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Abstract

This project involved pulling together past work on the achromatic and first-fit
chromatic numbers, as well as a description of a proof by Yegnanarayanan et
al. Our work includes attempting to find patterns for them in specific classes
of graphs and the beginnings of an attempt to prove that for any given a, b, c,
such that 2 ≤ a ≤ b ≤ c, there exists a graph with chromatic number a, first-fit
chromatic number b, and achromatic number c.



Executive Summary

This project involved looking at properties of two chromatic invariants of graphs.
The first-fit chromatic number is the largest number of colors which may be used
in a greedy coloring. More precisely it is defined to be the maximum size of a
collection of ordered sets such that no two vertices in the same set are connected
and every vertex is connected to an element of all previous sets. The achromatic
number is the maximum number of colors which can be used in a proper coloring
such that all pairs of colors are adjacent somewhere in the graph. A complete
coloring is one which has all pairs of colors adjacent somewhere in the graph.

Tying together what has been done in the past, we read journal articles
about the first-fit and achromatic numbers and share some of these results. In
the general case, both of these are NP-hard, and they both have been proven
to remain so when restricted to some classes of graphs.

We also looked at Nordhaus-Gaddum type results. Much of this was gather-
ing together results in the past. However, we also looked at when the inequalities
were at the bound in self-complementary graphs. There was also not progress
in this section.

We look at the achromatic number of cycles as well as attempting to look
at the achromatic number of other classes of graphs. If k is an odd number of
colors then cycles with at least

(

k
2

)

edges can be colored in a complete coloring

with k colors. If k is an even number of colors, then cycles with k2

2 or more
edges can be colored in a complete coloring with k colors. We also looked some
at trees and regular graphs, though there were no results.

We describe a proof by V. Yegnanarayanan, R. Balakrishnan and R. Sam-
pathkumar about how for every a,b,and c such that 2 ≤ a ≤ b ≤ c, there exists
a graph with chromatic number a, achromatic number b, and pseudoachromatic
number c. (The pseudoachromatic number requires all pairs of colors to exist
adjacent somewhere in the graph but does not require a proper coloring.) This
proof functions by constructing a graph with this property [25].

Basing off of that proof, we conjecture that for every a,b, and c such that
2 ≤ a ≤ b ≤ c there exists a graph with chromatic number a, first-fit chromatic
number b and achromatic number c. We begin an attempt to prove this in this
report, giving a graph with a predictably varying first-fit chromatic number
that appears like it should have a similarly predictable achromatic number.
However, the proof for achromatic number of this family of graphs has not been
completed, preventing progress beyond this point.
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Chapter 1

Introduction

1.1 Summary of this Project

This project consisted of looking at the first-fit and achromatic numbers of
various graphs and properties of these two parameters. The paper Inequalities

for the First-Fit Chromatic Number, which included a Nordhaus-Gaddum type
result on the first-fit chromatic number, inspired the project. It began with
researching Nordhaus-Gaddum type results, before extending to the achromatic
number upon following a reference from this paper. This led to comparing
the first-fit chromatic number and the achromatic number of graphs, which
led to the achromatic number of cycles. After this the project focused on the
achromatic number - looking at cycles and trees. Research on the achromatic
number led to finding a proof for the existence of graphs with chromatic number
a, achromatic number b, and pseudoachromatic number c (for any a,b, and c,
when 2 ≤ a ≤ b ≤ c), which is discussed in section 6.1. This tied the project
back to the first-fit chromatic number by using this as inspiration to work on
an equivalent proof for the chromatic number, first-fit chromatic number, and
achromatic number (increasing in the order given here).

The definitions for the various colorings mentioned are given in 2.1.

1.2 Graph Colorings

Graph coloring problems deal with labeling the vertices (or edges) of a graph
in ways that fulfill given constraints. In many of these cases we are dealing
with proper colorings - colorings such that no two adjacent vertices receive the
the same color. The invariants are often the minimum or maximum number of
colors which can be used while fulfilling constraints. For example, the chromatic
number is the fewest number of colors which can be used in a proper coloring.

For this we have been primarily working with the first-fit chromatic number
and the achromatic number, both of which are properties of graphs which are
the largest number of colors usable in a proper coloring of a graph with given
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properties. For the first-fit chromatic number every vertex colored color i must
be adjacent to all colors less than i. For the achromatic chromatic number, for
every pair of colors i and j, a vertex of color i and a vertex of color j must
be adjacent somewhere in the graph. We began from a paper on the first-
fit chromatic number, chosen because it was an interesting and recent paper.
Because both the achromatic number and the first-fit chromatic number are
the maximum number of colors able to be used, rather than fewest, some of
the methods of approaching the problem we had developed with the first-fit
chromatic number also were applicable for finding the achromatic number.

Graph coloring problems can be applied in many situations. Graph coloring
problems began from an application: the coloring of a map. Since then, colorings
approximating chromatic colorings have been used for solving scheduling and
routing problems [17]. Radio frequency assignment similarly is an application
of a chromatic coloring [23]. A less direct application of graph coloring is in
circuit testing. Create a graph where vertices are the nets of the circuit board.
Vertices are adjacent if there is some likelihood of a short between them. This
allows the graph to be colored a proper coloring, and pairs of the color classes
to be tested for shorts - greatly reducing the number of tests required to check
for any shorts on the circuit board [17].

Both the first-fit chromatic and achromatic numbers thus are useful be-
cause they are the worst cases of two simple approximation algorithms for the
chromatic number. Complete and pseudocomplete colorings are also used in
network design - creating clusters such that the clusters are small and they can
all directly talk to all other clusters [14].
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Chapter 2

Graph Colorings

2.1 Chromatic Definitions

2.1.1 The Chromatic Number

The chromatic number is the most well known property when it comes to graph
colorings.

Definition 1. The chromatic number is the minimum number of colors which
can be used in a proper coloring of a graph. We represent it with χ(G).

2.1.2 The First-fit Chromatic Number

The first-fit chromatic number, also known as the Grundy number, is the largest
number of colors possible in a greedy coloring. We represent it as χff (G)

Definition 2. The first-fit chromatic number, or the Grundy number, is the
maximum size of an ordered collection of independent sets such that no two
vertices in the same set are connected, and every vertex is connected to an
element of each of the previous sets. Each of these independent sets has a color.

This is equivalent to, the largest number of colors which can be used in a
proper coloring such that with the colors in a total ordering, all vertices are
connected to a vertex of all colors less than the color of said vertex. This is
exhibited in figure 2.1

2.1.3 The Achromatic Number

The achromatic number is another characteristic of the graph corresponding to
the maximum number of colors used in a coloring of the graph with a specific
constraint. This constraint is that the coloring must be complete.

Definition 3. A complete coloring is a proper coloring in which for any two
colors i and j, there is a pair of adjacent vertices in the graph, one of which is
colored i and one of which is colored j.
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3

3 41 2

41 2

Figure 2.1: The first-fit coloring of an example graph

1

2 3 4 5

2 3 4

Figure 2.2: An example graph with its achromatic coloring

This allows us to formally define the achromatic number.

Definition 4. The achromatic number of a graph G, represented in this paper
as α(G) is the maximum number of colors used in a complete coloring of G.

This is exhibited in figure 2.2

2.1.4 The Pseudoachromatic Number

Similar to the achromatic number, but without the requirement of being a
proper coloring, there is the pseudoachromatic number.

Like for a complete coloring, we have a definition for a pseudocomplete
coloring.

Definition 5. A pseudocomplete coloring is a coloring (not necessarily proper)in
which any two colors, i and j, are the colors of adjacent vertices somewhere in
the graph

Similarly we can define the pseudoachromatic number in terms of a pseudo-
complete coloring.
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3

3 51 2

41 2

Figure 2.3: An example graph with its pseudoachromatic coloring

Definition 6. The pseudoachromatic number of a graph G, represented in this
paper as ψ(G) is the maximum number of colors used in a pseudocomplete
coloring of G.

