WORCESTER POLYTECHNIC INSTITUE

Log Likelihood Ratio Soft

Decision Demapper
An FPGA Implementation for a High Data Rate Modem

Major Qualifying Project Report
Submitted to the Faculty of
Worcester Polytechnic Institute
In partial fulfillment of the requirements for the

Degree of Bachelor of Science

By
Brian Leslie

October 29, 2013

Abstract
This Project is sponsored by The MITRE Corporation to develop an FPGA implementation

of a Log Likelihood Ratio (LLR) soft decision demapper for a High Data Rate (HDR) modem.
The main goal of this project is to add support for higher order modulation up to 32APSK for
HDR and high bandwidth efficiency. Through preliminary research, several DVB-S2 soft
decision LLR algorithms are investigated for different modulation schemes in order to decide
which algorithm will be implemented in synthesizable Hardware Description Language (HDL).
Algorithms are analyzed based on performance simulation in MATLAB and complexity
analysis. The goal is to improve the performance of current system and provide
recommendations for future designs of the soft decision demapper for DVB-S2.

The MAX Algorithm was selected to be implemented based on the complexity of
operations used in the calculation and the BER curve performance. The MAX Algorithm is
implemented in software using MATLAB. The LLR values are generated using the MAX
Algorithm and stored in Lookup Tables (LUT). The VHDL code is designed to use the LLR
values in the LUTs by applying bi-linear interpolation to correctly determine the LLR value.
The design has been tested extensively in software simulations as well as on hardware. The
deliverable for MITRE is the implementation of the selected algorithm in VHDL for deployment
on an FPGA. The results of the proposed LLR core demonstrate performance improvement over

the existing MITRE core.

MITRE Approved for Public Release; Distribution Unlimited 14-0176

1

Acknowledgments

Steve Attardo from The MITRE Corporation for advising this project. Your dedication to
help me understand the entire project every step of the way allowed me to succeed at
accomplishing the goals of the project. Thank you for the experience with working with you on
this project at MITRE.

Prof. Xinming Huang from Worcester Polytechnic Institute for advising this project,
ensuring the project was progressing in the right direction, and offering feedback to the project
design, and revising the project report.

Brian McHugh, Roberto Landaru, Jose Torres and Hieu Nguyen from The MITRE
Corporation for your guidance and support as supervisors of this project.

Joseph Chapman and Adam Woodbury from The MITRE Corporation for strengthening the
partnership between WPI and MITRE for the MQP center.

Prof. Sergey Makarov and Prof. Stephen Bitar from Worcester Polytechnic Institute for
introducing me to MITRE and encouraging me to pursue this opportunity for my MQP.

Richard Dennen from Worcester Polytechnic Institute and The MITRE Corporation for

being a great friend and mentor throughout my undergraduate years and during this project.

MITRE Approved for Public Release; Distribution Unlimited 14-0176

2

Table of Contents

AADSITACE ...ttt b et h b et h bt et h e bt et eh e e bt et e h e e be et e satenae et 1
ACKNOWIEAZIMENLS......cciiiiiiiieciie ettt et e e te e et e e e staeeetaeesssaeessseeessseeessseeesseeensseennnes 2
O 11 U3 (o1 10 12 o) o OO SPUO TS O PSRRI 8
| B 5 771 ¢4 {0 15T TSRS 8
1.1.1 Digital COMMUNICAtION.......cccuiieiiieeiiieesieeesteeesteeeseeeeesseeesseeesseeessseeessseesssseesssseeans 8

1.1.2 Satellite COMMUNICALION.eeriieiieriieeiieeiteerite et eeite et sieeste et e s bt eseeesbeesaeeenseeseeas 9

1.1.3 Digital Video Broadcasting — Satellite Second Generation (DVB-S2).................... 9

1.2 Problem Statementoceeiiiiiiiiiiieie et 11

2 Requirements and SPecifiCatioNS...........cevueeriieiiieiiieie et 12
2.1 GENEIAl GOALSeiiiiieiii ettt ettt ettt e b e eeeeaneens 12
2.2 DVB-S2 Standard SpecifiCationscecueeriiriiieniieiieeie ettt 12
2.3 MITRE REQUITECIMENLSeeeuiieiiieiiieiieeiieeiieeieeieeseteeteeseaeeseesseeesseessseensaesssessseesssesseens 13

Y (517510 T o] [0 Y=y 2RSSR 15
Bl DV B ettt et ettt et st e b et eeneeees 15
3.1.1 Modulation/Demodulation SChemes............cccceeriiriiiiiiiiiiiiiiiieeeeeeeeeeee 17
3.1.2 FEC ENCOQING ...ttt ettt e e e e s naeeenneas 25

3.2 Log LikelThoOd Ratioccccuiiiiiiieiiiieiiie ettt 25
3.2.1 Simplified LLR EXPlanation.........cccceeeiiieeiiiiiiieeeiieecieeeiee e s 26
3.2.2 LLR Bitwise COMPATISONvveeeiiieeirieeiiieeeireeeiereeeteeesseeessseeessseeessseesssseesssseesnsees 28
323 True LLR AlGOTIthIM....cccviiiiiiiciee e e 31
324 MAX AIGOTItRIM....oiiiiiiiiii e e e e e 33
3.2.5 Euclidean AlGOTItRmcc.oiiiiiiiiiiiciieceeee e e 34
32.6 3" party IP LLR ALGOTItAIN «...o.oveeeeeeeeeeeeeeeee e 35

3.3 Algorithm COMPATISON.....cccuiiiuiieiieriieeiieeteeiee et ertee et e erteesteesieeebeeseeesabeesseeenbeesseesnseens 36

T8 T B 0703 1510) (o). <L 2SSOSR PSP 36
3.3.2 Algorithm Multiplier COMPATISONccueeriieriieriiieiieriie ettt eee e 39
3.3.3 Complexity of Operations used in Calculation..............ccceevveeiieniienienieeieeee 40
3.3.2 Performance from MATLAB MoOdEIScocueririiniiniiiiiniinieciececeteeee e 41

MITRE Approved for Public Release; Distribution Unlimited 14-0176

3

4 Design and IMplementationcccueeiieiieriiieniieeie ettt e e saeesbeesaeeenseenenes 49
4.1 The Chosen AIGOTItRMc.cooiiiiiiiiiieiieiece ettt eiae b e eaeeareens 49
4.1.1 Max Algorithm Block Diagramcccceeeuieriiiiiiiniieiienie et 49

4.2 VHDL DESIZN c..etiiuiieiiieiieeiie ettt ettt et sve et e seaesbeessaeebaessseesseessseenseesssesnseesssesnseens 51
4.2.1 Integration into Current LLR core Architecturececevveveriienieneniencenienne 51
4.2.2 Integration of MAX AIZOTIthM........cocuiiiiiiiiieiiiieeceeeee e 51
i T 1 10 1 o -1 o) (< RS RPRR 52
4.2.4 Bi-linear INterpolation..........cccuieeiuiieeiiiieeiie ettt e 54
4.2.5 Data FIOW ...uiiiiiiiiee ettt ettt et 59
426 ROUNAING.....ooiiiiiiiiiieie ettt ettt e et e et e ebeesaeeebeesseesnneens 61
A.2.T THNINEZ ettt ettt et ettt et e et e bt e e st e e s aeeeabeesseeeabeenseesnbeesaeeenseenseesnseans 62

5 Testing and VeriflCationcccceouirieriiriiniiniiiieeeeeet ettt sttt s 63
5.1 MATLAB TEStINE ...utiitiiiiiieiieeitetee ettt ettt sttt ettt st e b e sabeesseeenbeesaneenne 63
5.2 CAH MOl TESINE ...cveeviiiiniiiieeieeieete ettt ettt st et 63
5.3 VHDL Data FIOW TEStINZccueerueriiriiiiieieniienieeieeiteste ettt ettt 63
5.4 Hardware RESUILScocuiiiiiiiieiiieie et sttt 64
5.4.1 FPGA Slice Logic UtIlZationc.ceeivieeiiieeiiieeiieecieeeieeeeiee et eeveeeaee s 65
5.4.2 Digital LDPC Mini TESHNG ...cccvvieiiieeiiieeiiieeiieeeriieeeieeeeieeesveeeseveeessseesnnneesnneeens 66
543 AGEC SCAIINE ..conviieiiiieeiie ettt ettt e et e e et e e et e e s beeeebeeesnbeeesnbeeenaeeennseeens 67
5.4.4 Final Hardware ReSults.........ccccoiiiiiiiiiiiiiiiiic e 69

