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Abstract 
 

The increasing reliance of people on computers for daily tasks has resulted in 

a vast number of digital documents.  Search engines were once luxury tools for 

quickly scanning a set of documents but are now quickly becoming the only practical 

way to navigate through this sea of information. Traditionally, search engine results 

are based upon a mathematical formula of document relevance to a search phrase. 

Often, however, what a user deems to be relevant and what a search engine computes 

as relevant are not the same. User feedback regarding the utility of a search result can 

be collected in order to refine query results.  Additionally, user feedback can be used 

to identify queries that lack high quality search results.  A content author can then 

further develop existing content or create new content to improve those search results. 

 The most straightforward way of collecting user feedback is to add a graphical 

user interface component to the search interface that asks the user how much he or 

she liked the search result.  However, if the feedback mechanism requires the user to 

provide feedback before he or she can progress further with his or her search, the user 

may become annoyed and provide incorrect feedback values out of spite.  Conversely, 

if the feedback mechanism does not require the user to provide feedback at all then 

the overall amount of collected feedback will be diminished as many users will not 

expend the effort required to give feedback.  This research focused on the collection 

of explicit user feedback in both mandatory (a user must give feedback) and 

voluntary (a user may give feedback) scenarios.  The collected data was used to train 

a set of decision tree classifiers that provided user satisfaction values as a function of 

implicit user behavior and a set of search terms.  The results of our study indicate that 

a more accurate classifier can be built from explicit data collected in a voluntary 

scenario.  Given a limited search domain, the classification accuracy can be further 

improved.
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1 Introduction 

Collecting user feedback is an important practice that product developers can 

employ in order to increase the likelihood of success of their products.  Product 

developers that do not solicit feedback from their users are more likely to provide a 

sub-optimal experience simply because there is a natural divide between what 

developers think users want and what users actually want [Kvavik et al. 1994].  

Ideally, during system development, a rigorous set of user studies are performed in 

order to account for user expectations.  These user studies are costly in terms of both 

time and money.  To reduce this overhead, many producers continuously request 

feedback from users over the life of a deployed system.  When feedback is to be 

collected from a running system, the user interface (UI) must be augmented with a 

user feedback mechanism. 

The UI designers can either force a user to give feedback via a mandatory 

feedback mechanism or they can rely on the goodwill of a user by simply requesting 

feedback via a voluntary feedback mechanism.  A mandatory feedback mechanism 

limits what actions a user can perform until the user provides a feedback value.  A 

voluntary feedback mechanism, while resident in the UI, does not constrain the 

actions a user can perform and can be ignored by the user.  This thesis investigates 

the differences between mandatory and voluntary feedback mechanisms and how they 

affect two major properties of user feedback data: quantity and quality.  Here, the 

quantity attribute is defined as the total number of user feedback responses collected 

by the feedback mechanism over a given time period.  The quality attribute is defined 

as how accurately a user feedback response represents the user’s actual impression of 

the product. 

1.1 Problem Description 
User feedback about a system can provide information that allows the designers 

to fix a plethora of problems, ranging from basic usability to improving the actual 

content being served.  For this thesis, we consider the case of improving World Wide 

Web search engine results.  Web search engine results are typically returned by an 

algorithm that accepts a user search query as input, which is then used to scan the 
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contents of a database of Web pages.  The search engine results are a ranked and 

returned sorted based upon how well a particular Web page matches the search query 

and by other attributes of that page, such as the number of incoming and outgoing 

hypertext links, that give an indication its overall relevance [López-Ortiz 2005].  

While current search engine technology can be effective, the reliance on such 

algorithms allow for malicious sites to “game” the system, exploiting properties of 

the algorithm to artificially increase the ranking of a page [Dalvi et al. 2004].  If user 

satisfaction with a search result could be taken into consideration, a search engine 

could validate its search results in order to improve the overall search session 

[Hijikata 2004].  For example, if a search engine ranks a particular Web page high in 

its search result listings, but users indicate they are not very satisfied with the page, 

then the search engine can adjust its listings to rank the page lower. 

The most straightforward way of collecting user satisfaction values for search 

results is to add a feedback collection feature to the UI.  Collecting feedback via such 

an explicit method can be problematic.  The UI designer must choose either a 

mandatory or a voluntary feedback mechanism, considering the benefits and 

disadvantages of each approach.  The constraints imposed on a user by each method 

have a different effect on the amount of data collected and the quality of that data.  If 

a user satisfaction value could be determined without explicitly asking the user, 

however, the best of both approaches could be achieved.  Every user of the search 

engine would implicitly provide a feedback value without being hindered by feedback 

constructs added to the UI. 

Previous work has found correlations between user behaviors collected during a 

user’s interaction with a Web browser and a user’s level of satisfaction with the Web 

page [Claypool et al. 2001a; Claypool et al. 2001b; Cen et al. 2002].  In addition to 

user behaviors, certain environmental attributes, such as the number of images 

embedded in a Web page, have shown to be related to user satisfaction [Ivory et al. 

2001].  The combination of these user behaviors and environmental attributes are 

termed implicit indicators in the literature.  A classifier can be built that predicts user 

satisfaction as a function of implicit indicators.  Search engines could then use the 
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classifier to determine user satisfaction with search results without explicitly asking 

users for feedback. 

The discovery of a set of implicit indicators required the retrieval of explicit 

feedback values from users in order to determine the appropriate correlations between 

a particular behavior and a satisfaction level.  The user satisfaction values used in the 

implicit indicators research were collected via a mandatory feedback mechanism.  

Unfortunately, forcing a user to provide feedback for each search result is not 

practical; users will quickly become annoyed with the search system and seek out 

alternative tools [Adamczyk & Bailey 2004].  A search system using a voluntary 

feedback mechanism may be much more tolerable to users and thus more likely to be 

used in “real world” settings.  However, to the best of our knowledge there has been 

no work performed that shows a correlation between data collected via a voluntary 

feedback mechanism and implicit user behaviors that indicate user satisfaction values. 

The research question is therefore:  

 
Can voluntary data can be used to train a classifier that is as 
effective as a classifier trained with mandatory data. 

 

1.2 Hypotheses 
Due to the different natures of mandatory and voluntary feedback mechanisms, 

we expect that they will yield a different amount of feedback as well as a different 

quality of feedback.  Both high quantity and high quality are important properties for 

constructing accurate classifiers.  Quantity is a straightforward attribute to measure, 

namely the number or feedback values given per user.  Quality, on the other hand, is 

not easily quantifiable and thus difficult to gauge.  We relied on the previous work on 

implicit indicators in order to evaluate the degree of quality of our collected feedback 

data.  High quality data will exhibit little variation between collected feedback values 

and the corresponding expected feedback values that are calculated using implicit 

indicators. 

The first hypothesis (H1) is that a mandatory feedback method will collect higher 

quantities of data than a voluntary feedback method.  If users are not required to give 
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feedback, in most cases they will not, and thus it follows that a mandatory feedback 

mechanism would yield more data than a voluntary feedback mechanism. 

The second hypothesis (H2) is that a voluntary feedback method will collect 

higher quality data than a mandatory method.  The hypothesis is based upon typical 

user response to elements that they deem to be intrusive.  For example, if the only 

way to remove a mandatory feedback mechanism is to click a button that is tied to a 

particular feedback value, many users will simply click the nearest button in order to 

make the UI element disappear without regard to the actual feedback given.  

However, if the user goes out of the way to give feedback, one can assume that the 

feedback rating is of high quality rather than simply a means to an end. 

1.3 Outline of Thesis 
We investigated the differences in the quality and quantity of data collected by 

mandatory and voluntary feedback mechanisms.  We collected feedback from users 

as they performed actions in controlled and uncontrolled scenarios.  In the controlled 

scenario, users performed Microsoft® Excel tasks and their search domain was 

limited to the Microsoft Office help system.  In the uncontrolled scenario, users were 

allowed to leisurely search the Web using the Google™ Web search engine.  We 

chose two different scenarios in order to determine to what degree the search domain 

affects user feedback.  By factoring out the search domain, we can focus more on the 

differences between mandatory and voluntary feedback mechanisms. 

We experimented with several different feedback UI implementations in the 

context of a Web browser and observed how those differences relate to the quality 

and quantity of the data collected.  We enhanced the Microsoft Internet Explorer Web 

browser with our UI modifications in a system we dubbed the Mandorvol Browser1.  

The Mandorvol Browser used a pop-up window for mandatory feedback collection 

and a passive side panel for voluntary feedback collection.  The Mandorvol Browser 

                                                 
1 The name Mandorvol was derived from the two types of feedback mechanisms being studied: 
MANDatory OR VOLuntary. 
 
Microsoft is either a registered trademark or trademark of Microsoft Corporation in the United States 
and/or other countries. 
 
Google is a trademark of Google Inc. 
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was programmed to randomly choose from one of four experiment types upon 

initialization and its behavior adjusted accordingly. 

The four experiment types were mandatory controlled, mandatory uncontrolled, 

voluntary controlled, and voluntary uncontrolled.  In the controlled experiments, the 

feedback mechanism was only displayed when the user viewed a search result from a 

limited search domain (here, the Microsoft Office help system), whereas in the 

uncontrolled experiments, the feedback mechanism was displayed when the user 

viewed a search result from an unbounded search domain (here, the Google WWW 

search engine).  The Mandorvol Browser presented the user with a pop-up window 

for the mandatory set of experiments and the passive side panel for the voluntary set 

of experiments. 

We conducted the experiments on the Worcester Polytechnic Institute campus in 

its three primary public access computer labs.  The experimentation period lasted 38 

days and consisted of 161 participants.  The collected data was analyzed using 

traditional statistical methods and was also used to train a classifier that predicted a 

user satisfaction value for a search result as a function of implicit behavior values.  

The explicit feedback values collected were used to both train and test the classifier’s 

predictions.  As with the work completed by Fox et al. [2005], the classification 

accuracy of our classifier provided insight into the quality of the collected data.  

Having thoroughly investigated the issue of data quality, we were able to address the 

primary research question. 

We found that a mandatory feedback mechanism will indeed collect more data 

than a voluntary feedback mechanism will.  In the uncontrolled scenario the 

mandatory feedback mechanism collected 27% more responses (normalized per user) 

than the corresponding voluntary feedback mechanism, while in the controlled 

scenario it collected 32% more.  We also found that a voluntary feedback mechanism 

will collect higher quality data than a mandatory feedback mechanism will.  Both of 

these results support our original hypotheses.  Through a detailed data analysis, we 

found that a classifier used to predict user satisfaction values can be trained with data 

collected via a voluntary feedback mechanism.  Moreover, we observed that such a 

classifier will perform at least as good as, if not better than, one trained with data 
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collected via a mandatory feedback mechanism.  Additionally, we noted a threshold 

at which the increased amount of data collected by a mandatory feedback mechanism 

ceases to be a contributing factor to a classifier’s accuracy. 

The thesis is structured as follows: Chapter 2 provides a survey of previous work 

performed in relation to user feedback systems; Chapter 3 offers supplemental 

material about machine learning techniques, focusing on decision trees, which we use 

in our comprehensive data analysis; Chapter 4 details the design and execution of the 

two pilot studies performed in preparation of the experiment; Chapter 5 describes the 

experimental methodology and high-level results; Chapter 6 presents a detailed 

analysis of the collected data and how it relates to the original problem; and Chapter 7 

provides a conclusion with suggestions for future work. 
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2 Background 
 

This chapter provides background information on several key concepts necessary 

for complete understanding of the thesis, including classifiers and decision trees. 

2.1 Classifiers 
It is often the case that system designers embed a data collection component into 

their software systems.  The collected data can be used to generate a variety of 

statistics that the designers can use to further enhance the system.  For example, by 

tracking the most popular paths through a Web site, the Web site’s designers can 

dedicate resources to improving those paths.  While such historical data is useful for 

reasoning about the current state of the system, the system designers may want to 

reason about data that have yet to be seen.  Continuing the example, the Web site 

designers may want to be able to classify a Web page as either popular or not popular 

before the page is even published. 

A classification is a value, drawn from a predefined class, that is assigned to a 

datum for a particular attribute of interest.  In this case, the attribute of interest is Web 

page popularity.  Classification values are drawn from a discrete set of values, 

allowing the full data set to be partitioned by each datum’s value.  In the example, the 

possible attributes values are {popular ,  not popular } and the set of Web 

pages can be partitioned into two disjoint sets by their given classification value.  For 

data that has already been observed, all classification values will be known.  For 

unobserved data, however, the classification values will not be known, even while 

other attributes have known values.  As an example, while the Web page’s popularity 

may not be known, its content and layout are known values. 

Classification learning, a subset of machine learning, is the process by which a 

discrete-valued function – a classifier – can be developed that will predict 

classification values based on historical classifications of currently observed attribute 

values [Baralis & Chiusano 2004]. 

Machine learning is a discipline of artificial intelligence that attempts to endow 

computers with knowledge through exposure to data.  The underlying assumption is 
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that data trends do not change significantly and thus what was observed in the past is 

likely to be similar to what will occur in the future.  The knowledge gained in 

machine learning is experiential, with an optional initial knowledge base provided as 

a basis for learning.  This process contrasts with other techniques, such as expert 

systems, in which the computer is given all the knowledge it needs to perform its 

tasks up front [Robinson & Domingos 2003].  The benefit of a machine learning 

approach is that full knowledge is not required prior to system deployment; the 

system is capable of learning new concepts as it is exposed to them, making it far 

more adaptable to changes in its environment. 

There are many machine learning algorithms that can be used for classification, 

each with a unique structure for essentially solving the same class of problems.  

