
Project Number: RL1 MQP JP01

GPU Optimization of an Existing Free-Viewpoint Video System

A Major Qualifying Project Report:

submitted to the faculty of the

WORCESTER POLYTECHNIC INSTITUTE

in partial fulfillment of the requirements for the

Degree of Bachelor of Science

by:

_________________________________

Neal Orman

October 22, 2007

Approved:

______________________

Professor Robert Lindeman, Major Advisor 



Abstract
With the advances in quality and affordability of video cameras, people's lives are being 

recorded more than ever. However, video cameras have the distinct disadvantage of only capturing a 

two-dimensional image. This means that a lot of information about a particular scene is lost due to 

occlusion and a lack of depth information. However, when video is recorded from multiple viewpoints, 

it is possible to regain this lost information and use it to construct a more complete model of the scene 

being recorded. By using this model to interpolate between the known viewpoints, it is possible to 

reconstruct the scene from a variety of angles. This was the goal of the project developed at Advanced 

Telecommunications Research Institute International (ATR) in Kyoto, Japan. The concept of the project 

was to capture the actions of hospital staff in order to better understand what happens in a medical 

environment so that such knowledge could help to prevent medical errors and improve patient care.

While the Cinematized Reality system succeeded to generate a good model of the captured scene 

and render the scene from any arbitrary angle, the processing time required to render each frame totaled 

nearly a full minute. In order to improve the performance, some of the processing steps for each frame 

were moved from the CPU to the graphics processing unit (GPU). While the GPU performs many of the 

same kinds of operations as the CPU, it is designed to operate in a manner better suited to a traditional 

graphics pipeline. While this offers a number of challenges in designing programs to work on a GPU, it 

offers the potential for great performance benefits for certain types of programs.

This paper presents the state of the system prior to optimization, the techniques used to 

implement the GPU-optimized version of the Cinematized Reality system, and the performance benefit 

gained. Despite requiring several significant changes to the system to adapt it for GPU processing, 

Cinematized Reality proved to be well suited to GPU computation, resulting in certain parts of the 

system running over 100 times faster.

ii



Acknowledgment
I would like to take this opportunity to thank the dedicated researchers at  ATR, for their 

overwhelming support and assistance with the completion of this project. My supervisors Kim-san and 

Sakamoto-san specifically and the Knowledge Science Laboratories director Kogure-san have been 

critical in their guidance and support of the project from day one through the final days. A special thanks 

to the SHIEN department and the planning section of KSL for helping with everything that was 

necessary to make the project possible and my stay in Japan as comfortable and enjoyable as possible. 

To my co-workers at ATR, whose support, interest, and encouragement was unending.

Thank you to the Interdisciplinary and Global Studies Department of WPI for their organization 

and support in helping to make this opportunity for me a reality seemingly against all odds. A special 

thanks to the Computer Science Department at WPI for their inspiration, support, and guidance without 

which this project could never have been completed.

Most importantly, I would like to thank Professor Lindeman, without whom none of this would 

ever have been possible. Without his support and guidance, this opportunity would never have existed. 

From day one his dedication and vision have driven this project and helped make it a reality. His 

commitment to the project has been made clear time and time again by his personal investment in every 

aspect of the creation and continuation of the project.

iii



Table of Contents

Abstract.............................................................................................................................................. .......ii

Acknowledgment.......................................................................................................................... ...........iii

Table of Contents............................................................................................................................ .........iv

List of Figures........................................................................................................................... ...............vi

1.  Introduction.......................................................................................................... ..............................1

2. Computer Vision Background...................................................................................... ......................3

2.1.  Camera Calibration................................................................................................................4

2.2.  Object Reconstruction............................................................................................................5

3. Background on the GPU............................................................................................. ........................7

3.1.  Introduction to GPUs & architecture.....................................................................................7

3.2.  Integration of GPU acceleration into a computer graphics pipeline......................................8

3.3.  Introduction to GPGPU programming concepts....................................................................9

3.4.  Advantages and disadvantages of using GPUs....................................................................10

4. Cinematized Reality prior to GPU optimization..................................................................... ........12

4.1.  Purpose of Cinematized Reality...........................................................................................12

4.2.  Hardware used in Cinematized Reality................................................................................12

4.3.  Software................................................................................................................................13

4.4.  Program Structure................................................................................................................13

4.5.  Data Flow.............................................................................................................................15

4.6.  Results..................................................................................................................................15

5. Cinematized Reality Optimization.................................................................................. .................17

5.1.  Initial Plan............................................................................................................................17

5.2.  Optimization Techniques Utilized.......................................................................................17
5.2.1.  Segmentation.........................................................................................................17

iv



5.2.2.  Visual Hull Reconstruction...................................................................................20
5.2.3.  Rendering..............................................................................................................22

5.2.3.1.  Marching Cubes/Tetrahedra...................................................................22
5.2.3.2.  Microfacet Billboarding.........................................................................24

5.3.  Additional Issues & Optimizations.......................................................................................25
5.3.1.  Camera Selection & Occlusion detection..............................................................25

5.3.1.1.  Bresenham..............................................................................................27
5.3.1.2.  GPU depth texture..................................................................................28

5.3.2.  Bus Transfer speed.................................................................................................29

6. Results of GPU Optimization........................................................................................................... .31

6.1.  Experimental Setup..............................................................................................................31

6.2.  Factors affecting results.......................................................................................................31

6.3.  Performance data and output................................................................................................33

6.4.  Analysis of Results..............................................................................................................35

7. Future Work.............................................................................................................................. .........37

8. Conclusions........................................................................................................................................ .40

9. Glossary.............................................................................................................................. ................42

10.References................................................................................................................. .........................43

v



List of Figures

Figure Page
1.  Simplified pinhole camera model 3
2. Calibration markers 5
3.  3D Reconstruction using shape-from-silhouette 6
4.  GPU pipeline with shaders 7
5.  Cinematized Reality Data Flow Model 14
6.   Original Cinematized Reality Result 16
7.   Stages of Segmentation 18
8.  Visual Hull Reconstruction Fragment Shader Pseudocode 21
9.  Marching Tetrahedra Geometry Shader Pseudocode 24
10.  Microfacet Billboarding Geometry Shader Pseudocode 25
11.   Occlusion Problem 26
12.  Difference in viewing angles between a real and virtual camera 27
13.  Data Flow Diagram for GPU-Optimized Pipeline 30
14.  Sample output of “karate” dataset 34
15.  Sample renders of “nurses” dataset 35

List of Tables

Table Page
1.  Average processing times for a single frame of data 33

vi



1.  Introduction
A recurring topic in the field of computer graphics is that of computer vision. For many years, 

scientists have pondered ways in which the computer can extract meaningful information from real 

images. The range of topics in computer vision covers many concepts and techniques, from face 

recognition to performing accurate measurements. Computer vision concepts have found applications in 

a variety of fields, from robotics to medicine, military to entertainment. Often research in computer 

vision finds its practicality across a variety of applications, and research across application areas often 

builds on each other. With the growing number of cameras in place in everyday places (as security 

cameras or otherwise), and increasingly powerful computer hardware becoming affordable, it would 

seem that the possible applications of computer vision are only increasing. 

While cameras allow these events to be captured from a single or handful of perspectives, they 

have their limitations. Representing a three-dimensional scene as a series of two-dimensional images 

inherently fails to properly record information due to occlusions, lighting problems, and the like. The 

rise of interactive three-dimensional applications has certainly shown the value of being able to actively 

control the perspective from which a scene is rendered. Similarly, movie directors rarely record a scene 

using a single camera angle – typically a variety of perspectives are used. From this collection of 

cameras, the final film is produced by selecting the perspective for each part of the scene that best 

conveys the information and emotions that the director is trying to convey. Certainly being able to apply 

this kind of cinematography to interesting events that occur in everyday life could prove to be a valuable 

tool for understanding and interpreting interesting situations.

It is this concept from which Cinematized Reality was formed. The goal of the project is to 

devise a system capable of capturing unexpected moments and to create movies from them using 

cinematic concepts. The system should be implemented in an unobtrusive way and be affordable for 

1



office and hospital environments. The system has potential applications in entertainment, telepresence, 

and medicine. The knowledge gathered by this system could be used to make visual content based on 

the real world more appealing, or it could be used to enhance our knowledge of complex situations, due 

to its ability to show a captured scene from any angle. For example, if such a system were integrated 

into a hospital environment, it could be used to accurately record what hospital workers do in complex 

situations, which could lead to better health care and accident prevention.

