or fecal samples from residents and performing PCR analysis to detect the presence of 

TTV genetic material. This method is rapid and simple to perform, but differences in 

sample preparation, primer selection, and reaction conditions combine to significantly 

affect the prevalence data obtained worldwide. The identification of TTV phylogenetic 

groups that the original TTV primer sets did not amplify (Nishizawa et al., 1997; 

Okamoto et al., 1998a) have led to highly variable estimates of TTV DNA 

seroprevalence in the primary literature (Bendinelli et al., 2001; Pollicino et al., 2003). 

The design of primers against ORF 1 led to discrepancies across reports because this 

ORF contains highly divergent regions (Mushahwar et al., 1999), and consequently, 

certain ORF 1 primers gave negative PCR results whereas other ORF 1 primers and some 

primers outside of ORF 1 amplified TTV DNA from the same specimens (Leary et al., 

1999; Springfeld et al., 2000). Primers designed against the UTR and within ORF 2 

resulted in higher prevalence estimates (92% versus 23% with other primers) among 

Japanese subjects and 10–100 fold greater viral titers (Takahashi et al., 1998a; Springfeld 
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et al., 2000). UTR primers currently are believed to give the true prevalence of TTV 

infection in a population (Bendinelli et al., 2001), and a recent study reported that PCR of 

the TTV genome using 3’ and 5’ UTR primers is highly consistent as analyzed 

statistically using the Cronbach alpha coefficient (Ergunay et al., 2008). However, others 

have suggested that UTR primers are nonspecific (Springfeld et al., unpublished 

observations) or that the UTR primers do not detect all virus genogroups (Erker and 

Leary, unpublished observations). Exhaustive comparisons of PCR conditions and results 

have not been published and prevalence data for some regions, such as North America, 

have only been collected using ORF 1 primers. Although new TTV primer sequences are 

published frequently, a standardized TTV PCR protocol has not yet been described. 

 

Charlton et al. (1998) collected blood samples from North American blood donors, 

patients with liver disorders, and individuals with or without exposure to blood products. 

Using a seminested PCR amplification technique with primers against sequences in 

ORF 1, these researchers reported a 1% prevalence among healthy blood donors and a 

4% prevalence among those without exposure to blood products but with liver disease. 

They observed that liver disease and exposure to blood products were associated with 

incidences of TTV infection ranging from 15–27%. In addition to using primers against a 

potentially divergent genome region, Charlton et al. (1998) did not perform Southern 

hybridization to identify false-negatives in their PCR results. Also using primers directed 

against ORF 1 but confirming their amplified PCR products using Southern 

hybridization, Desai et al. (1999) reported that 10% of healthy, volunteer blood donors 

and 13% of commercial blood donors in the United States were infected with TTV. The 
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prevalence was slightly higher among intravenous drug abusers (17%) and lower among 

patients with non-A-E hepatitis (2%). 

 

Current estimates suggest that TTV prevalence is moderate in the North America and 

northern Europe, intermediate in Asia, and high in Africa and South America, with an 

average prevalence of approximately 80% worldwide (Springfeld et al., 2000; Bendinelli 

et al., 2001; Table 8.1). 
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Table 8.1. Worldwide prevalence of TTV determined using primer sets against 

variable and conserved genomic regions. ORF 1 is divergent and may not 

provide reliable information on TTV prevalence. The UTR is conserved and 

currently is regarded as providing the true prevalence in a population. 

Reproduced with permission from Bendinelli et al., 2001. 
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TTV viremia (i.e., circulation in blood) appears to be common in the early months of life, 

and virus load may peak during middle age or later (Abe et al., 1999; Saback et al., 1999; 

Bendinelli et al., 2001), which suggests that TTV primarily is spread by environmental 

exposure (See Section 8.3). Christensen and colleagues (2000) used dilution PCR to 

determine the number of TTV genomes in healthy Danish blood donors and 

immunocompromised patients. They reported that TTV circulated in healthy blood 

donors at magnitudes ranging from 1 x 103 to 7 x 104 TTV genome copies/mL serum. In 

HIV-infected patients, a higher TTV load was observed, ranging from 1 x 103 to 

9 x 106 copies/mL serum, although this result could be an effect of a severely weakened 

immune system (Christensen et al., 2000). Indeed, HIV-infected patients with worse 

prognoses (i.e., ~15% of patients surviving after 1,600 days as compared to ~40% of 

patients surviving with better prognoses) exhibited higher TTV loads in their serum 

(3.5 x 105 TTV/mL serum or more). 

 

Preliminary results suggest that TTV is present in the blood sera of farm animals 

(mammalian and avian) and nonhuman primates (Leary et al., 1999). Amplified 

sequences from TTV-positive swine, dogs, and cats were similar, but not identical, to 

TTV sequences amplified from humans (Leary et al., 1999) and range between 2.1 and 

2.9 kb in length (Okamoto et al., 2002). Sequences within the UTR are conserved in 

animals and humans. These results indicate that TTV is not strictly a human virus, but 

transmission characteristics, dynamics of nonhuman TTV infections, and the worldwide 

TTV prevalence in most animals have not been described to date (Leary et al., 1999; 

Kekarainen and Segales, 2008). Recent work suggests that TTV may be common in 
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swine but may be sequestered to fewer tissues than in humans (Kekarainen and Segales, 

2008).  

 

8.3. Modes of TTV Transmission 

TTV is known to circulate in the blood of infected individuals, and populations with 

histories of exposure to blood products (e.g., via blood transfusion or hemodialysis) or 

who abuse intravenous drugs tend to have higher frequencies of TTV infection and 

higher virus loads. However, parenteral routes of transmission (i.e., via injection) do not 

explain the global prevalence and ubiquity of TTV. Moreover, the increase in TTV 

prevalence with age supports environmental, rather than parenteral, exposure (Ergunay et 

al., 2008). This suggests that the fecal-oral route is the most common pathway of spread 

(Bendinelli et al., 2001). Individuals with TTV viremia also test positive for fecal TTV 

(Okamoto et al., 1998a; Luo et al., 1999; Ross et al., 1999; Ukita et al., 1999; Romeo et 

al., 2000), and TTV isolated from feces is capable of infecting sensitive and permissive 

cells in the laboratory (Maggi et al., 2001a). TTV transmission by the fecal-oral route is 

likely through secretion of bile from infected liver cells into feces (Okamoto et al., 

1998a; Ukita et al., 1999). Indeed, TTV is detected in liver tissue and bile at 10–100-fold 

greater titers than in plasma (Okamoto et al., 1998a; Ross et al., 1999; Ukita et al., 1999; 

Nakagawa et al., 2000). The prevalence of TTV among individuals worldwide suggests 

that even if TTV is shed in feces intermittently or at low levels (Okamoto et al., 1998a; 

Ross et al., 1999) the density of TTV in the environment is expected to be high 

(Bendinelli et al., 2001). 
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Alternative modes of TTV transmission have been proposed, including transplacental or 

via umbilical cord blood (Saback et al., 1999; Morrica et al., 2000); contact with hair, 

skin, or saliva of infected individuals (Osiowy and Sauder, 2000); and nosocomial 

infection (Matsumoto et al., 1999). These modes are likely to be tertiary to fecal-oral and 

parenteral transmission (Saback et al., 1999; Bendinelli et al., 2001). 

 

8.4. Pathogenicity of TTV 

Initially, it was believed that TTV was a novel viral agent that could induce hepatitis 

(Nishizawa et al., 1997), but subsequent studies of TTV prevalence indicated that TTV 

circulates in a large proportion of healthy individuals. Moreover, TTV does not appear to 

exhibit seasonal variance or epidemic bursts of infection (Vaidya et al., 2002; Haramoto 

et al., 2005b; Diniz-Mendes et al., 2008). 

 

Currently, the pathogenicity of TTV is unclear, although studies have been published that 

investigate the relationship between TTV and hepatic disorders, acute respiratory 

disorder, progression to AIDS, various cancers, autoimmune disorders, and kidney 

disease (reviewed by Bendinelli et al., 2001; Irshad et al., 2006; Hino and Miyata, 2007). 

Disease associations have not been substantiated, and elevated TTV levels in diseased 

patients likely reflect the compromised immune status of the individual. In rare cases, 

TTV appears to induce transient and mild liver abnormalities, but temporary liver 

dysfunction is an effect of many viral infections, including those caused by enteric 

viruses (Bendinelli et al., 2001). Given the failure of attempts to assign a pathology, 

Griffiths (1999) and Simmonds et al. (1999) have suggested that TTV may constitute one 
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of the estimated 500 species of commensal intestinal microorganisms in humans. To date, 

no other commensal viruses have been described (Bendinelli et al., 2001). 

 

8.5. Preliminary Support for the Indicator Potential of TTV 

Given its worldwide ubiquity, fecal-oral mode of transmission, lack of seasonal variance, 

and similar size and composition to pathogenic enteric viruses, TTV may be useful as an 

indicator of virus contamination. Currently, little is known about the environmental 

stability of TTV, although Takayama et al. (1999) demonstrated that TTV infectivity was 

not lost after 95 hours of dry heat treatment (65°C). Investigators suspect that the TTV 

virus particle is highly stable (Verani et al., 2006). As discussed below, several 

investigators have tracked TTV in the environment or in treatment systems. Their results 

suggest that TTV is not correlated with coliform indicators, but may colocate with 

various enteric viruses. 

 

In Manaus County of the Brazilian Amazon, more than 90% of the 1.7 million residents 

lack sewage collection, and waters of various small, contaminated streams empty into the 

Negro River. Diniz-Mendes et al. (2008) collected 52 water samples from 13 locations 

across this region four times (August, November, February, and June) during a 1-year 

period. Levels of TTV were determined by real-time PCR and compared to total and 

fecal coliform densities and other water quality parameters. TTV was detected in 92.3% 

of surface water samples, ranging from 1,300 to 746,000 TTV genomes per 100 mL 

water. TTV presence did not fluctuate by season or geographic area, and the TTV load 

did not correlate with coliform density or physicochemical parameters. However, the 
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TTV positivity rate of 92.3% paralleled the positivity rate reported by De Paula et al. 

(2007) for hepatitis A virus in the same geographic region. 

 

To assess the TTV positivity rate in Italy, researchers collected samples of river water 

receiving treatment plant effluent monthly for 1 year (Verani et al., 2006). They reported 

that TTV was present in 3 of 12 samples (25% positivity rate). Interestingly, TTV and 

rotavirus (33% positivity rate) occurred either simultaneously or within 1 month’s 

sampling period of each other. In addition, TTV occurred 1–2 months after enterovirus 

was detected, and simultaneously or within 2 months of noroviruses g1 and g2 in all but 

one case (3-month difference). Whereas the pathogenic viruses were observed in seasonal 

clusters, TTV positivity was distributed rather evenly throughout the year in June, 

September, and March. 

 

TTV is found in 5% of surface water samples in Japan without seasonal variance 

(Haramoto et al., 2005a). When TTV was monitored through eight activated sludge 

wastewater treatment plants in Japan monthly for 1 year, researchers reported that TTV 

genetic material was detected with 97% frequency in influent, 18% in secondary effluent 

after activated sludge treatment but before chlorination, 24% in final effluent after 

chlorination, and 0% in effluent for reuse following filtration and ozonation (Haramoto et 

al., 2005b). In contrast, coliforms decreased sequentially with each step in the treatment 

process, and the concentration of coliforms did not correlate with the number of positive 

TTV samples collected at any step. These results indicate that chlorination did not affect 

the ability of PCR to detect TTV genetic material, although chlorination may have 
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rendered the virus noninfectious without affecting the amplified genome region 

(Nuanualsuwan and Cliver, 2002). 

