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Abstract 
The increasingly severe and frequent drug resistance highlights the need to better understand the 

stress response strategies that the causative agent of tuberculosis, Mycobacterium tuberculosis, 

employs to successfully adapt and persist within the host. One of the stress response strategies is 

regulation of mRNA degradation, which can contribute to mycobacterial survival in energy-limited 

environments by reprogramming gene expression, altering mRNA abundance, and modulating 

energy usage. However, the regulatory mechanisms that control mRNA degradation are not well 

understood. 

In this work, I investigated mRNA degradation mechanisms in the nonpathogenic model 

Mycolicibacterium smegmatis from two perspectives: a targeted study of the impact of an 

important RNase, and an agnostic study of the impact of a diverse compendium of mRNA 

properties on degradation rates. In Chapter 2, we characterized the role and cleavage site 

preferences of an essential endoribonuclease, RNase E, in mycobacteria. By repressing 

transcription of rne, the gene encoding RNase E, we showed that RNase E has a major impact on 

mRNA degradation rates transcriptome-wide in M. smegmatis. Through the comparison of 

RNAseq coverage between rne knockdown and control strains, we showed that RNase E cleavage 

regions are enriched for cytidines in both M. smegmatis and M. tuberculosis, allowing us to 

attribute to RNase E a number of cleavage sites previously mapped with high resolution in vivo. 

These preferences for cytidines at RNase E cleavage sites were further confirmed in vitro for M. 

smegmatis. Together, these findings defined the dominant role of RNase E in transcriptome-wide 

mRNA degradation along with its cleavage targets at high resolutions in mycobacteria. 
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In Chapter 3, we developed an experimental and computational framework to identify the intrinsic 

transcript properties that are associated with transcript stability in M. smegmatis. We quantified 

transcriptome-wide mRNA half-life in log phase growth and hypoxia-induced growth arrest using 

RNAseq. Through machine learning, we showed that transcript stability is influenced by the 

collective effect of diverse transcript features. Our results highlighted the impact of 5’ UTRs on the 

stability of leadered transcripts. We also identified transcript properties whose associations with 

transcript stability differ between leadered and leaderless transcripts as well as between different 

growth conditions. In sum, these results provided a comprehensive and enhanced understanding 

of the impacts of intrinsic transcript features on mRNA degradation rates in M. smegmatis. 
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Chapter 1 : Review of computational modeling to depict mRNA 
degradation in bacteria 
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Introduction 
As the intermediate product between DNA and protein, mRNA plays a critical role in expressing 

genes and maintaining basic cell functions. The abundance of each mRNA is the result of the 

balance between its transcription and its degradation. Compared to transcription, regulation of 

mRNA degradation is still poorly understood yet essential for various bacteria. As a stress response 

mechanism, regulation of mRNA degradation, specifically mRNA stabilization, is widely used by 

bacteria to survive energy-limited microenvironments. Given the increasingly severe antibiotic 

resistance problem, a better understanding of mRNA degradation mechanisms is important for 

more broadly understanding stress response strategies in bacteria, which is needed for 

development of novel therapeutics. Here we will briefly review the current knowledge of mRNA 

degradation processes and the factors that might affect it in bacteria, and then discuss the 

computational models that have been developed to facilitate understanding of mRNA 

degradation. 

Overview of mRNA degradation in bacteria and its influencing 
factors 
In many bacteria including E. coli and mycobacteria, mRNA degradation is thought to be initiated 

by endonucleolytic cleavage by the key enzyme RNase E, followed by exonucleolytic cleavage by 

other enzymes that cleave at either the 5’ or 3’ ends of the RNA fragments. The critical role of 

RNase E in this process is evidenced by studies in which its deletion or depletion in E. coli and 

mycobacteria causes global increases in mRNA half-life (1-3). Therefore, factors related to the 

interactions between RNase E and mRNAs are often incorporated into models of the mRNA 
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degradation. Here, we are listing some of these factors to be considered and will discuss them 

further in the section on modeling. 

It is thought that one of the factors affecting mRNA degradation rates in bacteria is the steady-

state abundance of mRNAs. This idea arose from multiple observations of inverse relationships 

between mRNA abundance and mRNA half-life in bacteria (3-13). It has been proposed that higher 

mRNA abundance could increase the probability of RNase E binding to RNAs, leading to faster 

degradation (5,8). As for the binding itself, it is known that RNase E has preferences for cleaving 

in certain sequence contexts (1,14-16). Therefore, the actual cleavage activity also depends on the 

accessibility of the RNA to RNases at these preferred sequence locations. Specific RNA regions 

may be less accessible if they are folded into secondary structure or bound by small RNAs, since 

RNase E only cleaves single-stranded RNA (reviewed in (17)). RNAs may also be protected by RNA 

binding proteins or ribosomes, which can physically block access of RNases. In other cases, factors 

such as small RNAs may specifically trigger degradation of mRNAs by recruiting RNases (reviewed 

in (17)), while stalled ribosomes may trigger mRNA degradation by recruiting ribosome rescue 

factors (reviewed in (17)). The 5’ UTRs of mRNAs have been shown to impact degradation in many 

cases (reviewed in (18,19)), and this raises interesting questions for mycobacteria in particular, 

since mycobacteria encode many leaderless genes lacking 5’ UTRs.  

These are just some examples illustrating the wide-ranging biological factors that could be 

involved in the complicated process of mRNA degradation. Besides the diversity of the potential 

factors that impact mRNA degradation, the unknown underlying mechanisms by which they 

interact with each other make the modeling mRNA degradation inherently complicated. 

Furthermore, growth and stress conditions are known to impact mRNA degradation rates in many 
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bacteria (9,13,20,21), and such adaptation to microenvironments may involve different regulatory 

mechanisms and thereby add addition layers of complexity. Ultimately, understanding of the 

mRNA degradation mechanisms and their regulation in bacteria may require a combination of 

multiple models to better describe the various aspects involved. 

Methods for measuring mRNA degradation in bacteria 
Regardless of the specific computational method being used, modeling of mRNA degradation 

relies on experimental measurements of mRNA degradation rates. The most commonly used 

approach in bacteria is to inhibit transcription initiation with the antibiotic rifampicin, then 

quantify residual mRNA abundance over time to estimate degradation rates. mRNA abundance 

can be measured for individual genes by northern blotting or quantitative PCR, and on 

transcriptome-wide scales by RNAseq. Given the fact that abundance data is collected separately 

at each time point, normalization must be employed to allow quantitative comparisons between 

time points. Abundance data are then fit to single-exponential fits or more complicated models 

to calculate half-lives for each gene and, in transcriptome-wide studies, generate a portrait of 

mRNA degradation in a given experimental setup.  

There are two major caveats to the method described above. One is that rifampicin blocks 

transcription initiation but not transcription elongation, leading to delays in the observed effects 

on mRNA abundance, as continued elongation produces new transcript after addition of 

rifampicin (reviewed in (6,22-25)). The resulting biphasic degradation trend complicates the 

modeling of degradation, especially for the models assuming a constant degradation rate from 

the beginning of the abundance measurements. The other major limitation of the rifampicin 
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method is that transcriptional block is a dramatic perturbation to cellular physiology, and the 

mRNA degradation observed during this treatment may therefore not faithfully reflect that which 

would occur in an unperturbed cell. We and other investigators have reported changes in apparent 

mRNA degradation rates within minutes after addition of rifampicin, which may reflect 

physiological responses to transcriptional block (1,20,23,26,27). 

In summary, besides the complex underlying mechanisms with diverse factors involved, the 

measurement of mRNA degradation itself could also contribute to the challenges of 

computational modeling of mRNA degradation in bacteria. 

Computational modeling of mRNA degradation 

Kinetic modeling of mRNA degradation 
The simplest type of model for mRNA degradation is the single exponential decay function 

commonly used to fit mRNA abundance data over time as described above to calculate 

degradation rates, mRNA half-lives, and/or mRNA lifetimes (reviewed in (28)). These models are 

derived directly from experimental data and their functions are typically descriptive. In their 

simplest forms they assume that degradation rate is constant over time after the addition of 

rifampicin. They can also be modified to incorporate continuing transcription elongation after 

addition of rifampicin by conversion to piecewise functions (6,27) that capture both the initial 

delay and exponential decay period. They can also be extended to include slower mRNA 

degradation that may follow the rapid exponential decay period due to physiological responses 

to rifampicin (1,27). Recently, more advanced models, such as Bayesian hierarchical modeling, 
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have been developed to improve the mRNA half-life estimations by modeling the effect of 

transcription elongation and RNA baseline concentration (23,25). 

Assessment of correlations between mRNA half-lives and properties such as G+C content and 

steady-state abundance can be used to generate hypotheses about factors that affect mRNA 

degradation rates, and comparisons of half-lives between conditions and strains reveal the 

impacts of growth conditions and roles of specific RNases (1,3-13,27,29,30). Rates of transcription 

can be inferred from measured rates of mRNA degradation and steady-state abundance (1,4).  

Given the essential role of RNase E in the degradation process as we mentioned early, another 

study extended the basic exponential model is by adding the concentration of RNase E (28), which 

allowed the model to incorporate the interactions between RNAs and free RNase E in the cell. 

Through simulations, they found that the competitions between mRNAs with the limited amount 

of RNase E could provide an alternative explanation for the widely observed delay in degradation 

following addition of rifampicin. Additionally, their model indicated that competition could explain 

the negative correlation between mRNA half-life and abundance, thus providing a potential 

explanation for this widely observed but never explained phenomenon.  

Overall, this type of model provides a broad description of mRNA degradation, highlights the 

possible contributions of multiple cellular processes to regulation of mRNA degradation, and in 

some cases suggest mechanisms to explain the observations. 

Modeling the impacts of transcript features on mRNA degradation 
For any given organism and growth condition, mRNA degradation rates vary among genes. Many 

studies therefore seek to elucidate the features of mRNAs that dictate their degradation rates. 
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Some recent studies have sought to move beyond correlating individual features with half-life as 

described above, and instead to investigate multiple intrinsic transcript features simultaneously, 

to identify their impacts on mRNA degradation. 

The first challenge of these models is to identify the candidate features that may be important. 

Transcript features that have shown correlations with mRNA half-life in various organisms 

including growth rate in L. lactis and E. coli (4,12), transcript abundance in E. coli and L. lactis (5,8), 

GC content in B. cereus, E. coli and S. cerevisiae (5,29,31), 3’ UTR and 5’ UTR sequence motifs in S. 

cerevisiae (32), gene function and essentiality in B. cereus and E. coli (29,30), transcript length in L. 

lactis, E. coli, and S. cerevisiae (12,30,31), ribosome density in S. cerevisiae (31), and adjacent codon 

pair usage in S. cerevisiae (33). Some studies have reported experiments to show that features 

correlated with half-life indeed impact it in a causal fashion; for example, two studies showed that 

manipulating transcription rates affected half-lives of the resulting mRNAs (8,13), providing 

support for the hypothesis that steady-state abundance affects degradation, although another 

study did not replicate this result (20). 

Another challenge is to employ the appropriate models to investigate the underlying collective 

effect of these transcript features on stability. Some studies have used linear regression models 

to quantify feature contributions to variance in mRNA half-lives (5,31,32). These models can 

quantitatively compare the impacts of features on mRNA half-life, as well as evaluate the 

contribution of features that have not been studied by adding them to the existing model. 

However, these models simplify the relationship between the features by assuming that they can 

be combined linearly to determine transcript half-life. Our recent study using a machine learning 

approach confirmed the non-linear relationships between features associated with mRNA half-life 
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in Mycolicibacterium smegmatis. We also found that the variance in mRNA stability can be best 

explained by the collective effect of diverse transcript features. Additionally, being built upon 

mRNA half-life measurements in log phase growth and hypoxia conditions, these machine 

learning models were able to identify the transcript features differentially associated with mRNA 

degradation in each condition. Thereby, they can provide insights about the effect of transcript 

features on mRNA degradation as well as on stress response mechanisms. 

More advanced sequence-based deep learning models were also applied to predict mRNA 

stability in mammalian systems with the goal of achieving accurate predictions (34,35). These 

methods have greater predictive power, but at the expense of reduced ability to shed light on the 

underlying mechanisms. Their performances also rely on large amounts of data for training.  

In summary, compared to kinetic modeling, these feature-based prediction models utilize, and in 

many cases shed light on, the associations between transcript features and mRNA degradation. 

However, they also depend on the accurate measurement of mRNA degradation rate from the 

kinetic models. Future work is needed for these feature-based models to further elucidate the 

relationship between transcript features and their working mechanisms to regulate mRNA 

degradation.  

Our work on modeling mRNA degradation in Mycolicibacterium 
smegmatis  
Considering the potential diverse factors involved in the mRNA degradation process as discussed 

above, the following Chapter 2 and Chapter 3 describe in detail our recent efforts to utilize these 
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factors to obtain a more comprehensive model of mRNA degradation in Mycolicibacterium 

smegmatis.  

In Chapter 2, we investigated the role of essential enzyme RNase E on mRNA degradation in 

Mycolicibacterium smegmatis. The mRNA half-lives of M. smegmatis strains with and without rne 

knockdown were measured using the method that combined rifampicin and RNAseq as 

mentioned above. These results confirmed the broad impact of RNase E on mRNA degradation in 

M. smegmatis. Furthermore, our results also revealed the influences of sequence context and 

transcript type (leadered vs leaderless) on cleavage by RNase E. All of these provided important 

information of RNase E cleavage while highlighting the necessity to further incorporate RNase E 

in modeling mRNA degradation using more comprehensive computational approaches, which is 

discussed in Chapter 4.  

In Chapter 3, we focused on identifying the features that are important for mRNA degradation in 

M. smegmatis among the diverse pool of potential candidates as we discussed above. We further 

characterized the influence of these important features in the context of transcript type (leadered 

vs leaderless) and microenvironments (log phase vs hypoxia). These results confirmed the 

contributions of transcript features to mRNA degradation rate in M. smegmatis. Although these 

important features cannot fully explain the mRNA degradation variance in our machine learning 

models, our results highlighted that transcript stability in M. smegmatis is shaped by the complex 

interplay between transcript features and microenvironments. 

Consistent with the current understanding of mRNA degradation processes in mycobacteria, our 

results reaffirmed the impacts of two critical aspects, the key cleavage enzyme RNase E and 
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intrinsic transcript features, on mRNA degradation. The fact that neither of the two aspects itself 

can provide a complete model of mRNA degradation highlights the need for a more 

comprehensive model that could harness the information from both of them together. We 

discussed one of the potential future approaches in more detail in Chapter 4. In summary, our 

work established the landscape of the mRNA degradation regulatory mechanisms in mycobacteria, 

and provided a foundation to facilitate further development of more comprehensive and 

advanced models of these mechanisms. 

Conclusions 
Our current knowledge suggests that the underlying mechanisms that specify and regulate 

transcript degradation in bacteria include the complex interplay among transcript features, 

microenvironments, and other cellular processes. Here, we have summarized and discussed the 

main computational models aiming to describe the mRNA degradation process and identify the 

factors that impact the process. Given the limitations of these models, further improvements of 

model performance and accuracy will greatly enhance our understanding of the mRNA 

degradation mechanisms, and provide valuable information to inspire other studies of RNA 

metabolism in bacteria. 
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Chapter 2 : Mycobacterial RNase E cleaves with a distinct 
sequence preference and controls the degradation rates of most 
Mycolicibacterium smegmatis mRNAs  
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In this work, we investigated the impact of RNase E on mRNA degradation in mycobacteria. The 

transcriptome-wide degradation profiles were collected separately at different time points in 

Mycolicibacterium smegmatis strains. Other lab members did the wet lab work including 

constructing strains, harvesting RNA, performing qPCR, and performing biochemical experiments. 

I developed a normalization method that utilized targeted qPCR to obtain a more accurate and 

comparable quantification of transcript abundance between time points. The degradation profile 

was further used for transcriptome-wide half-life calculation. To characterize the cleavage events 

of RNase E, I modified a published method for identifying potential cleavage site based on 

RNAseq libraries, and applied it to strains in M. smegmatis and M. tuberculosis. This allowed us to 

identify the consistent enrichment of cytidines around RNase E cleavage sites in mycobacteria. 

Besides methodology development and data analysis, I also contributed to the manuscript 

visualization, writing and editing. 
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Abstract 
The mechanisms and regulation of RNA degradation in mycobacteria have been subject to 

increased interest following the identification of interplay between RNA metabolism and drug 

resistance. Mycobacteria encode multiple ribonucleases predicted to participate in mRNA 

degradation and/or processing of stable RNAs. RNase E is an endoribonuclease hypothesized to 

play a major role in mRNA degradation due to its essentiality in mycobacteria and its role in mRNA 

degradation in gram-negative bacteria. Here, we defined the impact of RNase E on mRNA 

degradation rates transcriptome-wide in the non-pathogenic model Mycolicibacterium smegmatis. 

RNase E played a rate-limiting role in degradation of the transcripts encoded by at least 89% of 

protein-coding genes, with leadered transcripts often being more affected by RNase E repression 

than leaderless transcripts. There was an apparent global slowing of transcription in response to 

knockdown of RNase E, suggesting that M. smegmatis regulates transcription in responses to 

changes in mRNA degradation. This compensation was incomplete, as the abundance of most 

transcripts increased upon RNase E knockdown. We assessed the sequence preferences for 

cleavage by RNase E transcriptome-wide in M. smegmatis and Mycobacterium tuberculosis, and 

found a consistent bias for cleavage in C-rich regions. Purified RNase E had a clear preference for 

cleavage immediately upstream of cytidines, distinct from the sequence preferences of RNase E 

in gram-negatives. We furthermore report a high-resolution map of mRNA cleavage sites in M. 

tuberculosis, which occur primarily within the RNase E-preferred sequence context, confirming 

that RNase E has a broad impact on the M. tuberculosis transcriptome. 
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Introduction 
Mycobacteria are a globally important group of bacteria including the pathogen Mycobacterium 

tuberculosis, which kills over a million people each year (1), as well as numerous environmental 

bacteria and opportunistic pathogens. Mycobacteria are phylogenetically distant from better-

studied models such as Escherichia coli, and consequently, numerous aspects of their fundamental 

biology remain poorly understood. mRNA metabolism is a critical aspect of mycobacterial biology, 

as regulation of gene expression facilitates adaptation to stressors both during infection and in 

the environment, and regulation of mRNA degradation permits energy conservation during severe 

stress. The roles and regulation of mycobacterial mRNA degradation enzymes remain largely 

undefined; however, recent reports of interplay between RNA metabolism and drug resistance 

have highlighted the relevance of these pathways (2-6). 

The endoribonuclease RNase E is a critical component of the bulk mRNA degradation machinery 

in gram-negative bacteria. In E. coli, RNase E cleaves single-stranded mRNAs in A/U-rich regions 

and interacts with other RNA degradation proteins to increase the efficiency of mRNA degradation 

((7-11) and reviewed in (12)). In contrast, many gram-positive bacteria such as Bacillus subtilis and 

Staphylococcus aureus lack RNase E completely and rely on other RNases such as RNase J and 

RNase Y. Mycobacteria are phylogenetically more closely related to gram-positive bacteria than 

gram-negatives, despite having cell envelopes that prevent gram staining. However, they encode 

orthologs of RNase E, and these genes are essential in both M. tuberculosis and the non-

pathogenic model Mycolicibacterium smegmatis (13-15). The essentiality of RNase E suggests it 

may be a critical component of the bulk mRNA degradation machinery in mycobacteria. 
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Consistent with this, mycobacterial RNase E was shown to interact with other RNases such as 

RNase J and PNPase (16). It was also shown to contribute to rRNA maturation (15). 

We previously showed that the M. smegmatis transcriptome is shaped by endonucleolytic 

cleavage events that produce mRNA fragments with monophosphorylated 5’ ends (17). RNase E 

is known to produce cleavage products with monophosphorylated 5’ ends in other organisms. 

Taken together with the observation that the mycobacterial cleavage sites occurred preferentially 

in single-stranded regions, and the paucity of other candidate RNases predicted to cleave with 

those properties, we hypothesized that RNase E was responsible for the majority of the cleavage 

sites we mapped in M. smegmatis. However, the mycobacterial cleavage sites occurred primarily 

in a sequence context distinct from that reported to be cleaved by E. coli RNase E. Most 

mycobacterial mRNA cleavages occurred immediately upstream of a cytidine, with a preference 

for 1-2 purines immediately upstream and uridine three nt downstream of the cleavage site 

(RR¯CNU). A previous report tested the cleavage specificity of M. tuberculosis RNase E on several 

short substrates in vitro; however, none of the substrates used in that study contained the motif 

“RRCNU” (18). 

Given the clear importance of RNase E in mycobacteria and lack of information on its role, we 

sought to define its function in mycobacterial mRNA metabolism. First, we used an inducible 

system to interrogate the effects of knockdown of rne, the gene encoding RNase E, in M. 

smegmatis. We found that RNase E has a rate-limiting role in degradation of most mRNAs, with a 

larger influence on leadered transcripts compared to leaderless transcripts. Its cleavage signature 

is ubiquitous across the transcriptomes of both M. smegmatis and M. tuberculosis and is distinct 

from that reported in gram-negative bacteria. We then used purified RNase E to confirm its 
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cleavage specificity in vitro. Finally, we report a transcriptome-wide high-resolution map of major 

RNA cleavage sites in M. tuberculosis, which occur in sequence contexts corresponding to the 

RNase E signature. Together, our results implicate RNase E as the predominant source of 5’ 

monophosphorylated, cleaved mRNAs in the transcriptomes of both M. smegmatis and M. 

tuberculosis as well as a critical mediator of bulk mRNA degradation in these organisms.  

Results 
RNase E has a global role in M. smegmatis mRNA degradation 

Given its essentiality in mycobacteria and its broad role in mRNA degradation, we sought to 

determine the role of RNase E in mRNA degradation transcriptome-wide in a mycobacterial model. 

We therefore constructed an M. smegmatis strain in which we could repress transcription of rne 

(msmeg_4626), the gene encoding RNase E. Replacement of the native rne promoter and 5’ UTR 

(17) with the P766(8G) promoter and associated 5’ UTR (19) produced a strain in which 

anhydrotetracycline (ATc) caused a constitutively expressed reverse TetR to bind the promoter and 

repress rne transcription (Figure 2-1A-B, Table 2-1). We hereafter refer to this as the repressible 

rne strain. Consistent with the known essentiality of rne, growth slowed approximately 15 hours 

after addition of ATc and later ceased (Figure 2-1C). As RNase E is untagged in our strains, we were 

unable to quantify depletion at the protein level. Notably, the amount of essential protein 

depletion required to affect growth in M. tuberculosis was shown to vary dramatically among 

essential proteins (20). Construction of the repressible strain involved insertion of a hygromycin 

resistance gene upstream of rne. We therefore constructed an isogenic strain in which the 



 29 

hygromycin resistance gene was inserted upstream of the native copy of rne, hereafter referred 

to as the control strain (Figure 2-1A). 

 

Figure 2-1. Knockdown of rne expression causes growth cessation and altered transcript 
abundance in M. smegmatis. 
A. Promoter replacement strategy to construct a strain in which rne expression is repressed by addition of 
ATc. B. rne transcript levels were reduced in the repressible rne strain following 3 hrs of exposure to ATc. 
**** P < 0.001, two-tailed t test. C. Growth of the repressible rne strain slowed approximately 15 hours after 
addition of ATc. D. Eight hours after addition of ATc or vehicle, rifampicin was added to block new 
transcription and mRNA levels of the indicated genes were measured at several time-points by qPCR to 
determine their half-lives. ** P < 0.01, pair-wise comparisons by linear regression. 
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While the essentiality of rne could be due to its role in mRNA degradation, rRNA maturation, or 

both, we were specifically interested in determining the role of RNase E in mRNA metabolism. We 

therefore evaluated the impact of rne knockdown on mRNA degradation rates prior to the slowing 

of bacterial growth. We measured the half-lives of several mRNAs by adding rifampicin (RIF) to 

block transcription initiation and quantifying transcript abundance at timepoints thereafter by 

quantitative PCR (qPCR)The half-life of the repressible rne transcript itself was longer than that of 

the native rne transcript even in the absence of ATc, but this appeared to be a feature of the 

transcript rather than a generalized phenomenon, as the half-lives of the transcripts of other 

tested genes were unaffected (Figure 2-1D). In contrast, the half-lives of all tested transcripts were 

lengthened upon rne knockdown (Figure 2-1D). To determine the generalizability of this 

observation, we used RNAseq to measure mRNA half-lives transcriptome-wide. RNAseq libraries 

were constructed from RNA extracted from triplicate cultures of each strain and condition at 

various timepoints after the addition of RIF. qPCR was used to establish relative abundance values 

for a set of calibrator genes, and these were used to normalize the coverage values obtained from 

the RNAseq libraries as described in detail in the methods section. Libraries were made from the 

repressible rne strain following 8 hours of treatment with ATc (rne knockdown condition), the 

repressible rne strain in the absence of ATc, and the control strain harboring the native rne 

promoter in the presence and absence of ATc. The timepoint for analysis of the rne knockdown 

condition was carefully chosen to maximize our power to detect relevant phenotypes, but prior 

to the slowing of growth. We expected growth changes would themselves affect mRNA stability 

as has been reported by us and many others (21-28).  
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To identify transcripts that were direct targets of RNase E, we calculated half-lives for transcripts 

of each gene in each condition as described in the methods section and Figure S2-1-S2-3 (Table 

S2-1). It is important to note that the RNAseq libraries presumably contained mixtures of full-

length mRNA and degradation products, as the RNA extraction and library constructions protocols 

were expected to quantitatively capture most RNAs ~>=150 nt in length. Half-lives were 

calculated from the summed coverage of reads across each coding sequence at various timepoints 

following addition of RIF, and due to the relatively short reads produced by Illumina sequencing, 

it was not possible to distinguish reads arising from full-length transcripts vs degradation products. 

