
WORCESTER POLYTECHNIC INSTITUTE

MAJOR QUALIFYING PROJECT

Autonomous RC Car Platform

Authors:
Jason ASHTON

Sean HUNT

Myles SPENCER

Advisors:
Prof. Jie FU

Prof. Michael GENNERT

A paper submitted in fulfillment of the
Major Qualifying Project

Control and Intelligent Robotics Lab

March 19, 2019

https://www.wpi.edu/
https://labs.wpi.edu/cirl/

i

WORCESTER POLYTECHNIC INSTITUTE

Abstract
Control and Intelligent Robotics Lab

Major Qualifying Project

Autonomous RC Car Platform

by Jason ASHTON, Sean HUNT, Myles SPENCER

This project explores building an autonomous research robot on a 1/10 scale RC
car platform. The goals of the project were to build an easy to use system that
allowed for the exploration of techniques such as localization, object detection,
mapping, and more. The completed robot consists of a self-contained RC car,
running on battery power, that uses a camera, lidar, inertial measurement unit,
and other sensors to observe the environment. Completed research explored
pose estimation based on combining dead reckoning, inertial measurement unit
readings, and visual odometry in an Extended Kalman Filter. The result of this
project included the RC car and a build guide on replicating the process for
future students.

HTTPS://WWW.WPI.EDU/
https://labs.wpi.edu/cirl/

ii

Acknowledgements
We’d like to thank Professor Jie Fu, Professor Michael Gennert, and Abhishek
Kulkarni for their continued support and guidance throughout the development
of this project.

iii

Contents

Abstract i

Acknowledgements ii

1 Introduction 1
1.1 Introduction . 1

1.1.1 Project Statement . 1
1.1.2 Summary . 1

2 Background 2
2.1 State of the Industry . 2

2.1.1 History of Self-Driving Vehicles 2
2.1.2 Current Efforts . 3
2.1.3 F1/10th and Previous MQP 4

2.2 Localization . 5
2.2.1 Lidar . 5
2.2.2 Camera . 5

2.3 Mapping . 6
2.3.1 Object Detection . 6
2.3.2 Algorithms . 6

SIFT . 7
SURF . 7
ORB . 7

2.3.3 Image Transformations . 8
2.3.4 Semantic Object Detection 8

2.4 Semantic SLAM . 9
2.5 Applications of Semantic SLAM . 9

2.5.1 Cars . 9
2.5.2 Assistive Robotics . 10

iv

3 Methodology 11
3.1 Objectives . 11

3.1.1 Minimum Objectives . 11
3.1.2 Target Objectives . 12
3.1.3 Advanced Objectives . 12

3.2 Requirements . 12
3.2.1 Functional Requirements 13
3.2.2 Non-Functional Requirements 14

3.3 System Timeline . 14
3.3.1 A Term . 15
3.3.2 B Term . 15
3.3.3 C Term . 16

4 System Design 17
4.1 Stakeholders and Needs Analysis 17
4.2 Robot Platform . 19

4.2.1 Features . 19
4.3 On-board Computer . 20

4.3.1 NVIDIA Jetson . 20
4.3.2 Connect Tech Orbitty Carrier 20

4.4 Sensors . 21
4.4.1 Stereo Camera . 21
4.4.2 Lidar . 22
4.4.3 Microcontroller . 22
4.4.4 Wheel Encoder . 22
4.4.5 Inertial Measurement Unit (IMU) 23

4.5 Software Structure . 23
4.5.1 Modularity . 23

5 Vehicle Assembly 25
5.1 RC Car Modifications . 25
5.2 Sensor Mounts . 27

5.2.1 Mounting Plate . 27
5.2.2 Cutting the Body . 27
5.2.3 Lidar . 28
5.2.4 ZED Stereo Camera . 29

v

5.2.5 Encoders . 31
Magnets . 31
Hall Effect Sensors . 32

5.3 Wiring . 32

6 Vehicle Software 35
6.1 Flashing the Jetson . 35
6.2 Installing ROS . 35
6.3 Git & Version Control . 36
6.4 Driving the Car . 37
6.5 IMU . 37

6.5.1 IMU Calibration . 38
6.6 ZED Camera . 39
6.7 Lidar . 39
6.8 Encoders . 39
6.9 Transforms . 40

6.9.1 Static Transforms . 40
6.9.2 Dynamic Transforms . 40
6.9.3 Standard Frames for Mobile Robots 41

6.10 Odometry . 41
6.11 EKF . 42

7 Vehicle Workflow 43
7.1 Turning The Car On . 43
7.2 Running The Code . 43
7.3 Setting Up Your Laptop For Remote Control 44
7.4 Writing Code For The Car . 44

8 Results 46
8.1 Objectives and Requirements . 46
8.2 Encoders . 47
8.3 Odometry . 48

9 Conclusion and Future Projects 50
9.1 Examples . 50

9.1.1 Improved Odometry . 50
9.1.2 SLAM . 51

vi

9.1.3 Path Planning and Trajectory Generation 51
9.1.4 Object Detection . 51

A Helpful Links 52
A.1 Tutorials . 52
A.2 Package Documentation . 52
A.3 SDKs and Drivers . 52
A.4 Other Resources . 52

B Bill of Materials 53

Bibliography 54

vii

List of Figures

4.1 RC Car [19] . 19
4.2 Jetson in Orbitty Carrier [20] . 21

5.1 Electronics Mounting Plate . 27
5.2 Sensors in Body . 28
5.3 Lidar Mount . 29
5.4 Lidar Data Map . 29
5.5 ZED Camera Mount . 30
5.6 View from ZED Camera . 30
5.7 Wheel Magnets . 31
5.8 Back Wheel Encoder Mount . 32
5.9 Electrical Diagram . 34

6.1 REP 105 Standard Coordinate Frames 41

8.1 Wheel Encoder Test Results . 47
8.2 Odometry Results . 49

viii

List of Tables

3.1 Minimum Objectives . 11
3.2 Target Objectives . 12
3.3 Advanced Objectives . 12
3.4 Functional Requirements . 13
3.5 Non-Functional Requirements . 14
3.6 A Term Schedule . 15
3.7 B Term Schedule . 15
3.8 C Term Schedule . 16

4.1 Stakeholders . 18

5.1 Base Vehicle Components . 26

ix

List of Abbreviations

CPU Central Processing Unit
ESC Electronic Speed Controller
IMU Inertial Measurement Unit
MQP Major Qualifying Project
ORB Oriented FAST Rotated BRIEF
RC Radio Controlled
ROS Robotic Operating System
SIFT Scale Invariant Feature Transform
SLAM Simultaneous Localization And Mapping
SURF Speeded Up Robust Feature
WPI Worcester Polytechnic Institute

1

1 Introduction

1.1 Introduction

Sitting outside in Mountain View, California by a public road, there’s a good
chance that you may see multiple cars drive by with a wide array of sensors at-
tached to the vehicle. Companies like Waymo, Lyft, Cruise, and Tesla, and uni-
versities including Stanford and Carnegie Mellon are all researching self-driving
vehicles for use on public roads. The reasons for doing so include eliminating
traffic accidents and human harm, economic incentives of lower operating costs,
and increased time for leisure or work otherwise spent driving.

1.1.1 Project Statement

The goal of this project is to explore localization and vision techniques, and set
the base work for an autonomous car research platform for future students to
study upon. The result of this will be the second set of research on this platform
at Worcester Polytechnic Institute (WPI), and increased ground work completed
for future students.

1.1.2 Summary

With major companies and other institutions interested in this field of research,
WPI should also provide this opportunity to students. To reduce the costs and
complexity of operating a full scale motor vehicle, we’re researching using 1/10th
scale radio-controlled cars typically used for hobby racing. This project will be-
come the platform for our research and for future students.

2

2 Background

2.1 State of the Industry

Being able to travel without a dedicated pilot or driver allows both freedom to
travel where you wish and the freedom to spend the time travelling how you
would like. This wish has been worked on for thousands of years, with recent
attempts becoming ever more sophisticated.

2.1.1 History of Self-Driving Vehicles

While new self-driving car efforts are making headlines, the history of automat-
ing the piloting of vehicles is nearly a hundred years old. The first self-propelled
vehicles were likely weather vanes hooked into the tiller of a sailboat to keep the
sailboat on a steady directions even in heavy winds [1]. A major advancement
later came with the first auto-pilot systems on airplanes, which would allow an
operator to set a desired heading and altitude. In the 1930’s, Wiley Post became
the first person to fly solo around the world, with the help of his Sperry Gyro-
scope autopilot. This autopilot allowed him to both fly and navigate the aircraft
at the same time, a job typically done by two pilots.

In the 1930’s a wave of interest in self-driving cars excited the public. General
Motors displayed plans for an automated highway in its 1939 Futurama ride,
which took visitors on a moving seat around a diorama of the future of cities.
At the 1939 World’s Fair Norman Bel Geddes, an American industrial designer,
displayed a highway concept that included trench-like lanes to keep the cars
on a certain track. The idea was that the driver would enter on the highway
and hook into these tracks, until they exited the highway and took back over
themselves.

The rise of computers in the 1960’s allowed for the first guidance systems,
such as early missile guidance systems. At the same time artificial intelligence

Chapter 2. Background 3

was beginning to boom and show promise for more advance computing al-
gorithms. AI enthusiasts began looking into making cars that could navigate
streets on their own. A major milestone came in the 1980’s when German pio-
neer Ernst Dickmanns was able to build a Mercedes van to drive hundreds of
highway miles autonomously. The car was capable of a convoy mode and lane
changing in addition to being able to drive in a highway lane. This project was
part of the European Eureka Prometheus project, the largest R&D project ever
in the field of driverless cars. [2].