 

Hepatitis viruses A and E (both enterically transmitted) and TTV are common in India. 

Hepatitis A infects nearly all residents early in childhood, and while symptomatic 

infection is rare in adults, subclinical shedding is common. Hepatitis E is implicated in 

epidemics of disease following spikes of fecal contamination. Vaidya et al. (2002) 

compared sewage treatment plant influent and effluent concentrations of these viruses via 

PCR and observed that raw sewage prevalence of TTV DNA (12.7% positive rate) was 

statistically similar to the prevalence of hepatitis E virus RNA (11.0%) and hepatitis A 

virus RNA (24.4%), although hepatitis A virus was significantly more prevalent than 

hepatitis E virus. Following treatment, hepatitis A virus was significantly reduced in PCR 

detectability (to 4.1%), but the reductions in TTV (to 2%) and hepatitis E virus (to 

10.8%) were not statistically significant. Others have described hepatitis A virus as being 

highly sensitive to chlorination (Azadpour-Keeley et al., 2003) so the results described by 

Vaidya et al. (2002) are reasonable. Notably, the sample size for effluent prevalence 

detection was very small owing to treatment system failure during the study. The true 

change in TTV prevalence, if any, would be better assessed with a larger sample size. 

Similar influent prevalence rates between TTV and hepatitis A virus or hepatitis E virus 

indicated that the viruses were detected to the same frequency, but not every TTV-

positive sample contained hepatitis A virus or hepatitis E virus simultaneously. These 

results were not confirmed by cell culture, so the infectivity of each virus species 
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following treatment could not be determined. Moreover, ORF 1 primers were used to 

detect TTV, so influent and effluent magnitudes may be underestimates. 

 

As a putative indicator, TTV should be abundant where water is not adequately treated 

and diarrheal disease is common and should exist at low or undetectable levels where 

water treatment leads to clean, potable water. Poor sanitation may increase TTV 

transmission by the fecal-oral route, as indigenous rural populations of Nigeria, Gambia, 

Brazil, and Ecuador had incidence up to 74% (Prescott and Simmonds, 1998). Similarly, 

the countries of Bolivia and Burma—both with high risks of waterborne disease—had 

incidences of 82% and 96%, respectively, among otherwise healthy individuals (Abe et 

al., 1999). 

 

More research must be done to assess the utility of TTV as an indicator of enteric viruses. 

PCR detection of the co-occurrence of TTV DNA with the genetic material of other 

viruses is limited in its interpretation by:  

(1) the need to concentrate water samples, thereby potentially concentrating PCR 

inhibitors, and the different concentration methods available;  

(2) the choice of primers, some of which give rise to unstable or insensitive PCR 

outputs; and 

(3) the inability to discern whether the presence of viral nucleic acid equates to the 

presence of infectious virus.  
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A key experiment will be to track TTV in drinking water before, during, and after a 

waterborne disease outbreak (e.g., in a region where seasonal outbreaks can be predicted) 

to determine whether TTV levels rise and fall in parallel with culturable viral pathogens 

and viral nucleic acid. 

 

8.6. TTV Detection by PCR 

The main shortcoming of PCR is that a positive result does not provide information about 

infectivity. A very stable virus genome (e.g., dsDNA) may persist even if the virus 

particle is rendered noninfectious. Alternatively, very unstable virus genomes (e.g. 

ssRNA) likely degrade concurrent with virus inactivation. The stability of the circular, 

ssDNA genome of TTV has not been studied in environmental waters, but some 

researchers have reported that TTV DNA from fecal extracts degrades by approximately 

3 log within 1 week when monitored by real-time PCR at 37°C (Desai et al., 2005). 

 

As described above, TTV’s genetic hypervariability makes the choice of primers a crucial 

undertaking. Several of the primer sets described to date are mapped to the TTV genome 

in Figure 8.4. If primers are designed against a divergent region of the TTV genome, the 

sensitivity and stability of the amplification reaction will be compromised. Indeed, Desai 

et al. (1999) used overlapping primer sets to detect TTV in infected individuals and 

demonstrated that in many cases only one of the sets successfully amplified the virus 

genome. They suggested that the use of a single primer pair may lead to an 

underestimation of TTV prevalence and highlighted the need for primers that detect all 
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TTV variants to maximize sensitivity. Current knowledge maintains that the conserved 

UTR is superior to other genetic regions for determining prevalence. 

 

 

Figure 8.4. TTV genome map showing the location of various published primer sets 

within the N22 segment of ORF 1 and within the UTR and ORF2. 

Takahashi (1998a) demonstrated that when UTR/ORF 2 primers T801 and 

T935 are used, an increase in prevalence and virus load is observed over the 

results obtained with ORF 1 primers. Note that Springfeld et al., 2000, cite 

Mushahwar et al., 1999, for ORF positions; however, the cited report only 

maps ORFs 1 and 2. The basis for this ORF3 position and the reason for the 

discrepancy with the map in Figure 8.2 is unknown. Reproduced with 

permission from Springfeld et al., 2000. 



84 
 

8.7. TTV Detection by Cell Culture 

If TTV is to be used as an indicator—particularly in a treatment system in which virus 

particles may be inactivated but not removed—a cell culture system must be available to 

determine TTV infectivity. Whereas all human viruses are capable of infecting one or 

more human cell types in situ, the infectious cycle may be difficult or impossible to 

replicate in vitro. TTV is detected in lymphoid cells and hepatocytes; the former are 

thought to contribute to circulating TTV in individuals with viremia, and the latter likely 

contribute to fecal excretion of TTV (Bendinelli et al., 2001). 

 

Peripheral blood mononuclear cells (PBMCs) include B-lymphocytes, T-lymphocytes, 

monocytes, polymorphonuclear leukocytes, granulocytes, and natural killer cells. PBMCs 

stimulated with phytohemagglutinin (PHA) can be productively infected in vitro with 

TTV isolated from fecal extracts to release progeny virions into the culture supernatant 

(Maggi et al., 2001a). Maggi et al. (2001a) observed that peak titers ranging from 

4.2 x 104 to 6.2 x 105 DNA copies/mL supernatant were reached approximately 2 weeks 

following infection. TTV infections of PHA-stimulated PBMCs lacked cytopathic effect 

and were self-limiting; release of progeny viruses ended after 21–28 days. Notably, 

stimulated PBMCs cultured from TTV-infected donors appeared to release TTV 

continuously at titers of 104 to 105 DNA copies/mL supernatant. 

 

Mariscal et al. (2002) demonstrated that when PBMCs were stimulated by PHA, 

lipopolysaccharide, and interleukin-2, the cells could be infected with serum from a TTV-

infected individual to produce TTV genomic ssDNA, mRNA, and dsDNA (Figure 8.5). 
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TTV dsDNA is believed to be an intermediate form of TTV genome replication 

(Mushahwar et al., 1999). This same dsDNA species is detected in liver tissue samples 

and bone marrow cells from infected individuals (Okamoto et al., 2000a; Okamoto et al., 

2000b). In contrast, only TTV ssDNA could be recovered from unstimulated PBMCs 

(Mariscal et al., 2002). When supernatant was collected from stimulated, infected 

PBMCs and applied to stimulated PBMCs collected from TTV-negative donors, TTV 

DNA and mRNA were isolated after an incubation period. These signs of a productive 

infection were absent when infectious supernatant was transferred to unstimulated 

PBMCs. 

 

 

Figure 8.5. TTV infection of PBMCs. TTV DNA and RNA are observed by in situ 

hybridization after stimulated PBMCs are infected with TTV. Reproduced 

with permission from Mariscal et al., 2002. 

 

Desai et al. (2005) confirmed that activated PBMCs will replicate TTV isolated from 

fecal extracts or plasma of infected individuals. These researchers also suggested that the 
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Chang liver cell line, derived from nonmalignant human liver tissue, and the Raji 

β-lymphoblast cell line support TTV infection. A productive infection in activated 

PBMCs peaks at approximately 2 weeks postinoculation, reaching a 2–3 log increase in 

TTV genome copies/mL over the original inoculum. Replication in PBMCs was self-

limiting within 21–28 days postinoculation, supporting the results obtained by Maggi et 

al. (2001a). In Chang liver cells, TTV titers peak within 1–5 days, but only reach 1/100 

of the titers observed from infected, activated PBMCs (Desai et al., 2005). 

 

Interestingly, PBMCs exhibit no decrease in cell viability upon infection with TTV 

(Maggi et al., 2001a; Mariscal et al., 2002), whereas Chang liver cells lose adherence to 

the substratum and form rounded, granulated cell clumps in the supernatant within 48–72 

hours of inoculation (Desai et al., 2005). This observation suggests that Chang liver cells 

may be a useful model to readily and visually determine the infectivity of TTV. However, 

others have reported that they could not replicate the CPE observed by Desai and 

coworkers using a different, less common TTV genotype (Kakkola et al., 2007). 

 

To date, no animal model of TTV infection has been described, although some 

investigators have proposed the use of a swine model (Kekarainen and Segales, 2008). 

An animal model of TTV infection could complement the information gleaned from in 

vitro studies by demonstrating transmission characteristics, infection dynamics, and 

persistence. In addition, an animal model of infection would allow for the collection of 

TTV-specific antibodies and the design of immunohistochemical and in situ tissue 
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hybridization experiments. Both cell culture and animal models are crucial next steps to 

provide insight into the molecular biology of TTV. 
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CHAPTER 9 – ASSESSING TTV AS A VIRAL INDICATOR 

The unique characteristics of TTV and support from preliminary studies suggest that this 

virus may be useful as an indicator of enteric viral pathogens. Below, methodology is 

discussed to assess the potential of TTV as an indicator. Once methods are available to 

detect TTV reliably, research should focus on the following: 

(1) Assessment of the density and occurrence of TTV in source waters;  

(2) Evaluation of TTV persistence through drinking water treatment processes 

(coagulation, clarification, filtration, and disinfection); and  

(3) Comparison of these data to those for coliforms, coliphages and enteric viruses. 

 

9.1. Proposed Method for PCR Detection of TTV 

Full-length TTV genomic sequences, collected worldwide, have been deposited in 

sequence databases. These sequences have confirmed that the TTV genome has regions 

of enormous variability; however, conserved regions also exist and appear to be localized 

to the UTR (Leary et al., 1999; Pollicino et al., 2003). PCR primers against variable and 

conserved regions of the TTV genome are available in the literature (Leary et al., 1999; 

Biagini et al., 2001; Pollicino et al., 2003), and primer sets have been characterized for 

specificity, sensitivity and ability to detect single genotypes of TTV or the entire virus 

genus. In water and serum samples, TTV prevalence publications typically use 

seminested PCR; this technique approaches a resolution of one molecule (Okamoto et al., 

1998a; Okamoto et al., 1998b; Springfeld et al., 2000). 
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It is anticipated that TTV may be present at low levels in source wasters because of 

dilution, decay, and other environmental factors. Concentration of low levels of viruses 

from source waters may be achieved using hollow fiber ultrafiltration (HFUF) (Hill et al., 

2005; Olstadt et al., 2008). This system is based on a 30,000 Dalton (Da) molecular 

weight cutoff and has been demonstrated to be effective for MS2 male-specific 

coliphage, noroviruses, and adenoviruses (Hill et al., 2007; Sibley, 2008). It is expected 

to perform adequately for TTV as well. The recovery efficiencies may be validated using 

HFUF concentration with spiked PBS and/or dechlorinated and autoclaved tap water 

prior to use on source water samples. Concentrated eluates would be passaged through 

positively charged Sephadex and/or Chelex columns to remove inhibitory compounds. 

