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Abstract  
When an amputee wears a prosthesis for an extended period of time, the various pressures 

within the prosthetic socket due to cyclic loading often results in physical discomfort, swelling, 

and other potential issues within the residual limb. The goal of this project was to design and test 

a novel prosthetic socket for transtibial (below-knee) amputees that reduces stress on the skin and 

soft tissues of the limb by automatically redistributing the pressures between the limb and the 

socket. The final design consisted of a system of soft bladders and servo-actuated valves controlled 

using input from force sensors. All design specifications were met and pressures were successfully 

redistributed across the limb. 
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I. Introduction  

Statement of Need 

 Prosthetics serve as a means of replacing limbs lost from traumatic incidents in patients. 

The cause of trauma can stem from injuries like crushed limbs, infection or other complications 

from diseases such as diabetes. Generally, using a prosthesis can allow the amputee to carry on 

with their daily tasks while mitigating the difficulties of losing parts of a limb. 

 

Figure 1 Range of Lower Limb Prosthetics (G3 Sky, 2014)  

Yet, issues can persist for the amputee in cases for improper care and maintenance of the 

prosthetic socket; the prosthesis, as a whole, does not function exactly the same way as the limb 

replaced would have prior to amputation. Professionals in the medical industry have long been 

researching and implementing prosthetic limbs with a variety of controls, materials, and fittings. 

Although there are many active systems, the focus has been on motor control instead of adaptive 

grip and fit. Grip quality is the biggest source of complaint by amputee patients.  

The design should be tailored to transtibial amputees who experience the impact of grip 

quality which correlates to comfort based on time and amount of activity. The leg will undergo 

several changes that will cause small but significant increases in size (normally in diabetics) or 
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decreases based on muscular dystrophy experienced in other amputees. If the fitting is too tight, 

this can lead to issues in circulation, nerve damage, pain and skin abrasions, which can worsen the 

condition of the residual limb. If too small, the socket will not properly support the amputee and 

inhibit blood circulation. Thus, a dynamic socket that will adjust to the conditions for the patient 

is necessary for the highest quality possible.  

Current solutions for amputees are normally static, and consist of polyurethane socket 

liners that can be used to augment the suspension so the sensitive end of the residual limb does not 

have any direct force against from the bottom of the hard socket (Carroll, 2009). Unfortunately, 

there are still issues experienced with the use of this type of liner, because the limb size changes 

frequently, thus requiring a design that can pose as a solution to the dynamic nature of the 

amputee’s limb. One design that is used to address these problems is the bladder socket design 

from Sandia Labs. The design uses sensors and water pockets embedded in the soft socket liner to 

adjust the amount of fluid to increase and decrease the spacing between the limb and the socket, 

providing optimal pressure and support to the user (Sandia National Labs, 2015). One problem 

that can potentially raise concern is the ability for the liner to withstand damage to possible leaks 

and tears that could destroy the circuitry in the system of sensors.  

This gives us an opportunity to explore the design of sockets to improve the quality of life 

in amputees. The goal of our project was to create a dynamic socket fitting that will allow elderly 

transtibial (below-the-knee) amputees to experience comfort and support. This novel design will 

adapt to the activities of a transtibial amputee patient and will change grip pressure and profile as 

load varies during daily use and exercise. To meet our goal, we established the following 

objectives: map the needs of the stakeholders through research and inquiry to prosthetic experts, 
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develop suitable design and actuation concepts, acquire necessary materials for prototype 

construction, and test pressure measurements for results.  

Economic and Societal Impact 

This new type of socket is aimed at amputees who are older and less active; however, the 

technology, if executed correctly, could be used to help younger, more active amputees such as 

those who have lost limbs overseas in foreign conflict. A socket that increases comfort and allows 

for longer wear with less tissue damage could help veteran amputees and active service members 

who are overseas by allowing them to continue to serve their country with more comfort. 
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Current Solutions for Transtibial Amputee Patients 

Transtibial Amputation  

Transtibial amputation is where the person has the leg amputated below the knee. Annually, 

40,000 people in the U.S. become transtibial amputees; in fact, it is the most common major limb 

amputation in the U.S, U.K, and Australia (Brown University, 2003). The amount of infection or 

damage in the lower limb determines to what extent the lower limb must be amputated. The goal 

of the procedure is to have a cylindrical residual limb that will have padding to compensate for 

unnatural forces on the residual leg when walking with a prosthesis (Brown University, 2003). To 

get to this point, the surgeon removes the infected region of the leg, leaving behind a muscular 

flap comprised of both the gastrocnemius and soleus muscles (Brown University, 2003).  This can 

be illustrated in Figure 2, showing the basic procedure of transtibial amputation. 

 

Figure 2 Below the Knee Amputation (Doctor Stock, 2016) 

As a result, the knee is still intact allowing the person to still have enough power to lift or lower 

themselves and maintain balance in daily activities. This makes creating a prosthesis easier 

because recreating a knee joint can be difficult since the mechanics will not be entirely the same 
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after amputation (Smith, 2003). Thus, the only part to focus in the prosthesis is an artificial 

ankle/foot mechanism. Yet, problems can still arise within amputees with this shift in the anatomy 

of their lower limb. As the surgery requires the muscles to be folded over at the bottom of the knee, 

this does not protect the residual bone covered as seen below in Figure 3. The tibia and fibula are 

covered with the muscular flap to create the desired shape for the residual limb but the pressures 

from the weight can damage the muscles causing deep tissue damage and increase fragility in the 

bone since there is a higher concentration of stress(LTI, 2015). 

 

Figure 3 Bone within the Residual Limb (Werner, 2015) 

The residual limb is more susceptible to pain when walking because the shape of the limb is 

not suitable for walking; the limb is not flat like the foot, where it would be more comfortable and 

there would cause fewer complications in walking.  There are new sensations that are experienced 

within the residual limb that must be addressed when the amputee is using a prosthesis. According 

to Cockrell, generally, there are pressure sensitive and tolerant areas in the residual limb which 

can dictate how the prosthesis must be tailored to provide comfort for the person (Cockrell, 1971). 

Below is a diagram of the pressure sensitive and tolerant areas within the residual limb of a 

transtibial amputee.  
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Figure 4 Pressure Tolerant and Sensitive Areas (Cockrell,1971) 

 

On the right side of the Figure 4, the names of the bones inside of the residual limb are labeled. 

These regions are significant because they are also the sensitive areas in the limb. Thus, this 

diagram reinstates the fact that the bonier areas of the limb that are more inclined to experience 

discomfort must be carefully considered in creating the prosthetic fitting for the person.  

Overall, the transformation of the lower limb does not stop at amputation. Amputation greatly 

affects the very nature of the lower limb and can create challenges for a person. Therefore, 

accommodations must be met in prosthetics for the user to safely transition from walking before 

and after amputating the lower region of the leg.  
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Prosthetic Sockets 

 A prosthesis is comprised of two parts: the exterior hard socket and the interior liner. A 

hard socket is used to protect the residual limb and acts as an interface for the fake limb, whether 

it is an artificial arm, hand, leg, or foot. The hard socket is normally made from polypropylene or 

woven carbon fiber composite materials (Brown University, 2003). It is designed to fit the contours 

of the leg, thus making the shape of the socket unique for each user. The interior liner acts as a 

barrier between the residual limb and the hard socket. Comprised of softer silicone materials, such 

as urethane, the main purpose of the soft shell is to prevent chafing between the skin of a patient 

and the hard socket (Brown University, 2003). The interior socket liner is integral to the comfort 

of the wearer, because of its importance to the connection and support from the prosthetic leg. The 

reaction forces from the person’s weight, the shock absorption from the person’s gait and the 

change of fit throughout the course of the day are all integral factors that affect the comfort for the 

user.  Below, Figure 5 is an illustration of how a liner is put into the hard socket.  
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Figure 5 Socket and Liner for Lower Limb Prosthetics (Bosker,2008) 

 For diabetic users, there is a greater chance that these forces can cause damage to the limb 

because of a loss of feeling within it. The fit of the socket can create sweat, making the user more 

susceptible to skin abrasions (LTI, 2015). Also, in the case of excessive wear, the residual limb 

can swell, increasing the chances of discomfort with the risk of damage to the skin and the tissue. 

As a result, without the appropriate fit, the socket can cause further amputation, the worse possible 

outcome for an amputee. 

 Different methods to fit the limb inside the socket include vacuum suspension, suction 

through donning, and shuttle lock. These suspension methods are very effective for securing the 

limb in place inside of the socket so that as the amputee is walking, slippage and pistoning can be 

prevented (Ottobock, 2013). If the liner is not properly secured inside of the socket, it can create 

instability, friction and pain at pressure sensitive areas for the user and therefore make walking 

more difficult (LTI, 2015).  
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 The donning method is where a person uses a plastic covering to allow the user to slide 

their limb within the socket with ease. This allows the liner and the interior layer of the socket to 

lie perfectly adjacent to one another with a vacuuming effect, creating stability and a reducing 

friction and shear forces inside the socket as well (LTI, 2015). Once the limb is secure in the 

socket, the plastic covering can be removed via the hole at the bottom of the socket. A depiction 

of this can be seen in Figure 6 below.  

 

Figure 6 Donning Technique to Put on Socket (Amputee Supplies, 2016) 
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 Another method is using a shuttle lock to hold the liner and socket together. This method 

requires a padded liner with a pin at the end that is inserted into a shuttle lock built into the bottom 

of the socket, the only point of connection (Ottoblock, 2013). This can be illustrated in Figure 7 

below.  

 

Figure 7 Shuttle Lock for holding the liner and socket together (Coleman,2004) 

 

 This method is useful for most patients, but if an amputee's residual limb is especially 

sensitive to pressure or if their residual bone is particularly sharp, it is not the best method to use. 

The residual bone is particularly vulnerable to damaging the tissue below it, as stated before. 