This caveat is inherent to most published transcriptome-wide studies of mRNA half-life in bacteria. 

We determined high-confidence half-lives for transcripts of 1643 genes and medium-confidence 

half-lives for transcripts of an additional 3565 genes in the rne knockdown condition. We were 

able to calculate high-confidence half-lives for 4,068 of these transcripts in the repressible rne 

strain in the absence of ATc as well. Half-lives were similar in comparisons between control 

conditions, indicating that mRNA degradation rates were not substantially affected by the 

presence of ATc or by replacement of the native rne promoter and 5’ UTR with the tet-repressible 

promoter (Figure S2-4). In contrast, the half-lives of most transcripts were longer in the rne 

knockdown (Figure 2-2A-B and Table S2-2). The half-lives of the transcripts of 3,622 genes 

increased by 2-fold or more, and the transcripts of an additional 78 genes had no measurable 

degradation in the rne knockdown. Together, these data are consistent with RNase E playing a 

rate-limiting step in the degradation of at least 89% of the transcriptome. 

While the transcripts of most genes had longer half-lives in the rne knockdown condition, the 

magnitude of the increase in half-life varied substantially among genes (Figure 2-2B). To 
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investigate the factors that influence transcript sensitivity to RNase E, we examined fold-change 

half-life in the rne knockdown as a function of other potentially relevant characteristics. There was 

a very weak correlation between mRNA abundance in the control condition and fold-change in 

half-life upon rne knockdown (Figure S2-5). Previous work has reported conflicting observations 

about the relationship between mRNA abundance and degradation rates in bacteria. Some studies, 

including one on M. tuberculosis and several on E. coli, reported inverse relationships between 

steady-state mRNA abundance and half-lives, such that more abundant transcripts tended to be 

degraded more quickly (22,25,27-31). Other studies of E. coli and B. subtilis reported that mRNA 

abundance and half-life were uncorrelated or weakly positively correlated (24,32,33). We found a 

weak but statistically significant negative correlation between mRNA abundance and half-life 

when rne was expressed at normal levels, and this correlation disappeared upon rne knockdown 

(Figure S2-6). 
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Figure 2-2. Knockdown of rne expression causes stabilization of most of the M. smegmatis 
transcriptome, with leadered transcripts tending to be stabilized more than leaderless 
transcripts. 
Eight hours after addition of ATc (or vehicle) to knock down (or not) rne, rifampicin was added to block new 
transcription and mRNA levels were measured transcriptome-wide at several time-points by RNAseq to 
determine half-lives. A. Dots represent transcripts with measurable half-lives in both conditions. B. The 
distribution of fold-change in half-life for the transcripts shown in A. C. The median fold-change in half-life 
upon rne knockdown was higher for leadered transcripts than for leaderless transcripts (left). The median 
abundance of leadered transcripts was higher prior to rne knockdown (right). D. Only transcripts with 10< 
log2 abundance <14 were considered, which reversed the difference in abundance trend between leadered 
and leaderless transcripts. The median fold-change in half-life upon rne knockdown was still higher for 
leadered transcripts than for leaderless transcripts. 
 

In both M. tuberculosis and M. smegmatis, approximately 15% of genes are transcribed in a 

leaderless fashion, meaning that transcription and translation start at the same position and there 

is no 5’ UTR (17,34,35). Other genes are transcribed as leadered genes with 5’ UTRs, or in 

polycistronic transcripts. Leader status affects translation efficiency in different conditions and in 

some cases alters mRNA stability (36-38). On average, leaderless genes were less affected by rne 

knockdown than leadered genes (Figure 2-2C, left). Leaderless genes also had lower median 

abundance than leadered genes in the control condition (Figure 2-2C, right). We then considered 

only genes where 10<log2 abundance<14 (Figure 2-2D, right). Within this group, the median 

abundance of leaderless transcripts was slightly higher than that of leadered transcripts. 

Nonetheless, the leadered transcripts within this group still had a greater median increase in half-

life upon rne knockdown than leaderless transcripts (Figure 2-2D, left). This suggests that the 

difference in response of leaderless vs leadered transcripts to rne knockdown cannot be explained 

by differences in steady-state abundance of those transcripts. Leadered transcripts may therefore 

be generally more sensitive to RNase E than leaderless transcripts. However, both groups included 

genes that were unaffected by rne knockdown as well as genes that were strongly affected, 

indicating that additional factors are likely larger drivers of RNase E sensitivity. Given that RNase 
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E is strongly stimulated by engagement of transcript 5’ ends in E. coli ((39,40) and others), we 

considered that accessible 5’ ends might make transcripts more sensitive to RNase E. However, 

we did not find correlations between fold-change in half-life upon rne knockdown and predicted 

secondary structure near the 5’ ends of transcripts (Figure S2-7). 

Knockdown of rne affects mRNA abundance through both direct and indirect 
mechanisms in M. smegmatis 

To assess the impact of rne knockdown on mRNA abundance, we examined transcript abundance 

in the rne knockdown strain with and without ATc prior to transcriptional blockage with RIF. These 

were the same samples used for the 0 minutes RIF treatment condition for mRNA half-life 

calculations, harvested 8 hours after addition of ATc or vehicle control. Our normalization method 

allowed us to measure mRNA abundance relative to total RNA abundance, in arbitrary units. As 

total RNA yields were similar for all strains and conditions, this roughly approximates mRNA 

abundance per cell, measured in arbitrary units. A large majority of genes had increased 

abundance upon rne knockdown (Table S2-2). We therefore could not statistically assess 

differential expression using a standard pipeline such as DESeq2, for which the identification of 

differential expressed gene relies on the assumption that mean gene expression is similar in the 

conditions being compared. Instead, we compared transcript abundance using Clipper, which 

does not rely on the specific data distributions of the two conditions (41). Of 6,922 total genes 

with mean read counts >0 in both conditions, 2,561 genes had increased abundance upon rne 

knockdown using cutoffs of q < 0.05 and fold change >= 2 (Table S2-3). In contrast, only 9 genes 

that met these criteria had decreased abundance. 
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There was a significant positive correlation between increase in half-life upon rne knockdown and 

increase in abundance (Spearman r = 0.3565, p < 0.0001; Figure 2-3A). These observations are 

consistent with the idea that slower mRNA degradation leads to accumulation of mRNA in the 

cell. However, the changes in mRNA abundance were of a smaller magnitude than would be 

expected if transcription rates remained unchanged (compare the dashed and solid lines in Figure 

2-3A). We therefore used the measured mRNA abundance and half-life values to estimate 

transcription rates. A majority of genes had lower estimated transcription rates in the rne 

knockdown condition, suggesting the existence of a feedback process in which transcription is 

slowed to partially compensate for the longer mRNA half-lives (Figure 2-3B, Table S2-4). 

 

Figure 2-3. Knockdown of rne impacts mRNA abundance both directly and indirectly. 
A. Each dot represents a gene for which log2 fold change in transcript abundance upon rne repression is 
shown as a function of log2 fold change in half-life. The solid line shows the linear regression fit where y = 
0.2350*x + 0.6406. The dashed line shows the expected relationship between log2 fold change half-life and 
log2 fold change abundance if transcription rate were unchanged. B. Estimated transcription rates were 
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calculated from the measured mRNA half-lives and steady-state abundance. The same genes shown in 
panel A are shown here. C. For each gene, the expected change in abundance was calculated as a function 
of change in half-life according to the equation in panel A. The differences between expected and observed 
changes in abundance were then calculated, and genes with large differences were considered more likely 
to be subject to active regulation. Gene Set Enrichment Analysis was performed on the observed/expected 
log2 fold change abundance, and the gene categories with statistically significant enrichment or depletion 
are shown. Genes in the categories with positive enrichment scores had larger than expected increases in 
transcript abundance, and genes in the categories with negative enrichment scores had lower than expected 
increases (or had decreases) in transcript abundance. The q value is a p value corrected for multiple 
comparisons. 
 

The results described above suggested that many of the transcript abundance changes caused by 

rne knockdown were direct consequences of slower degradation that was only partially 

compensated for by globally reduced transcription. However, some genes did not follow the bulk 

trend. We hypothesized that the stress imposed by rne knockdown led to active transcriptional 

changes of some specific genes and were therefore indirect effects of rne knockdown. To 

distinguish direct and indirect transcript abundance changes, we fit the bulk relationship between 

log2 abundance change and log2 half-life change by linear regression to determine predicted 

abundance changes as a function of change in half-life (Table S2-2). The difference between 

expected and actual abundance change reflects the extent to which a gene deviated from the bulk 

trend. This approach makes the assumption that most abundance changes are direct. Genes with 

positive differences between observed and expected abundance change had higher abundance 

than expected upon rne knockdown, while genes with negative differences had lower abundance 

than expected upon rne knockdown. To investigate the nature of the genes that did not follow 

the bulk trend and therefore appeared to be actively regulated at the point of transcription in 

response to rne knockdown, we used Gene Set Enrichment Analysis (42) to identify gene 

categories that were overrepresented among genes with large differences between observed and 

expected abundance. Genes with higher-than-expected abundance were most enriched for 
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carbon metabolism and propanoate metabolism, while genes with lower-than-expected 

abundance were enriched for sulfur metabolism and ABC transporters (Figure 2-3C). Transcripts 

for the genes encoding the RNA helicase RhlE1 (msmeg_1540) and predicted RNA binding protein 

KhpB (msmeg_6941) had higher-than-expected abundance, suggesting that they are 

transcriptionally upregulated in response to rne knockdown. These two proteins have reported 

roles as components of mycobacterial RNA degradosomes (16). It is possible that they are 

upregulated to partially compensate for the decrease in RNase E abundance. However, the genes 

encoding two other major degradosome constituents, PNPase and RNase J, did not have 

substantially different abundance than expected, suggesting that their abundance is not regulated 

in response to RNase E deficiency. 

RNase E cleavage site regions in M. smegmatis and M. tuberculosis are enriched for 
cytidines 

Given the global role for RNase E implied by our data, we hypothesized that RNase E was the 

enzyme responsible for many of the mRNA cleavage events that we previously mapped (17). Those 

cleavage events occurred across the transcriptome at a sequence motif not previously associated 

with any RNase in any organism. The dominant feature of the cleavage site sequence context was 

a cytidine immediately downstream of the cleavage site. To assess the impact of rne knockdown 

on mRNA cleavage in M. smegmatis, we modified a recently published method for assessment of 

mRNA cleavage from standard paired-end RNAseq libraries, without construction of separate 5’-

targeted libraries (43) (Figure 2-4A and S2-8). This method harnesses the fact that in a standard 

mRNA expression library, fewer reads are obtained in regions containing cleavage sites compared 
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to longer stretches of uncleaved RNA. When comparing the reads obtained from strains with and 

without knockdown of an endoribonuclease, one therefore expects to find regions of genes that 

have fewer reads when the RNase is expressed at higher levels. To apply this method to our M. 

smegmatis rne knockdown data, we first quantified the number of reads aligning to each  
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Figure 2-4. Cytidines are enriched in regions of RNase E-dependent mRNA cleavage in 
both M. smegmatis and M. tuberculosis. 
A. Overview of the method for relative quantification of mRNA cleavage events using standard RNAseq 
data. Illumina RNAseq data for both M. smegmatis (this work) and M. tuberculosis (16) were used. Both 
datasets included an rne knockdown condition and multiple control conditions. Cleavage events result in a 
lower proportion of reads in the immediate vicinity of the cleavage site compared to uncleaved regions of 
the transcript. Read depth (coverage) for each coordinate within each coding sequence across the genome 
was determined for each sample, then normalized by the average read depth within that gene in that sample. 
For each coordinate, the log2 ratio of coverage in the rne knockdown compared to a control (or two distinct 
controls compared to each other) was determined. The median log2 ratio should be approximately zero for 
all comparisons, due to the method of normalization. Coordinates at or near RNase E cleavage sites are 
expected to have high ratios in the rne knockdown/control comparison. The regions surrounding 
coordinates with log2 ratios in the top 5% and middle 5% were then assessed for base composition bias (A, 
U, C, G frequency). The bases at each position within 20 coordinates up and downstream of coordinates of 
interest (those having log2 ratios in the middle 5% or top 5%) were determined. B. Log2 ratios from the M. 
smegmatis control strain in the presence and absence of ATc, which is not expected to affect RNase E activity. 
C. The base frequencies in 41-nt regions centered on coordinates with log2 ratios in the middle 5% or top 
5% of the distribution shown in panel B. D. Log2 ratios from the M. smegmatis repressible rne strain in the 
+ATc condition (rne repressed) vs the no-ATc condition (rne expressed). E. The base frequencies in 41-nt 
regions centered on coordinates with log2 ratios in the middle 5% or top 5% of the distribution shown in 
panel D. Coordinates with log2 ratios in the top 5% are expected to be enriched for RNase E cleavage site-
containing regions.  F. Log2 ratios from two M. tuberculosis strains that are expected to have similar RNase 
E activity (a WT strain and a strain expressing a CRISPRi system with a non-targeting sgRNA). G. The base 
frequencies in 41-nt regions centered on coordinates with log2 ratios in the middle 5% or top 5% of the 
distribution shown in panel F.. H. Log2 ratios from an M. tuberculosis strain expressing an sgRNA to knock 
down expression of rne vs a strain with a non-targeting sgRNA. I. The base frequencies in 41-nt regions 
centered on coordinates with log2 ratios in the middle 5% or top 5% of the distribution shown in panel H. . 
Coordinates with log2 ratios in the top 5% are expected to be enriched for RNase E cleavage site-containing 
regions. 
 

coordinate within each gene in the same RNAseq libraries that were used for expression analyses 

in the previous section (0 minutes RIF treatment, harvested 8 hours after addition of ATc or vehicle 

control) (Figure 2-4A). The number of reads aligned to each coordinate is henceforth referred to 

as that coordinate’s coverage (Figure 2-4A). The coverage at each coordinate in each coding 

sequence in each sample was then normalized to the summed coverage of all coordinates in that 

coding sequence, to avoid confounding by genes whose mRNA abundance varied among 

conditions (Figure S2-8). Coding sequences and coordinates with low coverage were filtered out. 

We then calculated the log2 ratios of coverage for each coordinate in the repressible rne strain in 
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the presence vs absence of ATc, as well as for the control strain in the presence vs absence of ATc 

(Figure 2-4A, B, and D). If RNase E was responsible for cleavage at a particular site, we predicted 

that a smaller proportion of transcripts would exist in the cleaved form in the rne knockdown 

compared to the control conditions. We therefore expected coordinates that were very close to 

cleavage sites to have higher coverage in the repressible rne strain in the presence of ATc 

compared to the absence of ATc. In contrast, we did not expect coverage near RNase E cleavage 

sites to be affected by ATc in the control strain. 

For each of the two comparisons (presence vs absence of ATc in the repressible rne strain and 

presence vs absence of ATc in the control strain), we obtained distributions of log2 coverage ratios 

for each coordinate in each gene that passed our coverage filters (Figure 2-4B and D). The 

distributions of log2 coverage ratios in the presence and absence of ATc were centered around 0 

for both comparisons, due to our normalization method (Figure 2-4B and D). The distribution was 

broader for the rne knockdown strain, consistent with the expectation that RNase E levels affect 

the relative abundance of cleaved vs intact transcripts. RNase E both makes cleavage products 

and degrades cleavage products into pieces too small to be captured by our RNAseq library 

construction strategy; we therefore expect the effects of rne knockdown on the steady-state 

abundance of detectable cleavage products to be complex, with some cleaved RNAs decreasing 

in abundance and others increasing in abundance. 

Nonetheless, many of the coordinates at or near RNase E cleavage sites should have high log2 

coverage ratios for +ATc/no ATc comparison in the repressible rne strain, but this should not be 

true for the control strain where ATc does not affect RNase E levels. We used this assumption to 

assess the sequence context of RNase E cleavage sites by examining the sequence contexts of 



 41 

coordinates with high log2 ratios in the +ATc/no ATc comparison in the repressible rne strain. 

Specifically, we determined the sequence context of the 5% of coordinates with the highest log2 

ratios (Figure 2-4E). We compared this to the sequence context of coordinates with log2 ratios in 

the highest 5% in the +ATc/no ATc comparison in the control strain, as well as to the sequence 

context of coordinates with log2 ratios in the middle 5% for both strains (Figure 2-4C and E). For 

the control strain, the relative frequencies of each base were equivalent for the coordinates with 

log2 ratios in the middle 5% and highest 5% (Figure 2-4C), with G and C having similar frequencies 

that were much higher than A and U, as expected for an organism with a genomic GC content of 

~65%. In the rne knockdown strain, the same was true for the coordinates with log2 ratios in the 

middle 5% (Figure 2-4E). In contrast, coordinates with log2 ratios in the highest 5% in the 

repressible rne strain showed a clear enrichment for cytidines (Figure 2-4E). This is consistent with 

the hypothesis suggested by our previous work that RNase E has a preference for cleaving near 

cytidines (17). The enrichment for cytidines may appear modest compared to our previous finding 

that >90% of mapped cleavage events were immediately upstream of cytidines (cytidine at the 

+1 position). However, this modest enrichment is consistent with the nature of the method. At 

any given endonucleolytic cleavage site, when comparing log2 coverage in a strain with lower 

cleavage to a strain with higher cleavage, coordinates at the -1 position are expected to have 

equally high log2 ratios as coordinates at the +1 position, but only the +1 position shows a 

preference for cytidines. Furthermore, nearby coordinates (eg, -2, -3, -4, +2, +3, +4) are also likely 

to have relatively high log2 ratios. Cytidines were not enriched at any position besides +1 in our 

previously mapped cleavage sites, and in several of those positions there was reduced presence 

of cytidines (17). Adding to the complexity of the interpretation of these data, RNAseq expression 
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library coverage is typically bumpy, with stochastic factors leading to variability in coverage 

among adjacent coordinates. The coordinates with log2 ratios in the highest 5% are therefore 

likely to include many -1 and +1 positions of cleavage sites, but also many other coordinates that 

are in the general vicinities of cleavage sites. The observed modest enrichment of cytidines in 

Figure 2-4E is broadly consistent with the averaging of the previously observed sequence 

preferences in the vicinity of cleavage sites. 

RNAseq data have been previously published for M. tuberculosis with rne knockdown (16). We 

therefore applied the method described above to investigate the extent to which M. tuberculosis 

RNase E preferentially cleaves cytidine-rich regions. This was done by comparing RNAseq read 

coverage from a strain in which rne was knocked down by CRISPRi to coverage from a strain 

expressing a non-targeting CRISPRi sgRNA (Figure 2-4H). As a control, we compared RNAseq read 

coverage from WT H37Rv to coverage from the strain expressing a non-targeting CRISPRi sgRNA 

(Figure 2-4F). In the control strain comparison, the coordinates with log2 ratios in the middle 5% 

and top 5% log2 ratios had similar sequence contexts, which differed from the M. smegmatis data 

in having a greater proportion of guanosines than cytosines (Figure 2-4G). This is consistent with 

differences in the overall nucleotide usage in the two organisms; M. tuberculosis coding sequences 

contain more guanosines than cytidines, while M. smegmatis coding sequences have roughly 

equal usage of guanosines and cytidines (Figure S2-9). When comparing the strain containing an 

rne-targeting CRISPRi sgRNA to the non-targeting sgRNA strain, we found that coordinates with 

log2 ratios in the middle 5% had base frequencies similar to the control comparison, but the 

coordinates with log2 ratios the highest 5% showed a higher frequency of cytidines compared to 
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guanosines (Figure 2-4I). The preference for RNase E to cleave cytidine-rich regions is therefore 

conserved in M. tuberculosis. 

M. smegmatis RNase E cleaves immediately 5’ of cytidines 

To assess RNase E’s cleavage site sequence preference with higher resolution, we performed two 

additional analyses. First, we used 5’ RACE to qualitatively compare the abundance of 5’ ends 

arising from a putative RNase E cleavage event in the rRNA precursor (Figure S2-10A). We mapped 

a 5’ end in the spacer region between the 16S and 23S rRNAs resulting from cleavage at the 

sequence UG¯CU (Figure S2-10A). Consistent with the idea that RNase E is responsible for cleaving 

this site, the band corresponding to the 5’ end produced by the cleavage event was fainter in the 

rne knockdown (Figure S2-10B and C). This is consistent with a previously reported role for RNase 

E in cleaving near this location (15), although the method used in that report did not permit precise 

identification of the 5’ end as we did here. 

Next, we overexpressed and purified M. smegmatis RNase E in E. coli to test its cleavage specificity 

in vitro. This recombinant RNase E lacked part of the predicted N-terminal scaffold domain 

(deletion of residues 2-145) and most of the predicted C-terminal scaffold domain (deletion of 

residues 825-1037), similar to RNase E variants used for in vitro work in many reports (including 

(18,40,44)). Our RNase E also had N-terminal 6x-His and FLAG epitope tags to facilitate purification. 

A variant containing the predicted catalytic site mutations D694R and D738R was purified to use 

as a catalytically dead control (40). The purified proteins were incubated with an in vitro-

transcribed RNA substrate that contained a 106 bp duplex region and a 120 nt single-stranded 

region (Figure 2-5B and S2-11). Some RNA cleavage was observed in reactions with the presumed 
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catalytically dead RNase E, suggesting that our preps contained small amounts of an E. coli RNase 

(Figure 2-5A). We therefore focused only on bands that appeared exclusively in reactions with 

catalytically active RNase E. Several of these bands were subject to 5’ and 3’ RACE to map the 

cleavage site locations. We mapped four distinct cleavage sites, all in the single-stranded portion 

of the substrate (Figure 2-5A and B). Two were at positions where we previously mapped cleavage 

sites in vivo (17), and all four occurred at the sequence motif RN¯CNU. These data confirm the 

propensity of RNase E to cleave single-stranded RNAs at phosphodiester bonds 5’ of cytidines. 

 

Figure 2-5. RNase E cleaves 5’ of cytidines in vitro. 
A. SYBR-gold-stained TBE-UREA gels revealing cleavage of the RNA substrate shown in B (300 ng) upon 
incubation for 1 hr with 80 ng purified, recombinant M. smegmatis RNase E catalytic domain (residues 146-
824, with an N-terminal FLAG-his tag). The D694R, D738R mutant is predicted to be catalytically dead. 
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Untreated RNA was not incubated with reaction buffer, while mock reactions contained RNA and buffer in 
the absence of enzyme. Cleavage sites are numbered 1-4 and resulting fragments visible on the gel are 
designated with numerals i-iv, as shown schematically in B. Red arrows denote cleavage fragments. Blue 
arrows indicate the longer strand of the partial-duplex substrate or the annealed substrate, and purple 
arrows indicate the shorter strand of the partial-duplex substrate. Note that while all samples were heated 
with formamide prior to loading the gels, the partial-duplex substrate did not fully denature following 
incubation with reaction buffer in the mock reaction or enzyme-containing reactions. B. Schematic (not to 
scale) of the partial duplex RNA substrate used in panel A. Red arrows indicate RNase E cleavage sites 
mapped by 5’ or 3’ RACE on cleavage products extracted from the gels shown in panel A. The thin lines 
below indicate the sizes of the extracted cleavage products (not to scale), with red dots indicating the ends 
that were mapped by RACE. C. A 50 nt region of the single-stranded portion of the RNA substrate shown 
in panel A was synthesized. The expected products from cleavage at sites 1 and/or 2 are shown below. The 
bolded “C” was mutated to G in panel E below. D. RNase E cleavage reactions using the substrate shown in 
panel C and enzyme that was re-purified using a more stringent wash protocol to remove contaminating E. 
coli RNases. Reactions contained 80 ng RNase E and 150 ng of RNA and were incubated for 2 hours. The 
expected cleavage products shown in panel C are indicated with red arrows. Black arrows indicate the 
positions of molecular weight standards. The blue arrow indicates the full-length substrate. E. Cleavage 
reactions were done as in panel D with the addition of a substrate with a C to G mutation at the position 3’ 
of cleavage site 2 (indicated with a red “G”). The indicated molecular weight standards were combined in 
the first lane. Bands labeled “non-specific” are unidentified byproducts of the MW standard synthesis 
reactions. Red arrows denote the expected cleavage products observed in panel D. Orange arrows indicate 
bands that appeared or shifted in position when the substrate had the C to G mutation at cleavage site 2. 
All gels are representative of at least three independent experiments. 
 

