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Abstract 
 

An aneurysm is defined as a “widening of an artery, developing from a weakness 

or destruction of the medial layer of the blood vessel”. Those who are deemed “at risk” 

for developing an aneurysm should be screened for Unruptured Intracranial Aneurysms 

(UIAs). Once a patient is diagnosed, they must determine the risk of rupture of the UIA 

and what management method is their best option. In order to determine a more precise 

noninvasive detection method and evaluate the risk of UIAs, alternate non-imaging 

techniques should be explored. Blood testing provides a more accurate, more convenient, 

noninvasive detection method. UIAs could be detected by testing the specific antibodies 

and antigens in the blood. By mimicking hypertension with manipulation of blood 

pressure as well as vascular wall repair inhibitors in the rabbit samples, it was 

hypothesized that there will be an increase in antibodies produced which will readily bind 

to the AFHYESQ peptide. Our results show a positive correlation between increase in 

blood pressure and increase in titer, which indicate more presence of bound antibodies, 

showing a more prevalent immune response to the AT1R. An ELISA assay was used for 

all serum samples, which can then be expanded to other models for continuous sampling.  
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1. Introduction 
 

An aneurysm is defined as a “widening of an artery, developing from a weakness 

or destruction of the medial layer of the blood vessel” (DeBakey 2016). Although it is 

believed that aneurysms occur in 6% of the population, the number is most likely to be 

far greater due to the large number of undiagnosed aneurysms. Overall the process of 

detection and management of unruptured intracranial aneurysms (UIAs) is a complicated 

one, but a rewarding one if diagnosed early. However, the diagnosis and treatment 

techniques depend on the detection of the aneurysm, which currently are not accurate for 

small aneurysms (Jerman 2016).   

Those who are deemed “at risk” should be screened for UIAs. Once a patient is 

diagnosed, they must determine the risk of rupture of the UIA and what management 

method is their best option. If an aneurysm is detected, the risk of rupture must be 

weighed against the risk of surgery for the patient before a management plan can be 

created. If the surgical path is chosen, there are still various options to choose from 

depending on size, location and the risks the patient is willing to take. Currently, the most 

common practice for detecting an aneurysm is noninvasive imaging. This includes using 

Magnetic Resonance Angiography (MRA) and Computed Tomography Angiography 

(CTA) to visually determine the presence and size of the UIA. Invasive imaging using 

Digital Subtraction Angiography (DSA) is also used to diagnose aneurysms, but it is less 

common because of the associated risks. Unfortunately, the most common 

recommendation is conservative management, or observing the change in size of 

aneurysms using the aforementioned detection methods. 

In order to determine a more precise noninvasive detection method and evaluate 

the risk of UIAs, alternate non-imaging techniques should be explored. Blood testing 

provides a more accurate, more convenient, noninvasive detection method. UIAs could 

be detected by testing specific antibodies and antigens in the blood, that may appear in 

response to hypertension, a common cause of aneurysms. By mimicking hypertension 

with manipulation of blood pressure as well as vascular wall repair inhibitors in the rabbit 

samples, it was hypothesized that there will be an increase in antibodies produced which 

will readily bind to the AFHYESQ peptide, the epitope of angiotensin type I receptor. An 
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ELISA assay was used for all serum samples, which can then be expanded to other 

models for continuous sampling. 

 

2. Review of Literature 

An aneurysm is defined as a “widening of an artery, developing from a weakness 

or destruction of the medial layer of the blood vessel” (DeBakey 2016). An aneurysm can 

occur in the aorta or any other major artery when the weakened vessel wall becomes 

enlarged due to increasing pressure. While most patients with unruptured intracranial 

aneurysms (UIAs) experience no symptoms, those that do will vary in severity and 

location. Patients with aortic aneurysms will exhibit no symptoms until the UIA is 5-6cm 

in diameter. Chest aneurysms will put pressure on the windpipe and bronchi, leading to 

issues with breathing and can cause pain all the way up to the neck and shoulder areas. 

Aneurysms located in the abdomen can cause pain ranging from the abdomen and back 

down to the groin and upper thigh region (DeBakey, 2016). Intracranial aneurysms can 

cause symptoms that include headache, seizure, focal deficit, subarachnoid hemorrhages 

(SAHs) and cranial nerve palsy from the pressure (Nasr & Brown, 2016). Although the 

exact causes for aneurysms are still unknown, researchers have discovered potential risk 

factors as discussed below. Those who are deemed “at risk” should be screened for UIAs. 

Once a patient is diagnosed, they must determine the risk of rupture of the UIA and what 

management method is their best option. 