This is exhibited in figure 2.3

2.2 The Relationship Between the Various Col-

orings

Claim 1. χff (G) ≥ χ(G)

Proof. The chromatic number is the fewest number of colors which can be used
in a proper coloring. The first-fit chromatic number must be a proper coloring,
thus χff (G) ≥ χ(G) because the existence of a proper coloring using fewer
colors than the chromatic number is a contradiction.

Claim 2. α(G) ≥ χff (G)

Proof. For a first-fit coloring all vertices are connected to a vertex of all previous
colors. This means that for ever color, every vertex of of that color is connected
to a vertex of all previous colors. This means that for every pair of colors, there
exists some adjacent vertices colored those colors in any first-fit coloring. Thus
α(G) ≥ χff (G).

Claim 3. ψ(G) ≥ α(G)

Proof. Both achromatic and pseudoachromatic colorings require that all pairs
of colors are adjacent somewhere in the graph. As pseudocomplete is a strictly
weaker constraint than complete, all complete graphs are pseudocomplete and
ψ(G) ≥ α(G).

Claim 4. All chromatic colorings are complete.
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Proof. Assume there is a chromatic coloring which is not complete.
Because this coloring is not complete,there is some pair of colors, i and j,

which are never adjacent. Because these are never adjacent, changing the color
of all vertices colored j to color i, still is a legal coloring, as this cannot force
two vertices of the same color to be adjacent.

However, this coloring uses one fewer color than the initial coloring, making
the initial coloring not a chromatic coloring. This is a contradiction.

Therefore all chromatic colorings are complete.

2.3 Necessary Constraints

In order to fulfill the constraints required by these colorings, there are necessary
but not sufficient conditions.

Number of edges and the achromatic number The achromatic number
requires all pairs of colors to be adjacent somewhere in the graph. For k colors
the graph must contain

(

k
2

)

edges in order for all pairs to be possible. Thus the

achromatic number can be at most be the maximum k such that
(

k
2

)

≥ |E(G)|.

Max degree and the achromatic number In order for a graph to have
achromatic number k, there must be enough connectivity for all colors to be
adjacent to a vertex of all other colors. By the pigeonhole principle, with n
vertices and k colors, there must be some color, i, with no more than ⌊n

k
⌋

vertices colored i. These vertices cannot each be adjacent to more than ∆ other
vertices, and in order for all color pairs to exist, this must be enough vertices
for an adjacency to all other colors. This gives, in the general case, the lower
bound,

⌊n
k
⌋ · ∆ ≥ k − 1

. In the case of a regular graph, this claim is strengthened as all vertices have
the same degree.
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Chapter 3

Literature Review

3.1 Complexity Classes

It is relevant to know what the complexity classes of problems being worked
on are. Here we include when the achromatic number and first-fit chromatic
numbers have been determined to be NP-hard or not.

3.1.1 Achromatic Number

Finding the achromatic number of a graph is NP-hard; determining whether
it is greater than some number is NP-complete. This was proven in [24] using
minimum edge dominating sets. In this paper, they also prove that even when
limited to the complements of bipartite graphs, it is an NP-hard problem [24].

Determining whether the achromatic number of a graph is at least some
number, k, remains NP-complete for many classes of graphs. When restricted
to bipartite graphs it remains NP-complete [11]. Restricting further, it remains
NP-complete when restricted to only trees [6]. Showing the NP-completeness
when restricted to trees involved reducing to the harmonious number problem,
the fewest number of colors required if every pair of colors is adjacent at most
once. According to [4], few problems on unlabeled graphs remain NP-complete
when limited to cographs and interval graphs, though the achromatic number
problem is one which remains NP-complete.

However. there are also classes of graphs for which finding the achromatic
number is not NP-hard. While the achromatic number of trees is NP-hard, the
achromatic number of bounded degree trees is not. Similarly, the achromatic
number of bounded degree forests is polynomial solvable [7]. It is also not
an NP-hard problem on complements of trees; the achromatic number can be
reduced to the edge dominating problem on the complement of the graph, and
this problem has a linear time solution for trees [24].
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3.1.2 First-fit Chromatic Number

For any given graph, G integer k, whether χff (G) ≥ k has a polynomial time
solution. However, the first-fit chromatic number is in general an NP-hard prob-
lem. It remains NP-hard when limited to the complements of bipartite graphs,
as shown in the same paper. Similar to the achromatic number, these results
were found by reduction to the edge dominating number of their complements
[26].

However, restricting to certain classes of graphs can cause the first-fit chro-
matic number to be polynomial solvable. [1] provides a proof that P4-reducible,
extended P4-reducible, P4-sparse, extended P4-sparse, P4-extendable, P4-lite,
P4-tidy,P4-laden, and extended P4-laden graphs can have their first-fit chro-
matic number found in polynomial time [1].

3.2 Literature Review of the Achromatic Num-

ber

The achromatic number is known for a variety of families of graphs. One paper
covers the achromatic number of wheel graphs, gear graphs, and other central
graphs [21]. Another covers the central graphs of banana graph, helm graph,
and web graph [22].

Details about the achromatic number are also known. For an m-dimensional
hypercube it is known that there exist constants c1 and c2 independent of m
such that c1

√

(m2m−1) ≤ ψ(G) ≤ c2(
√
m2m−1), however it is not known what

these constants are [19].
Looking at unions of cycles, if there are k cycles c1 through ck with lengths l1

through lk, then a cycle of length p =
∑k

i=1 li has the same achromatic number
as ∪k

i=1ci, if k ≤
√

p
2 . That is the achromatic number of a cycle is the same as

the achromatic number of a union of cycles with the same size if the number
of cycles in the latter graph is less than the

√

p
2 . In some cases, there is not a

limit on the number of cycles on the graph. Cycles of length 3k always have the
same achromatic number as k 3-cycles, while cycles of 4k always have the same
achromatic number as k 4-cycles [15].

There are similar results on paths. The achromatic number of a disjoint
union of paths of k paths with lengths a1 through ak is the largest number such
that

∑k

i=1 ai ≥
(

n
2

)

+ f(k, n) where f(k, n) = 0 if n is odd, f(k, n) = 0 if n is
even and k ≥ n

2 , and n
2 − k if n is even and k < n

2 .[16]
There is another paper that proves that there is only a finite number of

irreducible graphs with any given achromatic number. It also describes all
graphs with achromatic number less than 4 [13].

While it had been conjectured that for any tree, the achromatic number and
the pseudoachromatic number were the same, this has been proven false [9].

Because finding the achromatic number is NP-complete, there are approxi-
mation algorithms. It has been proven that the achromatic number of a graph
can be approximated within O(n/

√

log2(n)) where n is the number of vertices
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[8]. This paper also provides approximation algorithms for a general graph,
trees, and graphs with large girth [8]. Similarly, there is an approximation for
bipartite graphs [14].

3.3 Literature Review on the First-fit Chromatic

Number

Less work has been done on the first-fit chromatic number than the achromatic
number, and for it most of the work has been under the other name, grundy
number.

Take a list of all the vertices in the graph, and then color them in order such
that all vertices must be a previous color if this is a proper coloring. Also, the
color for vi for any i must be the color which results in the fewest colors used
when there are multiple options for the color of vi . The maximum number of
number of colors used when varied over the orderings of the vertices is called
the ochromatic number. This has been shown to be equivalent to the first-fit
chromatic number [10].

A new variant, the partial grundy coloring, is also defined in [10]. This varies
from the first fit in that not every vertex must be a grundy vertex - or fulfill
the constraint we have been calling the first-fit constraint. Instead every color
class must have one grundy vertex [10].

There are also results on the products of graphs and their first-fit chromatic
numbers. This includes inequalities as well as two cases where the the first-fit
chromatic number of the product of two graphs is known. When G is a tree or
when χff (G) = ∆(G) + 1, then χff (G[H]) = χff (G) × χff (H) [2].