Although the bone is filed during surgery, its size and shape inside the residual limb may result in 

discomfort under excessive force. It could also fracture as a result of excessive force being applied 
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to it as the limb is not naturally used to doing. Therefore, this type of suspension is not beneficial 

to all amputees.  

Lastly, the most effective type of suspension is the vacuum technique, which consists of a 

sleeve that seals the top edge of a socket and a pump and exhaust system is used to remove air 

(Ottobock, 2013). It requires more equipment to do this method however it is worth the effort 

because the user will find more comfort from this type of fit (Fairley, 2008). An illustration of this 

can be seen in Figure 8.  

 

Figure 8 Vacuum suspension system for lower-limb prostheses (Oregon Orthotic Services, 2016) 

 

The vacuum suspension system performs much better than a suction suspension system 

because of its refined performance in reducing pistoning, creating better load distribution, stable 

residual limb volume, and potentially improved circulation (Ottobock, 2013). Overall, the vacuum 

suspension system would be an optimal approach to creating a better fit for the user.  

 Overall, these solutions are pivotal to the daily use and wear of a prosthesis for an amputee. 

Ensuring a secure method of wear aids in a more normal gait, and a longer wear time, but it does 
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not address the comfort experienced as the fit changes. A diabetic amputee's limb can undergo 

shrinkage and expansion, which would make tight fitting a hindrance to their limb health. It is 

therefore essential to address the different stages that a person can experience throughout the day 

based on the amount of activity and time passed. Therefore, this gives us more of a reason to 

explore a dynamic socket fitting that can address these issues and improve the quality of using a 

transtibial socket.  

Pre-existing Designs 

 Currently, there are solutions for fit and comfort available for amputees that we found 

including the Sandia Labs liner and Revolimb dynamic socket. Both designs have different 

approaches to adjusting the fit inside the socket to cater to the changes experienced in the limb. 

Hence, they pose as good examples for our project to explore the advantages and disadvantages 

that assisted us in creating an optimal design.  

 The Sandia Labs dynamic liner was produced through government funding to create a 

better fitting using a liner embedded with sensors that will detect volume change in the residual 

limb (Sandia National Labs, 2015). The reaction to the forces from the residual limb will shift the 

fluid provided in the liner’s bladders to make adjustments (Sandia National Labs, 2015). The liner 

is made from a gel-like material that will have all of the sensors on the inside. The sensors are 

three-axis pressure sensors that detect the normal and shear forces of the residual limb (Holmes, 

2014). This information is then transferred to the computer, which gives commands to change the 

fluid around (Holmes, 2014). The fluid comes from a reservoir and the bladders are activated with 

sensors that can detect volume loss or gain, depending on the changes in the residual limb (Holmes, 

2014). Additionally, the same sensors provide information in real time to a computer to monitor 

the blood pressure in the residual limb (Holmes, 2014).  Below in Figure 9 is a picture of the liner. 
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Figure 9 Smart Liner from Sandia National Laboratories (Sandia National Labs, 2015) 

  One issue with the design is that it has fluid which can damage the electrical components 

in the liner. This can be a problem and thus, the method of adjusting pressure must consider the 

medium that is used to provide comfort for the user.  

Another design that we found upon our research was the Revolimb dynamic socket which 

is a commercial product. The Revolimb is a dynamic socket that has various plates located in the 

pressure tolerant areas in the residual limb (Click Medical, 2015). As seen in Figure 10 below, the 

plates are adjusted with wiring that can be pulled tighter or loosened to adjust the fit in those areas 

using a dial in the back of the socket. 
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Figure 10 Revolimb Socket (Click Medical, 2015) 

 

This allows the user to have specific points of pressure adjusted rather than the entire socket 

changing. Although this socket does target different points in the limb, the design does not allow 

the plates to have different ranges of tightness to accommodate the difference in comfort levels in 

each region of the leg. This is the case because it has only one dial to make these adjustments. 

Additionally, the socket requires the user to have manual adjustments rather than automatic 

changes like the Sandia Labs socket, which means that the user must be fully aware of the 

discomfort in their limb. This can be an issue for users because this would require them to stop 

and make adjustments themselves in their daily activities.  

Overall, from analyzing these designs, the need for a socket that is both automatic and 

manual should be implemented. The socket should be able to do both so that in case the user does 

not sense the pressure in their limb, the system in the socket will change accordingly; if the system 

does not change or malfunction, the user should also have a choice to make different changes in 

their limb. This way, the design can adjust to different conditions based on the user and can provide 
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safety in case the system fails or the user fails to provide the necessary conditions to keep the 

residual limb in good shape while under loading within the socket.  
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II. Design Methodology 

The goal of our project is to create a dynamic socket fitting that will provide comfort and 

proper fitting for transtibial amputees. In order to accomplish this goal, we identified four main 

objectives: 1) map the needs of the stakeholders through research and inquiry to prosthetic experts, 

2) develop suitable design and actuation concepts, 3) acquire necessary materials for prototype 

construction, and 4) test pressure measurements to analyze the effectiveness of our design. Below 

is a flow chart of our methods. 

 

Figure 11 Design Methodology 

 

In order to fulfill the first objective, we conducted research and inquired about prosthetic 

users with Liberated Technologies Inc. to identified the stakeholders for the project and rank the 

priorities. This way, we could properly address who would be impacted greatly from the 

deliverables of our project. We identified four stakeholders: the patient, advisors, and 

Create a comfortable, 
dynamic socket to properly 

fit transtibial amputees 

Map requirements of 
stakeholders 

Develop suitable design 
and actuation concepts

Identify and acquire 
necessary materials

Test pressure and 
effectiveness of design
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LTI/Prosthetic Industry and ourselves. Each stakeholder was given a number for their level of 

importance, with the highest priority as 1 and the lowest as 3. The first stakeholder, which is the 

patient, has a priority of 1 who will depend greatly on the deliverable of the project the most.  

ID Title Description Role Priority 

SH.1 Patient Non-Compliant, Diabetic, 

50+years old, with 

necropathy and transtibial 

amputation. 

No direct role or 

influence, represented by 

Students 

1 

SH.2 Advisors “Managing Body”, 

Ultimately Approve Project 

Advise, approve and 

oversee Project 

1 

SH.3 LTI/ 

Industry 

Experienced in Industry & 

knowledgeable about 

patients 

Insight about market, 

patient, and integration 

 

3 

SH.4 Students Want a viable and working 

product that can be marketed 

to amputees. 

Building the product, 

Identifying needs and 

requirements. 

representing SH.1 patient 

2 

Table 1 List of Stakeholders 

 

 

To narrow down the type of user and the general lifestyle that our design to address, we 

chose to cater to diabetic transtibial amputees over the age of 50. These users would have a high 

chance of necropathy due to their disease which makes a comfortable, non-abrasive socket all the 

more important for them to use. Our other stakeholders including ourselves that are in gray, were 

considered secondary priorities because the patient is the only stakeholder that would be directly 

impacted by the fit and comfort of the socket. Thus, the secondary stakeholders contribute to how 

the socket will be produced via insight. Our second sets of stakeholders are our advisors, listed 
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with a priority of 1, who had to approve the design of our prototype to deem whether the design 

will be successful. Our third stakeholder would be LTI and the prosthetics industry with a priority 

of 3 because we sought to create a new design which must be innovative enough to market without 

recreating pre-existing designs. Lastly, the design would impact us because we aimed to have a 

working product that would satisfy the first stakeholder.  

After identifying our stakeholders, we gathered the information about the needs for the 

amputee and how we can correlate our design to comfort. Additionally, our research from various 

journal articles, websites, and papers in relation to prosthetics provided us with a large range of 

information to help us understand what kinds of issues amputees endure and the current solutions 

provided to solve them. Once we gathered the information from our research, we were able to map 

our requirements to address and rank the priorities of the project. Below is the list of our 

requirements in Table 2. Each need describes what the socket must address and which stakeholder 

it affects. Our needs are there to map what factors are addressed in designing the socket and to link 

them to stakeholders.  

ID Title Description Compliance Traceability Priority 

N.1 Degree 

Requirements 

Design, 

Production, 

Testing, Medical 

Integration, 

Sensing, 

Intelligence, 

Actuation 

Accomplishes all 

degree 

requirements for 

students involved 

SH.4 

Students 

SH.2 

Advisors 

1 

N.2 Sensory Error 

& User 

Neglect 

“Set and forget” 

Patient does not 

want to be 

constantly notified 

or adjusted. 

Prosthetic can still 

operate as a static 

socket while 

keeping patient 

safe. 

SH.1 Patient 3 
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N.3 Adjusting Fit 

(Pressure, 

Form, Slip) 

No pain inflicted 

from excessive 

pressure, slippage, 

or poor fitment. 

Adjusts 

automatically or 

manually for 

changes in residual 

limb. 

SH.1 Patient 1 

N.4 Skin Health Patient needs to 

experience none or 

minimal skin 

abrasion as a result 

of daily use 

Dragon Skin 

silicone could 

show stresses on 

skin 

SH.1 Patient 2 

N.5 Deep Tissue 

Health 

Patient’s 

necropathy is not 

worsened, and 

fitting does not 

occlude blood flow 

causing damage 

(Sanders et. al) 

Notifies Patient of 

dangerous levels 

and then relieves 

pressure if at 

dangerous levels 

according to 

(Sanders et. al) 

SH.1 Patient 1 

N.6 Limb Model Allows Students to 

test fitting to prove 

requirements 

successfully 

achieved on a 

model of a residual 

limb of the patient 

Made to emulate 

patients residual 

limb for N.2,4,5 

(recipe from LTI) 

SH.2 

Advisors 

SH.4 

Students 

1 

N.7 The 

Innovation 

A viable, 

marketable, 

dynamic socket 

that adjusts both 

automatically, and 

by user input 

User can adjust fit 

(pressure) 

manually in 

addition to 

automatic pressure 

adjustments 

SH.1 Patient 

SH.2 

Advisors 

SH.3 

LTI/Industry 

SH.4 

Students 

2 

Table 2 List of Needs According to Stakeholders 

  

To address more specifically the important factors, we create task specifications and 

requirements that would help us decide what the socket must have in order to successfully meet 

the needs of our stakeholder. Below are the requirements for the socket. The needs are listed within 

the validation column to justify the requirements while the verification column describes the 
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method and concept that must be used to satisfy the requirement. The priority is ranked as the same 

as the previous tables, 1 being the highest and 3 being the lowest.   