To test the importance of having cytidines at the 3’ sides of RNase E cleavage sites, we synthesized 

a shorter substrate that represented 50 nt of the single-stranded region of the partial duplex used 

above, containing cleavage sites 1 and 2 (Figure 2-5C). We re-purified catalytically active and dead 

versions of RNase E with the addition of a 1 M NaCl wash step, and found the catalytically dead 

version had no detectable activity on the 50 nt substrate (Figure 2-5D). In contrast, the catalytically 

active RNase E cleaved the substrate into bands consistent with the sizes expected from partial 

cleavage at both sites (Figure 2-5C and D). We then synthesized a version of the 50 nt substrate 

in which the cytidine on the 3’ side of cleavage site 2 was mutated to guanosine. The two bands 

presumed to arise from cleavage at site 2 shifted in size (Figure 2-5E, fragments v and viii), and 

two new bands appeared. These results are consistent with the idea that the cleavage site cytidine 

is important for recognition and/or cleavage by RNase E. 
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The M. tuberculosis transcriptome is shaped by mRNA cleavage immediately 
upstream of cytidines 

We previously mapped M. smegmatis RNA cleavage sites in vivo by differential ligation (17). These 

data are complementary to the cleavage site analysis described above; they do not give 

information on the RNase responsible, but they give single-nt resolution. To determine the extent 

to which cleavage patterns were similar in the pathogen M. tuberculosis, we applied the differential 

ligation approach. This well-validated method distinguishes between mRNA cleavage sites and 

primary 5’ ends produced from transcription initiation (TSSs) based on their different chemical 

properties (35,45). We identified 2,983 cleavage sites with high confidence (Table S2-5A), using a 

filter that required the cleaved 5’ ends to pass an abundance threshold relative to nearby 

expression library coverage as we did previously for M. smegmatis. The TSSs mapped with this 

approach have been reported elsewhere (35). However, the relationships between the TSSs and 

genes, as well as operon predictions based on TSS locations, were not previously published and 

are therefore reported here in Table S2-5B-H. 

RNA cleavage in M. tuberculosis occurred at a sequence motif very similar to that observed in M. 

smegmatis, with a strong bias for cleavage 5’ of cytidines (88% of high-confidence cleavage sites) 

and a weak bias for cleavage 3’ of purines (Figure 2-6A and (17)). Given the multiple lines of 

evidence shown above indicating that RNase E cleaves in this sequence context, we hypothesize 

that RNase E was responsible for most of the mapped M. tuberculosis cleavage sites. Analysis of 

the predicted secondary structure in the vicinity of cleavage sites revealed that cleavage occurred 

in regions more likely to be single-stranded (Figure 2-6B), consistent with expectations for RNase 

E (reviewed in (12)). We then removed one of the abundance filters used in the 5’ end data analysis 
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pipeline to capture a greater number of putative cleavage sites (Table S2-5I). Analysis of the 

sequence context of this expanded cleavage site list revealed a similar preference for cleavage 

immediately upstream of cytidines (85% of the 5’ ends in the dataset), with a similar but weaker 

signal for sequence preferences at other positions surrounding the cleavage site (Figure S2-12). 

 

Figure 2-6. A transcriptome-wide mRNA cleavage site map in M. tuberculosis reveals 
sequence and secondary structure preferences consistent with RNase E, and greater 
cleavage site frequency in 5’ UTRs and intergenic regions. 
A. Weblogo (3.7.4) generated from the complete set of mapped M. tuberculosis cleavage sites aligned by 
cleavage site position. Cleavage occurs between positions -1 and 1 as indicated by the scissor icon. B. RNA 
cleavage typically occurs within regions of lower secondary structure. The minimum free energy secondary 
structure was predicted for sliding 39 nt windows across 200 nt of sequence spanning each RNA cleavage 
site. For each coordinate, the mean (solid line; interquartile range, dashed lines) predicted free energy (∆G) 
of secondary structure formation of all 2,983 cleaved RNAs was determined. C. The frequencies of RNA 
cleavage sites in various genomic regions were determined: coding sequences, 5’ UTRs, and between 
adjacent genes on the same strand. Regions between genes on the same strand were separated according 
to whether or not the gene pair was predicted to be transcribed in an exclusively operonic (polycistronic) 
fashion. Gene pairs were considered to be transcribed exclusively in operons if only the first gene had a 
mapped transcription start site (TSS). Gene pairs were considered to be not transcribed exclusively in 
operons if each gene had its own TSS. In the latter case, genes may be transcribed as a mixture of 
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monocistronic and polycistronic transcripts. 5’ UTRs were included only if the next upstream gene was on 
the opposite strand. The observed frequencies of cleavage sites in each region were compared to the 
frequencies that would be expected if cleavage sites were distributed among these regions without bias. 
****, p < 0.0001 by binomial test comparing the observed vs expected frequencies. 

 

MazF was reported to also cleave near cytidines (46), but it produces 5’ hydroxyls rather than 5’ 

monophosphates and its cleavage products are therefore not captured by our methodology. 

However, RNase J is predicted to cleave single-stranded RNAs and produce 5’ monophosphates. 

To determine if RNase J contributed to the mapped cleavage sites in M. tuberculosis, we compared 

the abundance of cleavage-site-derived 5’ ends in a WT strain and an RNase J deletion strain 

(Figure S2-13) (3). Most of the cleaved 5’ ends had similar abundance in the two strains, consistent 

with the hypothesis that most of them are not produced by RNase J.  

mRNA cleavage sites are disproportionately located in 5’ UTRs and intergenic 
regions in M. tuberculosis 

To further investigate the contributors to RNA cleavage site selection in M. tuberculosis, we 

examined the frequencies of cleavage sites in coding sequences, 5’ UTRs, and between adjacent 

genes encoded on the same strand. In each case we assessed enrichment or depletion by 

comparing the observed number of cleavage sites to the number expected if cleavage was equally 

likely to occur in those various locations. Cleavage sites were present at less than the expected 

frequency in coding sequences, and at greater than the expected frequency in 5’ UTRs and 

intergenic regions (Figure 2-6C). This pattern is similar to what we previously observed in M. 

smegmatis (17). It could be the result of differential occurrence of cleavage in these locations, or 

could be the result of cleavage in non-coding sequences being more likely to result in products 

stable enough to be detected. Cleavage events that trigger very rapid degradation would be 
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unlikely to be detected by our methodology. Interestingly, the greatest enrichment for mapped 

cleavage sites occurred between genes that were transcribed exclusively as polycistrons (Figure 

2-6C). In some cases there was differential abundance of the transcripts corresponding to genes 

upstream and downstream of the cleavage site (Table S2-6), suggesting that cleavage could lead 

to differential stability of segments of transcripts as has been reported in some other bacterial 

operons (47-53). Consistent with this idea, we found that two pairs of polycistronic M. smegmatis 

genes with intervening cleavage sites had differential stabilities upstream and downstream of the 

cleavage sites (Figure S2-14). 

Discussion 
Here we used a combination of approaches to define the role of RNase E in mycobacterial mRNA 

degradation and identify its targets. The dramatic effect of rne knockdown on mRNA degradation 

rates in M. smegmatis is consistent with the essentiality of this enzyme in mycobacteria; it appears 

to play a rate-limiting step in degradation of the transcripts of almost 90% of genes. There was 

variability in the extent to which transcripts were stabilized upon rne knockdown, suggesting that 

while RNase E likely contributes to degradation of most mRNAs, other RNases may contribute 

differentially across the transcriptome. For example, the essential exoribonuclease PNPase could 

conceivably be the major degradation factor for those genes that were minimally affected by rne 

knockdown. An alternative explanation is that some mRNAs may be exquisitely susceptible to 

degradation, such that they were still efficiently degraded by the small amounts of RNase E 

present in the knockdown condition.  
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Most of our experiments were done eight hours after inducing repression of rne transcription, 

which was several hours prior to slowing of growth. While this strategy allowed us to distinguish 

the effects of RNase E knockdown from the effects of slowed growth to due loss of an essential 

function, we cannot distinguish with certainty which effects are direct and which are indirect. We 

have therefore made some assumptions in our analyses that should be noted. We assumed that 

the slowing of mRNA degradation was a direct consequence of reduced RNase E levels, because 

our RNAseq data did not suggest that any other RNases have reduced expression. We also 

assumed that the impacts of rne knockdown on mRNA abundance were due to a combination 

altered degradation (a direct effect) and altered transcription (an indirect effect). Future studies 

could use chemical inhibitors of RNase E (54) or degron tags (55) to fully test these assumptions 

and better distinguish between direct and indirect effects. 

Leadered transcripts appeared to be more sensitive to RNase E levels than leaderless transcripts, 

suggesting that 5’ UTRs may serve as platforms for engagement with RNase E. However, there 

was no correlation between degree of stabilization upon rne knockdown and predicted secondary 

structure near the 5’ ends of transcripts. This suggests that the effects of 5’ UTRs on RNase E 

engagement cannot be explained simply by availability of 5’ ends. This finding is somewhat 

surprising given the reported strong effect of 5’ end engagement on RNase E activity in E. coli 

(39,56-58), and reports of 5’ end secondary structure protecting transcripts from degradation in 

E. coli (44,59). It is possible that mycobacterial RNase E is less 5’-end dependent than E. coli RNase 

E, or that other transcript features are more important determinants of sensitivity to RNase E. 

Our observation of reduced transcription upon rne knockdown is consistent with prior work in E. 

coli showing that transcription rate was proportional to growth rate for most genes, while mRNA 
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degradation rates were inversely proportional to growth rate (22). We have found the same in M. 

smegmatis; a group of genes analyzed by qPCR had both slower degradation and lower steady-

state abundance in carbon starvation and in hypoxia compared to log phase, indicating that 

transcription rate must be slower in the stress conditions than in log phase (21). mRNA 

degradation and transcription therefore appear to be coordinated in response to energy 

availability. While in the current work energy was not limiting and growth was not slowed, a 

coordination of mRNA degradation and transcription was evident. The mechanism of this 

coordination is unknown. Some mechanisms are known to regulate transcription in a widespread 

fashion in response to energy stress. For example, the stringent response represses transcription 

in response to starvation in E. coli and B. subtilis through distinct mechanisms (direct binding to 

RNA polymerase and depletion of GTP pools, respectively) and appears to have a similar function 

in mycobacteria (recently reviewed in (60)) although the mechanism is unknown. However, the 

stringent response didn’t affect mRNA degradation rates in M. smegmatis (21). Another known 

mechanism of global transcriptional repression in mycobacteria is upregulation of a small RNA 

called Ms1 in M. smegmatis that competes with the housekeeping sigma factor for association 

with RNA polymerase (61). However, Ms1 abundance was not affected by rne knockdown. 

Our data implicate RNase E as the enzyme responsible for mRNA cleavage events that produce 5’ 

ends with monophosphorylated cytidines, which are widespread in vivo in both M. smegmatis (17) 

and M. tuberculosis. This cleavage sequence preference differs from what was reported in a 

previous study of the in vitro activity of M. tuberculosis RNase E (18). In that study, the presence 

of a single cytidine in an otherwise mono-uridine oligo was inhibitory to cleavage. However, the 

effects of cytidines in other sequence contexts were not tested. Our results are therefore not 
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inconsistent with that study, but rather expand upon it. The strong preference of mycobacterial 

RNase E to cleave 5’ of cytidines contrasts with the lack of strong base specificity by E. coli and 

Synechocystis sp. PCC 6803 RNase E at the +1 position ((62) and reviewed in (12)). Residue F67 in 

E. coli RNase E is highly conserved among the Proteobacteria and was proposed to play a key role 

in the catalytic mechanism by forming a binding pocket for the base one or two nt downstream 

of the cleavage site (40). Mutating this residue to Ala in E. coli abolished activity in vitro (40). 

However, the residue at the equivalent position in both M. smegmatis and M. tuberculosis is Val. It 

is tempting to speculate that differences in the key residues that position the RNA substrate in 

the active site are responsible for the differences in cleavage sequence preference for 

mycobacterial vs E. coli RNase E. Further work is needed to investigate this question. 

Both our in vivo and in vitro data indicate that while RNase E has a strong preference for cleaving 

5’ of cytidines, the impact of the surrounding sequence is weak. This could mean that the identities 

of the surrounding nt are unimportant for RNase E binding and cleavage, or that the identities of 

those nt are important but act in combinatorial ways that are not obvious from the data currently 

available. Interpretation of the in vivo cleavage patterns is complicated because (1) cleavage is 

likely affected by ribosomes and RNA-binding proteins that protect or expose particular regions 

and (2) cleavage products that are rapidly degraded are not detected and our methods therefore 

are biased towards identification of cleavage events that produce stable products. In vitro, there 

was a clear preference for cleavage 5’ of cytidines, and mutation of the cytidine at one cleavage 

site to guanosine changed the position of cleavage. However, there were many cytidines that did 

not produce detectable cleavage products, indicating that RNase E prefers certain positions within 

the test substrate. We examined secondary structure predictions of the substrate and found that 



 53 

the cleaved positions did not correspond to the positions most likely to be in single-stranded 

loops. The in vitro cleavage pattern therefore cannot be easily explained by the predicted 

secondary structure. Stem-loops near cleavage sites have been shown to stimulate or direct 

cleavage by E. coli RNase E in some contexts (63-65), and therefore the sites cleaved in our study 

could be dictated in part by such cis-acting elements. Cis-acting unpaired regions have also been 

shown to affect cleavage by E. coli RNase E (66). The potential impact of the scaffold domains 

(which were partially deleted in our purified RNase E) should also be considered, as the E. coli 

RNase E scaffold domains were recently shown to affect catalytic activity (67). 

Our study highlights the differences in the types of data obtained from different methods of RNA 

cleavage-site analysis, as well as some of the challenges in identifying RNA cleavage sites. 

Ligation-based methods, as we used here for M. tuberculosis and as we and many others have 

used in the past for other bacteria, precisely reveal 5’ ends generated by RNA cleavage. However, 

5’ ends are only detected from cleavage events that produce relatively stable fragments with 

sequence and secondary structure characteristics amenable to ligation. Fragments 5’ of cleavage 

sites are not captured at all; these can be captured by 3-end ligation approaches, but analysis of 

the resulting datasets is challenging because 3’ ends generated by many RNases (including 

RNases E, J, and III) are chemically indistinguishable from 3’ ends generated by transcription 

termination. The ligation-independent method reported previously (43) and modified here, in 

contrast, does not identify precise cleavage site locations but may give a broader view of the 

ubiquity and sequence context of cleavage sites attributable to a particular RNase engineered to 

be induced or repressed. Ligation-based methods may be more useful for identifying cleavage 
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products that are stable and functional, while the ligation-independent approach may provide a 

more accurate view of the breadth of action of RNases of interest.  

It is important to note that for both methods, there is no readily definable cutoff for identifying 

cleavage sites. It is therefore not possible to conclusively determine the total number of cleavage 

sites in a transcriptome using the combination of methods we have employed. Using read depth 

filters similar those we previously published for M. smegmatis, here we found ~3000 high-

confidence M. tuberculosis cleavage sites with the ligation-based method. Relaxing one of the 

filters produced a set of ~10,000 putative cleavage sites with a similar but slightly weaker 

sequence context signature. Our data suggest a scenario in which the transcriptome contains 

many cleavage sites, some that are cleaved frequently and/or produce relative long-lived products, 

and others that are cleaved infrequently and/or produce relatively short-lived products. If this is 

true, further relaxing the filters would likely reveal still more cleavage sites, likely mixed with a 

greater proportion of false positives. Some sites may be cleaved so infrequently that their products 

are not distinguishable from noise. Together, this is consistent with (1) the underlying biology of 

RNases that have low sequence specificity and/or cleave at ubiquitous sequences (eg, upstream 

of a cytidine), (2) the fact that mRNA cleavage in vivo is affected by binding of macromolecules 

such as ribosomes and sRNAs, and (3) the reality that some cleavage products are extremely short-

lived and difficult to detect by any method.  

It is notable that RNase J, a bifunction endo/exonuclease, did not impact the abundance of most 

transcript 5’ ends in M. tuberculosis. This is consistent with the idea that RNase J has a specialized 

role in degradation of specific types of highly structured transcripts, as we recently reported (3), 

rather than a global role. It is also consistent with the idea that RNase J and RNase E may cleave 
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similar sequences (68,69) and therefore have partially redundant activities; however, the start 

contrast in phenotypes observed in mycobacterial RNase J knockout strains and RNase E 

knockdown strains suggest such redundancy is limited.  

The cleavage sites mapped in M. tuberculosis were disproportionately located in untranslated 

regions. This may reflect the greater accessibility of such regions to RNases, as they lack protection 

by ribosomes. An intriguing question arising from this observation is the extent to which proteins 

are produced from translation of cleaved mRNAs. This has been reported in some bacteria, where 

there are known examples of polycistronic transcripts that are cleaved to produce fragments with 

different stabilities, leading in some cases to different stoichiometries of proteins encoded in 

operons (47-53). There is one reported example in mycobacteria but the evidence supporting it 

are less conclusive (70). Further studies are therefore needed to investigate the functional 

consequences of stable RNA cleavage products. 

Material and Methods 
Bacterial strains and culture conditions 

Mycolicibacterium smegmatis strain mc2155 and derivatives (Table 2-1) were grown in 

Middlebrook 7H9 liquid medium supplemented with glycerol, Tween-80, catalase, glucose, and 

sodium chloride as described (21) or on Middlebrook 7H10 with the same supplements except for 

Tween-80. Mycobacterium tuberculosis strain H37Rv was grown in the same way with the addition 

of oleic acid. Escherichia coli NEB-5-alpha (New England Biolabs) was used for cloning and 

BL21(DE3) pLysS was used for protein overexpression. E. coli was grown on LB. Liquid cultures 

were grown at 37°C with a shaker speed of 200 RPM, except for M. tuberculosis which was shaken 
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at 125 RPM. When indicated, anhydrotetracycline was used at 200 ng/mL. Antibiotic 

concentrations used for mycobacteria were 25 µg/mL kanamycin and 150 µg/mL hygromycin. 

Antibiotic concentrations used for E. coli were 50 µg/mL kanamycin, 150 µg/mL hygromycin, and 

34 µg/mL chloramphenicol. 

M. smegmatis strain construction 

SS-M_0418: The repressible rne strain was built by mycobacterial recombineering as described 

(71). A gene replacement cassette was assembled in plasmid pSS187 by NEBuilder HiFi assembly 

(NEB) and amplified from the plasmid as a linear fragment by PCR. The rne TSS is located 236 nt 

upstream of the translation start site (17), and the core promoter sequence is evident shortly 

upstream of the TSS as expected. The gene replacement cassette contained nt -846 through -347 

relative to the rne (msmeg_4626) translation start site (a 500 bp region located upstream of the 

rne native promoter), a hygromycin resistance gene and promoter, the P766(8G) promoter which 

contains tet operators (tetO), the P766(8G)-associated 5’ UTR, and the first 500 bp of rne coding 

sequence. 2 µg the gene replacement cassette were dialyzed in pure water before transformation 

into SS-M_0078 (WT M. smegmatis with the recombinase plasmid pNit-recET-Kan). Correct 

integration of this cassette replaced the 346 nt upstream of the rne translation start site with the 

hyg resistance gene and the P766(8G) promoter and 5’ UTR, and was confirmed by sequencing. 

Counterselection with 15% sucrose was followed by PCR screening to identify an isolate (SS-

M_0151) that lost the recombinase plasmid. SS-M_0151 was further transformed with plasmid 

pSS291 encoding a Tet repressor (TetR) into the L5 phage integration site.  

SS-M_0424: A hygromycin-resistant control strain was built using the method described for SS-

M_0418, the difference being that the target DNA fragment that was transformed into SS-M_0078 
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only contained the hygromycin resistance cassette with sequence upstream and downstream of 

position -346 relative to the rne translation start site, resulting in insertion of the hyg resistance 

gene and promoter without deletion of any native sequence. 

RNA extraction, RNAseq library construction, and sequencing 

Cultures were grown to an OD of 0.8-0.9, with or without addition of ATc 8 hrs prior, and divided 

into a series of 14 ml conical tubes. RIF was added to a final concentration of 150 µg/mL and 

cultures were harvested after 0, 1, 2, 4, 8, 16, or 32 min by freezing in liquid nitrogen. Frozen 

cultures were stored at -80°C and thawed on ice for RNA extraction. RNA was extracted as in (21). 

Illumina libraries were constructed and sequenced by the Broad Institute Microbial ‘Omics Core 

using the library construction procedure described in (72). 

cDNA synthesis and quantitative PCR 

cDNA was synthesized as described (21) and qPCR was performed using the conditions described 

in (21) and the primers listed in that work and in Table S2-6. 

Gene re-annotations in M. smegmatis and M. tuberculosis 

For Mycolicibacterium smegmatis, we used the genome sequence of M. smegmatis mc2155 strain 

(NC_008596.1) from Mycobrowser Release 4 (73). For gene annotations, we combined all the 

annotations from PATRIC 3.6.10 (74), Mycobrowser Release 4 (73) and recently identified novel 

ORFs (17). The combined annotations were first updated with reannotations of 213 genes as 

previously described (17). Based on the assumption that transcripts starting with AUG or GUG will 

be translated in a leaderless fashion (35), we then further utilized the transcriptional start sites 

(TSS) reported in (17) to re-annotate 156 genes whose annotated 5’ UTRs started with in-frame 
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AUG or GUG codons. In these cases the coding sequence was re-annotated to start at the TSS. 

The resulting annotations were scrutinized to exclude duplications and genes with frame shift 

errors. The reannotated CDS boundaries are listed in Table S2-8 and were used for all further 

analyses unless stated otherwise. 

For Mycobacterium tuberculosis, the genome sequence and original gene annotations of M. 

tuberculosis H37Rv strain (NC_000962.3) were obtained from Mycobrowser Release 4 (73). Then 

for genes with only one defined TSS, we used the following procedure to determine if the coding 

sequence starting coordinates would be re-annotated (35). For genes with TSSs upstream of the 

previously annotated start codon, we re-annotated the start of the coding sequence to the TSS 

for those genes with in-frame AUG or GUG at the 5’ end of the transcript. For genes that had a 

single TSS downstream of the previously annotated start codon, the start of the coding sequence 

was re-annotated to the position of the TSS if the TSS was at an in-frame AUG or GUG within the 

first 30% of the previously annotated coding sequence. If the TSS was not at an in-frame AUG or 

GUG, we re-annotated the start of the coding sequence only if the next in-frame start codon (AUG, 

GUG, or UUG) was found in the first 30% of the previously annotated coding sequence. The 

reannotated CDS boundaries are listed in Table S2-9 and were used for all further analyses unless 

stated otherwise. 

RNAseq data analysis for differential expression analysis 

The 0-min RIF-treated samples were used to measure and compare steady-state transcript 

abundance. Reads were aligned to M. smegmatis mc2155 reference sequence NC_008596.1 from 

Mycobrowser Release 4 (73) with Bowtie v1.2.2 (75), read alignment processed by SAMtools v1.9 
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(76), counts determined by HTSeq v0.10.1 (77). The differential expression analysis was performed 

using Clipper with the gene counts normalized by qPCR normalization factors (41). 

Gene set enrichment analysis 

The enrichment of KEGG pathway was tested using ClusterProfiler v4.4.4 (42), based on the gene 

list sorted by log2 fold changes of expected and observed abundance. FDR-adjusted p-values were 

used for multiple testing correction. 

RNAseq data analysis for expression-library-based cleavage site analysis in M. 

smegmatis and M. tuberculosis 

This analysis was performed on the M. smegmatis 0-min RIF-treated samples as well as an M. 

tuberculosis rne knock down strain and corresponding control strain ((16), GEO accession 

GSE126286). Quality control was performed using FastQC. Reads were first scanned from 5’ end 

to 3’ end and cut once the average quality per base of 4-base wide sliding window dropped below 

20. After such processing, reads with less than 25 bases were discarded using Trimmomatic v0.39 

(78). Reads were aligned using Bowtie2 v2.4.5 (79) with the “--very-sensitive” option. We first 

aligned reads to tRNA and rRNA sequences only. The remaining reads were aligned to 

NC_008596.1 (M. smegmatis) or NC_000962.3 (M. tuberculosis). Via SAMtools v1.16.1 (76), we 

filtered the resulting alignments by keeping only the primary alignments with MAPQ at least 10. 

The aligned, filtered reads that mapped in proper pairs were split into their corresponding strands 

to quantify strand-specific coverage at the single-nucleotide level using BEDTools v2.30.0 (80). The 

coverage for each gene was then calculated by summing the single-coordinate coverage within 

the gene, and the average coordinate coverage for each gene was calculated by dividing the 

summed coverage by gene length. We only kept genes with average coordinate coverage at least 
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5 in all replicates and conditions. For those qualified genes, we excluded coordinates at 

overlapped gene regions for downstream analysis. To correct for the variability in expression level 

among genes and between conditions, we normalized single-coordinate coverages using the 

whole-gene coverages. The single-coordinate coverages were divided by the total summed 

coordinate coverage of each gene (excluding regions overlapping other genes) after adding one 

pseudocount to all coordinate positions. The final normalized coverage of each coordinate was 

the average of triplicates in each condition. 

The coverage ratio at each qualified coordinate position between any two conditions was then 

calculated as the log2(Condition1/Condition2) ratio. For each group of coordinates under 

investigation (eg, coordinates with log2 ratios in the top 5%), we quantified the sequence context 

using the relative base frequency of the 20 coordinates upstream and downstream of each 

coordinate in the group.  

