
Implementing Solutions for Real-Time Updates in

ASSISTments LIVE-CHART

An Interactive Qualifying Project Report

Submitted to the Faculty of

WORCESTER POLYTECHNIC INSTITUTE

in partial fulfillment of the requirements for the

Degree of Bachelor of Science

By

Taylor Cox

Gregory Conrad

Date Submitted: May 14th, 2020

Professor Neil Heffernan



Abstract
ASSISTments, a free education tool for teaching mathematics, has several

experimental projects. One such project, LIVE-CHART, provides teachers with a unique

perspective on how students complete coursework in real-time. However,

LIVE-CHART's real-time functionality can be substantially out of sync; this project aims

to address this shortcoming using alternative web technologies, including WebSockets.

The results, including a code transition over to WebSockets, show promise for utilizing

these different technologies to give LIVE-CHART users closer to real-time feedback.



Acknowledgements
First, we would like to thank Professor Neil Heffernan, who provided us this

opportunity to work within a software engineering discipline for IQP. His passion and

hard work on all of the ASSISTments suite of projects inspired us to work on

LIVE-CHART. We would also like to thank Ashish Gurung. Despite his busy schedule,

Ashish met with us quite a few times and answered all our questions regarding the

project. During our final weeks, Ashish ran through our entire code base and cleaned it

up quite a bit, which was extremely important and helpful. Finally, we would like to thank

the whole ASSISTments team for being active and motivational in our Slack channel

throughout our entire process, and providing WPI students a variety of options to work

on their software. The experience we gain from working on these projects will be

instrumental to our future success, and for this we thank you.



Table of Contents
Abstract 2

Acknowledgements 3

Table of Contents 4

1 Introduction 6

2 Background 8
2.1 ASSISTments Stack, Libraries and Programming Languages 8
2.2 User Studies 11
2.3 LIVE-CHART Live vs Playback Versions 12
2.4 Data Model 13
2.5 Real Time Approaches 13
2.6 WebSockets 14
2.7 Spring WebSockets and STOMP Protocol 15

3 Methodology 16
3.1 Back-End 17
3.2 Front-End 17

4 Analysis 18
4.1 Back-End 18
4.2 Front-End 19

5 Conclusion and Recommendations 21
5.1 Current Implementation of WebSockets 21
5.1 Refactoring Endpoints 21
5.2 Database Solutions for Real-Time Queries 22

6 References 24

7 Appendices 26
Appendix A: Survey 1 26
Appendix B: Survey 2 27
Appendix C: Survey 3 28
Appendix D: Survey 4 29
Appendix E: websockets.js 30
Appendix F: Main.java 31



Appendix G: seating_chart_with_names.js 31
Appendix H: Rest API Diagram 32
Appendix I: websockets.js Diagram 32



1 Introduction

ASSISTment's LIVE-CHART was created as a teaching augmentation tool,

aiding teachers in the knowledge of how their students are solving problems in real

time. LIVE-CHART is a tool which logs when and how students answer questions

provided to them through its question ushering service. As ASSISTments is online in

nature, providing teachers with instantaneous analysis on how their students are

performing, in addition to the already-provided immediate and individualized feedback

students receive, was seen as a way to improve the teacher-student learning

experience. Thus, the idea behind LIVE-CHART was born as a logical next step toward

this goal. Through LIVE-CHART, teachers can see how students are completing a

problem set in real time or play back a simulated recording of their students attempting

the problems if they are curious in investigating student progression after a problem set

has been answered.

Initial testing of LIVE-CHART was promising. The concept application worked

well at addressing interface and conceptual concerns; however, bugs in the application

needed to be addressed before the final application was released. The most prominent

issue was the syncing issues experienced on teachers' computers. As their time using

LIVE-CHART in a single session progressed, teachers started to witness the

LIVE-CHART dashboard falling out of sync with students' current progress. Sometimes

students were a problem or farther ahead than LIVE-CHART told the teachers. The

cause of this broken sync was theorized to be due to the limited computing power on

teachers' computers. Especially given the technological nature of 2020, possibly running



multiple applications in addition to LIVE-CHART proved to be too computationally

expensive.

The syncing issue would be hard to address client side, as convincing schools to

update their hardware for a web application isn’t reasonable. It was apparent that a

more server-centric approach would avoid the performance issues found on the client

side. Instead of the clients (teachers' computers) requesting new information on a timer

which could be unreliable, the server could instead send refreshed information at a set

interval.