ID Title Description Verification Validation Priority 

FR.1 Blood Flow Pressure Time 

Relationship 

maintained within 

x% of pressure for 

y% of time 

according to 

Sanders et.Al 

Develop model of 

average daily use 

for audience, test 

against Limb 

Model Does 

pressures applied 

fall below 

threshold while 

maintaining 

functionality 

N.3 

Adjusting Fit 

N.5 Deep 

Tissue Health 

N.6 Limb 

Model 

N.7 The 

Innovation 

1 

FR.2 Limb Model 

Durometer 

Durometer rating 

will be between x 

and y (LTI 

measurements) 

Measure with 

durometer for 

verification 

N.6 Limb 

Model 

N.1 Degree 

Requirements 

2 

FR.3a “Backwards 

Compatible” 

System shall be 

able to act as a 

conventional static 

prosthetic and 

maintain preset 

shape with no user 

involvement or 

power 

Define a preset. 

Remove power 

and user input, 

Does the socket 

stay static and 

imitate existing 

prosthesis? 

N.2 Sensor 

Error & User 

Neglect 

2.5 

FR.3b Failsafe Mechanically limits 

maximum pressure 

of X psi in case 

primary pressure 

regulation fails 

Run actuators full 

power, then make 

sure pressure 

does not exceed 

max threshold 

N.2 Sensory 

Error & User 

Neglect 

N.3 

Adjusting Fit 

N.4 Skin 

Health 

N.5 Deep 

Tissue Health 

3 
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FR.4 Automation a) System changes 

shape via self 

actuation 

 

b) System senses 

effect of actuation 

Specify set 

pressure to 

system; does it 

automatically 

achieve that goal? 

N.1 Degree 

Requirements 

N.3 

Adjusting Fit 

N.7 The 

Innovation 

1 

FR.5 Notification System shall notify 

user before 

adjusting pressure 

of fit. 

Can system make 

notification 

before adjusting? 

N.2 Sensory 

Error & User 

Neglect 

N.7 The 

Innovation 

3 

Table 3 Requirements Based on Needs 

  

Furthermore, we came up with a list of basic task specifications to set benchmarks for the design 

that we created. Our original design goals are as follows: 

Initial Project Goals 

1. The socket will be able to function under a vertical ground reaction force of 1.2 times the 

patient’s body weight. We aim account for a patient weight of 200 lbs. 

2. We must determine the Young’s, shear, and bulk moduli of the residual limb on an older 

patient. If a literature review does not yield these values, we will determine them 

experimentally. 

3. Install 4-6 force/pressure sensors monitoring the effect of 4-6 actuators inside the socket 

for closed loop control of pressure against the residual limb. 

4. The fit of the socket must change through a self-actuated closed loop control with a 

duration of under 1.5 seconds of command to relieve discomfort and provide basic 

functionality from the patient. Functionality includes adjusting in response to the wearer’s 

gait cycle. 
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5. The socket must withstand repetitive loading in order to ensure that it can function under 

cyclic loading coming from an amputee’s gait cycle. 

6. Wiring within the socket must be protected to prevent damage and ensure safety for the 

user. The final prototype must be able to withstand environmental conditions such as 

precipitation and a wide temperature range. 

7. The socket must allow adequate tissue perfusion through the course of 8 hours. Therefore, 

the socket must allow enough blood circulation for the user over this period of time based 

on the average amount of time we propose the person would be walking on a daily basis.  

Analysis of Initial Project Goals 

The original design goals as stated above guided us through our project, with some 

exceptions. The first goal we listed was a basic weight requirement for the function of our final 

prototype. As we continued to learn about the function of sockets under the functional weight 

of amputees, we discovered that if we modified a static hard socket, we could easily achieve 

this goal. The second goal listed above required us to perform an extensive literature review 

with little result. Because we could not find values to match the yield, shear, and bulk moduli 

for an amputee’s residual limb, we attempted to perform experiments to determine these 

values; however, the values we found were dubious. With much deliberation with our advisors, 

it was determined that these values were irrelevant to the project goal, because these values 

could vary significantly from patient to patient.  

We accomplished the third, fourth, and fifth goal, but with minor adjustments to the 

specifications. We implemented 8 force-resistive sensors with three actuators inside the socket. 

We were able to implement closed-loop control that responded in real-time to the wearer’s 

movements. The socket was also able to function under cyclic loading. We were unable to 
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meet goals 6 and 7, because the final actuation design took longer to implement than that was 

expected, and we ran out of time to make our actuation more efficient and weatherproof, but it 

was not a major issue because it was not necessary to do so in order to accurately experiment 

with our final design. When attempting to follow the goals we set for ourselves, we found that 

goal 7 was erroneous, because the dynamicity of our ideal final prototype meant that the 

pressures within the system would never stay in one place on the residual limb for excessive 

periods of time. This static pressure is the cause of blood occlusion and irreparable tissue 

damage, therefore we determined that this goal was not necessary. Our system was designed 

to maintain pressures within the safe range for patients. 

 As the project progressed, we realized that the significance of creating a working 

model of the concept we chose carried more weight than we had realized initially. It was 

determined that many of our initial goals were out of the scope of this project, and that if this 

project were to continue at Popovic Labs, a future team could address goals that we were 

unable to reach. From our initial project goals, we devised realistic design criteria that we 

adhered to for the latter half of our project. The final design criteria can be seen below.  

Final Design Criteria 

1. Withstand a patient weight of 200 pounds 

2. Change fit through automated control 

3. Withstand repetitive loading from walking/standing  

4. Monitor 4-6 force/pressure sensors to control the effect of the socket on the limb 

5. Apply pressure against tolerant regions to relieve from painful regions 
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6. Durable and flexible material to allow volume change 

7. Compensate for loss in volume of residual limb  

8. Lightweight so the patient expends less energy using it. 

 To fulfill the second, third and fourth objectives, we decided to do an iterative design 

approach because of the complexity of our project. The four steps in the iterative design process 

are ideate, prototype, build and analyze. This process can be illustrated in Figure 12 below.  

 

Figure 12  Iterative Design Process 

From the ideation phase, we were able to come up with three designs: bladder, moving 

plate and corset socket concepts. Below is a weighting chart that we used to determine which idea 

we perceived to be the most suitable. For basic design purposes, we focused on cost, production, 

operation, maintenance, resolution, dependability, and weight based on the specifications stated 

earlier.  

 

 

Weighted Decision Matrix 
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 Cost 

(7) 

Production 

(10) 

Operation 

(9)  

Maintenance 

(8) 

Resolution 

(5) 

Dependability 

(7) 

Weight 

(3) 

Total 

Bladder 4 6 7 3 5 2 4 226 

Moving 

Plate  

7 4 2 2 8 9 5 241 

Corset 7 10 9 7 1 8 9 374 

Table 4 Weighted Decision Matrix for three potential designs 

 At first glance, one can see that the highest scoring was for the corset mechanism. 

However, we realized that the design was too similar to a pre-existing concept that we found upon 

research so we decided to create the turn-key socket concept following the iterative design process 

to adjust the socket concept.   

Lastly, to test pressure measurements, we created a test apparatus comprised of a fake 

residual limb placed under loading that would accurately simulate the pressure experienced if the 

user wore the socket. This was necessary because we could see whether our design would be 

feasible and accomplish our overall goal of providing comfort for the user.  

Client Statement 

The goal of our project is to build a dynamic prosthetic socket for transtibial amputees that 

is able to redistribute the forces within the socket in response to the wearer's movements in addition 

to compensate for the volumetric increases and decreases in a patient's residual limb over time. 

This socket must be able to function under at least 200 pounds with an automatic actuation system. 

The overall system must be light enough such that an amputee could wear it without feeling 

weighed down (under 15 pounds).  
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The success of the final design will be determined by constructing a model residual limb 

with embedded sensors that can read and output the pressures felt inside the model limb in real-

time. A bone-like structure will be embedded within the model limb to act as the weight-bearing 

mechanism for the system. This will give an accurate value of pressures a real patient could 

experience. The weight of a patient will be simulated by loading the system with weights.  
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III. Preliminary Designs  
As part of the design process, we came up with preliminary designs that we thought would 

accomplish the goal that we set for a dynamic socket. With each concept, we evaluated the 

characteristic differences in the designs to fully map out their strengths and weaknesses based on 

resolution, dependability, type of actuation, and degradability. Below in Table 5, are the 

differences between each socket concept. In this section, we will also discuss the realization phase 

of each design.  

Design Components 

Bladder Moving Plate Corset 

 Compressed 

air/hydraulic  

 Partially/fully 

automated 

 Medium resolution 

 Easy to use 

 Has more 

maintenance  

 Hard to construct  

 Worst degradability  

 Heaviest 

 Mechanical actuation 

 User-

operated/automatable  

 High resolution  

 Hardest to use 

 Least maintenance  

 Easy to construct  

 Best degradability 

 Medium weight 

 Mechanical 

Actuation 

 Automatable 

  Low resolution  

 Easy to use  

 Medium 

maintenance  

 Easy to construct  

 Medium 

degradability  

 Lightweight  

Table 5 Decision components for each design 
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Moving Plate Design 

The first design that we decided to pursue was the Moving Plate Design. The concept of 

this design included a series of moving plates that could be adjusted individually to provide or 

release pressure at several designated locations. At first, we felt that screws were the best way to 

move the plates within the socket; so we designed several models in SolidWorks using screws that 

moved in and out of the socket and connected to the plates via a spherical or ball joint.  