6 CONCIUSION ..ttt ettt ettt et e st e e bt e s st e e bt e sabeesbeeenbeenbeesaneens 74
F N 08157 116 Q2 U RPRRUSRRS 78
Appendix A.1 — QPSK Modulation (2 BPS) — 10° InpUt BItse.eveeeeeeeeeeereeeeeeeeeeeeeeeeeene 78
Appendix A.2 — QPSK Modulation (2 BPS) — 10° Input Bitsv.eveeveeeeerereeeeeereeeeeeereeenne 79
Appendix A.3 — 8PSK Modulation (3 BPS) — 10° INPUE BItSeeveeeeeeereeeeeeeeeeeeeeee e 82
Appendix A.4 — 8PSK Modulation (3 BPS) — 10° INPUE BItSeeveeeeeeeeeeeeeeeeee e 84
Appendix A.5 — 16APSK Modulation (4 BPS) — 10° Input BitSc.eveveeerereeeeeeeeeeeeeeeeene 86
Appendix A.6 — 16APSK Modulation (4 BPS) — 10° Input Bitsoveveeveeeeeeereeeeeeeeennes 88
Appendix A.7 — 32APSK Modulation (5 BPS) — 10° Input Bitsceoveveveeeeeeeeeeeeeen. 90
Appendix A.8 — 32APSK Modulation (5 BPS) — 10° Input Bitscoeveveeeeeereeeeeeeeeenenes 92

MITRE Approved for Public Release; Distribution Unlimited 14-0176

4

Appendix B VHDL Testing RESUILScocueiiiiiiiiiiiiciieceeeeeeeeee e 94

Appendix B.1 Parallel by Two Testing ReSUltscccueeriiiniieiiiiiieieeieeeeee e 94
Appendix B.2 Parallel by Four Testing Results...........ccccoeviieriieniiniieieeieeiecee e 97
Appendix C Terms and ADBDIeVIAtIONSc..ccveeiiieriiieiiieiieeiieeie et saee e seeeere e eee 100
Appendix C.1 Field Terminologyccceeeviieiiiiiiieiieeiierie ettt 100
Appendix D MATLAB Scripts and FUNCtionscccoecveeviienieeiiienieeieeeeeeieesee e 101
Appendix D.1 demapper euclid algorithm.m..........cccceeeviieriiiiniiiiiie e, 101
Appendix D.2 demapper MAX algorithm.mccccooviiiiiiiiiiniieie e 103
Appendix D.3 demapper trueLLR algorithm.m..........ccccooiiiiiiiiiiiiee 105
Appendix D.4 generate DVBS2 BER.Mcccooiiiiiiiiiiiiiiicceceeeecee 107
Appendix D.5 generate 1lrParams.m..........cccooviiiiiiiiiiiiiieeeee e 119
Appendix D.6 generate LUT. M .c..cooiiiiiiiiiiiiiiiiiiitcececeeeee et 121
Appendix D.7 demapper_interp Hrmcooooioiiiiiiiiii e 124
Appendix D.8 create teSt VECTOTS.IM ..o.uiiruiiiiieiiieeiieeiie ettt ettt et e ettt e e 130
Appendix E. MITRE LLR COT@ccutiiiiiiriiiiiiiiitcicetereee ettt 132
Appendix E.1 VHDL ..ottt 133

List of Figures

Figure 1: The Application - Using DVB-S2 to push high-data-rate application...........c..cccc...... 10
Figure 2: Bit Data FIOW DIa@ramccccoceeviiiiiiniiniiiiiiiesceenieee ettt 16
Figure 3: Bit mapping for the QPSK Constellation [14]ccccooieviriiniininiienieneceeneeeene 18
Figure 4: Bit mapping for the 8PSK Constellation[14]coceoiiiiiiiiiiiiiiecieee e, 20
Figure 5: Bit mapping for the 16 APSK Constellation [14]ccccooiiiiiiiiiiniiieieeeeeeeee, 21
Figure 6: Bit mapping for the 32 APSK Constellationc..ccooeeiiiiiiiniiinieiiieieeeeeeeeeen 23
Figure 7: Constellation Map for 32APSK with DVB-S2 Power Levelsccccccoooeniiiniinennen. 24
Figure 8: Constellation Map for QPSK Demodulation Exampleccoceeverienenienicniencnnne. 26
Figure 9: Example of 2D LLR ValU@S.....cccooiiiiiiiiiiiiiiieitcieceeeeeeeee e 28
Figure 10: LLR Values of Bit 0 for 32APSKcc.ooiiiiiiieieeeeceeeee e 29
Figure 11: LLR Values of Bit 1 for 32APSKccooiiiiiiiiiiieeeeceeeee e 29
Figure 12: LLR Values of Bit 2 for 32APSK ..o 30
Figure 13: LLR Values of Bit 3 for 32APSK ...t 30
Figure 14: LLR Values of Bit 4 for 32APSK ..ot 31

MITRE Approved for Public Release; Distribution Unlimited 14-0176

5

Figure 15:
Figure 16:
Figure 17:
Figure 18:
Figure 19:
Figure 20:
Figure 21:
Figure 22:
Figure 23:
Figure 24:
Figure 25:
Figure 26:
Figure 27:
Figure 28:
Figure 29:
Figure 30:
Figure 31:
Figure 32:
Figure 33:
Figure 34:
Figure 35:
Figure 36:
Figure 37:
Figure 38:
Figure 39:
Figure 40:

Figure 41
Figure 42
Figure 43
Figure 44

8PSK Constellation for LLR Calculation...........c.ccoovieviiiiiiniiiiienieeieeeeee e
The True LLR Algorithm’s LLR bit-wise Calculation Equationsccccceeuvnnnee.
The MAX Algorithm’s LLR bit-wise Calculation Equations [2]cccceeeveereuvennee.
The Euclid Algorithm’s LLR bit-wise Calculation Equations [2]cccccccveeeviennnnne.
True LLR Algorithm Complexity Breakdown...........cccoeviieiiiiiiiiiiiiniiciieieeee
MAX Algorithm Complexity BreakdOWn..........c.ccovevciienieiiiiiiiiciieeeeee e
Euclidean Algorithm Complexity Breakdownccccoevieeiiiiiiiiiiiniicieeieeee,
8PSK Modulation Constellation Diagram with PSK Pointscccccceevevieieiieeenenn.
Hardware BER Results for QPSK, 8PSK, 16 APSK, and 32APSKccccceeenniennn.
Original LLR Algorithm Comparison Plot for QPSK...........ccccoiviniininiiiiiiinne
Original LLR Algorithm Comparison Plot for 8PSK *ccciiiiiiiiiiiiiee
Original LLR Algorithm Comparison Plot for I6 APSK *........ccccooiiiiiiiiiiiie
Original LLR Algorithm Comparison Plot for 32 APSK........ccceoiriniiiiiieee
Updated LLR Algorithm Comparison Plot for QPSKcccccciviiiniiiiiiiieeiiee,
Updated LLR Algorithm Comparison Plot for 8PSKccccoeeviiiiiniiiiiiiieeee,
Updated LLR Algorithm Comparison Plot for I6APSKcoooiiiiiiiiiiiiiee
Updated LLR Algorithm Comparison Plot for 32APSKcccooiiiiiiiiiiiiiiee
Block Diagram One for MAX AlGOrithmcccooeeiiniiiiniiniiccccece
Block Diagram Two for MAX AlZOTithmccccooeeiiiniiniiiiniieiicneeccecee
LUT Width DIagramccocuiiiiiiieiiieeiie ettt nreesnaee e
Bi-Linear Interpolation Diagram............ccceeevuiiiriiiiiniiieiniieccee e
Linear Interpolation for Point Rcccciieiiiiiiiiiiieceeeeeeee e
Linear Interpolation for Point R2cccoiiiiiiiiiiiieeeeee e
Linear Interpolation for POINt P..........ccccviiiiiiiiiiiceee e
LLR Core Data Flow Handshakecccoooieiiiiiiiiiiiiiceeee e
3rd party IP Hardware Results for all Modes and Modulations..............ccccceeevuennene
: QPSK 1/2 Short BER Performance COmpariSOnccoeeverueenieriieneenieeieneenieneenne
: QPSK 1/2 Normal BER Performance CompariSon............ccceeeeruerieneenenieneeniennenn
: QPSK 7/8 Short BER Performance CompariSOnccueeevuveeriuieeriueeenieeenveeeeeeeennns
: QPSK 7/8 Normal BER Performance CompariSon............cccccueeevvveerireenieeenveesneee e