While these “free-viewpoint” systems have been constructed previously for a variety of 

purposes, none have been constructed that would be well suited to this type of application [3][2]. 

Previous systems have often required a large number of specialized cameras or other custom equipment 

that is costly and would interfere with the usability of the space being recorded. Cinematized Reality 

seeks to generate film-like footage of a scene from a small collection of standard video cameras.

In fact, the Cinematized Reality system has had this capability prior to my participation in the 

project. However, the processing involved in generating the free-viewpoint video was prohibitively 

slow, taking nearly a minute of total processing time per frame. Because of this, critical parts of the 

system needed significant optimization. This paper presents the process by which the system was 

optimized using commonly available graphics hardware. However, first some key concepts in computer 

vision and the programming of graphics hardware are introduced. Additionally, the key parts of the 

original implementation of Cinematized Reality system are presented before introducing the GPU-based 

optimizations. Finally, conclusions are drawn from the results in the form of performance benchmarks 

and their analysis. 

2



2.  Computer Vision Background
For the past 30 years, computer vision has been an active topic for computer science research. 

Computer vision, by most definitions, deals with the extraction of 3D information from multiple 2D 

images. In the case of Cinematized Reality, computer vision refers to the process of detecting 

foreground objects, reconstructing models of their shape, and  then using these models to render the 

objects from novel viewpoints. While many techniques have been proposed for each of these steps, only 

a few will be presented here.

Before any information can be taken from captured images, however, certain information must 

be known about the cameras recording the scene. Thus, a model of how the camera works must be 

constructed. For the purposes of this paper, we can assume a 'pinhole' camera model shown in Figure 1, 

which is similar to the way in which 3D scenes are rendered onto 2D image planes. In this model, light 

enters the camera and is focused by a series of lenses to a single focal point. Behind this focal point lies 

the Charged Coupled Device (CCD) which converts the light energy that hits it into a measurable 

electrical signal [18]. 

3

Figure 1. Simplified pinhole camera model

Focal Plane

Object

Image Plane (CCD)

Image

Focal Point 
(Pinhole)



The distance between the focal plane and the image plane is the effective focal distance. It is 

important to note that this is not necessarily the same as the focal distance of the lens used – the 

effective focal distance will also depend on other optical components of the camera. Additionally, the 

projected image will not occupy the entire CCD, and the mapping between CCD cells and output pixels 

will not be 1:1 [21]. Additionally, lenses have an inherent tangential and radial distortion that have to be 

compensated for [6]. As such, parameters must be calculated for each camera to complete the model so 

that a mapping can be calculated between the 3D coordinate space and the camera's 2D image 

coordinate space. The parameters to compensate for the variables discussed above are referred to as 

intrinsic parameters, as they deal with the internal properties of the camera itself, and need only be 

calculated once for each camera. Extrinsic parameters refer to the camera's position and orientation 

relative to a fixed coordinate space, and must be recalculated whenever the camera is moved [6].

2.1 Camera Calibration
Techniques for calculating these parameters for off-the-shelf cameras usually rely on calibration 

cards or surfaces with easily identifiable points, such as the corners of black squares in a grid [19]. 

Recent techniques have allowed calibration to take place with a minimal amount of setup or precise 

knowledge of calibration pattern position or orientation [23]. However, extra care has to be taken when 

a collection of cameras is being calibrated to a global coordinate system, as each calibration point must 

be used by every camera that can see it. While calculating each camera's parameters based on the fixed 

calibration points is a well-known technique, it is also possible to calculate these parameters by 

estimating a projection matrix for the camera and then deriving the parameters from this estimate [18]. 

Because this is computationally simpler, this is the method used by Cinematized Reality.

4



2.2  Object Reconstruction
Several techniques for obtaining information about the shape of an object from captured images 

exist, each with benefits and drawbacks. Many systems propose a system to calculate depth information 

based on the differences of images captured by a pair of side by side cameras, referred to as stereo 

depth cues[10][16]. This is useful for robotics applications, where a limited number of cameras are 

mounted on a movable platform, but due to the lack of a comprehensive set of captured viewpoints, the 

resulting model is only accurate when rendered from a narrow range of viewpoints. Most of the 

remaining techniques project image data from a series of cameras into a 3D space to generate the 

required shape information [5]. When the silhouettes of foreground objects are projected in this manner 

to carve out the space, this is referred to as “shape-from-silhouette” (Figure II). Alternatively, it is also 

possible to calculate the shape of an object from depth or shading information calculated from 

calculated images [5], but this often relies on specialized hardware and lighting.

A few papers have also presented methods for rendering a scene from novel viewpoints without 

creating a model of the scene as a whole. These image-based-rendering systems use the captured 

images directly to render the scene. While this rendering method does not depend on scene complexity, 

the rendered viewpoint cannot lie too far from the cameras, resulting in systems that require a large 

number of cameras [21].

5

Figure 2: Calibration markers [7]



 The shape-from-silhouette (SFS) technique also has its limitations. As Laurentini points out, 

SFS is unable to model concave surfaces accurately [11], Kim et al. showed that SFS  is sensitive to 

segmentation errors, and present a method for correcting for this [8]. Despite these limitations, ATR 

decided that utilizing a SFS technique along with advanced segmentation would provide the best results. 

Details of the final system are found in Section 3. 

6

Figure 3. 3D Reconstruction using shape-from-silhouette



3.  Background on the GPU

3.1 Introduction to GPUs & architecture
With the rise of computer games, interactive media, and the availability of 3D rendering and 

computer graphics on consumer-level hardware, the graphics card has become an increasingly important 

and powerful component. In recent years, it has evolved to support a large number of computations per 

second, as well as gaining the ability to be  programmed using specialized programs referred to as 

“shaders”. While the CPU is designed to support all kinds of computation, the GPU has been designed 

specifically for processing streams of information. This creates some limitations on the types of 

computations the GPU can perform, and creates some additional challenges for writing programs for it. 

However, it allows the manufacturers to optimize the hardware for a specific subset of computational 

tasks. As such, the GPU contains hardware acceleration for a number of functions that would be 

computationally expensive to perform on a CPU. Additionally, the GPU has an inherently parallel 

architecture, meaning it is able to process many vertices, polygons, or fragments simultaneously. Due to 

this structure, the latest GPUs are very complex – NVIDIA estimates that its 8800 series of GPUs has 

7

Figure 4: GPU pipeline with shaders [14]

CPU

GPU



approximately 681 million transistors [20]. 

With the advent of programmable graphics hardware, the architecture of the GPU has changed 

significantly. The latest video cards now contain many “stream” processors that can be dynamically 

assigned to different parts of the rendering pipeline, instead of being dedicated to a specific task. Each 

of these steam processors is built on the graphics-centric instruction set of the earlier programmable 

GPUs.

3.2  Integration of GPU acceleration into a computer graphics pipeline
GPUs provide hardware acceleration for many of the common tasks in the graphics rendering 

pipeline, such as transformation, lighting, texturing, and rasterization. Modern GPUs, however, have 

allowed for custom programs to replace part of this fixed-function pipeline in three key areas, each of 

which has a specific shader type associated with it. These are referred to as the vertex, geometry and 

fragment (or pixel) shaders. Figure 4 shows the GPU pipeline and the integration of the three types of 

shaders.

The vertex shader replaces the vertex transformation section of the pipeline. As such, the vertex 

shader must at a minimum take global vertex position data and transform it to camera or eye space. In 

the fixed function pipeline, this is done as a matrix multiply with the modelview matrix. The vertex 

shader can choose to replicate this functionality as well as add other per-vertex operations, or it can 

leave this transformation for the geometry shader.

The geometry shader is the latest addition to the graphics pipeline and has no fixed function 

equivalent. The geometry shader is called after the vertex shader, and receives primitives (lines, 

polygons, or points) as inputs. The geometry shader is utilized to create or modify geometry at the 

primitive level on the hardware, which can be faster than creating the modifications on the CPU. It 

8



functions in camera or “eye” space (provided the transformation was performed earlier), and has loose 

requirements for what its inputs and outputs are. While the type of primitive to be used as inputs and 

outputs must be defined, the geometry shader is free to output many, one, or no output primitive(s) for 

each input primitive. Because it is a new feature, geometry shaders are currently only supported on the 

latest GPU's and graphics APIs.