2.1.2 Current Efforts

The latest self-driving boom started in 2004 when DARPA challenged dozens
of teams that were already researching autonomous vehicles to participate in a
challenge they would host [1]. This challenge involved driving autonomously
through the desert over a 142 mile course in Nevada [3]. The goal of the chal-
lenge was to promote the development of technologies that would allow mili-
tary vehicles to operate autonomously, such as supply convoys. While no team
won the 2004 competition, DARPA held another in 2005, with the winning team
coming from Stanford. The car was nicknamed “Stanley”, and finished first with
a time of 6 hours and 53 minutes, winning the $2 million prize. The following
year DARPA held the Urban Challenge, staged in a fake city that involved mov-
ing traffic, obstacles, and traffic regulations. Carnegie Mellon University won
the Urban Challenge and the $2 million prize.

As of May 2018, twenty-two states and the District of Columbia have passed
laws relating to autonomous vehicles, while an additional ten state governors
have issued executive orders regarding the operation of autonomous vehicles
[4]. According to Navigant Research, the top ten companies developing au-
tonomous vehicles, out of nineteen evaluated, are [5]:

• GM

• Waymo

• Daimler-Bosch

• Ford

• Volkswagen Group

Chapter 2. Background 4

• BMW-Intel-FCA

• Aptiv

• Renault-Nissan Alliance

• Volvo-Autoliv-Ericsson-Zenuity

• PSA

These companies were rated on ten criteria that focused on quality, staying
power, and future vision.

Waymo, the self-driving car project of Google, has driven over eight million
self-driving miles as of September 2018 [6]. Waymo was originally led by Se-
bastian Thrun, former team lead of the Stanford Stanley project that won the
DARPA Grand Challenge. Founded in 2009 at Google X, Waymo has moved
from a Toyota Prius platform, to Lexus SUVs, to a purpose built self-driving
vehicle in 2014, to the current Chrysler Pacifica minivans. Morgan Stanley re-
cently reported that Waymo could be worth $175 billion, $100 billion more than
previously thought by analysts.

2.1.3 F1/10th and Previous MQP

F1/10th is a project founded by University of Pennsylvania to provide a plat-
form and competition for self-driving car research in academia [7]. The com-
petition involves designing, building, and testing a self-driving 1/10th scale RC
car, which is capable of speeds in excess of 40mph. The project includes lectures,
reading materials, an online teaching kit, and focuses on perception, planning,
and control. The system utilizes a Traxxas rally racer, an Inertial Measurement
Unit, a lidar, and cameras.

The previous MQP that this project will expand upon used the F1/10 plat-
form as inspiration, with the eventual goal to have the Control and Intelligent
Robotics Laboratory participate in the competition. This team focused on adap-
tive cruise control, trajectory generation, and a trajectory tracking controller [8].

Chapter 2. Background 5

2.2 Localization

Knowing where the robot is located and how it has moved is necessary to be
able to map an area, and where the robot is and its path to get there. The pro-
cess of determining where you are in a known map is referred to as localiza-
tion. There are many different ways to achieve localization, depending on the
sensors available and the capabilities and data available. Many localization al-
gorithms popular for autonomous vehicles involve the use of cameras or lidar,
along with an IMU. These sensors, when combined, allow the robot to sense the
world around it and where it is going.

2.2.1 Lidar

Lidar sensors create a map of the world around them by scanning with a laser
on a rotating platform. While quite expensive, they can have a high sample rate
and resolution leading to a robust sensor even in varying environments. These
features are quite beneficial, and because of this lidars are one of the most com-
monly used sensors for localization. The position of features are analyzed in
each frame and can then be used to determine distance moved and the cur-
rent heading. Algorithms such as the iterative closed point (ICP) algorithm
can then be used to determine the position in the map. Plain ICP algorithms
however do have some issues when sample sizes are large or the data becomes
noisy. They can, however, be remedied by using a slightly smarter algorithm
such as a feature-based weighted parallel iterative closed point (WP-ICP) algo-
rithm. This algorithm increases speed and accuracy by reducing the number of
points needed and dividing features up into either corners or lines to reduce the
number of comparisons needed [9].

2.2.2 Camera

Cameras are also a very popular sensor for localization due to the fact that they
are very inexpensive and can be used to solve a variety of different problems.
Trajectory data such as distance moved and current heading are determined by
tracking features between frames. However, due to the complexities of com-
puter vision it is not always possible to use only a camera. Trajectory data is
often combined with data from an IMU using a Kalman or other similar filter to

Chapter 2. Background 6

increase accuracy [10]. There are a number of different ways that the position in
the map can be determined including feature extraction and analysis as well as
image retrieval of images with known locations [11].

2.3 Mapping

One of the requirements to perform localization (as opposed to Simultaneous
Localization and Mapping) is that there is a known map. Maps can take many
different forms depending on the actual application, and can range from being
as simple as a 2D map made of lines to a full 3D scan of an area. There are also
a number of ways maps can be created depending on the required accuracy and
intended use, ranging from scanning an area with a sensor such as a lidar or
camera or manually creating the map in 3D software.

2.3.1 Object Detection

An object detection and recognition algorithm can enable the robot to perform
localization and execute tasks based on recognized objects. Object and feature
detection is the process of making a local decision at every image point to see
if there is an image feature of the given type existing at that point [12]. The
process requires some sensor to receive images from its surrounding and an
algorithm to analyze the image in order to detect highly distinctive features with
reliability. The two main features of the object detection that will be important
to an autonomous system will be the speed of detection and the reliability in
classifying objects correctly.

2.3.2 Algorithms

There are currently many algorithms that are being used for object detection
since it is important for robotics and machine vision. Object detection algo-
rithms rely on identifying key points of an image such as lines, corners, and dis-
tinct differences in regions of the images. Certain trained groups of key points
are then bound in boxes and followed as multiple images are analyzed [13].
Some of the more popular object detection algorithms that can be implemented
are Scale Invariant Feature Transform (SIFT), Speed up Robust Feature (SURF),
and Oriented FAST Rotated BRIEF (ORB).

Chapter 2. Background 7

SIFT

First introduced in 1999 by Lowe, a researcher at University of British Columbia,
the SIFT algorithm is an approach that transforms the image data into scale in-
variant coordinates relative to local features [14]. There are four main steps to
the algorithm. The first detects a scale space extrema using the difference of
Gaussian function to find potential points that are invariant to scale and orien-
tation. The second step the algorithm refines the key points based on measures
of their stability and determines their location and scale. Third, an orientation is
assigned to each keypoint based on the local images gradient directions in order
to perform all future operations relative to this local orientation. Then finally the
local image gradients are measured around each keypoint to create a descriptor
that represents the shapes distortions and change in illuminations. These de-
scriptors are highly distinctive which allows for the probability to be matched
to a feature from a database to be much greater.

SURF

Similar to SIFT, SURF is also a scale and rotation invariant feature detection al-
gorithm that is sometimes seen as an approximation of SIFT. It performs faster
without reducing he quality of the detected points by to much. SURF uses sim-
ilar general steps for object detection, however the specifics of how each one is
executed varies. The “approximation” comparison is made since SURF simply
approximates the difference of Gaussians and by using integral images for im-
age convolution which can be done in parallel for different scales [12]. In SURF
the key points that are then used to build a descriptor are found through a BLOB
detector, which is based on a Hessian matrix. The descriptor makes matches
based on whether or not features have the same type of contrast compared to
there backgrounds.

ORB

The Oriented FAST and Rotated BRIEF is a system built off of both of those fea-
tures, FAST - a keypoint detector and BRIEF - a descriptor. It focuses on low
cost and efficient computations with the same high reliability in object detection
required for each algorithm. The ORB system takes the advantages and basis of
the two underlying systems and builds on to them to fit the needs for a more

Chapter 2. Background 8

cohesive process. Unlike the previous two algorithms, the keypoint detector
does not include an orientation operator on the belief that it is computation-
ally demanding and a centroid operator, which is used, gives a single dominant
result as opposed to multiple values on a single keypoint [15]. The BRIEF fea-
ture descriptor uses binary tests between pixels in images to train classification
sets, that over time will be able to return signatures for any arbitrary keypoint
throughout the image.

2.3.3 Image Transformations

Since our system will be attached to a mobile robot there will need to be con-
sideration of how well the vision algorithm is able to detect changes between
image polling. Some of these transformations could include scaling of an im-
age, rotations of an image, and images with varying intensities. The scaling of
an image will occur when the sensor is moving forward or backward through
a frame, as it moves backwards the image that was previously analyzed will be
in the next frame as a smaller scaled image and vice-versa for moving forward.
Rotations of images will occur when the vehicle and camera sensor on-board is
turning. And thirdly, varying intensities of images need to be considered since
the environment the robot will be operating in is unknown, which could involve
various levels of lighting which would either increase or decrease the intensity
of the polled image respectively.

2.3.4 Semantic Object Detection

While humans can observe and give meaning to thousands of things they see
everyday, robots are limited to the things they are trained to see which. In order
to give the objects detected meaning robots need to be trained to know what
objects and materials look like as well as possibly how to interact with them.
In order to speed up this training, Semantic Hierarchies can be formed. These
semantic hierarchies consist of objects and there discriminative details so groups
of objects can be formed [16]. An example of a semantic hierarchy could be a car
which can be broken down into motor vehicles, which in turn could be vehicles,
then man-made object then physical object. This allows for context to be formed
from the objects detected so the rest of the system can react to certain categories
of objects instead of every individual object.

Chapter 2. Background 9

2.4 Semantic SLAM

While traditional SLAM techniques use geometric features, using semantic la-
bels may allow for better loop-closure and pose optimization [17]. A paper pre-
sented to the 2017 IEEE international Conference on Robotics and Automation
details a method for combining low-level geometric features and semantic la-
bels to perform more efficient SLAM on both indoor and outdoor datasets. The
goal of the paper was to address metric and semantic SLAM problems, using ob-
ject recognition and semantically-labeled landmarks to address data association
(matching sensor observations to map landmarks) and loop closure (recognizing
previously-visited locations).

The sensor package used consisted of an inertial measurement unit and a
single monocular camera. Geometric point measurements come from feature-
detection algorithms such as SIFT, SURF, ORB, etc. while the semantic informa-
tion comes from an object recognition model such as a DPM detector. The paper
uses expectation-maximization to robustly handle the semantic data association.
The result of the paper was evidence that semantic features can improve local-
ization performance and loop closure, while only slightly affecting performance.