Artificial neural networks attempt to mimic the basic structures in human brains that 

store and retrieve information [Lane & Neidinger 1995].  Bayesian networks use 

localized conditional probability tables in a graph that represents causal relationships 

between the nodes [Pearl 2000].  Nearest neighbor instance-based learning uses 

Euclidean distance between encoded data instances for problem solving [Yianilos 

1993].  Decision trees use tree structures to represent decision points based upon 

different attributes of the data [Moret 1982].  Each of these constructs has a common 

set of base operations, while being vastly different forms of treating data.  We chose 

decision trees for our study since they can encode a human-readable set of rules and 

because previous work has also used them (Fox et al. 2005), allowing us to further 

validate our work. 

The classification learning process is divided into a training and a testing phase.  

In the training phase, new data is entered into the system and the system’s knowledge 

base is updated due to any learning that occurs.  In the testing phase, the algorithm is 

asked to answer questions with solutions known only to the experimenter.  The 

algorithm’s classification accuracy is the percentage of correct responses it produces. 

Consequently, the machine learning approach to classifier construction requires 

splitting the data set into two different subsets for the training and testing stages.  The 

split is necessary to prevent a phenomenon known as overfitting in which the 

classifier is so specialized that it can only correctly answer questions from the data 
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with which it was trained.  By partitioning the data set and removing the testing set 

from the training process, it is possible to adequately test how well the classifier will 

perform over data it has not yet observed. 

Dividing the data set can be a complicated matter.  The person constructing the 

classifier wants as much data as possible to train the classifier but at the same time, 

have a large enough test set to ensure the correctness of the classifier.  Furthermore, 

the training and testing sets must have the same distribution of data values in order to 

be representative of the same problem domain.  If the distribution of values is 

different, then the classifier will perform poorly over the testing set. 

There are many strategies for performing the data set decomposition.  

Unfortunately, choosing the best method for a given classifier and data set may rely 

heavily on the skills of the experimenter.  For example, in some contexts it may be 

appropriate to use the same test set for all experimental runs.  This approach is easy, 

but inflexible as new data is added.  Furthermore, it causes the classifier to be 

susceptible to overfitting to the test set, as the test set is the single, constant point of 

validation.  In other cases, it may be more appropriate to randomly choose the test set, 

using a stratified random sampling of the full data set.  While flexible, the non-

deterministic nature of the test set selection may make it difficult for the experimenter 

to validate results with this approach.  The experimenter will have to exercise 

judgment in selecting a proper technique. 

Although much time can be expended on determining how to divide the data set, 

over the past thirty years of machine learning, some methods have shown to generally 

work better than others.  For the purpose of this thesis, we will only concern 

ourselves with n-fold cross-validation.  N-fold cross-validation is a technique for 

training classifiers without a dedicated test set.  The data set is split into n disjoint, 

equally sized bins of equal data distribution and one bin is reserved for testing while 

the other n - 1 are used for training.  This process is repeated for each bin and the 

resulting classification accuracy averaged over the course of the run.  The rationale 

for this method is that all data has the opportunity to be used for training and testing 

in the different folds.  This approach limits variation associated with an “unlucky” 
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data split in which either the training or the testing set are not truly representative of 

the full data distribution. 

There is no guiding principle that leads to an appropriate selection for n, but 10 

has shown to work very well in practice [Witten & Frank 2000].  In this case, each 

datum is used for training in nine cases and used for testing in one.  For our data 

analysis, we performed 10 runs of 10-fold cross-validation for each experiment in 

order to further limit the effects of “unlucky” data splits. 

 

2.2 Decision Trees 
A decision tree is a classifier that represents decision points used for 

classification in a tree structure.  In a decision tree, each internal node represents one 

of a set of attributes on which a decision is to be made.  The edges leaving that node 

represent the conditions for the decision.  Leaf nodes in the tree correspond to the 

classification value. 

 

 
Figure 2-1 Example decision tree shown as a binary tree.  The internal nodes (shown in blue, 

single-bordered boxes) represent decision points while the outgoing edges represent the decision 
value.  The leaf nodes (shown in yellow, double-bordered boxes) represent the classification 

value. 

PagePosition 

PagePosition LinkTextLength 

Satisfied 

≤ 1  > 1 

≤ 5 
> 5 ≤ 5 > 5 

… … … 
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Figure 2-1 shows an example decision tree fragment that can be used for 

predicting user satisfaction with a Web page.  In this example, the decision nodes are 

PagePosition  and LinkTextLength , shown in the blue, single-bordered 

boxes.  The one leaf node is the classification value Satisfied , shown in the 

yellow, double-bordered box. 

Each datum, such as {PagePosition  = 1, LinkTextLength  = 4}, is 

entered into the tree and progresses in a path from the root to a single leaf.  The path 

the datum takes is determined by its attribute values and the decision points in the 

tree.  Since datum evaluation proceeds from the root of the tree to a leaf node, 

decision nodes higher in the tree should be able to group more data instances together 

than nodes lower in the tree; this illustrates how information gain affects the topology 

of the decision tree.  In the above example, the value of the datum’s 

PagePosition  attribute is considered first.  If the value is less than or equal to 1, 

then the LinkTextLength  value is evaluated next.  If the PagePosition  value 

was greater than 1, then the PagePosition  is considered again for further 

refinement. 

The ultimate goal of a classifier is to be able to produce valid classifications 

based upon data previously seen.  Extending beyond classification accuracy, each 

classifier also has innate properties that make it fit for a particular class of problems.  

Decision trees, for example, produce a set of human readable rules that allow the 

experimenter to easily understand how the classifier is deriving its classifications.  

Artificial neural networks, on the other hand, must be treated as a closed entity and 

yield few insights as to their decision making process.  The experimenter must 

determine the goals for a project and choose an algorithm that will address them.  For 

this thesis, we chose to use decision trees precisely because we wanted to have a rich 

set of generated rules. 

Each path through the tree encodes a set of rules that can be used for 

classification.  Since the nodes are attributes of the data and the edges are based upon 

the domain of their corresponding nodes, the rules are easily understandable by an 
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experimenter familiar with the structure of the data.  The partial set of rules 

representing the tree in Figure 2-1 is: 

(PagePosition ≤ 1) ∧ (LinkTextLength ≤ 5) ⇒ Satisfied 
(PagePosition ≤ 1) ∧ (LinkTextLength > 5)  ∧ … ⇒ … 
(1 < PagePosition ≤ 5) ∧ … ⇒ … 
(PagePosition > 5) ∧ … ⇒ … 
 

Although some of the rules are only partial rules due to the incompleteness of the 

tree, all of them have the same basic structure.  The rules are conjunctions of 

predicates that entail a classification value.  In this example, the predicted value is the 

user’s level of satisfaction.  Despite being a little terse, to an experimenter familiar 

with the data, generating a natural language representation of these rules is a trivial 

matter.  For example, the first rule states: “If the result page appears as either the first 

or second link (i.e., the page position is 0 or 1) on a search result page and the HTTP 

link consists of 5 or fewer characters, then the user will be satisfied with the search 

result.” 

We chose to use decision trees for our data analysis primarily due to the fact that 

it can generate a set of human readable rules.  By having human readable rules, we 

were able to both validate and reason about our results.  For example, early in the 

experiments we used a time-based attribute in the classifier.  Coincidentally, the 

experimentation times were nearly unique for all subjects.  As a result, the time-based 

attribute could not be used for general rules and was causing an overfitting of the 

data.  By monitoring the decision trees throughout the analysis, we were able to detect 

this flaw and correct it.  Validation of our results was made possible by observing 

generated rules that were consistent with the previous work on implicit indicators. 

2.2.1 Decision Tree Construction 
Decision trees are actually a family of classifiers with common attributes.  The 

choice of the decision nodes and edge values can vary substantially between different 

decision tree construction algorithms.  Despite the lack of a definitive decision tree 

algorithm, the pioneering work of Quinlan on his ID3 and subsequently, C4.5, 

algorithms has become the de facto standard for how to build a decision tree. 
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ID3 was Quinlan’s first decision tree construction algorithm.  Quinlan [1986] 

proposed the notion of information gain for choosing among attributes of the data set 

for each level in the tree.  Information gain is derived from the concept of entropy 

from the field of information theory.  Entropy is simply a measure of variation in a 

given sample and information gain is used reduce the “disorder” of a sample by 

segmenting it into different subsets, each of which has less variation than the whole 

sample.  Classification accuracy is increased as the entropy at the leaf nodes is 

decreased, since a lower entropy value means a classification will correctly apply to 

more instances in that subset.  As each attribute in the dataset is considered as a 

candidate for a decision node, its information gain is calculated as its expected 

reduction of entropy.  The attribute that reduces the total entropy value the most, or 

provides the maximum information gain, is then chosen for the decision node, since it 

will partition the data into subsets with the least variation.  Once an attribute is used, 

it cannot be reused in the same path.  The selection process continues until either all 

attributes have been used or all the data in a given subset have the same classification 

value. 

The description of the attribute selection process is a bit of a simplification.  In 

actuality, an attribute can appear more than once in a path, but all such appearances 

must be sequential (see Figure 2-1 as an example).  In this sense, the attribute is being 

used to make decision using a conjunction of predicates.  In fact, the path could be 

normalized such that the attribute is used only once, so the expressive power is 

equivalent.  An experimenter may choose to use attributes in this manner if they 

would like the decision tree to have special properties.  For example, the 

experimenter may wish to only generate binary trees in order to take advantage of 

various algorithms that work well over binary trees. 

2.2.2 Decision Tree Pruning 
Since new paths are added to the decision tree only as they are needed, the 

classifier will naturally attempt to create the smallest trees that it can.  Despite this 

preference for small trees, it is still possible for the classifier to generate decision 

trees that overfit the data.  Overfitting in this case refers to paths in the tree that only 

exist due to “bad” instances in the training set that do not accurately represent the true 
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data set distribution being sampled.  A testing set will help identify overfitting during 

the evaluation of the classifier, but it will not prevent overfitting from occurring. 

Addressing overfitting in a decision tree requires the removal of nodes from the 

tree that are detected as being unnecessary.  There are many ways that this can be 

accomplished, but the most common approach is for the classifier to further split the 

training set into a validation set and training set.  The validation set is used similarly 

to the testing set, with the exception that it is internal to the training procedure and 

can thus be used to alter the training process.  In reduced-error pruning [Quinlan 

1987], each subtree rooted at a decision node is iteratively replaced with the child 

node that matches the most training instances.  The resulting tree is evaluated with the 

validation set and if the classification accuracy is greater than or equal to the 

classification accuracy of the same tree with the node present, then the decision node 

is considered unnecessary and pruned away. 

2.2.3 ID3 Versus C4.5  
ID3 introduced some important concepts to the field of decision trees.  It did 

have several shortcomings however, which Quinlan later addressed [1993] with his 

C4.5 algorithm.  For example, C4.5 introduced a cost component into the attribute 

selection process so the classifier could balance between attributes that provided the 

largest information gain and the cost of collecting a value for that attribute.  A 

particularly important improvement made with C4.5, however, was the ability to 

handle real-valued attributes and data with missing attribute values.  The data we 

collected consisted of both types of values, making ID3 an inappropriate classifier for 

our analysis. 

C4.5 addresses the problem of real-valued attributes by dynamically creating 

subintervals of the data range for the decision points.  An edge in the tree thus 

represents a membership test for a given value in a particular subinterval.  Fayyad 

presented a method that selected a bisection point, splitting the data into two 

subintervals, that maximized information gain in [Fayyad 1991].  Fayyad and Irani 

[1993] extended this work to work for an arbitrary number of subintervals. 

The matter of missing data values requires a more complicated solution than the 

handling of real-valued attributes.  C4.5 handles such cases by considering each value 
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that can be assigned to an attribute and associating a probability with it.  Assuming 

homogeneity of the data, the probabilities can be inferred by the distribution of values 

from other data instances that do not have a missing value.  A datum can thus follow 

multiple paths through a tree, one corresponding to each different probability.  The 

path that has the highest probability, calculated by the probability at each node, is the 

one that will yield the classification value for that datum. 

Another important enhancement made in C4.5 is the rule post-pruning algorithm 

used to prune trees.  The reduced-error pruning algorithm of ID3, while effective, has 

one major drawback.  The removal of a decision node causes the tree to change in 

ways that may be problematic in certain cases.  For example, if a decision node has 

four children, it may be the case that in three of the four cases the node is unnecessary 

but in the fourth case is needed.  Nevertheless, the removal of the subtree rooted at 

that decision node will affect each of its children equally.  Rule post-pruning 

circumvents this issue by considering each path through the tree individually. 

In rule post-pruning, each path through the tree is converted to a rule identical to 

those shown in section 2.2.  Each rule is then considered in isolation and each 

predicate in the rule is temporarily removed.  Using the validation set, the 

classification accuracies of the rule before and after the change are compared.  If the 

reduced rule performs at least as well as the longer rule, the predicate is permanently 

removed.  In this way, the same decision node can be handled differently for each 

path through the tree. 

For our data analysis, detailed in Chapter 5, we used the C4.5 algorithm.  Our 

data consisted of both real-valued attributes and attributes with missing data 

instances.  C4.5 handled the data appropriately and produced a rich set of rules that 

we used for further analysis. 



 

 

16 

3 Pilot Study 
Prior to the commencement of the actual experiment, two pilot studies were 

conducted in order to determine how the final experiment should be performed.  The 

pilot studies were of the type voluntary controlled and explored the efficacy of 

various voluntary feedback mechanisms as well as the end-user tasks to be performed 

in controlled situations. 

3.1 Rationale 
The purpose of the pilot studies was to gather information about several 

experimental designs in order to determine the best set of parameters for the actual 

experiment.  The pilot studies focused on two key parameters: the voluntary feedback 

mechanism and the set of Excel tasks to be performed during the controlled 

experiments. 

A clear design goal of the voluntary feedback mechanism was that it should be as 

unobtrusive as possible; i.e., it should not detract from normal computer use.  Our 

first approach to such a feedback mechanism was to embed the feedback form 

directly in a Web page.  We believed that this method would provide the most natural 

“feel” to a user by tightly coupling the feedback mechanism with the content.  