Finally, the fragment (or pixel) shader performs its computations on each pixel being drawn on 

screen. This allows for more complex and dynamic lighting and texturing effects, such as bump 

mapping. Due to its position in the rendering pipeline, the fragment shader cannot modify its position – 

typically only color and occasionally depth are used as outputs. However, because the fragment shader 

is typically called once for each pixel on the screen, the GPU is optimized to support faster memory 

accesses for fragment shaders.

3.3  Introduction to GPGPU programming concepts
The addition of programability to graphics hardware has made it possible to use GPUs for 

computations unrelated to the traditional 3D pipeline. While the architecture is designed with rendering 

in mind, the hardware acceleration of matrix and vector operations, along with the parallel execution 

capabilities, allow for performance benefits in a variety of applications, such as audio processing, 

physics simulation, or artificial intelligence computation. While ideas about data structures,  program 

flow, debugging, and other factors have to be re-evaluated when dealing with GPU programming, the 

benefits have sparked a discussion of General Purpose computation on the GPU, or GPGPU 

[gpgpu.org]. 

The primary data structure of the GPU is the texture. While this normally represents visual 

information, it can be thought of as a general-storage, multi-dimensional array. Textures can be one, 

two, or three dimensional, and can hold up to four values at each texture array location, or texel. 

9



Textures can be used as both inputs to and outputs from GPU programs formed by a set of shaders. One 

common GPGPU technique is to set up the render target so that each fragment that gets processed 

corresponds to a single texel on the output texture. This ensures that the result of each computation will 

be stored to exactly one location in the texture. Because this process of “rendering” always results in a 

two-dimensional image, three-dimensional data is processed one layer of texels at a time. 

Similarly, the ways in which the computation is processed is slightly different from that of the 

CPU. Because GPUs have multiple shader processing units (referred to as stream processors), each 

shader operates on processing one element at a time (a vertex, polygon, or fragment depending on the 

type of shader), but this is happening in parallel with other stream processors. Thus, instead of each data 

element being processed in order, data flows into and out of the GPU in parallel. One of the challenges 

with this programming model is that each shader must be able to operate on a piece of data 

independently of any processing that is occurring on the other pieces. For example, during the execution 

of a fragment shader, the intermediate results of neighboring fragments cannot be read. If these results 

are needed, the process is usually broken up into two passes, and the intermediate results are stored as 

an output texture of the first pass, and passed as an input to the second pass. 

3.4 Advantages and disadvantages of using GPUs
While the GPU is a powerful piece of hardware, it also has its drawbacks. First, the parallel 

nature of the GPU allows data to be processed faster, but only when the computations that must be done 

can be accomplished on each piece of data in isolation. In this sense, the execution of a GPU program is 

like a pipeline – data flows in and out and is changed in some way in the process. Second, the different 

types of shaders allow for data to be processed in new and interesting ways, but processing does not 

always fit into the three categories that the shader types provide. Many applications can perform their 

computations in a single fragment shader, providing one output value for each input value, but this does 

10



not match every possible application.

Additionally, the specialized hardware develops bottlenecks in processing in ways that most 

programmers are not used to. For example, matrix and vector operations are accelerated by hardware 

and execute very quickly, but accessing memory in the form of texture memory is significantly slower 

than a CPU accessing main memory. Thus, contrary to the CPU, it might be faster to recompute certain 

values rather than perform a lookup. Finally, programming for the GPU requires the additional steps of 

sending data from main memory to graphics memory, and retrieving the results back to main memory 

over the video card bus. The PCI-Express bus allows for a high data bandwidth, but this still causes a 

significant overhead in processing time. Specifically, retrieving results from graphics memory has 

proven to be more expensive than sending data. This makes sense from a graphics perspective, as 

textures are sent to the GPU but typically are not read back, but this is not the case in the realm of 

GPGPU.

11



4. Cinematized Reality prior to GPU optimization

4.1 Purpose of Cinematized Reality
The purpose of the Cinematized Reality system is to capture and recreate unexpected moments 

in everyday life while allowing the viewer to change their viewpoint freely. While a single camera is 

able to capture the essence of an event from one angle, this is often insufficient for a number of reasons. 

A single camera will reduce the scene to a moving two-dimensional image, and does not store any depth 

information. Along with the problems of occlusion and perspective foreshortening, a single camera will 

only capture a small piece of what it is viewing. By using multiple cameras, this information is able to 

be recovered, and a full 3D model of events can be reconstructed. Much work has been done to allow 

computers to recreate 3D models in a variety of ways, but every system has its limitations. A number of 

inexpensive systems relying on stereoscopic cameras have been developed, but are unable to capture an 

entire scene due to the inability of determining the full shape or texture of an object. By contrast, many 

specialized systems have been developed to capture events from all angles using many specialized 

cameras. However, the most effective of these systems rely on a large number of expensive cameras and 

very specific lighting conditions. As a result, such systems are impractical in everyday environments. 

The purpose of Cinematized Reality is to be able to capture and reconstruct these events using a limited 

number of off-the-shelf cameras in a normal office environment. 

4.2  Hardware used in Cinematized Reality
In order to accurately capture a scene, multiple off-the-shelf cameras are set up around the area 

of interest, directed towards a center point. In the case of the current system, up to nine cameras are 

used, each capable of capturing images at a resolution of 1024x768 at a rate of 30 frames per second 

(fps). Once the cameras are set in place, their intrinsic and extrinsic parameters were calculated and 

recorded. Because the cameras do not move, rotate, or zoom, these parameters need only be calculated 

12



once. Each camera is attached via a IEEE 1394 (firewire) connection to a computer which records the 

frames to disk. Due to the complexity of the computations required, these frames are transferred to 

another computer for offline processing. All offline processing was completed by a standard office PC 

with a 2.4 GHz Core 2 CPU, with 2 GB of RAM, and a NVIDIA GeForce 8800 GTS graphics card.

4.3  Software
The image processing computer is running Windows XP with Service Pack 2. The offline 

processing software was compiled under Microsoft Visual Studio 2003 using Intel's C++ compiler. 

Libraries utilized include OpenGL, a freely available rendering library; OpenCV, an open-source 

computer vision library; GLEW, an extension loader for OpenGL; and cg, NVIDIA's GPU language 

and compiler. 

4.4  Program Structure
Processing is divided  into three major steps: segmentation, modeling, and rendering as shown in 

Figure 5. Originally, all three steps were computed on the CPU. After optimization, the later two steps 

were performed on the GPU, with segmentation still performed on the CPU. Segmentation operates on 

each image captured from a single camera individually, and produces a segmentation mask, indicating 

the presence or absence of a visible foreground object at each pixel. After this is computed for each 

camera for a single frame, these images are passed onto the voxel modeler. Using these masks along 

with the camera calibration parameters, the voxel modeler carves the voxel grid by checking each voxel 

against all segmentation masks, to determine whether it is “filled” or empty space. 

Once the voxel map has been completed for a frame, the renderer uses the voxel data to 

construct a representation of the model from an arbitrary viewpoint, using the original captured images 

as textures. This final rendering process has been implemented in three different ways. First, a cube is 

drawn for each filled voxel, creating a model that is “true” to the structure of the data. Secondly, a 

13



microfacet rendering function was created, which draws a single four-sided polygon (quad) for each 

filled voxel. Thirdly, a true modeling function was created based on the “Marching Cubes” algorithm 

which defines polygons in between data points in the voxel grid based on whether they have been 

determined to be “inside” or “outside” the surface of the model [12]. Details on these rendering 

processes, their implementations, benefits, and drawbacks are provided in the optimization overview in 

Section 5. 

Regardless of which rendering process is used, the model is textured by mapping the original 

images captured by the environmental cameras to the vertices of the model. In order to do this 

effectively, the renderer must choose which camera to use for each voxel or point in the model. Initial 

selection is done by checking the angles between the cameras and the voxel in question to determine 

14

Figure 5. Cinematized Reality Data Flow Model

Cameras

Segmentati
on

Model

Render

Rendered
Images

Images

Segmented
 Images

Screen

Voxel
Model

Voxel
Model

Images

Images

H
a
r
d

 D
i
s
k



which camera has the viewpoint most closely related to the current viewpoint. This choice can be 

overwritten, however, if it is determined that the selected camera does not “see” the current voxel 

because it is occluded by another part of the model. Once the appropriate camera is selected for a 

polygon, the texture coordinates for each vertex are calculated before rendering.