 

2.1. Potential Risk Factors for Unruptured Intracranial Aneurysms 
 

Aneurysms occur in an average of 6% of the population worldwide (Ahmed, 

2014). Although the causes of UIAs are still unknown, the results of various studies have 

determined possible risk factors. One potential risk factor is genetics (Rustemi et al., 

2015). For example, the genetic condition Adult Polycystic Kidney Disease (APKD) can 

increase the chance of developing an aneurysm, as 10-15% of patients with this condition 

are diagnosed with aneurysms (Wardlaw & White 2000).  Other genetic diseases that 

have been linked to aneurysms are: Type IV Ehlers-Danlos Syndrome, Pseudoxanthoma 

elasticum, Hereditary Hemorrhagic telangiectasia, Neurofibromatosis type I, α1-
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Antitrypsin Deficiency, Microcephalic Osteodysplastic Primordial Dwarfism and 

coarctation of the aorta and bicuspid aortic valve (Wardlaw & White, 2000; Nasr & 

Brown, 2016). Researchers have found that females are three times more likely to 

develop aneurysms compared to males (Nasr & Brown, 2016). Ethnicity has also shown 

to play a role; those with Finnish and Japanese backgrounds are, respectively, 3.6 and 2.8 

times more likely to harbor an aneurysm compared to those of North American or other 

European descent (Nasr & Brown, 2016). Having multiple family members with UIAs or 

subarachnoid hemorrhages (SAHs) was also determined to be a risk factor for UIAs 

(Wardlaw & White, 2000). Researchers have also discovered that smoking, alcohol 

consumption, cocaine/amphetamine use, oral contraceptives, hypercholesterolemia, 

increased age and hypertension are risk factors for UIAs (Wardlaw & White, 2000). 

Contradicting results from various experiments led researchers to not have a decisive 

answer as to the causes of aneurysms, but only possible risk factors. However, other 

studies have shown that previous SAHs have no effect on the risk of developing another 

aneurysm (Sonobe et al., 2010). Sonobe et al. also argue that the risk for UIAs does not 

increase with age, but rather that UIAs are more common in those under fifty years old.  

2.1.1. Link between Humans and Rabbit Model 
 

Rabbits are used in research as a model for human aneurysms by using one of 

their carotid arteries. Procedures designed for aneurysm treatments, such as coiling, 

clipping and other interventions, can be optimized in this rabbit model (Kang, 2010). 

However, the “aneurysms” created within the carotid artery are very stable and usually 

don’t change in size over time, unlike those in humans. To simulate a more realistic 

human model of aneurysms in the rabbit, some common risk factors need to be 

introduced in order to make this model more relevant for pre-clinical experiments. One 

such way is to induce hypertension (Zeng, 2011). A sustained blood pressure increase in 

rabbits mimics human hypertension, which may result in a higher probability of 

aneurysm growth. This probability of aneurysm growth makes the rabbit “aneurysm” 

more realistic. 

 



 10 

2.1.2. Hypertension and Aneurysms 
 

Hypertension is a consistent increase in blood pressure that contributes to “the 

interaction between arterial hemodynamics and vascular wall biomechanics,” which is 

considered an important factor of aneurysm ruptures (Lee, Zhang, Takao, Murayama & 

Qian, 2013).  Studies have shown that hypertension plays a role in the formation of 

aneurysms, and is twice as likely to occur in people who have at least one aneurysm than 

those who do not have aneurysms (Lee et al., 2013).  Hypertension and hypertensive 

disorders have been linked to “activating autoantibodies to the Angiotensin Type I 

Receptor (AT1R),” (Li et al., 2015). An autoantibody is the antibody produced as a 

body’s response to its own tissues (Li et al., 2015). This means that these antibodies 

could be an indicator for hypertension, which could lead to detection of aneurysms.  

 

2.2. Detection Methods 
 

Individuals who exhibit one or more of the risk factors mentioned previously 

should undergo screening for aneurysms, as most are found incidentally while imaging 

for an unrelated event. The early diagnosis and correct classification of aneurysms is 

valuable to prevent fatal events (Jerman, Pernus, Likar, & Spiclin, 2016; Rand, Uberoi, 

Cil, & Tsetis, 2013). Various methods of detection for aneurysms exist, ranging from 

noninvasive procedures such as magnetic resonance angiography (MRA) and computed 

tomography angiography (CTA) to invasive techniques such as digital subtraction 

angiography (DSA).  Unfortunately, the detection methods currently available are not 

100% accurate. This accuracy level could be achieved through a blood test; however, 

there is not an established protocol for a blood test or marker to diagnose aneurysms, yet 

(Ahmed, 2014).  

 

2.2.1. Noninvasive Imaging 
 

Noninvasive imaging is used to identify and characterize aneurysms (Hwang, 

Kwak, Han & Chung, 2011). Two separate studies conducted by Rustemi et al. and 

Wardlaw and White determined the sensitivity of MRA and CTA to vary between 76%-

98% and the specificity to vary between 85%-100%. However, Rustemi believes that the 
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accuracy increases with the size of the aneurysm and when the patient displays 

symptoms. One study showed comparable results of MRA run at 3 Tesla with DSA. 