However, in addressing this concern, another source of error was discovered:

how LIVE-CHART would receive the information it needed to display information on the

client side. LIVE-CHART currently sends and receives data on a set interval, which

causes synchronization issues similar to those stated previously between the teacher’s

view and the student’s view. Once again, teachers were receiving student answers to

questions 20-40 seconds after the student had answered their questions.

This discovery set our goal: to address the syncing issues encountered in the

teachers' testing. We sought to find a solution which would provide teachers the

real-time feedback they desired and LIVE-CHART promises while making sure that the

application was still responsive and dynamic enough to be useful.



2 Background

2.1 ASSISTments Stack, Libraries and Programming Languages

ASSISTments projects tend to use Vue.js and TypeScript on the front-end with a

Jakarta Server Pages (JSP), Java, Spring, and Apache Tomcat back-end. However, as

LIVE-CHART is an experimental project, a simpler technology stack of vanilla

JavaScript and jQuery was chosen for the front-end. LIVE-CHART also implements

Bootstrap to create a modern looking user interface. The JSPs all ultimately render to

HTML, CSS, and JavaScript as well to communicate with browsers, so those will be

explained briefly here as well. LIVE-CHART uses a PostgreSQL database to store

student interactions with their problem sets and allow for later access of said data to

provide to the user through the web application. REST APIs are currently used by the

LIVE-CHART service to retrieve relevant information from said database.

HTML is ultimately how every web page gets sent to a browser. HTML instructs

the browser as to which dependencies the web page will need, as well as providing

instructions to the browser on how to layout the page. For instance, all JavaScript and

CSS libraries which are needed for a webpage to operate must be explicitly defined in

some sort of HTML document. Additionally, everything seen on a web page eventually

gets compiled to a single HTML document which the browser understands and then

shows the user. HTML has been used since the internet’s conception, and every web

browser understands and interprets the language and structure used in HTML

documents to serve internet users web pages.



JSP, previously known as JavaServer Pages, is a way to dynamically create web

pages on the back-end, in this case an HTML page. To connect a Java back-end to the

front-end, tags are used, which provide the pages a location to index for relevant files,

as determined by the programmer. JSP is a legacy way to connect Java with a web

page front end. JSP pages are quick and easy to build, which makes them a great

choice for applications such as LIVE-CHART, where user studies are needed to

understand how an application meets or does not meet the needs of the end user

before creating a more permanent solution.

CSS is a web language which provides a programmer with fine-grain control of

how the HTML web page will be shown to the end user. Bootstrap is a CSS library

which allows for programmers to easily create modern-looking front-end web interfaces.

JavaScript (JS) is the native programming language of the web. Ever since the

concept of dynamic web pages was born, JS has proven instrumental in providing a

way to change web pages based on user interaction. This means whenever a user

clicks or types anything, there is a high chance JS has a part in processing that input

behind the scenes. JS is used widely across the web today, including in ASSISTments

projects such as LIVE-CHART.

jQuery is a JS library which provides JS programmers many useful tools.

LIVE-CHART mainly uses jQuery for its robust system for working with REST APIs and

hooking into web page events. More specifically, AJAX is an extremely useful resource

given to us by jQuery. AJAX is a tool for handling API requests in a robust yet

maintainable way.



Java is a programming language which was born in 1995. It is robust, feature

complete, and widespread amongst the programming community. This means that for

the foreseeable future, Java will be accessible, meaning future programmers will be

able to understand and write in Java, and robust enough to use for any application

LIVE-CHART could possibly need.

REST APIs are a simple way to retrieve data from a server. A server implements

a REST API endpoint, usually as a page directory (for example,

“example.com/api-endpoint”), and programmers can request information from these

endpoints. For example, programmers can request information through the use of AJAX

functions, as provided by jQuery, or through the fetch method, provided by native JS.

LIVE-CHART used REST endpoints in its initial implementation to provide a relatively

simple way to connect and retrieve information from the database storing class

information, handing off the load of database verification and authentication to the

Java-Tomcat server back-end. This meant that the programmer simply had to request

information from the front end with a key provided by the web page, and the rest would

be handled by Java later in the request’s lifetime. Using these endpoints is ultimately

extremely useful for code maintainability, readability, and allowing for separation of

responsibilities between the Model, View and Controllers.

Apache Tomcat is the chosen method for serving JSP web pages for

LIVE-CHART. It is a relatively simple yet production-ready way to serve JSP web pages

and provides Java the backbone needed to serve JSP web pages. Tomcat is quick to

start and redeploy, open source, and freely available for commercial projects, which

makes it perfect for LIVE-CHART.