Unfortunately, we encountered a large number of technical hurdles, mostly due to 

security constraints in Microsoft Internet Explorer (IE), while modifying the HTML 

DOM to insert our feedback mechanism.  As a result, we were forced to investigate 

other ways of implementing the feedback mechanism.  We discovered that an 

explorer band, while not having as tight an integration with the actual Web page 

content, was an attractive alternative. 

An explorer band is a type of side panel positioned either horizontally along the 

bottom or vertically along the left-hand-side of an IE window.  Explorer bands are 

commonly used for enhancing IE with such features as history viewing and search 

engine interfacing.  Due to their standard use as an IE enhancement, explorer bands 

seemed to be the natural choice for the Mandorvol Browser. 

In addition to explorer bands, some of the experiments were run using pop-up 

windows that allowed a voluntary response.  The pop-ups were used as a baseline of 
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how much feedback we could reasonably expect to collect.  Thus, the pilot tests were 

used to find a balance between the degree of voluntariness and the utility of the 

feedback collection method (measured in the amount of feedback obtained).  A highly 

voluntary method that collects no feedback is effectively useless, whereas a method 

that is highly invasive but collects a lot of feedback may have data that is not 

predictive of user satisfaction.  In order to measure both values, the Mandorvol 

Browser collected user data such as feedback responses given throughout the study 

and upon study completion the participant was asked, via a short questionnaire, to 

provide feedback about how invasive the feedback band was. 

The pilot studies revolved around a set of user tasks to be performed in Microsoft 

Excel, i.e., a controlled situation.  The intention was to find a set of tasks that were 

easy to complete but uncommon enough to require a search over Microsoft Office 

help assets.  Additionally, the choice of these tests was guided by a goal of keeping 

all experiments to 15 minutes in length.  The time to complete each study was 

recorded and associated with the user feedback.  The aforementioned questionnaire 

also had questions about both the user’s prior Excel experience and their experience 

with the class of Excel tasks used in the study. 

3.2 Methodology 
The pilot study runs were all performed on the same PC, one user at a time.  The 

study population consisted primarily of graduate students from the Computer Science 

department at WPI and was chosen mostly as a matter of convenience.  Each 

participant was able to complete the pilot study with no time pressure and, with the 

exception of start time, the study environment was consistent from person to person. 

Initially, study participants were given written instructions via a Web page about 

how to complete the study.  However, it became clear that participants were not 

reading the directions completely and in order to remedy the problem the procedure 

was modified so that the proctor iterated over the directions with the participant prior 

to the start of the study.  Once the study began, the proctor left the participant to 

provide privacy, but was in the vicinity as to be able to answer any questions the 

participant may have had. 
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As mentioned previously, the pilot studies used experiments of the type 

voluntary controlled, meaning that the user was asked to complete a set of Excel tasks 

but was not required to give any feedback on any of the results from an Office help 

search.  The user was unaware of the purpose of the study and simply worked at 

completing Excel tasks. 

The first pilot study used two different voluntary feedback mechanisms: a 

horizontal explorer band that spanned the bottom of an IE window and a pop-up 

window that could be closed without actually rating a search result item.  The 

explorer band was originally colored gray, but after the first participant completely 

ignored it because he thought it was part of IE, it was changed to a distinctive pink 

color.  A screenshot of the explorer band can be seen in Figure 3-1. 

 

 
Figure 3-1 Horizontal explorer band (first pilot study). 

 

The feedback mechanism used is a modification of the feedback pop-up used by 

Microsoft in its version of the Curious Browser [Fox et al. 2005].  Although we 
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changed the wording of the prompts and switched from radio buttons to push buttons, 

the same basic features were retained.  The user is made aware that feedback could be 

given if so desired, then is asked a question with a set of possible (independent) 

responses.  Since this feedback mechanism is voluntary, feedback need not be given 

in order to make further progress with the Web session; the user can completely 

ignore the feedback panel or even close it via the “X” button on the left, if so desired. 

The Mandorvol Browser detects when the feedback band should be shown and 

when it should be hidden.  Thus, feedback can only be given for search results and 

can only be given once per search result. 

Figure 3-2 shows the voluntary pop-up window used in the first pilot study with 

the Mandorvol Browser.  As can be seen, it is identical in structure to the feedback 

pane.  We did not change the color of the pop-up window from the original gray since 

there was no motivation to do so.  Whereas the feedback pane was vying for the 

user’s attention, the pop-up window had the user’s focus by its very nature.  Once 

again, the Mandorvol Browser displayed and hid the pop-up as appropriate. 

 

 
Figure 3-2 Voluntary pop-up window (first pilot study). 
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For the second pilot study, the horizontal explorer band was made vertical and 

moved to the left-hand-side of the IE window (see Figure 3-3).  The decision to move 

the explorer band was motivated by the low amounts of feedback obtained with the 

horizontal band.  As can be seen in Table 3-1, the feedback ratio (described more 

precisely in Section 3.3) was 0.04, meaning users only gave feedback after viewing a 

search result 4% of the time.  While we had initially anticipated a rather low feedback 

ratio, 0.04 would not yield very much data for analysis and thus we attempted to find 

a voluntary feedback mechanism that would yield more feedback. 

Another motivation for moving the explorer band was user evaluations which 

indicated that a band at the bottom of the screen consumed too much screen space.  

Furthermore, we found that unless a user completely read a Web page, they often 

would not look at the bottom of the IE window and could not even see the explorer 

band, whereas with the pane resident on the left, the user encountered it during 

Western left-to-right reading.  As with the horizontal explorer band, the Mandorvol 

Browser controlled when the vertical explorer band should be shown or hidden. 

While the first pilot study investigated both the horizontal explorer band and the 

pop-up window, the second study only measured the effectiveness of the vertical 

explorer band.  The decision to only measure the new mechanism was based upon the 

desire to equally test all three feedback mechanisms for comparison. 
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Figure 3-3 Vertical explorer band (second pilot study). 
 

3.3 Results 

The first pilot study had nine participants, four of which used the pop-up while 

the remainder used the horizontal explorer band.  Although feedback statistics were 

collected (which will be discussed shortly), much of the real value of these 

experiments came from the responses to the open-ended questionnaire (see Appendix 

A).  As mentioned previously, these responses helped shape the second pilot study.  

In particular, many of the users expressed that they did not like having the feedback 

band at the bottom because it occupied too much of the screen.  They would rather 

have had the feedback band on the side so that they could view Web pages at full-

height.  Since monitors and windowed applications tend to be wider than they are tall, 

this seemed like a reasonable suggestion. 

The participants also had varied opinions about several other attributes of the 

Mandorvol Browser.  Although we changed the color of the explorer band from gray 
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to pink based upon initial user feedback, one user thought the pink color was too 

bright.  Some users would have preferred to have the feedback mechanism embedded 

in the Web page – unfortunately, we found this infeasible to implement.   One user 

also would have liked to have a scale of values to choose from rather than push 

buttons. 

Additionally, the participants generally thought that the Excel tasks were a good 

sample to use.  The tasks that users felt most frustrated with were noted and modified 

or removed for the second pilot study.  Despite warm user response, the Excel tasks 

were taking too long (more than 15 minutes) to complete and had to be revised for the 

second study. 

The second pilot study had five participants, all of who used the vertical explorer 

band. For this study, the questionnaire was modified slightly in an attempt to correlate 

prior Excel knowledge to various other aspects of the study (see Appendix B). Every 

participant commented independently on the feedback pane at the end of the study.  

They generally did not like the pink color or how it was separated from the content 

since they thought it looked like a Web site banner advertisement.  However, this 

time everyone noticed the explorer band, which had been a problematic issue with the 

first set of pilot tests.  Moving it to the left also yielded a higher amount of feedback, 

although this number is skewed by a single user.  The feedback ration of 0.15 for the 

left-hand-side explorer band is nearly five times greater than that observed with the 

bottom explorer band (see Table 3-1). 

The participants in the second pilot test also believed the Excel tasks they 

completed were a good sample.  The average time to complete the study reduced 

from 31.8 minutes to 22.2 minutes.  Some additional modifications would need to be 

done in order to achieve our 15 minute mark, but the second pilot test confirmed we 

were moving in the correct direction. 

 A summary of the quantifiable results of both studies is presented in Table 

3-1.  There are three rows in the table, each corresponding to a different feedback 

mechanism.  The rows detail the data collected for each experiment and provide a 

format for easy comparison. 
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The table is also split into three partitions vertically.  The first partition indicates 

how much feedback was given (one of the buttons clicked) for each of the different 

possible options.  These values are then summed and stored in the “Total” column. 

The second partition relates how much feedback was given per page view.  

“Result Items” is the count of search result items that were explored while “Pages” is 

the combination of “Result Items” and any pages the user may have navigated to from 

a result item.  The “Feedback Ratio” is the total amount of feedback given 

proportional to the total number of result items viewed and is thus constrained from 

[0, 1], since feedback can only be given once per result item.  In the ideal case, the 

user always gives feedback and the resulting feedback ratio is 1. 

The pages count is given here solely to show the number of opportunities a user 

actually had to give feedback.  Each page navigated to via a search result item is 

assumed to be related to the result item and thus feedback can be collected from it.  

The ratio between the amount of feedback collected and the total number of pages 

viewed should be noted, since this would indicate the amount of feedback given per 

actual opportunity to give feedback.  However, such a ratio would not be normalized 

over [0, 1] because feedback can be given at most once between a set of related pages 

(i.e., pages all navigated from a common result item).  Thus the pages count here is 

only used as an insight into user browser behavior.  For example, in the fourth row of 

the “Left” partition, it can be seen that the user had one result item but 21 page views.  

In all likelihood, the user stopped using our custom Office help search interface and 

navigated to the official  
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 Yes: Partially: No: Total: 

Result 

Items: Pages: 

Feedback 

Ratio: 

Time 

(min.) Intrusive 

Excel 

Diff. 

Help 

Useful: 

Help Not 

Needed: 

Prompts 

Clear: 

Excel 

Expertise: 

Pop-up: - - - - - - - 28 - 3 4 3 - - 

 4 0 0 4 5 5 0.8 11 2 3.5 4 1 y - 

 3 2 1 6 6 6 1 24 4 3 4 4 y - 

 2 5 5 12 13 17 0.92 53 4 3 3 3 y - 

Total: 9 7 6 22              

Avg.: 0.41 0.32 0.3       0.91 29 3.33 3.13 3.75 2.75   - 

               

               

Bottom: 0 0 0 0 7 7 0 34 1 3 3 2 - - 

 0 0 1 1 24 24 0.04 31 2 3 4 1 y - 

 0 0 0 0 8 9 0 32 1 4 4 2 y - 

 2 0 0 2 15 17 0.13 47 2 3 5 0 y - 

 0 0 0 0 6 6 0 29 4 4 5 2 y - 

Total: 2 0 1 3              

Avg.: 0.67 0 0.3       0.04 34.6 2 3.4 4.2 1.4   - 

               

               

Left: 3 3 0 6 8 25 0.75 26 3 4 5 2 y 1 

 0 0 0 0 4 4 0 12 1 2 5 3 y 3 

 0 0 0 0 3 3 0 40 1 4 4 3 y 3 

 0 0 0 0 1 21 0 15 4 3 4 2 y 2 

 0 0 0 0 3 3 0 18 1 2 4 3 y 3 

Total: 3 3 0 6              

Avg.: 0.5 0.5 0       0.15 22.2 2 3 4.4 2.6   2.4 

 
Table 3-1 Summary of pilot study results.
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Office Web page to perform his searches.  Without the page count, such a conclusion 

could not be drawn. 

While the first two partitions provide summaries of data collected by the 

Mandorvol Browser, the third partition summarizes the responses to the quantifiable 

responses from the post-study surveys.  As we suspected, users found the pop-up 

window to be very intrusive and the explorer bands to be slightly intrusive.  Not 

surprisingly, the pop-ups had a much higher feedback ratio than the explorer band 

implementations. 

The remaining attributes are directly related to the Excel tasks.  Across both pilot 

studies, users found the Excel tasks to be moderately difficult.  That the difficulty 

ratings were so similar in both pilot tests is notable since the second pilot test did 

have a smaller number of tasks to complete.  This consistency, however, was not 

observed with the values for “Help Not Needed”, which indicate the number of Excel 

tasks each user was able to complete without using the Office help system.  It was our 

goal to minimize this number and as such, the results of the second pilot test showed 

that further refinement of the Excel tasks would be necessary for the actual study. 

Overall, users found the Office help system to be useful, which helped validate 

our decision to use Excel as the basis for our controlled experiments.  The second 

pilot test attempted to determine any correlation between user Excel expertise and the 

number of questions requiring help.  Unfortunately, with such a small sample size, 

none was detected. 

 

3.4 Analysis 

The pilot study results were instrumental in designing the final experiment.  In 

particular, the pilot studies helped determine the best type of voluntary feedback 

mechanism to use, how that mechanism should be presented (e.g., color), and how the 

Excel tasks should be altered to meet our design goals. 

Perhaps more importantly, the pilot studies highlighted a few behavioral 

obstacles that would be necessary to overcome before the actual study could be 

performed.  One of the biggest problems is that users have become conditioned to 
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filter out non-core content when browsing the Web.  As a result, UI considerations for 

the Mandorvol Browser must be made in order to catch the user’s attention without 

the voluntary feedback mechanism (side panel) looking like an annoying 

advertisement. 

Another observed behavior was that since users believed they were simply 

completing Excel tasks, that is what they focused on.  That is to say, their typical 

action cycle was to search for help, read a help item, try it in Excel, and if it worked, 

move on to the next task.  This sequence of actions is similar to the goal-based 

approach to seeking help for a task described by Ramachandran & Young [2005].  