List of Tables

Table 1: DVB-S2 Demodulation SChEmESccocuiiiiiiiiiiiiiieiieieeicee et
Table 2: QPSK Symbol ValUES........ccccuiiiiiiieiieceeceece ettt saaeeea
Table 3: 8PSK SymbOl VAlUESccoiiiieiiieiieeeecee et e e
Table 4: I6 APSK Symbol ValUes.........coeiiiieiiiieiiecieeceeee et snae e
Table 5: 32APSK Symbol ValUes.........coeiiiieiiieeiieeeece ettt
Table 6: FEC LDPC Coding RAteScc.eeiiiiiieiiieiieiie ettt ettt et seaeeneens

MITRE Approved for Public Release; Distribution Unlimited 14-0176

6

Table 7: Number of PSK Points in relationship to Modulation............c.ccceeeeveieviieiiieeicieeeiee 39

Table 8: Multiplier Complexity for LLR AIOTithms..........cccvieviiiieiiieiiecciee e 39
Table 9: MATLAB Performance Configurationscceeecuieeeiuieeriiieeeiiieesieeesieeesveesiveesenveeens 41
Table 10: LUT Width BER COMPATISONcovviiiieiiieiieeiieeiieeieesiieeieesieeereeseeesveesseeenseessnesnseens 54
Table 11: LLR Demapper Modulation Test Plancccoeiieiiiniiiiiiniicicicceeeeeee e 65
Table 12: FPGA Slice Logic Utilization for the Proposed MITRE Core.........cccceeveevvenieneennnenne. 65
Table 13: Slice Logic Utilization for Current MITRE Core and 31 party IP 32APSK Core....... 66
Table 14: Slice Logic Utilization for Current MITRE Core and 31 party IP 64APSK Core....... 66
Table 15: QPSK 7/8 Normal AGC Scaling Test Results..........ccccoveeeiiiiiriiiiiiie e 68
Table 16: QPSK 1/2 Short Full Hardware Resultsccccooiieiiiiiiiiiiicieeeee e 71
Table 17: QPSK 1/2 Normal Full Hardware ReSults...........ccccueeriiiieiiieeiieeeiee e 72
Table 18: QPSK 7/8 Short Full Hardware ReSultsc...cooviieiiiiieiiiieeieeeiee e 73
Table 19: QPSK 7/8 Normal Full Hardware ReSUlts............cccueeeiuiiieiiiieiieceieecciee e 74

MITRE Approved for Public Release; Distribution Unlimited 14-0176

7

1 Introduction

In the past decade there have been numerous innovations and advances in digital
communication and multimedia [1]. As a result, the need for satellite communications for
numerous applications has grown rapidly [1]. Applications for satellite communication include
television, telephone, digital cinema, radio, military, and internet access [2]. Satellite
communication describes the transfer of information using the satellite to bridge the transmission
and receiving stations. The ability to access High Definition Television (HDTV) via satellite to
share information is a primary application of this evolving technology. Digital Video
Broadcasting Satellite (DVB-S) standards have been developed and deployed in order to bring

digital television to people around the world [3].

1.1 Background

1.1.1 Digital Communication

Digital communication is the backbone for today’s society, connecting the world with a
high speed, reliable, information infrastructure [4]. The design of a digital communication
system starts with describing the channel which includes the received power, available
bandwidth, noise statistics, and other impairments such as fading [5]. The data rate and error
performance are specific requirements of a digital communication system [5]. Digital
communication using satellite communication introduces a level of error because of noise in the
physical channel. As a result of this introduction of error, many communication systems are
“coded” which refers to the inclusion of error-correction coding schemes [5]. The DVB-S2
standard uses several Forward Error Correction (FEC) code rates which describe the ratio

between data bits and parity bits. In order for error-correction to work properly the encoder must

MITRE Approved for Public Release; Distribution Unlimited 14-0176

8

provide enough information to compensate for the inaccuracy of the demapper/demodulator [5].

[6, 7]

1.1.2 Satellite Communication

Satellite technology allows for information to be sent and received between locations with
long distances from each other, therefore creating a large scale wireless network. This network
consists of ground stations which have the equipment necessary to package up the information
and convert it into a digital signal sent to the satellite in space. Once a satellite receives the
information it needs to redirect that information to the destination, usually another ground
station. When there are multiple ground stations and satellites, the result is a communications
network that allows a specific ground station to communicate to any other ground station. Linear
and non-linear distortions along with phase noise contributions can cause important link
performance impairments. With a proper demodulation algorithm and constellation design, it is

possible to keep non-ideal satellite channel induced losses within acceptable limits [8].

When a device is connected to a network, the value of that device increases because of its
increased ability to communicate with other devices [9]. This connection to the network allows
the device to have access to real-time data such that users can make quick and effective
decisions. This expandability and flexibility to create a network that is accessible around the
world gives military applications an advantage too. Satellite communication has provided the

Department of Defense (DOD) a cost effective means of reliable communication [10]. [11, 12]

1.1.3 Digital Video Broadcasting - Satellite Second Generation (DVB-S2)

There is a growing demand in digital communications for more bandwidth, larger margins,

greater flexibility, less satellite cost, lower amplifier power, and smaller antenna size. In order
MITRE Approved for Public Release; Distribution Unlimited 14-0176

9

for satellite communication to work correctly, standards need to be defined on how information
is transmitted and received. These standards have evolved to incorporate changing digital design

architectures and algorithms.

Figure 1: The Application - Using DVB-S2 to push high-data-rate application

One of the leaders in digital communication standards is the Digital Video Broadcasting —
Satellite Second Generation (DVB-S2) developed by the ETSI in 2005. Figure 1 shows the
DVB-S2 application with the communication between HDR ground stations. Compared to
previous standards this new standard offers more flexibility and more quality levels. The most
significant characteristic of the DVB-S2 standard is the ability to select the best coding-
modulation scheme to maximize the system throughput [2]. The DVB-S2 standard is often used
for high-data-rate applications and therefore the implementation of a LLR soft decision

demapper is a key component for a HDR modem.

MITRE Approved for Public Release; Distribution Unlimited 14-0176

10

1.2 Problem Statement

The MITRE Corporation sponsored this project to replace the third party intellectual
property (IP) of the LLR demapper implementation. The goal is to achieve an improvement in
performance when designing the LLR demapper as well as adding support for higher-order
modulation in HDR systems.

There are several challenges for creating the demapper in order to meet all of the project
requirements. The proposed design should have better performance than the 3™ party IP core.
The hardware complexity increases when applied for higher order modulations. The core must
be able to generate the real-time waveform and work seamlessly with other components. The
output of a demapper is quantized with a limited number of bits. Also, the core must operate
above a specific clock speed. Lastly, there are limitations on the amount of DSP resources
available on the FPGA.

The current design of the MITRE LLR core is limited to 8PSK and does not have the
flexibility for future expansion. Replacing this core with a new implementation allows for
higher modulation schemes like 16APSK and 32APSK included in the DVB-S2 standard.
Currently MITRE is using another IP core to handle the higher modulation schemes. This
secondary core is from the 31 party. The baseline requirement is to produce an implementation

that provides the same performance as the 31 party core.

MITRE Approved for Public Release; Distribution Unlimited 14-0176

11

2 Requirements and Specifications

2.1 General Goals

The existing MITRE LLR demapper core lacks expandability for reusable IP. As a result,
MITRE has to use a 3™ party IP core for the LLR core in order to implement the other design.
This project strives to create a LLR demapper core that can meet MITRE’s requirements as well

as the specifications defined in the DVB-S2 standard.