Spring is an extremely modular framework which is used as an enterprise

solution to application development. In our case, Spring is used for its robust web

application support, with multiple modules being currently employed by LIVE-CHART.

Eclipse is a Java IDE originally developed by IBM. Eclipse is robust and feature

full, meaning that for almost any Java application, Eclipse will provide the tools needed

developers need, enterprise or otherwise. In this case, this includes Tomcat server

support. Also, due to widespread adoption of Eclipse throughout wider programming

circles, Eclipse serves as a great tool for the development of large scale industrial

products and services such as ASSISTments.

Finally, the back-end database used for LIVE-CHART is a PostgreSQL database.

PostgreSQL, also known as Postgres, is an open source relational database

management solution, which stores all relevant class data for use by developers in the

ASSISTments ecosystem.

Thus, an appropriate solution would be able to leverage this development stack.

As the front-end employed mainly vanilla JS solutions, it was consequently compatible

with almost any approach. Finding an approach that worked with the back-end,

specifically Java, became our main concern.

2.2 User Studies

To gain a better understanding of what teachers needed in the classroom and

how LIVE-CHART could provide a solution to their problems, four user studies were

conducted. In this case, the user is the teacher. These studies, conducted using Google

Forms, gave relevant information regarding the teachers and their problems, potential



solutions, and other relevant information pertaining to the use and capabilities as well as

the downfalls of LIVE-CHART, which we will not speak upon as it is outside the scope of

this project.

A consistent theme throughout the studies was that teachers believed that the

information was real-time; this quite simply was not the case. The LIVE-CHART service

as they used it implemented a REST-API retrieving information on a set interval from a

server, which we will go into more detail later. This gave the illusion of real-time updates

so these studies regarding more overarching issues with the service could be

addressed before a full implementation was created. The problem with this set interval

retrieval of LIVE-CHART class data is that while it may give the illusion of real-time

updates, the relevant information was actually given to the teachers every 20-40

seconds. While this may be passable for a big picture study of this type, the inefficiency

would ultimately provide a worse user experience when ASSISTments releases

LIVE-CHART to the general public. Not only this, but teachers noted a delay between

when students answered their questions and when they saw it updated on their

dashboard, as mentioned previously.

2.3 LIVE-CHART Live vs Playback Versions

LIVE-CHART has two different methods of viewing student progress in a problem

set: a real-time Live version, which reports back to the teacher immediately when a

student has answered a question, and a Playback version, which (as the name

suggests) plays back the Live version of the service for later review.



2.4 Data Model

The original version of LIVE-CHART has a relatively simple REST API that was

used to send information between the client and server after the initial page load, which

occurs through JSP. The API has the following endpoints:

● /getStudentReportDetails: Retrieve class data, which includes how students

answered questions, when and relevant student information, such as their

names.

● /saveSeatingChart: Save the seating arrangement of a given class.

● /deleteSeatingChart: Delete the seating arrangement of a given class.

● /getSeatingChart: Get the seating arrangement of a given class.

2.5 Real Time Approaches

Based on the close to real-time requirements and data being sent between the

client and server, it was clear that more processing needed to occur server-side.

Although this would increase server load, it would be a trade off to reduce the burden on

end-users' computers and results in closer to real-time data, aligning more with the goal

of LIVE-CHART as a service. Server-centric real-time approaches researched include

traditional polling, long polling, HTTP streaming, and WebSockets.

Traditional polling is a technique in which a client requests new information at its

discretion. It creates the illusion of real time data, even though it is being executed at a

set interval. However, in LIVE-CHART, the delay on the back end combined with the

delay on the front end in requesting this information hurts LIVE-CHART's usability in

real-time scenarios. Thus, a different approach was needed.



Long polling is similar to traditional polling in the sense that the client has to

manually initiate each request. However, in long polling, the server does not respond

(and thus complete the request) until it has data to send. This approach is a potential

solution; however, it has drawbacks as some browsers expect closer to instantaneous

responses, not prolonged responses. This could prove to be problematic if no data in

LIVE-CHART changed before the browser times out a given request. Additionally, this

relies on the client to initiate each request (after receiving each response), and lag

client-side could delay receiving new data as a consequence.