The problem is that feedback on the utility of a result item cannot be given until the 

result item’s contents are first tried.  However, once a user tries the help offered and 

completes the task, their next natural action is to try to complete the next task, not to 

consider the previous result item and give it a rating. 

It was observed that users that were unable to find appropriate help immediately, 

and thus refined their search queries several times, were more likely to give feedback.  

This can be attributed to the fact that they were not moving on to the next task and as 

such, still evaluating the current result item.  This behavior, while artificial in a sense, 

does accurately represent real world scenarios where users are typically task-oriented.  

The implications of these findings would serve to further refine the Excel tasks for the 

actual experiment. 
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4 Experiment 

This chapter details the structure of the experiments and the motivation behind 

the chosen structure.  The types of data collected by the Mandorvol Browser and their 

storage format are also discussed. 

4.1 Mandorvol Browser 
The user feedback mechanisms were implemented as an add-on for the Microsoft 

Internet Explorer (IE) Web browser. The voluntary feedback mechanism was a 

noticeable, but non-intrusive pane that spanned the left-hand-side of the IE window 

(Figure 4-1). 

 

 
Figure 4-1 The Mandorvol Browser voluntary feedback mechanism. 

 
 In order to prevent people from submitting feedback more than once for a 

given search result item, the feedback band transitioned from a feedback prompt to a 

“thank you” message once a feedback value is chosen (Figure 4-2).  Ideally, we 
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would have simply made the feedback band disappear, but we were not able to do so 

due to technical limitations in the explorer band API. 

 

 
Figure 4-2 The voluntary feedback mechanism  after user provides feedback value. 

 

 The mandatory feedback mechanism was a pop-up window that, unlike the 

vertical pane, could not be ignored, requiring the user to provide feedback in order to 

continue with the search session (Figure 4-3).  It simply disappeared once a feedback 

value was given, preventing the user from providing more than one feedback value. 
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Figure 4-3 The Mandorvol Browser mandatory feedback mechanism. 

 

4.1.1 Modes of Operation 
The Mandorvol Browser operated in four modes of operation in order to allow 

experiments to test the effects of both the feedback mechanism and the search 

scenario on the quantity and quality of user feedback, as shown in Table 4-1. 

  Scenario 

  Controlled Uncontrolled 

Mandatory Mandatory Controlled Mandatory Uncontrolled Feedback 

Type Voluntary Voluntary Controlled Voluntary Uncontrolled 

 
Table 4-1 The four different modes of operation for the Mandorvol Browser. 

 
The values uncontrolled and controlled described the scenario under which the 

experiment is run whereas the values voluntary and mandatory indicate the type of 

feedback mechanism shown to the user during the course of the experiment. While 

the values were considered in pairs, they can be best described individually. 
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4.1.1.1 Uncontrolled 
The purpose of the experiments was to collect feedback data from users as they 

issued queries against a search engine.  Search engines can interface to a wide variety 

of data sources, the most commonly used is the Internet.  The scope of the search 

activities provided by the Internet can be considered to be unbounded and thus 

corresponds to our uncontrolled scenario. 

The uncontrolled experiments were designed to model user behavior in a general 

search environment.  The users were allowed to search for anything using the Google 

Web search engine for a period of 15 minutes.  As search result items were presented, 

the Mandorvol Browser presented a feedback mechanism to collect a user’s rating of 

the content.  The type of the feedback mechanism used was dependent upon the 

corresponding mandatory or voluntary value. 

As the idea of the uncontrolled experiments was to model actual user behavior, it 

made the most sense to allow users to use their preferred search engine.  

Unfortunately, calibrating the Mandorvol Browser for a search engine is a massive 

undertaking and our resources were limited.  As a result, we were forced to make a 

compromise and support a single search engine.  Google was the search engine of 

choice since it is currently the most popular Web search engine on the WPI campus.   

 

4.1.1.2 Controlled 
 In order to limit the search domain, a set of controlled experiments was 

designed to collect data from searches over Microsoft Excel help assets.  For these 

experiments, the users were asked to complete a series of Microsoft Excel tasks that 

were chosen to be easy to complete with the correct information, but not commonly 

known, so that a user would be likely to need to search for help.  Microsoft Excel was 

used for the controlled experiments because it is a software package many people are 

familiar with while having many features most users will not know how to use 

without consulting its extensive help system.  Thus, we were able to control the 

search domain and direct the search queries, allowing us to shape the environment for 

supplying feedback.  An additional design goal prompting the use of Microsoft Excel 
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was to show how such a feedback system could be applied to the Microsoft Office 

product suite. 

In order to limit the variation between the controlled and uncontrolled 

experiments, a Java Web application was written as an interface to the Excel help 

assets.  The interface was designed to look and feel very much like the interface for 

the Google Web search engine.  Similar to the uncontrolled experiments, as search 

results were rendered, the Mandorvol Browser presented a feedback mechanism to 

collect a user’s feedback rating for the content.  Indeed, user interaction with the 

Mandorvol Browser was as identical as possible across both the controlled and 

uncontrolled experiments. 

The tasks were designed so that the most obvious search terms would not yield 

immediately useful results.  We observed during the pilot studies that when users 

must re-evaluate their search queries in order to complete a task, they are much more 

likely to provide feedback.  In keeping with our time goal of 15 minutes to complete 

all tasks, we provided each subject with a pre-filled Excel worksheet and used the 

following three tasks for the experiment: 

 

1. Calculate the average of all the values in column A that are greater 

than 25. 

2. Determine the rank of the number in cell A4. 

3. Have the text in column A displayed in Red if the value is greater than 

10. 

 

The two primary sources of ambiguity in potential search terms are the use of 

conditionals (e.g., “greater than”) and the use of arrays of values.  The provided 

dataset stored 50 values in column A as a means of deterring users from completing 

the tasks by inspection.  At the end of the study, each subject was asked to upload the 

modified Excel file to our Web site so we could validate that the users in fact 

completed the study.  This latter point was important in correlating the amount of 

feedback given with the set of tasks – if a user did not complete all the tasks, then the 

feedback given by that user was discarded. 
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4.1.1.3 Voluntary 
The voluntary feedback mechanism was non-intrusive and did not force the user 

to provide feedback.  As indicated in Section 3.2, the voluntary feedback UI 

component was implemented as a vertical explorer band for IE.  An explorer band 

was chosen because it is a standard way of enhancing IE and would thus be familiar 

to users.  The actual design of the UI component, i.e., the colors, location, etc., was 

driven by user comments during the pilot studies (see Chapter 3). 

Experiments using a voluntary feedback mechanism did not require users to 

provide feedback in order to complete the study.  The study directions made each user 

aware of the feedback mechanism prior to the start of the experiment so that they did 

not confuse it with banner advertisements, which are typically displayed as vertical 

bars in a Web page.  However, once the study began, the user was not again coerced 

into looking at the feedback mechanism.  As search results were rendered, the 

Mandorvol Browser displayed the explorer band, which prompted users for feedback, 

but the explorer band was separated from the content of the search result and thus was 

a passive device. 

4.1.1.4 Mandatory 
The mandatory feedback mechanism was a pop-up window that could not be 

closed unless the user provided a feedback value for a search result.  These 

experiments were thus mandatory in the sense that all subjects were required to 

provide feedback for search results in order to complete the study. 

The pop-up window was designed to look identical to the voluntary feedback 

mechanism, differing only in size, location, and a means of closing the UI component 

(the voluntary UI component had a close button whereas the pop-up windows did 

not).  By conveying the same message in a consistent format, we were able to 

effectively measure the key point of variation: whether or not the user was forced to 

provide feedback. 
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4.1.2 Data Recorded 
The format of the data collected was very similar to that collected by the 

previous Microsoft Curious Browser project [Fox et al. 2005] – a byproduct of using 

Microsoft’s Curious Browser code as the basis for the Mandorvol Browser.  The data 

was stored in a Microsoft SQL Server 2000 database and the database schema is an 

augmented version of the schema used by the Curious Browser (see [Fox et al. 2003] 

for more details on the Curious Browser database schema).  The Mandorvol Browser 

makes use of an ExperimentType  table that holds static representations of each of 

the experiment types and a MandorvolBrowserUser  table that uniquely 

identifies each user of the Mandorvol Browser and associates them with a particular 

experiment type.  No further modifications were made to the database schema, 

allowing for maximum code reuse. 

The collected data can be classified as either explicit data, which is actively 

provided by the user, or implicit data, which is collected by the Mandorvol Browser 

based upon the user’s search behavior.  The explicit data consists of all search queries 

and their corresponding search result lists.  The explicit data also consists of any 

feedback provided by the user.  The feedback values are classified as Satisfied, 

Partially Satisfied, and Dissatisfied and correspond to the Yes, Partially, and No 

buttons in the feedback mechanism, respectively. 

The implicit data is precisely that which is collected by the Curious Browser 

without any indication of “end of search session”.  That is to say, the Mandorvol 

Browser treats all queries as new search sessions and does not attempt to determine 

whether a query is a refinement of a previous query or a new search.  The decision to 

remove this functionality was driven by the nature of the voluntary feedback 

mechanism.  In the Curious Browser, everything was pop-up-window based and 

when it detected what it believed to be an end of search session, the user was 

presented with a pop-up that prompted for a feedback value for the overall search.  It 

would be unnatural to do something similar with an explorer band, as used for the 

voluntary feedback mechanism in the Mandorvol Browser, and thus, after discussions 

with Microsoft, it was decided that the feature was not very necessary and could be 

removed. 
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As with the Curious Browser, the Mandorvol Browser collects data related to 

page navigation and user behavior on each page visited.  Of particular interest is that 

the Mandorvol Browser detects when the user visits a search result list and when a 

search result is visited.  Using this data, it can be determined how many search results 

the user needed to look at before finding the required information.  It can also be seen 

whether the user navigated away from a search result, which is useful in determining 

page correlation, i.e., whether links from a given search result are useful to the user.  

Additionally, by comparing the timestamps between successive page views, the 

amount of time the user spent looking at a search result, the dwell time, can be 

calculated.  The dwell time has previously shown in [Fox et al. 2005] to be a very 

useful implicit indicator for training a classifier. 

4.2 Methodology 
This section describes how the Mandorvol Browser was deployed across the 

Worcester Polytechnic Institute campus and how we attracted users to the study.   

Instructions on how to use the Mandorvol Browser are also detailed. 

4.2.1 Mandorvol Browser Installation 
The Mandorvol Browser was installed in several public computer access labs on 

the WPI campus.  The installation was performed by the Windows administration 

group in the Campus Computing Center (CCC) at WPI.  We provided the CCC with a 

Microsoft Windows Installer (MSI) file that installed the necessary files and registry 

entries.   They created a group policy that ensured that the Mandorvol Browser was 

installed in all the computers in the three primary public access computer labs on 

campus.  The installation procedure was thus automated as much as possible, and 

more importantly, easy to update.  In fact, initial deployment of the Mandorvol 

Browser uncovered an “off-by-one” issue not detected during testing.  Unfortunately, 

the issue affected the choice of mode of operation, so the four types were not evenly 

distributed, but we were able to quickly fix it and update the group policy with the 

new installer, which reinstalled the Mandorvol Browser upon each computer’s daily 

reboot cycle. 
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Due to the group policy however, great care had to be taken to guarantee that the 

MSI file would install the Mandorvol Browser correctly for users with unprivileged 

computer access.  Furthermore, it was necessary to make all registry and file accesses 

local to the computer rather than to the user’s roaming profile.  Meeting these two 

goals was time-intensive to build and test, but the end result was an installation file 

that could easily be deployed and redeployed. 

4.2.2 Encouragement 
Students at the Worcester Polytechnic Institute were solicited via email 

announcements and flyers that were placed near computers in the public access 

computer labs.  An example message that was broadcast to the student population is 

in Appendix H.  As can be noted in the message, there was a set of prizes that were 

raffled off to participants in order to attract as many users as possible. 

In addition to the raffled prizes, we suggested that the Computer Science 

Department faculty reward students with academic credit, e.g., extra points on an 

exam, for their participation in the study.  Three of the faculty members obliged and 

offered credit to their students.  Two of the classes for which credit was offered were 

undergraduate computer science courses while the other was a graduate computer 

science course. 

We believed that providing encouragement for completing the study would 

increase the quantity of data collected while not adversely affecting quality.  The 

users were rewarded solely for participation and as such the incentives should not 

have affected the actual feedback values given.  Additionally, the encouragement 

factors were just that, encouragement.  There was no requirement for any student to 

complete the study: all student participation was done on a voluntary basis. 

4.2.3 Mandorvol Browser Usage 
Every user of the Mandorvol Browser began the study by reading the directions 

shown in Appendix C, which they were directed to via the aforementioned email 

announcements and flyers.  Once the users read through the instructions and activated 

the Mandorvol Browser IE add-on, they were redirected to a further set of directions 

tailored for each of the four different experiment types.  The experiment types were 
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chosen randomly and were logged in the database along with a way to uniquely 

identify each individual.  This unique identifier was also used to ensure that each 

participant could only participate in the study once. 

The experiment-specific instructions were structured to minimize variation as 

much as possible between the different experiment types.  Thus, the instructions 

regarding the controlled tasks and the uncontrolled tasks, with both types of feedback 

mechanisms, are very similar.  Likewise, the text explaining the feedback mechanism 

is very similar for the voluntary tasks and the mandatory tasks, across both 

uncontrolled and controlled scenarios.  These specialized pages can be seen in 

Appendices D - G for mandatory controlled, mandatory uncontrolled, voluntary 

controlled, and voluntary uncontrolled, respectively. 