The higher order modulation provides a challenge because of the complexity of 16APSK,
32APSK, and higher PSK constellations in the future. By creating the structure for higher-order

modulations it allows the design to have both flexibility and expandability.

2.2 DVB-S2 Standard Specifications

The DVB-S2 Standard has several requirements and specifications that are specific to
satellite communication [8]. Due to the great distance that a signal needs to travel when being
transmitted, high power amplifiers are needed in order to keep a good Signal to Noise Ratio
(SNR). The use of these high powered amplifiers causes distortions in the amplified signal
because they are non-linear [8]. These distortions impact communication by causing errors in
demodulating the signal which results in misinterpreting the received symbols and therefore

increases the Bit-Error-Rate (BER) [8].

The following are the terms often used in the DVB-S2 standard:
e Noise — It is assumed that the noise distribution follows an Additive White Gaussian
Noise (AWGN) distribution.
e (Constellation Design — DVB-S2 uses Phase Shift Key (PSK) constellation design.

MITRE Approved for Public Release; Distribution Unlimited 14-0176

12

o Variable Coding and Modulation (VCM) — This functionality allows DVB-S2 to use and
change to different modulations and error protection levels on a frame-by-frame basis
thus optimizing transmission parameters for minimizing BER [13].

e Flexibility — This standard is not limited to Motion Picture Expert Group (MPEG-2)
video and audio coding but able to handle a variety of data formats [13].

e (Code Rates — The code rates include 1/4, 1/3, 2/5, 1/2, 3/5, 2/3, 3/4, 4/5, 5/6, 8/9, and
9/10.

o FECFRAME Length — The normal frame size is 64,800 bits and the small frame size is

16,200 bits.

2.3 MITRE Requirements
The MITRE Corporation has several requirements for the LLR demapper in order to
integrate the new core with their existing waveform design.
e Modulation — The ability to demodulate QPSK, 8PSK, 16APSK, and 32APSK
modulations to LLR values using a soft decision demapper [2].
e Performance — Maintain Quasi-Error Free (QEF) performance with a BER less than 1E-8
at an Ey/N, close to the current LLR demapper design.
e Clock— The clock needs to run at I50MHz with some additional headroom in order for
the core to meet timing on a congested FPGA.
e Flow Control — The core needs to support flow control on input and output interfaces to
handle variable dataflow rates and profiles.

e Resources — Minimize resource utilization while maintaining performance.

MITRE Approved for Public Release; Distribution Unlimited 14-0176

13

Expandability — Develop parameterized implementation to maximize reusability for

future development.

Code — Follow MITRE’s coding guidelines when developing the VHDL core.

Testing — Run a variety of verification tests that stress the core and expose any bugs and

issues before deployment on the FPGA.

MITRE Approved for Public Release; Distribution Unlimited 14-0176

14

3 Methodology

3.1 DVB-S2

Digital Video Broadcasting — Satellite — Second Generation is the successor for the popular
DVB-S system. This standard defines the second generation modulation and channel coding
system. The system is characterized by a flexible input stream adapter which allows for various
input formats. This includes a FEC system based on Low-Density Parity Check (LDPC) codes
concentrated with BCH codes. This design creates the Quasi-Error-Free operation around 0.7 to

1 dB from the Shannon limit.

The DVB-S2 standard includes several advance techniques in extended range of spectral
efficiencies supported and near Shannon power and spectral efficiency [8]. The system includes
a wide range of code rates from 1/4 up to 9/10, four modulations and their respecting
constellations that includes a spectrum efficiency range from 2 bits/Hz to 5 bits/Hz. The DVB-
S2 standard includes Adaptive Coding and Modulation (ACM) which optimizes channel coding
and modulation on a frame-by-frame basis. The system has been targeted for broadband satellite

applications including HDTV [14].

The DVB-S2 system outlines the specifications and requirements for the LLR demapper
design and specifically the bit mapping into constellation. The FECFRAME is converted from
serial-to-parallel based on the number of bits per symbol which includes 64,800 bits for normal
frame and 16,200 for a short frame. The Most Significant Bit (MSB) of the FECFRAME is
shifted into the MSB of the first parallel sequence and therefore each parallel sequence is then

mapped to a constellation. This generates a (I, Q) sequence with a length depending on the

MITRE Approved for Public Release; Distribution Unlimited 14-0176

15

modulation. The I/Q data represents a modulation symbol of the complex vector where “I” being

the in-phase component and “Q” for the quadrature component.

A simplistic graphical explanation of satellite communication can be shown in Figure 2
below. All information that needs to be transmitted starts off as bit data (red box). This block
represents the sequence that will be transmitted at the transmitter end and later received at the
receiver end. In order for the bit data to be transmitted, it needs to be FEC encoded by adding
parity bits. The parity bits allow for error correction by giving additional information to the
receiver. The bit data is then mapped into symbols based on the modulation scheme with its
associated I/Q values. This complex value is then used to create the signal transmitted through

the satellite link.

Bit Data
/ SN

FEC Encoder

ADC/Tracker DAC

Figure 2: Bit Data Flow Diagram

MITRE Approved for Public Release; Distribution Unlimited 14-0176

16

Once information is transmitted, the satellite is used as the middleman for communications
by re-directing the signal to the correct receiving location. On the receiver side the signal is
converted back to digital information and then tracked to align the incoming data with known
sequences. The complex I/Q values are now received and the LLR demapper determines the
probability of each bit in the symbol. The parity bits are then used by the FEC decoder to correct
any bit errors caused by the channel and pass the decoder information to the receiver. Ideally,
the received information bit data should be exactly the same as the original bit data sent by the

transmitter.

3.1.1 Modulation/Demodulation Schemes

In the DVB-S2 standard there are four modulation schemes which include QPSK, 8PSK,
16APSK, and 32APSK. As shown in Table 1, the modulation schemes are named for number of
bits per symbol used in the modulation. The QPSK and 8PSK modulations are typically used for
broadcast applications because they are constant envelope modulations that can be used in non-
linear satellite applications. 16APSK and 32APSK modulation schemes are used for HDR
applications and professional broadcasting. These four modulation modes are not the most
power efficient as other modes such as Quadrature Amplitude Modulation (QAM) but offer
greater spectrum efficiency. Gray mapping of constellations are used for QPSK and 8PSK
respectively. Each point on the constellation represents a symbol comprised of the actual

sequence of bits [15].

DVB-S2 Demodulation Schemes Bits Per Symbol (BPS)

QPSK 2
8PSK 3

MITRE Approved for Public Release; Distribution Unlimited 14-0176

17

16APSK

32APSK 5
Table 1: DVB-S2 Demodulation Schemes

3.1.1.1 QPSK Modulation

The QPSK modulation is the lowest modulation scheme used in the DVB-S2 standard and
has been included in the current implementation of the LLR demapper core. This system uses
conventional Gray-coding with absolute mapping. The corresponding bit mapping for the QPSK

constellation is shown in Figure 3.

Q I=MSB Q=LSB
A N
10 00
p=1
o=n/4
>
|

Figure 3: Bit mapping for the QPSK Constellation [14]

For a modulation of QPSK there are two bits per symbol and therefore there are four

distinct points on the constellation as shown below in Table 2.

PSK Number Binary Value

MITRE Approved for Public Release; Distribution Unlimited 14-0176

18

0 00
1 01
2 10
3 11

Table 2: QPSK Symbol Values

3.1.1.2 8PSK Modulation

The 8PSK modulation is the next level modulation scheme above QPSK modulation used
in the DVB-S2 standard and was also included in the current implementation of the LLR
demapper core. This system, similar to QPSK, also uses conventional Gray-coding with absolute
mapping. Unlike the QPSK system which implements a rigid grid-line constellation design, the
8PSK system moves toward a circular design with symbols mapped around the circle at uniform

distances. The corresponding bit mapping for the 8PSK constellation is shown in Figure 4.

MITRE Approved for Public Release; Distribution Unlimited 14-0176

19

110

010

011

111

Figure 4: Bit mapping for the 8PSK Constellation[14]

For a modulation of 8PSK there are three bits per symbol and therefore there are eight

distinct points on the constellation as shown below in Table 3.