Because finding the first-fit chromatic number is NP-hard, people approx-
imate it. Some of theses approximations are for specific classes of graphs. A
linear time algorithm for the partial grundy number on trees is provided in [20].
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Chapter 4

Nordhaus-Gaddum type

results

In the beginning of this project we researched what has been done in the past
for Nordhaus-Gaddum type results as well as looking at graphs and their com-
plements.

4.1 Our Attempts

Part of what was done for this project was looking at graphs for nordhaus-
gaddum type results. Attempts were made for finding a nordhaus-gaddum type
result for the achromatic number before finding the result in a book. Similarly
attempting to combine the chromatic number, first-fit chromatic number, and
achromatic number by looking at A(G) + B(Gc) did not lead to any progress,
and later results were found by looking through papers.

One thing we did was looked at self-complementary graphs to see when they
reached the bounds for the nordhaus-gaddum type inequalities. However, as
this was done before figuring out how to use the computer to help look, it was
generally done by hand and thus only on small graphs. For graphs on 8 or fewer
vertices, only one of χ(G) + χ(Gc) and χff (G) + χff (Gc) could possibly be
reached because of parity.

Both of the self-complementary graphs of order 5 reach the bound for the
Nordhaus-Gaddum inequality, χ(G) + χ(Ḡ) = 6 = n + 1. However, neither
of these reach the bound for the first-fit chromatic number. This would be
impossible because with 5 vertices, the bound is n+2 or 7, which is not divisible
by 2.

We also looked at two of order 8. Both of these fulfilled the bound for the
first-fit chromatic number, χff (G)+χff (Gc) = 10 = 8+2, and were one below
on the Nordhaus-Gaddum inequality.

These were also found for graphs with greater order using a computer, how-
ever the results were unfortunately lost in a hard drive failure.
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4.2 Past Work with Nordhaus-Gaddum Type Re-

sults

Nordhaus and Gaddum proved in 1956 that for a graph G with n vertices
⌈2√n⌉ ≤ χ(G)+χ(Gc) ≤ n+1. Results of this sort are referred to as Nordhaus-
Gaddum type results.

This project began with understanding the paper, [12]. This paper included
Nordhaus-Gaddum type results for the first-fit chromatic number. It includes a
general Nordhaus-Gaddum type bound depending on the number of vertices. If
8 ≥ n ≥ 3, then χff (G) + χff (Gc) ≤ n+ 2, if n = 9 then χff (G) + χff (Gc) ≤
n+ 3, and if n ≥ 10 the χff (G) + χff (Gc) ≤ ⌊ 5n+2

4 ⌋ [12].
The first-fit chromatic number of families of graphs lead to some other

Nordhaus-Gaddum type results. If G is a bipartite graph then χff (G) +
χff (Gc) ≤ n + 2 [12]. If you define an almost regular graph to be a graph
which has the degree of vertices vary by one, then for a regular or almost reg-
ular graph,G, χff (G) + χff (Gc) ≤ n + 2 [26]. This same paper provides a
Nordhaus-Gaddum type result on forests. For a forest,G with n vertices and k
components, χff (G) + χff (Gc) ≤ n− k + 3 [26].

For a general simple graph, G, with n vertices, there is also Nordhaus-
Gaddum type inequalities for the achromatic number and the pseudoachromatic
number.

α(G) + α(Gc) ≤ ⌈4n

3
⌉

ψ(G) + ψ(Gc) ≤ ⌈4n

3
⌉

For all both of these, the bound is exact for every n[5].
Combining multiple of the invariants also has results.

α(G) + ψ(Gc) ≤ ⌈4n

3
⌉

χ(G) + ψ(Gc) ≤ ⌈n+ 1⌉
.

There are also results for extremal graphs where A(G)B(Gc) is minimum
where A and B are each pair of the chromatic number, achromatic number, and
pseudoachromatic numbers. Similarly there are some cases characterized for
minimum A(G) +B(Gc) [3].
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Chapter 5

Classes of graphs

5.1 Cycles

This section describes the relationship between the achromatic number and the
number of vertices in a cycle. This work was a combined effort of Andrew
Marut, Ethan Thompson and I.

Before proving this, the original pattern was found by using a prolog program
to determine the achromatic number of small cycles with

(

k
2

)

edges. The code
is in appendix B.

5.1.1 Odd Number of Colors

We now find the achromatic number of a cycle with
(

k
2

)

edges and an odd number
of colors.

Claim 5. A cycle with
(

k
2

)

edges with odd k has enough connectivity to be colored

with k colors.

Proof. As this is a cycle, n = e =
(

k
2

)

, and ∆ = 2. Substituting into the
inequality gives us

⌊
(

k
2

)

k
⌋ · 2 = k − 1

= ⌊
k!

2(k−2)!

k
⌋

= ⌊ (k − 1)!

2(k − 2)!
⌋ · 2

= ⌊k − 1

2
⌋ · 2

If k is odd, then k − 1 is even, so

k − 1

2
· 2 = k − 1
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k − 1 ≥ k − 1

Thus there is enough connectivity for a cycle with
(

k
2

)

edges to have achro-
matic number k.

Upper Bound

Using the inequality discussed above, ⌊n
k
⌋ ∗ ∆ ≥ k − 1 we can algebraically

show that a cycle with
(

k
2

)

edges (and therefore vertices), fulfills this constraint
without having enough edges for redundancy.

Claim 6. A cycle with
(

k
2

)

edges with odd k has achromatic number at most k

Proof.
(

k+1
2

)

>
(

k
2

)

and there are only
(

k
2

)

edges in the graph. Therefore the
achromatic number cannot be greater than k.

Lower Bound

We have an upper bound on the achromatic number of C(k

2)
of k, because there

is not enough edges for all color pairs given k + 1 colors. This means, if we can
show that the achromatic number has a lower bound of k, then we have proven
the achromatic number of C(k

2)
is exactly k.

We can represent all color pairs with a complete graph, with each vertex
associated with one color. If we can using this, construct a cycle with all color
pairs, we have shown that it is possible to color vertices such that all

(

k
2

)

color

pairs are present over the
(

k
2

)

edges.

Claim 7. A cycle with
(

k
2

)

edges with odd k has a complete coloring with k
colors, thus the achromatic number is k.

Proof. We can represent all color pairs with k colors with Kk, with all vertices
corresponding to a color. Because it is a complete graph, all vertices are adjacent
to all other vertices, and every pair of colors is present.

If we traverse an Eulerian circuit of Kk, where each vertex corresponds to a
color, then we have covered every pair of colors. Because k is odd, every vertex
has an even degree and the graph is connected, therefore the graph is Eulerian.
.

The complete graph Kkhas
(

k
2

)

edges. We can construct a coloring of C(k

2)
by

coloring each vertex the color of the corresponding vertex in Kk while traversing
the Eulerian circuit on Kk.

This leads to a complete coloring with k colors on C(k

2)
.

We have shown a lower bound on the achromatic number of C(k

2)
which

matches the upper bound. Therefore the achromatic number of C(k

2)
, with odd

k, is k.
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5.1.2 Even Number of Colors

Not Enough Edges

Using the inequality discussed above, ⌊n
k
⌋ ∗ ∆ ≥ k − 1 we can algebraically

show that a cycle with
(

k
2

)

edges (and therefore vertices), does not fulfill this
constraint without having enough edges for redundancy.

Claim 8. A cycle with
(

k
2

)

colors with even k does not have a complete coloring

with k colors.

Proof. As this is a cycle, n = e =
(

k
2

)

, and ∆ = 2. Substituting into the
inequality gives us

⌊
(

k
2

)

k
⌋ · 2 = k − 1

= ⌊
k!

2(k−2)!

k
⌋

= ⌊ (k − 1)!

2(k − 2)!
⌋ · 2

= ⌊k − 1

2
⌋ · 2

If k is even, then k − 1 is odd, so

k − 2

2
· 2 = k − 2

k − 2 6 ≥k − 1

k=4

We can begin by looking at the case where k = 4. With 4 colors all colors must
be adjacent to at least 3 different vertices. Because this is a 2-regular graph,
this means that all colors must have two vertices colored that color. C8 does
have a complete coloring with 4 colors shown in figure 5.1.