This method has been shown to filter humic compounds from a prepared solution of 

poliovirus (Abbaszadegan et al., 1993). Virus particles then would be eluted from the 

columns with high ionic strength beef extract and precipitated with PEG. Viral nucleic 

acid would be liberated from capsids by extracting with guanidium thiocyanate and 

passing the sample through a silica column (Griffin et al., 2003). 

 

Leary and colleagues (1999) have developed nested primer sets to TTV genome regions 

3087–3392 and 3293–3641 (GenBank Accession Number: AB008394). These primers 

are designed against the UTR of TTV; this region has been suggested by others to most 

likely detect all TTV genotypes (Itoh et al., 1999; Mizokami et al., 2000; Pollicino et al., 

2003). According to the genome organization described by Bendinelli et al. (2001), these 

primers exist within a region of regulatory sequences and stem loops, both of which are 

well conserved. Indeed, Leary et al. (1999) chose the primer sets based on conserved 
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nucleotide alignments among the most divergent TTV isolates. The specificity of the 

PCR products was verified using Southern hybridization and sequencing. Primer 

sensitivity was established by running the PCR system using serum solutions known to 

contain TTV nucleic acid as the templates. These primer sets together yielded a positive 

result in nearly 95 percent of known positive samples (Leary et al., 1999). This detection 

capacity is superior to many other primer sets described to date. These nested primer sets 

could be used in combination to detect conserved sequences of TTV in environmental 

water samples. 

 

To measure the sensitivity of the PCR system, a region of the TTV sequence could be 

cloned into a plasmid. The clone could be amplified in competent E. coli cells, plasmid 

DNA could be isolated, and the cloned fragment sequence could be confirmed. Serial 

dilutions of the plasmid clones then could be spiked into concentrated water samples as 

the positive control. Pure water could be used as the negative control. Following PCR, 

gel electrophoresis with ethidium bromide staining would assess whether the positive 

control amplicon is the correct size and whether any species are amplified in the negative 

control. Subsequent sequencing of the gel-isolated, positive control amplicon would 

verify that the primers replicate the target sequence reliably. If inhibitors in the 

concentrated water samples preclude detection by PCR despite attempts to remove 

inhibitors, the water samples could be diluted 1:10 or 1:100 prior to PCR (Brooks et al., 

2005). Dilution has been shown to remove inhibition sufficiently to allow for TTV 

detection in contaminated river water (Diniz-Mendes et al., 2008). 
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Determination of TTV infectivity currently is not possible as a facile in vitro culture 

system for this virus is unavailable. However, researchers culturing PBMCs and Chang 

liver cells suggest that a TTV-permissive and susceptive cell line may soon be in place 

for infectivity assessment (Maggi et al., 2001a; Mariscal et al., 2002; Desai et al., 2005). 

A culture method would be an extremely important complement to PCR analyses and 

would demonstrate: (1) whether TTV prevalence estimates in source waters correlate 

with infectious virus; and (2) the survival of infectious TTV particles through treatment 

system processes. 

 

9.2. Proposed Evaluation of TTV in Source and Drinking Waters 

The occurrence and density of TTV in feces, wastewater, and environmental source 

waters can be evaluated. In addition to monitoring for TTV, fecal and water samples can 

be analyzed for total coliforms using Colilert® in the quantitray format (Standard Method 

9223, APHA et al., 2005). Representative TTV-positive and TTV-negative samples also 

can be assayed for enteric viruses using the USEPA total culturable virus method and for 

coliphages using USEPA Method 1602 (USEPA, 2001b). These data can be used to 

evaluate whether TTV colocates with other enteric viruses and/or other indicators. 

 

After demonstrating the ubiquitous nature of TTV in source waters, its fate through 

drinking water treatment processes can be evaluated. Prior research on the fate of TTV 

through wastewater treatment has demonstrated the ability of various processes to 

remove TTV. In particular, Haramoto et al. (2005b) found a positive TTV signal in 97% 

of wastewater influent samples over a 1-year period. Secondary and final effluent were 
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positive for TTV 18% and 24% of the time, respectively. Subsequent research should 

focus on TTV fate through drinking water treatment processes in comparison to currently 

used indicator organisms. 

 

Numerous samples in geographically distinct areas of the United States can be evaluated, 

allowing for a diverse sampling of waters and treatment scenarios. A minimum of three 

treatment plants should be included in such a study. Samples at the plant influent and 

after each treatment step could be collected monthly and tested for TTV, E. coli, total 

coliforms, fecal coliforms, and turbidity. (The latter three represent required testing 

parameters under the SWTR.) Accepted methodologies from Standard Methods (APHA 

et al., 2005) could be used to detect bacterial indicators and turbidity. Results from all 

measurements could be analyzed statistically to identify whether correlations exist. 
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CHAPTER 10 – CONCLUSIONS AND RECOMMENDATIONS 

Among the enteric pathogens, viruses have the lowest infectious dose, are shed in the 

highest numbers, resist environmental stressors and treatment methods, and are 

specialized to infect only humans (Reynolds et al., 2008). For these reasons, it is critical 

to select an indicator that precisely colocates with enteric viruses. Traditional bacterial 

indicators colocate with viruses under some conditions, but the correlation is unreliable. 

The passage of the SWTR and subsequent amendments to the SDWA (e.g., IESWTR and 

LT2) highlight the realization that viral pathogens do not always behave similarly to 

bacterial indicators. In fact, the sole use of bacterial indicators has led to instances of 

virus presence in the absence of indicators as well as indicator replication in receiving 

waters and false-positive predictions of health risks. 

 

Bacterial indicators such as coliforms are useful for predicting the presence of bacterial 

pathogens. In an investigation of waterborne disease outbreaks from 1991–1998, total 

coliforms were detected in 100% of the outbreaks in which an enteric bacterial pathogen 

was the causative factor (Craun et al., 2002). This suggests that the most suitable 

indicator for a given pathogen group is one with similar size, transport, and survival 

characteristics. Consequently, an indicator of pathogenic enteric viruses should be a 

representative virus that demonstrates such similarities. 

 

Traditional coliform monitoring takes about 1–2 days before results are obtained, and 

subsequent detection of fecal coliforms or E. coli may increase the testing duration. Virus 

detection by PCR is well established and results can be obtained from a concentrated 
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water sample within hours. Cell culture can be used to assess the infectivity of virus 

particles but requires 1–2 weeks for results. ICC-PCR, which compounds the benefits of 

cell culture and PCR, can rapidly and sensitively detect infectious virus in 2–3 days. 

 

The start-up costs of molecular and in vitro methods to detect viruses are substantial, and 

some water utilities may lack the capability to perform these techniques. However, the 

accurate detection of virus presence and absence would somewhat balance these costs. 

The implementation of virus detection would eliminate false-positive results related to 

coliform growth and natural occurrence in source waters. Such false-positive results may 

cause a water utility to incur unnecessary costs in enhanced disinfection and filtration 

measures. Alternatively, more accurate virus detection would reduce the number of 

waterborne disease outbreaks of a virus etiology and likely would prevent many of the 

outbreaks of unknown etiologies. 

 

An accepted viral indicator of enteric viruses is lacking. A virus that is representative of 

enteric viruses and is consistently detectable in the environment is hypothesized to 

perform as a useful indicator. TTV is unique among viruses because it is innocuous and 

ubiquitous in the human population and lacks any seasonal fluctuations, demographic 

selectivity, or geographical distribution. In this sense, TTV appears to be viral analog to 

coliform bacteria. However, like other viruses, TTV cannot replicate outside of a host cell 

and demonstrates the fate and transport characteristics of a colloidal particle rather than a 

living bacterial cell. 
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More research is needed to assess the indicator potential of TTV. A reliable PCR protocol 

must be established for this virus so that comparisons can be made in the literature 

regarding prevalence and colocation of TTV with other viruses and with traditional water 

quality indicators. A cell culture system capable of demonstrating CPE in response to 

infectious TTV also should be developed. The Chang liver cell line is a possible 

candidate. If the indicator capacity of TTV is substantiated, TTV detection could be 

performed routinely as a complement to bacterial indicators. If cost to water utilities is 

prohibitive, it may be possible for TTV to be tracked on a triggered basis. For instance, 

precipitation events often correlate with waterborne disease outbreaks (Curriero et al., 

2001). Selectively monitoring TTV during precipitation may be nearly as effective as 

routine monitoring. Alternatively, outbreaks of viral etiologies often are associated with 

contaminated ground water and distribution system failures. TTV monitoring could be 

limited to these water supplies. 

 

Preliminary research suggests that TTV may serve as a reliable indicator of viral 

pathogens. Development of TTV detection methods and a concerted monitoring effort in 

surface water, ground water, and through treatment systems are needed to assess the 

indicator potential of TTV. Such work is expected to significantly advance the field of 

water quality indicators and lead to more efficient protection of the public health. 



96 
 

CHAPTER 11 – REFERENCES 
 
Abbaszadegan M, Huber MS, Gerba CP, Pepper IL. 1993. Detection of enteroviruses in 
groundwater with the polymerase chain reaction. Applied and Environmental 
Microbiology. 59;1318-1324. 
 
Abbaszadegan M, LeChevallier M, Gerba C. 2003. Occurrence of viruses in US 
groundwaters. Journal of the American Water Works Association. 95;107-120. 
 
Abbaszadegan M, Stewart P, LeChevallier M. 1999. A strategy for detection of viruses in 
groundwater by PCR. Applied and Environmental Microbiology. 65;444-449. 
 
Abe K, Inami T, Asano K, Miyoshi C, Masaki N, Hayashi S, Ishikawa KI, Takebe Y, 
Win KM, El-Zayadi AR, Han K-H, Zhang DY. 1999. TT virus infection is widespread in 
the general populations from different geographic regions. Journal of Clinical 
Microbiology. 37;2703-2705. 
 
American Public Health Association. 1992. Standard Methods for the Examination of 
Water and Wastewater. 18th Edition. American Public Health Association, Inc., 
Washington, DC. 
 
American Public Health Association. 2005. Standard Methods for the Examination of 
Water and Wastewater. 21st Edition. American Public Health Association, Inc., 
Washington, DC. 
 
America Water Works Association Service Company. 2002. Deteriorating buried 
infrastructure management challenges and strategies. 
 
Amundson D, Lindholm C, Goyal SM, Robinson RA. 1988. Microbial pollution of well 
water in southeastern Minnesota. Journal of Environmental Science and Health. A23;453-
468. 
 
Armon R, Kott Y. 1995. Distribution comparison between coliphages and phages of 
anaerobic bacteria (Bacteriodes fragilis) in water sources, and their reliability as fecal 
pollution indicators in drinking water. Water Science and Technology. 31;215-222. 
 
Azadpour-Keeley A, Faulkner BR, Chen JS. 2003. Movement and longevity of viruses in 
the subsurface. USEPA Ground Water Issue. 1-24. 
 
Azadpour-Keeley A, Ward CH. 2005. Transport and survival of viruses in the 
subsurface—processes, experiments, and simulation models. Remediation Journal. 15;23-
49. 
 
Bales RC, Li S, Maguire KM, Yahya MT, Gerba CP. 1993. MS-2 and poliovirus 
transport in porous media: hydrophobic effects and chemical perturbations. Water 
Resources Research. 29;957-963. 



97 
 

Ball JK, Curran R, Berridge S, Grabowska AM, Jameson CL, Thomson BJ, Irving WL, 
Sharp PM. 1999. TT virus sequence heterogeneity in vivo: evidence for co-infection with 
multiple genetic types. Journal of General Virology. 80;1759-1768. 
 
Bartram J, Cotruvo J, Exner M, Fricker C, Glasmachear A, eds. 2003. Heterotrophic Plate 
Counts and Drinking Water Safety. IWA Publishing, London. 
 