However, the accuracy for aneurysms smaller than 3mm was still only 88.1 – 93.2 % (Li 

et al., 2009). Yet, it is believed that the accuracy of noninvasive imaging will increase 

along with the size of the aneurysm (Rustemi et al., 175). Other uncommon noninvasive 

imaging techniques include: Multislice Computed Tomography (MSCT), Color Duplex 

Ultrasound (CDU), Contrast-Enhanced Ultrasound (CEUS), 3D X-Ray Rotational 

Angiography (3D-RA) and Transcranial Doppler (TCD). MSCT has high sensitivity and 

specificity, but it is still not as specific as DSA (Rand, 2013). Each of the others comes 

with its own unique advantages and disadvantages, but overall, data collected by using 

noninvasive imaging techniques are “variable and sometimes even contradictory as a 

result of varied quality of noninvasive imaging” (Rustemi et al., 175). As a result of the 

varied sensitivity and specificity of noninvasive imaging techniques, many diagnosticians 

rely on DSA and use MRA/CTA more frequently for follow up imaging. 
 

2.2.2. Invasive Digital Subtraction Angiography (DSA) 
 

Although digital subtraction angiography is invasive, it produces the most reliable 

results when diagnosing a patient with an aneurysm. The procedure includes injecting 

contrast dye into the individual’s blood vessels while taking time-controlled x-rays. DSA 

plays a large role when diagnosing small aneurysms-those less than 5mm-due to the large 

inaccuracy when detecting UIAs this size using MRA/CTA (see figures 1, 2 and 3) 

(Rustemi et al., 2015).  

 



 12 

 
Figure 1: Imaging of an aneurysm using Digital Subtraction Angiography 

 

 
Figure 2: Imaging of an aneurysm using Computed Tomographic Angiography 
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Figure 3: Imaging of an aneurysm using Magnetic Resonance Angiography 

 
Bone subtraction significantly improves the rate of detection of an aneurysm as it 

improves the visualization of intracranial arteries, at or near the skull base (Sarikaya & 

Sarikaya, 2011). Digital subtraction angiography detects more multiple UIAs and false 

positives compared to noninvasive imaging. The detection of false positives is extremely 

important because the diagnosis of an aneurysm comes with both negative economic and 

psychological effects for the patient and their family. However, once an aneurysm has 

been detected using DSA, noninvasive imaging can be used for further follow-ups. 

 

2.3 Treatments 
 
Once an aneurysm is detected, the physicians involved: neurosurgeons; 

endovascular surgeons; and the family physician, must determine the best course of 

treatment for their patient based on the risk of rupture of the UIA. Aneurysms that 

increase in size and those already greater than 7mm have an increased risk of rupture 

(Sengupta, 2015). The definition of aneurysm growth is different depending on the type 

of aneurysm: small or large. Small aneurysms (smaller than 5mm) that increase in size by 

more than 1mm are considered to have grown in size. Large aneurysms (larger than 

5mm) that increase in size by more than 2mm are considered to have grown. This growth 

leads to considering surgical methods because the rupture rate of growing UIA increases 

to 3% per year compared to stable UIA with a rupture rate of 0.1% yearly (Nasr & 
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Brown, 2016). Large aneurysms, those larger than 7mm should be treated, while those 

less than 5mm should only be monitored with frequent follow-up imaging (Jerman et al., 

2016). The rupture risk will also increase if a patient has had a previous SAH from 

another UIA (Sengupta, 2015).  A study showed that the rupture rate per year of a small 

aneurysm in patients with a previous SAH is 0.5%, compared to 0.05% in patients 

without a previous SAH (Wardlaw & White, 2000).  Locations of the aneurysm within 

the brain, such as in the posterior circulation artery and anterior and posterior 

communicating arteries, are also believed to increase the rupture rate (Nasr & Brown, 

2016). If the risk of rupture is higher than the surgical risk, surgery, rather than 

observation or treatment is recommended. Choosing the correct treatment path is crucial 

because if the aneurysm were to rupture, the bleed or its complications can be fatal. 

 

2.3.1. Conservative Management 
 
There are various treatments and management methods available to patients with 

UIAs. Observation is a logical choice for patients whose aneurysms are smaller than 

7mm (Sengupta, 2015). Elderly patients or those with other illnesses that may increase 

the risk of surgery are also advised that observation may be their best management 

method (Sengupta, 2015). Patients who do not want to take this risk of surgery may also 

choose this method. Observation includes frequent imaging of the aneurysm, at least 

annually for a minimum of three to five years (Nasr & Brown, 2016). The conservative 

management approach may also include modifying risk factors by making changes to the 

patient’s lifestyle by controlling the blood pressure and/or ceasing smoking if these 

factors apply in the situation (Nasr & Brown, 2016). Medical management of the 

aneurysm can also be an option, such as antiplatelet or anticoagulation medicines, aspirin, 

antihypertensive drugs, antithrombotics and statin therapy (Nasr & Brown, 2016). 