In order to have enough connectivity, we needed to add 2 = 4/2 = k/2
redundant edges.

Lower Bound

Like in the k = 4 case, in the general even case we have k colors, all of which
need to be adjacent to k − 1 colors. This means that each color must have
⌈k−1

2 ⌉ = k
2 vertices colored that color colored that color. With k colors and k

2

vertices per color, there is a total of k2

2 vertices (and edges). This is k
2 more

edges than the minimum number of edges.

With even k and a cycle,
(

k
2

)

+ k
2 = k2

2 edges is a lower bound on the minimum
required for achromatic number k.
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Figure 5.1: C8 with a complete coloring of 4 colors
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Upper Bound

We can represent all color pairs with a complete graph, with each vertex asso-
ciated with one color and use this as a beginning for our construction.

Claim 9. With even k and a cycle with k2

2 edges, you can color this cycle in a

complete coloring with k colors, thus the achromatic number is k.

Proof. We can represent all color pairs with k colors with Kk, with all vertices
corresponding to a color. Because it is a complete graph, all vertices are adjacent
to all other vertices, and every pair of colors is present.

If we traverse an Eulerian circuit of Kk then we have covered every pair of
colors. However, k is even, so every vertex has odd degree, and we do not have
an Eulerian circuit.

We have an even number of vertices, so we can add edges connecting pairs
of vertices until all vertices have an even degree. This adds k

2 edges.

The multigraph with order
(

k
2

)

with Kk as a subgraph, and all vertices with
degree k, has an Eulerian circuit.

This graph has
(

k
2

)

+ k
2 = k2

2 edges. We can construct a coloring of C k2

2

by coloring each vertex the color of the corresponding vertex in our multigraph
while traversing the Eulerian circuit on the multigraph.

This leads to a complete coloring with k colors on C k2

2

.

We have shown an upper bound on the number of edges in a graph with
achromatic number k which matches the lower bound. Therefore C k2

2

is the

smallest cycle with achromatic number k for even k.

5.2 Regular graphs

While ⌊n
k
⌋ ∗ ∆ ≥ k − 1 and e ≥

(

k
2

)

are necessary and sufficient in the case of a
cycle, these are not sufficient in the case of a general regular graph.

K3,3 is a counterexample. K3,3 has 6 vertices and 9 edges. If we attempted
a complete coloring with 4 colors, the necessary constraints hold -

9 >

(

k

2

)

=

(

4

2

)

= 6

and

3 = 4 − 1 = k − 1 ≤ ⌊n
k
⌋ ∗ ∆ = ⌊6

4
⌋ ∗ 3 = 3

However, K3,3 does not have a complete coloring on 4 colors.

Claim 10. K3,3 does not have a complete coloring on 4 colors.

Proof. For a complete coloring, all pairs of colors must appear adjacent some-
where in the graph. This means that there must be a vertex in the first inde-
pendent set colored 1 and one in the second independent set colored 2. If there
was to be a vertex colored a third color, it must fall into one of these two sets
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because they form a partition. Because it is complete bipartite, this vertex is
adjacent to one of the two previous vertices, of color i. This means we do not
currently have a vertex colored 3, and a vertex colored j, adjacent at this point
in time. If we are to color a new vertex j in order to fulfill this constraint, it
must fall into the set the vertex colored 3 is not in. However, any vertex in the
other set is also adjacent to a vertex already colored j. Because two adjacent
vertices cannot be colored the same color, there is no complete coloring with 3
or more colors on a complete bipartite graph.

K3,3 is a complete bipartite graph, therefore has achromatic number 2.

Thus, we know that these constraints are not sufficient for all m-regular
graphs for arbitrary m.

5.3 Achromatic Number of Trees

At one point during the project we looked at trees with
(

k
2

)

edges which had
the achromatic number k to see if we could find any patterns. While after this
we found previous work done on the achromatic number and trees as well as
the fact that the achromatic number of a tree is an NP-complete problem, this
work is included. There was no progress made, but the simple things which were
looked at are included in this section. The comparisons made were between the
degree sequences of the different trees and the achromatic number in the cases
where there were

(

k
2

)

edges and the achromatic number was k.
To begin this process, we looked at the achromatic number of all non-

isomorphic trees of size 6. After this we looked at all non-isomorphic trees
of size 10. These graphs were generated using the program nauty, which is dis-
cussed in appendix A. These graphs were ran though prolog program written
for this project, which determined the achromatic number. This code is in B.

5.3.1 Trees with Size Six

The path on 7 vertices does not have a complete coloring with 4 colors. We
know this because

⌊n
k
⌋ ∗ ∆ = ⌊7

4
⌋ ∗ 2 = 1 ∗ 2 = 2 6 ≥4 − 1 = k − 1

This tree has degree sequence 2,2,2,2,2,1,1.
There are three non-isomorphic graphs with degree sequence 3,2,2,2,1,1,1.

They all have achromatic number 4.
There are two non-isomorphic graphs with degree sequence 3,3,2,1,1,1,1.

These are pictured in figure 5.2
The graph with the two vertices of degree three adjacent has a complete

coloring with 4 colors. However the one with them not adjacent, does not. In
that case, the vertex of degree two is adjacent to both vertices of degree three,
and the set of vertices with the same color as the vertex of degree three, is not
connected to three different vertices.

19



a

b c d

e f

g

a a

bb cc dd

e e

ff gg

Figure 5.2: The two trees with degree sequence 3,3,2,1,1,1,1
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degree sequence α(G)

2,2,1,1 3
2,2,2,2,2,2,1 3
3,2,2,2,1,1,1 4
3,3,2,1,1,1,1 3 or 4
4,2,2,1,1,1,1 3
5,2,1,1,1,1,1 3
6,1,1,1,1,1,1 2

Table 5.1: Degree Sequences and corresponding achromatic numbers for trees.

The other trees, those with maximum degree 4, 5, or 6, cannot have achro-
matic number 4. This is because there must be a repeated pair of colors - there
is a vertex adjacent to greater than 3 vertices, and there are not more than 3
colors for it to be paired with.

The only tree of size
(

3
2

)

= 3 is the path on 4 vertices. The degree sequence
is 2, 2, 1, 1 and the achromatic number is 3, with the coloring 1-2-3-1.

The list of the trees we currently have with their pseudochromatic numbers
are in table 5.1.

One immediate observation is that if
(

k
2

)

= e, and ∆(G) > (k − 1) then the
achromatic number cannot be k, because of repeated pairs of colors. This is
true in trees or in other graphs.

Another immediate observation is that even in the case of only trees, the
achromatic number cannot be determined from only the degree sequence.

5.3.2 Trees with Size Ten

To try to determine whether we could find any patterns as to when the degree
sequence, we found the achromatic number of trees of size 10 (removing the
cases where the achromatic number was necessarily less than 5).

With this size graph, we are looking at the case where
(

k
2

)

= e and α(G) = k,
with k = 5.

We know that if ∆(G) > (k − 1), then the achromatic number cannot be k.
This means we don’t have to check the cases with ∆(G) > 4

All of the trees of order 11 with max degree less than 5 were generated with
the nauty command ”./geng -c -t -f -b -D4 11 — ./pickg -g0”. What this does
is described in appendix A.

There are 159 trees of order 11 with max degree less than 5. The achromatic
numbers of these 159 graphs were found with a prolog program, and 129 of the
graphs fulfilled the bound. Only three degree sequences uniquely determined
the achromatic number and in two of these cases the degree sequence uniquely
determined a tree.
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Chapter 6

Existence of graphs

6.1 Chromatic, Achromatic, and Pseudoachro-

matic

In this section we discuss a proof in On the existence of graphs with prescribed

coloring parameters [25]. Their proof is described in detail.
The proof begins by constructing a family of graphs with predictable chro-

matic, achromatic, and pseudoachromatic numbers. The pseudoachromatic
number can be increased without increasing the other two numbers, and the
achromatic number can be increased without increasing the chromatic number.