Bendinelli M, Pistello M, Maggi F, Fornai C, Freer G, Vatteroni L. 2001. Molecular 
properties, biology, and clinical implications of TT virus, a recently identified widespread 
infectious agent of humans. Clinical Microbiology Reviews. 14;98-113. 
 
Bergeisen GH, Hinds MW, Skaggs JW. 1985. A waterborne outbreak of hepatitis A in 
Meade County, Kentucky. American Journal of Public Health. 75;161-164. 
 
Biagini P, Gallian P, Attoui H, Cantaloube JF, de Micco P, de Lamballerie X. 1999. 
Determination and phylogenetic analysis of partial sequences from TT virus isolates. 
Journal of General Virology. 80;419-424. 
 
Biagini P, Gallian P, Attoui H, Cantaloube JF, Touinssi M, de Micco P, de Lamballerie 
X. 2001. Comparison of systems performance for TT virus detection using PCR primer 
sets located in non-coding and coding regions of the viral genome. Journal of Clinical 
Virology. 22;91-99. 
 
Biagini P, Todd D, Bendinelli M, Hino S, Mankertz A, Mishiro S, Niel C, Okamoto H, 
Raidal S, Ritchie BW, Teo GC. 2004. Anellovirus in virus taxonomy. In: Fauquet CM, 
Mayo MA, Maniloff J, Desserberger U, Ball LA, eds. Eighth Report of the International 
Committee on Taxonomy of Viruses. London, United Kingdom: Elsevier/Academic 
Press. 335-341. 
 
Bitton G, Farrah SR, Ruskin RH, Butner J, Chou YJ. 1983. Survival of pathogenic and 
indicator organisms in groundwater. Ground Water. 21;405. 
 
Blackburn BG, Craun GF, Yoder JS, Hill V, Calderon RL, Chen N, Lee SH, Levy DA, 
Beach MJ. 2004. Surveillance for waterborne-disease outbreaks associated with drinking 
water--United States, 2001-2002. Morbidity and Mortality Weekly Report. 53;23-45. 
 
Bonde GJ. 1966. Bacteriological methods for the estimation of water pollution. Health 
Laboratory Science. 3;124. 
 
Borchardt MA, Bertz PD, Spencer SK, Battigelli DA. 2003. Incidence of enteric viruses 
in groundwater from household wells in Wisconsin. Applied and Environmental 
Microbiology. 69;1172-1180. 
 
Borchardt M, Haas NL, Hunt RJ. 2004. Vulnerability of drinking-water wells in La 
Crosse, Wisconsin, to enteric-virus contamination from surface water contributions. 
Applied and Environmental Microbiology. 70;5937-5946. 



98 
 

Borrego JJ, Cornax R. 1990. Coliphages as an indicator of faecal pollution in water. Their 
survival and productive infectivity in natural aquatic environments. Water Research. 
24;111-116. 
 
Bosch A. 1998. Human enteric viruses in the water environment: a minireview. 
International Microbiology. 1;191-196. 
 
Bosch A, Lucena F, Diez JM, Gajardo R, Blasi M, Jofre J. 1991. Waterborne viruses 
associated with hepatitis outbreak. Journal of the American Water Works Association. 
83;80-83. 
 
Brooks HA, Gersberg RM, Dhar AK. 2005. Detection and quantification of hepatitis A 
virus in seawater via real-time RT-PCR. Journal of Virological Methods. 127;109-118. 
 
Bull RJ, Gerba CP, Trussell RR. 1990. Evaluation of the health risks associated with 
disinfection. CRC Critical Reviews in Environmental Control. 20;77-113. 
 
Burke V, Robinson J, Gracey M, Peterson D, Partridge K. 1984. Isolation of Aeromonas 
hydrophila from a metropolitan water supply: seasonal correlation with clinical isolates. 
Applied and Environmental Microbiology. 48;361-366. 
 
Cabelli VJ, Dufour AP, Levin MA, McCabe LJ, Haberman PW. 1979. Relationship of 
microbial indicators to health effects at marine bathing beaches. American Journal of 
Public Health. 69;690-696. 
 
Caplenas NR, Kanarek MS. 1984. Thermotolerant non-fecal source Klebsiella 
pneumoniae: validity of the fecal coliform test in recreational waters. American Journal 
of Public Health. 74;1273-1275. 
 
Carlson Jr. GF, Woodward FE, Wentworth DF, Sproul OJ. 1968. Virus inactivation on 
clay particles in natural waters. Journal of the Water Pollution Control Federation. 
40;R89-R106. 
 
Chang JCH, Ossoff SF, Lobe DC, Dorfman MH, Dumais CM, Qualls RG, Johnson JD. 
1985. UV inactivation of pathogenic and indicator organisms. Applied and 
Environmental Microbiology. 49;1361-1365. 
 
Charlton M, Adjei P, Poterucha J, Zein N, Moore B, Therneau T, Krom R, Weisner R. 
1998. TT-virus infection in North American blood donors, patients with fulminant 
hepatic failure, and crytogenic cirrhosis. Hepatology. 28;839-842. 
 
Cheung WHS, Hung RPS, Chang KCK, Kleevens JWL. 1990. Epidemiological study of 
bathing water beach pollution and health related bathing water standards in Hong Kong. 
Water Science and Technology. 23;243-252. 
 



99 
 

Cho HB, Lee SH, Cho JC, Kim SJ. 2000. Detection of adenoviruses and enteroviruses in 
tap water and river water by reverse transcriptase multiplex PCR. Canadian Journal of 
Microbiology. 46;417-424. 
 
Christensen JK, Eugen-Olsen J, Sorensen M, Ullman H, Gjedde SB, Pederson BK, 
Nielsen JO, Krogsgaard K. 2000. Prevalence and prognostic significance of infection 
with TT virus in patients infected with human immunodeficiency virus. The Journal of 
Infectious Diseases. 181;1796-1799. 
 
Cliver DO, Herrmann JE. 1972. Proteolytic and microbial inactivation of enteroviruses. 
Water Research. 6;797-806. 
 
Colford Jr. JM, Rees JR, Wade TJ, Khalakdina A, Hilton JF, Ergas IJ, Burns S, Benker 
A, Ma C, Bowen C, Mills DC, Vugia DJ, Juranek DD, Levy DA. 2002. Participant 
blinding and gastrointestinal illness in a randomized, controlled trial of an in-home 
drinking water intervention. Emerging Infectious Diseases. 8;29-36. 
 
Craun GF. 1990. Methods for the investigation and prevention of waterborne disease 
outbreaks. Cincinnati: Environmental Protection Agency. 
 
Craun GF, Berger PS, Calderon RL. 1997. Coliform bacteria and waterborne disease 
outbreaks. Journal of the American Water Works Association. 89;96-104. 
 
Craun GF, Calderon RL. 2001. Waterborne disease outbreaks caused by distribution 
system deficiencies. Journal of the American Water Works Association. 93;64-75. 
 
Craun MF, Craun GF, Calderon RL, Beach MJ. 2006. Waterborne outbreaks reported in 
the United States. Journal of Water and Health. 4;19-30. 
 
Craun GF, Nwachuku N, Calderon RL, Craun MF. 2002. Outbreaks in drinking-water 
systems, 1991-1998. Journal of Environmental Health. 65;16-23. 
 
Curriero FC, Patz JA, Rose JB, Lele S. 2001. The association between extreme 
precipitation and waterborne disease outbreaks in the United States, 1948-1994. 
American Journal of Public Health. 91;1194-1199. 
 
D’Antonio RG, Winn RE, Taylor JP, Gustafson TL, Current WL, Rhodes MM, Gary Jr. 
GW, Zalac RA. 1985. A waterborne outbreak of cryptosporidiosis in normal hosts. 
Annals of Internal Medicine. 103;886-888. 
 
De Paula VS, Diniz-Mendes L, Villar LM, Luz SL, Silva LA, Jesus MS, Da Silva NM, 
Gaspar AM. 2007. Hepatitis A virus in environmental water samples from the Amazon 
Basin. Water Research. 41;1169-1176. 
 
Desai SM, Muerhoff AS, Leary TP, Erker JC, Simons JN, Chalmers ML, Birkenmeyer 
LG, Pilot-Matias TJ, Mushahwar IK. 1999. Prevalence of TT virus infection in US blood 



100 
 

donors and populations at risk for acquiring parenterally transmitted viruses. Journal of 
Infectious Diseases. 179;1242-1244. 
 
Desai M, Pal R, Deshmukh R, Banker D. 2005. Replication of TT virus in hepatocyte and 
leucocyte cell lines. Journal of Medical Virology. 77;136-143. 
 
De Serres G, Cromeans TL, Levesque B, Brassard N, Barthe C, Dionne M, Prud’Homme 
H, Paradis D, Shapiro CN, Nainan OV, Margolis HS. 1999. Molecular confirmation of 
hepatitis A virus from well water: epidemiology and public health. Journal of Infectious 
Diseases. 179;37-43. 
 
Diniz-Mendes L, De Paula VS, Luz SLB, Niel C. 2008. High prevalence of human 
Torque teno virus in streams crossing the city of Manaus, Brazilian Amazon. Journal of 
Applied Microbiology. 105;51-58. 
 
Dizer H, Lopez JM, Nasser A. 1984. Penetration of different human pathogenic viruses 
into sand columns percolated with distilled water, groundwater, or wastewater. Applied 
and Environmental Microbiology. 47;409-415. 
 
Donnison AM, Ross CM. 1995. Somatic and F-specific coliphages in New Zealand waste 
treatment lagoons. Water Research. 29;1105-1110. 
 
Enriquez C, Abbaszadegan M, Pepper IL, Richardson KJ, Gerba CP. 1993. Poliovirus 
detection in water by cell culture and nucleic acid hybridization. Water Research. 
27;1113-1118. 
 
Ergunay K, Gurakan F, Usta Y, Yuce A, Ozen H, Karabulut E, Ustacelebi S. 2008. 
Detection of TT virus (TTV) by three frequently-used PCR methods targeting different 
regions of viral genome in children with cryptogenic hepatitis, chronic B hepatitis and 
HBs carriers. The Turkish Journal of Pediatrics. 50;432-437. 
 
Erker JC, Leary TP. 1999. Unpublished observations discussed in Leary et al., 1999. 
 
Erker JC, Leary TP, Desai SM, Chalmers ML, Mushahwar IK. 1999. Analyses of TT 
virus full-length genomic sequences. Journal of General Virology. 80;1743-1750. 
 
Feng P, Weagant SD, Grant MA. 2002. Enumeration of Escherichia coli and the coliform 
bacteria. In: Bacteriological Analytical Manual. Chapter 4. 
 
Fernandez-Molina MC, Alvarez A, Espigares M. 2004. Presence of hepatitis A virus in 
water and its relationship with indicators of fecal contamination. Water, Air, and Soil 
Pollution. 159;197-208. 
 
Flint SJ, Enquist LW, Racaniello VR, Skalka AM. 2004. In: Principles of Virology, 2nd 
Edition. Washington, DC: ASM Press. 918 pp. 
 



101 
 

Fong TT, Griffin DW, Lipp EK. 2005. Molecular assays for targeting human and bovine 
enteric viruses in coastal waters and their application for library-independent source 
tracking. Applied and Environmental Microbiology. 71;2070-2078. 
 
Fong TT, Lipp EK. 2005. Enteric viruses of humans and animals in aquatic 
environments: health risks, detection, and potential water quality assessment tools. 
Microbiology and Molecular Biology Reviews. 69;357-371. 
 