2.5 Applications of Semantic SLAM

Since Semantic SLAM is still an emerging field of technology, it is not actively
integrated in a wide variety of areas, however the possibilities are immense.
The benefits of having semantic detection on top of traditional SLAM is that it
gives context to the world it is mapping and exploring. Instead of simply know-
ing where things are, it is possible through this technique to know what things
are as well. Possible applications for Semantic SLAM include the commonly ap-
plied autonomous car, assistive and everyday household robots, as well military
surveillance applications.

2.5.1 Cars

Most driverless car systems use some various forms of SLAM to localize itself
on the road as well as mapping the surrounding area to learn more about how
to interact with it. The specific benefits of the semantics allows for the car to
interact differently with the objects it detects in its path or around it. As an

Chapter 2. Background 10

example, if there is an object in the road in the path of the car, the ability to
detect whether it is a branch or a person will allow it to either continue on its
path or evade it respectively.

2.5.2 Assistive Robotics

The use of semantics allows for robots navigating and mapping a room to in-
teract with its surroundings better since it knows what the object in front of it
actually is. This allows applications such as retrieving food or cups from areas
and returning it to a person. It could allow cleaning robots to detect the surfaces
it is on to clean accordingly. If it detects a mess on a carpet it will be able to
adjust its cleaning settings to vacuum instead of mop for example.

11

3 Methodology

3.1 Objectives

To accommodate the unpredictable nature of long-term projects, we have split
up our objectives into milestones, with each milestone increasing in complexity
while building upon the previous.

3.1.1 Minimum Objectives

Description Target

Working Car Platform Ability to read all sensors and control onboard
motors

ROS Environment Working ROS environment w/ tools

Geometric Feature
Detection

Implement SIFT, SURF, ORB, etc.

Localization Ability to localize within a known map

TABLE 3.1: Minimum Objectives

Chapter 3. Methodology 12

3.1.2 Target Objectives

Description Target

Object Detection Ability to recognize our target objects

SLAM Implemented Localization and mapping in an unknown map

Path Generation Plan a path from object of interest to location of
interest

Exploration Ability to drive and explore autonomously

TABLE 3.2: Target Objectives

3.1.3 Advanced Objectives

Description Target

Multiple Environments Ability to perform objectives in more than one
environment

Multiple Stages of Plans Ability to interact with environment in complex
ways

TABLE 3.3: Advanced Objectives

3.2 Requirements

The following sections describe the requirements that are set both externally and
internally on the project. A functional requirement describes how a certain sys-
tem is expected to perform while a non-functional requirement describes how
the system is expected to be designed or work. Each requirement should be

Chapter 3. Methodology 13

testable and concise enough to describe a distinct function or aspect of the sys-
tem.

3.2.1 Functional Requirements

Title Description

Autonomy Once activated, the system shall execute its tasks
without human intervention

Data Logging Data shall be logged in a way that allows for virtual
playback and testing

Manual Controls An operator shall be able to remotely navigate the
vehicle

Data Visualization While operating, the system shall visualize in a
meaningful way what the robot is perceiving

TABLE 3.4: Functional Requirements

Chapter 3. Methodology 14

3.2.2 Non-Functional Requirements

Title Description

Incremental Build
Process

The system shall allow for its components to be built
incrementally

Modularity The software systems shall allow for testing of
alternative components easily

Documentation The results of the project shall be well documented to
allow future students to further develop the system

Battery Life The system shall be able to run for at least 30 minutes

TABLE 3.5: Non-Functional Requirements

3.3 System Timeline

The following sections provide an overview of the general schedule of this Ma-
jor Qualifying Project, based on Worcester Polytechnic Institute’s quarter-based
calendar.

Chapter 3. Methodology 15

3.3.1 A Term

Timeframe Objective

September 1 Understand Project

September 8 Statement of Work

September 15 Review Literature

September 22 Background

September 29 System Design; Sensor Mounting Plate, Wheel Encoders

October 6 Methodology, Draft submitted; Car Built

October 11 Final Proposal submitted

TABLE 3.6: A Term Schedule

3.3.2 B Term

Timeframe Objective

October 27th Set up ROS, install existing packages to establish basic
functionality

November 3rd Continue to refine system using existing packages

November 20th Map a test environment, sample localization packages

December 1st Sample SLAM algorithm packages

December 14th Implement object detection

TABLE 3.7: B Term Schedule

Chapter 3. Methodology 16

3.3.3 C Term

Timeframe Objective

January 19 Begin implementing Semantic SLAM

February 2 Refine Semantic SLAM

February 9 Results

February 23 Revise draft, misc. sections

March 1 Finish and Submit final paper

TABLE 3.8: C Term Schedule

17

4 System Design

The following section describes the considerations and approach of this project.
The project begins with an analysis of stakeholders and needs, which influences
the design and direction. Following that is an overview of the different physical
and software components used.

4.1 Stakeholders and Needs Analysis

Table 4.1 lists the stakeholders of this project. Each stakeholder has their asso-
ciated descriptions, involvement, and needs. A stakeholder was identified as
any individual, group or entity that has an interest in the outcome of a system
design project. Table structures and content are modeled based on the writings
in Systems Engineering for Capstone Projects by Professor Fred Looft [18].

Chapter 4. System Design 18

Title Description /
Role

Involvement Needs

Students Developers of
Project

Directly
Involved

System is
feasible to test
and develop on.
Project is
operates in a safe
environment

Advisors Advise and
Grade Project

Directly
Involved

Weakly updates
on project
progression.
Project should
meet Advisor’s
standards

WPI Sponsoring
Organization
provides Space
for Project

Graduation
Requirement

Project should
meet graduation
requirements for
an MQP Project

RBE/CS
Departments

Provides
Funding for
Project

MQP
Requirements

Project should
meet
requirements for
an RBE and CS
MQP Project

Future WPI
Students

Continue the
project and
future
autonomous car
projects

Not Involved Well
documented
code and project
specifics.
Modular
structure to be
built upon or
removed from.

TABLE 4.1: Stakeholders

Chapter 4. System Design 19

4.2 Robot Platform

To be able to navigate a variety of different terrains, the platform the robot is
built on needed to be reliable, performant, and provide the space we needed
to mount sensors and hardware. The platform chosen was a hobby radio con-
trolled electric car from Traxxas, the Slash 4x4 Platinum Edition. This car fea-
tures all of the electronics mounted low in the chassis with a large body, which
left plenty of room for our own hardware. The primary interaction with the RC
car will be through the electronic speed controller and the steering servo. The
fundamental electronic components of the RC car are:

• Battery

• Electronic Speed Controller

• Steering Servo

• Motor

FIGURE 4.1: RC Car [19]

4.2.1 Features

The Slash 4x4 features a “performance-optimized low-CG [center of gravity]
chassis” [19]. This places the battery and electronics as low as possible for higher
performance. The rest of the space under the body is used for hardware attached
to custom-built mounting plates. The large tires and high-travel suspension al-
low us to use the car in a variety of terrains, both indoor and outdoor. The body
style also allows us to use a high power 18.4v 4S2P 8000mAh battery for long
life.

Chapter 4. System Design 20

4.3 On-board Computer

A computer is needed on-car to run ROS, communicate with sensors, provide
GPU power, and more. This project is powered by an NVIDIA Jetson, a small
and compact computer that provides some special features that make it a good
fit for this project, including low power usage and CUDA cores.

4.3.1 NVIDIA Jetson

NVIDIA describes the Jetson as "an AI supercomputer on a module". The Jetson
is power-efficient, which allows us to power it off a battery for long periods of
time. Despite this, it has the power to run power-intensive tasks like neural
networks, receiving lidar and camera information, and controlling the car. The
Jetson TX2 comes with an NVIDIA Pascal GPU with 256 CUDA cores, which
allows us to use the CUDA-dependent ZED Camera. It also contains an HMTP
Dual Denver ARM CPU, 8GB of LPDDR4 RAM, and 32GB of on-board storage.

4.3.2 Connect Tech Orbitty Carrier

While the Jetson development board that the TX2 sits in provides full size ports
and is good for developing software, it is too large to mount on a small car and is
not intended for deployment. Since the chip is self-contained, it can be removed
from the development board and placed in a different “carrier”. The carrier pro-
vides power to the chip, as well as providing access to a range of ports including
ethernet, two USB ports, HDMI, MicroSD, expansion headers, and buttons for
power, resetting the board, and recovery mode. The Orbitty carrier also conve-
niently provides mounting holes, which allowed for semi-permanently mount
the Jetson/Orbitty package.

Chapter 4. System Design 21

FIGURE 4.2: Jetson in Orbitty Carrier [20]

Using the Orbitty requires some careful consideration of multiple aspects. To
power the board, it requires DC power between +9V and +14V. While there is a
theoretical maximum power draw of 21 watts, Connect Tech provides measure-
ments which include a stress test of the system, with keyboard, mouse, camera,
and HDMI, that used 8.5 watts at 12 volts. This is considered in the wiring,
described in section 5.3.

Another requirement to using the Orbitty carrier is flashing some special
software provided by Connect Tech. This is done while setting up the Jetson,
and is explained in another section. Without this, the system will boot but the
peripherals will not work.

4.4 Sensors

Various sensors added to robots allow them to perceive and interact with the
world in various ways. The sensors we added allow for different methods of
vision, and interpretation of how fast we’re moving. These sensors were chosen
based on cost, size, and software support.

4.4.1 Stereo Camera

The camera on board the car is a StereoLabs ZED stereo camera. This camera
module has two cameras within it, that when combined using stereo vision pro-
vide an RGB-D signal (comprised of a standard RGB image with a depth com-
ponent) [21]. This camera features high frame rates of 30fps+, a wide field of
view of 110 degrees, and depth perception up to 20 meters. The combination of

Chapter 4. System Design 22

these will allow for six degrees of freedom positional tracking as well as spatial
mapping.