We designed the first CAD model with the intent to emphasize the design concept itself. 

Therefore, we distributed several plates across the residual limb evenly, and we exaggerated the 

size of the screws that moved each plate. As is customary for some amputees to wear a silicon 

liner with their prosthetic, we decided to incorporate a liner directly into our moving plate design. 

This would prevent any direct contact between the plates and the amputee’s skin, and would also 

distribute some of the applied pressure from the plates. Our first CAD model is shown below in 

Figure 13. 

 

Figure 13 First CAD model of Moving Plate design 
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We designed the second CAD model with the intent to incorporate consideration of the 

pressure tolerant areas along with more realistic screw sizes. Since the tibia is typically one of the 

more sensitive areas on a transtibial residual limb, we made sure to put plates around it instead of 

directly on the tibia. Likewise, since the pressure tolerant areas consist of the more muscular parts 

of the leg, most of the plates targeted parts of the calf muscles. The plate orientation can be more 

clearly understood by looking at Figure 14. In the top view of our model, the front end faces the 

top of this paper, meaning that the tibia, lying between the two front plates, would face the top of 

the paper within the socket as well. 

 

Figure 14 Second CAD model of Moving Plate design 

 

When we started to construct our actual prototype of this design, we decided to use 

hydraulics to push the plates instead of screws. Since we eventually needed to apply actuation to 

the system, hydraulics was a better option; a hydraulic system provided us with more control while 

having to actually actuate less, and therefore, our socket would weigh less, and be less bulky. Our 

hydraulic system contained water as its fluid, and included several valves, and syringes, which 



   
 

36 
 

served as the reservoir, the pump, and the plate moving mechanism within the hydraulic system. 

We felt that water would serve best to move the plates because it is incompressible.  

As a whole, the functionality of our hydraulic system was to build up pressure in the syringe 

serving as a pump to later distribute throughout the system. In what would be our final design, we 

intended to have pressure build as the amputee walked, by incorporating the pump directly into 

the prosthetic leg itself. Each step would store pressure in the pump, represented by the syringe in 

our prototype, which would then be released into the system by opening the pump’s valve.  

Based on the orientation of the valves, the pressure within the system would either build 

up, move to be stored in the reservoir, move water from the reservoir to one of the plate moving 

mechanisms, or move the water in one of the plate moving mechanisms back to the reservoir. In 

Figure 15, the hydraulic system is displayed.  

 

Figure 15 Hydraulic System for Second Iteration 

The rest of our hydraulic moving plate design consisted of an actual prosthetic socket and 

a 3D printed part. A section of the socket was cut to create a plate that would be adjusted with the 

plunger within the syringe. This was designed to have the plate follow the contour of the leg while 
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compensating for the volume changes experienced on the residual limb. Figures 16 and 17 below 

illustrate the final iteration of this design.  

 

Figure 16 Plate Cut Out 

 

 

Figure 17 Complete Design with 3-D Part 
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Bladder Design 

One of the preliminary designs that we decided to pursue was the bladder design. The basic 

concept of this design was a socket fitted with pouches (or bladders) that inflated and deflated to 

redistribute the pressure against the amputee's residual limb. As seen in the table above, in 

comparison to the other preliminary designs, this concept was rated to have the heaviest construct 

and the worst degradability; however, this design was rated as the easiest to use, with a medium to 

high resolution. This prototype can be seen in Figure 18 below. 

 

Figure 18 First iteration of Bladder design 
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 The first working model for this concept was constructed by lining a femoral (above-knee) 

socket with three PDR Air Wedges. These bladders were off-the-shelf products, and their marketed 

purpose was to act as an inflatable wedge for leveling, and to open locked car doors. These bladders 

were adhered to the inner walls of the femoral socket with industrial-strength Velcro. These bags 

were inflated and deflated by a preliminary actuation system comprised of a micro servo attached 

to a three-way valve that rotated and allowed air into the individual bags based on controls 

provided form a Pololu Micro Maestro 6-channel USB Servo controller (Pololu, Las Vegas, 

Nevada). The type of micro servo that was used for this prototype was the BK Micro Servo 3001 

HV. This model was chosen for its small size and weight (20g), and its high torque output 

(5.8kg/cm at 7.4V), which was necessary to compensate for the friction within the valves.   

 

Figure 19 Schematic of Air Bladder Socket 
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Figure 19 above shows the basic actuation schematic of the first prototype for the bladder 

concept. As the foot check valve sends air to the valve, the valve rotates in time, allowing for air 

in the separate bladders to be filled and released in sequence.  

The second prototype for the bladder concept was comprised of six smaller bladders within 

a socket shaped into a bypass prosthesis. A bypass prosthesis is a type of socket that allows for the 

testing of a new design. It allows for a person who is not an amputee to try on the design and put 

weight on it, in order to gauge comfort for a patient. The hard outer shell was manufactured from 

Kydex V, a type of thermoform plastic manufactured by Sekisui-Spi Inc. (Sekisui-Spi Inc., 

Holland, Michigan). The Kydex was heated with the use of a heat gun, and shaped around one of 

our team member's knee in order to get an accurate shape for the bypass. Then, the plastic was 

fitted with six small neonatal blood pressure bags with the use of industrial Velcro for modularity. 

The bags were 'daisy-chained' together such that only one input was necessary for the system. A 

blood pressure cuff check valve was used for the input and output, while a secondary output valve 

was fitted on to the bypass for safety. The completed prototype can be seen in Figure 20. 
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Figure 20 Bypass Socket 

Although this prototype consisted of a manual actuation scheme, it provided an accurate 

means of assessing the function of a potential final design concept, because it allowed for us to see 

what the potential socket could feel like. 

Corset Design 

The third design we explored for our dynamic prosthetic socket was partially inspired by 

the Revolimb design. The concept behind this design was to redistribute pressures in the system 

by physically tightening and loosening the socket as a whole against the residual limb of the 

amputee. This motion could be controlled by pressures sensed within the system, and performed 

by a simple lead screw attached to a motor. The screw is fastened to both crimping ends of the 

socket. The non-back-drivable motor is also housed on the exterior of the socket. 
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In order to explore this design, we created a proof of concept by molding a piece of Kydex 

thermoform plastic around the exterior of an existing transtibial socket, and attaching the motor 

and lead screw to its exterior. This proof of concept can be seen below in Figure 21. We found that 

although this design was the easiest to actuate, its low resolution and poor fit for the patient led us 

to decide to not pursue this for our final design. 

 

Figure 21 Proof of concept for corset design 

Analysis 

Once all prototypes were made and fully tested, they were re-evaluated for viability for our 

final prototype. Each working model for the turn-key, bladder, and corset design was compared 

against each other, and against the characteristics we anticipated in Table 4. It was decided that 

the bladder design was actually the easiest to actuate, the lightest design if pneumatically actuated, 

and also the least mechanically complex with the greatest functionality. 
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IV. Final Design  
The final design we chose to pursue after testing our various concepts was the bladder 

design. We chose this design because although it was not the simplest of the designs, it gave the 

highest amount of resolution, with the lightest overall frame. Our final dynamic bladder-fitted 

socket was constructed by using fiberglass to take a mold of an existing transtibial socket. This 

mold was taken with three bladders between the socket and the fiberglass in order to capture the 

profile of them, and allot space for them within the final design. Fiberglass was used in the final 

construction, because prosthetic socket manufacturers often use this material to make hard sockets 

for patients. Many layers of fiberglass were used to ensure that the final socket was structurally 

sound, and did not bend under loading forces during testing.  

Once the fiberglass cured, it was shaped and sanded to eliminate any excess resin, while 

also maintaining the shape of the original socket that it was molded out of. Three holes were 

strategically cut to allow for tubes to thread to each bladder, once embedded in the system. The 

bladders used for this system were medical-grade neonatal blood pressure bags.  These bags, 

manufactured by MDF, were latex-free and rated for use within blood pressure cuffs. We ensured 

that the bags used within the system met medical standards, because they were to interface with 

the patient's residual limb, and as a result, could not be made of any material that could cause an 

allergic or toxic reaction (MDF, Los Angeles, California). These bags met the standards of the 

American Heart Association, as well as the European Standard 1060-1:1995, 1060-2:1995, and 

ANSI/AAMI SP10: 2002.  

The bags were adhered to the inside of the fiberglass socket using industrial Velcro. Once 

bags were fitted inside, tubes were attached to each one to the actuation mechanism. The actuation 

mechanism was comprised of three valves, each one controlled by a micro servo. The micro servos 
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we used were BK Micro Servo 3001V. These servos weighed 20g each, and were capable of up to 

4.7kg/cm of torque (BK Servo, Alberta, Canada). These servos were controlled using signals from 

an Arduino Mega. In tandem, line pressures within the tubes leading to the bags were read by small 

Honeywell Pressure Sensors. The read pressures controlled the action of the bag valves. Depending 

on the line pressures, each bag would inflate or deflate. Finally, the exterior of the manufactured 

hard socket was wrapped in a carbon fiber vinyl laminate to increase the aesthetic appeal. The final 

prototype can be seen in Figure 22 below. 