RNAseq data analysis for determination of half-lives in M. smegmatis 

To calculate mRNA half-lives, data from all of the timepoints following RIF treatment were 

processed. First, reads were aligned using BWA-MEM v0.7.17 (81). Next, the resulting alignments 

were processed for each strand by SAMtools v1.10 (76). The raw coverage of each coordinate was 

calculated through BEDTools v2.29.1 (80). Then we conducted a two-step normalization of the raw 

coverage. First, coverage was normalized by the total number of reads in each library. Then we 

calculated normalization factors by performing qPCR to determine the relative expression levels 

of eight genes (sigA, rraA, esxB, atpE, rne, msmeg_4665, msmeg_5691, msmeg_6941; Table S2-7) 

at each sample and timepoint compared to the average of the 0-min RIF control strain (no ATc) 

samples. qPCR was done with cDNA made from random priming as described above, separately 
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from RNAseq library construction. Each qPCR reaction was performed using 400 pg of cDNA. As 

ribosomal rRNA depletion was not performed, the CTs obtained from the qPCR reflect the 

expression level of the target gene relative to the total RNA pool, which is primarily rRNA. 

Normalization factors were calculated separately for the region amplified by qPCR in each of the 

eight genes and averaged. Specifically, for a given sample Tn, we calculated the normalization 

factor FTn from the qPCR target gene expression measurements as indicated below: 

Calculation of the expected RNAseq coverage (Tn,i,RNAseq_expected) for each qPCR amplicon region (i) 

in each sample (Tn), where T0 represents the average value for the control strain without ATc 

immediately after addition of RIF, and qPCR represents relative abundance of the amplicon 

determined by qPCR: 

!!,#,$%&'()_(+,(-.(/ 	= $!!,#,)01$ 	!2,#,)01$ 	%
∗ 	!2,#,$%&'()_3-.435 

Calculation of a global normalization factor (FTn) by calculating and averaging the normalization 

factors for each qPCR amplicon region: 

'6! =
1
8*
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Then the final normalized coverage for each coordinate was calculated by multiplying the first 

step normalized coverage by the global normalization factor for each sample. The coverage for 

each gene was then represented by the summation of the normalized coverage of its coordinates, 

divided by the gene length. 

Estimation of transcription rates 
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Estimated transcription rates were calculated as a function of steady-state abundance and mRNA 

degradation rate as described (37) and as follows: 

Transcription rate = VT = (k*mRNA) + (μ*mRNA) 

mRNA = steady-state mRNA abundance (taken from 0 min RIF treatment) 

k = degradation rate = ln(2)/half life 

μ = growth rate = ln(2)/doubling time 

Doubling time = 150 min 

The estimated transcription rate units are arbitrary and therefore useful only for comparison of 

genes or conditions within this study. 

mRNA cleavage site mapping in M. tuberculosis 

Mapping of M. tuberculosis TSSs was previously described (35). The same dataset was used to 

identify mRNA cleavage sites. All analyses of this dataset were done using the genome 

annotations in NC_000962.gbk rather than the reannotations shown in Table S2-9. As described 

in (35), RNA 5' ends were identified, filtered based on absolute read depth and read depth relative 

to local expression library coverage, and subject to Gaussian mixture modeling to distinguish 

between TSSs and cleavage sites on the basis of relative coverage in libraries from RNA treated 

with RppH (“converted,” capturing both TSSs and cleavage sites) and libraries from untreated RNA 

(“non-converted,” capturing primarily cleavage sites). 5’ ends with converted/non-converted 

library read depth ratios less than 1.39 had a cumulative probability of ≤0.01 of belonging to the 

TSS population (after adjusting for multiple comparisons by the Benjamini-Hochberg procedure) 
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and were therefore designated RNA cleavage sites. Because cleavage may be imprecise, filtering 

was performed to retain the single cleavage site with the greatest converted-library read coverage 

in each 5 nt window. This resulted in the 2983 high-confidence cleavage sites reported in Table 

S2-5A. The longer list of putative cleavage sites reported in Table S2-5I was obtained by applying 

the same converted/non-converted ratio cutoff to a list of 5’ ends from earlier in the pipeline prior 

to filtering on coverage relative to local expression library coverage. Instead, only a filter requiring 

a minimum mean converted library read depth of 20 was applied. This resulted in 10795 putative 

cleavage sites. 

M. tuberculosis TSS analyses 

TSSs from the above dataset were considered to be associated with the 5’ ends of genes if they 

were either (1) within 500 nt upstream of an annotated start codon or (2) within the first 25% of 

an annotated coding sequence. TSSs were considered to be internal within coding sequences if 

they were located between 25% and 80% of the way through annotated coding sequences. TSSs 

were considered to be associated with putative antisense transcripts if they did not meet any of 

the above criteria and were either (1) located on the opposite strand of an annotated coding 

sequence or (2) located <200 nt from the end of an annotated coding sequence on the opposite 

strand. TSSs were considered to be intergenic if they did not meet any of the above criteria for 5’-

end associated, internal, or antisense transcripts. 

Genes were assigned to operons if they were transcribed consecutively on the same strand and if 

both of the following criteria were met: (1) Only the first gene had an assigned TSS and (2) The 

downstream gene(s) were sufficiently expressed. Sufficient expression was defined as having a 

Reads Per Kilobase of transcript per Million mapped reads (RPKM) value in corresponding RNA-
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seq expression libraries equal to the 5th percentile or above of RPKM values for all genes with 

TSSs. This prediction algorithm is conservative and excludes many loci that may be transcribed 

both polycistronically and monocistronically. 

Analysis of M. tuberculosis cleavage site locations relative to genes 

We determined the number of coordinates in the M. tuberculosis genome that fell into each of the 

following four categories of regions: (1) coding sequences; (2) 5’ UTRs of genes with mapped TSSs 

and for which the next upstream gene was encoded on the opposite strand; (3) regions between 

the coding sequences of two consecutive genes encoded on the same strand for which both genes 

had mapped TSSs (not exclusive operons); and (4) regions between the coding sequences of two 

consecutive genes encoded on the same strand for which only the first gene had a mapped TSS 

(exclusive operons). We then determined the number of cleavage sites that were located within 

each of these regions. The expected frequency of cleavage sites in each region was defined as:  

(number of coordinates in region/sum of coordinates in all four regions)*total number of 

cleavage sites in all four regions.  

The observed number of cleavage sites in each region was then divided by the expected number 

to obtain the values plotted if Figure 2-6C. 

Secondary structure prediction 

Free energy of RNA folding and basepair probabilities for minimum free energy structure were 

predicted using the Vienna RNA Package utility RNAfold (82). For Figure 2-6B, the 200 nt region 

spanning each RNA cleavage site was extracted and the minimum free energy of secondary 

structure formation was predicted for 39 nt sliding windows across each such region. The data 
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plotted are the mean and the 25th and 75th percentile minimum free energies of 39 nt windows 

centered around each relative coordinate in all cleaved RNAs. 

5’ RACE to map a putative RNase E cleavage site in the rRNA transcript 

Enzymes were obtained from New England Biolabs unless otherwise specified. Five hundred ng of 

each RNA sample were mixed with 1 µg of oligo SSS1016 in a total volume of 9 µl, incubated at 

65°C for 10 minutes, and cooled on ice for 5 minutes. Each sample was combined with 21 µl of 

ligation mix containing 10 µl of 50% PEG8000, 3 µl of 10X T4 RNA ligase buffer, 3 µl of 10 mM 

ATP, 3 µl of DMSO, 1 µl of murine RNase inhibitor, and 1 µl of T4 RNA ligase. Samples were 

incubated at 20°C overnight and purified with a Zymo RNA Clean & Concentrator-5 kit according 

to the manufacturer’s instructions with the following modifications: samples were first diluted by 

addition of 20 µl of RNase-free water, and samples were eluted in 8 µl of RNase-free water. Three 

µl of each purified ligation were then subject to cDNA synthesis or mock (no-RT) cDNA synthesis. 

Samples were combined with 1 µl of a mix containing 50 mM Tris pH 7.5 and 500 ng/µl random 

primers (Invitrogen), incubated at 70°C for 10 minutes, and snap-cooled in an ice-water bath. 

cDNA synthesis was done as described (21). 35 ng of cDNA or the equivalent volume of the 

corresponding no-RT sample were mixed with 2.5 µl 10X Taq buffer, 1.25 µl each 10 µM primers 

SSS1017 and SSS2210, 1.25 µl DMSO, 0.5 µl of 10 mM each dNTP mix, 0.167 µl Taq polymerase, 

and water to a final volume of 25 µl. Cycling conditions were 5 minutes at 95°C, 35 cycles of 30 

seconds at 95°C, 20 seconds at 52°C, and 25 seconds at 68°C, and a final 5 minute incubation at 

68°C. PCRs were run on 1.5% agarose gels and bands that appeared in cDNA samples but not in 

no-RT samples were excised and sequenced with SSS2210 to identify the adapter/RNA junctions. 
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Overexpression and purification of recombinant RNase E variants 

Two RNase E variants were recombinantly expressed and purified for in vitro RNA cleavage assays: 

residues 146-824 (partial N-terminal truncation and full C-terminal truncation), and residues 146-

824 with D694R and D738R mutations. pSS348, carrying the M. smegmatis rne coding sequence 

with a Δ1-145aa partial N-terminal deletion, Δ825-1037aa full C-terminal deletion, and an N-

terminal addition of 6XHis tag, 3XFLAG tag, TEV protease cleavage site, and 4XGly linker 

sequences, was used as a template for creation of pSS420, which encodes RNase E residues 146-

824 with the indicated tags in a pET38 backbone. pSS420 was then used as a template for creation 

of pSS421, which has the mutations D694R and D738R, predicted to abolish catalytic activity (40). 

All constructs were sequenced to confirm the success of point mutations and truncations.  

E. coli strain BL21(DE3)pLysS was transformed with each of the RNase E expression plasmids and 

500-1000 mL cultures were grown to an OD600 of ~0.5, then induced with 400 !M IPTG and 

incubated at 28°C for four hours prior to harvest. For the protein used in Figure 2-5A, Pellets were 

resuspended in 1X IMAC buffer (20 mM Tris-HCl pH 7.9, 150 mM NaCl, 5% glycerol, 0.01% Igepal) 

containing 10 mM imidazole and lysed with a BioSpec Tissue-Tearor (10 cycles of 15-30 seconds 

each at maximum speed, with 30-60 seconds on ice between cycles). Lysates were cleared by 

centrifugation, incubated for 30-60 minutes on ice with 4 ml His-Pur Ni-NTA resin 50% slurry 

(Thermo Scientific), washed with IMAC buffer containing 10 mM imidazole, and eluted with IMAC 

buffer containing 150 mM imidazole. For the proteins used in Figure 2-5D and E, the NaCl 

concentration in the lysate was increased to 1 M before mixing with resin pre-equilibrated in the 

same, and the wash buffer contained 1 M NaCl. The lysis buffer also included 1X Halt™ Protease 

Inhibitor Cocktail, EDTA-Free (ThermoFisher), 40 mg of lysozyme, and 16 U Turbo DNase 
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(Invitrogen). Eluates were concentrated with Microcon PL-30 (30,000 NMWL) protein 

concentrators (Millipore Sigma) and loaded onto 1 cm diameter, 38 mL Sephacryl S-200 High 

Resolution resin (GE Healthcare) size exclusion chromatography columns. Flow rate was regulated 

using a Masterflex C/L pump. The buffer was 1X IMAC with the addition of 1 mM EDTA and 1 mM 

DTT. 

Preparation of in vitro-transcribed RNA substrates 

Genomic DNA was used as a template to produce PCR products containing portions of the atpB-

atpE locus downstream of the T7 Phi2.5 promoter and sequence needed for A-initiated 

transcription (TAATACGACTCACTATTAGG, where transcription initiates at the bolded “A”). One PCR 

product had the promoter oriented to produce the sense strand, and the other was shorter and 

had the promoter oriented to produce a partial antisense strand (Figure S2-11). 

Monophosphorylated RNA was synthesized from each of these PCR products in the presence of 

a 50-fold molar excess of AMP over ATP (83) with T7 RNA polymerase (NEB M0251). Each 50 μL 

reaction contained 1X reaction buffer, 5 mM DTT, 1 mM UTP, 1 mM CTP, 1 mM GTP, 0.5 mM ATP, 

25 mM AMP, 5 units/μL T7 RNA polymerase, 1 unit/μL Murine RNase inhibitor, and 2 μg DNA 

template. Reactions were incubated at 37°C for 16 hours. The resulting transcripts were treated 

with TURBO DNase at 37°C for 30 minutes before purification with a Zymo RNA Clean & 

Concentrator-5 kit.  

The atpB-E sense transcript and anti-sense transcript were combined at a 1:1 molar ratio and the 

mixtures were incubated in the presence of 5X annealing buffer (50 mM Tris-HCl, pH 7.9, 0.5 mM 

EDTA, pH 8.0, 100 mM NaCl) in a 10 μL reaction for 1 min at 90°C, then slowly cooled down to 
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room temperature over a period of approximately 30 min. The resulting annealed RNA mix was 

immediately stored at -80°C.  

The 50 nt substrate (Figure 2-5C) was synthesized using the same conditions, except the in vitro 

transcription templates were annealed oligos (Table S2-7) rather than PCR products. Smaller 

molecular weight standards (Table S2-7) were also made by in vitro transcription from annealed 

oligos. 25 µM of each of the two DNA oligos were incubated in annealing buffer (10 mM Tris, 50 

mM NaCl, and 1 mM EDTA) at 95°C for 2 minutes, followed by 47 cycles of 1.5 minutes starting at 

95°C and decreasing by 1.5 degrees per cycle. 

In vitro RNase E cleavage reactions 

In vitro RNase E cleavage reactions were heated at 65°C for 3 min prior to adding the enzyme, 

then cooled and incubated at 37°C for 1-2 hours following addition of the enzyme. The reaction 

buffer was composed of 20 mM Tris-HCl, pH 7.9, 100 mM NaCl, 5% Glycerol, 0.01% IGEPAL, 0.1 

mM DTT, 10 mM MgCl2, and each reaction containing 150-300 ng annealed RNA mix and 80 ng 

of purified RNase E. For the reactions shown in Figure 2-5D and E, the buffer included 10 µM ZnCl2. 

For mock reactions, water was used instead of enzyme. Reactions were stopped by adding equal 

volumes of 2X InvitrogenTM Gel loading buffer II and then subjected to electrophoresis on a15%, 

7.5%, or 5% polyacrylamide-8 M urea gels and visualized after 15 min staining with SYBR Gold 

Nucleic Acid gel stain. When indicated, bands of interest were excised, and RNA was recovered 

using Zymo small-RNA PAGE recovery kitfor 5’ RACE or 3’ RACE.   

5’ RACE and 3’ RACE to map cleavage sites from in vitro RNase E cleavage reactions 
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For 5’ RACE, RNA extracted from bands as described above was mixed with 1 μg of RNA oligo 

SSS1016 in a total volume of 9 μL at 65°C for 5 min, chilled on ice and then combined with 30 U 

T4 RNA Ligase 1 (NEB M0437M), 40 U Murine RNase Inhibitor (NEB), 10% DMSO, 1 mM ATP, 1X 

T4 RNase Ligase 1 reaction buffer, and 16.7% PEG 8000 in reactions with a total volume of 30 μL. 

Reactions were incubated at 20°C for 18 hours followed by column purification. cDNA was 

synthesized using the reverse oligo SSS916 which anneals close to 3’ end of the sense strand and 

the cDNA synthesis protocol described above. cDNA was purified and then was used as template 

to perform Taq PCR with primers SSS1018 and SSS916. Purified PCR products were sequenced 

with oligo SSS916.  

For 3’ RACE, RNA extracted from bands as described above was mixed with 1 μg RNA oligo 

SSS2433 (which has a 5' monophosphate and a 3' inverted deoxythymidine and was modified 

from (84) at 65°C for 5 min, chilled on ice and incubated at 17°C for 18 hours with the same 

reaction mix as used for 5’ RACE above. Following column purification, cDNA was synthesized 

using reverse oligo SSS2434 which anneals to the 3’ adapter, and the protocol described above. 

cDNA was purified and then was used as template to perform Taq PCR with primers SSS917 and 

SSS2434. Purified PCR products were sequenced with oligo SSS917. 

Statistical analyses and scripts. 

Statistics shown in Figures 2-1, 2-2, and 2-6 were done in Graphpad Prism version 9.2.0. The scripts 

for RNAseq processing, analysis and result visualization are available on Github 

(https://github.com/ssshell/Mycobacterial_RNase_E).  

Table 2-1. Strains and plasmids used in this study 

https://nam11.safelinks.protection.outlook.com/?url=https%3A%2F%2Fgithub.com%2Fssshell%2FMycobacterial_RNase_E&data=05%7C01%7Csshell%40wpi.edu%7C4886844ff7ec4ad014d108db23c5f1a1%7C589c76f5ca1541f9884b55ec15a0672a%7C0%7C0%7C638143105290722866%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=0mN%2BMpjXkDh53Gnj6qttNNH9Ohsyg%2FVR4E5azfL65q8%3D&reserved=0
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Species Strain  Plasmid Description Source 
M. smegmatis mc2155 None Widely-used lab strain ATCC 
M. smegmatis SS-M_0424 

 
pSS291: tetR38 driven by 
promoter ptb38, L5 
integrating, kanR 

mc2155 with the hygR 
gene inserted with its 
own promoter 347 nt 
upstream of, and 
divergent from, the rne 
translation start site. 

This 
study 

M. smegmatis SS-M_0418 
 

pSS291: tetR38 driven by 
promoter ptb38, L5 
integrating, kanR 

mc2155 in which the rne 
(msmeg_4626) promoter 
and UTR (nt -346 through 
-1 relative to the rne start 
codon) were replaced by 
the P766(8G) promoter 
and associated 5’ UTR 
(19). Additionally, the 
hygR gene was inserted 
with its own promoter 
upstream of, and 
divergent from, the 
P766(8G) promoter. 

This 
study 

M. 
tuberculosis 

H37Rv None Widely-used lab strain ATCC 

M. 
tuberculosis 

H37Rv Drnj None The rnj coding sequence 
was replaced with the 
hygR coding sequence. 

(3) 

E. coli BL21 DE3 
pLysS 

pSS420: pET38 
expressing residues 146-
824 of M. smegmatis 
RNase E with N-terminal 
6XHis, 3XFLAG, TEV 
protease cleavage site, 
and 4XGly linker. 

 This work 

E. coli BL21 DE3 
pLysS 

pSS421: pSS420 with 
mutations D694R and 
D738R. 

 This work 

     
 

Data Availability 
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All RNAseq data generated in this study are available at GSE227248. The scripts for RNAseq 

processing, analysis and result visualization are available on Github 

(https://github.com/ssshell/Mycobacterial_RNase_E).  
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Supplemental Figures 
   

 

Figure S 2-1. Overview of RNAseq data filtering for half-life calculations. 
Genes were used when they passed filters for read depth and CV among replicates. Half-life calculations are 
diagrammed in figures S2 and S3. 
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ATc

5,502 genes

Control strain +ATc Repressible rne strain +ATc 
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no ATc

CV =< 0.75, no zero read 
counts for 0-16 minute 
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Calculate high-
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Half-life <100 min

1,643 genes 3,565 genes
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Figure S1. Overview of RNAseq data filtering for half-life calculations. Genes were 
used when they passed filters for read depth and CV among replicates. Half-life 
calculations are diagrammed in figures S2 and S3. 
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Figure S 2-2. Half-life calculation procedure for genes in control conditions (rne not 
repressed). 
A. Log2-transformed mRNA abundance data show three distinct degradation patterns following addition 
of rifampicin to block transcription. Because rifampicin blocks transcription initiation but not transcription 
elongation, some genes show a delay before transcript levels decrease. The delay generally corresponds to 
the distance between the gene and its transcription start site. Furthermore, degradation for all genes 
reaches a plateau at later timepoints. We expect that the linear portion of the degradation curve between 
the delay (if present) and plateau is most likely to reflect the true degradation rate and therefore use this 
to calculate the half-life. B. Classification of genes into three delay categories based on linear regression fits 
to different sets of timepoints following addition of rifampicin, followed by half-life determination. The 
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slopes between the indicated timepoints were calculated and used to classify genes as having no delay, a 
1-minute delay, or a 2-minute delay. After removal of early timepoints as indicated to account for the delay, 
the mean squared error (MSE) was used to quantify goodness of fit for linear regression using subsets of 
the remaining timepoints and the set of timepoints with the best fit were used to calculate the half-life. 
 
 
 
 

 
 

Figure S 2-3. Half-life calculation procedure for genes in rne repression condition. 
A. Log2-transformed mRNA abundance data show two distinct degradation patterns following addition of 
rifampicin to block transcription, which can be best categorized as no delay or a 4-minute delay. B. 
Classification of genes into two delay categories based on linear regression fits to different sets of 
timepoints following addition of rifampicin, followed by half-life determination. The slopes between the 
indicated timepoints were calculated and used to classify genes as having no delay, or a 4-minute delay. 
After removal of early timepoints as indicated to account for the delay, the mean squared error (MSE) was 
used to quantify goodness of fit for linear regression using subsets of the remaining timepoints and the set 
of timepoints with the best fit were used to calculate the half-life. 
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Log2-transformed mRNA abundance data show two distinct degradation patterns 
following addition of rifampicin to block transcription, which can be best categorized as no 
delay or a 4-minute delay. B. Classification of genes into two delay categories based on 
linear regression fits to different sets of timepoints following addition of rifampicin, 
followed by half-life determination. The slopes between the indicated timepoints were 
calculated and used to classify genes as having no delay, or a 4-minute delay. After 
removal of early timepoints as indicated to account for the delay, the mean squared error 
(MSE) was used to quantify goodness of fit for linear regression using subsets of the 
remaining timepoints and the set of timepoints with the best fit were used to calculate the 
half-life.



 82 

 
 

Figure S 2-4. Correlations of half-lives between control conditions. 
Scatterplots show the half-lives calculated for genes in the control strain with and without ATc (left) and for 
the repressible and control strains without ATc (right). 
 
 
 
 
 
 

 
Figure S 2-5. Fold-increase in half-life upon rne repression has a very weak correlation 
with abundance prior to repression. 
Each dot represents a gene for which half-lives were determined in the presence and absence of ATc in the 
repressible rne strain. 
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Figure S4. Correlations of half-lives between control conditions. Scatterplots show 
the half-lives calculated for genes in the control strain with and without ATc (left) and for 
the repressible and control strains without ATc (right).
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correlation with abundance prior to repression. Each dot represents a gene for which 
half-lives were determined in the presence and absence of ATc in the repressible rne 
strain.
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Figure S 2-6. The relationship between mRNA abundance and mRNA half-life changes 
upon rne knockdown. 
Each dot represents a gene for which half-lives were determined in both the presence and absence of ATc 
in the repressible rne strain. 
 
 

 
 

Figure S 2-7. Predicted secondary structure near transcript 5’ ends is not correlated with 
degree of stabilization upon rne repression. 
Each dot represents a gene for which half-lives were determined in the presence and absence of ATc in the 
repressible rne strain. The MFE structure was predicted for the first 20 nt of each transcript (the 5’ 20 nt of 
the 5’ UTR for leadered transcripts, and the first 20 nt of the coding sequence for leaderless transcripts). A 
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Figure S6. The relationship between mRNA abundance and mRNA half-life changes 
upon rne knockdown. Each dot represents a gene for which half-lives were determined 
in both the presence and absence of ATc in the repressible rne strain.
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Figure S7. Predicted secondary structure near transcript 5’ ends is not correlated 
with degree of stabilization upon rne repression. Each dot represents a gene for 
which half-lives were determined in the presence and absence of ATc in the repressible 
rne strain. The MFE structure was predicted for the first 20 nt of each transcript (the 5’ 20 
nt of the 5’ UTR for leadered transcripts, and the first 20 nt of the coding sequence for 
leaderless transcripts). A and B, the probabilities of the first 5 nt of the transcript being 
unpaired given the given predicted MFE structures were determined. C and D, the MFE of 
folding was determined. All analyses were done in the Vienna RNAfold package (Lorenz 
et al., 2011). ns, P > 0.05.
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and B, the probabilities of the first 5 nt of the transcript being unpaired given the given predicted MFE 
structures were determined. C and D, the MFE of folding was determined. All analyses were done in the 
Vienna RNAfold package (Lorenz 
et al., 2011). ns, P > 0.05. 
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Figure S 2-8. Pipeline for identifying RNase E cleavage sites from standard Illumina 
RNAseq expression libraries. 

  

RNAseq quality control
• Trim reads with average quality of 4-base window < 20
• Remove reads with length < 25

RNAseq alignment
• Reads first aligned to rRNA and tRNA sequences
• Remaining reads aligned to genome

Filter alignments
• Keep primary alignments with MAPQ ≥ 10 and reads mapped in proper pairs

Quantify read coverage
• Count number of fragments covering each coordinate (coordinate coverage)
• Gene coverage is the sum of coordinate coverages

Filter coordinate & gene coverage
• Keep genes with average coordinate coverage >= 5
• Remove coordinates at overlapped gene regions

Calculate coverage ratios
• Coverage ratio at each coordinate was calculated as log2(rne knockdown/Control) 

& log2(Control/Control)
• Smoothed global distribution of coverage ratios were visualized using kernel 

density estimate

RNAseq libraries
• rne knockdown 
• Controls

Normalize coordinate coverage
• Each coordinate coverage was divided by the total coverage of filtered coordinates 

within each gene

Quantify local base frequency
• For each coordinate in the middle 5% and the top 5% coverage ratio groups, base 

frequency (A, U, C, or G) for the coordinate itself and the 20 positions upstream 
and downstream were described as proportion of coordinates in that position in 
that ratio group having that base.