PSK Number Binary Value

0 000
1 001
2 010
3 011
4 100
5 101
6 110
7 111

Table 3: 8PSK Symbol Values

MITRE Approved for Public Release; Distribution Unlimited 14-0176

20

3.1.1.3 16 APSK Modulation

The 16APSK modulation is the next level modulation scheme above 8PSK modulation
used in the DVB-S2 standard and has not been included in the current implementation of the
LLR demapper core. This system builds off the 8PSK design and includes two concentric rings
with the PSK points uniformly spaced around each of the rings. There are two radiuses (R; and
R,) which describe the relationship of the power levels between the rings. The corresponding bit

mapping for the 16 APSK constellation is shown in Figure 5.

V=FRa/Ry 1011 1001

Figure 5: Bit mapping for the 16APSK Constellation [14]

For a modulation of 16 APSK there are four bits per symbol and therefore there are sixteen

distinct points on the constellation as shown below in Table 4.

PSK Number Binary Value

0 0000
1 0001
2 0010
3 0011
4 0100
5 0101
6 0110
7 0111

MITRE Approved for Public Release; Distribution Unlimited 14-0176

21

8 1000
9 1001
10 1010
11 1011
12 1100
13 1101
14 1110
15 1111

Table 4: 16APSK Symbol Values

3.1.1.4 32APSK Modulation
The 32APSK modulation is the highest modulation scheme used in the DVB-S2 standard

and has not been included in the current implementation of the LLR demapper core. This system
builds off the 8PSK and 16APSK designs and includes three concentric rings with the PSK
points uniformly spaced around each of the rings. There are three radiuses (R;, Ry, and Rj)
which describe the relationship of the power levels between the rings. The corresponding bit

mapping for the 32APSK constellation is shown in Figure 6.

MITRE Approved for Public Release; Distribution Unlimited 14-0176

22

01101
11101 01001

11100

01111 11011
01011

Figure 6: Bit mapping for the 32APSK Constellation

For a modulation of 32APSK there are five bits per symbol and therefore there are thirty-
two distinct points on the constellation as shown below in Table 5.

PSK Number Binary Value PSK Number Binary Value \

0 00000 16 10000
1 00001 17 10001
2 00010 18 10010
3 00011 19 10011
4 00100 20 10100
5 00101 21 10101
6 00110 22 10110
7 00111 23 10111
8 01000 24 11000
9 01001 25 11001
10 01010 26 11010
11 01011 27 11011
12 01100 28 11100
13 01101 29 11101
14 01110 30 11110

MITRE Approved for Public Release; Distribution Unlimited 14-0176

23

| 15 | o1 | 31 | 11111

Table 5: 32APSK Symbol Values

As modulation increases there will be concentric circles added to the design with higher

levels by using a ratio standard described by DVB-S2.

power levels. Power levels are shown by the Figure 7 below on the Q-axis and I-axis. The
points that are mapped to the constellation have a power level associated with their bit value
which is described by I/Q magnitudes. The outer ring of this constellation has a power level of

approximately 90. This outer ring’s power level defines the rest of the other inner ring’s power

Constellation Map for 32APSK Modulation

100 -
01101 01001
11101 o
80 -
11001
01100
60 | o 00101 00001 o
40l 11100 00100 o o 00000 01000
-] O3 -
20 - 10100 10101 10001 10000
o o o o 11000
0}—e &
11110 10110 o o o 10010
20+ 10111
10011 11010
o 2 o O
-40 - 00010
01110 00110 O
| 01010
60 5 00111 00011 o
11111
BOt
& 2 11011
01111 T 01011
_‘10[] | | | | | | | | |
100 -80 B0 -40 -20 0 20 40 60 80 100

Figure 7: Constellation Map for 32APSK with DVB-S2 Power Levels

MITRE Approved for Public Release; Distribution Unlimited 14-0176

24

3.1.2 FECEncoding

FEC is a technique in which digital information is transmitted with additional parity bits to
limit the number of errors when decoding a noisy communication signal [16]. The redundancy of
digital information allows the decoder on the receiver end to detect and fix errors in the received
information. The result of using FEC with satellite communication is an increased channel usage
and therefore FEC is used because retransmissions are costly or impossible [16]. FEC is also
used in satellite communications to reduce the high packet error rate. The DVB-S2 standard uses
a specific type of FEC encoding called LDPC codes because of their reliability and high
efficiency. The FEC LDPC coding rates used in the DVB-S2 are shown below in Table 6. The
FEC coding rates of 1/4, 1/3, and 2/5 are used with QPSK under extremely poor link conditions
where the signal level is below the noise level of the SNR [13]. Using smaller order FEC rates
while keeping the same modulation has shown to have better performance than decreasing the

modulation and increasing the FEC coding rate [13].

FEC LDPC Coding Rates

1/4 | 1/3 {2/5|1/2|3/5|2/3|3/4|4/5]|5/6|8/9]|9/10

Table 6: FEC LDPC Coding Rates

3.2 Log Likelihood Ratio

The LLR method is a soft decision technique where, given a set of parameters and possible
outcomes, there is a corresponding probability for each of those results. This method is used in
soft decision to determine the likelihood of a received symbol based on its mapping to a
constellation based on the modulation. The DVB-S2 uses LLR calculations are based on the
APSK constellation standard.

MITRE Approved for Public Release; Distribution Unlimited 14-0176

25

3.2.1 Simplified LLR Explanation

Each of these points (blue circles) are located around the I/Q plane in the four quadrants to
maximize distinction between the points. The demodulation process involves determining the
correct symbol from the symbol received. The symbols are transmitted with that particular I/Q
value therefore it can be determined which symbol was transmitted. However, when a symbol is

transmitted there is an amount of noise that is added to the signal therefore altering that received

I/Q point.

received points will be clustered around those QPSK symbol points.

For this demodulation it is assumed that the noise is AWGN and therefore the

Constellation Map for QPSK Demodulation
80~ B1 BO
10 00
O O
60 - 100%A 0
40 - 1 B1 0
< X >
100% 100%
20
Q2 Ql
Q o
20} Q3 Q4 BoO
401
601 5 100%Y 1 o
11 01
_80 | | | | | | J
-80 -60 -40 -20 0 20 40 60 80
I

In order to identify what QPSK symbol was received, an individual LLR calculation is

done on the individual bits of the symbol. For the QPSK demodulation shown in Figure 8, there

Figure 8: Constellation Map for QPSK Demodulation Example

MITRE Approved for Public Release; Distribution Unlimited 14-0176

26

are only two bits, resulting in two comparisons to determine the QPSK symbol. The I/Q plane is
split into four different quadrants Q1, Q2, Q3, and Q4. The four QPSK symbols are mapped to
these quadrants.

The Least Significant Bit’s (LSB) bit value (B0) is 0 for the symbols mapped to quadrant
QI and Q2. Quadrants Q3 and Q4 have a bit value of 1. The probability of B0’s bit value is
split vertically across the Q-axis where B0 is expected to have a bit value of 0 above the Q axis
and a bit value of 1 below the Q-axis. The received symbol is above the Q-axis and therefore has
a higher probability of having a bit value of 0.

The MSB’s bit value (B1) is 0 for the symbols mapped to quadrants Q1 and Q4. Quadrants
Q2 and Q3 have a bit value of 1. The probability of B1’s bit value is split horizontally across the
I-axis where B1 is expected to have a bit value of 0 to the right of the I-axis and a bit value of to
the left of the I-axis. The received symbol is to the right of the [-axis and therefore has a higher
probability of having a bit value of 0.

The result of this analysis is a LLR probability for each particular bit in a symbol for the
decoder to interpret. For this example shown in Figure 8, BO and B1 have a high probability of
having a bit value of 0 therefore the received symbol is expected to be the symbol that is mapped
in quadrant Q1 (00).

Each PSK point on the 1/Q plane has a Gaussian noise distribution associated with it
resulting in a function shown in Figure 9 below. The figure illustrates two different PSK points
and their overlapping Gaussian noise distribution. The signal level is described by the power
level of those PSK points and the LLR probability of the likelihood of a received point at any
power level is shown by the Gaussian distribution curves. For this particular example for a

power level of zero of a received symbol, there is about an equal probability that the value is at

MITRE Approved for Public Release; Distribution Unlimited 14-0176

27

point one or point zero. This is just a simulation and in reality the area under each Gaussian

curve should add up to a probability of one.