4.4.2 Lidar

The robot will contain a small 2D lidar to assist with depth measurements. The
robot uses the Slamtec RPLIDAR A2, a "low cost 360 degree laser range scanner"
[22]. The lidar is used to create scans of the environment using a rotating laser.
This data can be used to map the environment and localize within it. This par-
ticular lidar can scan within a 6 meter range at 10hz (600rpm). This results in a
0.9 degree resolution, with 400 points in a complete 360 degree scan.

4.4.3 Microcontroller

To interact directly with voltage-based sensors (such as hall-effect sensors) re-
quires a microcontroller attached to the main computer. This is accomplished
using an Arduino Pro Mini, which is a 5 volt 16MHz microcontroller in the Ar-
duino lineup.

4.4.4 Wheel Encoder

For the robot to accurately understand how far it has moved for our localization
equations requires precisely tracking how many times the wheels have turned.
To do this, we built a wheel encoder comprised of magnets inside each wheel,
and a hall-effect sensor to measure the magnetic strength.

The hall-effect sensor changes its voltage when near a magnet. By placing
the magnets equidistant from each other around a wheel, we are able to mea-
sure the speed of the wheel based on the pulses in voltage provided by the hall
effect sensor. The four sensors will be plugged into an Arduino Pro Mini micro-
controller development board, which will read the analog voltages and provide
a digital signal to the main processing board.

Chapter 4. System Design 23

4.4.5 Inertial Measurement Unit (IMU)

he IMU used on the setup on this car is the SparkFun 9DOF Razor IMU M0
which contains an accelerometer, for linear acceleration in the XYZ frame, a gy-
roscope, for angular velocity about the XYZ axes, and a magnetometer, for an-
gular orientation about the XYZ axes. The sensor has a usb connection for easy
data streaming and power, as well as a port for a microSD card if there is a ne-
cessity for logging data. This port was not used on this project as the data could
be logged through ROS instead.

4.5 Software Structure

The software of the system is what ties the machine together and allows it to
operate. In a robot of this complexity there are many moving parts, and the
system must be designed in a way that allows for expansion and development
of different parts simultaneously. Our system will be built upon the popular
Robot Operating System, or ROS [23]. While it has the term “operating system”
in its name, it is not an operating system like Microsoft Windows or Canonical’s
Ubuntu is. Rather, ROS provides many tools, libraries, and other software to
build and manage a robot.

4.5.1 Modularity

One of the important parts of this project is being able to test our code quickly
without having to spend time in setup getting the rest of the system to work.
ROS aids this by being designed to be “as distributed and modular as possible”
[24]. In addition to the provided software, ROS also has an extensive community
that builds pre-built packages that can be dropped into a robot. This will allow
us to focus on the aspects of the task that we’re concerned with, and find well-
written pre-built packages from the community to fill in the rest of the pieces.

An important aspect of modularity is being able to swap out individual soft-
ware components quickly and without much additional work, to be able to test
and compare, and receive feedback on the state of development. ROS provides
a low-level messaging system that makes this possible [24]. For example, if we
have Task A sending messages to Task B, we can capture these messages in ROS
and play them back later, allowing us to test Task B without needing Task A

Chapter 4. System Design 24

(Task A might be capturing data in a certain environment, for example). In ad-
dition, if we’re comparing Task B1 to Task B2, we can quickly subscribe to Task
A’s messages on both Task B1 and Task B2, and compare the data later. This
disjoint task ideology connected by messages is the core of ROS and allows for
faster, more modular development.

25

5 Vehicle Assembly

This section outlines the physical construction of the RC car robot. This included
modifying purchased components, building new sensors, and wiring the car.

5.1 RC Car Modifications

Table 5.1 details the main components of the RC car, what they do, and what
modification will be required to work as the robotic platform.

Chapter 5. Vehicle Assembly 26

Vehicle
Component

Functionality Modification
Required

Chassis The chassis is used to connect the
individual components of the car, but will
also be used to house our research
components. We will be building platforms
on the chassis to connect our sensors.

Building
platforms to
be mounted
to the chassis.

Wheels The wheels will have a 3D-printed housing
for the magnets necessary for the wheel
encoders. This allows us to accurately
measure how much the wheels have
rotated and inherently the distance
travelled.

3D printed
magnet
holder glued
to the inside
wall.

Suspension Connecting the wheels to the chassis, the
suspension allows for a smoother, more
consistent ride. It will also be home to the
hall-effect sensor for the wheel encoder
assembly.

Hall-effect
sensor
attached with
adhesive to
the arm of the
suspension.

Electronic
Speed
Controller

An electronic speed controller (ESC)
modulates the power to the motors from
the battery. It will be controlled by our
electronics.

Tapping into
the sensor
input of the
ESC.

Battery Powers the vehicle. None

Body The body keeps the internals safe from any
collisions.

Cutting out
pieces to
allow our
sensors to
reach the
outside
world.

TABLE 5.1: Base Vehicle Components

Chapter 5. Vehicle Assembly 27

5.2 Sensor Mounts

A variety of different sensors mounts were built for the car. Most of these
mounts were 3D printed and bolted to the acrylic plate.

5.2.1 Mounting Plate

The Slash 4x4 provides four mounting pins for the body of the car. These mount-
ing pins bolt to the rest of the car, and a piece of acrylic, modeled in CAD and
laser cut, is attached using these bolts (see Figure 5.1). This sheet of acrylic is
used as a base to mount other components such as the lidar, ZED stereo camera,
IMU, NVIDIA Jetson, and USB hub. The design of the body of the car allows for
sufficient space to mount the sensors to this acrylic piece without interference.
The mounting plate also needs to allow access to the lower platform to remove
and replace the battery as needed. The mounting plate covers only part of the
bottom section of the chassis to allow for this.

FIGURE 5.1: Electronics Mounting Plate

5.2.2 Cutting the Body

One of the logistical requirements influencing the design is to maintain as much
as the outer shell of the body as possible. This is so that it can protect the inner
components from damage and maintain the general look and appeal of the car.
However, cutting the body shell to allow different sensors to the outside world
is necessary. This includes a hole for the ZED stereo camera to see through the

Chapter 5. Vehicle Assembly 28

body and a hole to allow the lidar to extend out the top roof of the body. The ar-
eas are measured and cut out with the cutting wheel of a rotary tool. Figure 5.2a
shows the hole opening and how the Zed stereo camera is installed to see out
the front windshield of the body. Figure 5.2b shows how the lidar is mounted
so that the wire of the sensor still remains on the inside of the body, however
the rotating light emitting and detection sensor remains above the frame of the
body.

(A) Mounted Camera (B) Mounted Lidar

FIGURE 5.2: Sensors in Body

5.2.3 Lidar

The lidar sensor mounts ideal requirements included being located centrally on
the platform so that it there is an even reading in relation to the car no matter
which orientation it is facing. In addition the lidar needs to be outside of the
body and unobstructed to give a clear view of the area around the car. The
design for the lidar mount places it centrally on the car mounting plate and high
enough that it goes through a hole in the shell. The design and resulting 3D
printed sensor mount can be seen in Figures 5.3a and 5.3b.

Chapter 5. Vehicle Assembly 29

(A) CAD Model of Lidar Mount
(B) 3D Printed Lidar Mount

FIGURE 5.3: Lidar Mount

After mounting the lidar it can be tested to ensure that it is receiving clean
data and is not obstructed by the frame of the car. Figure 5.4 shows the results of
this data collection. The sensor returns a 2D map representation of the distances
to objects. It returns the angle and corresponding distance to the nearest object
at this angle.

FIGURE 5.4: Lidar Data Map

5.2.4 ZED Stereo Camera

The ZED stereo camera also required being able to see outside of the vehicle’s
shell. It also needed to be towards the front and high enough to see over the

Chapter 5. Vehicle Assembly 30

hood of the car and give a first-person front view from the perspective of the
vehicle. The ZED stereo camera also needs to be mounted so that it does not
obstruct the 360 degree view of the lidar. Similar to the lidar, the ZED stereo
camera needs to be mounted securely so that it will not shift at all during use.
On the model for the sensor mount, a small back wall is added to prevent a
rotation around the single bottom mounting bolt. In Figure 5.5a and 5.5b the
CAD model and associated 3D printed sensor mount can be seen.

(A) CAD Model of Camera Mount
(B) 3D Printed Camera Mount

FIGURE 5.5: ZED Camera Mount

The ZED stereo camera comes with an executable image viewer in the down-
loadable SDK. To ensure the proper visual clearance, this image viewer can be
used to check what the camera can see. The resulting images from the camera
can be seen in Figure 5.6. The nearest ground location that can be seen by the car
is about a foot away from the front bumper. Therefore when testing the car can
achieve data collection up to this distance away from any object before it risks
the danger of collision.

FIGURE 5.6: View from ZED Camera

Chapter 5. Vehicle Assembly 31

5.2.5 Encoders

To build a dead-reckoning odometry system (which predicts where the robot is
based on our driving input) the robot needed to keep track of the amount the
wheels have turned, and the steering angle. The steer angle comes from the
input to the steering servos, which are motors that provided turning based on
specific degree measurements. Since the wheel motors are controlled by voltage,
there is no built-in way of telling how many times the wheel has turned.

To address this, the robot requires wheel encoders, which are custom-built
for this project. These sensors keep track of the number of revolutions the wheel
has made. Knowing this, the software multiplies the number of revolutions by
the wheel circumference to get an estimate of how far the robot has traveled.

Magnets

To calculate how far the wheels have turned, there needs to be an external ref-
erence, which in this case is provided by magnets. Eight magnets are installed
inside each wheel using a custom 3D printed mount that the magnets press fit
into. This allows for a consistent and known spacing between each magnet. A
necessary consideration when installing the magnets is that the polarities of the
magnets needs to be consistent.