Figure S8. Pipeline for identifying RNase E cleavage sites from standard 
Illumina RNAseq expression libraries. 
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Figure S 2-9. Base composition of coding sequences in M. smegmatis and M. tuberculosis. 
Each dot represents a gene. Pink lines indicate medians. 
 

 
 

Figure S 2-10. RNase E cleaves upstream of a cytidine during rRNA processing. 
A. Schematic of part of the rRNA operon with the sequence of a region reported to be cleaved by RNase E 
shown (Taverniti et al 2011). Graphic not to scale. The scissors indicate the exact cleavage position that we 
mapped by 5’ RACE, which is between positions 2041 and 2042 relative to the start of the rRNA operon 
(numbering as in Taverniti et al 2011). The cleavage site lies in a region predicted to be single-stranded, 
approximately 81 nt downstream of a predicted RNase III cleavage site and approximately 27 nt upstream 
of another predicted RNase III cleavage site (Taverniti et al 2011). The dagger (†) indicates the 5’ RACE PCR 
product shown in panel B. The blue arrow indicates the primer used for cDNA synthesis. B. An ethidium-
bromide strained agarose gel revealing 5’ RACE PCR products. The dagger (†) indicates the PCR product 
shown schematically in panel A. Triplicate samples are indicated. Control strain replicate 1 in the absence 
of ATc was not run on this gel. The results are representative of two independent experiments. C. Image J 
was used to quantify the integrated pixel intensity of the band indicated with the dagger (†) in panel B. 

Figure S9. Base composition of coding sequences in M. smegmatis and M. 
tuberculosis. Each dot represents a gene. Pink lines indicate medians.

A T G C
0.0

0.2

0.4

0.6

M. smegmatis

Base
Pr

op
or

tio
n

A T G C
0.0

0.2

0.4

0.6

M. tuberculosis

Base

Pr
op

or
tio

n

100 nt

200 nt
†

ATc: - - - --+ + + + + +

Strain:

A

B

…CCCUG  CUUUG… 23S rRNA16S rRNA

†

Figure S10. RNase E cleaves upstream of a cytidine during rRNA processing. A. Schematic 
of part of the rRNA operon with the sequence of a region reported to be cleaved by RNase E 
shown (Taverniti et al 2011). Graphic not to scale. The scissors indicate the exact cleavage 
position that we mapped by 5’ RACE, which is between positions 2041 and 2042 relative to the 
start of the rRNA operon (numbering as in Taverniti et al 2011). The cleavage site lies in a region 
predicted to be single-stranded, approximately 81 nt downstream of a predicted RNase III 
cleavage site and approximately 27 nt upstream of another predicted RNase III cleavage site 
(Taverniti et al 2011). The dagger (†) indicates the 5’ RACE PCR product shown in panel B. The 
blue arrow indicates the primer used for cDNA synthesis. B. An ethidium-bromide strained 
agarose gel revealing 5’ RACE PCR products. The dagger (†) indicates the PCR product shown 
schematically in panel A. Triplicate samples are indicated. Control strain replicate 1 in the 
absence of ATc was not run on this gel. The results are representative of two independent 
experiments. C. Image J was used to quantify the integrated pixel intensity of the band indicated 
with the dagger (†) in panel B. Strains and conditions were compared by ANOVA and Dunnett’s 
multiple comparisons test. * indicates p < 0.05.
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Strains and conditions were compared by ANOVA and Dunnett’s multiple comparisons test. * indicates p < 
0.05. 
 
 
 

 
Figure S 2-11. In vitro-transcribed partial duplex RNA substrate used for RNase E cleavage 
assays. 
Black font indicates the sense strand corresponding to the 3’ 159 nt of the M. smegmatis atpB coding 
sequence and 64 nt of the intergenic region between atpB and atpE. Blue font indicates an antisense strand 
used to block RNase E cleavage. Cleavage sites mapped in Fig. 5 are shown by red carets. 
 
 
 

 
Figure S 2-12. Sequence context of an expanded set of M. tuberculosis RNA cleavage sites. 
10,795 putative cleavage sites were identified using relaxed filters as described in the methods section. A 
weblogo (Weblogo 3.7.12) was constructed with a background frequency of 65% G+C. 
  

5’-AGGGCGCUGAUCGCCAUGUUCCCCUGGUACAUCCAGUGGUUCCCCAACGC^CGUGUGGAAG-3’

5’-ACCUUCGA^CCUGUUCGUCGGCCUCAUCCAGGCCUUCAU^CUUCUCGCUGCUGACGAU^CC-3’

5’-UGUACUUCAGCCAGUCGAUGGAACUGGACCACGAGGACCACUGACGAGCAACCCUGCUGGA-3’
  3’-AUGAAGUCGGUCAGCUACCUUGACCUGGUGCUCCUGGUGACUGCUCGUUGGGACGACCU-5’

5’-CCGAACAAAUCCCUACGACCCGAUCGACACGAACUCUGACGGCAACA-3’
3’-GGCUUGUUUAGGGAUGCUGGGCUAGCUGUGCUUGAGACUGCCGUUGU-5’

Figure S11. In vitro-transcribed partial duplex RNA substrate used for RNase E 
cleavage assays. Black font indicates the sense strand corresponding to the 3’ 159 nt 
of the M. smegmatis atpB coding sequence and 64 nt of the intergenic region between 
atpB and atpE. Blue font indicates an antisense strand used to block RNase E 
cleavage. Cleavage sites mapped in Fig. 5 are shown by red carets. 

Figure S12. Sequence context of an expanded set of M. tuberculosis RNA 
cleavage sites. 10,795 putative cleavage sites were identified using relaxed filters as 
described in the methods section. A weblogo (Weblogo 3.7.12) was constructed with a 
background frequency of 65% G+C.
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Figure S11. In vitro-transcribed partial duplex RNA substrate used for RNase E 
cleavage assays. Black font indicates the sense strand corresponding to the 3’ 159 nt 
of the M. smegmatis atpB coding sequence and 64 nt of the intergenic region between 
atpB and atpE. Blue font indicates an antisense strand used to block RNase E 
cleavage. Cleavage sites mapped in Fig. 5 are shown by red carets. 

Figure S12. Sequence context of an expanded set of M. tuberculosis RNA 
cleavage sites. 10,795 putative cleavage sites were identified using relaxed filters as 
described in the methods section. A weblogo (Weblogo 3.7.12) was constructed with a 
background frequency of 65% G+C.
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Figure S 2-13. Most M. tuberculosis cleavage sites have similar abundance in WT H37Rv 
and an isogenic strain in which the gene encoding RNase J was deleted. 
Monophosphorylated RNA 5’ ends were mapped and quantified by adapter ligation and Illumina 
sequencing. Read depth for each 5’ end produced by the cleavage sites listed in Supplementary Table 5 is 
shown. 
 

 
 

Figure S 2-14. M. smegmatis gene pairs that appear to be co-transcribed and are bisected 
by cleavage sites display differential stabilities. 
Abundance of the four indicated transcripts was measured by qPCR 0, 4, and 8 minutes after addition of 
rifampicin to block transcription, and half-lives were calculated by linear regression of log2-transformed 
abundance. Error bars show the 95% confidence intervals of each half-life. The top error bar was truncated 
in two cases (atpE and acpP) where the upper 95% CI was infinity. *, p < 0.05 for comparison of the half-
lives of the indicated genes by linear regression. 
  

Figure S13. Most M. tuberculosis cleavage sites have similar abundance in WT H37Rv 
and an isogenic strain in which the gene encoding RNase J was deleted. 
Monophosphorylated RNA 5’ ends were mapped and quantified by adapter ligation and 
Illumina sequencing. Read depth for each 5’ end produced by the cleavage sites listed in 
Supplementary Table 5 is shown. 
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Figure S14. M. smegmatis gene pairs that appear to be co-transcribed and are 
bisected by cleavage sites display differential stabilities. Abundance of the four 
indicated transcripts was measured by qPCR 0, 4, and 8 minutes after addition of rifampicin 
to block transcription, and half-lives were calculated by linear regression of log2-transformed 
abundance. Error bars show the 95% confidence intervals of each half-life. The top error bar 
was truncated in two cases (atpE and acpP) where the upper 95% CI was infinity. *, p < 
0.05 for comparison of the half-lives of the indicated genes by linear regression.  
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Figure S13. Most M. tuberculosis cleavage sites have similar abundance in WT H37Rv 
and an isogenic strain in which the gene encoding RNase J was deleted. 
Monophosphorylated RNA 5’ ends were mapped and quantified by adapter ligation and 
Illumina sequencing. Read depth for each 5’ end produced by the cleavage sites listed in 
Supplementary Table 5 is shown. 
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Figure S14. M. smegmatis gene pairs that appear to be co-transcribed and are 
bisected by cleavage sites display differential stabilities. Abundance of the four 
indicated transcripts was measured by qPCR 0, 4, and 8 minutes after addition of rifampicin 
to block transcription, and half-lives were calculated by linear regression of log2-transformed 
abundance. Error bars show the 95% confidence intervals of each half-life. The top error bar 
was truncated in two cases (atpE and acpP) where the upper 95% CI was infinity. *, p < 
0.05 for comparison of the half-lives of the indicated genes by linear regression.  
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Chapter 3 : Diverse intrinsic properties shape transcript stability 
and stabilization in Mycolicibacterium smegmatis 
  



 90 

Diverse intrinsic properties shape transcript stability and 
stabilization in Mycolicibacterium smegmatis 
Huaming Sun1, Diego A. Vargas-Blanco2, Ying Zhou2, Catherine S. Masiello2, Jessica 
M. Kelly2, Justin K. Moy1, Dmitry Korkin1,*, and Scarlet S. Shell2,* 
1 Program in Bioinformatics and Computational Biology, Worcester Polytechnic Institute, 
Worcester, Massachusetts, 01609, USA 
2 Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, 
Massachusetts, 01609, USA 
* To whom correspondence should be addressed. Tel: +1 508 831 5917; Fax: +1 508 831 5936; 
Email: sshell@wpi.edu; dkorkin@wpi.edu. 
 
This chapter corresponds to a manuscript that is under preparation. 
 

Abstract 
In mycobacteria, regulation of transcript degradation is known to occur in response to 

environmental stress and facilitate adaptation. However, the underlying regulatory mechanisms 

are unknown. Here we sought to gain understanding of the mechanisms controlling mRNA 

stability by investigating the transcript properties associated with variance in transcript stability 

and stress-induced transcript stabilization. We performed transcriptome-wide mRNA degradation 

profiling of Mycolicibacterium smegmatis in both log phase growth and hypoxia-induced growth 

arrest. The transcriptome was globally stabilized in response to hypoxia, with all transcripts having 

longer half-lives but some having greater degrees of stabilization than others. The transcripts of 

essential genes were generally stabilized more than those of non-essential genes. We developed 

machine learning models that utilized a compendium of transcript properties and enabled us to 

identify the non-linear collective effect of diverse properties on transcript stability and stabilization. 

The comparisons of these properties confirmed the association of 5’ UTRs with transcript stability, 

mailto:sshell@wpi.edu
mailto:dkorkin@wpi.edu
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along with other differences between leadered and leaderless transcripts. Our analysis highlighted 

the protective effect of translation in log phase but not hypoxia-induced growth arrest. Steady-

state transcript abundance had a weak negative association with transcript half-life that was 

stronger in hypoxia, while coding sequence length showed an unexpected correlation with half-

life in hypoxia only. In summary, we found that transcript properties are differentially associated 

with transcript stability depending on both the transcript type and the growth condition. Our 

results revealed the complex interplay between transcript features and microenvironment that 

shape transcript stability in mycobacteria. 

Introduction 
Regulation of mRNA degradation serves as a response mechanism of mycobacteria to energy-

limited microenvironments. The mycobacteria include Mycobacterium tuberculosis, the causative 

agent of tuberculosis which led to over 1 million deaths in 2022 (1). Transcriptome-wide profiling 

of mRNA degradation in M. tuberculosis showed variance in transcript stability among genes and 

a global stabilization of the transcriptome in hypoxia, a stress condition that M. tuberculosis 

encounters within the centers of granulomas during infection (2-4). However, the regulatory 

mechanisms that govern transcript stability and stress-induced stabilization remain poorly 

understood. Further study of the regulation of mRNA degradation in mycobacteria is needed to 

facilitate our understanding of the stress response strategies that M. tuberculosis employs to adapt 

and persist within the host. 

    Global mapping of transcription start sites suggested that approximately 25% to 30% of RNA 

transcripts lack a 5’ untranslated region (5’ UTR) in mycobacteria (referred to as leaderless 
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transcripts) (5-7). Studies have shown that the presence of Shine–Dalgarno (SD) ribosome binding 

site sequences within the 5’ UTR is associated with higher mRNA expression levels in bacteria, 

measured by RNAseq expression data (5,7). However, it is also known that some leaderless 

transcripts have comparable translation efficiencies with leadered transcripts in M. smegmatis (6,8), 

potentially due to an alternative translation initiation mechanism and unique RNA characteristics, 

such as less structured start codon regions (9,10). In M. tuberculosis, such SD-independent 

translation of leaderless transcripts is also robust and less affected during adaptation to stress 

environments than canonical leadered transcripts (5,11). While it is likely that the 5’ ends of 

transcripts can contribute to the variability in mRNA half-life through either translation efficiency 

or degradation initiation (5,7,12), the mechanisms are not fully characterized. 

    Various transcript properties (features) have been reported to be associated with mRNA stability 

either transcriptome-wide or for individual transcripts in various organisms. Transcriptome-wide 

associations have been shown for growth rate in L. lactis and E. coli (13,14), transcript abundance 

in E. coli and L. lactis (15,16), GC content in B. cereus, E. coli and S. cerevisiae (15,17,18), 5’ UTR- 

and 3’ UTR-related features in S. cerevisiae (19), gene function and essentiality in B. cereus and E. 

coli (17,20), transcript length in L. lactis, E. coli, and S. cerevisiae (13,18,20), ribosome density in S. 

cerevisiae (18), and adjacent codon pair usage in S. cerevisiae (21). Transcript features like start 

codon identity and GC content in S. cerevisiae (18),  5’ UTR-related features in L. lactis (16), and 

transcript abundance in E. coli and L. lactis (16) were also validated experimentally with individual 

transcripts. In mycobacteria, the transcript features that impact mRNA degradation rates are 

largely unexplored, with existing analysis limited to only few transcript features and their individual 

broad correlations with transcript half-life in log-phase growing M. tuberculosis (2). It is unknown 
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which of the wide range of potentially associated features impact transcript stability, how the 

impacts of these features interact, and how they differ according to growth condition. 

To model the underlying collective effect of multiple transcript features on stability, recent 

studies in E. coli and S. cerevisiae have used linear regression models to incorporate multiple 

features and quantify their contributions to variance in degradation rates (15,18,19). However, the 

limitation is that these models simplify the relationship between the features by assuming that 

they can be combined linearly to determine transcript half-life. Although more advanced 

sequence-based machine learning models could also be applied to predict stability, their 

performances rely on large amounts of data for training with the focus more on achieving accurate 

prediction rather than understanding the underlying mechanisms (22,23). 

    Given our lack of understanding of the impact of RNA features on mRNA degradation in 

mycobacteria, we sought to develop a comprehensive machine learning framework to identify the 

transcript properties that are associated with transcript half-life in the model organism 

Mycolicibacterium (nee Mycobacterium) smegmatis in both log phase growth and hypoxia-induced 

growth arrest. We found that in contrast to some previous reports on M. tuberculosis and E. coli, 

no single feature had a dominant association with mRNA half-life; rather, half-lives were best 

explained by the non-linear interactions of many features. The features that best explained 

transcript half-lives differed between log phase growth and hypoxia, and while the half-lives of 

most transcripts were longer in hypoxia, those of essential genes were lengthened the most. 

Features associated with efficient translation were generally predictive of longer half-lives in log 

phase but not in hypoxia, consistent with the idea that translation protects mRNA from 

degradation in rapidly growing cells and lower levels of translation in non-growing cells limit its 
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impact. mRNA secondary structure was also generally predictive of longer half-lives in cases where 

it did not negatively impact translation, but in ways that varied by condition and transcript leader 

type. 5’ UTR features were predictive of half-life in ways that appeared to extend beyond 

mediating translation initiation. Surprisingly, gene length was predictive of slower degradation in 

hypoxia, consistent with models in which diffusion of large molecules is slower in non-growing 

cells. Taken together, our results reveal the landscape of the collective effect of diverse transcript 

features on stability under different conditions in M. smegmatis. 

Material and Methods 
Strains and culture conditions to generate transcriptome-wide mRNA degradation 
datasets 

Transcriptomic data were obtained from M. smegmatis strain SS-M_0424, a derivative of mc2-155 

described in (24), in which a hygR gene was inserted upstream of, and divergent from, the rne gene 

promoter, and a kanR-marked plasmid expressing tetR38 was integrated at the L5 site. This strain 

was constructed as a control for an rne knockdown strain, and its genetic modifications did not 

affect expression of rne. M. smegmatis was grown at 37° C with 200 rpm shaking in Middlebrook 

7H9 broth supplemented with final concentrations of 0.2% glycerol, 0.05% Tween-80, 3 mg/L 

catalase, 2 g/L glucose, 5 g/L bovine serum albumen fraction V, and 0.85 g/L sodium chloride. 

RNA was extracted from cultures at defined time-points following addition of 150 µg/mL 

rifampicin to block transcription initiation. The log phase cultures are described in (24). Cultures 

for hypoxia were sealed in vials as described in (25). The volume of culture in each bottle was 13.5 

mL and the OD at the time of sealing the bottles was 0.01. 19 hours after sealing the bottles, 
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rifampicin was injected through the rubber cap with a needle, and at the indicated timepoints (0, 

3, 6, 9, 15, 30 and 60 minutes) bottles were opened, contents poured into 15 mL conical tubes, 

and the tubes submerged in liquid nitrogen. The elapsed time between opening the hypoxia 

bottles and submerging the cultures in liquid nitrogen was approximately 6 seconds. Frozen 

cultures were stored at -80° C. Cultures were thawed on ice and RNA extracted as in (25). The 

RNAs were submitted to the Broad Institute Microbial ‘Omics Core where Illumina libraries were 

constructed as described in (26) and sequenced. The hypoxia cultures were grown and their RNA 

extracted and sequenced together with the log phase cultures described in (24). Separately, the 

RNA samples were used to synthesize cDNA and perform quantitative PCR was performed as 

described in (25) and the resulting data were used for normalization of the RNAseq data as 

described in (24). 

M. smegmatis genome sequence and gene annotations 

The transcript features were quantified using the genome sequence of M. smegmatis strain mc2-

155 (NC_008596.1) from Mycobrowser Release 4 (27). The gene annotations were updated as 

previously described (24) and listed in Table S3-1. Using these annotations, we defined 1939 

leadered transcripts (Table S3-2) and 960 leaderless transcripts (Table S3-3) with high confidence. 

For transcripts with multiple transcription start sites (TSSs), the leadered or leaderless status was 

determined by the TSS with the highest read coverage in log phase (7).  

RNAseq data processing and half-life calculations 

RNAseq data were processed and normalized to produce transcript degradation profiles for log 

phase and hypoxia as previously described (24). Log phase half-lives were calculated as described 
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(24). To calculate half-lives in hypoxia with high-confidence, we only used genes for which linear 

regression of log2 transcript abundance between first 5 time points (0, 3, 6, 9, 15 mins) had a mean 

squared error (MSE) < 0.5 (24). Genes with zero read counts for any replicate for any of those 5 

time points were also excluded. Half-life was calculated as -1/slope. 

UMAP visualization of transcript degradation profiles in log phase and hypoxia 

The log2 normalized RNAseq coverage of 7120 genes in 42 samples (3 replicates of each of the 7 

time points in log phase and hypoxia) were used to visualize the transcript degradation profiles 

in M. smegmatis. UMAP plots were made in R v4.3.2 using package umap v0.2.10.0 with the 

parameters n_neighbors = 20, min_dist = 0.25, n_component = 2, random_state = 77. The seed 

value in R was set to be 7. 

Hierarchical clustering to identify transcript degradation patterns 

Normalized transcript degradation profiles in log phase and hypoxia were collected as described 

above and in (24) for clustering analysis. To select genes with high quality degradation profiles, 

we conducted two preprocessing procedures. For each gene, we first calculated the coefficient of 

variation (CV) over three RNAseq replicates for each time point. Genes with CV > 0.75 in any of 

the first 4 time points (0, 1, 2, 4 minutes for log phase; 0, 3, 6, 9 minutes for hypoxia) were excluded 

from clustering. In order to cluster by the differences in degradation pattern rather than the 

absolute abundance, we then converted the profiles into relative abundance to an initial time 

point (0 and 1 minute for log phase; 0 minute for hypoxia). The CV-filtered genes were further 

selected by being required to have relative abundance at subsequent timepoints be no more than 

1.5 times that of the initial time point. After preprocessing, the relative degradation profiles were 



 97 

then clustered using hierarchical clustering with the Euclidean distance measure and ward.D2 

agglomeration method. The degradation pattern of each cluster was represented by the mean 

and standard deviation of log2 mRNA abundance at each timepoint (Figure S2-2B-D and S3-2F-

H). mRNA degradation is expected to follow a single exponential decay trend. For log phase, initial 

clustering produced a cluster of genes that exhibited a delay prior to the start of exponential 

decay, which is a well-established phenomenon due to rifampicin blocking transcription initiation 

but not elongation (28). To produce clusters unaffected by this technical issue, we removed the 

genes in the cluster showing the delay and re-clustered the remaining genes using degradation 

profiles normalized to the 1 minute timepoint rather than the 0 minute timepoint. This resulted in 

classification of 4972 genes into degradation pattern classes in log phase (Figure S3-2A). For 

hypoxia, no delays were observed, likely due to both transcription and mRNA degradation being 

substantially slower than in log phase, and pattern classes were directly defined for 5098 genes 

by the clustering of degradation profiles relative to the 0 minute timepoint (Figure S3-2E). 

Normalized transcript degradation profiles in log phase and hypoxia were collected as described 

above and in (24) for clustering analysis. To select genes with high quality degradation profiles, 

we conducted two preprocessing procedures. For each gene, we first calculated the coefficient of 

variation (CV) over three RNAseq replicates of each time point. Genes with CV larger than 0.75 in 

any of the first 4 time points (0, 1, 2, 4 minutes for log phase; 0, 3, 6, 9 minutes for hypoxia) were 

excluded for clustering. In order to run clustering by the difference of degradation pattern rather 

than the absolute abundance, we then converted the profiles into relative abundance to initial 

time point (0 and 1 minute for log phase; 0 minute for hypoxia). The CV filtered genes were further 

selected by being required to have the relative degradation smaller than 1.5 in all time points. 
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After the preprocessing, the relative degradation profiles were then clustered using hierarchical 

clustering with the Euclidean distance measure and ward.D2 agglomeration method. The 

degradation pattern of each cluster was represented by the mean and standard deviation of log2 

degradation profile (Figure S3-2B-D and S3-2F-H). mRNA degradation is expected to follow a 

single exponential decay trend. For log phase, initial clustering produced a cluster of  genes that 

exhibited a delay prior to the start of exponential decay, which is a well-established phenomenon 

due to rifampicin blocking transcription initiation but not elongation (28). To produce clusters 

unaffected by this technical issue, we removed the genes in the cluster showing the delay and re-

clustered the remaining genes using degradation profiles normalized to the 1 minute timepoint 

rather than the 0 minute timepoint. This resulted in classification of 4972 genes into degradation 

pattern classes in log phase (Figure S3-2A). For hypoxia, no delays were observed, likely due to 

both transcription and mRNA degradation being substantially slower than in log phase, and 

classes were directly defined for 5098 genes by the clustering of degradation profiles relative to 

the 0 minute timepoint (Figure S3-2E). 

Transcript property quantification 

To identify the transcript properties that are associated with degradation, we quantified many 

potential candidate properties (Table S3-5) for each of the 7120 CDSs (Table S3-1). 

Nucleotide frequency. This group of properties was quantified through the nucleotide frequency 

percentage relative to 5’ UTR or CDS region length. It contains usage of single nucleotides, 

adjacent dinucleotide motifs, and total G+C content. For each CDS, we quantified nt frequency 

for the 5’ 18 nt, the 3’ 18 nt, and the entire CDS as separate properties. 
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Codon frequency. In addition to the percentage of each nonstop codon calculated in the same 

manner as the nucleotide frequency for CDS, we also added binary indicators for the choice of 

start codon (AUG, GUG and UUG) and stop codon (UAA, UAG and UGA). To quantify the codon 

pair bias, we calculated the Codon Pair Bias (CPB) using the Codon Pair Score (CPS) of all codon 

pairs that make up the CDS (29). The CPS was calculated for each of the 3904 possible codon pairs 

(61 * 64), including stop codons only being used as the second codon to capture potential bias at 

the 3’ end of the CDS. 