Angiotensin converting enzyme (ACE) inhibitors and angiotensin receptor blockers have 

also shown to be effective in decreasing the rupture rate in animals by decreasing the 

elastin degradation (Nasr & Brown, 2016). But, this effect has not been validated in 

human studies as of yet. However, once the risk of rupture outweighs the risk of surgery, 

observation is no longer a logical option. 
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2.3.2. Endovascular Surgery 
 

Endovascular surgery (EV), using coils and stents to relieve pressure on the 

weakened walls of the artery, is less invasive but more costly (DeBakey, 2016). Most 

UIAs can be coiled, but wide neck UIAs need stent assistance and require additional 

pre/post treatments (Nasr & Brown, 2016). Coils are reliable and have instantaneous 

detachments (see figure 4), but cannot grip the vessel wall in straight arteries and may 

sometimes still allow blood flow in these and in wide-necked aneurysms (Henkes & 

Weber, 2015).  

 

 
Figure 4: An angiogram showing coils filling an aneurysm 

 

As a result, scientists created stents to assist coiling procedures. Stents help hold the coils 

in place, while still allowing blood flow through the artery, but not through the aneurysm 

(see figure 5) (Ringer, 2016).  
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Figure 5: An image of a stent-assisted coil 

 
However, stents also come with their own limitations. EV has been shown to 

produce worse outcomes compared to neurosurgery including a 2% mortality rate and 

only 82% obliteration rate (Sengupta, 2015). Obliteration rate refers to the percent of 

aneurysms that are completely eliminated and do not return. The most common 

complication of EV surgery (10%-50%) is the occurrence of an endoleak (EL), or blood 

flow within the aneurysm sac that lies outside of the endograft/stent (Rand, 2013). 

Endovascular surgery has also resulted in more rebleeds post surgery compared to 

clipping (Molyneux, A. & International Subarachnoid Aneurysm Trial (ISAT) 

Collaborative Group, 2002). While some aneurysms may be suited for EV surgery, others 

may respond better to neurosurgery. 

2.3.3. Neurosurgery 
 
Neurosurgery and the “clipping” process, while more invasive than EV options, is 

less expensive (Sengupta, 2015). Clipping is most useful for middle cerebral artery 

(MCA) bifurcation aneurysms and very small or oddly shaped IA where EV surgery 

would be difficult (Nasr & Brown, 2016). The procedure includes a craniotomy, and 

placing a clip at the neck of the aneurysm to prevent blood flow into it (see figure 6) 

(Zuccarello & Ringer, 2016). 
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Figure 6: An image of a clipping procedure 

 
Unfortunately, risks come with every surgery. Clipping has shown to have a 1% 

mortality rate and a 95% obliteration rate (Sengupta, 2015). During aneurysm clipping, 

the patient is at risk for stroke, seizure, bleeding and an imperfectly placed clip 

(Zuccarello & Ringer, 2016). If an aneurysm has only been partially clipped, patients 

need follow up tests to determine if the aneurysm is growing or not. Due to the various 

risks and limitations there is no correct detection method or solution for aneurysms, as 

treatment plans will vary depending on the location, size and patient’s history. 

 

2.4 Assays to Determine Treatments 
 
Due to the lack of 100% effective detection, diagnosis, and treatment protocol, 

scientists are researching and developing more accurate methods for aneurysm detection. 

Current methods are either invasive with very high complication risks, or non-invasive 

but inaccurate and unable to detect most small aneurysms (Rustemi et al., 2015). The 

goal is to determine a detection method that is noninvasive with high accuracy because as 

previously discussed; the most important factor of aneurysm treatment is early detection. 

Currently, researchers are using chemical assays to test as possible non-invasive 

molecular imaging detection techniques. Common assays include cell based AT1R 

activation assay, contractility assay, and enzyme-linked immunosorbent assay (ELISA) 

(Li et al., 2015). These assays use blood chemistry analysis and detection of antibodies to 

detect hypertension.   
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2.4.1. ELISA 
 
ELISA assays detect antibodies (see Figure 7) (Li et al., 2015). It is important for 

diagnosis of infectious diseases, but can also be used to determine changes in blood 

chemistry and antibody levels in the blood that are indicative of hypertension, which can 

be indicative of aneurysms (Nahar, Bora, Sharuma, & Kannoujia, 2012). 

 

 
Figure 7: An image of an antibody binding to epitope on antigen 

 
The experimental procedure for ELISA involves coating microtiter plates with 

peptide followed by incubation, blocking any unbound surface, binding with an antibody, 

and absorbance reading (Nahar et al., 2012).  The procedure itself determines whether the 

peptide used, in this case AFHYESQ (see Figure 8), can bind to the specific antibody in 

the blood, immunoglobulin (IgG) (see Figure 9). 

 

 
Figure 8: Molecular structure of the peptide AFHYESQ 
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Figure 9: An image of the tertiary IgG structure 

 

The amount of antibodies bound to the antigen is determined by using 1-Step ABTS 

solution and reading the absorbance at 405 nm, as this is the solution’s maximum 

wavelength (see Figure 10). 