4.5  Data Flow
While the processing involved in the Cinematized Reality system is not simple, the flow of data 

for each frame to be computed is very linear. Frames recorded by the environmental cameras are 

transmitted over the network to central storage on a hard disk for offline processing. These images are 

read in by the segmentation routine, which passes image masks to the modeler and back to the hard disk. 

The modeler uses these image masks to construct a voxel mask which is then written to disk. This is 

done for each frame of data before moving on to the rendering pipeline. The renderer reads in the voxel 

model and original images for each frame, and generates new images based on a virtual camera. These 

new images are shown on the screen for instant feedback, as well as written to disk as the final output. 

While the the implementation of each step has changed in the GPU-optimized version of Cinematized 

Reality, the basic functionality of each step has remained the same.

4.6 Results
The original Cinematized Reality system was able to produce images and videos of good quality 

from nearly any angle as presented in Figure 6. As such, the goal of this MQP was not to improve the 

quality of the output. Instead, the goal was to improve the performance of the system to more-

acceptable speeds. The original system would take ~10 seconds for segmentation, ~25 seconds for 

modeling, and ~1 seconds to render a single frame of data. These numbers were further inflated by the 

need for constantly saving and loading intermediate results to and from the hard disk. While it is not 

necessary for the system as a whole to run in real-time, these results meant that 10 seconds of video 

15



recorded at 30 frames per second would take over three hours to process. In order to improve the 

performance of the system, some of the processing load was moved to the GPU.

16

Figure 6: Original Cinematized Reality Result [8]



5.  Cinematized Reality Optimization

5.1. Initial Plan
In approaching the task of optimizing the offline processing of the Cinematized Reality system, 

the performance of the system as a whole was analyzed first. The majority of the time was being spent 

in computing the segmentation, model reconstruction, and rendering itself, as these tasks were 

computationally expensive. It was decided that priority would be given to the reconstruction and 

rendering processes. Additionally, the program was initially configured to write many intermediate steps 

to disk, breaking the process up into several different steps. Optimization would take place primarily by 

moving algorithms onto the GPU. At first, the steps would be optimized independently of each other 

However, later these steps would be combined by using the intermediate results directly from graphics 

memory. This would result in further performance gains for the system as a whole.

5.2. Optimization Techniques Utilized

5.2.1.  Segmentation
While the segmentation process was not optimized as it was still under refinement, the quality of 

the results of segmentation have a large impact on the modeling process and the overall output quality. 

Additionally, [8] presents a method which could be used to detect and eliminate some of the 

segmentation errors in future versions of the system. As such, it is important to understand the 

segmentation process in the context of the system as a whole. Figure 7 presents the individual steps of 

the segmentation process.

17



In order to extract background and foreground regions from a video sequence, first a model of 

the background must be constructed from a number of frames of video with no foreground objects. Both 

luminance and color components are calculated, as luminance is sensitive to shadow, where color 

components are sensitive to noise. Hue is used as the color component of the model according to Eq. 1, 

where luminance is calculated directly. Both components are modeled from a number of empty frames 

from which the model is calculated utilizing a Laplace distribution as detailed in [6]. 

Initial classification of pixels is done by finding the difference between the luminance 

component of the current frame and that of the background model. The resulting value is used to place 

the pixel in one of four categories: Reliable Background, Suspicious Background, Suspicious 

Foreground, and Reliable Foreground, as shown in Eq. 2. Li(p) is the luminance of the current frame, Lg 

18

),,max( BGRI =



 ≠−

=
otherwise

IifIBGRI
S

0
0  /)),,min((

Eq. 1 [6]

360HH then 0H if           
  /60)(240
  /60)(180
  /60)(

+=<







=×−+
=×−+
=×−

=
BIifSGR
GIifSRB
RIifSBG

H

(a) original image (b) initial classification (c) shadow elimination

(d) labeling (e) Silhouette extraction (f)final mask

Figure 7: Stages of Segmentation[6]



is the luminance of the background model, and σ is the standard deviation of the background model. K1, 

K2, and K3 are discovered through training the algorithm against ground-truth (hand-segmented) 

images.

At this point, many of the background pixels are labeled as suspicious foreground, due to the 

difference in luminance caused by shadows. These regions are merged with the suspicious background 

regions using the color component of the background model. While shadows will change the brightness 

of an area, they will generally have little effect on the hue, making this a reliable way of detecting false 

foreground pixels due to shadows.

From here, each region of the segmentation mask is labeled with a unique identifier. Due to 

areas of noise, there are a number of small regions labeled as foreground regions that do not contribute 

significantly to the shape of the object. As such, any regions below a predefined size (in pixels) are 

eliminated from the mask. Next, a profile extraction technique is applied based on the work of Kumar 

[9]. A one pixel thick line is draped elastically over the model to smooth the edges and fill in gaps. This 

process is performed from all four edges of the screen for each labeled region, smoothing the edge of 

the silhouette, and filling in any real holes inside the object. Thus, in the end any regions of reliable 

background pixels larger than a certain tolerance are added to the background. The results of each step 

of the segmentation are shown in Figure 7.

The resulting segmentation masks are not perfect, but show the shape of any foreground objects. 

Most segmentation errors involving pixels incorrectly labeled as foreground will not have an effect on 

19










⇒≤
⇒≤≤
⇒≤≤

⇒<

Foreground Reliable  (d))(
Foreground Suspicious (c))()(
Background Suspicious (b))()(

Background Reliable (a) )(

3

32

21

1

BDpK
pKBDpK
pKBDpK

pKBD

σ
σσ
σσ

σ

Eq. 2 [6]



the reconstructed model, due to the algorithm used to construct it. However, overzealous segmentation 

errors create noticeably incomplete models and can cause occlusion errors in texturing [8]. 

5.2.2. Visual Hull Reconstruction
Visual hull reconstruction is the process by which a scene is modeled in 3D based on captured 

images of the scene from various angles [11]. Cinematized Reality utilizes a SFS algorithm on a voxel 

grid in the target space.  Empty voxels in this grid are culled by projecting the silhouette of each 

camera into the captured space. Voxels that lie within an object  will be in the foreground areas of each 

silhouette and will be labeled as “solid.”  However, voxels that are empty are contained within the 

background section of at least one camera's silhouette and will be culled from the voxel model [7].

For example, a series of cameras Cm (m=1,...,N), where N is the number of cameras, is oriented 

on an area and records a scene. Silhouettes Sm are then calculated for each frame of each camera's video 

using each camera's calibration parameters in a projection matrix Pm. Any arbitrary point p that lies 

within a voxel Vn can be projected onto Cm's image plane using Pm. If the volume that Vn occupies is part 

of an object in the scene, then p should be located in the foreground region of Sm when projected onto 

the image plane of Cm. Thus, if any point p in Vn is projected into the background region of any 

segmentation mask Sm, then Vn must be empty and is culled. Using this model, we can construct a visual 

hull of any object recorded in this system by checking each voxel against each segmentation mask using 

the appropriate calibration parameters to determine whether it is solid or empty [6].

In order to implement this on the GPU, we represent the voxel grid as a 3D texture. The result is 

computed using a fragment shader that iterates over the voxel texture one “slice” at a time. This is 

achieved by binding one layer of the texture at a time to a framebuffer object (FBO) the same size as the 

layer, and rendering a quad to occupy the full size of the framebuffer. As a result, the fragment shader is 

20



called once per voxel (represented as a texel), due to the fact that the resolution of the framebuffer 

matches the resolution of the slice of the voxel texture. 

Figure 8 shows pseudo-code for the fragment shader used for reconstruction. Experimental 

results have revealed that the GPU algorithm produces the same output as the CPU-based version. 

Performance benchmarks are provided and analyzed in Section 6. 