Secondary structure. These properties were quantified using the ViennaRNA v2.5.0 package (30) 

through the following three metrics: the DG of the minimum free energy (MFE) structure for a 

given transcript segment, the number of unpaired nucleotides at the 5’ end of the MFE structure, 

and the probability of specific nucleotides near the 5’ end being unpaired. The DGs of MFE 

structures were calculated using RNAfold v2.5.0 in two different ways. First, to overcome the 

positive correlation between DG and sequence length, we calculated DG of MFE (DGMFE) structures 

in a sliding window manner. Each sequence was split into subsequences by M nt windows, each 

with M/2 nt overlap. The DGMFE for a given sequence is the averaged DGMFE of all its subsequences 

generated by a sliding window. For 5’ UTRs and CDSs, we divided each sequence into thirds and 

used such sliding window DGMFEs to quantify the predicted structure of the 5’ third, middle third, 

and 3’ third as well as the entire sequence. For the 5’ UTRs, we sought to distinguish between 

secondary structure directly affecting ribosome binding and other secondary structure. We 

therefore excluded the 3’-most 15 nt before dividing the sequence into thirds. Additionally, only 

5’ UTR sequences longer than 35 nt before removing the 15 nt ribosome binding site were used, 

and only a 20 nt sequence window was used. For the CDS region, we calculated DGMFEs using 20, 
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50, and 100 nt windows. The 3’ UTRs were approximated as 60 nt after the stop codons. The MFE 

for 3’ UTRs were calculated using a 20 nt window only. 

    We also used the DGMFE structures to measure the accessibility of the mRNA translation initiation 

region (TIR) for ribosome binding (10). We calculated DGunfold separately for leadered transcripts 

that have 5’ UTRs at least 12 nt long (1809 transcripts) and leaderless transcripts (960 transcripts). 

To calculate DGunfold, DGmRNA was first calculated using RNAfold v2.5.0 to represent the folded state 

of the mRNA TIR in the absence of ribosome binding. For leadered transcripts with 5’ UTRs at least 

25 nt long, this region was defined as 25 nt upstream of the start codon and the first 25 nt of the 

coding sequence. For leadered transcripts with 5’ UTRs shorter than 25 nt and for the leaderless 

transcripts, this region was defined as 50 nt downstream of the transcription start sites (TSSs). 

Then to approximate the ribosome-bound state of the mRNA TIR, DGinit, the TIR structure 

prediction was processed using RNAstructure v6.3 to break any base pairing within the ribosome 

footprint. The ribosome footprint was assumed to be 12 nt upstream of the start codon and the 

first 13 nt of the CDS for leadered transcripts, and the first 13 nt of the CDS for leaderless 

transcripts (31). Then DGunfold was calculated as DGinit - DGmRNA. 

    The number of unpaired nucleotides at each transcript 5’ end was predicted from MFE 

structures produced by RNAfold v2.5.0 when folding the entire CDS (leadered and leaderless 

genes), the 5’ UTR (leadered genes only), the 5’ UTR plus the first 18 nt of the CDS (leadered genes 

only), or the first 20 nt of the transcripts (leadered and leaderless genes). Separately, the 

probabilities of certain transcript regions being unpaired were predicted using RNAplfold v2.5.0. 

To assess the base-pairing status of the 5’ ends of transcripts in a different way, we folded the first 

20 nt of each transcript and calculated for the first 3 nt and 5 nt (i) the probabilities that all the 
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nucleotides are unpaired or (ii) the averaged unpaired probability of each nucleotide. To predict 

accessibility of ribosome-binding regions in leadered transcripts, we folded the last 30 nt of the 

5’ UTR plus either the first 20 nt of the CDS or the start codon only. We then quantified the 

probability of the entire start codon being unpaired as well as the averaged dinucleotide unpaired 

probability over either the entire folded sequence or the Shine-Dalgarno region (-6 to -14 relative 

to the start codon). 

Ribosome occupancy. We used RNAseq data from GSE127827, which included libraries made from 

total rRNA-depleted RNA (referred to henceforth as mRNA libraries) and well as libraries made 

from ribosome footprints. After retrieving data using SRA Toolkit v3.0.0, we processed the 

sequencing data following the original methods with some modifications (32). First, quality control 

was performed using FastQC v0.11.9 (33). The ribosome footprint data were further processed 

using Trimmomatic v0.39 with the options ILLUMINACLIP:~/adaptors_SE.fa:2:30:10 

SLIDINGWINDOW:4:20 MINLEN:25, which including removing adaptors, cutting reads when 

average quality per nucleotide was lower than 20 within a 4-nt sliding window, and discarding 

reads less than 25 nt long (34). This was not necessary for mRNA libraries due to their higher 

quality. Next, for both ribosome footprint and mRNA libraries, we performed alignment to discard 

reads aligned to tRNA and rRNA using Bowtie2 v2.4.5 with the option --very-sensitive (35). The 

remaining reads were then aligned to the genome sequence of Mycolicibacterium smegmatis 

strain mc2-155 using Bowtie2 v2.4.5 with the option --sensitive-local. Reads and alignments were 

processed and sorted using SAMtools v1.16.1 (36). To further remove unmapped reads, PCR or 

optical duplicate reads, reads that are not primary alignments and alignments with MAPQ smaller 

than 10, we filtered the alignments using SAMtools v1.16.1 with the options -q 10 -F 1284. The 
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remaining alignments were then quantified in TPM for both ribosome footprint and mRNA 

libraries using StringTie v2.2.1 (37). Such quantification was done separately for four different 

transcript regions: (i) the entire CDS, (ii) the entire CDS plus the 20 nt upstream, (iii) the 5’ end of 

the transcript (the first 18 nt of the CDS for leaderless transcripts or the last 20 nt of the 5’ UTR 

plus the first 18 nt of the CDS for leadered transcripts), and (iv) the CDS excluding its first 18 nt. 

We also quantified the coverage for each third of every CDS (5’ third, middle third, 3’ third) to 

capture regional differences. Then for each of the two affinity tag swapped strains, we calculated 

the TPM ratios of ribosome footprint library coverage over mRNA library coverage using the 

averaged TPMs over two replicates. At the end, the normalized ribosome occupancy for each CDS 

in these transcript regions was calculated as the averaged TPM ratios over these two dual-RpsR-

tagged strains. 

Shine-Dalgarno sequence. In order to approximate the strength of the Shine-Dalgarno sequences 

of leadered genes, we quantified the GA percent and GA frequency within the region of -17 to -4 

relative to the start codon, as well as the frequencies of 17 specific Shine-Dalgarno motif variants 

in the 25 nt upstream of the start codon. 

Other properties. This group of properties includes the sequence length and steady-state 

transcript abundance (0 min RIF treatment; “initial abundance”). We quantified length for 5’ UTRs 

and CDSs based on the annotation of 7120 CDSs (Table S3-1-S3-3). CDS abundance was 

normalized by the CDS length. The initial abundances in log phase and hypoxia were used 

respectively for log phase and hypoxia model development. 

Feature selection procedure 
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Our complete feature set includes five different feature types (nucleotide frequency, codon 

frequency, secondary structure, ribosome occupancy, and others) in four transcript regions (5’ UTR, 

5’ end of transcript, CDS, and 3’ UTR) (Figure 3-3A; Table S3-5). The design of this feature set was 

driven by our hypothesis that the transcript stability is controlled by the unknown combination of 

multiple transcript properties. However, the intersection of multiple feature types within and 

across transcript regions leads to high correlations among several features. Although those 

correlations might not directly affect machine learning model performance, the shared credit of 

correlated features contributing to the predictions could affect the importance rankings of 

features. Such correlations also complicate the interpretation of feature contributions. 

    We therefore sought a feature selection algorithm to minimize the influence of the correlated 

features without losing potentially important features. Commonly used selection techniques lack 

the capability to consider both the relationships among the features themselves and the 

relationships between the features and the predicted class (38). To perform feature selection in a 

manner suitable for our feature structure and goals, we developed the following algorithm. Our 

algorithm only targeted the highly correlated features ( | Spearman’s r |>= 0.6) that were of the 

same type and within the same transcript region. We also took into account correlations between 

the individual features’ values and classes, measured by the Kendall rank correlation coefficient 

(39). For this process, we considered the 5’ UTR and 5’ end of the transcript to be the same 

transcript region. Our goal was to select features that have less correlations with other features, 

while potentially contributing the most to the model performance. The selection procedure was 

done separately for each of six models that used the combined feature set to predict the stability 

class: leadered genes and leaderless genes each in log phase, hypoxia, and fold change in hypoxia 
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relative to log phase. The algorithm returned a list of features to be used for the machine learning 

model training and evaluation (See Supplementary Materials). 

Machine learning classifier training 

Given the limited number of leadered and leaderless transcripts and the imbalanced number of 

genes in the half-life classes, random forest emerged as an optimal choice given its fast training 

convergence and ability to avoid overfitting (40). To train and evaluate the classifiers, we 

implemented 5-fold nested cross-validation using the scikit-learn 1.2.1 package (41). Each dataset 

was split into 5 folds in a stratified manner for outer cross-validation. The same training and 

testing sets were used for random class prediction models and random forest classifiers at each 

fold iteration to compare their performances. To measure the performance of the classifiers given 

the numerically imbalanced yet equally important classes, we used the macro F1 score, i.e., the 

unweighted mean of F1 scores for each class, for all the scoring metrics. See below formula for 

the F1 score and the macro F1 score. 

#! =
2 ∗ '(

2 ∗ '( + #( + #* 

+,-./	#! =	
∑ #!_#$
#%!
2  

Where TP is the number of true positives, FN is the number of false negatives, and FP is the 

number of false positives. n is the number of classes.  

    In order to perform hyperparameter tuning for random forest classifiers, the training set was 

split in the same manner as before for inner cross-validation to do a randomized search on 

hyperparameter sets H (max_depth: [3, 5, 7], min_samples_leaf: [20, 30, 50], min_samples_split: [5, 

10, 20]). The optimal hyperparameters set h* selected by inner cross-validation was used for 
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training with the entire training set to obtain the optimal model RandomForestModel*, which 

was then evaluated using the outer testing set. To quantify the contributions of individual features, 

we used both the impurity-based Gini importance and the SHAP values of predictions made on 

outer testing sets. To reduce the bias of random sampling, the nested cross-validation was 

repeated 10 times with a different randomly split of training and testing sets each time. Ultimately, 

the outputs of the nested cross-validation include the F1 scores of all fold iterations for 10 

repetitions, the averaged F1 scores of the 10 repetitions, averaged Gini importance scores of 10 

repetitions, and SHAP values for each stability class across all fold iterations for 10 repetitions (See 

Supplementary Materials). 

Statistical comparison of machine learning models 

For machine learning models developed using cross-validation, there are two potential issues in 

testing the statistical significance of model performance differences. First, the performance of 

classifiers could be driven by a specific split of training and testing sets. To better ensure that a 

potential significant difference between classifier F1 scores is not due to a random split, ideally 

the difference in F1 score should be calculated using the same fold iteration of data for each pair 

of compared classifiers. Second, in the case of statistically testing the significance of differences 

between two distributions of F1 scores or F1 score differences, the commonly used Student’s t-

test could provide misleading results in the context of cross-validation. The reason is that the 

resampled data in training and testing makes the F1 scores, and thereby the F1 score differences, 

dependent across iterations. This violates the independence assumption in the Student’s t-test, 

and could lead to high Type I error due to the underestimated variance of difference (42). To 

address these problems, Nadeau and Bengio proposed a corrected paired t-test, which can take 
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into account the dependency in samples and reduce the number of fold positive errors (43). In 

our case, the classifiers were trained and evaluated using 5-fold nested cross-validation. The entire 

procedure was repeated 10 times to get averaged performance. Each time, the model was trained 

and tested using the subsampled training and testing sets that were overlapped in different fold 

iterations. We implemented Nadeau and Bengio’s corrected paired t-test to evaluate the 

differences between our random forest classifiers and random estimators that predict class 

membership randomly without using any of the features. Each classifier and a random estimator 

are trained and tested using the same fold of the dataset through the cross-validation. At the end, 

50 paired F1 scores (5 folds * 10 repetitions) of these two classifiers were collected to test for the 

significance of difference. For the classifiers that were trained separately for the genes, conditions 

or features being compared, we were not able to train and evaluate their performances with the 

same dataset. We therefore calculated DF1 score as the differences between F1 scores from the 

random forest classifier and the random estimator for each comparison of interest and used the 

Wilcoxon rank-sum test to compare the DF1 scores from 10 repetitions between conditions, gene 

types, and features. 

Essential gene enrichment analysis 

Essentiality of 6642 M. smegmatis genes were defined using the CRISPR interference system (44). 

To statistically test the enrichment of essential genes in each stability class, only genes with 

essentiality designations and half-lives calculated in both log phase and hypoxia were used. This 

resulted in 3680 genes, of which 1327 were classified as leadered, and 793 were classified as 

leaderless. These genes were tested for essentiality enrichment in half-life classes using a 

hypergeometric test with FDR correction for multiple hypothesis testing (Figure 3-2G). 
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Results 
Overview of an experimental and computational framework to unravel the 
intrinsic transcript properties that impact transcript stability in M. smegmatis 

Bacterial mRNA half-lives are known to vary among transcripts and between conditions. To 

identify the transcript properties that contribute to the variance in transcript stability within and 

across conditions in M. smegmatis, we developed an experimental and computational framework 

consisting of the following four stages (Figure 3-1). We will summarize the stages here and 

describe them in greater detail in subsequent sections. First, we used RNAseq to quantify 

transcript half-lives transcriptome-wide. To characterize the impact of microenvironment on 

transcript stability, transcript degradation profiles were determined in log phase growth and 

hypoxia-induced growth arrest. We calculated transcript half-lives by linear regression of log2 

transcript abundance over time for each condition. High-confidence half-lives were determined 

for 4,857 genes in log phase and 4,864 genes in hypoxia (Figure 3-2B). The log phase half-lives 

were published previously in (24). Second, transcripts were classified into quartiles based on half-

life in log phase or hypoxia, or by fold-change in half-life in hypoxia compared to log phase. Third, 

we compiled transcript properties (features) that we hypothesized could affect half-life and 

developed random forest classifiers to identify properties predictive of half-life class membership. 

This was done separately for leadered and leaderless genes given differences in their features and 

the idea that their half-life determinants might differ. Fourth, the values of features identified as 

important were plotted by half-life class to provide an overview of the association between 

transcript properties and classes. We also implemented SHAP (SHapley Additive exPlanations) 

during classifier development to further explore the impact of features on each class (45). Together, 
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our pipeline reveals a comprehensive landscape of transcript half-lives and the transcript features 

influencing these half-lives in M. smegmatis in commonly studied rapid-growth and growth-

arrested conditions. 

 

Figure 3-1. Schematic of the framework to identify transcript properties that impact 
transcript stability in M. smegmatis. 
The framework was designed to reveal the transcript properties that were differentially associated with 
transcript stability depending on the transcript type and condition. Stage 1: Transcriptome-wide mRNA 
degradation profiles were collected in log phase and hypoxia using RNAseq followed by transcript half-life 
calculation. Stage 2: In each condition, transcripts were classified into four groups according to their half-
lives. Stages 3 and 4: A series of random forest classifiers were trained to classify transcripts into their 
assigned half-life class based on the values of a set of transcript properties (features), and identify the 
features important for these classifications. 

 

Transcript degradation profiles capture variance in transcript stability both within 
and between growth conditions 

To obtain transcriptome-wide mRNA degradation profiles in M. smegmatis, we inhibited 

transcription initiation with rifampicin (RIF) followed by RNA extraction at various time-points. 

Hypoxia was produced by a variation of the Wayne model in which cultures were sealed with a 

defined volume of headspace and incubated with shaking for 19 hours (25). RIF was injected 

through rubber caps with a needle to minimize introduction of oxygen, and bottles were sacrificed 
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at each time-point. Transcript abundance was quantified by RNAseq for samples harvested after 

0, 1, 2, 4, 8, 16, and 32 minutes of RIF exposure in log phase and 0, 3, 6, 9, 15, 30, and 60 minutes 

of RIF exposure in hypoxia. Transcript abundance was normalized by relative abundance values 

determined for a set of genes by qPCR (24). A two-dimensional overview of the degradation 

profiles obtained by UMAP revealed a global difference between log phase and hypoxia (Figure 

3-2A) (46), consistent with expectations from previous work indicating the transcript half-lives are 

longer in mycobacteria in response to hypoxia (2,25). Samples also clustered by time-point after 

addition of RIF, corresponding with the temporal changes in transcript abundance and indicating 

that our method successfully captured the global degradation trends in both conditions. 

    To further describe the transcript degradation process, we then used linear regression models 

to calculate transcript half-lives from the degradation profiles (Figure 3-2B; Table S3-4). The time-

points used for half-life determination were carefully chosen to avoid confounding from 

continued elongation by RNA polymerase following addition of RIF as well as decreases in 

degradation rate that appear to be induced by RIF over time (24). As expected, there were wide 

ranges of half-lives in each condition. The half-life measurements also confirmed the expected 

global difference between log phase and hypoxia, with stabilization of all transcripts evident in 

hypoxia (Figure 3-2B). These findings are consistent with a previous assessment of global 

transcript stability in hypoxia-exposed M. tuberculosis (2), and our previous work showing 

stabilization of several transcripts in hypoxia-exposed M. smegmatis (25). However, this is the first 

transcriptome-wide report of mRNA half-lives in any hypoxia-exposed mycobacterial species. The 

observed global variance in transcript stability and transcript stabilization in response to hypoxia 

was maintained when we examined the transcripts of subsets of genes with defined transcription 
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start sites (TSSs) (Figure S3-1A, C). These subsets were composed only of genes that were 

monocistronic or the first in a polycistron, according to the annotations in (7) (Materials and 

Methods), and classified as leadered (having a 5’ UTR of 5 nt or more) or leaderless (lacking a 5’ 

UTR). Genes that were second or beyond in a polycistron or lacked annotated TSSs were excluded. 

For genes with multiple TSSs, we used the TSS with the highest read coverage in log phase to 

define the 5’ UTR or lack thereof (7). Direct comparison of leadered and leaderless transcripts 

showed a statistically significant yet biologically limited difference in half-lives, with more leadered 

transcripts having longer half-lives in both log phase and hypoxia (Figure S3-1E-H). 

 

Figure 3-2. Transcriptome-wide mRNA degradation profiles in M. smegmatis. 
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A. UMAP projection showing condition differences and temporal changes in global degradation profiles 
(Materials and Methods). Each dot represents an RNAseq library from which normalized mRNA abundance 
values for each gene were obtained. The same data are shown in the two UMAP panels, colored according 
to condition (left, two conditions) or time after adding RIF (right, time points). B. Distributions of transcript 
half-lives in log phase and hypoxia. C-D. Half-life distributions with classes defined by half-life quartiles in 
log phase and hypoxia. E. Comparison of half-life class membership between log phase and hypoxia. F. 
Distribution of half-life fold changes in stabilization with classes defined by fold change quartile. G. 
Frequency of essential genes in each half-life class. Significance of enrichment and depletion of essential 
genes within each class were tested using a hypergeometric test with FDR correction (Materials and 
Methods). p.adjust < 0.05 *, p.adjust < 0.01 **, p.adjust < 0.001 ***. 
 
 
    To facilitate construction of machine learning models to identify transcript features affecting 

half-life, we grouped transcripts into classes based on half-life. Since the classes were split from a 

continuous range of half-lives, in theory one could define any number of classes. To select the 

number of classes that most accurately represented the degradation landscape, we first 

performed hierarchical clustering of the degradation profiles (Materials and Methods). The 

clustering produced four major classes with distinct degradation patterns (Figure S3-2A, E). We 

therefore decided to create four half-life classes. We chose to define classes based on half-life 

quartiles rather than by clustering of the complete degradation profiles to avoid confounding 

from continued elongation of RNA polymerase after addition of RIF as well as RIF-induced stress 

responses (Figure 3-2C, D). Nonetheless, the classes defined by half-lives had very similar gene 

composition to the clusters defined by hierarchical clustering (Figure S3-3A-F) and similarly 

separated genes according to transcript degradation rate (Figure S3-2). 

    When comparing the gene sets in each half-life class in log phase and hypoxia, we found that 

many genes switched classes in the two conditions (Figure 3-2E). This was true for both leadered 

and leaderless transcripts (Figure S3-1B, D). This suggested that the relationship between 

transcript features and half-life differs in different conditions. To facilitate later identification of 
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those features, we additionally classified genes according to the extent of stabilization in hypoxia 

vs log phase (defined by fold-change in half-life, Figure 3-2F). 

    Interestingly, we found that in hypoxia, genes classified as essential by CRISPR interference (44) 

were significantly enriched in the slowest degradation class while significantly depleted in the 

fastest degradation class (Figure 3-2G). Consistent with this, genes with a larger fold-change in 

stability in response to hypoxia were more likely to be essential than those with a smaller fold-

change (Figure 3-2G). However, there was no consistent relationship between essentiality and 

half-life in log phase. This result supports the idea that global transcript stabilization in response 

to hypoxia is likely a regulatory mechanism as well as an energy-saving mechanism in 

mycobacteria. The significant stabilization of essential genes in hypoxia was only observed for 

leadered genes and not for leaderless genes, which suggests the possibility of different regulatory 

mechanisms for those two types of transcripts (Figure S3-4A, B). 

Nonlinear combinations of transcript properties (features) appear to specify half-
life 

We sought to identify the transcript properties that specify transcript half-life in M. smegmatis. To 

address this question as agnostically as possible, we compiled and quantified hundreds of 

properties, which we refer to as features. These included nucleotide and sequence features, 

predicted secondary structure features, and other features such as length, steady-state abundance, 

and ribosome occupancy from a published dataset (32). We categorized the features by type as 

well as by the gene region under consideration (Figure 3-3A), because we expected that some 

features would have different impacts depending on their location; for example, A/U-rich codons 

are expected to promote translation when located near the start codon due to their impact on 
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secondary structure (47,48), but be translated less efficiently when located elsewhere in a coding 

sequence due to being less preferred codons in mycobacteria. 

    Random forest classifiers were then trained separately for each gene type (leadered and 

leaderless) in each condition (log phase, hypoxia, and fold change in hypoxia relative to log phase) 

(Figure 3-3B). The classifiers were trained using 5-fold nested cross-validation and evaluated by 

the difference in F1 score compared to random prediction models (DF-score; see Materials and 

Methods). We trained classifiers using combined feature sets as well as using only features of each 

of the seven types (5’ UTR, CDS nucleotide, CDS secondary structure, codon, translation, and 

others) in order to evaluate the contribution of each feature type (Figure 3-3B). For the combined 

feature sets, we used a customized feature selection procedure to reduce the number of 

correlated features (Materials and Methods). As we predicted, classifiers that used the combined 

feature sets achieved the best performances, suggesting that the stability of transcripts is specified 

by the combination of various types of transcript properties. The DF-scores were low compared 

to those typically reported for random forest classifiers designed to distinguish between distinct 

clinical or physiological states (e.g., diseased tissue vs healthy tissue), but were consistent with 

expectations for our data type, in which classes were made from continuous distributions of half-

life values. A majority of the classifiers performed significantly better than random, and were 

strong enough to facilitate our overarching goal of identifying the features that impact half-life. 

Interestingly, most of the feature types could individually predict transcript stability with 

performance that varied depending on transcript type and condition (Figure 3-3B). 
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Figure 3-3. Non-linear combinations of diverse transcript properties specify half-life in M. 
smegmatis. 
A. Summary of transcript features used for random forest classifiers. The features were grouped into six 
different types and quantified for specific transcript regions. Numbers in square brackets indicate the 
number of features of each type selected by our feature selection process. Numbers in the shaded regions 
indicate the number of features of each type in each transcript region. Asterisks indicate cases where the 
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total number of unique features is less than the sum of the numbers above because some features are 
classified as 5’ UTR type features for leadered transcripts and translation type features for leaderless 
transcripts (see Table S3-5). B. Comparisons of classifier performance to random prediction models. Random 
forest classifiers were trained separately for leadered and leaderless transcripts to predict stability in three 
conditions using various feature sets. The combined feature sets were selected by the log phase model for 
each transcript type (see Materials and Methods) and were used to train models in all three conditions. The 
5’ UTR feature set includes both translation-related and non-translation-related features. The translation 
feature set includes log phase ribosome profiling. DF-score represents the difference in averaged F-score 
between random forest classifiers and random prediction estimators. Dots and bars represent mean and 
standard deviation of DF-scores for 10 repetitions of each model. The significance of the performance 
differences between random forest classifiers and random prediction estimators was tested using Nadeau 
and Bengio’s corrected paired t-test (Materials and Methods). p < 0.05 *, p < 0.01 **, p < 0.001 ***. C-E. 
Comparisons of DF-scores between leadered and leaderless transcript models in log phase, hypoxia, and 
fold change in hypoxia relative to log phase. For each condition, the combined feature sets were selected 
by the leaderless model and were used to train models of both transcript types. F-G. Comparisons of DF-
scores between log phase and hypoxia models for leadered and leaderless transcripts. For each transcript 
type, the combined feature sets were selected by the log phase model and were used to train models of 
both log phase and hypoxia. The translation feature set excludes log phase ribosome profiling. The 
significance of the differences in model performance in C-G were tested using the Wilcoxon rank-sum test 
(Materials and Methods). For all panels, p < 0.05 *, p < 0.01 **, p < 0.001 ***. 
 