Throughout the duration of each experiment, implicit user behavior and all 

explicit feedback values were transparently logged to the database server.  Since no 

batching of data transmission was performed in the data storage, the effect of users 

performing unplanned actions that could cause potential data loss was minimized.  In 

fact, it allowed for a nicer user experience because once the user was done with the 

study, they simply needed to close the IE window, which is the most natural 

workflow action for a user when done with a browsing task.  Once the IE window 

was closed, a shutdown procedure was invoked that disabled the Mandorvol Browser 

so that any future users of the computer would be required to explicitly re-enable the 

Mandorvol Browser before it would begin collecting data again.  

4.3 Results 
This section presents statistics about the data collected throughout the course of 

the study.  The core foci of the data are the amount of feedback collected and the 

distribution of the feedback values.  In some cases, explanations of the distribution of 

the data are briefly presented.  A full analysis of the data however is deferred until 

Section 4.4. 

4.3.1 Demographics 
There were 161 participants in the study and the population was fairly evenly 

distributed among the four experiment types.  The mandatory controlled experiments 
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had a smaller population size due to a software defect that was found and corrected 

early in the experiment.  The other three experiments had populations that were 

approximately the same size.  The population size for each experiment type is 

summarized in  

Table 4-2, leading to the overall population distributions represented in Table 

4-3.  

 Controlled Uncontrolled 
Mandatory 28 45 
Voluntary 48 40 

 
Table 4-2 Experiment type distribution. 

 
 

 Controlled Uncontrolled 
Mandatory 17.39% 27.95% 
Voluntary 29.81% 24.84% 

 
Table 4-3 Experiment type distribution. 

 

In addition to the experiment type distributions, we have approximate values for 

the class and major of each participant.  By investigating the subject demographic, we 

can better understand how the demographic may have affected our results.  The 

demographic attributes were retrieved without user interaction via a campus-wide 

directory.  Unfortunately, the directory did not have up-to-date information for all 

students, but the data we were able to extract was valuable nonetheless. 

 

Class Number of Participants Distribution 

2005 20 12.42% 
2006 32 19.87% 
2007 29 18.01% 
2008 30 18.63% 

Graduate 29 18.01% 

Unknown 22 13.66% 
 

Table 4-4 Study population class distribution. 
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Table 4-4 shows the decomposition of the study population by school class.  

Outlying values and values for students missing from the campus directory are 

lumped together in the miscellaneous category. 

The study population was fairly evenly distributed across all classes.  Since the 

Mandorvol Browser could only be run in public access computer labs on campus, 

there were initial concerns that older students that live off campus would not be likely 

to complete the study.  This table indicates that such a restriction had no more impact 

on students that live off campus than those that live on campus.  That is not to say 

that we would not have had more user participation if we had allowed people to 

install the Mandorvol Browser on their own computers, simply that it affected all 

students equally. 

 

Major Number of Participants Distribution 

Biology/Biotechnology 8 4.96% 

Computer Science 69 42.85% 

Electrical/Computer Eng. 17 10.55% 

Management 4 2.48% 

Math 3 1.86% 

Mechanical Eng. 10 6.21% 

Unknown 50 31.05% 

 
Table 4-5 Study population major distribution. 

 
The major distribution values for the study population however, are far more 

skewed than the class data.  Computer science students and closely related 

electrical/computer engineering students represented the majority of the population.  

Such a sharp divide in the major distribution may be attributed to the grade 

encouragement offered to computer science students, the close affiliation between the 

computer science and electrical/computer engineering departments, and the fact that 

such students tend to be in the public access computer labs more often than students 

in other disciplines. 
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4.3.2 Feedback Ratio 
One metric to look at is the feedback ratio, which we have defined to be the ratio 

between the total number of times feedback was given to the total number of search 

results.  Since feedback can only be given once per search result, the feedback ratio 

takes the range [0, 1].  The feedback ratio is an indication of how well each feedback 

mechanism solicits feedback from a user.  The feedback ratios for each of the four 

experiments can be seen in Table 4-6. 

 

Controlled Uncontrolled 

Mandatory 0.95 0.98 

Voluntary 0.75 0.92 
 

Table 4-6 Feedback ratios. 
 

Note that we would expect the feedback ratio values for a mandatory feedback 

mechanism to be 1.  In actuality, we observed numbers slightly under this value.  The 

smaller numbers can be attributed to users closing the IE window when done with 

their experiments.  The mandatory feedback pop-up only appears when the user 

leaves a search result item so as to limit interruption of the user’s workflow [Bailey et 

al. 2000].  When the user is viewing a search result item however, and chooses to 

close the IE application, the internal state machine did not detect this as leaving a 

search result item, and thus the user was not prompted to give feedback.  However, 

the number of search results viewed was incremented as soon as the user clicked on 

the search result link.  The net result is a small, but noticeable skew in the feedback 

ratio values. 

Closely related to the feedback ratio is the feedback to opportunity ratio, which 

we have defined to be the ratio between the total number of times feedback was given 

to the total number of pages viewed.  The difference between this and the feedback 

ratio is subtle, but important.  While viewing a search result, a user may navigate 

away from the search result to other pages linked from the search result.  Each page 

navigated to increments the total number of pages viewed count, and on each such 

page the user is given the opportunity to provide feedback.  However, feedback can 

only be given once for a search result and all the pages navigated to from that search 
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result.  There is no defined range for the feedback to opportunity ratio, but it is 

bounded by 0 on the low end and 1 on the high end.  The value of knowing the 

feedback to opportunity ratio is that it can be seen how much feedback is given over a 

complete search session.  The feedback to opportunity ratios for each of the four 

experiments can be seen in Table 4-7. 

 

 Controlled Uncontrolled 
Mandatory 0.63 0.57 
Voluntary 0.41 0.61 

 
Table 4-7 Feedback to opportunity ratios. 

4.3.3 Feedback Values Distribution 
 

The collected feedback is grouped by value for each experiment type and is 

presented in Table 4-8.  These feedback values are normalized in that each value is a 

percentage of the total amount of feedback for a given experiment – No Feedback 

values are omitted.  The normalized values indicate the feedback value distributions 

when feedback is given.  

 

 Satisfied 
Partially 
Satisfied Dissatisfied 

Mandatory 
Controlled 29.66% 23.57% 46.77% 

Mandatory 
Uncontrolled 46.85% 22.28% 30.87% 

Voluntary 
Controlled 50.76% 16.67% 32.58% 
Voluntary 

Uncontrolled 49.42% 21.71% 28.88% 
 

Table 4-8 Normalized feedback distributions. 
 

 

Table 4-9 shows the feedback value distributions for each experiment type when 

No Feedback values are considered.  These values are the feedback type distributions 

for all queries, regardless of whether or not feedback is provided.  As can be seen, the 

percentage values drop, in some cases considerably, from the values in Table 4-8. 
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 Satisfied 
Partially 
Satisfied Dissatisfied No Feedback 

Mandatory 
Controlled 28.06% 22.30% 44.24% 5.40% 
Mandatory 

Uncontrolled 45.80% 21.78% 30.18% 2.23% 
Voluntary 
Controlled 37.85% 12.43% 24.29% 25.42% 
Voluntary 

Uncontrolled 45.37% 19.93% 26.51% 8.19% 
 

Table 4-9 Feedback ratios with No Feedback values. 

4.4 Analysis 
The data collected during the study has yielded some insight into user behavior 

with regards to providing feedback.  Certainly, with such a small population it is not 

possible to make broad conclusions from the study.  However, the population is 

sizable enough to indicate trends that may be worthy of further consideration. 

The sample population was composed of people that are generally quite 

proficient with modern computing technology.  This was further compounded by the 

large percentage of students in computer-related academic programs.  It is not entirely 

clear what the consequence of this is, since in the general sense, the sample 

population was mostly homogenous.  It would be reasonable, however, to expect to 

see different results with users that are not as familiar with computing technology.  

For example, most students on the WPI campus are quite familiar with the Microsoft 

applications used during the study, the Google search engine, and even responding to 

pop-up windows and explorer bands.  Users without this background, however, may 

have had considerable difficulty with study.  In many ways, the Mandorvol Study was 

tailored to the WPI student body. 

Another factor that may have potentially affected the outcome of the study is 

student bias against Microsoft.  Once again, there is no real way to measure this, but 

especially in the computer-related fields of study, students tend to view Microsoft in 

an unfavorable light.  In anticipation of this, we were careful not to mention that 

Microsoft had funded the study when we invited students to participate.  However, 

some students prefer not to use Microsoft products, and that may have affected their 

attitude towards the study, and ultimately the quality of the collected data. 
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In the end, it did not appear as though student feelings about Microsoft had a 

large impact on the overall study, as we observed very large feedback ratios for the 

experiments that collected voluntary feedback.  If such bias did play a large role, we 

would expect to have seen low feedback ratios with the voluntary feedback 

mechanism since it is easier not to provide feedback than it is to provide it. 

During the pilot studies we saw feedback ratios of 0.035 and 0.15 in the 

controlled scenario (see Table 3-1).  While the Excel tasks went through several 

modifications, as did the explorer band, in the full study we saw feedback ratios with 

a 5-22 times increase in the controlled case.  In the uncontrolled case, the feedback 

ratio was even larger, but since the pilot studies did not examine the uncontrolled 

case, there is no baseline to compare against. 

The choice of feedback mechanism clearly had an effect on the amount of 

feedback collected.  However, we collected far more data with a voluntary feedback 

mechanism than we had anticipated.  Indeed, the feedback ratio values for the 

mandatory and voluntary feedback mechanisms in the uncontrolled scenario 

experiments are quite close to one another.  Nevertheless, the mandatory feedback 

mechanism did collect more feedback than the voluntary mechanism, supporting our 

H1 hypothesis. 

We believe that the choice of feedback mechanism will also have an effect on the 

data quality, although we were not able to directly correlate the two.  The thought is 

that when presented with pop-up windows, users will take the path of least resistance 

and click the feedback value button that is closest to the mouse cursor.  Furthermore, 

we believed that if users became frustrated with the pop-up windows, it is likely that 

they may start providing blatantly incorrect feedback values as a way of “punishing” 

the entity collecting feedback values. 

In informal conversation with study participants, some had told us that they had 

clicked feedback buttons that did not accurately represent their true feeling about the 

utility of the search result in order to make the pop-up window disappear as quickly 

as possible.  With that in mind, we had initially proposed a voluntary pop-up window 

as a third feedback mechanism to use for the experiments.  The pop-up window 

would look just like the one used as the mandatory feedback mechanism, except that 
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it would have an “X” button to close the window without explicitly providing a 

feedback value.  Since it would appear that users were not providing improper 

feedback values as a way to subvert the study, but rather as a way to proceed with 

their workflow, we do not believe that a voluntary pop-up would yield higher data 

quality than a mandatory pop-up.  If this is true, the user is not annoyed by the fact 

that he must give feedback, but rather that the pop-up is present until a button is 

clicked, and as such, the user will still click the closest target. 

We took great care not to influence people to give feedback, but in order to make 

sure users did not confuse our explorer band with a banner advertisement, they were 

made aware of the feedback band via prompts as shown in Appendix F & Appendix 

G.  As a result, it is not certain how the color and location of the voluntary feedback 

mechanism affect the amount of feedback collected.  Additionally, as noted in Section 

4.1.1.2, the tasks in the controlled scenarios were chosen in a manner that would lead 

users to re-evaluate a page.  While the intention was to help ensure users were able to 

utilize the information given by the Office help system before providing feedback, 

there also appears to be a correlation between page re-evaluation and feedback 

response rate.  This design decision may have biased the participant to give more 

feedback in the voluntary controlled case than they would have in a general help 

system search. 

Our data seems to indicate that a distinctive voluntary feedback mechanism 

yields a higher quantity of feedback responses than a mechanism that simply blends 

in with the user application.  However, it is possible that the users were simply driven 

to give more feedback upon reading the text alerting them to the feedback 

mechanism.  It cannot be determined if this is a result of the user somehow feeling 

obligated to give data, perhaps to improve the study results, or if users are genuinely 

more apt to give feedback if they are made aware of the ability to do so. 

The data in Table 4-6 and Table 4-7 show that users tend to provide more 

feedback when performing Web searches at their leisure.  This is evidenced by the 

feedback ratio values, which are typically higher for the uncontrolled scenarios than 

they are for the controlled scenarios.  We believe the difference in the amount of 

feedback provided is correlated to a task-oriented versus leisurely mindset for the 
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user.  The controlled experiments consisted of a set of tasks to perform in Excel that 

the user wanted to complete as quickly as possible.  As soon as the task was 

completed, the user moved from one search query to a completely unrelated one.  The 

user was not interested in going back to the previous search result to provide 

feedback; this corresponds to the voluntary controlled scenario.  However, when 

leisurely searching the web, the user is often interested in general topics rather than 

specific answers, and such, the user will spend more time evaluating search results. 

The data in Table 4-8 and Table 4-9 show that when users are leisurely browsing 

the Web, the feedback they provide tends to be positive.  This finding is consistent 

with previous work [Saito & Ohmura 1998] that showed that when users have a 

mental model of what it is they are searching for, they tend to be more satisfied with 

their search results.  The uncontrolled scenario experiments had significantly higher 

Satisfied values than the controlled scenario experiments regardless of the type of 

feedback mechanism used.  We believe this, too, is related to the task-oriented versus 

“at leisure” mentality.   

When leisurely browsing the Web, users tend to search for items that they are 

already familiar with, and thus the users are already familiar with the search results.  

Users know what they are looking for in this scenario and are better able to gauge the 

search results.  In a task-oriented scenario, the user is attempting to complete a task 

using an unknown process.  The user is not sure what to search for and has no a priori 

expectations about the search results.  Furthermore, there is no personal connection to 

the results: either they help complete the task at hand or they do not.  In such 

scenarios, we expect to see more diversified feedback values which relate directly to 

the specific utility of the search result. 
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5 Classifier Construction 

Having collected all the data from the experiment, there was a need to analyze 

the data to uncover any relationships between attributes.  Ultimately, we wanted to be 

able to predict user satisfaction with a given search result using that data.  The nature 

of the problem lent itself naturally to machine learning techniques. 