The fragment shader takes the camera calibration parameters and the segmentation masks as 

inputs, as well as the layer number upon which it is rendering. The system also passes in the texture 

coordinates (in 2D) of the texel it is rendering to. From these parameters, the shader computes the 3D 

location of the voxel it is computing, and projects its position of the voxel is projected onto each 

camera's image plane. From this projected point, the shader computes the appropriate texture 

coordinates. If the texture coordinates lie outside of the range of the captured image, the camera is 

skipped because it cannot “see” the voxel. Otherwise, the shader checks the segmentation mask by using 

a texture lookup. If the result is a background pixel, the shader returns “empty”, represented by the color 

black. If the result is a foreground pixel, the rest of the cameras are checked in a similar manner. If the 

21

Figure 8: Visual Hull Reconstruction Fragment Shader Pseudocode

Modeler(indices) {
position  = CalculateGlobalPosition(indices);
effective_camera = 0, actual_camera = 0;
empty = false;
for each camera C {

imageCoordinates = projectPoint(position, C);
if (imageCoordinates.isValid()) {

color = SegmentationMasks[cam].getPixel(imageCoordinates);
if (color == 0.0) {

 empty = true;
break;

}
}

}
if (empty)   return black;
else return white;

}



voxel is in the foreground of every camera that can see it, the shader indicates that the voxel is filled by 

returning a white texel. 

5.2.3. Rendering
Two different approaches are implemented for rendering the voxel model. First, a polygonal 

mesh is constructed and rendered using a variant of the marching cubes algorithm [12]. Secondly, a 

microfacet billboarding technique was tried [4]. The texturing portion of the rendering process depends 

on camera selection, which is covered in Section 5.3.

5.2.3.1. Marching Cubes/Tetrahedra
The marching cubes algorithm generates a polygonal mesh representing a level set of a grid of 

datapoints. It operates on each cube in the grid, using the data points as vertices. It computes the 

intersection of the level set with the cube based on the vertices and generates polygons based on these 

intersections. Due to the fact that each vertex must lie either within or outside of the level mesh, there 

are only 256 possible configurations. If the algorithm is further optimized by allowing for rotations and 

reflections of the same configuration, there are only 14 unique configurations that require polygons to 

be generated (if all vertices lie within or outside of the level set, no polygons need to be drawn for that 

cube). Up to four triangles can be generated for each cube, depending on the configuration of the 

vertices. Unfortunately there is a minor ambiguity in one of the unique cases where a single 

configuration can be validly represented by two different configurations of polygons [13]. If the wrong 

one is chosen, this can result in “holes” visible in the generated mesh. 

Implementing this algorithm is best done using geometry shaders, as the vertices can be passed 

in as inputs, and polygons can then be passed out and down the render pipeline. Unfortunately, the 

geometry shader can take a maximum of six vertices as inputs, so it is not possible use a full cube. The 

alternative is a variation called marching tetrahedra. Marching tetrahedra splits each cube up into five or 

22



six tetrahedra, and a similar algorithm is performed [17]. However, with only four vertices, there are 

only 14 possible polygon-producing configurations, which can be further reduced by eliminating 

redundant cases. An additional benefit of using the marching tetrahedra algorithm is that the ambiguous 

case seen in marching cubes is eliminated. 

When applying this algorithm to visual hull reconstruction for Cinematized Reality, it is 

important to know that each voxel is specified only as inside or outside of the object. Hence, all 

intersections of the surface with the edge between the voxels produced by this algorithm will always lie 

at the midpoint of the intersecting edge. 

In order to pass four vertices to the geometry shader, the shader is configured to take lines with 

adjacency information as inputs. The output of the geometry shader is at most to two triangles, as that is 

the maximum number of triangles the algorithm can produce for each tetrahedra. An edge lookup table 

is generated by hand ahead of time, and entry in the table lists the edges that should be used to generate 

the triangles for each configuration. The shader begins by calculating the index into this table based on 

the status of the four vertices. Then, the edge indices are retrieved from the table and the midpoints of 

all six edges are calculated. Finally, the geometry shader emits the vertices specified by the retrieved 

edge indices. Figure 9 shows the pseudocode for the geometry shader.

23



The model produced by the geometry shader is then rendered to the screen with the fragment 

shader. The output matches the data in the voxel model well, but the algorithm executes too slowly, 

mainly due to the high level of tesselation across the entire model, irrespective of actual model 

complexity. While mesh-reduction techniques could improve the performance of this method, it was 

decided to utilize a computationally simpler algorithm.

5.2.3.2. Microfacet Billboarding
While marching tetrahedra will produce up to 12 triangles per voxel, microfacet billboarding 

represents each voxel with a single polygon (two triangles) [1]. The microfacet is defined as, “a slice 

which intersects the center of the voxel and is vertical to the viewing direction” [22].  This means that 

the normal for the microfacet will be rotated as the virtual viewpoint changes to ensure that the polygon 

always directly faces the viewpoint. Given a regular voxel grid with s units of distance between 

neighboring voxels, this means that each must measure at least 3⋅s units in each direction to ensure 

that no gaps are formed in between neighboring microfacets. While a polygonal mesh of the data is 

never formed, microfacet billboarding appears to produce the same shape as the more computationally 

24

Figure 9: Marching Tetrahedra Geometry Shader Pseudocode

void marchingTetrahedraGS( solid[4], positions[4] )
{

edgeIndex = calculateEdgeIndex(solid);

edges[4] = edgeTable[edgeIndex];

numEdges = lookupNumEdges[edgeIndex];
if (numEdges == 0) return;

points[6] = calculate_midpoints(positions);

for each edge E
useEdge = edges[2];
if (useEdge == 0) continue;
emitVertex(points[useEdge-1] : POSITION);

}
}



expensive marching tetrahedra algorithm regardless of the angle at which the model is viewed. This is 

likely related to the grid-aligned nature of the data generated by the visual hull reconstruction 

algorithm, which makes the added computation of generating a full polygonal mesh unnecessary.

The rendering process for microfacet billboarding is also well suited to the geometry shader for 

two main reasons. First, it allows only a single point (the center of the voxel) to be passed to the video 

card per voxel. Second, geometry shaders work in camera space, which allows for trivial computation of 

the vertices required to draw a quad whose normal is parallel to the view vector. In fact, in the absence 

of texturing, the algorithm for microfacet billboarding itself is trivial. The geometry shader takes in the 

position of the center of the voxel in camera coordinates and adds fixed offset values to the x and y 

values to produce the vertices of the quad. Consequently, this algorithm runs many times faster than the 

marching tetrahedra algorithm. The pseudocode is in Figure 10.

25

Figure 10: Microfacet Billboarding Geometry Shader Pseudocode

microfacet(position) {
emitVertex(position + (-offset.x, offset.y, 0));
emitVertex(position + (-offset.x, -offset.y, 0));
emitVertex(position + (offset.x, offset.y, 0));
emitVertex(position + (offset.x, -offset.y, 0));

}



5.3. Additional Issues & Optimizations

5.3.1 Camera Selection & Occlusion detection
In order to texture each microfacet from the captured camera images, there must be a way to 

select which camera to use in a given situation. The initial selection criteria is the viewing angle of each 

camera – the texture is more accurate the closer the camera's viewing angle is to the viewpoint's 

viewing angle of any given voxel. However, this is not sufficient criteria, as there are other factors that 

would prevent a camera from being able to see a voxel. For example, the camera may be oriented in 

such a way that the image coordinates of the voxel would place it outside of the camera's captured 

image. Additionally, when non-trivial objects are recorded by the system, the model generated often 

occludes itself in one or several of the captured camera images. For example, when the person being 

recorded holds an arm up between one of the cameras and the body, the image of the arm would be 

used to texture not only the arm itself, but also part of the body. For example, Figure 11 demonstrates 

this program. Figure 11(a) displays the scene rendered from the camera's angle, while Figure 11(b) 

shows the same scene rendered from a slightly higher angle. Notice that the texture of the hand is 

26

(a) hands in front of body (b) hands projected onto body

Figure 11: Occlusion Problem



rendered on the chest as well. Proper segmentation and occlusion detection can help to alleviate this 

problem.

As a result, the system must take all of these factors into account before selecting which camera 

to use (Figure 12). Given a voxel Vn, viewpoint Pv, and camera Cm, the system computes the difference 

in the viewing angles of the viewpoint and the camera by computing the angle between the vectors 

VnPv and VnCm according to the diagram and formula in Figure 12.