Fong TT, Mansfield LS, Wilson DL, Schwab DJ, Molloy SL, Rose JB. 2007. Massive 
microbiological groundwater contamination associated with a waterborne outbreak in 
Lake Erie, South Bass Island, Ohio. Environmental Health Perspectives. 115;856-864. 
 
Ford TE, Colwell RR. 1996. A global decline in microbiological safety of water: a call 
for action. URL: http://www.asm.org/ASM/files/CCPAGECONTENT/docfilename/0000 
003773/waterquality1995%5B1%5D.pdf. 
 
Formiga-Cruz M, Hundesa A, Clemente-Casares P, Albinana-Gimenez N, Allard A, 
Girones R. 2005. Nested multiplex PCR assay for detection of human enteric viruses in 
shellfish and sewage. Journal of Virological Methods. 125;111-118. 
 
Fout GS, Martinson BC, Moyer M, Dahling DR. 2003. A multiplex RT-PCR method for 
detection of human enteric viruses in groundwater. Applied and Environmental 
Microbiology. 69;3158-3164. 
 
Francy DS, Bushon RN, Stopar J, Luzano EJ, Fout GS. 2004. Environmental factors and 
chemical and microbiological water-quality constituents related to the presence of enteric 
viruses in ground water from small public water supplies in southeastern Michigan. U.S. 
Geological Survey, Scientific Investigations Report 2004-5219. 
 
Fuhrman JA, Liang X, Noble RT. 2005. Rapid detection of enteroviruses in small 
volumes of natural waters by real-time quantitative reverse transcriptase PCR. Applied 
and Environmental Microbiology 71;4523-4530. 
 
Furuse K. 1987. Distribution of coliphages in the environment: general considerations. 
In: Goyal SM, Gerba CP, Bitton G, eds. Phage Ecology. New York: Wiley-Interscience, 
pp. 87–123. 
 
Gallian P, Berland Y, Olmer M, Raccah D, De Micco P, Biagini P, Simon S, 
Bouchouareb D, Mourey C, Roubicek C, Touinssi M, Cantaloube JF, Dussol B, De 
Lamballeri X. 1999. TT virus infection in French hemodialysis patients: study of 
prevalence and risk factors. Journal of Clinical Microbiology. 37;2538-2542. 
 
Gannon JJ, Busse MK. 1989. E. coli and enterococci levels in urban stormwater, river 
water and chlorinated treatment plant effluent. Water Research. 23;1167-1176. 
 



102 
 

Gassilloud B, Schwartzbrod L, Gantzer C. 2003. Presence of viral genomes in mineral 
water: a sufficient condition to assume infectious risk? Applied and Environmental 
Microbiology. 69;3965-3969. 
 
Geldreich EE, Fox KR, Goodrich JA, Rice EW, Clark RM. 1992. Searching for a water 
supply connection in the Cabool, Missouri disease outbreak of Escherichia coli O157:H7. 
Water Research. 26;1127-1137. 
 
Gerba CP, Goyal SM, LaBelle RL, Cech I, Bogdan GF. 1979. Failure of indicator 
bacteria to reflect occurrence of enteroviruses in marine waters. American Journal of 
Public Health. 69;1116-1119. 
 
Gerba CP, Smith Jr. JE. 2005. Sources of pathogenic microorganisms and their fate 
during land application of wastes. Journal of Environmental Quality. 34;42-48. 
 
Gersberg RM, Rose MA, Robles-Sikisaka R, Dhar AK. 2006. Quantitative detection of 
hepatitis A virus and enteroviruses near the United States-Mexico border and correlation 
with levels of fecal indicator bacteria. Applied and Environmental Microbiology. 
72;7438-7444. 
 
Gessel PD, Hansen NC, Goyal SM, Johnston LJ, Webb J. 2004. Persistence of zoonotic 
pathogens in surface soil treated with different rates of liquid pig manure. Applied Soil 
Ecology. 25;237-243. 
 
Glass RI. 1995. Other viral agents of gastroenteritis. In: Blaser MJ, Smith PD, Ravdin JI, 
Greenberg HB, Guerrant RL, eds. Infections of the Gastrointestinal Tract. New York: 
Raven Press Ltd. pp. 1055-1064. 
 
Griffin DW, Donaldson KA, Paul JH, Rose JB. 2003. Pathogenic human viruses in 
coastal waters. Clinical Microbiology Reviews. 16;129-143. 
 
Griffin DW, Gibson III CJ, Lipp EK, Riley K, Paul III JH, Rose JB. 1999. Detection of 
viral pathogens by reverse transcriptase PCR and of microbial indicators by standard 
methods in the canals of the Florida Keys. Applied and Environmental Microbiology. 
65;4118-4125.  
 
Griffiths P. 1999. Time to consider the concept of a commensal virus? Reviews in 
Medical Virology. 9;73-74. 
 
Hallett RL, Clewley JP, Bobet F, McKiernan PJ, Teo CG. 2000. Characterization of a 
highly divergent TT virus genome. Journal of General Virology. 81;2273-2279. 
 
Haramoto E, Katayama H, Oguma K, Ohgaki S. 2005a. Application of cation-coated 
filter method to detection of noroviruses, enteroviruses, adenoviruses, and torque teno 
viruses in the Tamagawa River in Japan. Applied and Environmental Microbiology. 
71;2403-2411. 



103 
 

Haramoto E, Katayama H, Oguma K, Yamashita H, Nakajima E, Ohgaki S. 2005b. One-
year monthly monitoring of Torque teno virus (TTV) in wastewater treatment plants in 
Japan. Water Research. 39;2008-2013. 
 
Haramoto E, Katayama H, Oguma K, Yamashita H, Tajima A, Nakajima H, Ohgaki S. 
2006. Seasonal profiles of human noroviruses and indicator bacteria in a wastewater 
treatment plant in Tokyo, Japan. Water Science and Technology. 54;301-308. 
 
Havelaar AH. 1993. Bacteriophages as models of human enteric viruses in the 
environment. American Society of Microbiology News. 59;614-619. 
 
Havelaar AH, Pot-Hogeboom WM. 1988. F-specific RNA-bacteriophages as model 
viruses in water hygiene: ecological aspects. Water Science and Technology. 20;399-407. 
 
Havelaar AH, van Olphen M, Drost YC. 1993. F-specific RNA bacteriophages are 
adequate model organsims for enteric viruses in fresh water. Applied and Environmental 
Microbiology. 59;2956-2962. 
 
Havelaar AH, van Olphen M, Schijven JF. 1995. Removal and inactivation of viruses by 
drinking water treatment processes under full scale conditions. Water Science and 
Technology. 31;55-62. 
 
Havelaar AH, Versteegh JFM, During M. 1990. The presence of Aeromonas in drinking 
water supplies in the Netherlands. International Journal of Hygiene and Environmental 
Medicine. 190;236-256. 
 
Hejkal TW, Wellings FM, Lewis AL, LaRock PA. 1981. Distribution of viruses 
associated with particles in wastewater. Applied and Environmental Microbiology. 
41;628-634. 
 
Hellard ME, Sinclair MI, Forbes AB, Fairley CK. 2001. A randomized, blinded, 
controlled trial investigating the gastrointestinal health effects of drinking water quality. 
Environmental Health Perspectives. 109;773-778. 
 
Heller F, Zachoval R, Koelzer A, Nitschko H, Froesner GG. 2001. Isolate KAV: a new 
genotype of the TT-virus family. Biochemical and Biophysical Research 
Communications. 289;937-941. 
 
Hijikata M, Takahashi K, Mishiro S. 1999. Complete circular DNA genome of a TT virus 
variant (isolate name SANBAN) and 44 partial ORF2 sequences implicating a great 
degree of diversity beyond genotypes. Virology. 260;17-22. 
 
Hill WFJ, Akin EW, Benton WH. 1971. Detection of viruses in water: a review of 
methods and application. Water Research. 5;967-995. 
 



104 
 

Hill VR, Kahler AM, Jothikumar N, Johnson TB, Hahn D, Cromeans TL. 2007. 
Multistate evaluation of an ultrafiltration-based procedure for simultaneous recovery of 
enteric microbes in 100-liter tap water samples. Applied and Environmental 
Microbiology. 73;4218-4225. 
 
Hill VR, Polaczyk AL, Hahn D, Narayanan J, Cromeans TL, Roberts JM, Amburgey JE. 
2005. Development of a rapid method for simultaneous recovery of diverse microbes in 
drinking water by ultrafiltration with sodium polyphosphate and surfactants. Applied and 
Environmental Microbiology. 71;6878-6884. 
 
Hino S, Miyata H. 2007. Torque teno virus (TTV); current status. Reviews in Medical 
Virology. 17;45-57. 
 
Howell JM, Coyne MS, Cornelius PL. 1996. Effect sediment particle size and 
temperature on fecal bacteria mortality rates and the fecal coliform/fecal streptococci 
ratio. Journal of Environmental Quality. 25;1216-1220. 
 
Hrudey SE, Hrudey EJ. 2007. Published case studies of waterborne disease outbreaks—
evidence of a recurrent threat. Water Environmental Research. 79;233-245. 
 
Hrudey SE, Payment P, Huck PM, Gillham RW, Hrudey EJ. 2003. A fatal waterborne 
disease epidemic in Walkerton, Ontario: comparison with other waterborne outbreaks in 
the developed world. Water Science and Technology. 47;7-14. 
 
Hussong D, Damare JM, Limpert RJ, Sladen WJ, Weiner RM, Colwell RR. 1979. 
Microbial impact of Canada geese (Branta canadensis) and whistling swans (Cygnus 
columbianus columbianus) on aquatic ecosystems. Applied and Environmental 
Microbiology. 37;14-20. 
 
Ijzerman MM, Dahling DR, Fout GS. 1997. A method to remove environmental 
inhibitors prior to the detection of waterborne enteric viruses by reverse transcription-
polymerase chain reaction. Journal of Virological Methods. 63;145-153. 
 
Irshad M, Joshi YK, Sharma Y, Dhar I. 2006. Transfusion transmitted virus: a review on 
its molecular characteristics and role in medicine. World Journal of Gastroenterology. 
12;5122-5134. 
 
Irving WL, Ball JK, Berridge S, Curran R, Grabowska AM, Jameson CL, Neal KR, 
Ryder SD, Thomson BJ. 1999. TT virus infection in patients with hepatitis C: frequency, 
persistence, and sequence heterogeneity. Journal of Infectious Diseases. 180;27-34. 
 
Itoh Y, Takahashi M, Fukuda M, Shibayama T, Ishikawa T, Tsuda F, Tanaka T, 
Nishizawa T, Okamoto H. 2000. Visualization of TT virus particles recovered from the 
sera and feces of infected humans. Biochemical and Biophysical Research 
Communications. 279;718-724. 
 



105 
 

Itoh K, Takahashi M, Ukita M, Nishizawa T, Okamoto H. 1999. Influence of primers on 
the detection of TT virus by polymerase chain reaction. Journal of Infectious Diseases. 
180;1750-1751. 
 
Jacangelo JG, Adham SS, Laine JM. 1995. Mechanism of Cryptosporidium, Giardia, and 
MS2 virus removal by MF and UF. Journal of the American Water Works Association. 
87;107. 
 
Jacangelo JG, Laine JM, Carns KE, Cummings EW, Mallevaille J. 1991. Low-pressure 
membrane filtration for removing Giardia and microbial indicators. Journal of the 
American Water Works Association. 83;97-106. 
 
Jiang SC. 2002. Adenovirus as an index of human viral contamination. In: Microbial 
Source Tracking Workshop. pp. 75-78. 
 
Jiang SC, Chu W. 2004. PCR detection of pathogenic viruses in southern California 
urban rivers. Journal of Applied Microbiology. 97;17-28. 
 