(A) Magnet Wheel Hub (B) Magnet Wheel Hub Mounted

FIGURE 5.7: Wheel Magnets

Chapter 5. Vehicle Assembly 32

Hall Effect Sensors

A hall effect sensor is an analog sensor that detects the presence and strength of
a magnetic field. They are used on the robot as a digital sensor to detect the pres-
ence of each magnet as the wheels rotate. Two hall effect sensors are mounted
on the arm of the suspension axis of the back right wheel using a custom 3D
printed mount. The second hall-effect sensor is used for directional detection.

FIGURE 5.8: Back Wheel Encoder Mount

The hall-effect sensor mount allows for consistent reading of the magnet’s
presence. Once mounted, the sensors were tested by slowly moving the car
forward so that the wheels rotate at a consistent speed.

5.3 Wiring

To power the car from a battery requires a wiring harness that creates different
voltages and can carry the necessary power to all of the devices. A major consid-
eration was to be able to power the car off of a dedicated power supply to avoid

Chapter 5. Vehicle Assembly 33

relying only on the battery. To accomplish this, the wiring harness is designed
to accept either a laptop power supply or the LiPo battery, both of which are
terminated in EC5 style connectors. There is a separate plug for the drive sys-
tem and the rest of the computing electronics, which can be chained together.
When the battery is connected, the harness should be fully connected to power
the entire car. When only using the power supply, it is plugged directly into the
computing electronics plug, bypassing the power-heavy drive system.

The computing electronics require different voltages for different compo-
nents. The NVIDIA Jetson takes an operating range between 9-15 volts DC.
To compensate for the different voltages of input power (battery vs. power sup-
ply), a 12 volt regulator is present that is rated for the power requirements of the
Jetson. The rest of the devices required 5 volts DC, which is the rated voltage
of USB. Many of the devices were powered directly from their USB connections.
However, normal USB ports on a computer, including the Jetson, are rated at
500mA. To power the connected devices required up to 1.5A. To supply this,
a USB hub with separate power supply was used. The USB hub was rated at a
maximum of 2A, which is sufficient for our sensors. The power input of the USB
hub was connected to a 5V regulator which would be connected to the power
in. This allowed for the rest of our sensors to be powered off the USB ports.

Some devices needed to be adapted to use the USB port for power. For ex-
ample, the lidar used a separate data and power plug. However, the power plug
was also 5v. For ease of use, the power plug is adapted to use USB, so it now
has a data USB port and a power USB port, both of which are powered into the
USB hub.

Chapter 5. Vehicle Assembly 34

FIGURE 5.9: Electrical Diagram

35

6 Vehicle Software

Installing the necessary software to run the RC car requires some configura-
tion, as outlined below. Throughout this section the racecar-mqp project is men-
tioned, which is the provided code repository for the project.

6.1 Flashing the Jetson

To begin using the Jetson requires flashing the boot loader and kernel onto the
chip using a host computer. The process for doing this is outlined in the Jetson
TX2 Developer Kit User Guide [25]. The operation involves booting the Jetson
in recovery mode while connected over USB to a host computer running a flavor
of Linux. To use the Orbitty Carrier requires adding a Board Support Package
supplied by Connect Tech [26]. To install this extra software requires adding
files into the NVIDIA install folder before flashing. Once this is completed, the
Jetson is flashed using the NVIDIA install script.

The second step is running the Jetpack software as supplied by NVIDIA. This
software installs a Ubuntu image, necessary drivers and tools, and third-party
software.

6.2 Installing ROS

The Robot Operating System (ROS) is a software framework that encompasses
the project and provides the foundation for almost all of the software that is used
on the project. Despite its name, ROS is not a traditional “operating system” like
Windows or macOS or GNU/Linux. It is a C++ and Python tool package that
contains a software framework, command line tools, compiler, and an ecosystem
of third party packages [23].

Installing ROS is the first step towards building the car. Even if using the
provided project, ROS will still need to be installed onto the system. The version

Chapter 6. Vehicle Software 36

chosen is important for compatibility reasons. This project uses ROS Kinetic,
which is targeted at Ubuntu 16.04 LTS (Long Term Support). This version of
Ubuntu will be supported until 2021, at which the system should use a different
version of Ubuntu with LTS and its associated ROS installation.

The installation process is outlined on the ROS website wiki [A.1]. A full
desktop install is required. The only change to the process is under 1.6 Envi-
ronment Setup, where the path of the racecar-mqp project (or other ROS project
used) is added to the robot’s .bashrc, and not the default ROS location. An
example is below:

$ Echo “source /path/to/devel/setup.bash” >> ~/.bashrc

$ Source ~/.bashrc

6.3 Git & Version Control

Version control allows multiple people to work on the car, provides backups for
the code, and improves the development experience. Committing the project is
generally similar to other projects. To eliminate unnecessary files being commit-
ted, the project borrowed a .gitignore file from GitHub’s gitignore example repo
[A.4].

Another difference in this project is the use of the git module feature. This
project uses a number of different projects for the ROS community. Each of these
is typically held in its own git repository, which we clone into our src folder. To
maintain each of these projects’ own repositories, a git feature is used called
modules. This allows for a git project that contains multiple sub-projects, which
each are their own git repository. When cloning in a new project, it is necessary
to add an entry referencing it to the .gitmodules file in the root of the project.
This allows git to register that folder as a specific git repository.

This changes the workflow when working with these folders. First, when
performing a fresh clone of the racecar-mqp project, these folders won’t be pop-
ulated with files. Git needs to recursively pull each of these projects. This is
accomplished by running

git module init && git module update.

Another point of consideration is that generally, it is not desirable to change
files in these projects. When a change is made, it is considered a change of that

Chapter 6. Vehicle Software 37

projects repository, not the main racecar-mqp repository. To work around this
and be able to launch these nodes, any configuration changes or launch files
are placed outside in the main project. For example, place launch files in the
racecar-mqp/launch folder and any configuration files in the racecar-mqp/config.

6.4 Driving the Car

Depending on the system being tested, it may be necessary to drive the car
around manually. The controller chosen was a standard Microsoft Xbox con-
troller, because of its relatively good support in Linux. In standard versions of
Ubuntu, the controller is recognized automatically as a gamepad input. How-
ever, the version that is installed on the Jetson does not do this. To enable sup-
port, a third-party piece of software is used to initialize it called XboxDRV [A.3].

A node was written to translate the button presses of the Xbox controller to
drive commands. The left and right triggers were chosen to drive the motors
in forward and reverse, and an analog stick for steering. A scale was added to
convert the scale of the axes from the Xbox controller to what was read by the
Arduino controlling the motors.

6.5 IMU

The IMU comes preprogrammed with example Arduino firmware, however in
order to translate the sensor data as a ROS topic, a separate ROS package was
used [A.2]. The package used is developed by Kristof Robot and requires initial
Arduino firmware to be installed and then calibration steps to be completed.

From this a sensor_msgs/imu data typed topic is formed which contains a
Header which is necessary to set the frame_id of the IMU. Its orientation re-
ported from the Magnetometer set as a geometry_msgs/Quaternion, its angular
velocity reported from the gyroscope set as a geometry_msgs/Vector3, and its
linear acceleration reported from the accelerometer set as a geometry_msgs/Vector3.
Along with this the covariances for the three datasets is also available as an ar-
ray of length 9 that is row major about X Y Z. The coordinate frames used by the
Razor_AHRS firmware is different from what is physically printed on the board
as well as what ROS defines as the standard coordinate frames in REP-103. The
Razor_AHRS firmware uses the following coordinate frame:

Chapter 6. Vehicle Software 38

• X axis points forward (in the direction you plug the USB in)

• Y axis points to the right

• Z axis points downward

The REP-103 standard uses the following for its right hand coordinate standard:

• X axis points forward (in the direction you plug the USB in)

• Y axis points to the left

• Z axis points upward

The razor_imu_9dof node handles this transformation when it creates the
/imu topic. Because of this the transformation about the X axis does not need to
be done by the user, however it is important to keep in mind as the data read
from an Arduino serial monitor using the firmware will differ from the data read
from the created ROS topic. Due to the way the car is structured and the way the
IMU is mounted this standard frame does not align with the REP-103 standard
frame fixed to the base link of the car, where the X axis is pointing in the forward
direction of the car. To adjust for this a static transformation is created that is π

radians about the Z axis. This is covered further in section 6.9.

6.5.1 IMU Calibration

The ROS wiki for the razor_imu_9DOF package linked before has step by step
instructions on the calibration of the IMU. This section will include specific in-
structions that may be unclear or that should be enforced. The accelerometer,
the gyroscope and magnetometer need to be calibrated in these steps to provide
an accurate measurement. Before calibration the sensor data will be virtually
unusable as some axes of measurement may not be correctly aligned. The cali-
bration will align the measurements along with the assigned coordinate axes as
well as compensate for any wrongly scaled sensor. Since this package is external
from this porject and is installed as a module, we do not want to make changes
directly in the cloned directory. Instead of creating the my_razor.yaml file inside
the config folder of the razor_imu_9DOF, it is recommended to create the file in-
side a separate config folder in the base project repository. In an IMU launch file
created to run the node, a .yaml file is passed in as a rosparam. This line of the

Chapter 6. Vehicle Software 39

launch file should reference the .yaml file containing the calibration values. An
important note with launch files is that the file parameter of rosparam needs to
be an absolute path to where the file is located.

6.6 ZED Camera

The Stereo Labs ZED Camera features two cameras that are used together to
create three-dimensional stereo vision. Use of this module requires the ZED
SDK [A.3]. This SDK requires that the computer feature NVIDIA CUDA cores,
found on NVIDIA graphics cards. Without this, the SDK will not be installed.
The Jetson features 256 CUDA cores and can install the SDK.

StereoLabs provides a ROS package for use with the ZED Camera. This pack-
age features the capability to create point clouds, Odometry, and more.

6.7 Lidar

To use the lidar the only setup required is the installation of the rplidar_ros

package which is installed by cloning the repository [A.2] into the project’s src
directory. As this is a third party package it is important to remember to include
it as a submodule, and any changes made to the source code be done outside of
the cloned repository.