Theorem 1. For any a,b,c such that 2 ≤ a ≤ b ≤ c, there exists a graph with

chromatic number a, achromatic number b, and pseudoachromatic number c.

Proof. Construct a graph, call itGm,n which is a bipartite graph with a complete
bipartite subgraph as well as a subgraph of which the achromatic number is
dependent on the number of vertices.

This graph has bipartition (A,B) where A is {u, u1, ..., um} ∪ {y1, ...yn} and
B is {v, v1, ..., vm} ∪ {x1, ..., xn}.

E(G) = {(ui, xj)|1 ≤ i ≤ m, 1 ≤ j ≤ n} ∪ {(vi, yj)|1 ≤ i ≤ m, 1 ≤ j ≤
n}∪{(yi, xj)|1 ≤ i ≤ n, 1 ≤ j ≤ n}∪{(ui, vj)|1 ≤ i ≤ j ≤ m}∪{(u, vm), (v, yn)}

This graph is pictured in figure 6.1 with the double line meaning that the
two sets of vertices are joined - that is that every vertex in one subset is adjacent
to every vertex in the other subset.

Chromatic number

Because this graph is bipartite the chromatic number is 2.

Achromatic number

The achromatic number of this graph is m+3.
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u

u2 u3 x1

y1 y2

x2

v

Figure 6.1: A picture of the bipartite graph

Lower Bound

α(G) ≥ m+ 3
Color the graph the following:

• For all i, color yi cm+2 and xi Cm+3.

• For 1 ≤ i ≤ m color ui ci and vi ci+1.

• Color u cm+2.

• Color v c1.

As an example G3,2 is shown in figure 6.2.
This construction gives a complete coloring with m+ 3 colors, and thus the

achromatic number must be at least m+ 3.

Upper Bound α(G) ≤ m+ 3
Assume there is a complete coloring with m+4 colors. Let f be this coloring.
X cannot contain vertices of more than two different colors. As every vertex

of X is connected to every vertex of Y and every vertex of U, any color which
appears in X cannot appear in U or Y. As X is an independent set, and is not
adjacent to anything in V ∪ u ∪ v , the only edges which satisfy the complete
coloring constraint for the colors in X, must have both vertices in V ∪ u ∪ v.
(vm, u) can satisfy the adjacency requirement of two colors, allowing X to contain
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Figure 6.2: A small graph showing a complete coloring with m+3 colors.

vertices of two separate colors. However, V ∪u∪v∪X contains no other pairs of
adjacent vertices, and thus cannot fulfill the complete coloring constraint. Thus
X cannot contain vertices of more than two different colors.

The same logic holds for Y, with U ∪ u ∪ v in the place of V ∪ u ∪ v. (yn, v)
allows one pair of colors, but more than two colors in Y contradicts it being a
complete coloring.

We now have four cases, both X and Y containing one color, both X and Y
containing two colors, X containing one while Y contains two, and Y containing
one while X contains two.

Case 1: X and Y both receive one color.
Call the color received by X c1 and the color received by Y c2. If f∗ =

f − {c1, c2} then |f∗| ≥ m + 2. This means that there must be at least two
colors, ca, cb that are not received by V, as |V | = m. This means that the two
colors are only possibly received by U ∪ {u, v}, which is an independent set of
vertices. This means that the coloring cannot be complete as there cannot be
an edge between vertices colored ca and cb. Thus the graph cannot have X and
Y both receive one color and α(Gm,n) ≥ m+ 4.

Case 2: Y receives two colors while X receives one.
The color of X must be different than the two in Y in order for it to be a

coloring.
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Call the color received by X c1 and the two received by Y c2 and c3. Without
loss of generality assume f(yn) = c2 and f(v) = c3. If f∗ = f −{c1, c2, c3} then
|f∗| ≥ m + 1. This means there must be a color ca, that is not received by V.
This color could only be represented in U ∪{u}. However no vertex in, U ∪{u}
is adjacent to any vertex in Y ∪ {v} and c2 and c3 cannot be used in X or U,
as it would not be a legal coloring. This means that any vertices colored ca
are not adjacent to either c2 or c3, making the coloring not complete. This is a
contradiction and the graph cannot have X receive one color and Y receive two
and α(Gm,n) ≥ m+ 4.

Case 3: Y receives one color while X receives two.
We can apply the same logic as in case two, when Y receives one color and

X receives two.
Call the color received by Y c1 and the two received by X c2 and c3. Without

loss of generality assume f(vm) = c2 and f(u) = c3. If f∗ = f − {c1, c2, c3}
then |f∗| ≥ m+ 1 This means there must be a color ca that is not received by
U. This color can only be represented in V ∪ {v} − {vm}. However, no vertex
of V ∪ {v} is adjacent to any vertex in X. This means that there is no edge
between a vertex of color ca and one of c3, making the coloring not complete.

Case 4: X and Y both receive two colors.
We can one again apply the same logic as in cases two and three.
Let X receive colors c1 and c2 and Y receive colors c3 and c4. Without

loss of generality assume f(vm) = c1, f(u) = c2, f(yn) = c3 and f(v) = c4. If
f∗ = f − {c1, c2, c3, c4} then |f∗| ≥ m. This means there must be a color ca
that is not received by V − {vm} as |V − {vm}| = m − 1. vm cannot be this
color because it has already been colored c1. This means there must be a vertex
of this color in U. However, no vertices of U are adjacent to any vertices in Y,
so there is not any edge between a vertex of color ca and a vertex of color c3.
Thus the coloring is not complete.

Because we have proven Gm,n cannot be colored in a complete coloring with
m+ 4 colors we have shown that α(Gm,n) ≤ m+ 3.

Because α(Gm,n) ≥ m+ 3 and α(Gm,n) ≤ m+ 3, α(Gm,n) = m+ 3.

Pseudoachromatic number

Ψ(Gm,n) = m+ n+ 2

Lower Bound

Color the graph the following:

• For 1 ≤ i ≤ m, color ui ci.

• For 1 ≤ i ≤ m color vi ci+1.
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• For 1 ≤ j ≤ n color xi cm+j+1.

• For 1 ≤ j ≤ n color yi cm+j+2.

• Color u cm+2

• Color v c1

This is a pseudocomplete coloring with m + n + 2 colors, thus ψ(Gm,n) ≥
m+ n+ 2.

Upper Bound

Gm,n is a subgraph of Km+n+1,m+n+1.
Let f be a pseudocomplete coloring of Ka,a. Assume |f(V (Ka,a))| ≥ a + 2.

This means there exists two colors, call them c1 and c2, which are both not
represented in one part (an independent set containing a vertices) of the graph.
This means they both must be represented in the other part. However, as it is
a bipartite graph, this second half is also an independent set. Thus there are
no two vertices colored c1 and c2 that are adjacent. This is a contradiction to
it being a pseudocomplete coloring and thus ψ(Ka,a) < a+ 2.

This means ψ(Km+n+1,m+n+1) ≤ m+n+2. The pseudoachromatic number
cannot be increased by adding edges and Gm,n is a subgraph so ψ(Gm,n) ≤
m+ n+ 2.

Because ψ(Gm,n) ≤ m+ n+ 2 and ψ(Gm,n) ≥ m+ n+ 2,

ψ(Gm,n) = m+ n+ 2

Completing the proof

The graphs with chromatic number a, achromatic number b, and pseudoachro-
matic number c are now constructed.

Case 1: a = b
If the chromatic number and achromatic number are equal then the graph

Ka−2 joined with Kc−a+1,c−a+1 has chromatic number a, achromatic number
b, pseudoachromatic number c.

Joining a bipartite graph to Ka−2 forces the chromatic number to increase
by 2, because of the a− 2 vertices being adjacent to both independent sets and
the two independent sets are adjacent. Thus the chromatic number is a.

Joining a complete bipartite graph to Ka−2 can only increase the achromatic
number by 2, because adding a 3rd color forces it to not be a proper coloring.
Thus the achromatic number is a which is the same as b.