Jiang SC, Chu W, Olson BH, He JW, Choi S, Zhang J, Le JY, Gedalanga PB. 2007. 
Microbial source tracking in a small southern California urban watershed indicates wild 
animals and growth as the source of fecal bacteria. Applied Microbiological 
Biotechnology. 76;927-934. 
 
Jofre J, Olle E, Ribas F, Vidal A, Lucena F. 1995. Potential usefulness of bacteriophages 
that infect Bacteriodes fragilis as model organisms for monitoring virus removal in 
drinking water treatment plants. Applied and Environmental Microbiology. 61;3227-
3231. 
 
Johnson CH, Rice EW, Reasoner DJ. 1997. Inactivation of Helicobacter pylori by 
chlorination. Applied and Environmental Microbiology. 63;4969-4970. 
 
Johnston LJ, Ajariyakhajorn C, Goyal SM, Robinson RA, Clanton CJ, Evans SD, Warnes 
DD. 1996. Survival of bacteria and viruses in ground pig carcasses applied to cropland 
for disposal. Swine Health and Production. 4;189-194. 
 
Kakkola L, Bonden H, Hedman L, Kivi N, Moisala S, Julin J, Yla-Liedenpohja J, 
Miettinen S, Kantola K, Hedman K, Soderlund-Venermo M. 2008. Expression of all six 
human Torque teno virus (TTV) proteins in bacteria and in insect cells, and analysis of 
their IgG responses. Virology. 382;182-189. 
 
Kakkola L, Tommiska J, Boele LCL, Miettinen S, Blom T, Kekarainen T, Qiu J, Pintel 
D, Hoeben RC, Hedman K, Soderlund-Venermo M. 2007. Construction and biological 
activity of a full-length molecular clone of human Torque teno virus (TTV) genotype 6. 
Federation of European Biochemical Societies Journal. 274;4719-4730. 
 



106 
 

Kamada K, Kamahora T, Kabat P, Hino S. 2004. Transcriptional regulation of TT virus: 
promoter and enhancer regions in the 1.2-kb noncoding region. Virology. 321;341-348. 
 
Kamahora T, Hino S, Miyata H. 2000. Three spliced mRNAs of TT virus transcribed 
from a plasmid containing the entire genome in COS1 cells. Journal of Virology. 
74;9980-9986. 
 
Kekarainen T, Segales J. 2009. Torque teno virus infection in the pig and its potential 
role as a model of human infection. The Veterinary Journal. 180;163-168. 
 
Keswick BH, Gerba CP, DuPont HL, Rose JB. 1984. Detection of enteric viruses in 
treated drinking water. Applied and Environmental Microbiology. 47;1290-1294. 
 
Keswick BH, Satterwhite TK, Johnson PC, DuPont HL, Secor SL, Bitsura JA, Gary GW, 
Hoff JC. 1985. Inactivation of Norwalk virus in drinking water by chlorine. Applied and 
Environmental Microbiology. 50;261-264. 
 
Kinoshita T, Bales RC, Maguire KM, Gerba CP. 1993. Effect of pH on bacteriophage 
transport through sandy soils. Journal of Contaminant Hydrology. 14;55-70. 
 
Kopecka H, Dubrou S, Prevot J, Marechal J, Lopez-Pila JM. 1993. Detection of naturally 
occurring enteroviruses in waters by reverse transcription, polymerase chain reaction, and 
hybridization. Applied and Environmental Microbiology. 59;1213-1219. 
 
LaBelle RL, Gerba CP, Goyal SM, Melnick JL, Cech I, Bogdan GF. 1980. Relationships 
between environmental factors, bacterial indicators, and the occurrence of enteric viruses 
in estuarine sediments. Applied and Environmental Microbiology. 39;586-596. 
 
Lawson HW, Braun MM, Glass RIM, Stine SE, Monroe SS, Atrash HK, Lee LE, 
Englender SJ. 1991. Waterborne outbreak of Norwalk virus gastroenteritis at a southwest 
US resort: role of geological formations in the contamination of well water. Lancet. 
337;1200-1204. 
 
Leary TP, Erker JC, Chalmers ML, Desai SM, Mushahwar IK. 1999. Improved detection 
systems for TT virus reveal high prevalence in humans, non-human primates and farm 
animals. Journal of General Virology. 80;2115-2120. 
 
LeChevallier MW. 1990. Coliform regrowth in drinking water: a review. Journal of the 
American Water Works Association. 82;74-86. 
 
Leclerc H, Edberg S, Pierzo V, Delattre JM. 2000. Bacteriophages as indicators of enteric 
viruses and public health risk in groundwaters. Journal of Applied Microbiology. 88;5-
21. 
 
Leclerc H, Schwartzbrod L, Dei-Cas E. 2002. Microbial agents associated with 
waterborne diseases. Critical Reviews in Microbiology. 28;371-409. 



107 
 

Leppik L, Gunst K, Lehtinen M, Dillner J, Streker K, de Villiers EM. 2007. In vivo and 
in vitro intragenomic rearrangement of TT viruses. Journal of Virology. 81;9346-9356. 
 
Levy DA, Bens MS, Craun GF, Calderon RL, Herwaldt BL. 1998. Surveillance for 
waterborne-disease outbreaks--United States, 1995-1996. CDC MMWR Surveillance 
Summaries. 47;1-34. 
 
Liang JL, Dziuban EJ, Craun GF, Hill V, Moore MR, Gelting RJ, Calderon RL, Beach 
MJ, Roy SL. 2006. Surveillance for waterborne disease and outbreaks associated with 
drinking water and water not intended for drinking--United States, 2003-2004. MMWR. 
55;31-58. 
 
Lipp EK, Farrah SA, Rose JB. 2001. Assessment and impact of microbial fecal pollution 
and human enteric pathogens in a coastal community. Marine Pollution Bulletin. 42;286-
293. 
 
Lisitsyn N, Lisitsyn N, Wigler M. 1993. Cloning the differences between two complex 
genomes. Science. 259;946-951.  
 
Locas A, Barthe C, Barbeau B, Carriere A, Payment P. 2007. Virus occurrence in 
municipal groundwater sources in Quebec, Canada. Canadian Journal of Microbiology. 
53;688-694. 
 
Logsdon GS. 1990. Microbiology and drinking water filtration. In: McFeters GA, ed. 
Drinking Water Microbiology: Progress and Recent Developments. New York: Springer-
Verlag. pp. 120-146. 
 
Long SC, Dewar KG. 2008. Coliform and coliphage monitoring for groundwater wells in 
Massachusetts. Journal of the New England Water Works Association. 122;12-21. 
 
Long SC, Sobsey MD. 2004. A comparison of the survival of F+RNA and F+DNA 
coliphages in lake water microcosms. Journal of Water and Health. 2;15-22. 
 
Luo K, He H, Liu Z, Liu D, Xiao H, Jiang X, Liang W, Zhang L. 2002. Novel variants 
related to TT virus distributed widely in China. Journal of Medical Virology. 67;118-126. 
 
Luo KX, Zhang L, Wang SS, Nie J, Yang SC, Liu DX, Liang WF, He HT, Lu Q. 1999. 
An outbreak of enterically transmitted non-A, non-E viral hepatitis. Journal of Viral 
Hepatology. 6;59-64. 
 
Macler BA. 1995. Developing a national drinking water regulation for disinfection of 
groundwater. Ground Water Monitoring and Remediation. 15;77-84. 
 
Macler BA, Merkle JC. 2000. Current knowledge on groundwater microbial pathogens 
and their control. Hydrology Journal. 8;29-40. 
 



108 
 

Maggi F, Fornai C, Zaccaro L, Morrica A, Vatteroni ML, Isola P, Marchi S, Ricchiuti A, 
Pistello M, Bendenelli M. 2001a. TT virus (TTV) loads associated with different 
peripheral blood cell types and evidence for TTV replication in activated mononuclear 
cells. Journal of Medical Virology. 64;190-194. 
 
Maggi F, Pistello M, Vatteroni M, Presciuttini S, Marchi S, Isola P, Fornai C, Fagnani S, 
Andreoli E, Antonelli G, Bendinelli M. 2001b. Dynamics of persistent TT virus infection, 
as determined in patients treated with alpha interferon for concomitant hepatitis C virus 
infection. Journal of Virology. 75;11999-12004. 
 
Mariscal LF, Lopez-Alcorocho JM, Rodriguez-Inigo E, Ortiz-Movilla N, de Lucas S, 
Bartolome J, Carreno V. 2002. TT virus replicates in stimulated by not in nonstimulated 
peripheral blood mononuclear cells. Virology. 301;121-129. 
 
Matsumoto A, Yeo AET, Shih JWK, Tanaka E, Kiyosawa K, Alter HJ. 1999. 
Transfusion-associated TT virus infection and its relationship to liver disease. 
Hepatology. 30;283-288. 
 
McFeters GA, Kippin JS, LeChevallier MW. 1986. Injured coliforms in drinking water. 
Applied and Environmental Microbiology. 51;1-5. 
 
Melnick JL, Gerba CP, Wallis C. 1978. Viruses in water. Bulletin of the World Health 
Organization. 56;499-508. 
 
Metcalf TG, Melnick JL, Estes MK. 1995. Environmental virology: from detection of 
virus in sewage and water by isolation to identification by molecular biology--a trip of 
over 50 years. Annual Reviews in Microbiology. 49;461-487. 
 
Miyata H, Tsunoda H, Kazi A, Yamada A, Khan MA, Murakami J, Kamahora T, Shiraki 
K, Hino S. 1999. Identification of a novel GC-rich 113-nucleotide region to complete the 
circular, single-stranded DNA genome of TT virus, the first human circovirus. Journal of 
Virology. 73;3582-3586. 
 
Mizokami M, Albrecht JK, Kato T, Orito E, Lai VCH, Goodman Z, Hong Z, Lau JYN. 
2000. TT virus infection in patients with chronic hepatitis C virus infection - effect of 
primers, prevalence, and clinical significance. Journal of Hepatology. 32;339-343. 
 
Morrica A, Maggi F, Vatteroni ML, Fornai C, Pistello M, Cicorossi P, Grassi E, 
Gennazzani A, Bendinelli M. 2000. TT virus: evidence for transplacental transmission. 
Journal of Infectious Diseases. 181;803-804. 
 
Mullis K, Faloona F, Scharf S, Saiki R, Horn G, Erlich H. 1986. Specific enzymatic 
amplification of DNA in vitro: the polymerase chain reaction. Cold Spring Harbor 
Symposium on Quantitative Biology. 51;263-273. 
 



109 
 

Mushahwar IK, Erker JC, Muerhoff AS, Leary TP, Simons JN, Birkenmeyer LG, 
Chalmers ML, Pilot-Matias TJ, Desai SM. 1999. Molecular and biophysical 
characterization of TT virus: evidence for a new virus family infecting humans. 
Proceedings of the National Academy of Sciences of the United States of America. 
96;3177-3182. 
 
Nakagawa N, Ikoma J, Ishihara T, Yasui-Kawamura N, Fujita N, Iwasa M, Kaito M, 
Watanabe S, Adachi Y. 2000. Biliary excretion of TT virus (TTV). Journal of Medical 
Virology. 61;462-467. 
 
Nasser AM, Oman SD. 1999. Quantitative assessment of the inactivation of pathogenic 
and indicator viruses in natural water sources. Water Research. 33;1748-1752. 
 
Nasser AM, Tchorch Y, Fattal B. 1993. Comparative survival of E. coli, F+ 
bacteriophages, HAV and poliovirus 1 in wastewater and groundwater. Water Science 
and Technology. 27;401-407. 
 