6.8 Encoders

Collecting data from the encoders and turning that into an estimation of how
far the robot has traveled is essential for the odometry system. This project uses
two encoders mounted on a single wheel, which will give both direction and the
number of rotations of the wheel. This system works by triggering a “callback”
each time either encoder changes state. When a magnet is over an encoder, it
pulls it low, and when it is not, it is pulled high. Based on whether we are going
from low to high or vice-versa, the robot can calculate how far it has moved and
the direction the wheel is turning. The calculation for how far the wheel has
moved comes from the circumference of the wheel. These distances need to be
segmented by the arclength between magnets and the arclength over magnets,
on the outside edge of the wheels.

Chapter 6. Vehicle Software 40

6.9 Transforms

In robotics many different coordinate frames, known simply as frames in ROS,
must be used for different components work together. These coordinate frames
allow the transformation of relative distances and locations into another frame’s
point of view. For example, if you had a distance reading from a lidar, the robot
might need to know where that point is in the greater world. In this instance
the software can translate the lidar reading into the world coordinate frame. To
translate between different frames transforms must be created. Transforms are
the x, y z, roll, pitch, yaw difference between two different frames. ROS
uses a library called tf2 to keep track of all transforms so that all nodes have
access to them and they only need to be defined once. There are two different
types of transforms, static transforms and dynamic transforms.

6.9.1 Static Transforms

Static transforms are between frames that are fixed and don’t change, such as
transforms from sensors on the car to a common frame. This common frame is
known as base_link and is located in the center of the rear axle. All the sensor
frames have a static transform to the base_link frame, allowing the robot to "tie
in" each sensor to a single reference point. Static transform are set as XML in the
launch file using the static_transform_publisher [A.4] in the tf2_ros package
and should be put before any node that may require that transform. The static
transforms to base_link for this project can be seen in Section 6.1.

6.9.2 Dynamic Transforms

Dynamic transforms change over time, such as the cars position compared to
where it first began. The odom frame is initialized at the cars initial position,
a transform is then dynamically published, by the robot_pose_ekf node, from
the base_link frame to the odom frame (i.e. the position of the car compared to
where it first started). Another dynamic transform is between the map frame and
the odom frame, this however is only published if using the Vicon system (which
uses the map frame) or when running localization software as otherwise the car
does not know where in the map frame the odom frame is.

Chapter 6. Vehicle Software 41

6.9.3 Standard Frames for Mobile Robots

ROS standards documents REP 103 and REP 105 define a preferred standard for
coordinate frames for mobile robots along with a standard orientation. Most
external packages follow and expect these frames to be set so it is important
to follow them. At any time a coordinate frame should only have one parent
but can have multiple children frames. This allows for multiple maps to allow
for transitions between them if datasets become too large, allows for multiple
robots, base_link frames, within a single map, and multiple sensors connected
to a single robot, which is the most significant to most projects. The defined
standard coordinate frames can be seen in Figure 6.1

FIGURE 6.1: REP 105 Standard Coordinate Frames

6.10 Odometry

The odom node is a custom written node to generate dead reckoning odometry
data based on the wheel encoders and the set angle of the front wheels. The
node subscribes to the /drive/steer topic for the angle of the front wheels and
the /encoder/velocity topic for the wheel velocity. The change in position of
the car over time is calculated using the bicycle model [A.4] which approximates
the dynamics of the car. Then, using the time since the last measurement and
the previous location of the car a transform from the base_link frame and the
odom frame can be calculated. The transform is not published as a transforma-
tion however, it is instead publish as an Odometry message on /bicycle/odom to
be fed into an extended Kalman Filter, as described in 6.11. The node also pub-
lishes its current transform as a PoseWithCovarianceStamped on /bicycle/pose

Chapter 6. Vehicle Software 42

so that it can be easily turned into a path for visualization and debugging pur-
poses.

6.11 EKF

An EKF or Extended Kalman Filter [A.4] is an algorithm for fusing unreliable
data from multiple sensors and producing a more accurate result. On the car
the robot_pose_ekf package is used to accomplish this. It is configured us-
ing the launch/robot_pose_ekf.launch file and subscribes to the dead reck-
oning odometry (/bicycle/odom), the IMU (/imu), and the visual odometry
produced by the ZED camera (/zed/odom). The topic names are remapped in
the launch file because the node expects them on /odom, /imu_data, and /vo

respectively. This node is what publishes the transform from the base_link

frame to the odom frame. The node also published the current transform as
a PoseWithCovarianceStamped on /robot_pose_ekf/odom_combined which can
be useful for visualization and debugging.

43

7 Vehicle Workflow

When using the car it is necessary to have a monitor, mouse, and keyboard avail-
able to be able to interact with the car’s onboard computer. For the most part the
Jetson behaves like a normal computer, and much of this project was developed
while using the Jetson running on the car.

7.1 Turning The Car On

There are two ways the car can be powered, depending how the car will be func-
tioning. If the intention is to drive the robot it must be powered by the battery,
but for regular development and testing of electronics other than the battery the
car can be plugged into the wall. There is one connector that connects to all of
the electronics, and two that attach to the motor for it to be attached in parallel.
The power source can be plugged directly into the electronics connector. If the
motor is also to be attached, it has two plugs, that effectively places it between
the power source and the rest of the electronics.

Once the car is plugged into a power source the power button on the Jetson
(located underneath the Jetson near the Lidar) can be pushed in order to start the
boot sequence. The boot sequence will appear on the monitor in a short time.

7.2 Running The Code

The code for this project is contained in the /src/racecar-mqp directory. Run-
ning the entire project involves running many different nodes on top of roscore,
which is the base software of the rest of the system. Different configurations can
be contained in launch files, which are launched with roslaunch. This project
contains a racecar.launch file which starts the different sensors and pieces of
software with one command roslaunch racecar.launch. The only major piece

Chapter 7. Vehicle Workflow 44

of software needed externally is the Xbox controller. This is run using software
called xboxdrv. On the project’s car this is run as a daemon on startup.

7.3 Setting Up Your Laptop For Remote Control

ROS contains the ability to run different nodes on different computers to create
a distributed network. The first steps to setting up a laptop for remote control is
to ensure that you have ROS installed on the remote computer. Then connecting
the racecar to the remote laptop is the same as connecting multiple systems to-
gether over ROS for any project. While SSH’d into the car or connected through
HDMI, view the IP address of the car using the ifconfig command in Linux. In
another terminal open up the /.bashrc file and change the ROS_MASTER_URI to
be the IP address of the car followed by the port, which by default is 11311. As
an example the line should look like the following:

export ROS_MASTER_URI = https://(ipaddress):11311

While still in the /.bashrc file of the car change the ROS_HOSTNAME to be
the same value, without the port. Updating the /.bashrc file on the car before
trying to do further work. From the remote laptop the same process needs to
be done, but the ROS_MASTER_URI needs to be set to the IP address of wherever
the master node is being run, in this case the master node is run on the car.
Again ensure to source the /.bashrc file before doing further work. The ROS
master node needs to be running before trying to connect to run any nodes from
the remote computer. At this point nodes can be run from a remote laptop and
topics can be echoed as well as viewed in visualization tools such as RVIZ. It is
recommended to create a secondary CMAKE file that can be run on the remote
laptops that may not be able to have all of the module dependencies installed
that will be solely run on the car. For example, the ZED SDK requires CUDA
to be installed as previously mentioned. This however requires NVIDIA drivers
which may not always be possible on remote laptops.

7.4 Writing Code For The Car

The general structure for developing software on the car is similar to how most
ROS based systems are developed, with packages the contain nodes and our

Chapter 7. Vehicle Workflow 45

run in some combination in a launch file. Packages are created with the intent
of having a general purpose that can contain ROS nodes, data sets, configura-
tion files. The intent of separating the code into packages is to create an easy to
consume and highly reusable environment. For example, a useful package may
be a dead reckoning odometry package that contains nodes for calculating the
movement of the car and a configuration file for the specific dimensions of the
car wheels. A package can be reliant on other packages to publish certain data,
but its functionality should not be dependent on something other than a pub-
lished topic. This allows for this dead reckoning odometry package to be easily
switch with another odometry package without having to change the rest of the
software. However both of these odometry packages could be reliant on a third
package the publishes IMU data. The modularity provided by ROS allows for
the freedom of developing software without understanding the full underlying
subsystems and the ins and outs of every package involved. Each of the sensors
were set up and installed so that you can run there corresponding packages and
subscribe to the data published.

In the ROS basic tutorials [A.1] it describes how to create a basic ROS package
in either Python or C++ and specify its specific dependencies. Within a package
you can create nodes that function similar to writing code for any other projects,
scripts for Python and more object orientated based code for C++. It is important
to follow the information on creating the CMakeLists.txt and package.xml so
that catkin will work correctly. It is possible to have compilation errors in the
code but when building the catkin package is built, the developed code may not
be included, so the errors will not be caught.

46

8 Results

8.1 Objectives and Requirements

Tables 3.1 to 3.5 discuss the initial objectives and requirements that were set for
the end goal of the project.

In terms of objectives, each of the minimum targets were achieved. The plat-
form was fully constructed and installed with sensors that were not only nec-
essary for this project but leave room for future projects to research more in
depth on each of the components. The system also contains the documentation
required to read all the data from these sensors and can be controlled through
multiple computers through its ROS environment. Early stages of geometric fea-
ture detection were implemented. Objects were decided based on some real life
possible objects an autonomous car may encounter in a real life scenario. In the
case of the small scaled car, similarly small scaled objects were chosen to detect.

Each of the target objectives were recognized as over ambitious as the terms
progressed, due to the amount of initial work required to set up a platform that
would allow future research to be done on. Therefore these objectives became
possible future directions for work to be done on the car. These are to be further
discussed in Chapter 9.