 

 
 

Figure 10: Absorbance spectrum of 1-Step ABTS solution, with a maximum wavelength in the visible spectrum 
at 405 nm 
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Although this is a very accurate procedure, ELISA tends to take a long time 

(approximately 18 hours). Further research has been conducted to determine whether 

ELISA can be performed more efficiently when under pressure (PELISA), heat 

(HELISA), or microwave mediated (MELISA). All three of these have been shown to 

have comparable results as ELISA but reduce the time of the assay to 10 minutes, 3 

hours, and <5 minutes, respectively (Nahar et al., 2012). This eliminates the need for 

overnight incubation (Kumar & Nahar, 2009). Although these types of ELISA differ in 

experimental time, all of these types of ELISA assays are credible antibody titers. Titers 

test the amount of antibodies in blood samples.  Using this information, we will be able to 

carry out our own ELISA to determine the levels of antibodies in hypertensive rabbit 

samples.  

3. Methodology 
 

This project was conducted from August 31, 2016 until March 2017 on the 

campus of UMass Medical School (UMass) in the Radiology Department under the 

supervision of Dr. Alexei Bogdanov and his staff. This project involves running ELISA 

on blood samples from rabbits with induced high blood pressure. Angiotensin should be 

present in these samples, which promotes aldosterone, a hormone, and raises the blood 

pressure (Li et. al, 2015). The angiotensin type one receptor (AT1R) is a receptor for 

autoantibodies, specifically those that would be produced if the body were hypertensive 

(Li et. al, 2015). The ELISA plates were coated with a peptide containing the AT1R 

epitope, which will determine whether the AT1R antibodies that are produced in these 

immunized rabbits actually activate AT1R. The plates were then blocked, and washed. 

Dilutions of the rabbit blood samples were plated and observed spectroscopically in order 

to titer and to see the levels of antibodies. It was tested and checked that the antibodies 

from the blood samples actually bound specifically to AT1R. As the group tested for the 

immune response regarding antibody levels, the veterinarians at UMass tested for the 

physical response of increased blood pressure. 
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3.1 ELISA 
 

This project focused on six rabbits (541, 544, 705, 706, 707 and 708) with 

induced high blood pressure as a result of being immunized with AT1R. Samples from 

Rabbits #541, 544 and 705 were used as practice for learning how to run the experiment. 

The project then focused specifically on Rabbits #706, 707 and 708 for analysis and 

discussion purposes. Blood samples were taken by Dr. Bogdanov’s staff pre-

immunization (0 weeks), and post-immunization at 2 weeks, 4 weeks, 6 weeks and 8 

weeks. Each blood sample was divided into four aliquots of about equal volume ranging 

from 100 µL to 200 µL. 

Stock solutions of HEPES buffer saline (HBS) and sodium bicarbonate were 

created for use throughout the project. HBS (10x 20mM) was created using 26.0 g of 

HEPES and 43.4 g NaCl in 500 mL of dH2O. The pH was adjusted to 7.4 using HCl. 

Sodium bicarbonate (10 mM) was created using 0.420 g in 500 mL of dH2O. 

 The next step was to create the peptide solution to be used to coat the bottoms of 

the well plates for each ELISA. Each well required 10 µg of peptide per mL, therefore a 

0.1 mg/mL stock solution was made. To coat the plates, the solution was diluted by a 

factor of 10, using 2.5 mL of the peptide solution and 22.5 mL of sodium bicarbonate. 

The solution (100 µL) was placed into each well and the plate was incubated for 1 hour at 

37 oC, and then 4oC until it was ready to be used.  

 Before blocking the plate, the peptide solution was flicked out. The plate was then 

blocked using a solution containing HBS and albumin. Albumin (14.2 g) was added to 

13.9 mL of 10X HBS and was diluted to 150 mL with dH2O. This solution (300 uL) was 

added to each well and allowed to sit at room temperature for two hours. The plate was 

then placed in the freezer at -5 oC, until the next step was taken. 

 The next step was to wash the plate. First, the blocking solution was flicked out in 

a similar fashion to the peptide solution. Next, a 0.05% solution of tween 20 / PBS was 

created using 500 mL of PBS and 0.25 mL tween 20. Each well was washed three times 

with 300 µL of the solution and then stored in a freezer at -80 oC until ready to be used 

again. 

 The plate was taken out of the freezer and allowed to defrost. A solution (50 mL) 

of HBS containing 1% horse serum was created and placed in a tube. Next, 180 µL of 
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buffer solution was placed into each well A-G, 1-12 of a serial dilution plate (see Table 

1).  
 

 Serum Sample #1 Serum Sample #2 Serum Sample #3 Serum Sample #4 

1 2 3 4 5 6 7 8 9 10 11 12 

A 1:10            

B 1:100            

C 1:1000            

D 1:104            

E 1:105            

F 1:106            

G 1:107            

H Blank            
Table 1: Guide for 1:10 serial dilutions for ELISA protocol 

 
Then, 20 µL of rabbit serum from Rabbit #541 pre-immune was placed into wells 

A1-A3. Serial dilutions were created down the column of the plate, using 20 µL each 

time from the previous well. When transferring the solution to the following well, the 

new solution was mixed 10 times using a pipettor. This process was repeated for Rabbit 

#541 post-immune, Rabbit #544 pre-immune and Rabbit #544 post-immune in columns 

A4-A6, A7-A9 and A10-A12 respectively. After each serial dilution was made, 100 µL 

from each well was transferred onto the peptide coated plate in the corresponding wells. 