    

Figure 22 Final prototype for bladder design 
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V. Bill of Materials  

Final Prototype 

Item Description Price 

BK Micro Servos Used to turn the valves to 

control the air in the bladders 

$64.00 (x3) 

Neonatal Blood Pressure 

Cuffs 

Used as bladders to 

redistribute pressures 

$7.99 (x3) 

Fiberglass Resin Used to manufacture a hard 

socket with reliefs for the 

bladders 

$14.97 

Fiberglass Cloth Used for hard socket 

manufacturing 

$6.97 

Carbon Fiber Vinyl Laminate Used to cover the exterior of the 

final prototype 
Provided by LTI 

Honeywell Vented Gauge 

Pressure Sensor 

Used to measure the pressure 

in air bladders 

$17.30 (x4) 

Arduino Mega Used to read pressure from 

Honeywell pressure sensors and 

control servos 

Provided by student 

Luer Lock Valves Used to control charge and 

discharge air into bladders 

Provided by WPI 

Air Compressor Serves as compressed air source Provided by student 

Syringe Tubing Connects pneumatic 

components 

Provided by WPI 

 

Experimental Apparatus 

Item Description Price 

OOMOO 30 Silicone Used to construct the silicone 

residual limb 

$26.49 

Dragon Skin Silicone Simulated skin on residual 

limb 

$35.61 

Force-resistive Sensors Embedded under simulated 

skin to read pressures 

$5.60 (x 10) 

Aluminum Simulated bone and weight 

bearing part 

$110 

 

Please see the “Part References” section in the References Chapter for more information on each part.  
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VI. Experimentation and Results  
To test our final design, we conducted two tests based on the socket’s ability to withstand 

an actual person’s weight. In order to conduct these two tests, we decided to create a testing 

apparatus for us to see how much pressure would be applied with a person’s weight. The test 

procedures can be seen in the appendix.  

The key components in testing included a fake residual limb made from OOMOO 30 

Silicone and dragon skin, force-resistive sensors and an aluminum shaft and platform to stack 

weights onto the socket. To read the information and provide air flow to bladders, we had two 

systems: a National Instruments Data Acquisition (DAQ) box connected to all FSRs and a Luer 

Lock valve system with servo motors to pump air to any of the bladders according a sequence from 

an Arduino board. The overall socket system and testing apparatus is seen in Figure 23 below.  

 

Figure 23 Socket under Weights for Testing 
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Testing Apparatus 

Aluminum Shaft and Platform  

 In order to test the socket’s ability to withstand weight, we designed a platform to stack 

weights. The shaft is threaded to attach the plate that would uphold the weights. We obtained 

weights from the school’s gym because we thought they were suitable. Below are images of the 

shaft and platform used.  

 

Figure 24 CAD model of Shaft and Platform for Weights 

The weights would slide onto the shaft and land on the plate as seen previously in Figure 

23. In total, we had 270 pounds to simulate the weight of the person.  
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Mock Residual Limb 

In order to test this final prototype, we manufactured a model residual limb by mixing 

silicone and using a soft liner of a transtibial socket as a mold. We used Smooth-On silicone 

OOMOO 30 rubber, as it was the most cost-effective option for its purpose (Smooth-On Inc., 

Macungie, PA). OOMOO 30 has a shore hardness of 30A, and a cure time of about 6 hours, which 

allowed us to quickly and accurately model the residual limb of an older amputee. The mold was 

taken with an aluminum structure embedded within it, to act as a model bone, and also to hold 

weights we would be loading the system with during testing. Once the silicone mold had fully 

cured, we coated it with Smooth-On Dragon Skin Silicone Rubber, which simulated skin for the 

model residual limb (Smooth-On, Macungie, PA).  

Below the surface of the Dragon Skin, we embedded Force Resistive Sensors to gauge the 

pressures a real amputee would potentially experience within this system, if he or she were to wear 

it. Eight FSRs were embedded within the model residual limb; two were placed under where each 

bladder would go, and two were placed on the bottom-most part of the limb. 

Force Sensitive Resistors 

 With respect to the pressure tolerant areas of the residual limb, we decided to embed eight 

sensors within the “skin” in the mock limb. The force sensors are SEN-09375 Force Sensitive 

Resistors. These were used to produce an analog output for the Arduino. This allowed us to record 

the pressure changes experienced in the limb. The sensors were calibrated using two term 

exponential equations generated from data input to MATLAB (see appendix). The graph, shown 

in Figure 25 below, shows the exponential curve for one of the FSRs, and the table, shown in Table 

6 below, shows the equations generated from MATLAB based on each sensor’s behavior: 
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Sensors a b c d 

A1 0.008977 3.26 66.38 1.227 

A2 91.56 0.3116 3.131 2.193 

A3 81.1 0.5779 1.614 2.393 

A4 44.97 -0.9329 22.91 1.782 

A5 65.03 1.051 0.9344 2.46 

P6 0.003204 3.7 72.18 1.164 

P7 80.07 0.9728 0.5645 2.551 

P8 77.38 1.067 0.02001 3.382 

 

Table 6 Equations for FSR Behavioral Curves 

 

 

Figure 25 Sensor Calibration: Behavioral curve 

 

The data from these FSRs was also sent to a National Instruments Data Acquisition (DAQ) 

box, which was hooked up to a LabVIEW Virtual Instrument that showed the forces shifting inside 

the mock limb in real time. The locations of the sensors and a screenshot of the VI can be seen 

below.  
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Figure 26 Placement of FSRs (left), and the LabVIEW VI (right) 

In Figure 26 above, the placements of the FSRs can be seen on the left. The forces on the 

limb correspond to the colored bars within the VI on the right, based on the color of the sensor. 

The VI also shows two bi-linearly interpolated heat maps for the anterior and posterior sides of the 

limb. During experimentation, the VI displayed forces as they changed and redistributed across 

the mock limb when each bag inflated and deflated.   

Bladder Control  

 Luer Lock 3-way petcock valves were used for ease of adjustment. There are servo motors at 

three of the valves to control air flow. The method used was the Bang-Bang control for an 

appropriate response of pressure changes in the bladders when the weight is applied or released.  

Results  

 The test we ran on our system compared readings from the Honeywell Pressure sensors, 

and FSRs. We set the Arduino code to run a sequence that charged and discharged one of the 

bladders, while a MATLAB program took in serial readings from both types of sensors. The 

MATLAB program then generated plots from this data, highlighting the pressure readings from 

the charging bladder, and one of the selected sensors on the residual limb. We performed this 
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sequence with different loads applied to the residual limb, ranging from 0 to 270 extra pounds, and 

made sure to isolate each bladder and sensor output in the data within the MATLAB program. This 

allowed us to analyze the affect that charging a particular bladder had on a particular sensor. The 

most significant results are shown in the graphs below: 

 

Figure 27 Bladder 1 pressure vs. Anterior 1 Sensor force with no weight 
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Figure 28 Bladder 1 pressure vs. Anterior 1 Sensor force with 90 lbs 

 

Figure 29 Bladder 3 pressure vs. Posterior 6 Sensor force with no weight 
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Figure 30 Bladder 3 pressure vs. Posterior 6 sensor force with 180 lbs 

 

 In the graphs shown above, the thick blue line represents the pressure in the bladder that is 

being charged and discharged, the thick red line is the emphasized force reading in the chosen 

sensor, and the purple lines are the force readings on the sensors that are not emphasizes in the 

given case. The first two graphs (Figures 27 and 28) display readings from the Anterior 1 sensor 

as Bladder 1 charges and discharges. From these graphs, it is clear that as the pressure in the 

bladder increases, the force in most of the sensors increases as well, except for the force on the 

Anterior 1 sensor, which decreases with the increase in bladder pressure. This phenomenon occurs 

with and without extra weight on the residual limb model.  

 A similar event occurs on the Posterior 6 sensor when Bladder 3 is pressurized, as seen by 

the third and fourth graphs shown above (Figures 29 and 30). With and without extra loading on 

the residual limb, as the pressure in Bladder 3 increases, most of the forces on the sensors increase 

with it, except for the Posterior 6 sensor, which experiences a decrease in force. The decrease in 
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force on these sensors in response to an increase in one of the bladder’s applied pressures proves 

that our final design successfully redistributes force throughout the residual limb. More from this 

test are highlighted in the Appendix.   

 The reason we were able to successfully redistribute forces within the limb, that is, decrease 

forces in some areas while increasing forces in other areas, is because we are addressing the change 

in volume in the residual limb with our design. An amputee may experience pain or discomfort 

from concentrated loads on their residual limb due to an improper fit; if the socket does not 

perfectly fit the limb, the interface between limb and socket is compromised. Therefore, the surface 

area which bears the amputee’s weight, that is the side walls of the socket, is less than a socket 

that provides a proper fit. Since our design is able to correct the improper fit by increasing the 

volume of our bladders, we are effectively changing the shape of the surface area, as well as 

increasing the surface area that would bear the amputee’s weight. This in turn decreases the overall 

pressure experienced on the limb and also alleviates highly concentrated forces on the limb.  

VII. Conclusion 
 

Upon the completion of the project, we learned the difficulties faced in understanding how 

to gauge comfort and how to create a suitable design to meet our goal. The project was challenging 

due to the many iterations of designs, and the necessity of such iterations in the world of science 

and medicine. Despite the challenge, the iterative design process helped us discover alternative 

methods for solving the problems of poor fit and lack of comfort presented by current prosthetic 

sockets; the air bladder design was the final result of this process. After experimenting with our 

final design, we confirmed that the air bladder design successfully redistributed forces within the 
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residual limb, and that the iterative process we used to design a dynamic fitting for a prosthetic 

socket was fruitful. 

VIII. Future Improvements  

Manufacturability and Sustainability 

Although we performed extensive testing using our experimental apparatus, the full 

potential of this design for patients must be tested through human clinical trials. We were able to 

somewhat simulate what an amputee would feel, when wearing our socket, but true comfort cannot 

be measured unless a patient were to wear our socket while sitting, standing, and walking. 

One of the biggest advantages to the design we chose is the marketability. If a prosthetist 

were to implement this design for an amputee's socket, it would take very little effort for him or 

her to simply configure the bags to fit under the pressure tolerant areas of the system. If this became 

a product available to amputees, it would most likely be manufactured at companies such as Next 

Step Bionics and Prosthetics Inc. that specializes in prostheses manufacturing. Or, the bladders 

could be embedded into a secondary sleeve for the patient to wear underneath his or her hard 

socket. It is also a possibility that majority of the hardware, such as the valves and the servos, 

would be scaled down and made such that it could be embedded or sit right on the surface of the 

hard socket. 