Tables 3.4 and 3.5 discuss the requirements necessary to be considered a suc-
cessful platform. Each of these requirements both functional and non-functional
were met and are vital to future development on the car platform. The opera-
tion of the car, logging and visualization of data are all complete. The benefits of
being able to remotely control the car and log the data is that tests can be done
within the VICON, which is seen as the ground truth and then brought to dif-
ferent areas to work on the car instead of having to test on the VICON system
each time a change is made to the platform. The logging and playback of data
is done through recording topics in ROS bags. In terms of non-functional re-
quirements, as mentioned previously throughout the report the modularity and
incremental build process is an important portion of the project since it allows

Chapter 8. Results 47

for future developers to proceed as they wish. While testing over long periods
of times, the battery would last easily up to two hours at a time before it would
need to be recharged. A low voltage battery alarm was installed in the electrical
system so that the car would notify the users when one of the cells drops below
3.3V. It is equally as important to not let the battery to drop to low in voltage as
it is to not overcharge the battery. The electrical system was designed so that all
of the systems except for the motor can be operated off of a wall outlet supplied
cable. So data playback and various tests dealing with the lidar and camera can
be done without the worry of battery charge levels.

8.2 Encoders

The magnet wheel hubs, as seen in Figure 5.7a, has room for eight magnets to
be installed. However since the width of magnet and the width of the area that
does not contain a magnet is not equal, every time the hall effect senses a change
in magnetic field it can not be assumed that an eight of the wheel turn has been
completed. While turning the wheel at a constant rate the changes between high
and low logged by the hall effect sensor can be seen. The results of the test can
be found in Figure 8.1.

FIGURE 8.1: Wheel Encoder Test Results

The amount of time the sensor reads high, when the hall effect sensor does
not detect a magnet, is longer than the time it detects a magnet. This was ex-
pected and accounted for in the calculation of wheel velocity by adding the arc

Chapter 8. Results 48

radius of the non magnet area when the hall effect sensor attached to the Ar-
duino shifted from high to low and then added the arc radius of the magnet
when it shifted from low to high.

The velocity was calculated based on the time taken between state changes
and the arc radius previously mentioned. The time calculation was done on the
Arduino as opposed to in ROS so that it was as close to the state changes as
possible so that there would be little time discrepancy from the time it takes to
transmit state change messages. Also included in the velocity calculation was
a time out that would reduce the value of the velocity to exactly 0.0 so that
drift would not occur. If the car was moving and then came to a quick stop the
velocity without this timeout only updated on a state change. The value for the
timeout is directly proportional to the previous change in time between states.
Therefore the faster the car is moving the faster the time out is, and the slower
the car is moving the longer the timeout is. This allows for very slow motion of
the car as well as removes the limitations on how fast the car can brake.

In order to determine the direction the car one wheel needed to have two hall
effect sensors attached to it, since one sensor simply reads transitions between
high and low values regardless of the direction the wheel is turning. Therefore
there are two hall effect sensors attached to the back right wheel relative to the
forward moving direction of the car. There are interrupts for both sensors how-
ever only one of them checks and updates the wheel velocity while the other one
only checks the direction of wheel motion. If the sensor that checks for direction
reads the same state as the other encoder then the wheel is rotating in reverse
relative to the car, if the direction encoder is on alternating states then the car
is moving forward. There is a simple positive and negative factor that is then
multiplied to the velocity calculation.

8.3 Odometry

The odmetetry uses a number of sensors to achieve accurate results. The base of
the system is a custom written encoder based dead reckoning system. The dead
reckoning system combines the distance the car has travelled and the direction
the steering was pointed to estimate where the robot is at any point in time.
The ROS node that was written to compute this is based on the bicycle model,
combining the steering input and the wheel encoders. The end result of this was

Chapter 8. Results 49

a system that was accurate in the distance travelled, but the steering angle was
prone to drift. This is likely because the model used does not take into account
any slip in the wheels and suffers from imprecise measurements. However, it
provides a starting point to incorporate other measurements in the Extended
Kalman Filter.

FIGURE 8.2: Odometry Results

Red is Dead Reckoning, Blue is Camera, Pink is EKF

The IMU gives an orientation that is used to help improve the dead reck-
oning odometry. The ZED stereo camera ROS package also publishes a visual
odometry which can be used to improve accuracy. All the odometries and ori-
entations are all combined by passing them to an Extended Kalman Filter which
fuses them all together, based on covariance matrices provided by each, to cre-
ate a much more accurate combined odometry. A visualization of the different
odometries can be seen in Figure 8.2

50

9 Conclusion and Future Projects

A small scale RC Car platform was successfully developed that allows for future
students to continue work on the car as well was documented with the possi-
bility to create multiple platforms if desired. First a suitable hardware platform
was set up, then the establishment of software tools and paradigms, and finally
our own research. It is possible for future students to pull out specific compo-
nents of the base system to be developed on further.

The state of the project at the time of this writing leaves a lot of opportu-
nity for future projects and research. Using the assembled robot or constructing
another using this guide provides a solid foundation for research into robotics
topics such as localization, mapping, computer vision, machine learning, and
more.

Since modularity was one of the main factors in the development of this plat-
form there is room to pick a certain component of the car and improve on that
without parallel components stopping its development. If a team wants to de-
velop solely with the stereo camera to work on an object detection and tracking
package this can be done without interference with how an odometry package
was developed.

9.1 Examples

The following is a list of recommended projects that could be completed based
on the current state of the car with relation to what sensors and fields are in-
volved. Most were derived from the target objectives that were not completed
for this particular project.

9.1.1 Improved Odometry

The odometry system in this project would not be sufficient for a precision appli-
cation or driving over great distances. This could be further improved, possibly

Chapter 9. Conclusion and Future Projects 51

with more accurate encoders or increased external sensors such as GPS. Another
option is to create a Kalman Filter or other particle filter from scratch.

9.1.2 SLAM

There are packages in the ROS ecosystem that can perform SLAM with different
sensors, or as a project SLAM could be implemented from scratch. This could
combine different types of sensors, including the depth map created by the ZED,
the lidar scans, or other sensors added to the car such as radar.

9.1.3 Path Planning and Trajectory Generation

Once a map is generated of the environment around the robot, it may be desir-
able to create a path from one location to another. For example, the situation
might be to interact with the environment in a certain way and move about it
from one point to another. This requires creating a path for the robot to travel
along. This project would need to be able to create paths between the robot and a
point of interest, and constrain the path to movements that the robot can follow.

9.1.4 Object Detection

The NVIDIA Jetson provides computing power and tools for training machine
learning models. This could be used for developing object detection through
the onboard cameras. The semantic SLAM mentioned in the background works
on geometric feature detection, but this could also theoretically be performed
with other object detection methods. Other uses would be to identify objects of
interest and be able to "interact" with them in some way. This approach may be
useful for the path planning project.

52

A Helpful Links

A.1 Tutorials

1. Installing ROS on Ubuntu

2. Creating a ROS Package

A.2 Package Documentation

1. IMU ROS Package

2. ZED ROS

3. Lidar ROS Package

4. Robot Pose EKF

A.3 SDKs and Drivers

1. Xbox Controller Driver

2. ZED Stereo Camera SDK

A.4 Other Resources

1. Bicycle Model Explanation

2. Extended Kalman Filter Description

3. ROS TF2 Static Transform Publisher Documentation

4. Gitignore Example

http://wiki.ros.org/kinetic/Installation/Ubuntu
http://wiki.ros.org/ROS/Tutorials/CreatingPackage
http://wiki.ros.org/razor_imu_9dof
https://www.stereolabs.com/docs/ros/
http://wiki.ros.org/rplidar
http://wiki.ros.org/robot_pose_ekf
https://xboxdrv.gitlab.io/
https://www.stereolabs.com/developers/release/
http://code.eng.buffalo.edu/dat/sites/model/bicycle.html
https://en.wikipedia.org/wiki/Extended_Kalman_filter
http://wiki.ros.org/tf2_ros#Tools
https://github.com/github/gitignore/blob/master/ROS.gitignore

53

B Bill of Materials

54

Bibliography

[1] M. Weber, Where to? A History of Autonomous Vehicles, 2014.

[2] EUREKA, PROMETHEUS - Programme for a european traffic system with
highest efficiency and unprecedented safety, 1987. [Online]. Available: https:
//www.eurekanetwork.org/project/id/45http://www.eurekanetwork.

org/project/id/45.

[3] DARPA, The DARPA Grand Challenge: Ten Years Later, 2014. [Online]. Avail-
able: https://www.darpa.mil/news-events/2014-03-13http://www.
darpa.mil/NewsEvents/Releases/2014/03/13.aspx.

[4] J. Karsten and D. West, The state of self-driving car laws across the U.S. 2018.
[Online]. Available: https://www.brookings.edu/blog/techtank/2018/
05/01/the-state-of-self-driving-car-laws-across-the-u-s/.

[5] Navigant Research, “Navigant Research Leaderboard: Automated Driv-
ing Vehicles”, Tech. Rep., 2018, p. 64. [Online]. Available: https://www.
navigantresearch . com / reports / navigant - research - leaderboard -

automated- driving- vehicleshttps://www.navigantresearch.com/

research/navigant-research-leaderboard-automated-driving-vehicles.

[6] M. DeBord, Google Car project history - Business Insider, 2018. [Online]. Avail-
able: https://www.businessinsider.com/google-car-project-history-
2018-8.

[7] M. Behl, H. Abbas, and R. Mangharam, F110 Autonomous Race Cars, 2016.
[Online]. Available: https://mlab-upenn.github.io/f110/.