While Chapter 4 detailed the field experiment and descriptive statistics about our 

data, this chapter provides an in-depth analysis of the collected data.  Using machine 

learning techniques and tools, the data is processed in such a way as to address our 

hypotheses and answer the research question. 

5.1 Decision Tree Construction 

Decision tree classifiers are a common family of algorithms employed in the 

field of machine learning for predicting classifications.  The trees constructed by such 

classifiers represent a set of rules, with each path through the tree ultimately leading 

to a leaf that represents a classification value.  More information on the mechanics of 

decision trees can be found in Section 2.2.  The Weka2 machine learning program was 

used to construct the decision trees.  Weka is an open-source data mining tool written 

in the Java programming language and licensed under the Gnu’s Not Unix (GNU) 

General Public License (GPL).  The software was developed at the University of 

Waikato, New Zealand and complements Witten and Frank’s book [2000] on data 

mining techniques. 

5.1.1 Motivation 

The choice of using a decision tree classifier over other machine learning 

approaches was largely driven by the desire to have a set of human readable rules that 

describe what leads to a user’s satisfaction.  Since each path through a decision tree 

encodes such a rule, as described in Chapter 2, decision trees are a good data 

representation for what we wanted to achieve.  Additionally, we knew there were 

causal relationships between implicit behavior indicators and user satisfaction values 

                                                 
2 Weka 3.5.2 was used for the experiments.  It is available from http://www.cs.waikato.ac.nz/ml/weka/. 
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due to previous work in the field [Claypool et al. 2001a; Claypool et al. 2001b; Cen et 

al. 2002], so the use of a classifier that can account for these relationships, such as 

decision trees, was a natural choice.  Finally, Microsoft had used decision trees in its 

Curious Browser project [Fox et al. 2005], so our use of decision trees provides a 

fairly straightforward way of comparing results with existing work. 

5.1.2 Data Preparation 

Weka uses a custom file format called Attribute-Relation File Format (ARFF) 

that is very similar to a file of simple comma-separated values.  During the 

experiment, all of the collected data was stored in a series of tables in a relational 

database.  Using SQL queries that joined the tables based upon the unique user 

identifiers and other foreign keys in the database, the necessary data was extracted 

from the database.  A custom Python script was then used to process the data 

accordingly to create the ARFF files suitable for use with Weka. 

During the experimental design, we did not know precisely which data attributes 

would be good predictors of user satisfaction.  As a result, the Mandorvol Browser 

was programmed to collect as much data about the user’s interaction with the Web 

browser and the general computing environment as it could, subject to the limitations 

imposed by the executing environment.  Before we could proceed with our data 

analysis, we were tasked with choosing a subset of the total set of attributes available 

to use for training a classifier. 

In an attempt to not bias results, we initially considered all attributes as 

candidates for our classifier.  We employed a hold-one-out strategy for determining 

whether a particular attribute positively contributed to classification accuracy.  The 

basic idea was to build a classifier both with and without a particular attribute being 

present and then comparing the classification accuracies.  If the decision tree without 

the attribute had a classification accuracy that was at least as good as the decision tree 

with the attribute present, then the attribute was deemed superfluous and removed.  

This approach is very similar to Quinlan’s reduced-error pruning [Quinlan 1987], 

which is used for removing unnecessary nodes from decision trees.  In fact, we had 

initially expected the decision tree construction algorithm to prune away all 
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unnecessary attributes, but found in practice the automatic pruning method still 

required some human involvement in the form of attribute pruning.  The decision 

node pruning process, however, worked without intervention. 

Once we discovered an attribute that did not positively contribute to 

classification accuracy, we investigated the rule representation of the tree to 

understand why that was the case.  In nearly all cases, we removed attributes because 

they were intimately tied to an individual subject, leading to overfitting of the 

decision tree.  For example, we found that time-based attributes were correlated to an 

individual subject because it was hardly ever the case that more than one person was 

participating in the experiment simultaneously.  Likewise, terms used in search 

queries were tightly coupled to the individual.  These discoveries were not necessarily 

intuitive to us at first, but upon inspection of the data and the rules generated from the 

decision tree, we were able to establish that these correlations did exist.  

When the attribute reduction process was completed, a total of fourteen different 

attributes remained.  These attributes and their associated values constitute a single 

datum for the data that is used to build a decision tree in our data analysis. 

Table 5-1 summarizes these attributes in alphabetical order: 
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Attribute Name Attribute Type Description 

AbsolutePosition Real-valued The search result’s position in all the 
search pages. 

BehaviorType Discrete-valued Indicates whether the user has visited 
a search result or browsed away from 
it. 

BehaviorUrlLength Real-valued The length of the URL on which the 
user performed some action (not 
necessarily the search result). 

DescriptionLength Real-valued The length of the search result’s 
description (specified as a meta tag 
in HTML). 

DurationSeconds Real-valued How long the user spent on a page 
before performing an action. 

ExitType Discrete-valued How the user left the search result. 

FeedbackOption Discrete-valued The user’s satisfaction with the 
search result. 

FileSize Real-valued The length in bytes of the search 
result page. 

ImageCount Real-valued The number of images linked into a 
search result. 

LinkTextLength Real-valued The length of search result’s title 
(specified in HTML). 

Page Real-valued The search result page number. 

PagePosition Real-valued The search result’s position relative 
to the top of a search page. 

ScriptLength Real-valued The length in bytes of all linked 
JavaScript files. 

SearchResultUrlLength Real-valued The length of the search result URL. 

 
Table 5-1 Data set attributes used for building classifiers. 

 
Nearly all of the data was complete, meaning there were few instances with 

missing data.  Complete data is a desirable property for training a classifier, because 

otherwise the classifier construction algorithm will have to infer the missing values.  

Some of the data entries did have missing values, however, and thus had to be treated 

before use in Weka.  For example, in the event that the user closes the browser, the 

browser exit type value is unknown, but since this is the only case in which the value 

is unknown, by deduction it is known.  These missing values are replaced with a 

token representing “closed browser”.  The remaining attributes that were missing data 
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were environmental and corresponded to the length of any linked JavaScript files, the 

length of the HTML document, or the number of images embedded in the page.  They 

were handled by the J48 (C4.5) algorithm as detailed in Section 2.2.3. 

Some of the values appeared real-valued but were in fact discrete by nature.  

These attributes related to the user’s behavior type and the user’s submitted feedback 

value.  In order to prevent the classifier from discretizing these data itself, we 

discretized the data during the ARFF file creation.  Had the classifier discretized the 

data, it would have used a binning strategy that split the range of values into sub-

intervals.  The desired effect was to actually treat each integral value in the range as a 

value independent of any other in the range.  As an example, our discretization 

process converts [1, 6] into {1, 2, 3, 4, 5, 6}, which is a set of discrete elements.  Left 

on its own, Weka may convert that range to the bins{-∞ – 1.4, 1.5 – 2.9, 3.0 – 4.4, 4.5 

– 5.9, 6.0 – ∞}. 

5.1.3 Method 

Weka ships with implementations of two of the most common decision tree 

construction algorithms: ID3 and C4.5 (although Weka calls its version J48), which 

are described in more detail in Chapter 2.  For these experiments, we opted to use the 

J48 method because it performs better than ID3 in nearly all circumstances [Quinlan 

1993].  Weka also allows configuration of certain properties of these algorithms that 

will affect the tree construction process.  Using previous experience in building 

decision trees to guide our selection process, we performed experiments with various 

configurations in order to determine how the differences would affect classification 

accuracy.  The results of these experiments can be seen in Figure 5-1:  
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Figure 5-1 Comparison of classifier accuracies. 
 

All experiments were performed using 10 fold cross-validation and the results 

averaged over 10 runs.  The legend indicates the classifier used followed by the 

corresponding parameters suitable for use in Weka.  For example, “trees.J48 ‘-C 0.25 

-M 2’ means a J48 decision tree that uses a confidence factor of 0.25 for pruning and 
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requires a minimum of 2 data instances per classification before creating a leaf node 

to represent that classification.  The set of J48 parameters, as defined within Weka, 

can be viewed in Table 5-2: 

Short Name Long Name Description 

-B binarySplits Whether to use binary 
splits on nominal attributes 
when building the trees.  
Its presence indicates 
binary splits are to be 
used. 

-C confidenceFactor The confidence factor used 
for pruning (smaller values 
incur more pruning). 

-M minNumObj The minimum number of 
instances per leaf. 

-U unpruned Whether pruning is 
performed.  Its presence 
indicates the decision tree 
is not to be pruned. 

-S subtreeRaising Whether to consider the 
subtree raising operation 
when pruning.  Its 
presence indicates subtree 
raising is not to occur. 

-R reducedErrorPruning Whether reduced-error 
pruning is used instead of 
C.4.5 pruning.  Its 
presence indicates that 
reduced-error pruning is 
to be used. 

-N numFolds Determines the amount of 
data used for reduced-error 
pruning.  One fold is used 
for pruning, the rest for 
growing the tree. 

-Q Seed The seed used for 
randomizing the data when 
reduced-error pruning is 
used. 

 
Table 5-2 Weka parameters for J48 decision tree classifier.  The names and descriptions come 

directly from the Weka in-program help system, with personal annotations appearing in italics. 
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  The “rules.ZeroR” line represents the baseline operation for all classifiers.  In 

ZeroR, the majority classification value observed during training is the only response 

the classifier ever predicts; there is no reasoning involved at all, it is simply a matter 

of target value distribution in the training set.  For example, if during training it is 

observed that users are dissatisfied 60% of the time, then ZeroR will always predict 

Dissatisfied and be correct approximately 60% of the time.  OneR is similar to ZeroR, 

but does consider a single attribute used to create a single rule prior to predicting.  In 

fact, the one rule from OneR will be the same as the root of any decision tree, since 

decision trees use more general rules near the root and become more specific near the 

leaves.  The remaining lines represent varying configurations of J48 decision trees.  

The blue line with the filled circle represents the Weka default for J48. 

Across all datasets, the default Weka J48 classifier performs quite well.  It clearly 

has higher classification accuracy than several other decision trees, but is marginally 

less than others on certain datasets.  Using a corrected paired t test, it was found that 

the default J48 does not perform significantly worse than any other decision tree at 

the 0.05 confidence level.  As such, and in order to not add unnecessary complication, 

the Weka default options are used for all decision trees hereafter. 

There are factors to consider beyond classification accuracy, however.  As an 

example, presuming that the data is consistent (meaning two different classifications 

cannot be derived from the same sequence of attribute values), a tree can be built that 

describes each datum with a single rule.  The classification accuracy of this tree 

would be 100%, but the tree would be so specialized as to be useless in the general 

case.  Normally it is said such a tree is overfit to the data.  There would be little 

insight gained as to what features have a large impact on user satisfaction by looking 

at such a tree.  Generally speaking, Occam’s razor3 rules in such cases and simpler 

trees are probably more accurate predictors of the underlying phenomena [Russell & 

Norvig 2003].  Thus, after having chosen our set of parameters for the J48 algorithm, 

we investigated how we could prune branches in an attempt to maximize 

classification accuracy while minimizing the overall tree size.  Weka’s J48 
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implementation allows the experimenter to control pruning by setting a confidence 

factor from [0, 1] for the classifier.  A lower confidence value leads to more 

aggressive pruning of tree nodes. 

In order to determine the best confidence factor to use, we conducted a series of 

experiments that compared J48 classifiers built with different confidence factors.  We 

chose six different values ranging from 0.05 to 0.30, at 0.05 intervals, and observed 

the differences between them in terms of classification accuracy, number of generated 

rules (total number of leaves), and total tree size (defined as total number of internal 

nodes + total number of leaves).  Statistical significance in differences between them 

was tested using a corrected paired t test for each data set, with the Weka default J48 

classifier (C = 0.25) as the point of comparison. 

                                                                                                                                           
3 Occam’s razor is a philosophy that dictates the simplest solution is the most correct.  It is employed 
in nearly all scientific fields (it is common to derive simple models to build on top of) and Mitchell 
[1997] argues that it is also applicable to machine learning. 
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Figure 5-2 Classification accuracy versus number of rules for various J48 confidence factors. 

 

The results of these confidence factor experiments can be seen in Figure 5-2.  

The graph depicts the classification accuracy and normalized number of rules for each 

of the six different confidence factors over the nine data sets.  The number of rules is 

normalized by the Weka default J48 classifier.  Thus, the Weka default classifier has 

a normalized rule count of 1.0 on the graph and all other classifier values are relative 

to this baseline.  Using normalized values rather than raw count allows for easy 

comparison of classifiers in terms of rule reduction across all data sets. 

The goal of these confidence factor experiments was to find a point on the graph 

that significantly reduces the number of rules while not significantly reducing the 

classification accuracy.  The solid, blue circle corresponds to the Weka default J48 

classifier.  As the confidence factor decreases, the number of rules also decreases, as 
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expected.  Likewise, increasing the confidence factor increases the number of rules, 

as evidenced by the open square points on the graph, corresponding to C = 0.30. 

As can be seen in the graph, the confidence factor values generally have a linear 

relationship with the classification accuracy and number of generated rules.  Several 

of the lines, however, have an initial period of steep ascent and then grow slowly.  Up 

until the change in slope, there is a significant difference between classification 

accuracies in the classifiers represented by the steeply rising line segment and the 

Weka default.  More importantly, at these junctions, there is no longer a significant 

difference in classification accuracy between the Weka default classifier and the other 

classifiers plotted in the connecting line segment.  In general, the solid, green 

triangles mark these junction points and correspond to a confidence factor of 0.10.  