This angle serves as the basis for a “visibility score” given to each camera. From this point, the 

visibility score is modified by projecting the coordinates of the center of the microfacet onto the image 

plane of the camera. If the center lies outside of the image, then the camera's visibility score is 

incremented to an arbitrarily large value to prevent its use. Finally, occlusion is accounted for. However, 

due to the differences in the programming models used in CPU and GPU programming, this must be 

done in different ways.

5.3.1.1. Bresenham
Given a viewpoint Pv, a voxel Vn is considered occluded if there exists a voxel W, such that W 

lies between Vn and Pv. Thus, one method of checking for occlusion is to use a three-dimensional 

27

Figure 12: Difference in viewing angles between a real and virtual camera

cos =V n Pv ⋅V nC m

Voxel (V
n
)

Viewpoint (P
v
)

θ

Camera (C
m
)



version of Bresenham's line drawing algorithm to obtain the coordinates of every voxel in between Vn 

and Pv [1]. Bresenham's line drawing algorithm uses pure integer math to draw the ideal line between 

two points by tracking an error term as the algorithm steps along the line. If applied to the voxel grid, 

the pixel locations become the voxel locations between Vn and Pv. If any of the voxels checked is solid, 

then Vn is occluded, and the rest of the cameras are checked until the best non-occluded camera is 

picked. Due to the fact that the line drawing algorithm works in pure integer math, this algorithm runs 

quickly, but requires fast access to the voxel model [15]. This is not a problem when the computation is 

being performed on the CPU, as it has easy access to main memory. However, when this algorithm is 

run on the GPU, each access to the voxel model is a texture access, which is the slowest operation a 

GPU can perform, especially when it must occur in a vertex or geometry shader. While a few texture 

lookups can be performed with only a little overhead, the number of lookups required for the 

Bresenham algorithm makes it prohibitively slow.

5.3.1.2. GPU depth texture
The GPU version of the rendering algorithm uses a novel method to avoid many texture lookups 

by precomputing depth maps for each camera. This depth map contains the depth from the camera to the 

closest voxel at each pixel location across the image. This is accomplished by rendering the model from 

the perspective of each camera using the microfacet billboarding technique. When this rendering pass is 

performed, the depth between the camera and the center of the voxel is used as the color and the depth 

of the microfacet. Depth sorting ensures that each pixel of the resulting depth texture will contain the 

color of only the closest microfacet rendered at that location. 

When the scene is rendered from the perspective of the virtual camera, the vertex shader sorts 

the cameras based on their visibility score. At this point the visibility score is based off of the camera's 

viewing angle and its ability to see the voxel, but does not account for occlusion. The vertex shader 

28



passes the indices of the best three cameras on to the geometry shader, which then calculates the texture 

coordinates of the four vertices of the microfacet for the best camera. It uses these coordinates to 

compare the distance from the camera to the closest voxel to the distance from the camera to the voxel 

being rendered. If all of the vertices are within an acceptable tolerance of the closest voxel, then that 

camera is used. If any of the vertices is significantly farther than the distance retrieved from the depth 

texture, however, the voxel is considered occluded for the current camera, and the other cameras are 

checked in order until one is found that is not occluded. If all three of the best cameras are occluded, 

there is not sufficient visual information to texture the microfacet, but the best camera (based on the 

visibility score) is defaulted to for the sake of visual consistency.

5.3.2. Bus Transfer speed
Despite the recent advances in graphics card buses with the advent of PCI-Express, the time to 

transfer data to and from graphics memory is still a significant bottleneck to system performance. 

Specifically, retrieving data from graphics memory is very time consuming. Sending the captured 

camera images and segmentation masks takes a non-trivial amount of time, but retrieving the voxel 

map, depth textures, and final render take much longer. In order to alleviate this problem, the GPU 

version of the system is arranged to minimize the number of data transfers to and from video memory. 

In fact, by leaving intermediate results in video memory, the only result that has to be retrieved is the 

final render.

Figure 13 demonstrates the flow of data through the various rendering passes involved in voxel 

reconstruction and rendering. Camera images and segmentation masks are passed into the visual hull 

reconstructor which outputs the voxel model. The depth texture generator then uses this voxel model to 

generate the depth textures for each camera. Finally, the rendering pass uses all of the data in video 

memory to render the scene from the viewpoint of the virtual camera. While the voxel map is no longer 

29



able to be saved to disk using this model, the performance of the GPU-optimized system is able to 

render the scene from segmentation masks at interactive speeds, eliminating the need to store the voxel 

map on disk. 

In addition, each render of the voxel model requires the coordinates of every voxel to be passed 

to the GPU. This occurs once for each depth texture generated and once for the final render. Because 

each position is stored as three floating point values, each position is 12 bytes long. In a system with 

seven cameras and a voxel grid of 300x200x300, this means that 1.6 gigabytes are transferred to the 

video card each frame in voxel positions alone. In order to reduce the amount of data transferred, the 

system was optimized to use a display list. This display list stores the location of every voxel in the grid 

and is stored in graphics memory, so that it only has to be transferred once before computation begins. 

Then, the OpenGL API calls tell the graphics card to draw the display list, and a minimal amount of 

data is passed to the graphics card. 

30

Figure 13: Data Flow Diagram for GPU-Optimized Pipeline

Visual
Hull

Reconstruction

Depth
Texture

Generation

Final Render

Segmentation 
Masks

Captured
Images

Depth
Textures

Voxel
Model

Rendered 
Image



6.  Results of GPU Optimization

6.1.  Experimental Setup
Video was captured from seven synchronized IEEE 1394 color cameras arranged around the 

edges of a space measuring approximately 5.5m×5.5m×2.5m and connected to three standard office 

PCs. The cameras were set to record video at a resolution of 1024×768 at a rate of 30 frames per 

second. Prior to the capturing process, these cameras were affixed in place and calibrated to obtain their 

intrinsic and extrinsic parameters. In addition, the background image of each camera was captured to 

aid in the segmentation processing. Frames of raw animation data were recorded to disk for the 

processing to take place offline. Segmentation masks were precomputed using the segmentation 

method presented in Sectoion 4.2.1 [8].

Images and segmentation masks for the dataset where then transferred to a separate PC for 

visual-hull reconstruction and rendering. This PC has a Pentium IV Core 2 processor, with 2 Gigabytes 

of main system memory, and an NVIDIA 8800 GTS video card with 640 Megabytes of video memory. 

The computation was performed under Windows XP with service pack 2, compiled with Intel's C++ 

compiler under Visual Studio 2003. Reconstruction took place on a 300x200x300 voxel grid with a 

voxel spacing of 1 cm. Output images were generated from camera position information stored as an 

XML file, and were rendered at a resolution of 1024×768 pixels. 

6.2. Factors affecting results
While the results in VI.3 represent two different versions of the same system producing the same 

results, there are some inherent differences in the way in which the internal processing takes place. The 

most obvious of these factors is the difference in the way occlusions are calculated. The CPU version of 

the system utilizes Bresenham's line drawing algorithm to check each voxel for occlusions as it does not 

require any precomputation and the CPU has fast access to main memory. The GPU version utilizes the 

31



depth texture method presented earlier in this paper as it is able to precompute them quickly and greatly 

reduce the number of texture accesses required during the rendering step. 

In addition, however, the storage and processing of the voxel list varies between the CPU and 

GPU versions of the Cinematized Reality system. The CPU version takes the list generated from the 

voxel reconstruction algorithm and compacts it down to a list of only the solid voxels. Experimentation 

has found that this extra precomputation step allows the system to function faster on a per-frame basis 

than stepping through every voxel and checking whether it is solid or emtpy during the rendering step. 

The GPU, however, stores the state of every voxel as a texture and is able to “throw out” empty voxels 

early in the rendering step. Thus, the CPU version has the additional step of “compressing” the voxel 

list, while the GPU version has the additional step of generating depth textures. Each of these additional 

steps are considered part of the rendering process as opposed to the reconstruction process, as is 

indicated in the reported data in the next section. The computation times for these additional steps are 

shown for comparison purposes. The two versions of the rendering process can be compared directly 

using the total rendering time.