Nasser A, Weinberg D, Dinoor N, Fattal B, Adin A. 1995. Removal of hepatitis virus 
(HAV), poliovirus and MS2 coliphage by coagulation and high rate filtration. Water 
Science and Technology. 31;63-68. 
 
National Research Council. 1993. Managing wastewater in coastal urban areas. 
Committee on Wastewater Management for Coastal Urban Areas. Washington, DC: 
National Academies Press. 
 
National Research Council. 2004. Indicators for Waterborne Pathogens. Washington, 
DC: National Academies Press. 
 
Nieminski EC, Ongerth JE. 1995. Removing Giardia and Cryptosporidium by 
conventional treatment and direct filtration. Journal of the American Water Works 
Association. 87;96-106. 
 
Nishizawa T, Okamoto H, Konishi K, Yoshizawa H, Miyakawa Y, Mayumi M. 1997. A 
novel DNA virus (TTV) associated with elevated transaminase levels in posttransfusion 
hepatitis of unknown etiology. Biochemical and Biophysical Research Communications. 
241;92-97. 
 
Nishizawa T, Okamoto H, Tsuda F, Aikawa T, Sugai Y, Konishi K, Akahane Y, Ukita 
M, Tanaka T, Miyakawa T, Mayumi M. 1999. Quasispecies of TT virus (TTV) with 
sequence divergence in hypervariable regions of the capsid protein in chronic TTV 
infection. Journal of Virology. 73;9604-9608. 
 
Noble RT, Allen SM, Blackwood AD, Chu W, Jiang SC, Lovelace GL, Sobsey MD, 
Steward JR, Wait DA. 2003. Use of viral pathogens and indicators to differentiate 
between human and non-human fecal contamination in a microbial source tracking 
comparison study. Journal of Water and Health. 1;195-207. 



110 
 

Nuanualsuwan S, Cliver DO. 2002. Pretreatment to avoid positive RT-PCR results with 
inactivated viruses. Journal of Virological Methods. 104;217-225. 
 
Nuanualsuwan S, Cliver DO. 2003. Capsid functions of inactivated human picornaviruses 
and feline calicivirus. Applied and Environmental Microbiology. 69;350-357. 
 
Nwachuku N, Craun GF, Calderon RL. 2002. How effective is the TCR in assessing 
outbreak vulnerability? Journal of the American Water Works Association. 94;88. 
 
Okamoto H, Akahane Y, Ukita M, Fukuda M, Tsuda F, Miyakawa Y, Mayumi M. 1998a. 
Fecal excretion of an nonenveloped DNA virus (TTV) associated with posttransfusion 
non-A-G hepatitis. Journal of Medical Virology. 56;128-132. 
 
Okamoto H, Nishizawa T, Kato N, Ukita M, Ikeda H, Iizuka H, Miyakawa Y, Mayumi 
M. 1998b. Molecular cloning and characterization of a novel DNA virus (TTV) 
associated with posttransfusion hepatitis of unknown etiology. Hepatology Research. 
10;1-16. 
 
Okamoto H, Nishizawa T, Takahashi M, Asabe S, Tsuda F, Yoshikawa A. 2001. 
Heterogeneous distribution of TT virus of distinct genotypes in multiple tissues from 
infected humans. Virology. 288;358-368. 
 
Okamoto H, Takahashi M, Nishizawa T, Tawara A, Fakai K. Muramatsu U, Naito Y, 
Yoshikawa A. 2002. Genomic characterization of TT viruses (TTVs) in pigs, cats and 
dogs and their relatedness with species-specific TTVs in primates and tupaias. Journal of 
General Virology. 83;1291-1297. 
 
Okamoto H, Takahashi M, Nishizawa T, Tawara A, Sugai Y, Sai T, Tanaka T, Tsuda F. 
2000a. Replicative forms of TT virus DNA in bone marrow cells. Biochemical and 
Biophysical Research Communications. 270;657-662. 
 
Okamoto H, Ukita M, Nishizawa T, Kishimoto J, Hoshi Y, Mizuo H, Tanaka T, 
Miyakawa Y, Mayumi M. 2000b. Circular double-stranded forms of TT virus DNA in the 
liver. Journal of Virology. 74;5161-5167. 
 
Olstadt J, Sibley SD, Long SC. 2008. Hollow fiber ultrafiltration. Midwest Water Analyst 
Association 2007 Winter Expo. January 25, 2008. Kenosha, WI. 
 
Osawa S, Furuse K, Watanabe I. 1981. Distribution of ribonucleic acid coliphages in 
animals. Applied and Environmental Microbiology. 41;164-168. 
 
Osiowy C, Sauder C. 2000. Detection of TT virus in human hair and skin. Hepatology 
Research. 16;155-162. 
 



111 
 

Pang L, Close M, Goltz M, Sinton L, Davies H, Hall C, Stanton G. 2004. Estimation of 
septic tank setback distances based on transport of E. coli and F-RNA phages. 
Environment International. 29;907-921. 
 
Payment P, Armon R. 1989. Virus removal by drinking water treatment processes. CRC 
Critical Reviews in Environmental Control. 19;15-31. 
 
Payment P, Morin E. 1989. Minimal infective dose of the OSU strain of porcine 
rotavirus. Archives of Virology. 112;277-282. 
 
Payment P, Richardson L, Siemiatycki J, Dewar R, Edwardes M, Franco E. 1991. A 
randomized trial to evaluate the risk of gastrointestinal disease due to consumption of 
drinking water meeting current microbiological standards. American Journal of Public 
Health. 81;703-708. 
 
Payment P, Siemiatycki J, Richardson L, Renaud G, Franco E, Prevost M. 1997. A 
prospective epidemiological study of gastrointestinal health effects due to the 
consumption of drinking water. International Journal of Environmental Health Research. 
7;5-31. 
 
Payment P, Trudel M, Plante R. 1985. Elimination of viruses and indicator bacteria at 
each step of treatment during preparation of drinking water at seven water treatment 
plants. Applied and Environmental Microbiology. 49;1418-1428. 
 
Payment P, Waite M, Dufour A. 2003. Introducing parameters for the assessment of 
drinking water quality. In: Assessing Microbial Safety of Drinking Water, Improving 
Approaches and Methods. London: IWA Publishing. pp. 47-77. 
 
Peng YH, Nishizawa T, Takahashi M, Ishikawa T, Yoshikawa A, Okamoto H. 2002. 
Analysis of the entire genomes of thirteen TT virus variants classifiable into the fourth 
and fifth genetic groups, isolated from viremic infants. Archives of Virology. 147;21-41. 
 
Pollicino T, Raffa G, Squadrito G, Costantino L, Cacciola I, Brancatelli S, Alafaci C, 
Florio MG, Raimondo G. 2003. TT virus has ubiquitous diffusion in human body tissues: 
analyses of paired serum and tissue samples. Journal of Viral Hepatitis. 10;95-102. 
 
Pontius FW, Clark SW. 1999. Drinking water quality standards, regulations and goals. In: 
Letterman RD, ed. Water Quality and Treatment, 5th Edition. American Water Works 
Association: McGraw-Hill, Inc. Chapter 1. 
 
Prescott LE, Simmonds P. 1998. Global distribution of transfusion-transmitted virus. 
New England Journal of Medicine. 339;776-777. 
 
Qiu J, Kakkola L, Cheng F, Ye C, Soderlund-Venermo M, Hedman K, Pintel DJ. 2005. 
Human circovirus TT virus genotype 6 expresses six proteins following transfection of a 
full-length clone. Journal of Virology. 79;6505-6510. 



112 
 

Reynolds KA, Mena KD, Gerba CP. 2008. Risk of waterborne illness via drinking water 
in the United States. Reviews of Environmental Contamination and Toxicology. 192;117-
158. 
 
Rice EW, Clark RM, Johnson CH. 1999. Chlorine inactivation of Escherichia coli 
O157:H7. Emerging Infectious Diseases. 5;461-463. 
 
Robertson WJ. 1984. Pollution indicators and potential pathogenic microorganisms in 
estuarine recreational waters. Canadian Journal of Public Health. 75;19-24. 
 
Romeo R, Hegerich P, Emerson SU, Colombo M, Purcell RH, Bukh J. 2000. High 
prevalence of TT virus (TTV) in naive chimpanzees and in hepatitis C virus-infected 
humans: frequent mixed infections and identification of new TTV genotypes in 
chimpanzees. Journal of General Virology. 81;1001-1007. 
 
Rose JB. 1986. Microbial aspects of wastewater reuse for irrigation. Critical Reviews in 
Environmental Control. 16;231-256. 
 
Rose JB, Dickson LJ, Farrah SR, Carnahan RP. 1996. Removal of pathogenic and 
indicator microorganisms by a full-scale water reclamation facility. Water Research. 
30;2785-2797. 
 
Ross RS, Viazov S, Runde V, Schaefer UW, Roggendorf M. 1999. Detection of TT virus 
DNA in specimens other than blood. Journal of Clinical Virology. 13;181-184. 
 
Saback FL, Gomes SA, De Paula VS, Da Silva RRS, Lewis-Ximenez LL, Niel C. 1999. 
Age-specific prevalence and transmission of TT virus. Journal of Medical Virology. 
59;318-322. 
 
Saiki RK, Gelfand DH, Stoffel S, Scharf SJ, Higuchi R, Horn GT, Mullis KB, Erlich HA. 
1988. Primer-directed enzymatic amplification of DNA with a thermostable DNA 
polymerase. Science. 239;487-491. 
 
Saiki RK, Scharf S, Faloona F, Mullis KB, Horn GT, Erlich HA, Arnheim N. 1985. 
Enzymatic amplification of beta-globin genomic sequences and restriction site analysis 
for diagnosis of sickle cell anemia. Science. 230;1350-1354. 
 
Santiago-Mercado J, Hazen TC. 1987. Comparison of four membrane filter methods for 
fecal coliform enumeration in tropical waters. Applied and Environmental Microbiology. 
53;2922-2928. 
 
Scandura JE, Sobsey MD. 1997. Viral and bacterial contamination of groundwater from 
on-site sewage treatment systems. Water Science and Technology. 35;141-146. 
 
Scheuerman PR, Farrah SR, Bitton G. 1987. Reduction of microbial indicators and 
viruses in a cypress strand. Water Science and Technology. 19;539-546. 



113 
 

Schijven JF, Hassanizadeh SM. 2000. Removal of viruses by soil passage: overview of 
modeling, processes, and parameters. Critical Reviews in Environmental Science and 
Technology. 30;49-127. 
 
Schubert RH. 1991. Aeromonads and their significance as potential pathogens in water. 
Society for Applied Bacteriology Symposium Series. 20;131S-135S. 
 
Schwab KJ, De Leon R, Sobsey MD. 1995. Concentration and purification of beef extract 
mock eluates from water samples for the detection of enteroviruses, hepatitis A virus, and 
Norwalk virus by reverse transcription-PCR. Applied and Environmental Microbiology. 
61;531-537. 
 
Schwab KJ, Estes MK, Neill FH, Atmar RL. 1997. Use of heat release and an internal 
RNA standard control in reverse transcription-PCR detection of Norwalk virus from stool 
samples. Journal of Clinical Microbiology. 35;511-514. 
 
Scott TM, Rose JB, Jenkins RM, Farrah SR, Lukasik J. 2002. Microbial source tracking: 
current methodology and future directions. Applied and Environmental Microbiology. 
68;5796-5803. 
 
Seyfried PL, Brown NE, Cherwinsky CL, Jenkins GD, Cotter DA, Winner JM, Tobin RS. 
1984. Impact of sewage treatment plants on surface waters. Canadian Journal of Public 
Health. 75;25-31. 
 