A possibility for mass manufacturing could be 3D printing all components within the hard 

socket, such that after a prosthetist takes the mold of a patient's residual limb, he or she could 

simply upload the contours and some minor specifications into a Computer-aided design model 

and print a hard socket for a patient. This could significantly reduce the cost of sockets for the 

patient.  
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Our product would be successful on market, because it cost significantly less than a current 

state-of-the-art dynamic sockets on the market. According to our bill of materials (seen in the 

section above), the total cost of manufacturing or final prototype was $247.89. If this product was 

to be manufactured on a large scale, the cost could be reduced significantly. 

Ethical Concerns and Safety Issues 

When designing a new type of socket, it was important for us to remember that although 

this product could ultimately improve a person's life, it could also do the opposite if executed 

poorly. That is why we did not consider testing on a real patient until we knew the forces sensed 

on our model residual limb were of reasonable range for human use. It would be highly unethical 

to perform human subject tests without first verifying that the socket is safe for human use. In 

order for this testing to occur, our circuitry would have to be printed on to a circuit board and 

shielded from the user to prevent any electric shock. Also, the valves and air tubes would have to 

be secured in place to prevent any breakages, which could lead to sudden drops of pressure in the 

system. If this happened, a patient could lose their balance and fall.  
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IX. Appendix 

Arduino Code 

#define ATM 100 

#define MAXP 211 

 

#define INC 80 

#define BP1 80 

#define BP2 BP1 

#define BP3 BP1 

#define THRESH 10 

 

#include <Servo.h> 

#define HOLD 100 

#define VENT 160-40 // 40 normal 

#define CHARGE 60+26 //+28 is really slow 

 

#define BLAD1 A1 

#define BLAD2 A2 

#define BLAD3 A3 

#define TANK A0 

 

#define S1 2 

#define S2 3 

#define S3 4 

 

#define a1pin 15 

#define a2pin 14 

#define a3pin 13 

#define a4pin 12 

#define a5pin 11 

#define p6pin 10 

#define p7pin 19 

#define p8pin 18 

 

 

#define SERVOPOWER 5 

 

#define SEQLEN 12 

 

int sequence[12][3]={ 

  {BP1, BP2, BP3}, 

  {BP1+INC, BP2, BP3}, 

  {BP1+INC, BP2+INC, BP3}, 

  {BP1+INC, BP2+INC, BP3+INC}, 

  {BP1+INC, BP2+INC, BP3}, 

  {BP1+INC, BP2, BP3}, 

  {BP1, BP2, BP3}, 

  {BP1+INC, BP2, BP3}, 

  {BP1+INC, BP2+INC, BP3}, 

  {BP1+INC, BP2+INC, BP3+INC}, 

  {BP1+INC, BP2+INC, BP3}, 

  {BP1+INC, BP2, BP3}, 
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}; 

 

long unsigned int start=0; 

Servo s1; int s1pos=0; 

Servo s2; int s2pos=0; 

Servo s3; int s3pos=0; 

int tank=0; 

int blad1=0; int blad2=0; int blad3=0; 

int bp1=BP1; int bp2=BP2; int bp3=BP3; 

int a1=0; int a2=0; int a3=0; int a4=0; int a5=0; 

int p6=0; int p7=0; int p8=0; 

int blad1kpa=0; 

int blad2kpa=0; 

int blad3kpa=0; 

 

void setup() { 

  pinMode(BLAD1,INPUT); pinMode(BLAD2,INPUT); pinMode(BLAD3,INPUT); 

  pinMode(S1,OUTPUT); pinMode(S2,OUTPUT); pinMode(S3,OUTPUT); 

  pinMode(a1pin,INPUT); pinMode(a2pin,INPUT); pinMode(a3pin,INPUT); 

pinMode(a4pin,INPUT); pinMode(a5pin,INPUT); 

  pinMode(p6pin,INPUT); pinMode(p7pin,INPUT); pinMode(p8pin,INPUT); 

  pinMode(SERVOPOWER,OUTPUT); digitalWrite(SERVOPOWER,LOW); 

  s1.attach(S1); s2.attach(S2); s3.attach(S3);  

  Serial.begin(9600); 

  start=millis(); 

} 

 

void loop() { 

  //seq(); 

  control(); 

} 

 

void control(){ 

  readPressure(); 

  bladder1(bp1); 

  bladder2(bp2); 

  bladder3(bp3); 

  readLimb(); 

  printLimb(); 

} 

 

void seq(){ 

  for(int i=0; i<SEQLEN; i++){ 

    int st = millis(); 

    while(millis() < st+1250){ 

      bp1=sequence[i][0]; 

      bp2=sequence[i][1]; 

      bp3=sequence[i][2]; 

      control(); 

    }   

  }  

} 

 

void servoSleep(){ 

  if(millis() > start+1000){ 

    start = millis(); 

    digitalWrite(SERVOPOWER,LOW); 
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  } 

} 

 

void readLimb(){ 

  a1=analogRead(a1pin); 

  a2=analogRead(a2pin); 

  a3=analogRead(a3pin); 

  a4=analogRead(a4pin); 

  a5=analogRead(a5pin); 

  p6=analogRead(p6pin); 

  p7=analogRead(p7pin); 

  p8=analogRead(p8pin); 

} 

 

 

 

int bladder1(int pressure){ 

    if(blad1 > pressure-THRESH && blad1 < pressure+THRESH) 

{digitalWrite(SERVOPOWER,HIGH); s1.write(HOLD);} 

    else if(blad1 > pressure-THRESH) {digitalWrite(SERVOPOWER,HIGH); 

s1.write(VENT);} 

    else if(blad1 < pressure-THRESH && blad1) 

{digitalWrite(SERVOPOWER,HIGH); s1.write(CHARGE);} 

    else if (blad1<pressure-THRESH && !(tank > pressure+THRESH)) 

{digitalWrite(SERVOPOWER,HIGH); s1.write(HOLD);} 

    return blad1; 

} 

int bladder2(int pressure){ 

    digitalWrite(SERVOPOWER,HIGH); 

    if(blad2 > pressure-THRESH && blad2 < pressure+THRESH) s2.write(HOLD); 

    else if(blad2 > pressure-THRESH) s2.write(VENT); 

    else if(blad2 < pressure-THRESH && blad2) s2.write(CHARGE); 

    else if (blad2<pressure-THRESH && !(tank > pressure+THRESH)) 

s2.write(HOLD); 

    return blad2; 

} 

 

int bladder3(int pressure){ 

    digitalWrite(SERVOPOWER,HIGH); 

    if(blad3 > pressure-THRESH && blad3 < pressure+THRESH) s3.write(HOLD); 

    else if(blad3 > pressure-THRESH) s3.write(VENT); 

    else if(blad3 < pressure-THRESH && blad3) s3.write(CHARGE); 

    else if (blad3<pressure-THRESH && !(tank > pressure+THRESH)) 

s3.write(HOLD); 

    return blad3; 

} 

 

void off(){ 

  s1.detach(); digitalWrite(S1,LOW); s1.attach(S1); 

  s2.detach(); digitalWrite(S2,LOW); s2.attach(S2); 

  s3.detach(); digitalWrite(S3,LOW); s3.attach(S3); 

} 

void printData(){ 

  int in = 0; 

  in = Serial.read(); 

   

  int minlen=1; 
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  int maxlen=4; 

  char buffer [4]; 

  String str = itoa(tank, buffer, 10); for(int i=0; i<maxlen; i++) 

if(str.length()<maxlen) str.concat(" "); 

  Serial.print(str); 

  str = itoa(blad1kpa, buffer, 10); for(int i=0; i<maxlen; i++) 

if(str.length()<maxlen) str.concat(" "); 

  Serial.print(str); 

  str = itoa(blad2kpa, buffer, 10); for(int i=0; i<maxlen; i++) 

if(str.length()<maxlen) str.concat(" "); 

  Serial.print(str); 

  str = itoa(blad3kpa, buffer, 10); for(int i=0; i<maxlen; i++) 

if(str.length()<maxlen) str.concat(" "); 

  Serial.print(str); 

  Serial.println(); 

} 

 

void printLimb(){ 

  int in = 0; 

  in = Serial.read(); 

   

  int minlen=1; 

  int maxlen=4; 

  char buffer [5]; 

  String str = itoa(tank, buffer, 10); for(int i=0; i<maxlen; i++) 

if(str.length()<maxlen) str.concat(" "); 

  Serial.print(str); 

  str = itoa(blad1kpa, buffer, 10); for(int i=0; i<maxlen; i++) 

if(str.length()<maxlen) str.concat(" "); 

  Serial.print(str); 

  str = itoa(blad2kpa, buffer, 10); for(int i=0; i<maxlen; i++) 

if(str.length()<maxlen) str.concat(" "); 

  Serial.print(str); 

  str = itoa(blad3kpa, buffer, 10); for(int i=0; i<maxlen; i++) 

if(str.length()<maxlen) str.concat(" "); 

  Serial.print(str); 

   

  Serial.print("| "); 

  maxlen=5; 

  str = itoa(a1, buffer, 10); for(int i=0; i<maxlen; i++) 

if(str.length()<maxlen) str.concat(" "); 

  Serial.print(str); 

  str = itoa(a2, buffer, 10); for(int i=0; i<maxlen; i++) 

if(str.length()<maxlen) str.concat(" "); 

  Serial.print(str); 

  str = itoa(a3, buffer, 10); for(int i=0; i<maxlen; i++) 

if(str.length()<maxlen) str.concat(" "); 

  Serial.print(str); 

  str = itoa(a4, buffer, 10); for(int i=0; i<maxlen; i++) 

if(str.length()<maxlen) str.concat(" "); 

  Serial.print(str); 

  str = itoa(a5, buffer, 10); for(int i=0; i<maxlen; i++) 

if(str.length()<maxlen) str.concat(" "); 

  Serial.print(str); 

  str = itoa(p6, buffer, 10); for(int i=0; i<maxlen; i++) 

if(str.length()<maxlen) str.concat(" "); 