HTTP streaming was another candidate. A potential problem with this solution is

it is not as widely used as long polling. This could cause maintainability concerns in the

future. If this solution was chosen, future programmers may not understand the syntax

or methodology and logistics behind it. It keeps a response open, and sends data back

incrementally. This idea works in theory; however, it deviates substantially from how the

HTTP protocol was designed and requires strict coordination between the client and

server (as the same connection is in use), which can easily become problematic. In

addition, a response stream can be cached en route, which defeats the purpose of the

streaming in the first place.

2.6 WebSockets

The final solution investigated was WebSockets. WebSockets are a real-time

communication protocol built on top of HTTP. They allow sending arbitrary messages

back and forth between a client and server in real-time. WebSockets can connect to an

endpoint continuously, which allows programmers to ask for data whenever needed.



This real-time capability is ultimately what LIVE-CHART needed, so WebSockets were

chosen as the way to solve the synchronization issues seen by teachers. Plain

WebSockets on their own are very powerful. However, they lack structure, such as

provided by REST API endpoints. This limitation is an issue if you want multiple different

endpoints encompassed by WebSockets. As we will be focusing on a single endpoint,

getStudentReportDetails, this limitation will not be an issue. However, this may need to

be divided in the future. For an application of this scale, functionality and foresight like

this is necessary; thus, vanilla WebSockets do not provide the robustness needed for

LIVE-CHART.

Currently, LIVE-CHART updates its own data at a set interval, based on when the

Tutor updates its data. It is not possible to undermine this limitation unless real-time

databases or some other method of signaling come into play, but if they eventually do,

LIVE-CHART could query for new information in real-time, which can then be relayed to

the clients via WebSockets.

2.7 Spring WebSockets and STOMP Protocol

STOMP is a simple and flexible protocol built on top of WebSockets that provides

routing and other useful application features. Spring provides STOMP support for

WebSockets to route traffic to the correct endpoint or controller. At the moment, we will

only be addressing a single endpoint, /getStudentReportDetails, but if we choose to

expand this to multiple in the future, the STOMP protocol will prove crucial in routing

traffic to the associated controllers server-side.



Not all network configurations and browsers work well with WebSockets.

However, Spring provides a solution to combat these compatibility issues as well.

Utilizing STOMP with SockJS, Spring falls-back to SockJS in case a WebSocket

encounters issues. This functionality is orchestrated automatically by Spring, with

minimal additional code required client or server side. That being said, Spring provides

options for robust yet optional configuration in this area. Thus, in case there are issues

with true real-time statistics, which could be introduced due to a school's network

configuration for instance, LIVE-CHART with WebSockets would still provide information

faster than the old implementation using REST API endpoints. Additionally, Spring

handles ushering objects with JSON automatically with Jackson, which proves

extremely useful for parsing objects on the front-end in JS.

STOMP handles WebSockets through a simple subscribe function on the

STOMP Client object. When called, subscribe takes a callback method, which is called

whenever STOMP retrieves information from the server, and manipulates the data to

eventually show it to the end user.

3 Methodology

Our implementation of LIVE-CHART will revolve around using WebSockets to

provide real-time feedback to teachers of how their students are answering questions.

We focused on implementing this specifically in the Live version of the application.



3.1 Back-End

First, we will focus on adding Spring WebSockets to the back-end code. We will

test to make sure that WebSockets are working properly programmatically, simply by

using the debugging features built into Eclipse. This will ensure that the code we are

writing will actually work when moving to the front-end. Of the solutions researched,

Spring provided the most robust and feature complete solution to our problem,

specifically in how it handles authentication, the creation and maintenance of

WebSockets, as well as its availability in Spring applications in general. This means that

if a developer knows the Spring stack, they can easily work on this application.

We will implement our solutions in the Main.java file of the code base. This is

where all the REST API endpoints are defined, and since we would be replacing or

updating many of these in the long term, we chose Main.java as the most maintainable

place to keep our code.

3.2 Front-End

Next, we will move on to adding support for WebSockets to the front-end. We will

use two libraries; STOMP.js and SockJS-client. These libraries enable communication

over WebSockets with Spring. Both of these libraries will ultimately serve crucial to the

success of LIVE-CHART WebSocket integration as a whole by abstracting away the

difficulty of implementing WebSockets correctly on the front-end.

As can be seen from above, the last three endpoints (/saveSeatingChart,

/deleteSeatingChart, and /getSeatingChart) do not need to run in real time; they should

occur only when needed. Thus, these will be kept as REST API endpoints.