[8] J. Chen, A. Huynh, Z. Jiang, and Z. Wu, “Self-driving on 1/10 racer car”,

[9] Y. T. Wang, C. C. Peng, A. A. Ravankar, and A. Ravankar, “A single LiDAR-
based feature fusion indoor localization algorithm”, Sensors (Switzerland),
vol. 18, no. 4, 2018, ISSN: 14248220. DOI: 10.3390/s18041294.

https://www.eurekanetwork.org/project/id/45 http://www.eurekanetwork.org/project/id/45
https://www.eurekanetwork.org/project/id/45 http://www.eurekanetwork.org/project/id/45
https://www.eurekanetwork.org/project/id/45 http://www.eurekanetwork.org/project/id/45
https://www.darpa.mil/news-events/2014-03-13 http://www.darpa.mil/NewsEvents/Releases/2014/03/13.aspx
https://www.darpa.mil/news-events/2014-03-13 http://www.darpa.mil/NewsEvents/Releases/2014/03/13.aspx
https://www.brookings.edu/blog/techtank/2018/05/01/the-state-of-self-driving-car-laws-across-the-u-s/
https://www.brookings.edu/blog/techtank/2018/05/01/the-state-of-self-driving-car-laws-across-the-u-s/
https://www.navigantresearch.com/reports/navigant-research-leaderboard-automated-driving-vehicles https://www.navigantresearch.com/research/navigant-research-leaderboard-automated-driving-vehicles
https://www.navigantresearch.com/reports/navigant-research-leaderboard-automated-driving-vehicles https://www.navigantresearch.com/research/navigant-research-leaderboard-automated-driving-vehicles
https://www.navigantresearch.com/reports/navigant-research-leaderboard-automated-driving-vehicles https://www.navigantresearch.com/research/navigant-research-leaderboard-automated-driving-vehicles
https://www.navigantresearch.com/reports/navigant-research-leaderboard-automated-driving-vehicles https://www.navigantresearch.com/research/navigant-research-leaderboard-automated-driving-vehicles
https://www.businessinsider.com/google-car-project-history-2018-8
https://www.businessinsider.com/google-car-project-history-2018-8
https://mlab-upenn.github.io/f110/
https://doi.org/10.3390/s18041294

BIBLIOGRAPHY 55

[10] J. A. Hesch, D. G. Kottas, S. L. Bowman, and S. I. Roumeliotis, “Camera-
IMU-based localization: Observability analysis and consistency improve-
ment”, International Journal of Robotics Research, vol. 33, no. 1, pp. 182–201,
2014, ISSN: 02783649. DOI: 10.1177/0278364913509675.

[11] I.-r. System, W. Monte, C. Localization, J. Wolf, W. Burgard, and H. Burkhardt,
“Robust Vision-Based Localization by Combining”, vol. 21, no. 2, pp. 208–
216, 2005.

[12] E. Karami, S. Prasad, and M. Shehata, “Image Matching Using SIFT , SURF
, BRIEF and ORB : Performance Comparison for Distorted Images Image
Matching Using SIFT , SURF , BRIEF and ORB : Performance Comparison
for Distorted Images”, no. February 2016, 2015. DOI: 10.13140/RG.2.1.
1558.3762.

[13] S. Gidaris and N. Komodakis, “Object detection via a multi-region &
semantic segmentation-aware CNN model”, arXiv:1505.01749v3 [cs], vol. 2015
Inter, no. 1, pp. 1134–1142, 2015, ISSN: 15505499. DOI: 10.1109/ICCV.2015.
135. [Online]. Available: http://arxiv.org/abs/1505.01749v3.

[14] D. G. Lowe, “Distinctive image features from scale invariant keypoints”,
International Journal of Computer Vision, vol. 60, pp. 91–11 020 042, 2004,
ISSN: 0920-5691. DOI: http://dx.doi.org/10.1023/B:VISI.0000029664.
99615.94. [Online]. Available: http://portal.acm.org/citation.cfm?
id=996342.

[15] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski, “ORB: An efficient al-
ternative to SIFT or SURF”, Proceedings of the IEEE International Conference
on Computer Vision, pp. 2564–2571, 2011, ISSN: 1550-5499. DOI: 10.1109/
ICCV.2011.6126544.

[16] M. Marszalek and C. Schmid, “Semantic Hierarchies for Visual Object
Recognition”, Proceedings of the IEEE Computer Society Conference on Com-
puter Vision and Pattern Recognition, 2007, ISSN: 10636919. DOI: 10.1109/
CVPR.2007.383272.

[17] S. L. Bowman, N. Atanasov, K. Daniilidis, and G. J. Pappas, “Probabilis-
tic data association for semantic SLAM”, in Proceedings - IEEE Interna-
tional Conference on Robotics and Automation, 2017, pp. 1722–1729, ISBN:
9781509046331. DOI: 10.1109/ICRA.2017.7989203.

[18] F. J. Looft, “Systems Engineering and Capstone Projects”, no. August, 2016.

https://doi.org/10.1177/0278364913509675
https://doi.org/10.13140/RG.2.1.1558.3762
https://doi.org/10.13140/RG.2.1.1558.3762
https://doi.org/10.1109/ICCV.2015.135
https://doi.org/10.1109/ICCV.2015.135
http://arxiv.org/abs/1505.01749v3
https://doi.org/http://dx.doi.org/10.1023/B:VISI.0000029664.99615.94
https://doi.org/http://dx.doi.org/10.1023/B:VISI.0000029664.99615.94
http://portal.acm.org/citation.cfm?id=996342
http://portal.acm.org/citation.cfm?id=996342
https://doi.org/10.1109/ICCV.2011.6126544
https://doi.org/10.1109/ICCV.2011.6126544
https://doi.org/10.1109/CVPR.2007.383272
https://doi.org/10.1109/CVPR.2007.383272
https://doi.org/10.1109/ICRA.2017.7989203

BIBLIOGRAPHY 56

[19] Traxxas, Slash 4X4 Platinum: 1/10 Scale 4WD Electric Short Course Truck with
Low CG chassis | Traxxas. [Online]. Available: https : / / traxxas . com /
products/models/electric/6804Rslash4x4platinum?t=overview.

[20] Connect Tech Inc., Orbitty Carrier for NVIDIA R© JetsonTM TX2/TX2i/TX1 -
Connect Tech Inc. [Online]. Available: http://connecttech.com/product/
orbitty-carrier-for-nvidia-jetson-tx2-tx1/.

[21] Stereolabs, ZED SDK for Jetson | Stereolabs. [Online]. Available: https :
//www.stereolabs.com/developers/nvidia-jetson/.

[22] SLAMTEC, RPLIDAR A2 Introduction and Datasheet, 2016. [Online]. Avail-
able: https://download.slamtec.com/api/download/rplidar-a2m4-
datasheet/1.0?lang=en.

[23] ROS.org, ROS.org | About ROS. [Online]. Available: https://www.ros.
org/about-ros/http://www.ros.org/about-ros/.

[24] ——, ROS.org | Is ROS for Me?, 2015. [Online]. Available: https://www.
ros.org/is-ros-for-me/http://www.ros.org/is-ros-for-me/.

[25] NVIDIA Corporation, Jetson TX2 Developer Kit, 2017.

[26] Connect Tech Inc., NVIDIA R© JetsonTM TX2/TX2i/TX1 Solution Support -
Connect Tech Inc. [Online]. Available: http://connecttech.com/support/
resource-center/nvidia-jetson-tx2-tx1-product-support/.

https://traxxas.com/products/models/electric/6804Rslash4x4platinum?t=overview
https://traxxas.com/products/models/electric/6804Rslash4x4platinum?t=overview
http://connecttech.com/product/orbitty-carrier-for-nvidia-jetson-tx2-tx1/
http://connecttech.com/product/orbitty-carrier-for-nvidia-jetson-tx2-tx1/
https://www.stereolabs.com/developers/nvidia-jetson/
https://www.stereolabs.com/developers/nvidia-jetson/
https://download.slamtec.com/api/download/rplidar-a2m4-datasheet/1.0?lang=en
https://download.slamtec.com/api/download/rplidar-a2m4-datasheet/1.0?lang=en
https://www.ros.org/about-ros/ http://www.ros.org/about-ros/
https://www.ros.org/about-ros/ http://www.ros.org/about-ros/
https://www.ros.org/is-ros-for-me/ http://www.ros.org/is-ros-for-me/
https://www.ros.org/is-ros-for-me/ http://www.ros.org/is-ros-for-me/
http://connecttech.com/support/resource-center/nvidia-jetson-tx2-tx1-product-support/
http://connecttech.com/support/resource-center/nvidia-jetson-tx2-tx1-product-support/

	Abstract
	Acknowledgements
	Introduction
	Introduction
	Project Statement
	Summary

	Background
	State of the Industry
	History of Self-Driving Vehicles
	Current Efforts
	F1/10th and Previous MQP

	Localization
	Lidar
	Camera

	Mapping
	Object Detection
	Algorithms
	SIFT
	SURF
	ORB

	Image Transformations
	Semantic Object Detection

	Semantic SLAM
	Applications of Semantic SLAM
	Cars
	Assistive Robotics

	Methodology
	Objectives
	Minimum Objectives
	Target Objectives
	Advanced Objectives

	Requirements
	Functional Requirements
	Non-Functional Requirements

	System Timeline
	A Term
	B Term
	C Term

	System Design
	Stakeholders and Needs Analysis
	Robot Platform
	Features

	On-board Computer
	NVIDIA Jetson
	Connect Tech Orbitty Carrier

	Sensors
	Stereo Camera
	Lidar
	Microcontroller
	Wheel Encoder
	Inertial Measurement Unit (IMU)

	Software Structure
	Modularity

	Vehicle Assembly
	RC Car Modifications
	Sensor Mounts
	Mounting Plate
	Cutting the Body
	Lidar
	ZED Stereo Camera
	Encoders
	Magnets
	Hall Effect Sensors

	Wiring

	Vehicle Software
	Flashing the Jetson
	Installing ROS
	Git & Version Control
	Driving the Car
	IMU
	IMU Calibration

	ZED Camera
	Lidar
	Encoders
	Transforms
	Static Transforms
	Dynamic Transforms
	Standard Frames for Mobile Robots

	Odometry
	EKF

	Vehicle Workflow
	Turning The Car On
	Running The Code
	Setting Up Your Laptop For Remote Control
	Writing Code For The Car

	Results
	Objectives and Requirements
	Encoders
	Odometry

	Conclusion and Future Projects
	Examples
	Improved Odometry
	SLAM
	Path Planning and Trajectory Generation
	Object Detection

	Helpful Links
	Tutorials
	Package Documentation
	SDKs and Drivers
	Other Resources

	Bill of Materials
	Bibliography