LLR 2D Example

N /N [/ \ g
/ \X/ \
. / / \ \
0.3 / / \ \
/ / O\ \
0.1 / / / / \\ \\
-r/ \

0
-200 -150 -100 -50 0 50 100 150 200
Signal Value

Probability

Figure 9: Example of 2D LLR Values

3.2.2 LLR Bitwise Comparison

Based on the 32APSK constellation shown in Figure 7 prior, there are several patterns or
tendencies that can be used in used to calculate the LLR value at each data point. The following
five figures (Figures 10-14) are 3D plots of the LLR values for their respective I/Q points. Since
each bit has an associated LLR value there is a figure for each bit in the five bit 32APSK symbol
constellation. The plots are color coded based on the LLR value with a scale to show the
transition between LLR values. The darker red represents data points having the highest LLR
value which associates to having a higher probability that that particular bit has a value of one.
The darker blue represents data points having the lowest LLR value which translates to having a

higher probability that that particular bit has a value of zero.

MITRE Approved for Public Release; Distribution Unlimited 14-0176

28

Figure 10: LLR Values of Bit 0 for 32APSK

Figure 11: LLR Values of Bit 1 for 32APSK

MITRE Approved for Public Release; Distribution Unlimited 14-0176

29

Figure 12: LLR Values of Bit 2 for 32APSK

Figure 13: LLR Values of Bit 3 for 32APSK
MITRE Approved for Public Release; Distribution Unlimited 14-0176

30

LLR %alue
_
)

-100 L

Figure 14: LLR Values of Bit 4 for 32APSK

3.2.3 True LLR Algorithm

The True LLR Algorithm is the closest approximation for the LLR calculation and serves
as the basis for all other LLR algorithms. The True LLR Algorithm’s accuracy results in a
combination of complex hardware and large power consumption due to the complicated
mathematical operations. In order to explain the logic behind this algorithm consider how the
transmission of a sequence of complex modulation symbols over AWGN is effected by
uncompensated frequency error, f., and a time-varying phase, O, the symbol duration, T, and the
sequence of complex noise, n(k), with variance, o°. Therefore the discrete-time baseband signal
for the receiver can be represented by the following Equation (1). [2]

T'(k) — ej(2*nkf9T+9) + n(k)
(1)

MITRE Approved for Public Release; Distribution Unlimited 14-0176

31

For an 8-PSK modulation, each symbol consists of 3 bits (b2, bl, b0). PSK Points are

located at /4 positions around the ring as shown below in figure 15.

qQ MsB LS8
100 A bbb &
000

010

111

Figure 15: 8PSK Constellation for LLR Calculation

The Probability Density Function (PDF) of the received signals given a transmission at

constellation point I is described by Equation (2) where s; is the symbols in 8PSK.

1 —|T—Si|2

,/2.71-.0-2

(2)

Pp+P+P+ P
P+ P+ P+ P
FBR+AR+P + P
PB+P+F+P
Fp+P+ P+ F
A+B+F+ P

Figure 16: The True LLR Algorithm’s LLR bit-wise Calculation Equations

LLR(b,) = log

LLR(b)) = log

LLR(by) = log

MITRE Approved for Public Release; Distribution Unlimited 14-0176

32

3.2.4 MAX Algorithm

The MAX Algorithm is an LLR approximation using the two most likely constellation
points [2]. The two most likely constellation points are determined using the PDF of each point
on the constellation in relation to the received point. The number of constellation points and the
bits per symbol depend on the modulation scheme. The calculation of the LLR is determined by
the LLR of each bit in the symbol. For a specific bit there is a list of points on the constellation
where that particular bit has the value of one or zero. In order to calculate the LLR for each bit,
the points where that bit has the value of one or zero are separated into two lists — a list of points
where the bit value is zero and a list where the bit value is one. The probability of the bit value
of the received point is determined by the difference between the maximum of the zero list when
subtracted from the maximum of the one list. The result is a value indicating whether that bit is
more likely to be a one or zero. The larger the PDF from the list of ones or zeros will dominate

the other and indicate by the magnitude of the result the relative probability.

The probability density function of the received signal given a transmission at constellation
points, Pj, is described by Equations (3) and (4) [2]. The PDF equation shown in Equation (3) is
equivalent to the exponential term of the True LLR Algorithm PDF calculation. The exponent is
not necessary because the MAX Algorithm does not use a direct log calculation. The difference
between received point, r, from the expected point on the constellation, s, is divided by the
variance of the noise of the received points. That Equation (4) is equivalent to Equation (3)
illustrates the fact that the point is comprised of both real and imaginary components and

therefore a complex distance calculation is used to get the real result.

MITRE Approved for Public Release; Distribution Unlimited 14-0176

33

_ —|r —s;|?

202

)

1

P = - [(rreal — Srea)” + (rimag - Simag)z] ‘202

4
Soft decision de-mapping definitions for 8PSK modulation:
L‘[R(bl) = {me{PD'J ‘H s PZ'J P3) —mﬂJ{(ﬂ, PEM }}ﬁﬁﬁ?}}
LLR(b)) ={max(Fy, R, P, Fy)—max(5, B, F,,)}
LLR(by)={max(F,, P, P, F,)-max(F, P, P, Py)}

Figure 17: The MAX Algorithm’s LLR bit-wise Calculation Equations [2]

3.2.5 Euclidean Algorithm

The Euclidean Algorithm is a LLR approximation that determines the PDF by calculating
the distance between the closest point equal to zero and closest point equal to one on the
constellation. This is the most basic algorithm implementation because of the limited number of
parameters taken into consideration. The calculation of the LLR is determined by the LLR of
each bit in the symbol. For a specific bit there is a list of points on the constellation where that
particular bit has the value of one or zero. In order to calculate the LLR for each bit, the points
where that bit has the value of one or zero are separated into two lists — producing a list of points
where the bit value is zero and a list where the bit value is one. The probability of the bit value
of the received point is determined by the distance between the minimum of the list of points
where that bit is zero is subtracted from the minimum of the list of points where that bit is one.

The result is a value indicating whether that bit is more likely to be a one or zero. The smaller

MITRE Approved for Public Release; Distribution Unlimited 14-0176

34

distance from the list of ones or zeros will dominate the other and indicate by the magnitude

distance of the result the relative probability.

The PDF equation shown in Equation (5) and (6) are the Euclidean distance equation in a
simplified and expanded format. Because the algorithm does not use the noise variance in the
PDF calculation it is a distance, d, not a PDF that is calculated. The distance is calculated by the
difference between the received point and the expected constellation point. Just as in the MAX
Algorithm the received point is complex and therefore the real and imaginary components need
to be used in order to determine the actual distance.

d; =[x —s;

)

2
di = \/(xreal - Sreal)2 + (ximag - Simag)

(6)

Soft decision de-mapping definition for an 8-PSK:
LLR(b,) = {min(dy d, d dy)—min(d, ds dg)}

LLR(by) = {min(d, d, d, ds)—min(d, d; dg d;)}
LLR(by) = {min(d, d, d, ds)—min(d, d ds d,)}

Figure 18: The Euclid Algorithm’s LLR bit-wise Calculation Equations [2]

3.2.6 3rdparty IP LLR Algorithm

In order to accommodate higher order modulations in their waveform, MITRE uses a 3™
Party LLR Implementation which is compiled executable code that is then implemented on the
FPGA. This design may not be the best implementation and lacks flexibility by relying on that

3" party to continue to implement future designs.