4 Analysis

4.1 Back-End

We found where REST endpoints were created in the original version of

LIVE-CHART. The original code implementing these REST endpoints served as the

baseplate for where we would implement our WebSocket endpoints. The endpoint we

specifically worked on and ended up refactoring was the getStudentReportDetails

endpoint as described earlier. We kept this endpoint in the project to keep support for

the playback version of the application. We created a new endpoint within STOMP to be

used exclusively with WebSockets.

Implementing this endpoint was relatively simple in code; Spring provides a

simple way to create WebSockets with the @MessageMapping and @SendTo function

annotations. The @MessageMapping annotation makes sure that the given method

being annotated gets called when a message is received on the given connection. For

instance,

@MessageMapping("/foo")

@SendTo("/topic/bar")

public ExampleResponse example(ExampleMessage message) { ...

would call the example method with the received message when a WebSocket from

LIVE-CHART sends a message to ‘/foo’. Similarly, when a message is received by the

server, the example function will broadcast the response to ‘/topic/bar’. We implemented

these solutions in the Main.java file. This was where the other REST API endpoints



were created and maintained, so keeping with the code layout as was given by the

project, we also implemented all our code regarding Websockets here as well.

Through previously made methods, specifically through the DataUtility class in a

method called getRecentActionofAllUsers2, all the front-end needed to send was an

identification key, called in code an xref, to retrieve the relevant data from the back-end

database. This would then be passed to the data utility object to handle getting that data

from the server, and returning it to the front-end.

4.2 Front-End

Moving to the front-end, we modified two files predominantly; the

seating_chart_with_names.js file as well as a newly created websockets.js file. The

seating_chart_with_names.js file contained all the JS code which implemented REST

API functionality, as well as handled changes in the view to the end user. A simple

AJAX function was originally used to retrieve the relevant data from the server in this file

from said REST endpoint. A key piece of legacy code we left in was the ability for the

site to check how long a user has been interacting with a given class. This is a simple

counter currently in the code, counting to 180 before preventing the end user from

continuing with the service. In websockets.js, we added all the code which would be

relevant for the creation, maintenance, and handling of Websockets. The wsConnect

function attempts to initialize a connection to the Websocket endpoint, ‘/LiveChart/ws’.

The subscribeToStudentReportDetails function acts as a go-between for the

programmer and the STOMP client, aptly named stompClient. We make necessary

checks to subscribe to the WebSocket before allowing any further manipulation. The



requestStudentReportDetails function simply sends a message of the xref as provided

by the webpage to the server. We send our requests to the

‘/app/getStudentReportDetails’ endpoint. Finally, at the end of the file, we add a function

to call the wsConnect function upon page load. This means that as soon as the web

page loads, the class data attempts to be retrieved from the server, through a simple

window.addEventListener(‘load’) function.

With regards to this front-end, we ran into two main issues; handling attempts to

subscribe to a WebSocket before it was fully initialized, and authentication errors. The

first of these errors we handled by creating a list of pending subscriptions before the

stompClient was fully connected. Before attempting to call the subscribe function on the

WebSocket, we made a simple check to make sure the WebSocket was initialized,

through a simple trigger in code. If the WebSocket was not yet ready, the attempted

callback function passed would be stored in a queue and subscribed when the

WebSocket did eventually connect. This implementation made sure we wouldn’t run into

any subscription errors, as we could wait before any callback function was passed. The

second of these issues, authentication errors, happened internally from ASSISTments

authentication bugs. As we did not have access to the back-end, we could not solve this

issue.

Our implementation sets a timer to trigger the fetching of new data every 20

seconds, consistent with how LIVE-CHART worked previously. That being said, since

the end goal of the project was to get closer to real-time updating of the frontend user

interface, this timeout can be changed in the future to ask data to be retrieved from the

server quicker. For instance, changing this timeout, or even calling the



requestStudentReportDetails within the passed callback function would allow for real

time updating as necessary, with varying levels of efficiency and effectiveness which

need to be tested before LIVE-CHART goes public.

5 Conclusion and Recommendations

5.1 Current Implementation of WebSockets

Currently, WebSockets are implemented in the LIVE-CHART service; however,

the authentication issues reported have not been fixed. Therefore, in order for

LIVE-CHART to be able to use WebSockets as necessary, these authentication issues

must be addressed. That being said, WebSockets as they currently stand should be

implemented correctly. Testing from Google Chrome’s debugging console showed us

that WebSockets were up and running, and we were able to send data to the

WebSockets. That being said, no data was retrieved from the backend database due to

these authentication errors. As stands, the ASSISTments team must find a way to fix

these authentication issues before LIVE-CHART can effectively implement them into

their service.