Most notably, the mandatory controlled and voluntary controlled classifiers do not 

conform to this general trend and a confidence factor of 0.15 may have been a better 

choice for their junction points.  We chose the confidence factor of 0.10 to be our best 

confidence value since it minimizes the number of generated rules while not 

significantly decreasing classification accuracy over the majority of data sets. 
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Figure 5-3 Comparison of accuracies over different pruning levels. 
 

Figure 5-3 is an alternative representation of information from Figure 5-2, 

highlighting the differences in the classifiers in terms of classification accuracy over 

different subsets of our data.  In this figure and those that follow, the solid, blue line 

with the filled circle indicates the baseline as the Weka default.  The solid, green line 

with the filled triangle represents the confidence factor that maximizes the balance 

between classification accuracy and number of rules (C = 0.10).  It should be noted 

that of the six different confidence factors tested, only one was significantly different 

from the Weka default; this classifier is represented on the graph by the dashed line 

with the filled, black square (C = 0.05). 
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Figure 5-4 Comparison of number of generated rules over different pruning levels. 
 

Figure 5-2 shows that the trees generated with C = 0.10 are between 21% and 

35% smaller than those generated with the Weka default of C = 0.25, while reducing 

classification accuracy by only 1 – 1.5 percentage points.  Figure 5-4 shows how 

these percentages translate into raw values.  Of the confidence factors tested, only one 

(C = 0.05) produced a fewer number of rules than our chosen optimal classifier but 

was disregarded due to having a significantly worse classification accuracy.  As 

mentioned previously, a smaller number of rules is usually more applicable to the 

general problem domain.  Pragmatically speaking, a rule reduction also makes it 

easier for humans to comprehend. 

Smaller tree sizes equate to more efficient training in terms of both time and 

space.  Figure 5-5 illustrates how the various confidence factors affect overall tree 
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size.  This information is not directly represented in Figure 5-2, but as the tree size is 

defined in terms of the number of internal nodes combined with the number of leaf 

nodes (the number of generated rules), it can be inferred.  As with the number of 

generated rules, our chosen classifier reduced the tree size by 21% - 36% relative to 

the Weka default, which can significantly reduce training time over a large number of 

data instances.  The remaining classification experiments, thus, use the Weka default 

for the tree generation algorithm with a pruning confidence value of 0.10. 
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Figure 5-5 Comparison of tree sizes over different pruning levels. 
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5.2 Results 

The decision trees for the four Mandorvol study experiment types, built using the 

J48 classifier with a confidence factor of 0.10 in Section 5.1.3 are summarized in 

Table 5-3: 

 Mandatory Controlled  Mandatory Uncontrolled 

 Data Collected:   362 (20 users)  Data Collected: 2050 (37 users) 
 # of Rules: 28  # of Rules: 168 
 Tree Size: 55  Tree Size: 329 
 Accuracy (%): 67  Accuracy (%): 67 
 Std. Dev. (%): 8.2  Std. Dev. (%): 3.5 

 Voluntary Controlled   Voluntary Uncontrolled 

 Data Collected:   398 (29 users)  Data Collected:   1348 (31 users) 
 # of Rules: 32  # of Rules: 114 
 Tree Size: 61  Tree Size: 221 
 Accuracy (%): 74  Accuracy (%): 70 
 Std. Dev. (%): 6.9  Std. Dev. (%): 4.1 

 
Table 5-3 Classifier properties by experiment type. 

 
Note that the number of users that contributed data to the classifiers and the 

number of users reported to have completed the study (Section 4.3.1) are not the 

same.  While the figures in Section 4.3.1 do accurately represent the number of users 

that participated in the study, it was not discovered until detailed inspection of the 

data that some users did not in fact complete the study.  In most of these cases, the 

Mandorvol Browser was turned off after the start of the experiment, either voluntarily 

or inadvertently.  Additionally, in the cases of the voluntary experiments, some users 

simply opted not to provide feedback.  In these cases, the subject did complete the 

study but did not contribute any data that could be used for classifier training.  

Henceforth, only participants that completed the experiment are considered in our 

analysis. 

Figure 5-6 shows the total number of study participants by day.  The large slope 

beginning at day 7 is the result of our first marketing effort.  After approximately five 

days, the rate of user participation slowed down.  On day 17, the number of new 

participants spiked up briefly again.  From that point to the end of the experiment, the 
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number of new users participating each day was mostly constant, at approximately 

one or two users per day. 
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Figure 5-6 Total number of participants by day. 

 
As the data was collected over the course of 38 days, we decided to investigate 

how well the classifier performed as new data was added (see Figures 5-7 to 5-10).  

The choice of a “day” as a line of demarcation is arbitrary, since the collected data 

was not evenly distributed over all days.  However, it was still used because it 

provided a natural boundary and is simple to reason about.  The data used for each of 

the daily classifiers is accumulative.  For example, on day three, the data collected on 

days one, two, and three are used.  Note that the graphs only show data through day 

33 because no useful information was collected during the last five days of the 

experiment.  We averaged 3.5 new subjects per day that contributed 126 data 

instances per day for those 33 days. 
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Figure 5-7 Daily classification accuracy for mandatory controlled experiment. 
 

Figure 5-7 shows the daily performance of the classifiers for the mandatory 

controlled experiment.  Recall that all experiments were run 10 times with 10 fold 

cross-validation.  In order for a 10 fold cross-validation to work, there must be at least 

ten data entries, so that all the folds have some data.  As can be seen in Figure 5-7, the 

mandatory controlled experiments did not garner a sufficient amount of data until the 

tenth day of the study.  This was due to the software defect that affected the 

experiment, described in Section 4.3.1. 

Approximately 24 days into the experiment, the classification results began to 

stabilize.  The most turbulent areas in the graph correspond directly to the large 

growth in population shown in Figure 5-6.  While the classification accuracy does not 

change very much, the standard deviation in accuracy between different classifiers is 

both the 10 fold cross-validation and across the 10 experiment runs continues to 

decrease. 
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Figure 5-8 Daily classification accuracy for mandatory uncontrolled experiment. 
 

The triangular points in Figure 5-8 indicate classification accuracies that are 

significantly better than the baseline, which was the last day of the experiments, at the 

0.05 confidence interval.  The last day of the experiment, day 33, was chosen at the 

baseline because at that point, all collected data would be used in the decision tree 

construction.  The underlying heuristic is that the more data the decision tree has, the 

better the classifier.  Each daily classifier was compared to the last day using a 

corrected paired t test. 

While the triangular points have significantly better classification accuracies, the 

standard deviations at those points are considerably larger than the baseline.  It is not 

sufficient to merely pick the subset of data that yields the highest accuracy.  The 

decision tree construction must be reliable and high standard deviation indicates that 

there was substantial variation in the generated trees for each fold and each 

experiment.  As can be seen in Figure 5-8, the classification results did not begin to 



 

 

63 

stabilize until approximately day ten, with all of the significantly better classification 

accuracies occurring before that point. 

Days

0 5 10 15 20 25 30 35

%
 C

or
re

ct

40

60

80

100

± 1 Std. Dev.
Avg. % Correct
S.B. 0.05 CI*

 
 

Figure 5-9 Daily classification accuracy for voluntary controlled experiment. 
 

As more diverse data is added, the J48 algorithm is able to detect relationships 

between attributes in the data set.  Using attribute values in a datum, rather than just 

the classification value, allows the decision tree to reason about a classification 

prediction rather than simply reporting the training set’s classification distribution.  In 

doing so, the folds are not as dissimilar and as such the overall variance is reduced. 
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Figure 5-10 Daily classification accuracy for voluntary uncontrolled experiments. 
 

Figure 5-10 contains a point, indicated by a square, that is significantly worse 

than the baseline classifier.  Like points that are significantly better, this point is 

deemed significantly worse at the 0.05 confidence interval using a corrected paired t 

test.  Fortunately, this point occurs very early in the experiment and as more data is 

collected, no significantly bad classifiers are created.  In fact, this is true of classifiers 

generated for all experiment types. 

5.2.1 Results Summary 
The initial standard deviation for all of the data sets is high.  Early in the 

experiments, little data were available and as such, the constructed trees were based 

more on probable data distribution than discovered relationships.  For example, in the 

voluntary controlled set of experiments (Figure 5-9), users tended to give feedback 

when they were satisfied with a search result (see Table 4-8).  If early on in the 

experiments the majority classification value was Satisfied, the trees would resemble 
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ZeroR in that they would simply predict Satisfied in all cases.  If some of the data 

contained other classifications values, however, the results of an n-fold cross-

validation would fluctuate between 0% and 100%.  The average of these runs would 

be the actual distribution of Satisfied values. 

At approximately day 15, all classifiers begin to stabilize in their classification 

accuracies.  This suggests that prolonged data collection will not significantly 

improve the results of any constructed decision tree.  However, the standard 

deviations do continue to decrease as more data is added, suggesting a convergence to 

a single tree that will be created by all folds in all experiments. 

The standard deviations are lower for the uncontrolled experiments than for the 

controlled using both mandatory and voluntary feedback mechanisms, as can be seen 

by comparing Figure 5-7 with Figure 5-8 and Figure 5-9 with Figure 5-10.  The 

differences in standard deviations correlate to the difference in the number of data 

instances and, as such, were expected.  Table 5-3 shows an average standard 

deviation of 3.8% for the uncontrolled experiments and an average standard deviation 

of 7.6% for the controlled experiments.  A natural consequence of these differences is 

that we have much greater certainty in any conclusions we derive regarding the 

uncontrolled experiments rather than the controlled ones. 

 

5.3 Analysis 

Using the user satisfaction values distribution from Table 4-8 and the J48 

decision tree properties shown in Table 5-3, it can be seen how well our trained 

classifiers predicted user satisfaction compared to the baseline operation.  Table 5-4 

reports both the baseline classification accuracy and the J48 classification accuracies 

for each of the four Mandorvol study experiment types.  The table also shows the 

increase in accuracy obtained by the decision tree over the ZeroR method. 
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 ZeroR (baseline) 
Accuracy (%) 

Decision Tree 
Accuracy (%) 

Difference (%) 

Mandatory 
Controlled 

47 67 +44 

Mandatory 
Uncontrolled 

47 67 +44 

Voluntary 
Controlled 

51 74 +46 

Voluntary 
Uncontrolled 

49 70 +42 

 
Table 5-4 Comparison of baseline and decision tree classification accuracies. 

 
The decision tree classifiers were able to predict user satisfaction values much 

more accurately than did ZeroR.  As can be seen in Table 5-4, in all cases, the 

decision tree classification accuracy is at least 20% higher than that of ZeroR, 

corresponding to an increase of 40% or more in classification accuracy.  Furthermore, 

the classification accuracies are high enough to be useful.  As an example, in a 

voluntary controlled scenario the decision tree is able to correctly predict how 

satisfied a user is with a search result three out of four times. 

5.3.1 Mandatory Versus Voluntary 
The mandatory dimension is the pivot point of this experiment.  Previous work 

[Fox et al. 2005] has shown that classifiers for predicting user satisfaction can be built 

using data collected from a mandatory feedback mechanism.  The rationale behind 

the choice of using a mandatory feedback mechanism is to maximize the amount of 

collected data.  Table 5-3 clearly shows that the mandatory experiments collected a 

greater amount of feedback data than the voluntary experiments, supporting our 

hypothesis H1 that a mandatory feedback mechanism would collect more data than a 

voluntary one.  Classifiers such as decision trees typically become increasingly 

accurate as more data is supplied for training.  Thus, it is noteworthy that the 

voluntary dimension has higher classification accuracy in both the controlled and 

uncontrolled scenarios, as seen in Table 5-4. 

Hypothesis H2 stated that data collected via a voluntary feedback mechanism 

would be of higher quality than that collected via a mandatory feedback mechanism.  

Here, quality is defined as most accurately representing a user’s true level of 
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satisfaction with a search result.  The underlying idea is that if a user gives feedback 

of their own free will, then they are likely to give correct data.  If, however, users are 

forced to give feedback values, they may give incorrect results either as simply a 

means of removing the pop-up or as a form of retribution for being annoyed.  While it 

is not clear that the voluntary dimension is of higher quality due to these factors, it is 

nonetheless better than the mandatory dimension in terms of classification accuracy. 

Due to the stabilization of classifier accuracies shown in the daily classifier 

graphs in Figure 5-9 & Figure 5-10, it is clear that the lower amount of data collected 

via a voluntary feedback mechanism does not impact the results of constructed 

decision trees.  Thus, choosing a mandatory feedback mechanism simply as a means 

of collecting more data is not a justified decision, unless it is believed that not enough 

data can be acquired before reaching the critical point (approximately day 15 – 1,200 

instances – in this experiment) at which the addition of more data will not 

significantly affect classification accuracy.  A classifier built using a voluntary 

feedback mechanism can perform just as well, if not better, than a classifier built 

using a mandatory feedback mechanism without adversely affecting a user’s search 

session. 

As mentioned previously, there are a large number of similarities between the 

work completed by Fox et al. [2005] and our own study.  Sections 3.2 & 4.1.2 

describe how our experimental design was derived from their work, but does not 

discuss analogues between their results and ours.  By comparing the results of the Fox 

et al. study with our own, we further enhance both their findings and our own. 

The Fox et al. [2005] experiment was conducted over a six week period with 146 

participants, yielding approximately 3,700 different data instances.  These values are 

very similar to our own results, as highlighted in Table 5-3.  Using their collected 

data, Fox et al. were able to construct classifiers that were able to correctly predict 

user satisfaction with a search engine result 57% of the time.  By removing 

problematic leaf nodes in their decision tree, they were able to improve the accuracy 

to 66%.  The improved classification accuracy is very similar to those observed in our 

mandatory controlled and mandatory uncontrolled experiments.  The Fox et al. 

experiment most nearly correlates to our mandatory uncontrolled experiment type. 
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If it is to be believed that the results of our mandatory set of experiments are 

analogous to those of Fox et al., then there is further evidence that data collected via a 

voluntary feedback mechanism is able to yield better classifiers than data collected 

via a mandatory feedback mechanism.  Unfortunately, despite the similarities 

between the two studies, it is hard to provide a direct comparison between our work 

and that of Fox et al..  In particular, their feedback distributions were different than 

those we observed, affecting their baseline.  Additionally, they used a time-based 

method for splitting their data set into training and test sets, which may impact the 

classification results. 