  Serial.print(str); 
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  str = itoa(p7, buffer, 10); for(int i=0; i<maxlen; i++) 

if(str.length()<maxlen) str.concat(" "); 

  Serial.print(str); 

  str = itoa(p8, buffer, 10); for(int i=0; i<maxlen; i++) 

if(str.length()<maxlen) str.concat(" "); 

  Serial.print(str);Serial.print(digitalRead(SERVOPOWER)); 

  Serial.println(" "); 

   

//  digitalWrite(SERVOPOWER,HIGH); 

  if(in==48){ s1.write(HOLD); s2.write(HOLD); s3.write(HOLD); delay(1000);  

} 

  else if(in==49){ s1.write(VENT); s2.write(VENT); s3.write(VENT);  

    int cont=0; Serial.println("VENTED SEND 2 to resume 

operation");delay(500);digitalWrite(SERVOPOWER,LOW); 

    while(!cont){ in=Serial.read(); if(in==50){cont=1;}}} 

  else if(in==50){ s1.write(CHARGE); s2.write(CHARGE); s3.write(CHARGE); 

delay(1000); } 

 

} 

 

void readPressure(){ 

  tank = analogRead(TANK); tank = max(tank-ATM,0); 

  blad1 = analogRead(BLAD1); blad1kpa = (0.488*blad1)-49.97 ; blad1 = 

max(blad1-ATM,0); 

  blad2 = analogRead(BLAD2); blad2kpa = (0.488*blad2)-49.97 ; blad2 = 

max(blad2-ATM,0); 

  blad3 = analogRead(BLAD3); blad3kpa = (0.488*blad3)-49.97 ; blad3 = 

max(blad3-ATM,0); 

} 

 

float mapdouble(double x, double in_min, double in_max, double out_min, 

double out_max){ 

 return (double)(x - in_min) * (out_max - out_min) / (double)(in_max - 

in_min) + out_min; 

} 

 

Matlab Code Template used for calibration 

sensorCalibrationTemplate.m 

 

clc; clear; 

 

%Volts in V <insert average readings between semicolons> 

Volts = [ ; ; ; ; 

        ; ; ; ; 

        ; ; ; ; 

        ; ; ; ]; 

 

%Weight in grams <these were the different weights I used>    

Weight = [50; 70; 90; 110; 

        130; 150; 170; 190; 

        210; 220; 1002.4383; 1628.3953; 

        2177.2416; 2431.2531; 4658.3898; 9071.84]; 

     



   
 

62 
 

%Generate and plot trendline 

trend = fit(Volts, Weight, 'exp2'); 

plot(trend, Volts, Weight); 

 

display(trend); 

 

Matlab Code for plotting bladder pressure and sensor forces 

 
Posterior6unload.m  
 

close all; 
fig1=figure(1); set(fig1,'Position', [480, 540, 480, 540]); 
[ax,hLine1,hLine2] = 

plotyy(dat(:,1),dat(:,3),dat(:,1),smooth(dat(:,11),5)); hold on; 
[ax,hLine1,a2response] = 

plotyy(dat(:,1),dat(:,3),dat(:,1),smooth(dat(:,7),5)); 

set(a2response,'Color', [0.5,0,0.5]); hold on; 
[ax,hLine1,a3response] = 

plotyy(dat(:,1),dat(:,3),dat(:,1),smooth(dat(:,8),5)); 

set(a3response,'Color', [0.5,0,0.5]); hold on; 
[ax,hLine1,a4response] = 

plotyy(dat(:,1),dat(:,3),dat(:,1),smooth(dat(:,9),5)); 

set(a4response,'Color', [0.5,0,0.5]); hold on; 
[ax,hLine1,a5response] = 

plotyy(dat(:,1),dat(:,3),dat(:,1),smooth(dat(:,10),5)); 

set(a5response,'Color', [0.5,0,0.5]); hold on; 
[ax,hLine1,a1response] = 

plotyy(dat(:,1),dat(:,3),dat(:,1),smooth(dat(:,6),5)); 

set(a1response,'Color', [0.5,0,0.5]); hold on; 
[ax,hLine1,p7response] = 

plotyy(dat(:,1),dat(:,3),dat(:,1),smooth(dat(:,12),5)); 

set(p7response,'Color', [0.5,0,0.5]); hold on; 
[ax,hLine1,p8response] = 

plotyy(dat(:,1),dat(:,3),dat(:,1),smooth(dat(:,13),5)); 

set(p8response,'Color', [0.5,0,0.5]); hold on; 

  
set(hLine1,'LineWidth',3, 'Color', 'blue'); 
set(hLine2,'LineWidth',3, 'Color', 'red'); 
title('Posterior 6', 'FontSize', 50); 
xlabel('Samples', 'FontSize', 32); 
set(gca, 'FontSize', 20); 
ylabel(ax(1), sprintf('Pressure in Bladder 1 [kPa]\n'), 'FontSize', 32); 
set(gca, 'FontSize', 20); 
ylabel(ax(2), sprintf('\nForce on Sensor P6 [N]'), 'FontSize', 32); 
set(gca, 'FontSize', 20); 
postLeg = legend([hLine1,hLine2], 'Pressure in Bladder 1 [kPa]', 'Force on 

Sensor P6 [N]', 'Location', 'northeast'); 
set(postLeg, 'FontSize', 24); 
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SerialAnalysis.m  

 

close all; clear all; clc; 

  
s=instrfind('Status','open') 
if(length(s))  
    fclose(s); 
end 
s = serial('COM4') 
fopen(s); 
dat=zeros(13); 
for i=1:500 
    line=strsplit(fgets(s),' '); 
    tank=str2double(line{1}); 
    blad1=str2double(line{2}); 
    blad2=str2double(line{3}); 
    blad3=str2double(line{4}); 
    a1=map(str2double(line{6}),0,1023,0,5) 
    a1= 0.00980665002864*((0.008977*exp(3.26*a1))+(66.38*exp(1.227*a1))); 

     
    a2=map(str2double(line{7}),0,1023,0,5); 
    a2= 0.00980665002864*((91.56*exp(0.3116*a2))+(3.131*exp(2.193*a2))); 

         
    a3=map(str2double(line{8}),0,1023,0,5); 
    a3= 0.00980665002864*((81.1*exp(0.5779*a3))+(1.614*exp(2.393*a3))); 

     
    a4=map(str2double(line{9}),0,1023,0,5); 
    a4= 0.00980665002864*((44.97*exp(-0.9329*a4))+(22.91*exp(1.782*a4))); 

     
    a5=map(str2double(line{10}),0,1023,0,5); 
    a5= 0.00980665002864*((65.03*exp(1.051*a5))+(0.9344*exp(2.46*a5))); 

     
    p6=map(str2double(line{11}),0,1023,0,5); 
    p6= 0.00980665002864*((0.003204*exp(3.7*p6))+(72.18*exp(1.164*p6))); 

     
    p7=map(str2double(line{12}),0,1023,0,5); 
    p7= 0.00980665002864*((80.07*exp(0.9728*p7))+(0.5645*exp(2.551*p7))); 

     
    p8=map(str2double(line{13}),0,1023,0,5); 
    p8= 0.00980665002864*((77.38*exp(1.067*p8))+(0.02001*exp(3.382*p8))); 

     
    dat(i,:)=[i,tank,blad1,blad2,blad3,a1,a2,a3,a4,a5,p6,p7,p8]; 
    plotyy(dat(:,1),dat(:,3),dat(:,1),smooth(dat(:,6),5)); drawnow; 
end 

  

  
fclose(s); 
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figure(1); plotyy(dat(:,1),dat(:,4),dat(:,1),smooth(dat(:,6),5)); 

title('Anterior 1'); xlabel('Samples'); legend('Pressure in Bladder 

[kPa]', 'Force on Sensor [N]', 'Location', 'southoutside'); drawnow; 
figure(2); plotyy(dat(:,1),dat(:,4),dat(:,1),smooth(dat(:,7),5)); 

title('Anterior 2'); xlabel('Samples'); legend('Pressure in Bladder 

[kPa]', 'Force on Sensor [N]', 'Location', 'southoutside'); drawnow; 
figure(3); plotyy(dat(:,1),dat(:,4),dat(:,1),smooth(dat(:,8),5)); 

title('Anterior 3'); xlabel('Samples'); legend('Pressure in Bladder 

[kPa]', 'Force on Sensor [N]', 'Location', 'southoutside'); drawnow; 
figure(4); plotyy(dat(:,1),dat(:,4),dat(:,1),smooth(dat(:,9),5)); 

title('Anterior 4'); xlabel('Samples'); legend('Pressure in Bladder 

[kPa]', 'Force on Sensor [N]', 'Location', 'southoutside'); drawnow; 
figure(5); plotyy(dat(:,1),dat(:,4),dat(:,1),smooth(dat(:,10),5)); 

title('Anterior 5'); xlabel('Samples'); legend('Pressure in Bladder 

[kPa]', 'Force on Sensor [N]', 'Location', 'southoutside'); drawnow; 
figure(6); plotyy(dat(:,1),dat(:,4),dat(:,1),smooth(dat(:,11),5)); 

title('Posterior 6'); xlabel('Samples'); legend('Pressure in Bladder 

[kPa]', 'Force on Sensor [N]', 'Location', 'southoutside'); drawnow; 
figure(7); plotyy(dat(:,1),dat(:,4),dat(:,1),smooth(dat(:,12),5)); 

title('Posterior 7'); xlabel('Samples'); legend('Pressure in Bladder 

[kPa]', 'Force on Sensor [N]', 'Location', 'southoutside'); drawnow; 
figure(8); plotyy(dat(:,1),dat(:,4),dat(:,1),smooth(dat(:,13),5)); 

title('Posterior 8'); xlabel('Samples'); legend('Pressure in Bladder 

[kPa]', 'Force on Sensor [N]', 'Location', 'southoutside'); drawnow; 