The solutions were transferred from the most dilute to the least dilute. Row H1-12, was 

used as a blank and contained only 100 µL of HBS. This plate was then allowed to 

incubate at 37 oC for 2 hours, and stored at 4 oC until ready to be used again. 
The plate was then washed using 0.05% tween 20/HBS solution. Tween 20 (0.269 

mg) was weighed and added to 500 mL of 1X 20 mM HBS. The solution (300 µL) was 

added to each well and flicked out. This process was repeated four times. 
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Immediately following the last washing, 100 µL of the secondary antibody 

solution, rabbit IgG, was added to each well. This solution was created using 1% bovine 

serum albumin (BSA) with HBS. BSA (0.128 mg) was added to about 12.8 mL of HBS 

and vortexed. The plate was then allowed to incubate at room temperature for 1 hour. 

Next, the plate was washed 3 times with the 0.05% Tween 20/HBS solution and 

incubated at 4 oC until further use.  

1 Step ™ ABTS substrate for use with horseradish peroxidase (150 µl) was added 

to each well and incubated at room temperature on a rotating plate for 1 hour and 30 

minutes. The plate was then analyzed using a SpectraMax M5 at 405 nm. 

 

3.2 Changes to Original Protocol 
 

Because the original plates created were not specifically designed for ELISA, new 

plates, specifically for ELISA, were used to continue the rest of the experiments after the 

first trial of rabbits 541 and 544 pre- and 2 week post-immunization. To create the 

peptide solution, a 0.1 mg/mL solution was created using 4 mg of peptide, 800 µL of 

water and 39.2 mL of Sodium Bicarbonate. A new 10% Tween 20 Stock was created 

using 2.3 mL of Tween 20 and 20.7 mL of H2O. A 0.05% solution was made to wash the 

plates using 2.5 mL of the stock in 500 mL 1X HBS. An extra washing step was added in 

between flicking the peptide solution out of the plates and adding the blocking solution. 

Changes were also made to the procedure regarding plating of the secondary antibody 

solution. Immediately following the last washing, 100 µL of the secondary antibody 

solution, Rabbit IgG, was added to each well. This solution was created using 5.2 µL 

secondary antibody solution (Rabbit IgG) 1% Bovine Serum Albumin (BSA) with HBS. 

BSA (0.128 g) was added to about 12.8 mL of HBS and vortexed. The plate was then 

allowed to incubate at room temperature for 1 hour. 

 Due to the high absorbance values gathered on plates containing rabbit serum 

from #541, #544, #705 and #706, higher dilutions of serum were used for trial 1 of 

rabbits #707 and #708 and all other following trials. The first dilution began at 5x10-2 and 

was diluted 10-fold until 5x10-8 (see Table 2). 
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Serum Sample #1 Serum Sample #2 Serum Sample #3 Serum Sample #4 

1 2 3 4 5 6 7 8 9 10 11 12 

A 1:20            

B 1:200            

C 1:2000            

D 1:2x104            

E 1:2 x105            

F 1:2 x106            

G 1:2 x107            

H Blank            
Table 2: Guide for 1:20 serial dilutions for ELISA protocol 

 

3.3 Future Direction 
  
 Samples for Rabbit #706, #707 and #708 were chosen to be further analyzed. 

These rabbits were chosen due to vitality of the rabbits, as well as availability and 

consistency of samples from pre-immunization (0 week) and 2, 4, 6, 8 weeks post-

immunization. The samples for 4 weeks post-, 6 weeks post- and 8 weeks post-

immunization were assayed in a similar fashion and then analyzed. All samples were 

analyzed in the SpectraMax M5 to determine the absorbance values after a 30 minute 

color development period. Using these absorbance values, we were able to create trend 

lines. A nonlinear regression with a three parameter approximation was run to find titers. 

The three parameters were: the top, bottom and EC50 (mid-titration point).  
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3.4 Human Aortic Cells 
 
 Human aortic cells were obtained from and provided to us from UMass Medical 

School. An ELISA assay was performed on these cells, similar to that of the rabbit blood 

serum samples, to determine if the antibodies present in the rabbit serum solutions bound 

specifically to the antigens on human aortic cells. The first step was to create a 1X HBS 

solution using 270 mL of H2O and 30 mL of 10X HBS. The slide containing the human 

aortic cells was washed for 5 minutes in a container with 40 mL of 1X HBS. Next, the 

slide was fixed with 2% formaldehyde by adding about 80 µL to each of the eight 

sections on the slide. The slide was then washed in 1% BSA for five minutes. This was 

repeated three times. After, the slide was placed in a container with 40 mL of Albumin 

BSA blocking solution for 30 minutes. 