5.3.2 Controlled Versus Uncontrolled 
The differences in classifiers over controlled and uncontrolled scenarios are not 

nearly as pronounced as the differences between the mandatory and voluntary 

dimensions.  In fact, looking at the mandatory dimension, the classification accuracies 

between controlled and uncontrolled are virtually identical.  In the voluntary 

dimension, however, the difference is quite large.  It is not clear why this is the case, 

and determining the correlation between voluntary feedback systems and the scope of 

a search domain extended beyond the bounds of this project.  An in-depth study of 

this relationship may yield additional insights into improving the constructed decision 

trees. 

5.3.3 Implicit Indicators 
Treating our decision trees as a set of rules shows that certain attributes in the 

data set consistently have higher information gain.  The PagePosition  and 

DurationSeconds  attributes appeared in all four experiment types.  A notable 

observation is that for the two controlled experiments, the LinkTextLength  

attribute had high information gain, perhaps indicating that users searching for help 

prefer links with short, descriptive titles.  No such trend was observed in the 

uncontrolled experiments, although the Page and SearchResultUrlLength  

were used much more frequently in this set of experiments.  Fox et al. observed that 

DurationSeconds  and ExitType  were highly predictive attribute in their 

classifiers. 
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Clearly, the user dwell time on a page (DurationSeconds ) is an implicit 

indicator highly correlated with user satisfaction.  There is a difference between the 

utility of other implicit indicators we recorded and those that Fox et al. noted.  For 

example, ExitType  did not have high information gain in our classifiers, while it 

was highly predictive for Fox et al.  It is not immediately clear why this is the case.  It 

could simply be due to different user populations or changing trends in how users use 

Web browsers (there is a four year time gap between when the Fox et al. study was 

completed and when our study was completed). 
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6 Conclusions 

This chapter provides a summary of the results of this research.  Here we discuss 

what can be concluded from the research in this thesis and the primary contributions.  

Additionally, we offer ideas for future research that may enhance our findings. 

6.1 Research Question Revisited 

Previous work has found correlations between user behaviors collected during a 

user’s interaction with a Web browser and a user’s level of satisfaction with the Web 

page [Claypool et al. 2001a; Claypool et al. 2001b; Cen et al. 2002].  As these 

behaviors are indications of user satisfaction, they have been termed implicit 

indicators.  Fox et al. [2005] constructed a classifier using feedback values collected 

with a mandatory feedback mechanism that was able to predict user satisfaction with 

a search engine result as a function of implicit indicator values.  Using the results of 

Fox et al., search engines can improve their results by incorporating an implicit 

human rating of document relevance into their ranking process. 

While the results of Fox et al. are promising, we believed that their choice of 

using a mandatory feedback mechanism may have caused bias in their results.  

Furthermore, we believe that in a deployed system, a voluntary feedback mechanism 

will be much more user-friendly than a mandatory feedback mechanism.  Thus, we 

set out to investigate the following research question: 

 

Can voluntary data can be used to train a classifier that is as 

effective as a classifier trained with mandatory data. 

 

In order to answer the research question, we developed two hypotheses.  

Hypothesis H1 is that a mandatory feedback method will collect higher quantities of 

data than a voluntary feedback method.  Hypothesis H2 is that a voluntary feedback 

method will collect higher quality data than a mandatory method.  Each of these 

hypotheses addresses an important property of data used in the construction of 
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classifiers.  Principally, both high quantity and high quality positively contribute to 

the classification accuracy of a classifier. 

Having derived our hypotheses, we began designing our study.  We decided to 

test voluntary and mandatory feedback mechanisms in controlled and uncontrolled 

scenarios.  The voluntary feedback mechanism was a vertical explorer band while the 

mandatory feedback mechanism was a modal pop-up window that could not be closed 

without providing feedback.  The controlled scenario required a subject to complete a 

set of tasks in Microsoft Excel while searching for help only from the Microsoft 

Office help system.  The uncontrolled scenario allowed subjects to search the Web 

using the Google Web search engine.  We conducted two pilot tests in order to refine 

our choice of a voluntary feedback mechanism as well as the Excel tasks. 

During the pilot studies, we found that a distinctive feedback mechanism will 

yield more feedback than one that blends in with the rest of the containing application 

(in this case, the Internet Explorer Web browser).  Furthermore, we found that a 

vertical explorer band placed on the left-hand-side of a Web browser will elicit more 

feedback than a horizontal one placed at the bottom of a Web browser due to Western 

reading direction.  If a user does not read a Web page completely, they may never see 

a feedback component placed at the bottom of the Web browser.  To our dismay, we 

also discovered that the choice of a Web browser as the feedback tool introduced 

challenges related to pervasive Web content.  In particular, we were required to refine 

our voluntary feedback mechanism so that it would not be confused with banner 

advertisements on Web pages, lest users would ignore it.  

Integrating the results of the pilot studies into our experimental design, we 

commenced a two-month long study consisting of 161 users divided into four 

experimental groups.  We analyzed the data we collected through the construction of 

decision tree classifiers using the open-source Weka machine learning tool.  During 

our analysis, we were able to address our two hypotheses and showed evidence that 

supports both of them. 

Using the data collected during the study, we began constructing classifiers to 

address the research question.  We processed the data into 14 key attributes that were 

used to train a set of decision tree classifiers using the open-source Weka machine 
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learning tool.  We performed a series of experiments with different classifier 

configurations in order to find an optimal parameter set that balanced decision tree 

accuracy against the number of rules generated by the tree.  Having found an optimal 

set of parameters, we constructed and analyzed decision trees for each of the four 

experimental groups: mandatory controlled, mandatory uncontrolled, voluntary 

controlled, and voluntary uncontrolled. 

We found that in the controlled scenario, users tended not to provide feedback 

since they were task-oriented.  In particular, we found that in order to give feedback, 

users would be required to evaluate a page twice.  The first evaluation would be an 

attempt to apply the Web page’s contents to the task at hand.  If the page was helpful, 

typically users clicked the Web browser’s “back” button in order to move onto the 

next task.  In order to properly give feedback, users would have to evaluate the page 

again.  Providing feedback about the Web page was not part of the users’ workflow, 

and thus was often not completed.  In the uncontrolled scenario, however, we found 

users were much more relaxed and did tend to provide feedback. 

There was no significant difference between classifiers constructed with data 

from the mandatory controlled and mandatory uncontrolled experiments.  There was 

a significant difference observed between classifiers built with the voluntary 

controlled and voluntary uncontrolled data.  We were not able to deduce exactly what 

caused this difference, unfortunately.  Determining the correlation between voluntary 

feedback mechanisms and the scope of the search domain extended beyond the 

bounds of our work, but may be worthwhile for future research.  

Based on the results of the analysis, we have shown that not only can a classifier 

be built with data collected via a voluntary feedback mechanism, but such a classifier 

performs as well as, if not better than, one created with data collected via a mandatory 

feedback mechanism.  Such a classifier can accurately predict user satisfaction 

approximately 70% of the time in an uncontrolled scenario and approximately 75% of 

the time in a controlled scenario.  Additionally, through daily analysis of the data, we 

found that the increased quantity of data collected with a mandatory feedback 

mechanism does not eclipse the higher quality data of a voluntary feedback 

mechanism.  We found that after about 15 days of data collection, providing more 
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data to the decision tree construction algorithm did not affect the results of the 

constructed trees. 

Our findings indicate that a search engine provider could integrate predicted user 

satisfaction values, based on a classifier trained using data collected via a voluntary 

feedback mechanism, into its search result ranking process.  Using a voluntary 

feedback mechanism is more practical than a mandatory mechanism due to the user 

annoyance factor.  Forcing users to provide feedback while reviewing a search engine 

result is likely to cause them to cease using the system.  A passive, voluntary 

feedback mechanism will be more acceptable to users and will yield a more accurate 

classifier. 

6.2 Suggestions for Future Work 

In this thesis, we considered the utility of a voluntary feedback mechanism 

versus a mandatory feedback mechanism.  Our choice of a side panel as our feedback 

component, while based on pilot studies, was almost arbitrary.  Given a Voluntary – 

Mandatory continuum, one can imagine other types of feedback mechanisms that lay 

at different points on the scale.  For example, a pop-up window that was non-modal 

and that could be closed without giving feedback would appear somewhere near the 

middle.  Such a feedback mechanism may collect more feedback than our explorer 

band did at the cost of lowering data quality due to user annoyance.  It would be 

interesting to see how different feedback mechanisms with varying degrees of 

voluntariness perform against each other.  Such work can be viewed as a refinement 

of our research. 

Furthermore, the decision to use search engines as our problem domain and a 

Web browser as our experimentation tool impacted the design and execution of our 

experiment.  As discussed in Section 3.4, people have become adept at filtering out 

non-core content in a Web browser due to the pervasive nature of online advertising.  

We believe that had the experiment been performed within the context of a domain-

specific application (e.g., a spreadsheet application) help system, users would have 

been more responsive to prompts for feedback.  In such applications, there is more 

flexibility in the design of the feedback mechanism, since it will likely not be 
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confused with a banner advertisement.  Additionally, it may be the case that the 

quantity and quality of data collected will differ considerably from that observed in 

the Web search space.  In these cases, our work cannot be directly applied, but rather 

can serve as a framework for similar studies. 

Future work that focuses on the study population may be able to discover new 

relationships between the user and the quality and quantity of data collected.  While 

we attempted to attract as large and as diversified a population as we could, our 

sample population consisted mostly of undergraduate computer science and 

electrical/computer engineering students.  These individuals have higher than average 

computer skills and thus may have skewed our results.  Unfortunately, this was a 

limiting factor in the work of Fox et al. [2005] as well.  A future study that can test 

either a less technically-inclined population or simply a more diversified one may 

yield different results. 

Finally, future work into the discovery of implicit indicators can also serve to 

enhance our findings.  In particular, implicit indicators that highly correlate with user 

satisfaction may be able to improve the various decision trees we constructed.  Such 

implicit indicators would thus lead to better predictions of user satisfaction, which 

may be used to further refine search engine results. 
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Appendix A - Pilot Study 1 Questionnaire 
Post Study Questionnaire 

 
1. How intrusive did you find the feedback window? (circle one) 
 

1  2  3  4  5 
Not Very �------------------------------------------------------------------------------� Very  
 

 
2. How difficult were the Excel tasks? (circle one) 

 
1  2  3  4  5 

Not Very �------------------------------------------------------------------------------� Very  
 
 

3. How useful were the help items returned by the Microsoft Office Help 
Search? (circle one) 

 
1  2  3  4  5 

Not Very �------------------------------------------------------------------------------� Very  
 
 

4. How many Excel tasks were you able to complete without using the 
Microsoft Office Help Search?  Please enter a number 0 - 7:  ____ 

 
5. Were the prompts and options in the feedback window clear?  (y  /  n) 

 
6. What would you change about the feedback window? 

 
 
 
 
 
 

7. What would you change about the Excel tasks? 
 
 
 
 
 
 
 

8. Please provide any additional comments or suggestions about the quality 
of the feedback system.
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Appendix B - Pilot Study 2 Questionnaire 
Post Study Questionnaire 

 
1. How intrusive did you find the feedback window? (circle one) 
 

1  2  3  4  5 
Not Very �------------------------------------------------------------------------------� Very  
 

 
2. How difficult were the Excel tasks? (circle one) 

 
1  2  3  4  5 

Not Very �------------------------------------------------------------------------------� Very  
 
 

3. How useful were the help items returned by the Microsoft Office Help 
Search? (circle one) 

 
1  2  3  4  5 

Not Very �------------------------------------------------------------------------------� Very  
 

4. What is your level of expertise with Excel? (circle one) 
 

1  2  3  4  5 
        Low �------------------------------------------------------------------------------� High 
 
 
 

5. How many Excel tasks were you able to complete without using the 
Microsoft Office Help Search?  Please enter a number 0 - 7:  ____ 

 
6. Were the prompts and options in the feedback window clear?  (y  /  n) 

 
7. What would you change about the feedback window? 

 
 
 

8. What would you change about the Excel tasks? 
 
 
 
 

9. Please provide any additional comments or suggestions about the quality 
of the feedback system. 
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Appendix C - Mandorvol Study Introduction 
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Appendix D - Mandatory Controlled Experiment 
Directions 
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Appendix E - Mandatory Uncontrolled Experiment 
Directions 
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Appendix F - Voluntary Controlled Experiment 
Directions 
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Appendix G - Voluntary Uncontrolled Experiment 
Directions 
 

 
 



 

 

88 

 
 



 

 

89 

Appendix H - User Participation Encouragement 
 
Subject:  Help with CS Research!  Win a prize! 
 
Hi, 
 
We need your help! 
 
Members of the Computer Science Department are doing some important 
funded research about improving the results of search engines and we need 
participants in our experimental study.  The results should help many people 
so this makes it very exciting to take part. 
 
Every person who completes the study will be entered into a drawing to win 
one of ten $50 BestBuy gift cards. 
 
The study takes approximately 15 minutes to complete and can be done at 
your leisure in the ADP lab, CCC lab, or Gordon Library. 
 
Please visit 
 
  http://www.wpi.edu/~kmenard/study/ 
 
for directions on how to get started. To be entered into the drawing, you must 
complete the study by April 4. 
 
Thank you, 
 
 
    Kevin J. Menard, Jr. 
 
    Research Assistant, Mandorvol Project 
    WPI Computer Science Department 
 
 
 
 
 
 
 
 
 
 
 
 