  

  

  

Map.m  

function [out] = map(in,inmin,inmax,outmin,outmax) 
%UNTITLED2 Summary of this function goes here 
%   Detailed explanation goes here 
    out= (in-inmin)*(outmax-outmin)/(inmax-inmin)+outmin; 
end 

 

Sensor Calibration Data 

A1    

Weight (g) 
Volts 

(V)  Weight (g) Average Voltage (V) 

50 0.12  50 0.103333333 

  0.08  70 0.253333333 

  0.11  90 0.433333333 

70 0.24  110 0.553333333 

  0.24  130 0.693333333 

  0.28  150 0.78 

90 0.39  170 0.856666667 
  0.45  190 0.936666667 
  0.46  210 1.006666667 

110 0.55  220 1.04 
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  0.54  1002.4383 2.12 

  0.57  1628.3953 2.536666667 

130 0.7  2177.2416 2.816666667 
  0.69  2431.2531 2.94 
  0.69  4658.3898 3.36 

150 0.76  9071.84 3.793333333 
  0.78    

  0.8    

170 0.86    

  0.86    

  0.85    

190 0.92    

  0.91    

  0.98    

210 0.99    

  0.98    

  1.05    

220 1.03    

  1.04    

  1.05    

1002.4383 2    

  2.2    

  2.16    

1628.3953 2.53    

  2.58    

  2.5    

2177.2416 2.74    

  2.84    

  2.87    

2431.2531 2.89    

  2.96    

  2.97    

4658.3898 3.31    

  3.39    

  3.38    

9071.84 3.83    

  3.76    

  3.79    

 
 

A2  A3  A4 

Weight (g) 
Volts 

(V)  Weight (g) 
Volts 

(V)  Weight (g) 
Volts 

(V) 

50 0.13  50 0.14  50 0.18 

  0.15    0.13    0.16 

  0.17    0.14    0.19 

70 0.25  70 0.23  70 0.29 
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  0.26    0.31    0.29 

  0.29    0.25    0.33 

90 0.4  90 0.4  90 0.47 
  0.44    0.42    0.49 
  0.43    0.38    0.49 

110 0.6  110 0.51  110 0.67 
  0.56    0.54    0.62 
  0.59    0.58    0.69 

130 0.71  130 0.73  130 0.77 
  0.73    0.75    0.82 
  0.77    0.81    0.88 

150 0.86  150 0.89  150 0.89 

  0.89    0.89    0.9 

  0.83    0.86    0.95 

170 0.98  170 1.01  170 1.01 

  0.95    1.02    1.05 

  0.96    0.99    1.04 

190 1.05  190 1.09  190 1.13 

  1.04    1.08    1.1 

  1.05    1.05    1.12 

210 1.2  210 1.24  210 1.19 

  1.15    1.19    1.18 
  1.17    1.18    1.22 

220 1.25  220 1.25  220 1.22 

  1.23    1.22    1.26 

  1.24    1.24    1.21 

1002.4383 2.48  1002.43832 2.46  1002.43832 2.13 
  2.47    2.42    2.11 
  2.52    2.46    2.14 

1628.3953 2.72  1628.39528 2.75  1628.39528 2.37 

  2.82    2.74    2.41 

  2.73    2.81    2.41 

2177.2416 2.98  2177.2416 2.91  2177.2416 2.54 
  2.92    2.9    2.6 

  2.98    2.92    2.55 

2431.2531 3.1  2431.25312 3.06  2431.25312 2.64 

  3.09    3.07    2.67 

  3.07    3.06    2.65 

4658.3898 3.27  4658.38984 3.26  4658.38984 2.98 

  3.22    3.24    2.95 

  3.25    3.21    2.94 

9071.84 3.64  9071.84 3.63  9071.84 3.33 

  3.58    3.53    3.34 
  3.65    3.58    3.41 

 

A2  A3  A4 
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Weight 

(g) 
Average Voltage 

(V)  
Weight 

(g) 
Average Voltage 

(V)  
Weight 

(g) 
Average Voltage 

(V) 
50 0.15  50 0.136666667  50 0.176666667 

70 0.266666667  70 0.263333333  70 0.303333333 

90 0.423333333  90 0.4  90 0.483333333 

110 0.583333333  110 0.543333333  110 0.66 

130 0.736666667  130 0.763333333  130 0.823333333 

150 0.86  150 0.88  150 0.913333333 

170 0.963333333  170 1.006666667  170 1.033333333 

190 1.046666667  190 1.073333333  190 1.116666667 

210 1.173333333  210 1.203333333  210 1.196666667 

220 1.24  220 1.236666667  220 1.23 
1002.4383 2.49  1002.4383 2.446666667  1002.4383 2.126666667 
1628.3953 2.756666667  1628.3953 2.766666667  1628.3953 2.396666667 
2177.2416 2.96  2177.2416 2.91  2177.2416 2.563333333 
2431.2531 3.086666667  2431.2531 3.063333333  2431.2531 2.653333333 
4658.3898 3.246666667  4658.3898 3.236666667  4658.3898 2.956666667 

9071.84 3.623333333  9071.84 3.58  9071.84 3.36 

 

 

 

P7  P6  A5 

Weight (g) Volts (V)  Weight (g) 
Volts 

(V)  Weight (g) 
Volts 

(V) 

50 0.04  50 0.15  50 0.11 

  0.04    0.16    0.09 

  0.05    0.17    0.11 

70 0.17  70 0.29  70 0.26 

  0.19    0.32    0.32 

  0.19    0.38    0.36 

90 0.29  90 0.45  90 0.44 

  0.33    0.46    0.45 

  0.32    0.5    0.5 

110 0.44  110 0.61  110 0.62 

  0.44    0.58    0.71 

  0.43    0.62    0.59 

130 0.6  130 0.69  130 0.77 

  0.5    0.75    0.71 

  0.56    0.7    0.73 

150 0.62  150 0.82  150 0.85 

  0.58    0.84    0.81 

  0.58    0.8    0.87 
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170 0.69  170 0.93  170 0.99 

  0.68    0.94    0.94 

  0.69    0.94    0.99 

190 0.85  190 1.01  190 1.08 

  0.82    0.99    1.06 

  0.89    0.97    1.1 

210 1.06  210 1.05  210 1.11 

  1.14    1.03    1.11 

  1.07    1.03    1.17 

220 1.13  220 1.07  220 1.21 

  1.2    1.06    1.15 

  1.18    1.06    1.14 

1002.4383 2.1  1002.43832 1.91  1002.43832 2.04 

  2.03    1.98    2.13 

  2.37    2.13    2.12 

1628.3953 2.65  1628.39528 2.6  1628.39528 2.59 

  2.72    2.7    2.62 

  2.69    2.68    2.63 

2177.2416 2.89  2177.2416 2.8  2177.2416 2.82 

  2.87    2.86    2.83 

  2.92    2.9    2.85 

2431.2531 2.98  2431.25312 2.97  2431.25312 2.91 

  2.99    2.99    2.94 

  2.98    3.03    2.95 

4658.3898 3.28  4658.38984 3.41  4658.38984 3.22 

  3.31    3.33    3.23 

  3.3    3.42    3.19 

9071.84 3.66  9071.84 3.73  9071.84 3.61 

  3.62    3.76    3.55 

  3.68    3.76    3.59 

 

P7  P6  A5 
Weight 

(g) 
Average Voltage 

(V)  
Weight 

(g) 
Average Voltage 

(V)  
Weight 

(g) 
Average Voltage 

(V) 
50 0.043333333  50 0.16  50 0.103333333 

70 0.183333333  70 0.33  70 0.313333333 

90 0.313333333  90 0.47  90 0.463333333 

110 0.436666667  110 0.603333333  110 0.64 

130 0.553333333  130 0.713333333  130 0.736666667 

150 0.593333333  150 0.82  150 0.843333333 

170 0.686666667  170 0.936666667  170 0.973333333 

190 0.853333333  190 0.99  190 1.08 



   
 

69 
 

210 1.09  210 1.036666667  210 1.13 

220 1.17  220 1.063333333  220 1.166666667 
1002.4383 2.166666667  1002.4383 2.006666667  1002.4383 2.096666667 
1628.3953 2.686666667  1628.3953 2.66  1628.3953 2.613333333 
2177.2416 2.893333333  2177.2416 2.853333333  2177.2416 2.833333333 
2431.2531 2.983333333  2431.2531 2.996666667  2431.2531 2.933333333 
4658.3898 3.296666667  4658.3898 3.386666667  4658.3898 3.213333333 

9071.84 3.653333333  9071.84 3.75  9071.84 3.583333333 

 

P8     

Weight (g) 
Volts 

(V)   Weight (g) Average Voltage (V) 

50 0.06   50 0.06 

  0.06   70 0.173333333 

  0.06   90 0.3 

70 0.18   110 0.5 

  0.15   130 0.596666667 

  0.19   150 0.766666667 

90 0.28   170 0.873333333 

  0.33   190 1 

  0.29   210 1.066666667 

110 0.54   220 1.106666667 

  0.45   1002.4383 2.18 

  0.51   1628.3953 2.67 

130 0.59   2177.2416 2.96 

  0.6   2431.2531 3.056666667 

  0.6   4658.3898 3.36 

150 0.75   9071.84 3.683333333 

  0.77     

  0.78     

170 0.87     

  0.87     

  0.88     

190 0.98     

  1     

  1.02     

210 1.1     

  1.04     

  1.06     

220 1.07     

  1.12     

  1.13     
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1002.4383 2.11     

  2.18     

  2.25     

1628.3953 2.6     

  2.7     

  2.71     

2177.2416 2.94     

  2.93     

  3.01     

2431.2531 3.06     

  3.05     

  3.06     

4658.3898 3.37     

  3.38     

  3.33     

9071.84 3.68     

  3.66     

  3.71     

 

Testing Results 
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