Seyfried PL, Tobin RS, Brown NE, Ness PF. 1985a. A prospective study of swimming-
related illness: I. Swimming-associated health risk. American Journal of Public Health. 
75;1068-1070. 
 
Seyfried PL, Tobin RS, Brown NE, Ness PF. 1985b. A prospective study of swimming-
related illness: II. Morbidity and the microbiological quality of water. American Journal 
of Public Health. 75;1071-1075. 
 
Shackelton LA, Holmes EC. 2006. Phylogenetic evidence for the rapid evolution of 
human B19 erythrovirus. Journal of Virology. 80;3666-3669. 
 
Shaw S, Regli S, Chen J. 2003. Virus occurrence and health risks in drinking water. In: 
American Water Works Association, McGuire MJ, McLain JL, Obolensky A, 
Microbial/Disinfection Byproducts Research Council, eds. Information Collection Rule 
Data Analysis. American Water Works Association. pp. 437-459. 
 
Sibley SD. 2008. Personal Communication. Department of Soil Science, University of 
Wisconsin, Madison, WI. 
 
Simmonds P, Prescott LE, Logue C, Davidson F, Thomas AE, Ludlam CA. 1999. TT 
virus--part of the normal human flora? Journal of Infectious Disease. 180;1748-1750. 
 



114 
 

Sinton LW, Noonan MJ, Finlay RK, Pang L, Close ME. 2000. Transport and attenuation 
of bacteria and bacteriophages in an alluvial gravel aquifer. New Zealand Journal of 
Marine and Freshwater Research. 34;175-186. 
 
Skraber S, Gassilloud B, Gantzer C. 2004a. Comparison of coliforms and coliphages as 
tools for assessment of viral contamination in river water. Applied and Environmental 
Microbiology. 70;3644-3649. 
 
Skraber S, Gassiloud B, Schwartzbrod L, Gantzer C. 2004b. Survival of infectious 
poliovirus-1 in river water compared to the persistence of somatic coliphages, 
thermotolerant coliforms and poliovirus-1 genome. Water Research. 38;2927-2933. 
 
Snowdon JA, Cliver DO. 1989. Coliphage as indicators of human enteric viruses in 
ground water. CRC Critical Reviews in Environmental Control. 19;231-249. 
 
Sobsey MD. 1989. Inactivation of health-related microorganisms in water by disinfection 
processes. Water Science and Technology. 21;179-195. 
 
Sobsey MD, Battigelli DA, Shin GA, Newland S. 1998. RT-PCR amplification detects 
inactivated viruses in water and wastewater. Water Science and Technology. 38;91-94. 
 
Springfeld C, Bugert JJ, Schnitzler P, Tobiasch E, Kehm R, Darai G. 2000. TT virus as a 
human pathogen: significance and problems. Virus Genes. 20;35-45.  
 
Springfeld et al. Unpublished observations. Discussed in Springfeld et al., 2000. 
 
Springthorpe VS, Loh CL, Robertson WJ, Sattar SA. 1993. In situ survival of indicator 
bacteria, MS-2 phage and human pathogenic viruses in river water. Water Science and 
Technology. 27;413-420. 
 
Straub TM, Bentrup KHZ, Orosz-Coghlan P, Dohnalkova A, Mayer BK, Bartholomew 
RA, Valdez CO, Bruckner-Lea CJ, Gerba CP, Abbaszadegan M, Nickerson CA. 2007. In 
vitro cell culture infectivity assay for human noroviruses. Emerging Infectious Diseases. 
13;396-403. 
 
Straub TM, Pepper IL, Gerba CP. 1995. Comparison of PCR and cell culture for 
detection of enteroviruses in sludge-amended field soils and determination of their 
transport. Applied and Environmental Microbiology. 61;2066-2068. 
 
Suzuki T, Suzuki R, Li J, Hijikata M, Matsuda M, Li TC, Matsuura Y, Mishiro S, 
Miyamura T. 2004. Identification of basal promoter and enhancer elements in an 
untranslated region of the TT virus genome. Journal of Virology. 78;10820-10824. 
 
Takahashi K, Hoshino H, Ohta Y, Yoshida N, Mishiro S. 1998a. Very high prevalence of 
TT virus (TTV) infection in general population of Japan revealed by a new set of PCR 
primers. Hepatology Research. 12;233-239. 



115 
 

Takahashi K, Ohta Y, Mishiro S. 1998b. Partial 2.4-kb sequences of TT virus (TTV) 
genome from eight Japanese isolates: diagnostic and phylogenetic implications. 
Hepatology Research. 12;111-120. 
 
Takayama S, Miura T, Matsuo S, Taki M, Sugh S. 1999. Prevalence and persistence of a 
novel DNA TT virus (TTV) infection in Japanese hemophiliacs. British Journal of 
Hematology. 104;626-629. 
 
Tanaka Y, Mizokami M, Orito E, Ohno T, Nakano T, Kato T, Kato H, Mukaide M, Park 
YM, Kim BS, Ueda R. 1998. New genotypes of TT virus (TTV) and a genotyping assay 
based on restriction fragment length polymorphism. Federation of European Biochemical 
Societies Letters. 437;201-206. 
 
Tani N, Dohi Y, Kurumatani N, Yonemasu K. 1995. Seasonal distribution of 
adenoviruses, enteroviruses, and reoviruses in urban river water. Microbiology and 
Immunology. 39;577-580. 
 
Taylor MB, Cox N, Vrey MA, Grabow WO. 2001. The occurrence of hepatitis A and 
astrovirus in selected river and dam waters in South Africa. Water Research. 35;2653-
2660. 
 
Todd D, Bendinelli M, Biagini P, Hino S, Mankertz A, Mishiro S, Niel C, Okamoto H, 
Raidal S, Ritchie BW, Teo CC. 2005. Virus Taxonomy VIIIth Report of the International 
Committee on Taxonomy of Viruses. London: Academic Press. pp. 335-341. 
 
Toranzos GA, McFetters GA. 1997. Detection of indicator microorganisms in 
environmental freshwaters and drinking waters. In: Hurst CJ, Knudsen GR, McInerney 
MJ, Stetzenbach LD, Walter MV, eds. Manual of Environmental Microbiology. 
Washington, DC: American Society for Microbiology. 
 
Ukita M, Okamoto H, Kato N, Miyakawa Y, Mayumi M. 1999. Excretion into bile of a 
novel unenveloped DNA virus (TT virus) associated with acute and chronic non-A-G 
hepatitis. Journal of Infectious Diseases. 179;1245-1248. 
 
United States Department of Health, Education, and Welfare. Public Health Service 
Drinking Water Standards–1962. Public Health Service Publication No. 956, Reprinted 
September 1969. 
 
United States Department of Health, Education, and Welfare. Community Water Supply 
Study: Analysis of National Survey Findings. July 1970. 
 
United States Environmental Protection Agency. 1987. Cell culture preparation and 
maintenance. In: Manual of Methods for Virology. EPA/600/4-84/013. 
 



116 
 

United States Environmental Protection Agency. 1989a. Drinking water; National 
Primary Drinking Water Regulations; total coliforms (including fecal coliforms and E. 
coli); final rule. FR 54:27544. 
 
United States Environmental Protection Agency. 1989b. Drinking water; National 
Primary Drinking Water Regulations; filtration, disinfection, turbidity, Giardia lamblia, 
viruses, Legionella, and heterotrophic bacteria; final rule. FR 54:27486. 
 
United States Environmental Protection Agency. 1990. Reducing risk: setting priorities 
and strategies for environmental protection. Appendix B: Report of the Human Health 
Subcommittee. USEPA Science Advisory Board, SAB-EC-90-021B. 
 
United States Environmental Protection Agency Fact Sheet. 1992. Consensus method for 
determining groundwaters under the direct influence of surface water using microscopic 
particulate analysis (MPA). USEPA 910/9-92-029. 
 
United States Environmental Protection Agency. 1994. Monitoring requirements for 
public drinking water supplies: proposed rule. Federal Register. 59(28). 
 
United States Environmental Protection Agency, Office of Water Fact Sheet. 1995. 
570/9-91-300. 
 
United States Environmental Protection Agency. 1996. National Water Quality inventory 
report to Congress. 841-R-97-008. 
 
United States Environmental Protection Agency Fact Sheet, 1998. 815-F-98-009. 
 
United States Environmental Protection Agency. 2000. Drinking water; National Primary 
Drinking Water Regulations; Ground Water Rule; Proposed Rule. Federal Register. 65, 
30194-30274. 
 
United States Environmental Protection Agency. 2001a. Total Coliform Rule: a quick 
reference guide. Office of Water. 816-F-01-035. 
 
United States Environmental Protection Agency. 2001b. Method 1602: male-specific 
(F+) and somatic coliphage in water by single agar layer procedure. Office of Water. 821-
R-01-029. 
 
United States Environmental Protection Agency Fact Sheet, 2002. 815-F-02-001. 
 
United States Environmental Protection Agency. 2004. USEPA claims to meet drinking 
water goals despite persistent data quality shortcomings. 2004-P-0008. 
 
United States Environmental Protection Agency Fact Sheet. 2005. 815-F-05-009. 
 



117 
 

United States Environmental Protection Agency. 2006. National primary drinking water 
regulations: Ground water rule. Federal Register. 71(216). 
 
United States Environmental Protection Agency, Office of Water FACTOIDS. 2008. 
Drinking water and ground water statistics for 2007. 816-K-07-004. 
 
Vaidya SR, Chitambar SD, Arankalle VA. 2002. Polymerase chain reaction-based 
prevalence of hepatitis A, hepatitis E and TT viruses in sewage from an endemic area. 
Journal of Hepatology. 37;131-136. 
 
Verani M, Casini B, Battistini R, Pizzi F, Rovini E, Carducci A. 2006. One-year monthly 
monitoring of Torque teno virus (TTV) in river water in Italy. Water Science and 
Technology. 54;191-195. 
 
Viazov S, Ross RS, Niel C, De Oliveira JM, Varenholz C, Da Villa G, Roggendorf M. 
1998. Sequence variability in the putative coding region of TT virus: evidence for two 
rather than several major types. Journal of General Virology. 79;3085-3089. 
 
Ward RL, Bernstein DI, Ylung EC, Sherwood JR, Knowlton DR, Schiff GM. 1986. 
Human rotavirus studies in volunteers: determination of infectious dose and serological 
response to infection. Journal of Infectious Diseases 154;871-880. 
 
Wilson IG. 1997. Inhibition and facilitation of nucleic acid amplification. Applied and 
Environmental Microbiology. 63;3741-3751. 
 
Woessner WW, Ball PN, DeBorde DC, Troy TL. 2001. Viral transport in a sand and 
gravel aquifer under field pumping conditions. Ground Water. 39;886-894. 
 
Worobey M. 2000. Extensive homologous recombination among widely divergent TT 
viruses. Journal of Virology. 74;7666-7670. 
 
Yates MV. 2007. Classical indicators in the 21st century--far and beyond the coliform. 
Water Environment Research. 79;279-286. 
 
Yoder JS, Blackburn BG, Craun GF, Hill V, Levy DA, Chen N, Lee SH, Calderon RL, 
Beach MJ. 2004. Surveillance for waterborne disease outbreaks associated with 
recreational water--United States, 2001–2002. MMWR. 53;1-22. 
 
Zmirou D, Ferley JP, Collin JF, Charrel M, Berlin J. 1987. A follow-up study of 
gastrointestinal diseases related to bacteriologically substandard drinking water. 
American Journal of Public Health. 77;582-584. 
 
Zuker M. 2003. Mfold web server for nucleic acid folding and hybridization prediction. 
Nucleic Acids Research. 31;3406-3415. 