MITRE Approved for Public Release; Distribution Unlimited 14-0176

35

3.3 Algorithm Comparison

In most systems the True LLR algorithm has been used as the preferred soft decision
implementation. However, the True LLR Algorithm has drawbacks that include hardware
complexity and power consumption due to complicated operations. Therefore the other
algorithms proposed in this document try to reduce these disadvantages to the True LLR
Algorithm. The MAX Algorithm reduces the exponential and logarithm functions of the True
LLR Algorithm and therefore lowers the hardware complexity compared to the True LLR
Algorithm. The Euclidean Algorithm can reduce the number of multiplications but requires the
square and root square operations that also lead to higher hardware complexity compared to the
MAX Algorithm. The Euclidean Algorithm also has decreased BER performance compared to
the MAX and True LLR Algorithms. In conclusion the MAX Algorithm is determined to be the
best soft decision demapper for the DVB-S2 system. However in order to implement the MAX
Algorithm in hardware, the software requires more complexity to support the four modulation
modes in DVB-S2. This complexity is what ultimately changed the design of the core from the

LLR Algorithm implementation to the LUT design.

3.3.1 Complexity

The LLR algorithms are compared based on complexity in terms of the number of

multipliers required to implement the design on an FPGA.

3.3.1.1 True LLR Algorithm
The True LLR Algorithm is described by the equation below where P; is the LLR

approximation for a given PSK point on the constellation. The equation involves two

multiplication operations for each bit because each real and imaginary component requires an

MITRE Approved for Public Release; Distribution Unlimited 14-0176

36

individual multiplication calculation. Therefore for 32APSK (a BPS value of 5) there are a total

of 128 multipliers for one symbol.

1 —|T‘—S-|2 o
P; = - e Y1]2-02
l ‘\/2 - T[- 0-2 ﬂQx

= Number of Multipliers for P, = 4

= Total Number of Multiplier = (4 - 2875)
—|BPS =5-> 128

Figure 19: True LLR Algorithm Complexity Breakdown

3.3.1.2 MAX Algorithm
The MAX Algorithm is described by the equation below where P; is the LLR

approximation for a given PSK point on the constellation The equation involves two
multiplication operations for each bit because each real and imaginary component requires an
individual multiplication calculation. There is an additional multiplication included in the
calculation for each bit in the symbol. Therefore for 32APSK (a BPS value of 5) there are a total

of 69 multipliers for one symbol.

MITRE Approved for Public Release; Distribution Unlimited 14-0176

37

3.3.1.3

The Euclidean Algorithm is described by the equation below where D; is the LLR
approximation for a given PSK point on the constellation.
multiplication operations for each bit because each real and imaginary component requires an

individual multiplication calculation. Therefore for 32APSK (a BPS value of 5) there are a total

_ - . 2
Pi - [(H’eal - *5real)

LLR (b)) = [MAX(P;,,,.) —MAX(P;)|

= Number of Multipliers for P, = 2

(rimag — Simag)Z

= Total Number of Multipliers = (2 - 287%) + BPS

— One additional Multiplier at the end of calculation

—-BPS=5->69

Figure 20: MAX Algorithm Complexity Breakdown

Euclidean Algorithm

of 64 multipliers for one symbol.

Diz

(xre al — Sre a!)z

2
+ (ximag B Simag)

= Number of Multipliers for D, = 2

LLR (bi) = M[N(Dzeros) - MIN(Dones)

= Total Number of Multipliers = (2 - 2BP%)

—|BPS =5 > 64

Figure 21: Euclidean Algorithm Complexity Breakdown

MITRE Approved for Public Release; Distribution Unlimited 14-0176

38

The equation involves two

3.3.2 Algorithm Multiplier Comparison

There is a unique PDF, P;, for each point on the constellation. The number of P; is equal to

2575 as shown by the Figure 22 and Table 7 below.

7
Q MsB LS8
PB 100 Ab b
10 \mo
N Po
I
Ps 010 o1 P
011 101
P, 1 ‘-

Figure 22: 8PSK Modulation Constellation Diagram with PSK Points

QI;SK)

4
8PSK (3) 8
16APSK (4) 16
32APSK (5) 32

Table 7: Number of PSK Points in relationship to Modulation

The results of the complexity analysis showed the MAX and Euclidean Algorithms both

having similar complexities and the True LLR Algorithm having a significantly larger

complexity in terms of the number of multiplications necessary to calculate the LLR. The

analysis was done for one PDF calculation where the number of PDF calculations for one LLR

calculation is related to modulation scheme. Table 8 below illustrates the results for 32 APSK

modulation LLR calculation and is based on the following assumptions:

e 32APSK Modulation (5 BPS)

e Number of constellation points (P;) = 32 ber o plie
e Number of bit LLR calculations (B;) =5 True LLR | MAX | Euclid
Each P; 4 2 2
Each B; 0 1 0
Total | 128 | 69 | 64

Table 8: Multiplier Complexity for LLR Algorithms

MITRE Approved for Public Release; Distribution Unlimited 14-0176

39

3.3.3 Complexity of Operations used in Calculation

In order for one of these algorithms to be implemented on the FPGA, the complexity of the
mathematic calculations needs to be taken into consideration. Mathematic calculations such as a
logarithm, exponential, or square root require additional hardware components and therefore
pose a challenge in the design. Each algorithm was specifically investigated in order to
determine the complexity of the mathematical operations used in the LLR calculation. The True
LLR Algorithm includes several high order calculations and therefore would make the design on
hardware nearly impossible with limited resources. The two approximation methods that were
considered do not include those calculations and therefore allow for straightforward design
implementation.

®* True LLR Algorithm
— Multiplication, Addition, Subtraction
— Exponential
— Square root
— Log
— Variance
= MAX Algorithm
— Multiplication, Addition, Subtraction
— Maximum
— Variance
= Euclidean Algorithm
— Multiplication, Addition, Subtraction

— Square Root
— Minimum

The MAX Algorithm was chosen for a limited hardware complexity because it did not
include any mathematical calculations that would involve other hardware designs or components.
The Variance calculation would pose an immediate challenge but solutions to the overall design
were introduced before a decision was made on how to include this component of the
calculation.

MITRE Approved for Public Release; Distribution Unlimited 14-0176

40

3.3.2 Performance from MATLAB Models

One of the main project goals is to improve the overall performance of the current LLR
core. The new core was implemented based on the performance of the algorithm selection
considered. In order to determine the design with the best overall performance, the algorithms
were compared by generating BER curves in MATLAB. The results were separated based on
modulation. In order to correctly mimic the Automatic Gain Control (AGC) scaling use on
hardware, a sweep of scaling values was used to determine the best power level. The best case
performance of each algorithm was compared to determine the best algorithm to use for the new
LLR core design. The original comparisons were done with limited configuration including a
smaller FECFRAME length, limited number of interactions, and a general scaling across all
modulations to get a basis for the performance results. The tests were then updated to include
the normal FECFRAME length, variation of iterations, and specific scaling based on the

modulation.

MATLAB Performance Configurations \
Small FECFRAME Length (16,200 bits) | Normal FECFRAME Length (64,800 bits)
Limited Iterations Variation of Iterations

General Scaling Specific Scaling
Table 9: MATLAB Performance Configurations

The results of the performance testing are compared to the hardware results of the current

LLR core shown below in Figure 23.

MITRE Approved for Public Release; Distribution Unlimited 14-0176

41

Hardware Results

10°

10 \
® 10"
om
-6
10 || m— BPS=2
J m— BPS=3
‘ BPS=4
10 : - - ; i ; :
0 1 2 3 4 5 6 7 8
EbNo

Figure 23: Hardware BER Results for QPSK, 8PSK, 16APSK, and 32APSK

3.3.3.1 Original BER Curve Performance

The original performance results are separated based on modulation and are shown below
in Figures 24-27. The results for the original LLR algorithm comparisons show the MAX and
True LLR Algorithms have a higher performance than the Euclidean or the 3™ party IP
Algorithms. This trend increases in severity as modulation increases. However, this original
testing was done with specific scaling and therefore values being sent to the decoder for one
algorithm compared to another were not on the same scale. The decoder is expecting a certain
range and magnitude for LLR values and might be tuned more towards expecting one of the
algorithm’s outputs rather than the other. Also the lack of iterations and FECFRAME length
also contributed to the inaccuracy of these original test results. However the results showed that

MITRE Approved for Public Release; Distribution Unlimited 14-0176

42

the basic algorithm implementation displayed similar results to the current LLR 3™ party IP

implementation.
¢ LLR &lgorithm Comparison Plotfor QPSK, 108 Dataln Bits
-1 I |
3" party 1P
Euclid []
e [4L
"'l\ .
- i t-
fidd .~ By
i x\\\
3 NN
10 Ty
'I.".‘
1
""
10"
1%
11
l‘-‘i
10°
07 0a na 1 1.1 12 13 14
ExMs [dB]