Additionally, the numbers presented in the next section show only the computation time required 

for each algorithm to run and the time required for the GPU version to send information between main 

and graphics memory. However, it does not include the time required to load the image and 

segmentation mask data, nor the time it takes to save the resulting images to disk, as these times are 

equivalent in the CPU and GPU versions. The CPU version of Cinematized Reality takes long enough 

that the time spent loading and saving images is not significant. However, the time spent transferring 

data between the hard disk and main memory currently is greater than the total processing time for the 

GPU version. While this presents an interesting opportunity for optimization, the differences in the CPU 

and GPU versions of the system do not have an impact on the loading times. As such, some ideas are 

32



presented in Section 8 to alleviate this problem, but the implementation of these suggestions is beyond 

the scope of this project.

6.3. Performance data and output
Performance benchmarks show that the optimization of the Cinematized Reality system shows 

great improvement in total computation time. Three hundred frames of the “karate” dataset shown in 

Figure 15 were used as a test of both the CPU and GPU versions of the system. Camera control was 

performed by an XML file that ensured that both versions would render the scene from the exact same 

viewpoint. Table 1 displays the average time it takes for each system to render a single frame in 

milliseconds based on the “karate” dataset, as well as the resulting performance improvement.

In addition, the system was tested using the “nurses” dataset shown in Figure 16. This scene is 

particularly interesting because it involves multiple people, which results in a high number of 

occlusions. Also, there is a table in the middle of the target space that is regarded as background due to 

the fact that it is static. This causes segmentation errors that result in modeling errors, as the legs of the 

participants are often occluded by the table from the perspective of one or more cameras. The scene also 

utilizes two additional cameras: one attached to the ceiling of the target space, and one in front closer to 

33

Table 1: Average processing times for a single frame of data

Step CPU version
 (ms / frame)

GPU version 
(ms / frame)

Improve
ment 

Modeling 23147.7 179.77 128.8x

M
icrofacet B

illboarding

Voxel 
Compression

Depth Texture

Render

Subtot.

0.0793 - -

- 0.89 -

666.4 0.77 861.3x

666.5 1.66 401.0x

Total 23814.2 181.4 131.3x



the people. This causes the computation time to increase slightly for the dataset, however the 

performance of the GPU version is still similar to the performance under  the “karate” dataset. 

Unfortunately, a camera control file has not yet been generated for this dataset, and as such a proper 

benchmark is unable to be generated at this point. However, the quality of the renders generated by the 

“nurses” dataset shows that the depth texture method of detecting occlusions works well. The camera 

selection algorithm of the GPU version shows that it is reliable even when the two nurses are standing 

close to each other. 

34

Figure 14: Sample output of “karate” dataset



6.4. Analysis of Results
The GPU version of the system vastly outperforms the CPU version in both visual hull 

reconstruction and rendering, despite the fact that the CPU is running at a higher clockspeed than the 

GPU and they both have the same amount of data to process. There are several factors that contribute to 

this. First, the stream processing model of the GPU allows the computation of multiple voxels of data 

simultaneously in every step, reducing the number of clock cycles necessary by several times. Second, 

the specialized nature of the GPU allows it to use hardware acceleration on a number of operations that 

would take the CPU several cycles to accomplish. For example, all matrix and vector operations are 

hardware accelerated, as are distance and trigonometric functions. As the system relies primarily on this 

type of mathematical computation, this offers a significant boost in speed. Finally, the different types of 

shaders allowed data to be processed at several different levels quickly and efficiently. 

The resulting renders from the GPU-optimized version of the Cinematized Reality system do not 

show any significant differences from that of the CPU version, despite utilizing a different camera 

35

Figure 15: Sample renders of “nurses” dataset



selection algorithm. This is intentional as the goal of this project was not to change the quality or type of 

rendered images produced, but to simply improve the performance of the existing system.

36



7.  Future Work
While the optimizations presented here have greatly accelerated the Cinematized Reality system, 

there are still many avenues for future work, both within the realm of GPU optimization and outside. 

The system is performing significantly faster as a whole but is far from operating as a real-time system. 

In addition, the success of the optimization presented here indicates that GPGPU techniques could 

potentially offer great acceleration possibilities to other computationally expensive problems. 

While the reconstruction and rendering processes were moved to operate on the GPU, the 

segmentation process remained a CPU-bound operation. Where the reconstruction and rendering passes 

can be completed in ~2.5 seconds (factoring in time for loading and saving all necessary files), the 

segmentation process alone takes ~10 seconds for a single frame of data in a 7-camera system. While 

not all of the steps presented in the segmentation algorithm operate on the pixel level, the process of 

image segmentation is a highly parallel process and could benefit from the GPU programming model 

and hardware acceleration. If the segmentation process were to see optimization success on the same 

order of magnitude as the reconstruction and rendering processes, the total processing time for a frame 

could theoretically be brought under a second, making a near real-time system closer to reality, 

especially with the pace at which computer hardware is progressing. While this would not eliminate the 

speed limitations caused by I/O, it would help to reduce the problem, as only initial images and final 

renders would have to be loaded and saved. 

Secondly, the system as a whole could be optimized in the future by streamlining the I/O 

process. While this cannot be sped up by GPU processing, it is an important step in the optimization of 

the system as a whole. In fact, currently moving data from one form of memory to another takes 

significantly more time than actual processing in the reconstruction and rendering process. Initial steps 

to streamline this process would be to reduce the amount of data that needs to be transferred. This was 

37



already accomplished for the locations of the voxels; the voxel indicies for each voxel in the grid is 

transferred to video memory before processing begins so that it does not need to be transferred every 

time microfacet billboarding takes place (n + 1 times per frame, where n is the number of cameras). 

However, this can be accomplished in the image data by compressing the data, both on disk and in 

graphics memory. In addition, currently the loaded images have to undergo a conversion process in 

order to be passed into OpenGL as textures. Custom image loading routines could be written or a 

different library could be used to load image data directly from file into texture memory. 

Data flow could further be optimized by tweaking texture formats to transmit the minimum 

information necessary. Currently, not all channels of all textures are used. Reducing this, or the bitdepth 

of textures that require less detail, would reduce the amount of data that needs to be transferred. 

However, as the graphics card will generally store textures as 4-element textures in any case, the process 

of extracting the relevant data may cause sufficient slowdown as to prevent this from being a practical 

optimization. In addition, currently the hard drive is spinning up and spinning down as the files are 

loaded for each frame, despite the short amount of time in between file I/O operations. While this 

contributes to the 2.5 second frame computation time, it is also caused by it. If multiple frames of data 

were loaded at a time without waiting for the processing of each frame, the speed would increase. This 

can be accomplished by offloading the file i/o process to a separate thread of execution and buffering 

the images to be loaded and saved, so that the file i/o process can be continuous. 

The “nurses” dataset presents a new problem that the system is currently unable to handle: 

background or static objects that occlude dynamic objects in the captured space. Segmentation itra- and 

inter- reliabilities can be used to minimize the impact of bad segmentation due to occlusion [8], but is 

not applicable to this scenario as the legs of the participants are occluded in several of the cameras 

simultaneously. In addition, objects placed on the table appear to be floating in space. This can be 

38



solved by adding a computer-generated model of the objects that are classified as background, however 

this does not solve the occlusion problem. It can potentially be solved by precomputing segmentation 

masks for the objects in the capture space and combining them with the segmentation masks that are 

computed for each frame, but this assumes that these objects will never move. Further research is 

necessary to determine the best approach to solve this problem.

In addition, it would be an interesting experiment to try a similar set of optimizations on other 

three-dimensional systems. For example, can the same performance boost be expected in a stereo 

system that relies on image disparity? How about a shape from shading or using a specialized lighting 

setup? Similar methods of optimization could be applied to systems that must calculate a surface model 

and thus cannot utilize microfacet billboarding. 

39



8. Conclusions
The computation and rendering of visual hulls is a complex process that requires a significant 

amount of raw processing power. Previous iterations of the Cinematized Reality system were crippled 

by the long processing times that this process entailed. Analysis of the algorithms driving the process 

revealed that the computation was being performed linearly, while the process could inherently be 

performed in parallel. The independence of each voxel of data from its neighbors allowed this 

processing to be done in an unsynchronized fashion. As such, GPU processing was explored as an 

avenue for optimization.