5.1 Refactoring Endpoints

A good long term design decision would be to slightly refactor these three

endpoints (save, delete and getSeatingChart). The refactoring may include keeping the

endpoint names to simply nouns ("seatingChart") and using the request methods (PUT,

DELETE, GET) to differentiate between them. This approach would help achieve



long-term maintainability, for if any additional features are to be added, new endpoints

could be created relatively easily.

However, the first end point, getStudentReportDetails, should be factored into the

eventual approach for closer to real-time statistics. For long term sustainability, it may

be necessary to break this endpoint down into smaller parts; smaller chunks of data

would be transferred at any given instant, which is good for lower-resource computers,

but at a higher frequency, which can be tuned to provide a better end-user experience.

This would provide better scalability than sending an entire object every time data

changes, which ultimately slows down access speeds to the relevant data. At the start

of the implementation, the endpoint of studentReportDetail was used for simplicity and

easier migration. This endpoint employs much the same functionality of

getStudentReportDetails, but acted as a refactoring to a more appropriate naming

scheme as well as served as a point for a separate implementation. Once again, we

recommend breaking this endpoint into smaller, more manageable endpoints to

decrease data transfer size which will ultimately make data retrieval more efficient.

5.2 Database Solutions for Real-Time Queries

Currently, LIVE-CHART updates its own data at a set interval, based on when the

Tutor updates its data. It is not possible to undermine this limitation unless real-time

databases or some other method of signaling come into play, but if they eventually do,

LIVE-CHART could query for new information in real-time, which can then be relayed to

the clients via WebSockets. This could be implemented on top of the already existing

database system, PostgreSQL; however, using a different database system that



supports real-time usage, like Supabase or Firebase, could be easier. Another possible

approach to receive real-time updates within LIVE-CHART would be to use webhooks

between Tutor and LIVE-CHART. That being said, more research needs to be done in

this area to provide the best solution to ASSISTments overall. With the current setup,

WebSockets are able to run and fetch new data on a schedule determined client side,

with some delay, due to the current database back-end.



6 References

cheb1k4. (2015, January 15). sockjs - How to send message to client through

websocket using Spring. Stack Overflow.

https://stackoverflow.com/questions/28250719/how-to-send-message-to-client-thr

ough-websocket-using-spring

Fol, P. (2020, August 19). Java Basics: What Is Apache Tomcat? JRebel by Perforce.

https://www.jrebel.com/blog/what-is-apache-tomcat

Gurung, A. (2021). Live Interactive Virtual Environment for Creating Heightened

Awareness and Responsiveness for Teachers for GRIE 2021.

JS Foundation. (2019). jQuery. Jquery.com. https://jquery.com/

Mentzel, W. (2020, May 13). What is the difference between WebSocket and STOMP

protocols? Stack Overflow.

https://stackoverflow.com/questions/40988030/what-is-the-difference-between-W

ebSocket-and-stomp-protocols

Regan, A. (n.d.). java - Spring websocket - how to get number of sessions. Stack

Overflow. Retrieved May 13, 2021, from

https://stackoverflow.com/questions/39677660/spring-WebSocket-how-to-get-nu

mber-of-sessions

Spring. (n.d.-a). EnableScheduling (Spring Framework 5.3.6 API). Docs.spring.io.

Retrieved May 10, 2021, from

https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframe

work/scheduling/annotation/EnableScheduling.html



Spring. (n.d.-b). Using WebSocket to build an interactive web application. Spring.io.

Retrieved May 10, 2021, from

https://spring.io/guides/gs/messaging-stomp-websocket/

Stoyanchev, R. (2012, May 12). Spring MVC 3.2 Preview: Techniques for Real-time

Updates. Spring.io.

https://spring.io/blog/2012/05/08/spring-mvc-3-2-preview-techniques-for-real-time

-updates

Tyson, M. (2019, January 29). What is JSP? Introduction to JavaServer Pages.

InfoWorld.

https://www.infoworld.com/article/3336161/what-is-jsp-introduction-to-javaserver-

pages.html

Vos, J. (2013, April). JSR 356, Java API for WebSocket. Www.oracle.com.

https://www.oracle.com/technical-resources/articles/java/jsr356.html



7 Appendices

Appendix A: Survey 1



Appendix B: Survey 2



Appendix C: Survey 3



Appendix D: Survey 4



Appendix E: websockets.js



Appendix F: Main.java

Appendix G: seating_chart_with_names.js



Appendix H: Rest API Diagram

Appendix I: websockets.js Diagram