Kc−a+1,c−a+1 has pseudoachromatic number c − a + 2 as proven above.
Joining on a−2 more vertices each with a new color causes the pseudoachromatic
number to be c− a+ 2 + (a− 2) = c− a+ a− 2 + 2 = c.
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Case 2: b = a+ 1
If a = 2 then use the complete bipartite with c − 1 vertices in the two

independent sets minus one edge.
It is bipartite so a = 2.
Removing one edge allows you to add one color for the achromatic coloring.

The achromatic number cannot be 4, because besides those two disconnected
vertices, the rest of the graph can only have achromatic number 2 and those
two are not connected. However coloring them both 3, and coloring all other
vertices on one of the remaining independent sets 1 and the other independent
set 2 gives a complete coloring with 3 colors. Thus b = 3.

We know the pseudoachromatic cannot be greater than c = c − 1 + 1 for
reasons described above. We can color it by rearranging the graph so that the
two vertices without an edge connecting them are on the end. Call the two
independent sets A and B. Color ai color i, for 1 ≤ i ≤ c− 3 color bi color i+1,
color bc−2 color c, and color bc−1 color c− 1. This is a pseudocomplete coloring
with c colors. Thus the pseudoachromatic color is c.

If a > 2 then the graph is a vertex joined to Kc−a,c−a joined to Ka−2 joined to
a vertex.

The chromatic number is a because of the reasoning given in case 1.
The achromatic number is b = a+1. Joining the complete bipartite graph to

the complete graph can only increase the achromatic number by 2 (as described
above. However, joining one vertex to the complete bipartite and another one
to the complete graph allows both of those to be colored one extra color which
is adjacent to all vertices.

The pseudoachromatic number is c. The pseudoachromatic number of the
complete bipartite graph is c − a + 1 as proved above. Joining this to Ka−2

adds a − 2 more colors exactly. This leads to c − a + 1 + a − 2 = c − 1 colors.
The vertex joined to the complete bipartite graph can be colored a previously
unused color and the vertex joined to the complete graph must be colored the
same color in order to have all pairs of colors used. Thus the pseudoachromatic
number is c.

Case 3: b ≥ a+ 2
If b ≥ a + 2 then join Ka−2 to Gb−a−1,c−b+1 for the graph with chromatic

number a, achromatic number b, and pseudoachromatic number c.
The achromatic and pseudoachromatic numbers cannot increase by more

than a− 2 between Gb−a−1,c−b+1 and that graph with Ka−2 joined, because all
edges added include one vertex of a color not used in Gb−a−1,c−b+1. However,
they increase by 1 because these a− 2 colors are adjacent to all vertices.

The chromatic number is a because all vertices in Ka−2 are adjacent to all
vertices in two other independent sets U ∪Y ∪{u} and V ∪X ∪{v}. These sets
have adjacencies between them, disallowing for them to be colored the same
color. Thus we need a− 2 + 2 = a colors to have a proper coloring.

The achromatic number is b because a−2+(b−a−1+3) = a−a+3−3+b = b.

27



The pseudoachromatic number is c because a−2+(b−a−1+(c−b+1)+2) =
a− a+ 2 − 2 + b− b+ 1 − 1 + c = c

6.2 The First-fit Chromatic Number for Gm,n

In the section above we describe a family of graphs constructed in [25] used to
prove that for any a, b, and c such that 2 ≤ a ≤ b ≤ c there exists a graph such
that χ(G) = a, α(G) = b, ψ(G) = c. In this section we determine the first-fit
chromatic number of this family of graphs is 3.

Lemma 1. Neither U not V can contain both a vertex of color 2 and a vertex

with color greater than 2

Proof. Let ca be some color greater than 2.
Assume 2 and ca are on the same side. Without loss of generality let this

side be V .
Let vi be a vertex colored ca. Because ca is greater than 2, it must be

connected to some vertex of color 2. This vertex of color 2 cannot be in Y
because all vertices of Y are adjacent to all vertices of V and by our assumptions
V contains a vertex colored 2, which would cause this to not be a proper coloring.
This means, if vi is colored ca then for some j ≤ i, uj must be colored 2.

Because there is some vertex colored 2 in V , there must be a vertex vk such
that k < j colored 2. This is because if k ≥ j then 2 is adjacent to 2 and we do
not have a proper coloring.

Because this is a first-fit coloring vk must be adjacent to a vertex of color 1.
Y cannot contain a vertex of 1 because if Y contained one, then X and V could
not contain any vertices of color 1. This means that U would not be adjacent
to any vertices of color 1, but uj must be adjacent to a vertex of color 1.

This means that there must be a vertex ul such that l ≤ k that is colored 1.
However uj must also be adjacent to a vertex of color 1. This adjacent vertex

cannot be in X, because then the vertex ul which is colored 1, is adjacent to
another vertex colored 1, and we do not have a proper coloring.

If the vertex colored 1 and adjacent to ul is in V, then it must be vh for
some h ≥ j. But in that case ul and vm both colored 1, are adjacent, because
vh is adjacent to all ux such that x ≤ h and l ≤ k ≤ j ≤ h, making l ≤ h.

Thus we have a contradiction and V cannot contain vertices colored both ca
and 2.

Lemma 2. There is no first-fit coloring of Gm,n such that U ∪V ∪{u} receives

4 colors

Proof. {u} is irrelevant for this coloring. It cannot be colored greater than 2
because of having degree 1.
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Case 1: If it is colored 2, then vm must be colored 1, which forces none of
U ∪ Y to contain a vertex colored one, making all vertices of V ∪X be colored
1. This means all vertices of U are colored 2, as they cannot be adjacent to
anything colored 2. Similarly all vertices of Y are colored 2, because only yn

has any non-colored vertices, and it cannot be anything greater than 1 (if it is
a 2, then yn is colored 1 and this is not a proper coloring).

Case 2: If u is colored 1 and vm is not adjacent to any other vertices colored
1, then U∪Y cannot contain any vertices colored 1. This means X must contain
only vertices colored 1. Similarly V −{vm} must all be colored 1 as they cannot
be adjacent to something colored 1. Because U is only adjacent to 1 vertex
which has not been predetermined in color and all of U is adjacent to that
vertex, all of U must either be colored 2 or 3.

Subcase 2.1: If U is colored 3, then vm must be colored 2. This causes Y
to all be forced to be colored 3 as it is not adjacent to any 3s and they are all
adjacent to both 1 and 2 (and v cannot be colored 3 because of its degree).

Subcase 2.2: If U is all colored 2, then vm cannot be 2, which makes Y not
adjacent to any vertices colored 2, forcing all of it to be colored 2 (if v is colored
2, then yn is colored 1, which would make this not a proper coloring). Because
vm is the only uncolored vertex and it is not adjacent to any vertices colored
3, it cannot be colored 4. However it is adjacent to both vertices colored 1 and
vertices colored 2, making it colored 3.

If we have a vertex colored 4, it must be adjacent to both a vertex colored
2 and a vertex colored 3.

Because the coloring of u is irrelevant, we can say without loss of generality
that the vertex colored 4 is in U .

From Lemma 1, we know that the vertex colored 3 and the vertex colored 2
cannot both be in V .

Case 1: If the vertex colored 3 is in V
Because no vertex colored 2 is in V , there must be a vertex colored 2 in X.
However, the vertex colored 3 in V must be adjacent to some vertex colored

2. V is only adjacent to vertices in U ∪ Y (though not all of them), so some
vertex in U ∪ Y must be colored 2. However all vertices in X are adjacent to
all vertices in U ∪ Y . As a vertex in X is already required to be colored 2, this
forces two vertices of color 2 to be adjacent, making it not a proper coloring.

Case 2: If the vertex colored 2 is in V
Because no vertex colored 3 is in V there must be a vertex colored 3 in X.
This vertex colored 3 must be adjacent to some vertex colored 2, meaning

there must be some vertex colored 2 in U ∪ Y .
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If the vertex colored 2 is in Y then we do not have a proper coloring, as all
vertices of V and Y are adjacent.