 
    Our results confirmed the association of 5’ UTR features with transcript stability as suggested 

in multiple studies (12,15,19,49). We also found that translation-related features were more 

important in log phase than in hypoxia for both transcript types, which is further explored below. 

Notably, DF-scores resulting from the combined feature sets were far less than the sum of the DF-

scores from the individual feature types, indicating that the collective effect was not a result of 

linearly accumulated contributions of each feature type. This is consistent with the idea that 

transcript features interact in a non-linear fashion with respect to their impact on transcript half-

life. Additionally, and in contrast to some previous reports (2,15), we found that no individual 

feature or feature type appeared to be a dominant determinant of half-life. Rather, our results 

indicate that the underpinnings of mRNA stability in M. smegmatis are complex, arising from non-

linear combinations of diverse transcript properties. 
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The importance of secondary structure and translation in predicting mRNA half-
life varies by transcript type and condition 

To determine if some feature types were differentially important depending upon transcript type 

(leadered or leaderless) or condition, we further compared the performance of each classifier 

separately for each condition and each transcript type (Figure 3-3C-G). To rigorously compare DF-

scores, the same feature set should be used in the models being compared. However, there were 

cases where the features differed between models, such as the absence of 5’ UTR features in the 

leaderless gene models. We therefore compared the leadered and leaderless models to each other 

using classifiers trained with only the features that were present in both (Figure 3-3C-E). 

    When considering the feature types separately, we found that CDS secondary structure features 

(as measured by the DG of minimum free energy (MFE) structures, DGMFE) were significantly more 

important for leaderless transcripts than for leadered transcripts in log phase (Figure 3-3C), which 

was exactly the opposite of the situation in hypoxia (Figure 3-3D). We also made direct 

comparisons between conditions separately for leadered and leaderless genes in order to use all 

available features for each transcript type. The trend with CDS secondary structure features was 

also observed in these comparisons, with these features being more important in hypoxia than 

log phase for the leadered genes but more important in log phase than in hypoxia for the 

leaderless genes (Figure 3-3F, G). These results indicate that secondary structure differentially 

contributes to the stability of leadered and leaderless transcripts in different conditions. 

    A different pattern was seen for codon features, which were more important for leadered genes 

than for leaderless genes in log phase only, and more important in log phase than in hypoxia for 

leadered genes only (Figure 3-3C, F). The impact of codon content on half-life is likely related at 
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least in part to translation having a greater influence on half-life in log phase, as observed for 

both transcript types in Figure 3-3B. However, comparisons between conditions of the impact of 

translation-related features were complicated by the inclusion of ribosome profiling data, which 

was performed only in log phase. We therefore trained classifiers excluding ribosome profiling 

features (Figure 3-3F, G) and directly compared their performance in log phase compared to 

hypoxia for each gene type. We still observed better performance of translation features in log 

phase than in hypoxia for both transcript types. These results suggest that translation has a larger 

impact on transcript half-life in log phase than in hypoxia regardless of the transcript type. 

We hypothesized that translation influenced transcript half-life more in log phase because in 

that condition most mRNAs were being translated at rates that varied according to transcript 

properties, while in hypoxia most transcripts were not being actively translated. For technical 

reasons, we tested this experimentally using carbon starvation rather than hypoxia. In previous 

work, we found that carbon starvation induced transcript stabilization similar to that seen in 

hypoxia (25). Here we performed polysome profiling and found that indeed, while monosomes 

and polysomes were readily detected in log phase cells, they had much lower abundance relative 

to ribosomal subunits in carbon-starved cells (Figure S3-5). We furthermore collected fractions 

from the polysome profiling gradients and used qPCR to compare the relative abundance of four 

arbitrarily selected mRNAs in various fractions. For all four transcripts, the amount of transcript 

associated with monosomes and polysomes compared to unbound transcript decreased in carbon 

starvation compared to log phase (Figure S3-5). These results are consistent with the idea that in 

non-growing cells, a larger portion of transcripts are unassociated with ribosomes compared to 

in actively growing cells. 
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    In order to compare the collective effect of all features between leadered and leaderless 

transcripts, we trained classifiers for both using the same set of features selected for leaderless 

models in each condition (Figure 3-3C-E). The combined features were better able to predict 

stability for leadered transcripts than for leaderless transcripts in log phase, and vice versa in 

hypoxia (Figure 3-3C, D). Similarly, we compared the collective effect of all features between log 

phase and hypoxia using the same sets of features selected for log phase models for each 

transcript type (Figure 3-3F, G). The result showed better performance in log phase than hypoxia 

for leadered transcripts and the opposite for leaderless transcripts, consistent with the results of 

the direct transcript type comparisons. For the classifiers predicting the extent of stabilization in 

response to hypoxia, we observed no significant difference between leadered and leaderless 

transcripts for the majority of the shared feature types except CDS nucleotide and codon content 

features (Figure 3-3E). However, the leadered/leaderless comparison by necessity excluded 5’ UTR 

features, and we noted that the 5’ UTR features were the feature type that best predicted fold 

change stability for leadered genes (Figure 3-3B). This contrasted with the individual log phase 

and hypoxia classifiers where the 5’ UTR feature group was relatively weak (Figure 3-3B). Overall, 

our results indicate that the specific ways that various properties contribute to transcript stability 

are tied to the leader status as well as the condition. 

Identification of specific features differentially predictive of half-life for leadered 
and leaderless transcripts 

In order to identify the transcript features that were differentially important for classification of 

leadered vs. leaderless transcripts, we evaluated the Gini importance rankings of the same set of 

features, selected by leaderless models, that were used to train both leadered and leaderless 
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models. For each condition, we combined the top 20 most important features identified in the 

leadered and leaderless models and compared the relative importance levels of these features for 

the two gene types (Figure 3-4A, Figure S3-6A, B). We found that the most important features 

included features from each of the feature types in all three conditions, which further confirmed 

the collective effect of many features on dictating transcript stability. Furthermore, these 

comparisons also highlighted the different importance levels of many of the features between 

transcript types. 

To determine the specific relationships between features of interest and half-life, we plotted the 

feature value distributions for each stability class (Figure 3-4B. SHAP distributions at Figure S3-

10). This allowed us to better understand why these features were important for model predictions 

and, more interestingly, how they were associated with transcript stability. Consistent with our 

finding that codon frequencies were more important for leadered than leaderless transcripts in 

log phase, we observed a number of specific codons with higher importance levels for leadered 

compared to leaderless transcripts. Among them, CGC (Arg), CGG (Arg) and UUG (Leu) are 

examples of codons with higher importance for leadered transcripts. Their distributions exhibited 

inverse correlations with stability for both leadered and leaderless transcripts, suggesting that 

they may negatively impact transcript stability (Figure 3-4B). However, these inverse relationships 

were stronger for leadered transcripts than for leaderless transcripts, which may explain the 

differences in importance for the classifiers (Figure 3-4B). In contrast, another Arg codon, CGU, 

was more important for leaderless transcripts compared to leadered transcripts and had a more 

complex relationship with half-life class (Figure 3-4B). 
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    For leaderless transcripts, both the frequency of CG dinucleotide motifs and extent of CDS 

secondary structure were positively correlated with stability (Figure 3-4B). These trends were 

weaker for leadered genes. These results support the conclusion that in log phase, CDS secondary 

structure plays a more important role for leaderless transcripts compared to leadered transcripts. 

5’ UTRs appear to influence transcript half-life through both translation-related 
and translation-independent effects 

The differences in stability determinants between leadered and leaderless transcripts were not 

limited to these shared features. Although we showed that the 5’ UTR itself was capable of 

predicting transcript stability (Figure 3-3B, Figure S3-6C), the mechanisms by which it impacts 

stability were unclear. To further explore this, we categorized 5’ UTR features as translation-related 

(e.g., Shine-Dalgarno sequence and predicted secondary structure in the ribosome binding region) 

and non-translation-related (e.g., nucleotide content and predicted secondary structure outside 

of the ribosome binding region) and trained models separately using these two feature groups 

(Figure 3-4C, Figure S3-6D). Surprisingly, our results suggest that the non-translation-related 

features have a larger impact on transcript stability than the translation-related features in both 

log phase and hypoxia. However, the model performance of translation-related features was 

significantly better in log phase compared to hypoxia, which is consistent with our finding that 

translation is more important for predicting transcript stability in log phase. Among all the 

translation-related features in 5’ UTR, the secondary structure seemed to be more important than 

the Shine-Dalgarno sequence (Figure 3-4D), which is the opposite of what was previously reported 

in E. coli (15). Such a difference could be because of the GC-richness of mycobacteria, which may 
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cause secondary structure to have a bigger impact on ribosome access compared to less GC-rich 

species. 
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Figure 3-4. Transcript features differentially predict half-life for leadered and leaderless 
transcripts in log phase. 
A. Summary of the most important features for the leadered and leaderless half-life class prediction models 
in log phase. Random forest classifiers were trained using the same set of features, selected by the leaderless 
model, for leadered and leaderless transcripts. The 20 features with the highest Gini importance rankings 
for each model were then combined and their relative importance rankings indicated by intensity of 
coloration in the heatmap. See Table S3-5 for feature definitions and details. B. Feature value distributions 
within each half-life class for selected features that differentially predicted half-life class for leadered and 
leaderless transcripts. Dimmed plots indicate that the feature was less important for that gene type. Dots 
and bars represent median and interquartile range. C. Comparisons of leadered gene models using only 5’ 
UTR features in three conditions. Models were trained and compared using the complete set of 5’ UTR 
features, translation-related 5’ UTR features only, or non-translation-related features only. See Table S3-5 
for the specific features in each category. The performance differences between random forest classifiers 
and random prediction estimators were tested using Nadeau and Bengio’s corrected paired t-test (Materials 
and Methods). Additionally, the log phase and hypoxia models using translation-related features were 
compared to each other with the Wilcoxon rank-sum test (Materials and Methods). D. Comparison of the 
importance of Shine-Dalgarno sequence features and the secondary structure features in the ribosome 
binding region of 5’ UTR in the log phase model for leadered transcripts. Each dot is the average Gini 
importance value from 10 repetitions of the model. The difference in Gini importance was tested using the 
Wilcoxon rank-sum test. E. Examples of 5’ UTR features differentially predicted half-life class between log 
phase and hypoxia. For all panels, p < 0.05 *, p < 0.01 **, p < 0.001 ***. 

 

    Consistent with our finding that CDS secondary structure was more important in hypoxia for 

leadered transcripts, several 5’ UTR features associated with secondary structures were more 

predictive of transcript half-life in hypoxia. The overall 5’ UTR G+C frequency was positively 

correlated with stability, while 5’ UTR DGMFE and U nucleotide frequency were negatively correlated 

with stability (Figure 3-4E, SHAP distributions at Figure S3-10). The frequency of the GC 

dinucleotide motif showed a similar trend although it was more predictive in log phase. For both 

the GC dinucleotide and the overall G+C content, the relationships with half-life were monotonic 

in hypoxia but were more complicated in log phase, with the slowest half-life class having lower 

frequencies than the medium-slow class. This could be a result of GC-rich sequences producing 

secondary structure that reduces ribosome binding in some cases. Given the greater apparent 
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impact of translation on half-life in log phase, we would expect that impediments to ribosome 

binding would negatively affect half-life in log phase more than in hypoxia. 

Leaderless gene start codons appear to affect transcription rate but not transcript 
half-life 

Mycobacteria use both AUG and GUG start codons at high frequency. However, leaderless 

transcripts have more GUG start codons while leadered transcripts have more AUG start codons 

(Figure S3-7A, D), leading us to investigate the relationship between start codon and degradation 

rate. Start codon identity had low Gini importance rankings for both leadered and leaderless genes, 

suggesting that it may not be a major determinant of translation efficiency for either transcript 

type. Despite its low Gini importance, AUG-initiating leadered transcripts had slightly longer half-

lives on average than GUG-initiated leadered transcripts in log phase (Figure S3-7B, E). When we 

examined steady-state transcript abundance as a function of start codon, we found that GUG-

initiated transcripts had higher abundance on average, and that this effect was stronger for 

leaderless transcripts (Figure S3-7C, F). Since the relationship between start codon usage and 

steady-state abundance was stronger for leaderless transcripts and not explained by half-life, we 

considered that the identity of the first nt of a transcript may affect the efficiency of transcription 

initiation. It is well known that E. coli RNA polymerase preferentially initiates transcription with 

purines (50), and consistent with this, mycobacterial transcripts most often begin with purines 

(5,6,24). We examined the identity of the first nt of the 5’ UTRs of leadered transcripts and found 

that while transcripts beginning with As and Gs had equivalent half-lives, those beginning with G 

had higher abundance on average (Figure S3-7G-I). Together, these data suggest that 

mycobacterial RNA polymerase initiates transcription more efficiently with Gs than As. 
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Identification of specific features differentially predictive of half-life in log phase 
and hypoxia 

In order to identify the specific transcript features that were differentially important for 

classification among conditions, for each transcript type we used the same set of features, selected 

by log phase models, was used to train models in log phase, hypoxia and fold change in hypoxia. 

We then combined the top 20 features from each condition and compared the relative importance 

levels of these features across conditions (Figure 3-5A). Our results further confirmed the collective 

effect of various features on dictating transcript stability in each condition, but more importantly, 

revealed the ways in which the contributions of these features differed among conditions. 

Consistent with our results of training using 5’ UTR related features only (Figure 3-3B, 3-4C), the 

5’ UTR features remained important across conditions in the combined feature models for 

leadered transcripts (Figure 3-5A). These results further confirmed the role of 5’ UTR in predicting 

transcript stability. 

    The DG of unfolding secondary structure at translation initiation regions (TIRs) is a feature that 

can be used to predict the ribosome accessibility (10). We found that the DG of unfolding TIRs 

was an important transcript feature associated with half-life for leadered transcripts in log phase 

(Figure 3-4A, 3-5B, SHAP distributions of 3-5B at Figure S3-11). Consistent with our finding that 

translation was more important in log phase, the DG of unfolding TIRs exhibited a stronger inverse 

correlation with half-life in log phase than in hypoxia (Figure 3-5B). This is consistent with a model 

in which higher accessibility of TIRs to ribosomes leads to greater translation efficiency or greater 

association of transcripts with ribosomes, thus protecting transcripts from degradation in log 

phase. The greater importance of translation in log phase was also supported by the stronger 
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correlation between frequencies of certain codons and half-life, such as AAA (Lys) (Figure 3-5B). 

However, the effects of codon frequency on transcript half-life might be a mixture of translational 

and non-translational effects, as suggested by the higher importance of ACG (Thr) in hypoxia 

(Figure 3-5B), where translation overall appears to have less impact on half-life. 

    In contrast, for leaderless transcripts in log phase, our results indicated a more complicated 

relationship between secondary structure and translation, and their correlations with transcript 

stability. Although it was not reflected by the DG of unfolding TIRs, the secondary structure at the 

5’ end was still important for leaderless transcripts in log phase. Particularly, we observed a low A 

nucleotide frequency in the first 18 nucleotides of the CDS for transcripts in the fast half-life class 

and a low G+C frequency for those in the slow half-life class (Figure 3-5C, SHAP distributions at 

Figure S3-11). Notably, these features associated with secondary structure of the first 18 nt of 

CDSs were more predictive of half-life class for leaderless than leadered genes. While low 

secondary structure in this region is typical in many organisms (48) and was experimentally shown 

to increase translation efficiency for leadered transcripts in E. coli (47), it may have a larger 

influence on translation of leaderless genes because these lack the additional ribosome 

recruitment signals found in 5’ UTRs. 

    We found that the impact of secondary structure continued beyond the 5’ 18 nt of leaderless 

transcripts. We calculated DGMFE with different sequence window sizes to measure the secondary 

structure of the 5’ third, middle third, and 3’ third of each CDS. Consistent with our previous 

observation that these features were collectively more predictive of half-life class for leaderless 

genes in log phase (Figure 3-3C), we found generally negative correlations between CDS DGMFE 

and transcript half-life (Figure 3-5D, SHAP distributions at Figure S3-11). These correlations were 
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maintained when DGMFE was calculated using different window sizes (Figure S3-8A). The trends of 

CG dinucleotide and UA dinucleotide frequency also supported this idea (Figure 3-5D). Overall, 

our results suggested that the CDS secondary structure is positively correlated with transcript half-

life regardless of the region of CDS, consistent with the idea that secondary structure generally 

protects transcripts from cleavage by RNases (Figure 3-5D). These relationships were monotonic 

in hypoxia, but more complicated in log phase where transcripts in the slow half-life class deviated 

from the otherwise monotonic trend, having less secondary structure than those in the medium-

slow class (Figure 3-5D). We hypothesized that stronger secondary structure might compete with 

ribosome binding, and since translation appears to have a strong protective effect in log phase 

only, transcripts in the slow class in log phase might be protected more by ribosome binding than 

by secondary structure. To test this, we quantified the ribosome occupancy within the 5’ third, 

middle third, and 3’ third of each CDS and evaluated their correlations with transcript half-life. As 

expected, we observed that the slow half-life class had the highest average ribosome occupancy 

across the entire CDS (Figure 3-5E). The idea of competition between secondary structure and 

ribosome binding was further supported by a positive correlation between DGMFE and ribosome 

occupancy for the first third of transcripts in the slow class (Figure 3-5F). This trend was maintained 

when DGMFE was calculated using a different window size, but was not observed for the middle 

and 3’ thirds of transcripts (Figure S3-8B-E). Together, our results highlight the potential 

complexity of interplay between transcript features. 
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Figure 3-5. Transcript features differentially predict half-life in log phase and hypoxia. 
A. Summary of the most important features for the log phase, hypoxia, and log-to-hypoxia-fold-change 
models for leadered and leaderless transcripts. For each transcript type, random forest classifiers were 
trained using the same set of features, selected by the log phase model, for all three conditions. For each 
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transcript type, the 20 features with the highest Gini importance scores in each condition were then 
combined and their relative importance rankings indicated by intensity of coloration in the heatmap. See 
Table S3-5 for feature definitions and details. B-D. Feature value distributions within each half-life class for 
selected features that differentially predicted half-life class in different models. Dimmed plots indicate that 
the feature was less important for that condition and/or gene type. Dots and bars represent median and 
interquartile range. B. Selected features that were differentially important for log phase and hypoxia models 
for leadered genes. C. Selected features that were more important for log phase leaderless transcript models 
and are expected to impact the secondary structure of the 5’ ends of coding sequences. Plots for leadered 
genes are shown for comparison even though these features were not highly ranked for any leadered 
transcript models. D. Selected secondary-structure-related features that were relatively highly ranked for 
leaderless genes in both log phase and hypoxia models but showed different patterns of distributions across 
half-life classes for the two conditions. E. Log phase ribosome occupancy was quantified separately for each 
third of the CDS of each leaderless transcript. The x axes denote abundance of ribosome-bound reads 
mapping to the indicated transcript regions. F. For leaderless genes, the log phase ribosome occupancy for 
the first third of each CDS was plotted as a function of the DGMFE of the first third of the CDS. The statistical 
significance of the Spearman correlation and slope of the linear regression fit line are shown in square 
brackets. p < 0.01 **, p < 0.001 ***. 

 

Transcript abundance and length are more predictive of half-life in hypoxia 

Among the most important features, steady-state abundance and CDS length are the two 

identified by models across transcript types and conditions (Figure 3-5A, 3-4A, Figure S3-6A, B). 

The relationship between the transcript abundance and half-life has been investigated in various 

bacteria, yet the results are conflicting (Reviewed in (51)). Consistent with the studies in M. 

tuberculosis (2), E. coli (14-16,52-54) and L. lactis (13,16,55), we found that the distributions of 

transcript abundance exhibited an inverse correlation with half-life for both transcript types and 

conditions (Figure 3-6A, SHAP distributions at Figure S3-12). Although the correlations were 

weaker than what was reported for M. tuberculosis in log phase (2), we found that in M. smegmatis 

they were substantially stronger in hypoxia than log phase (Figure 3-6B). Comparing the 

correlations for leadered and leaderless transcripts did not reveal differences in log phase, but a 

stronger correlation was seen for leaderless transcripts compared to leadered transcripts in 

hypoxia (Figure 3-6B). These results indicate that, underlying the broad inverse correlation 
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between transcript abundance and half-life, the strength of the relationship varies depending on 

condition and to a lesser extent on transcript type. 

    5’ UTR length was an important feature in hypoxia but not in log phase (Figure 3-5A), and 

consistent with this, had a clear monotonic positive correlation with transcript half-life in hypoxia 

(Figure 3-6C, SHAP distributions at Figure S3-12). In contrast, the relationship between 5’ UTR 

length and transcript half-life was weaker and less straightforward in log phase (Figure 3-6C). CDS 

length was an important feature for both transcript types in both conditions (Figure 3-5A), 

exhibiting a roughly monotonic positive relationship with half-life class in hypoxia but a non-

monotonic relationship in log phase (Figure 3-6D, SHAP distributions at Figure S3-12). This is 

consistent with the finding in M. tuberculosis that CDS length has little broad correlation with 

transcript half-life in log phase (2). In contrast, CDS length has also been shown to have negative 

correlation with transcript half-life in L. lactis, E. coli, and S. cerevisiae (13,18,20). While the strong 

predictive power of CDS length in M. smegmatis was intriguing, there were two potential 

confounding factors. First, RIF only inhibits transcription initiation, having no impact on elongating 

RNA polymerases. We attempted to control for this during the process of half-life determination 

by identifying transcripts with delays in degradation following the addition of RIF and excluding 

the 1-2 minute delay periods from the half-life calculation (see Figure S2 in (24)). However, for 

longer transcripts the elongating RNA polymerases may continue for longer than 2 minutes, 

leading to an overestimation of half-life. 
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Figure 3-6. Steady-state transcript abundance is negatively associated with half-life, while 
transcript length is positively correlated with mRNA half-life in hypoxia. 
A. Distributions of steady-state transcript abundance within each half-life class in log phase and hypoxia 
for leadered and leaderless transcripts. B. Correlations between steady-state abundance and transcript half-
life. While abundance was highly ranked in all models (see Figure 3-5A), its negative correlation with half-
life was stronger in hypoxia. C. Distributions of 5’ UTR lengths within half-life classes for leadered transcripts 
in log phase and hypoxia. This feature had a high importance ranking in hypoxia only. D. Distributions of 
CDS length within each half-life class in log phase and hypoxia. This feature was highly ranked in all models. 
E-F. Half-lives were calculated for only the first 300 nt of each CDS and genes were selected that had similar 
half-lives for the 5’ 300 nt and the whole CDS (see Figure S3-9). For these subsets of genes in log phase and 
hypoxia, the correlation between CDS length and 5’ 300 nt half-life are shown. In B, E, F, the statistical 
significance of the Spearman correlation and slope of the linear regression fit line are shown in square 
brackets. p < 0.05 *, p < 0.01 **, p < 0.001 ***. 

 

Secondly, recent studies of transcript 3’ ends in M. tuberculosis (56) and E. coli (57) suggested that 

a sizable fraction of transcripts present in cells are degradation intermediates or incomplete 

transcripts resulting from premature transcription termination or paused RNA polymerases. We 

cannot distinguish these from complete transcripts in our RNAseq libraries, and it is possible that 
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longer transcripts give rise to more incomplete transcripts that are long enough to be captured 

in RNAseq libraries and these have different degradation kinetics than complete transcripts. 

    To account for these potential confounders, we calculated the half-life of only the first 300 nt 

of each CDS (the “5’ end half-life”). For each condition, we then divided genes into five groups 

according to the ratio of the 5’ end half-life to the entire gene half-life (Figure S3-9A, D). We also 

calculated the steady-state (0 minute RIF) coverage ratio of the 5’ 300 nt versus 3’ end 300 nt of 

each gene within these groups (Figure S3-9A, D). As expected, those genes with differential 

abundance of transcript 5’ and 3’ regions often had non-zero log2 half-life ratios, consistent with 

the idea that incomplete transcript fragments often have different degradation kinetics than full-

length transcripts. On the other hand, genes with similar coverage of their 5’ and 3’ 300 nt 

generally had similar log2 half-life ratios (Figure S3-9A, D, groups 3 and 4 respectively), indicating 

that these genes are likely less affected by the confounders described above (Colored group in 

Figure S3-9A, D). For these non-confounded genes, there was no correlation between 5’ end half-

life and CDS length in log phase (Figure 3-6E), but there was a significant positive correlation in 

hypoxia (Figure 3-6F). These relationships were maintained when leadered and leaderless 

transcripts were analyzed separately (Figure S3-9B, C, E, F). Consistent with the idea that the 

positive correlation in hypoxia was due to the condition rather than the selection of genes, we 

found little to no correlation between 5’ end half-life and CDS length for the genes in Figure 3-6F 

in log phase (Figure S3-9G-I). In summary, although being able to contribute to model predictions 

for both transcript types in log phase, transcript abundance and CDS length seemed to have 

stronger correlations with half-life in hypoxia. Consistent with this, the 5’ UTR length exhibited a 
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positive correlation with half-life in hypoxia, suggesting that the overall transcript length is more 

important for predicting half-life in hypoxia. 

Discussion 
In this study, we used transcriptome-wide mRNA half-life datasets to investigate the intrinsic 

features that impact transcript stability in aerobically growing and hypoxia-arrested M. smegmatis. 