 The addition of the first antibody, serum from Rabbits #707 and #708, had to be 

diluted 1:200 in blocking solution. Rabbit serum (1.5 µL) and blocking solution (298.5 

µL) were combined in a microfuge tube. Serum (about 80 µL) was placed onto each well 

and incubated in a humidity chamber for one hour. A diagram of the wells can be seen in 

Figure 11. 

 
Figure 11: A picture of a slide containing human aortic cells, divided into eight wells, with each well labeled with  

 
Rabbit #707 and #708 pre-immune serum was used as the control, while 6 week post-

immune was used as the experimental group. 

 The slide was then washed again three times in a container, for five minutes each, 

using 40 mL 1% BSA solution. The rest of the ELISA procedure including adding the 
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secondary antibody, washing and microscopy was performed by the staff at UMass due to 

time constraints of the project. 

4. Results 
  
 This project included multiple ELISAs that were run using various blood samples 

collected from six rabbits at varying time points pre- and post-immunization with 

angiotensin. The hypothesis was that if the rabbit was injected with AT1R, it would have 

both an immune response, indicated by antibodies bound to the ELISA plate, as well as a 

blood pressure response, indicated by hypertension. The experiment was slightly altered 

over the course of the project to ensure the highest quality results were obtained. The 

results of the first plate tested can be seen in Figure 12. 

 

 
Figure 12: Picture of ELISA plate containing rabbit serum from Rabbit #541 (columns 1-6) and #544 (columns 

7-12) 30 minutes post 

 The darker colored solution represents a higher number of antigens (AFHYESQ) 

bound to the IgG antibody. These serial dilutions began with a 1:10 serum dilution, and 

1:10 dilutions carried out down each column. Pictures of all other ELISA plates can be 

seen in Appendix A. Due to the dark colors at the lower dilutions, the absorbance levels 

were very high. To correct this issue, and bring the absorbance values back within linear 

proportionality to antibody concentration, a 1:20 dilution was made to begin the serial 

dilutions, but 1:10 dilutions were still carried out down each column (see Figure 13). 

 



 27 

 
 

Figure 13: Picture of ELISA plates containing rabbit serum from weeks 0 and 2, from  Rabbit #707 (columns 1-
6) and #708 (columns 7-12) 30 minutes post 

 
 The lighter solution colors allowed for more appropriate absorbance values to be 

collected. The columns containing pre-immunization (columns 1-3 and 7-9) rabbit serum 

do not change color from the original clear solution due to the lack of antibodies. The 

columns containing 2 week post-immunization (columns 4-6 and 10-12) rabbit serum 

change from a clear solution to a blue-green indicating the presence of antibodies in 

response to the injection of AT1R. 

 

Rabbit #706 
 
 

To determine the number of antibodies made in response to these injections, titers 

were calculated based on the graph of log(dilution) vs. absorbance for Rabbit #706, 707, 

and 708 (Figures 14, 16, and 18, respectively). 
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Figure 14: Graph of log(dilution) vs. absorbance values for Rabbit #706 

 
The titers for rabbit #706 increase drastically as the post-immunization time 

increases from 2-4 weeks. From 4-6 weeks the titers remain fairly stable, and then 

decrease again 8 weeks post-immunization. The higher titers indicate more presence of 

bound antibodies, showing a more significant immune response to the AT1R. Based on 

this graph, we can see that between 4 and 6 weeks is when the rabbit displayed the 

highest immune response. Typically, we would expect for the titer to continue to increase 

for a longer period of time. While the titers were being tested by the group members, 

veterinarians were simultaneously testing the blood pressures of each of the three rabbits. 

The results for Rabbit #706 can be seen in Figure 15 below. 
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Figure 15: Blood pressure readings of Rabbit #706 over 80 days 

 
This figure depicts the change in blood pressure for rabbit #706 from pre-

immunization (0 weeks) to 8 weeks post-immunization. The diastolic pressure, which is 

the arterial relaxation blood pressure, is shown in blue. The systolic pressure, or blood 

pressure while the heart is in full contraction, is shown in red.  These curves, as well as 

the mean curve, increase with time, thus, blood pressure increases with the presence of 

antibodies (immune system response). As blood pressure increases, hypertension 

intensifies, and chances of inducing an aneurysm, similar to ones seen in humans, 

increase. The titer results for Rabbit #707 can be seen in Figure 16. 
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Rabbit #707 
 

 
Figure 16: Graph of log(dilution) vs. absorbance values for Rabbit #707 

 
The titers for Rabbit #707 also increase drastically as the post-immunization time 

increases from 2-4 weeks and 4-6 weeks. From 6-8 weeks the titers remain fairly stable. 