This means the vertex colored 2 must be in U . However, there is a vertex
colored 4 in U and by Lemma 1 we have a contradiction.

All cases lead to a contradiction so there cannot be a complete coloring such
that U ∪ V ∪ {u} receives 4 colors.

Lemma 3. The first fit chromatic number of Gm,n is 3

Proof. In figure 6.3 we color G3,2 with 3 colors. This can be generalized as a
coloring for Gm,n

2

1 3 3

1

1 1 3

2 2

3

1

Figure 6.3: A coloring fulfilling the first-fit constraint of Gm,n

Color Gm,n the following:

• u1 is colored 2.

• v1 is colored 1.

• for 2 ≤ i ≤ m color ui 1.

• for 2 ≤ i ≤ m color vi 3.

• for 1 ≤ j ≤ n color xj 3.

• for 1 ≤ j ≤ n color yj 2.
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• u is colored 1.

• v is colored 1.

This is a coloring fulfilling the first-fit constraint using 3 colors.

Thus we now need to give an upper bound of 3 for the first-fit chromatic number.
We know from lemma 2 that the vertices U ∪V ∪{u} cannot include a vertex

colored 4.
v cannot have color 4, because it has degree 1. Thus we have two cases,

when X contains a vertex of color 4 and when Y contains a vertex of color 4.

Case 1: Y contains a vertex of color 4.
From lemma 1 we know that V does not contain vertices with color 2 and

vertices with color 3.
If V contains a vertex with color 3, then U ∪ Y must contain a vertex colored
2. However, every vertex in U ∪ Y is adjacent to all vertices in X, and some
vertex in X must have color 2 for some vertex in Y to have color 4. u being
colored 2 cannot allow yn to be colored 4 without X containing a vertex of color
4, because then u would not be adjacent to any vertex of color 1.
If V contains a vertex of color 2, then U can either contain a vertex of color 3,
or contain no vertices of color 3.

If U contains a vertex of color 3, then X cannot contain any vertices of color
3 because all vertices of X are adjacent to all vertices of U . Similarly V cannot
contain a vertex of color 3 because by lemma 1 it cannot contain a vertex of
color 2 and a vertex of color 3. Because v cannot be colored 3 by its degree, no
vertex in Y can be adjacent to any vertices of color 3, and thus cannot be color
4.

If U does not contain any vertices of color 3, then the vertices of U only
receive colors 1 and 2.

Subcase: If U only receives 1
In order for Y to contain a vertex colored 4, this vertex must be adjacent to

some vertex colored 3.
However V cannot have a vertex colored 3 because of our assumption that

V contains a vertex colored 2. This means X must contain a vertex colored 3.
In order for this vertex to be colored 3 it must be adjacent to a vertex colored

2. X is only adjacent to vertices in Y ∪ U .
We have assumed that U has no vertices colored 2 for this case. Thus Y

must have a vertex colored 2. However all vertices in Y are adjacent to all
vertices in X, so this is not a proper coloring.

Subcase: If U contains a vertex colored 2
V contains a vertex colored 2 which must be adjacent to a vertex colored 1.

This vertex could either be in U or in Y .
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vm is adjacent to all vertices of U as well as all vertices of Y . This means
that vm is adjacent to a vertex with color 2 and a vertex with color 1, and thus
cannot be colored either color 2 or color 1.

However, by lemma 1, V cannot contain a vertex colored 2 and a vertex
colored any color greater than 2. Thus there is a contradiction.

Case 2: X contains a vertex colored 4.
We can apply the same logic as in the previous case to show that X cannot

contain a vertex colored 4.

Thus Gm,n cannot have a first-fit coloring with 4 or greater colors. As we
have shown both a lower and upper bound of 3, χff (Gm,n) = 3.

6.3 Chromatic, First-fit Chromatic, and Achro-

matic Numbers

The following section is work which I have done inspired by the proof in section
6.1. It proves for any a, b, c such that 2 ≤ a ≤ b ≤ c there is a graph with
chromatic number a, achromatic number b and pseudoachromatic number c. In
this section we begin an attempt to prove that for any a, b, c such that 2 ≤ a ≤
b ≤ c there is a graph with chromatic number a, first-fit chromatic number b
and achromatic number c.

Conjecture 1. For any a,b,c such that 2 ≤ a ≤ b ≤ c, there exists a graph with

chromatic number a, first-fit chromatic number b, and achromatic number c.

We begin by constructing a family of bipartite graphs which we can vary first-
fit chromatic number and achromatic number with, while keeping a constant
chromatic number. Figure 6.4 includes an example graph from this family.

Chromatic Number:

Because this graph is bipartite the chromatic number is 2.

First-fit Chromatic Number

For a lower bound we can color

Lower Bound

• u1 is colored 2.

• v1 is colored 1.

• x1 is colored 3.

• y1 is colored 2.
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Figure 6.4: The graph used for proving the existence of a graph with chromatic
number a, first-fit chromatic number b and achromatic number c.
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• for 2 ≤ i ≤ m color ui 1.

• for 2 ≤ i ≤ m color vi 3.

• for 2 ≤ j ≤ n color xj j + 3.

• for 2 ≤ j ≤ n color yj j + 3.

• t1 is colored 1.

• t2 is colored 2.

• t3 is colored 3.

• t4 is colored 1.

• s1 is colored 1.

• s2 is colored 2.

This is a coloring which uses n+ 3 colors.

Upper Bound

Assume that this graph can be colored with n+ 4 colors.
As neither lemma 1 nor lemma 2 relies on what the subgraph containing

only the vertices U ∪ V is joined to is complete bipartite, only bipartite, these
two lemmas still hold.

This means that we know that U ∪ V can only receive 3 colors, and that
neither U nor V receives both 2 and 3.

Without loss of generality, lets say that V receives 3. This means that U
receives 2.

In order for Y to receive anything greater than a 2 it must be adjacent to a
2. X cannot receive 2 because all vertices in X are adjacent to all vertices in U
and that places a 2 adjacent to a 2. V cannot receive 2 because it has received
3 and by lemma 1 V cannot receive both 2 and 3. This means that for Y to
receive anything greater than a 2 s2 must receive 2 and thus s1 must receive 1
for the 2 to be adjacent to a 1.

Similarly in order for X to receive anything greater than a 3, it must be
adjacent to a 3. Y cannot receive 3 because all vertices in Y are adjacent to all
vertices in V and that places a 3 adjacent to a 3. U cannot receive a 3 because
it has received 2 and by lemma 1 U cannot receive both 2 and 3. This means
that for X to receive anything greater than a 3 t3 must receive 3. This means
that t4 is colored 1, t2 is colored 2, and t1 is colored 1.

This means that either X or Y must receive color n + 4. Without loss of
generality lets assume that Y receives it.

Y is adjacent to all vertices in V , s2 and all but one vertex in X.
V cannot receive more than 2 colors because of the combination of lemmas

1 and 2.
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As one vertex can only receive one color and s2 is one vertex, s2 receives one
color.

In X, Y is adjacent to n− 1 vertices. These can receive at most n− 1 colors
as no vertex can receive more than one color.

If we sum up the number of colors that Y can be adjacent to we get n − 1
colors fromX, two colors from V , and one color from s2 and 2+1+(n−1) = n+2.

However a vertex colored n + 4 must be adjacent to vertices colored all
previous colors, of which there are n + 3. This is not adjacent to vertices of
n+ 3 different colors and thus is not a first-fit coloring.

This is a contradiction, and thus the graph cannot be colored fulfilling the
first-fit constraint with n+ 4 colors. Thus the first-fit number is n+ 3.

Achromatic Number

We are attempting to find the achromatic number of this family of graphs. The
following are the current bounds that we have found.

A complete coloring with m+n+2 colors is possible. This can be done with

• for 1 ≤ i ≤ m color ui i.

• for 1 ≤ i ≤ m color vi i+ 1.

• for 1 ≤ j ≤ n color xj j +m+ 1.