Current generation GPUs offer a large amount of computational power and are becoming made 

consistently more flexible as the technology matures. However, the process of performing computations 

on a graphics card comes with a unique set of challenges and complications. Forcing the hardware to 

perform computations it was not designed for has been made easier with recent developments in the 

GPGPU community, but programmers pursuing this method must still be aware of these issues, where 

they come from, and techniques for managing them. In particular, the reliance on textures as data 

storage imposes a number of limitations in the types of computations that can be performed. 

Furthermore, the structure of the shader types that are available and their limitations in the data that they 

can access and manipulate restricts the types of computations that can be performed.

With these limitations in mind, it is still possible to utilize the computational power of the GPU 

in order to accelerate certain types of operations. The reconstruction and rendering processes of 

Cinematized Reality proved to be a good candidate for optimization as demonstrated by the results 

presented in Section 6. This process was not without its difficulties, as data had to be carefully managed 

in order to fit the memory model of the GPU and optimize the performance. In addition, while most 

algorithms were able to be translated to the GPU with good performance, this was not the case for all 

40



steps. In particular, the occlusion detection process had to be replaced by a new system utilizing 

precomputed depth textures. This is not due to an inability of the GPU to check for occlusion using the 

Bresenham-inspired approach present in the original version of the system, but rather due to the 

performance that resulted from the high number of memory accesses that the algorithm required. 

When the optimizations presented in this paper were applied to real-world data, the performance 

benchmarks showed dramatic improvement in the computational time required to reconstruct and render 

the scene. While this does not make Cinematized Reality a real-time system yet, the results show  a very 

promising future for the system should optimization continue as presented in Section VII. The 

benchmarks show that the choice to focus the optimization efforts on the utilization of the GPU's 

resources was a worthwhile endeavor.  

41



Glossary
● Binocular depth cue – see stereo depth cue
● Camera Calibration – The process of calculating a camera's intrinsic and extrinsic parameters
● CCD (Charged Coupled Device) – the photosensitive element that most cameras use to capture 

optical information as electrical signals.
● Depth cue – an observable quality of an image or series of images that implies information 

about the depth of an object relative to a viewpoint.
● Extrinsic Parameters – parameters that specify a camera's position and orientation relative to a 

fixed coordinate system in 3D space.
● Intrinsic Parameters – parameters that model the camera's optical properties, such as focal 

length and lens distortion
● Pinhole camera – a model for computing the optical properties of a camera. It assumes that the 

optics of a camera focus all incoming light down to a single focal point, behind which is the 
CCD onto which the scene is projected.

● shape from silhouette – a technique for modeling an object by projecting its silhouettes from a 
series of cameras into the captured space. The volume occupied by the intersection of the 
projection cones represent an upper bound of the object.

● Stereo depth cue – differences in a pair of images taken from two closely related viewpoints 
that indicate the depth of an object.

● Voxel – a 'volume pixel'. A single data point in 3D, often modeled as a cube.

42



References

1. Bresenham, J. “Algorithm for Computer Control of a Digital Plotter”. IBM Systems Journal vol. 
4, no. 1, pp 25-30. 1965.

2. Hoppe, H.; DeRose, T.;  Duchamp, T.;  McDonald, J.;  Stuetzle, W. “Surface reconstruction from 
unorganized  points”,  Proc.  19th  annual  conference  on  Computer  graphics  and  interactive  
techniques, pp. 71-78, July 1992 .

3. Kanade, T.;  Rander, P. and Narayanan, P.J. "Virtualized reality: constructing virtual worlds from 
real scenes ," Multimedia, IEEE , vol.4, no.1, pp. 34-47, 1997.

4. Kim, H; Sakamoto, R.; Kogure, K.; and Kitahara, I., "Cinematized Reality: Cinematographic 3D 
Video  System  for  Daily  Life  Using  Multiple  Outer/Inner  Cameras,"  2006  Conference  on 
Computer Vision and Pattern Recognition Workshop (CVPRW'06),  pp. 168.  2006 .

5. Kim, H., “A 3D Modeling System Using Multiple Stereo Cameras,” Dissertation. Yonsei 
University, 2005.

6. Kim,  H.,  Sakamoto,  R.,  Kitahara,  I.,  Toriyama,  T.,  and  Kogure,  K.  “Robust  Foreground 
Segmentation  from  Color  Video  Sequences  Using  Background  Subtraction  with  Multiple 
Thresholds”. Proc. KJPR, pp. 188-193. 2006.

7. Kim, H.; Kitahara, I.; Sakamoto, R.; Kogure, K. "An Immersive Free-Viewpoint Video System 
Using  Multiple  Outer/Inner  Cameras,"  Proc.  3D  Data  Processing,  Visualization,  and 
Transmission, Third International Symposium on , pp.782-789, June 2006.

8. Kim,  H.;  Sakamoto,  R.;  Kitahara,  I.;  Toriyama,  T.;  and  Kogure,  K.,  “Reliability-Based  3D 
Reconstruction  in  Real  Environment  (Periodical  style—Accepted  for  publication),”  ACM 
Multimedia, to be published.

9. Kumar, P; Sengupta, K; and Ranganath, S, “Real time detection and recognition of human 
profiles using inexpensive desktop cameras,” Proc. ICPR, pp.1096-1099, 2000.

10. Labatut, P.;  Keriven, R.;  Pons, J.P. "Fast Level Set Multi-View Stereo on Graphics Hardware," 
Proc.  Third International Symposium on 3D Data Processing, Visualization, and Transmission  
(3DPVT'06),  pp. 774-781,  2006.

11. Laurentini,  A.,  "The  visual  hull  concept  for  silhouette-based  image  understanding,"  Pattern 
Analysis and Machine Intelligence, IEEE Transactions on , vol.16, no.2, pp.150-162, Feb 1994.

12. Lorensen, W.E. and Cline, H.E., “Marching Cubes: A High Resolution 3D Surface Constructing 
Algorithm,” Computer Graphics (Proc. SIGGRAPH), pp. 163-169. July 1987.

13. Matveyev,  S.V.,  "Approximation  of  isosurface  in  the  Marching  Cube:  ambiguity  problem," 
Visualization,  1994.,  Visualization  '94,  Proceedings.,  IEEE Conference  on ,  vol.  17,  no.  21, 
pp.288-292, Oct 1994.

14. NVIDIA, “CG Toolkit User's Manual”, nvidia.com. 
15. Orman, N.; Kim, H.; Sakamoto, R.; Toriyama, T.; Kogure, K.; Lindeman, R.; “GPU-based 

Optimization of a Free-Viewpoint Video System,” Submitted for publication.
16. P. Fua, “A Parallel Stereo Algorithm that Produces Dense Depth Maps and Preserves Image 

Features,” Machine Vision and Applications, 1993.
17. Treece, G.M.; Prager R.W.; and Gee,  A.H. “Regularised marching tetrahedra: improved iso-

surface extraction.” Technical Report, Cambridge University Engineering Dept, September 1998. 
http://citeseer.ist.psu.edu/treece98regularised.html.

18. Trucco,  E.  and Verri,  A.  “Introductory Techniques for  3-D Computer  Vision.”  New Jersey: 
Prentice Hall, 1998.

19. Tsai,  R.,  "A versatile  camera  calibration  technique  for  high-accuracy  3D  machine  vision 
metrology using off-the-shelf TV cameras and lenses," Robotics and Automation, IEEE Journal  

43



of, vol.3, no.4, pp. 323-344, Aug 1987.
20. Wasson, S., “Nvidia's GeForce 8800 graphics processor,” The Tech Report. Nov. 8, 2006. 

http://techreport.com/articles.x/11211. Accessed on Oct. 10, 2007.
21. Willems, G.; Verbiest, F.; Vergauwen, M.; Gool, L.V. "Real-Time Image Based Rendering from 

Uncalibrated  Images,"  Proc.  Fifth  International  Conference  on  3-D  Digital  Imaging  and  
Modeling (3DIM'05),  pp. 221-228, 2005.

22. Yamazaki,  S.;  Sagawa,  R.;  Kawasaki,  H.;  Ikeuchi,  K.;  and   Sakauchi,  M.,  “Microfacet 
billboarding,” Proc. 13th Eurographics Workshop on Rendering, 2002,  pp. 175–186, 2002.

23. Zhang, Z.,  "A flexible new technique for camera calibration,"  Pattern Analysis and Machine  
Intelligence, IEEE Transactions on , vol.22,  no.11,  pp. 1330-1334,  Nov 2000.

44