Based on Figure 15, it can be seen that the highest titers were seen at 6 and 8 weeks post-

immunization. Typically, this is what we would expect for the immune response. The 

blood pressure response was analyzed next, and can be seen in Figure 17. 
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Figure 17: Blood pressure readings of Rabbit #707 over 80 days 

 
Figure 17 depicts the change in blood pressure for rabbit #707 from pre-

immunization (0 weeks) to 8 weeks post-immunization. Similar to that of Rabbit #706, 

the systolic, diastolic and mean blood pressure curves all increase with time. 

 

Rabbit #708 
 
 

 
Figure 18: Graph of log(dilution) vs. absorbance values for Rabbit #708 
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The titers for Rabbit #708 follow the same trend as Rabbit #707. The values 

increase from 2-6 weeks and then remain fairly stable. The highest titers were seen at 6 

and 8 weeks post-immunization. This was consistent with what was expected for the 

immune response. The blood pressure response can be seen in Figure 19. 

 
 

 
Figure 19: Blood pressure readings of Rabbit #708 over 80 days 

 
 

Figure 19, representing the change in blood pressure for rabbit #708 from pre-

immunization (0 weeks) to 8 weeks post-immunization, follows the same trend as that of 

Rabbit #706 and 707. As time increases, overall blood pressure (including diastolic and 

systolic) increases. After all tests and analysis was run, the titer results for all three 

rabbits were compiled into a table and compared (see Table 3). 
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Immunization Rabbit 706 Rabbit 707 Rabbit 708 
2 weeks 3880 176 12300 
4 weeks 98361 56246 120234 
6 weeks 95244 172747 323910 
8 weeks 60848 165647 291793 

Table 3: Titer Values of Rabbit #706, 707 and 708 at 2, 4, 6, and 8 weeks post-immunization 

 

Table 3 compares the titers of each rabbit for each week post-immunization. 

Rabbit #706, overall, showed the lowest titers, meaning it did not have as great of an 

immune response towards the AT1R injections. Rabbit #708 had the highest titers, with 

its highest occurring at 6 weeks post-immunization. This indicates that Rabbit #708 had 

the strongest immune response towards the injections. As the titer increased for all three 

rabbits, so did the blood pressure. This shows that as hypertension was induced, blood 

pressure did indeed increase. Continuing this timeline, the ELISA assays showed an 

increase in the amount of antibodies present, indicating a higher immune response to the 

AT1R. These antibodies were particularly high affinity antibodies because those that did 

not bind as well would have been washed away due to the repetition of washing during 

the assay.  

 Although blood pressure did increase, the blood pressure for all rabbits began at a 

high blood pressure initially. This could be due to low accuracy of the blood pressure 

measurements in the rabbits, as it was difficult to obtain a baseline blood pressure. The 

positive trend for both immune system response and blood pressure response was 

observed post-immunization. 

5. Conclusion 
 

As seen in Figures 14, 16, and 18, the titers in each rabbit sample increased over 

time. The titers stabilized around the 6 and 8 week time points (Table 3). The higher titers 

indicate more presence of bound antibodies, showing a more prevalent immune response 

to the AT1R. Our results show a positive correlation between increase in blood pressure 

and increase in titer (Figures 15, 17, and 19). As blood pressure increases, hypertension 

intensifies, and chances of inducing an aneurysm, similar to ones seen in humans, 

increases.   
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Replication of this experiment could be done with a few changes. Firstly, 

experiments could begin with rabbits with lower baseline blood pressures to be able to 

observe a larger overall change in blood pressure over time. Future experiments could 

include testing on human aortic cells to check whether the antibodies, produced as a 

result of the AT1R immunizations tested in the rabbits, bind to the real AT1R receptor on 

these human cells. If the antibodies in the rabbit serum bind to the cells, this serves as a 

check on the experiment, verifying that the antibodies in the original ELISA experiment 

were in fact the antibodies produced as a result of the immunizations and not other 

naturally occurring antibodies with a similar conformation. The antibodies within the 

rabbit sample, if the correct ones, should be able to bind to the antigen receptors on the 

human aortic cells because the AT1R receptor amino acid sequence is conserved between 

the two mammalian species. 
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Appendix A 
Pictures of well plates from each experiment conducted. 
 

 
Figure 20: Picture of ELISA plates containing rabbit serum from Rabbit #541 (columns 1-6) and #544 (columns 

7-12) 

 

 
Figure 21: Picture of ELISA plates containing rabbit serum from Rabbit #705 (columns 1-6) and #706 (columns 

7-12) 
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Appendix B 
Graphs of log(Concentration) vs. Absorbance for each experiment conducted. 
 

 
Figure 22: Graph of log(concentration) in Mol/L vs. log(absorbance) values fro Rabbit #541 

 
 

 
Figure 23: Graph of log(concentration) in Mol/L vs. log(absorbance) values fro Rabbit #544 
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Figure 24: Graph of log(concentration) in Mol/L vs. log(absorbance) values fro Rabbit #705 

 

 
Figure 25: Graph of log(concentration) in Mol/L vs. log(absorbance) values for Rabbit #706 
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Figure 26: Graph of log(concentration) in Mol/L vs. log(absorbance) values for Rabbit #708 

 