• for 2 ≤ j ≤ n− 1 color yj j +m+ 1.

• yn is colored m+ n+ 2

• t1 is colored 1.

• t2 is colored m+ n+ 2.

• t3 is colored 1.

• t4 is colored 2.

• s1 is colored 1.

• s2 is colored m+ n+ 1.

We also know that the achromatic number of this graph is no greater than
m+ n+ 4.

ψ(Km+n+3,m+n+3) ≤ m + n + 4, as proven in section 6.1. This graph,
G, is a subset of Km+n+3,m+n+3 which means that ψ(G) ≤ m + n + 4. The
achromatic number is less than or equal to the pseudoachromatic number so
α(G) ≤ m+ n+ 4.
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Appendix A

Nauty

Nauty is a program used for computing automorphism groups of graphs. [18]
One use is generating all non-isomorphic graphs with given properties.

For this project I needed to generate graphs with specific properties in order
to find the achromatic and first-fit numbers of this graph. The most important
command was geng - generate graph. I also used pickg - select graphs with
given properties.

When generating trees of order 11 I used

./geng -c -t -f -b -D4 11 | ./pickg -g0

The command geng generates all non-isomorphic graphs of a given class,
(-c specifies only connected graphs, -t specifies triangle-free graphs, -f specifies
4-cycle free graphs, -D4 specifies the maximum degree to be no greater than 4,
11 is the number of vertices in the graph).

The command pickg selects graphs according to the properties, -g0 specifies
acyclic graphs. While pickg could have been passed all graphs on 11 vertices,
generating the subset of the graphs of order 11 was more efficient.
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Appendix B

Prolog Code for Finding

the Achromatic Number

The following code was written to find the achromatic number by searching
for colorings with a given number of colors until it cannot find one, and then
subtracting one. Some checks were included, such that it would not try to search
for a coloring when we know there cannot be a complete coloring - these include
making sure that there is enough edges for every pair to be possible as well
as making sure there is enough connectivity that vertices would not necessarily
need to be multiple colors.

As this was originally written to find the achromatic number of cycles, there
are also ways to generate cycles with a given number of vertices.

This was written by Stephanie Fuller with help from Jonathan Gibbons, as
it was written in the process of learning prolog.

/*E is the set of edges in the graph,

N is the number of vertices in the graph */

alist(List, Key, Value) :-

member([Key,Value],List).

alist_push(List, Key, Value, Newlist) :-

Newlist = [[Key,Value]|List].

adjacent(A,B,E) :-

member([A,B],E);

member([B,A],E).

color(Node,Color,Coloring) :-

alist(Coloring,Node,Color).

conflict(Coloring,E) :-
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adjacent(X,Y,E),

color(X,Color,Coloring),

color(Y,Color,Coloring).

color_node(Node, Colors, Coloring, NewColoring,E) :-

alist_push(Coloring,Node,C,NewColoring),

member(C,Colors),

\+ conflict(NewColoring,E).

color_from_pair(ColorPair, Color):-

ColorPair = [_,Color].

next_possible_colors(Colors,Coloring,[NewColor|UsedColors]) :-

maplist(color_from_pair,Coloring,UsedColorBag),

sort(UsedColorBag,UsedColors),

length(UsedColors,MaxColorIndex),

NextColorIndex is MaxColorIndex + 1,

nth1(NextColorIndex,Colors,NewColor).

next_possible_colors(Colors,Coloring,UsedColors) :-

maplist(color_from_pair,Coloring,UsedColorBag),

sort(UsedColorBag,UsedColors),

length(UsedColors,MaxColorIndex),

length(Colors,MaxColorIndex).

color_nodes([Node | Nodes], Colors, Coloring, FinalColoring,E) :-

next_possible_colors(Colors, Coloring, NextColors),

color_node(Node, NextColors, Coloring, NewColoring,E),

color_nodes(Nodes, Colors, NewColoring, FinalColoring,E).

color_nodes([], _, Coloring, FinalColoring, _) :-

FinalColoring = Coloring.

all_unordered_pairs_with(A, [B|R],T) :-

T=[[A,B]|C],

all_unordered_pairs_with(A,R,C).

all_unordered_pairs_with(_,[],[]).

all_unordered_pairs([A|R],T) :-

all_unordered_pairs_with(A,R,U),

all_unordered_pairs(R,V),

append(U,V,T).

all_unordered_pairs([],[]).
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nodes([[A,B]|Rest],Nodes):-

nodes(Rest,RestList),

merge_set([A],RestList,Y),

merge_set([B],Y,Nodes).

nodes([],[]).

complete(Colors,Coloring,E):-

nodes(E,Nodes),

complete(Nodes,Colors,Coloring,E).

complete(Nodes, Colors, Coloring,E) :-

color_nodes(Nodes, Colors, [], Coloring,E),

all_unordered_pairs(Colors, Color_pairs),

check_color_pairs(Color_pairs, Coloring,E).

check_color_pairs([[C1, C2]| OtherPairs], Coloring,E) :-

adjacent(N1, N2,E),

color(N1, C1, Coloring),

color(N2, C2, Coloring),

check_color_pairs(OtherPairs, Coloring,E).

check_color_pairs([],_,_).

cycle(N,E) :-

E = [[1,N]|RestEdges],

chain(N,RestEdges).

chain(N,E) :-

chain(1,N,E).

chain(I,N,E) :-

I < N,

J is I+1,

E=[[I,J]|RestEdges],

chain(J,N,RestEdges);

I == N,

E=[].

color_list(NumColors,L) :-

color_list(1,NumColors,L).

color_list(I,NumColors,L) :-

I < NumColors,

L=[I|RestColors],

J is I+1,

color_list(J,NumColors,RestColors);

I = NumColors,

L = [I].
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factorial(N,Answer):-

factorial(N,1,Answer).

/* n!/k!*/

factorial(N,K,Answer):-

N =\= K,

M is N -1,

factorial(M,K,X),

Answer is N * X.

factorial(K,K,Answer):-

Answer is 1.

choose(N,K,Answer):-

M is N-K,

factorial(N,M,Top),

factorial(K,Bot),

Answer is Top/Bot.

mdegree(Edges, Node, Answer):-

degree(Node, Edges, Answer).

degree(Node,[[A,B]|RestEdges],Answer):-

Node == A,

degree(Node,RestEdges,Count),

Answer is Count + 1;

Node == B,

degree(Node,RestEdges,Count),

Answer is Count + 1;

Node =\= A,

Node =\= B,

degree(Node,RestEdges,Answer).

degree(_,[],0).

max_degree(E,Answer):-

nodes(E,Nodes),

max_degree(Nodes,E,Answer).

max_degree([A|RestNodes],E,Answer):-

degree(A,E,Degree1),

max_degree(RestNodes,E,Degree2),

Answer is max(Degree1,Degree2).

max_degree([],_,0).

checks(NumColors,E):-

length(E,NumEdges),
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choose(NumColors,2,Answer),

NumEdges >=Answer,

max_degree(E,MaxDegree),

nodes(E,Nodes),

length(Nodes,NumNodes),

X is floor(NumNodes / NumColors) * MaxDegree +1,

X >= NumColors.

achromatic(E,FinalNum):-

achromatic(2,E,FinalNum).

achromatic(NumColors,E,FinalNum):-

checks(NumColors,E),

color_list(NumColors,L),

complete(L,_,E),

NewNum is NumColors+1,

!,

achromatic(NewNum,E,FinalNum).

achromatic(NumColors,_,FinalNum):-

FinalNum is NumColors-1.

log_term(File, Term):-

open(File, append, Stream, []),

write_term(Stream, Term, []),

nl(Stream),

close(Stream).

do_stuff(File,[G|Graphs]):-

nodes(G,N),

maplist(mdegree(G),N, D),

msort(D, Ds),

reverse(Ds, Dsk),

achromatic(G,Psc),

Res=[edges(G), degree_sequence(Dsk),achromatic_number(Psc)],

log_term(File,Res),

do_stuff(File,Graphs).

do_stuff(_,[]).
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