This led us to discover the diverse transcript features that were differentially associated with mRNA 

stability depending on the microenvironment. These diverse features provided evidence that 

translation is likely to have a larger impact on mRNA degradation in log phase than in hypoxia. 

We further found that, coupled with the impact of conditions, the leader status of the transcripts 

(leadered vs leaderless) also impacted transcript stability through various transcript features. More 

importantly, our results showed that it is the collective effect of diverse transcript features that 

shaped the transcript stability in M. smegmatis. Such collective impact of transcript features on 

mRNA half-life has been reported in other organisms as well (15,18,19). However, our study further 

revealed the non-linear character of such collective effect differentially in the context of transcript 

type and growth condition. 

    We developed machine learning models with the goal of associating transcript features with 

half-life by predicting half-life using a wide-ranging feature set, as well as to further identify likely 

determinants of transcript half-life by quantifying the strength of their associations. Initially, we 

attempted to develop regression models given the continuous nature of transcript half-life values. 

However, the models failed to provide accurate prediction of half-life values for us to draw reliable 

conclusions about feature relationships with transcript half-life. Therefore, we grouped transcript 
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half-life values into four half-life classes to predict half-life through classification instead. The 

decision to define four half-life classes was informed by the hierarchical clustering of degradation 

profiles to estimate the number of groups to best represent transcriptome-wide stability. Besides 

the innate difficulty of the four classes prediction task, the intertwined non-linear correlations, 

existing not only between transcript features and half-life but also among transcript features 

themselves, makes the classifications even more challenging. Despite the difficulties, our models 

achieved significantly better performance than random predictions. To compensate for the 

suboptimal model performance, we implemented SHAP visualization to enhance our 

interpretation of model predictions by showing the prediction direction along with the feature 

values for each half-life class (Figure S3-10-S3-12). We found that these results were consistent 

with the correlations we learned from the distributions of individual transcript features. Together, 

these computational tools provided us with enough confidence and information to draw 

conclusions about the associations between transcript features and half-life. Nonetheless, our 

current models still lack the ability to fully explain the relationships between transcript features 

themselves, and the mechanism of how they work together to determine transcript stability. 

Future studies on the relationships among those important transcript features will greatly improve 

model predictions and advance our understanding of the regulatory mechanism of transcript 

degradation. 

Like M. tuberculosis, M. smegmatis exhibited variance in transcript half-lives during log phase 

growth and showed transcriptome-wide stabilization when exposed to hypoxia (Figure 3-2B) 

(2,25). Despite the potential difference in regulatory mechanisms, our study in M. smegmatis still 

provides insights to facilitate understanding of transcript stability in M. tuberculosis. Unlike in the 
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previous study in M. tuberculosis (2), we were able to quantify mRNA half-lives transcriptome-wide 

in hypoxia, showing that the extent of stabilization varied among genes and indicating that the 

determinants of half-life differ between the two conditions. It was reported in M. tuberculosis that 

transcript abundance was the single feature strongly correlated with transcript half-lives, while 

features like CDS length and G+C content showed little correlation (2). Here we greatly expanded 

the scope of candidate features and found diverse transcript features could contribute to predict 

half-life in M. smegmatis. Whether the collective and differential effect of the wide range of 

transcript features on half-life we observed in M. smegmatis also exists in M. tuberculosis awaits 

further investigation. Our results also suggested that the lack of broad correlations between 

transcript features and half-lives could be due to not only condition, but also to transcript-type-

dependent regulatory mechanisms in mycobacteria.     

    In log phase, transcripts in both M. tuberculosis and M. smegmatis exhibited little correlation 

between CDS length and half-life. However, we found that the correlation became stronger in 

hypoxia for M. smegmatis. A previous study suggested that motion of large cytoplasmic 

components was dramatically reduced in Caulobacter crescentus and E. coli when metabolic 

activity was reduced, due to decreased fluidity of the cytoplasm (58). The positive correlation 

between CDS length and half-life is consistent with this idea, as longer transcripts would be more 

affected by the reported changes in diffusion rates (58), leading to reduced encounters between 

transcripts and RNases in the hypoxic cytoplasm. Transcript abundance was another feature whose 

influence was affected by growth condition. Similar to M. tuberculosis (2), we also observed an 

inverse correlation between transcript abundance and half-life in log phase, although this 

relationship was much weaker in M. smegmatis. However, we found that the strength of the 
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correlation was stronger in hypoxia compared to log phase. Such an association has been reported 

for other bacteria as well (13-16,52-55,59,60), although conflicting reports exist for E. coli, where 

some report a negative correlation (14-16,52-54) while others report no correlation or a positive 

correlation (59,61). The mechanistic basis of the negative correlation reported in many studies is 

unknown, although it has been suggested to be a function of the impact of transcript abundance 

on encounters with RNases (15,16). 

    It has been shown in E. coli and S. cerevisiae that translation efficiency is positively correlated 

with mRNA half-life in log phase (62,63). Our results also provided evidence to support this 

association in M. smegmatis as we observed translation-related features were more important for 

half-life predictions in log phase compared to hypoxia. Besides the previously identified difference 

in translation mechanisms (10,11,64), our results indicate that mRNA degradation mechanisms 

may also differ between leadered and leaderless transcripts. We first confirmed that 5’ UTR 

features are predictive of mRNA half-life in leadered transcripts. There were also differences in the 

importance of CDS features in predicting half-lives of leadered vs leaderless transcripts. For 

example, G+C content was particularly low in the first 18 nt of the CDS specifically for leaderless 

transcripts with the slowest half-lives, consistent with the idea that secondary structure in this 

region has a larger impact on translation efficiency for leaderless transcripts compared to leadered 

transcripts. 

    In summary, our results suggest that underlying the observed transcript stability patterns in 

mycobacteria lies a complex interplay between inherent transcript features and 

microenvironments. Additionally, our study provides a foundation to facilitate further 
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investigation of target transcript stability in mycobacteria, as well as an experimental and 

computational framework to study transcript stability more broadly in other organisms. 

Data Availability 

All RNAseq data generated in this study are available at GSE227248. Other data and code 

generated for analysis in this study are available from the following GitHub repository, 

https://github.com/ssshell/mRNA_stability.  

Supplementary Materials 
Supplemental tables 
Table S3-1. Complete updated gene annotations of M. smegmatis. 

Table S3-2. Leadered gene annotations of M. smegmatis. 

Table S3-3. Leaderless gene annotations of M. smegmatis. 

Table S3-4. Transcript half-life values and stability classes in log phase and hypoxia of M. 

smegmatis. 

Table S3-5. Complete transcript properties (features) list of M. smegmatis. 

Feature selection algorithm 

Below is our algorithm to reduce the number of correlated features. 

Algorithm: Feature selection for a given feature set Ff with class labels 

Input: Complete feature set Ff 

Metrics: 
[rff], Spearman’s rank correlation coefficient to quantify correlation between the values of each 

pair of features. 

https://github.com/ssshell/mRNA_stability
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[tfc], Kendall rank correlation coefficient to quantify correlation between the values of each 

feature and the class. 

[AveadjustedP], Mean FDR adjusted P value of Kruskal-Wallis test (KW) and Kolmogorov-Smirnov 

test (KS). Kolmogorov-Smirnov test adjusted P value is taken as the minimum FDR adjusted P 

value of comparisons between each pair classes. 

[Ncorr], number of correlated features with a given feature. 

[NsigTest], number of statistically significant tests (KW, KS) of a given feature over the class. 

Procedure: 
1. Preprocessing. Removed features with zero variance.  

2. Get correlated feature sets Fcorr. Each Fcorr included features with | rff | >= 0.6. Only Fcorr 

that met following criteria was further considered for selection: 

a. Correlated features have the same transcript region [5’ UTR/5’ transcript, CDS, 3’ UTR] 

and the same feature type [Nucleotide, Codon, Secondary structure, Ribosome, Others] 

3. Determine the selection starting order of Fcorr. For all the Fcorr that met the criteria in step 

2, starting selection with the Fcorr that included feature that has the highest | tfc | among 

features in all Fcorr. If tied, start with the Fcorr that has the least amount of correlated 

features. 

4. Select feature. For features within Fcorr:  

a. Select feature that meets criteria in the following order: 

i. Maximum NsigTest. If tied, go to the next metric,  

ii. Minimum Ncorr. If tied, go to the next metric,  

iii. Minimum group sum | rff |. If tied, go to the next metric,  

iv. Maximum | tfc |. If tied, go to the next metric, 

v. Minimum AveadjustedP 

b. Update the rest of Fcorr with features being selected and excluded. 

5. Continue until all Fcorr were selected. 

Output: the list of selected features. 

Machine learning classifier training algorithm 
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Below is the generalized classifier training algorithm. For our classifiers, k = 5, n = 10. 

Algorithm: Classifiers training and evaluation with k-fold nested cross-validation for n 

repetitions. 

Input: Feature set D with class labels, Hyperparameter set H 

1. For i = 1 … n repetitions: 

2.     Training(D, k, H): 

3.         Random stratified partition D into k folds D1 … Dk 

4.         For j = 1 … k folds: 

5.             TrainSet = D \ Dj 

6.             TestSet = Dj 

7.             Train the RandomBaselineModel on TrainSet 

8.             h* = RandomizedSearchCV[TrainSet, H, RandomForestModel] 

9.             RandomForestModel* = RandomForestModel trains on TrainSet using h* 

10.             Fscorej = RandomBaselineModel & RandomForestModel* predict on TestSet 

11.             FeatureImportancej = Gini importance[RandomForestModel*] 

12.             SHAPj = SHAP values of RandomForestModel* predicts on TestSet 

13.         Fscore_allFoldi = [Fscorej] 

14.         Fscorei = Mean[Fscorej] 

15.         Ginii = Mean[FeatureImportancej] 

16.         SHAPi = Concatenate[SHAPj] 

17. Fscore_allFold = [Fscore_allFoldi] 

18. Fscore_average = Mean[Fscorei] 

19. Gini = Mean[Ginii] 

20. SHAP = Concatenate[SHAPi] 

21. Return Fscore_allFold, Fscore_average, Gini, SHAP, Metrics_others 

Output: Classifier performance of all fold across repetitions Fscore_allFold (n = 50), classifier 

performance averaged across repetitions Fscore_average (n = 10), impurity-based feature 

importance quantification averaged across repetitions Gini, SHAP values of individual class 
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SHAP. Output also includes other performance metrics such as precision and recall values for 

both individual class and averaged value across folds. 
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Supplemental Figures 
 

 
Figure S 3-1. Leadered and leaderless transcript half-life distributions and half-life 
classifications. 
Half-life distributions of leadered (A) and leaderless (C) transcripts in log phase and hypoxia. Comparison 
of half-life class membership between log phase and hypoxia for leadered (B) and leaderless (D) transcripts. 
E-H. Comparison of half-life values between leadered and leaderless transcripts. E and G, black lines indicate 
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the median and transcript types were compared using the Wilcoxon rank-sum test. F and H, transcript types 
were compared using Kolmogorov-Smirnov test. 

 

 
Figure S 3-2. Classification of transcripts by hierarchical clustering of degradation 
patterns, and comparison with half-life classes. 
Hierarchical clustering of degradation profiles in log phase (A) and hypoxia (E) using hierarchical clustering 
with the Euclidean distance measure and ward.D2 agglomeration method. Degradation patterns of classes 
defined by hierarchical clustering for all transcripts, leadered transcripts and leaderless transcripts in log 
phase (B-D) and hypoxia (F-H). Degradation patterns of classes defined by half-life values (see Figure 2) for 
all transcripts, leadered transcripts, and leaderless transcripts in log phase (I-K) and hypoxia (L-N). 
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Figure S 3-3. Comparisons of gene membership in classes defined by half-lives and classes 
defined by hierarchical clustering. 
Half-life classes were defined in Figure 2, and pattern classes were defined by hierarchical clustering in 
Figure S2. Visualizations of the number of genes overlapped in each class defined with the two metrics for 
all transcripts (A, B), leadered transcripts(C, D) and leaderless transcripts (E, F) in log phase (A, C, E) and 
hypoxia (B, D, F). Upset plots were made in R v4.3.2 using package UpSetR v1.4.0 (65). 
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Figure S 3-4. Frequency of essential genes in each half-life class. 
Percentage of genes that are essential in each class for leadered (A) and leaderless (B) genes in each 
condition. Significance of enrichment and depletion of essential genes within each class were tested using 
a hypergeometric test with FDR correction (Materials and Methods). p.adjust < 0.05 *, p.adjust < 0.01 **. 
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Figure S 3-5. Carbon-starved M. smegmatis has fewer polysomes and a smaller proportion 
of its mRNA is associated with ribosomes. 
Throughout the figure, gray indicates samples from log phase growing M. smegmatis and orange indicates 
samples from M. smegmatis that was carbon-starved for 22 hours. A. Representative polysome profiling 
traces of sucrose-gradient-separated lysates from log phase and carbon-starved M. smegmatis. Selected 
fraction numbers are indicated. The ribosome composition of each fraction was determined by gel 
electrophoresis to assess relative rRNA abundance. B-H. Fractions from (A) were spiked with equal masses 
of in vitro-transcribed mCherry RNA and qPCR was used to quantify the abundance of the indicated 
transcripts relative to mCherry. Means and SD of triplicate samples from a representative experiment are 
shown. The entire experiment was performed twice. B-C. rRNA abundance. D. A known sRNA, Ms1, is 
localized in the bulk fractions consistent with expectations that it is not translated. E-H. The transcripts of 
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arbitrarily selected genes generally have relatively greater association with ribosomes during log phase 
growth than in carbon starvation. 

 
Figure S 3-6. Comparisons of feature importance rankings. 
In all panels, the colors of the squares in the heatmaps indicate the relative importance rankings derived 
from the Gini importance rankings for each model. A-B. Random forest classifiers were trained using the 
same set of features, selected by the leaderless model, for leadered and leaderless transcripts in hypoxia (A) 
and using fold-change in half-life from log phase to hypoxia (B). For each condition, the top 20 features for 
the leadered and leaderless gene models were combined and shown in the heatmap. C-D. Random forest 
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classifiers were trained using the complete 5’ UTR features list (C) or the non-translation-related 5’ UTR 
features (D) for log phase, hypoxia, and fold-change half-life from log phase to hypoxia. The top 20 features 
for each condition were combined for the heatmaps shown. 

 
Figure S 3-7. Transcripts beginning with G appear to be transcribed at higher rates than 
those beginning with A. 
A and D. Start codon frequencies of leadered (A) and leaderless (D) transcripts. B and E. Log phase half-life 
distributions of transcripts binned by start codons for leadered (B) and leaderless (E) transcripts. D and F. 
Log phase transcript abundance distributions of transcript binned by start codon for leadered (C) and 
leaderless (F) transcripts. G. Frequencies of leadered transcripts starting with each of the four nucleotides. 
H. Log phase half-life distributions for leadered transcripts starting with A and G. I. Los phase transcript 
abundance distributions for leadered transcripts starting with A and G. Transcripts from genes with UUG 
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start codons were not included in panels B, C, E, and F because their frequencies were too low to draw 
generalizable conclusions. 

 
Figure S 3-8. Correlations between secondary structure, half-life and ribosome occupancy 
for leaderless transcripts. 
A. The DGMFE for the 5’ third and 3’ third of each CDS was calculated using a 100 nt window size. The 
distributions for each half-life class in log phase and hypoxia are shown. B-E. Correlations between DGMFE 
and ribosome occupancy of the 5’ third, middle third, and 3’ third of each CDS with different window sizes 
used for DGMFE calculation. 
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Figure S 3-9. Correlations between CDS length and 5’ end half-life for selected groups of 
genes. 
Half-lives were calculated using all reads aligning to each gene (CDS half-life) or using only reads aligning 
to the 5’ 300 nt of each gene (5’ end half-life). The log2 ratios of the 5’ end half-life to the CDS half-life were 
determined, and genes were divided into quintiles based on these ratios. The quintiles are shown in the x 
axes of A and D. Additionally, steady-state abundance of reads aligning to the first 300 nt and last 300 nt 
of each CDS was determined and the log2 ratio of these abundance values was plotted on the y axes of A 
and D. The groups of transcripts highlighted in pink had log2 ratios of 5’ end to 3’ end abundance near zero 
and were selected for further analysis. We expect that these groups contain the largest portion of full-length 
transcripts that cover the entire CDS. B-C. Correlations between CDS length and 5’ end half-life for leadered 
and leaderless transcripts from panel A group 3 in log phase. E-F. Correlations between CDS length and 5’ 
end half-life for leadered and leaderless transcripts from panel D group 4 in hypoxia. G-I. Correlations 
between CDS length and 5’ end half-life in log phase for transcripts from panel D group 4, which was 
selected based on hypoxia data. Correlations were visualized separately for all transcripts (G), leadered 
transcripts only (H), and leaderless transcripts only (I) that had half-lives measured in log phase. 
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Figure S 3-10. SHAP value distributions for features in Figure 3-4 B, E. 
SHAP values were extracted and visualized for each half-life class. Feature values were encoded by color. 
Each dot represents a prediction of transcript half-life class on test set genes during classifier training and 
evaluation (Materials and Methods). A positive SHAP value corresponds to a positive prediction of the class, 
while a negative SHAP value means negative prediction of the class. 
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Figure S 3-11. SHAP value distributions for features in Figure 3-5 B, C, D. 
SHAP values were extracted and visualized for each half-life class. Feature values were encoded by color. 
Each dot represents a prediction of transcript half-life class on test set genes during classifier training and 
evaluation (Materials and Methods). A positive SHAP value corresponds to a positive prediction of the class, 
while a negative SHAP value means negative prediction of the class. 
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Figure S 3-12. SHAP value distributions for features in Figure 3-6 A, C, D. 
SHAP values were extracted and visualized for each half-life class. Feature values were encoded by color. 
Each dot represents a prediction of transcript half-life class on test set genes during classifier training and 
evaluation (Materials and Methods). A positive SHAP value corresponds to a positive prediction of the class, 
while a negative SHAP value means negative prediction of the class. 
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Chapter 4 : Conclusions and future directions 
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Mycobacterial RNase E cleaves with a distinct sequence 
preference and controls the degradation rates of most 
Mycolicibacterium smegmatis mRNAs 
In Chapter 2, we aimed to establish and characterize the broad impact of RNase E on mRNA 

degradation by investigating the effects of RNase E knockdown in mycobacteria. Among all the 

ribonucleases encoded in mycobacteria, RNase E is an endoribonuclease that was predicted to 

play a major role in transcriptome-wide mRNA degradation based on its essentiality (1-3) and 

known role in E. coli (4-8). However, the function of RNase E and its impact on mRNA degradation 

had not been clearly defined in mycobacteria. To investigate the role of RNase E in mRNA 

degradation, we constructed a repressible rne strain in Mycolicibacterium smegmatis. By 

comparing the transcriptome-wide mRNA half-lives of this strain with control strain, we observed 

a global stabilization of mRNA in response to rne knockdown with the extent differing among 

mRNAs. The variance in stabilization could be related to activities of other ribonucleases, and their 

interactions with RNase E itself, which requires further investigation. Interestingly, the amount of 

increase in half-live seemed to be larger for leadered transcripts than leaderless transcripts, 

suggesting that degradation mechanisms for leadered vs leaderless transcripts may differ. To 

identify and characterize the sites of RNA cleavage by RNase E, we adapted a cutting-edge 

method for analysis of RNA cleavage from standard RNAseq expression libraries. Through a 

customized pipeline to compare patterns of read coverage between rne knockdown and control 

strains, we found that the RNase E cleavage regions were enriched for cytidines. This allowed us 

to determine that RNase E was responsible for a set of thousands of mRNA cleavage sites that 

were previously mapped with high resolution in vivo (9) and found to occur primarily with cytidine 
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in the +1 position. Together, these results indicate that RNase E is responsible for producing most 

of the cleaved RNAs with monophosphorylated 5’ ends that are present in the M. smegmatis 

transcriptome. We then harnessed existing datasets to confirm that RNase E has the same role 

and cleavage site preference in M. tuberculosis (10). Interestingly, the cleavage site specificity of 

mycobacterial RNase E differs dramatically from that of E. coli RNase E, highlighting the differences 

in RNA processing and degradation mechanisms in these two organisms. 

While the importance of RNase E in mycobacterial mRNA degradation is clear, it is not known how 

the role of RNase E relates to the roles of other enzymes involved in mRNA degradation. As an 

endonuclease, RNase E cleaves transcripts into pieces. Exonucleases are then responsible for 

degrading these pieces into individual nucleotides. The RNAseq libraries we use for measuring 

mRNA half-lives capture full-length RNAs and fragments larger than roughly 100 nt; thus, we 

cannot track the fate of smaller RNA fragments through our methods. We do not know if RNase 

E cleaves mRNAs in one or a few places, triggering rapid degradation by other RNases, or if RNase 

E itself is responsible for cleaving transcripts into pieces too small to be captured in the RNAseq 

libraries. We hypothesize that a 3’ to 5’ exoribonuclease called PNPase also makes major 

contributions to mRNA degradation, based on unpublished preliminary data. Further work is 

needed to understand the respective roles of RNase E and other RNases in the mRNA degradation 

process. Such knowledge would be useful for directing future study of the mechanisms by which 

mRNA degradation is regulated in response to stress. 
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Diverse intrinsic properties shape transcript stability and 
stabilization in Mycolicibacterium smegmatis 
In Chapter 3, we sought to gain a better understanding of the mechanisms that control mRNA 

degradation by investigating the influence of transcript properties and microenvironments on 

transcript half-lives in Mycolicibacterium smegmatis. We and others found that transcriptome-

wide mRNA degradation profiles in mycobacteria exhibit variance in transcript stability among 

genes (11,12), and here we extended these findings to show variance in stability of thousands of 

transcripts within and between growth conditions. However, the transcript features that contribute 

to such variance was largely unexplored. To investigate the roles and impact of transcript features 

on mRNA degradation in M. smegmatis, we developed an experimental and computational 

framework combining RNAseq and machine learning. Through quantifying mRNA half-lives in 

both aerobically growing and hypoxia-arrested M. smegmatis, we confirmed the variance in 

transcript stability among genes and between conditions. This is consistent with the 

transcriptome-wide half-life profiles previously shown for M. tuberculosis during log phase growth. 

We found that mRNA half-lives were longer for most transcripts in hypoxia-induced growth arrest, 

consistent with previous reports by us and others of broad mRNA stabilization in energy-stressed 

bacteria (12-15). Interestingly, the transcripts of essential genes tended to be stabilized more than 

those of non-essential genes, suggesting that transcript stabilization may be biased towards the 

most important transcripts. We specifically quantified the associations between transcript features 

and half-life under the combinations of leader status and environmental conditions. We found 

that in contrast to previously reports for M. tuberculosis and E. coli suggesting that transcription 

rate was the dominant determinant of mRNA degradation rates (12,16-18), a wide range of 
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transcript features contribute to observed variance in degradation rates. The interactions of these 

features was non-linear, and the importance of various features for model performance differed 

between conditions as well as between leadered and leaderless genes. While some of the broad 

themes that emerged were easily explained, such as translation protecting transcripts from 

degradation specifically in log phase growth, others were more complicated or surprising. For 

example, we found that codon content had influences that differed by leader status and condition 

and did not appear to be fully explained by translation efficiency. We also found that coding 

sequence length positively correlated with mRNA half-life specifically in hypoxia, which to our 

knowledge has not been previously reported for any bacteria. 

Proposed future direction based on the results derived here 
We demonstrated the influence of diverse transcript features on mRNA stability in Chapter 3, as 

well as the broad impact of RNase E on mRNA degradation rates in Chapter 2. Our machine 

learning models were powerful for revealing the importance of specific mRNA features for 

degradation, but fell short of fully explaining the observed mRNA degradation rates. We 

wondered if transcript stability can be better explained by a model combining the effects of 

transcript features with the known RNase E cleavage sequence preferences. We hypothesize that 

the additional information of RNase E cleavage preferences could potentially improve the current 

suboptimal performance of machine learning models to predict transcript stability. Through our 

work in Chapter 2, we have established the transcriptome-wide map of RNase E cleavage sites. 

However, there are still unresolved questions. Although our results suggested that the impact of 

sequence surrounding cleavage sites was limited, we also observed a greater than expected 
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frequency of cleavage sites in untranslated regions. These results indicate that there could be a 

potential preference of these cleavage events determined by other more complicated sequence 

signatures of the target transcripts and/or by binding of ribosomes. Those sequence signatures 

could also influence interactions and synergies between RNase E and other RNases, which are 

largely unknown in mycobacteria. All of these could potentially affect the predictions of transcript 

stability. 

To address these problems, we propose in future work to first quantify the time course profile of 

cleavage events. This can be achieved by using our current half-life RNAseq libraries to quantify 

the abundance of local transcript regions, such as each 5% of each transcript, over the degradation 

time course. By comparing the abundance of each of these transcript regions over the degradation 

time course, we can potentially identify the regions in which cleavage events occurred first. These 

cleavage orders can be further confirmed through the time course profile of RNase E or other 

ribonuclease knockdown strains. Then we can create groups of transcripts with similar cleavage 

event orders. Finally, we can develop machine learning models using our current compendium of 

mRNA properties to predict transcript stability within each of these groups. Eventually these 

results could enhance our understanding of mRNA degradation mechanisms by elucidating the 

activities of ribonucleases using more complicated transcript features. 
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