Figure 24: Original LLR Algorithm Comparison Plot for QPSK

MITRE Approved for Public Release; Distribution Unlimited 14-0176

43

LLR Algarithm Comparison Plotfor 8PSK, 10° Dataln Bits

e 3% patty IP |
m E)Clid |

m—] A

LLR
My
Mg
.]
o
L
i
10°
1.8 22 25 25
EnMs [dB]
Figure 25: Original LLR Algorithm Comparison Plot for 8PSK *
o LLR Algorithm Comparison Plot for 16APSK, 10° Dataln Bits
10
= 314 party IP}
Euclid []
1[]__ — MA}{
LLR {
10~ N
“
o
L
il
10° \
X
Y
.
10"
5
10

2.5

Ex/No [dB]

Figure 26: Original LLR Algorithm Comparison Plot for 16APSK *

44

MITRE Approved for Public Release; Distribution Unlimited 14-0176

* The MAX algorithm performing better than the LLR algorithm in these tests is recognized as a discrepancy that
needs further investigation.

o LLR Algorithm Comparison Plot for 32APSK, 108 Dataln Bits
10 ;

w31 party IP|]
Euclid []

o — MAK
= — —

107 N

10” \

BER

F

10™

100
36 38 4 42 44 46 438 5 52
Ex/No [dB]

Figure 27: Original LLR Algorithm Comparison Plot for 32APSK
3.3.3.2 Updated BER Curve Performance

The original LLR algorithm comparison BER curves were repeated with an updated test
plan that included the correct scaling for each algorithm at every modulation. The FECFRAME
length and number of iterations were also changed to mimic the hardware results for a direct
comparison. The results shown in Figures 27-31 show that the original data obtained showed the
correct trend with the MAX Algorithm having the best overall BER curve performance. The
updated LLR comparisons correctly illustrate the BER curve performance of all algorithms on
the same scale. Unfortunately with the MATLAB simulation, limitations on the number of data
input bits is approximately 10° where on hardware the number of bits used for performance

testing is closer to 10'". This produces a much smaller sample size and a loss in the number of

MITRE Approved for Public Release; Distribution Unlimited 14-0176

45

sample points on the graph to draw the curve.

prospective and to give validity to the MATLAB simulation.

The 8PSK results are not accurate; however they are the closest approximation results that
could be used. The other three modulations show correct trends where the 3™ party IP
simulation results match the hardware results and the other algorithm performance results are

close in comparison. The best example is shown in Figure 30 where the 31 party IP hardware

The hardware results are also included for

results match up directly with the 3™ party IP MATLAB simulation results.

Algorithm results still have a slightly better performance which confirms the results seen on

hardware when the MAX Algorithm is implemented later on hardware.

BER

LLR Algorithm Comparison Plot for QPSK, 108 Dataln Bits

10—
E%%—-—
~ .
NG S

N

N\

N\

N\

\
N
N
\\
10

N

N
N]
m— 3rd party IP |
m— Euclid N
MAXLLR |
= Hardware |
0.7 0.75 0.8 0.85 0.9
Eb/No [dB]

Figure 28: Updated LLR Algorithm Comparison Plot for QPSK

MITRE Approved for Public Release; Distribution Unlimited 14-0176

46

The MAX

4 LLR Algorithm Comparison Plot for 8PSK, 10° Dataln Bits
10

e s S
— %
N
10”2 \§ X
‘\\\ ‘\‘
10° \“
\. e
N — MAX
x ‘\\ LLR
@ —Hardware
10° \\
“\
10° <
“\
107 N\
10-8 25 2.6 27 2.8 29 3 3.1 3.2
Eb/No [dB]
Figure 29: Updated LLR Algorithm Comparison Plot for SPSK
LLR Algorithm Comparison Plot for 16APSK, 106 Dataln Bits
=. L
-
10? §‘
= =
N N\
. Ny
N N
NN
10° N
1 N N\
w 3rd party IP A N
m i | N\
m— Euclid \ \
1 0-4 LLR _ \\‘
Hardware \ \
\ \
\
\ \
\
10°
4.4 4.45 4.5 4.55 4.6 4.65 4.7
Eb/No [dB]

Figure 30: Updated LLR Algorithm Comparison Plot for 16APSK

MITRE Approved for Public Release; Distribution Unlimited 14-0176

47

BER

LLR Algorithm Comparison Plot for 32APSK, 106 Dataln Bits

— 5
—
107 N
N
AN
N
N\
\\
10'3 —| = 3rd party IP \
©| m— Euclid \
- \
] MAX \
LLR N
m— Hardware N
[1
6.75 6.8 6.85 6.9 6.95 7 7.05

Eb/No [dB]

Figure 31: Updated LLR Algorithm Comparison Plot for 32APSK

MITRE Approved for Public Release; Distribution Unlimited 14-0176

48

4 Design and Implementation

4.1 The Chosen Algorithm

The algorithm chosen for implementation was the MAX Algorithm. The MAX Algorithm
has a low complexity compared to other methods with a low number of multiplications, no
exponentials or square roots, and the best BER Performance. However with the limited number
of DSP resources on the FPGA, the design of the actual method could not be implemented.
Instead a proposed solution included the use of LUTs. This method would allow the LLR
calculations to be done in software and then loaded into LUTs. This would allow for
simplification of the VHDL code on the core and allow for complex math to be done. Instead of
the LLR values being calculated every time which would also create additional timing delays,
the LUTs provide an efficient and expandability solution. This would also allow for any LLR
algorithm to be implemented in the design because the complexity is separated for the hardware

design.

4.1.1 Max Algorithm Block Diagram
The MAX Algorithm follows the block diagrams shown in Figure 32 and 33. The I/Q data

are received and subtracted from the expected I/Q point “S”. The result is squared and the
results added together. The result is the PDF for that point on the constellation. The block
diagram shown in Figure 32 is just an example of one PDF calculation. This process would need
to be repeated for the number points on the constellation which depends on the modulation

scheme.

MITRE Approved for Public Release; Distribution Unlimited 14-0176

49

> XK
1

Figure 32: Block Diagram One for MAX Algorithm

L
I

Sa

The second block diagram shown in Figure 33 illustrates the process taken after the PDF’s
are calculated. Once a PDF is calculated it is separated into a set of points where that particular
bit in the symbol should be a one or a zero on the constellation. Once all the PDF’s are
calculated the maximum value, which is where this algorithm’s MAX name is derived from, is
then used to calculate the difference between the PDF of the bit being one or zero. Normally the
variance is included for each PDF calculation but because this is a constant term that is
distributed it can be taken out and applied at the end. The result is the LLR value for that bit in
the symbol. This process occurs for the number of bits in each symbol and for each symbol the

demapper receives.

Pones 2] Max

R’
P, m= —> K —> b,
7

PZEI’OS —-’ Max 1/\T/ar

MITRE Approved for Public Release; Distribution Unlimited 14-0176

50

Figure 33: Block Diagram Two for MAX Algorithm

4.2 VHDL Design
4.2.1 Integration into Current LLR core Architecture

The current LLR demapper cores are located inside a wrapper that allows the cores to
communicate to other components and acts as the interface between them. In order to include
the new MITRE core into this architecture, several changes needed to be made to allow for the

new core to work correctly with the interface.

The current MITRE core and the 3™ party IP core are currently the two LLR cores in the
LLR slice. The proposed MITRE core just replaces the current MITRE core and therefore a
whole new hierarchy design was not necessary. However the configuration of the current
MITRE core in the LLR slice needed to be modified in order to work with the new proposed
core. The proposed core requires certain data and configuration buses with different lengths than
the current core. The generics and ports of the proposed MITRE core are filtered up through the
demapper core hierarchy. The only major modification to the current MITRE core’s entity was
the addition of the LUT width size to allow for expandability and flexibility with the size of the

lookup table.

4.2.2 Integration of MAX Algorithm

Originally the MAX method was going to be implemented on hardware but later in the
design process. After the algorithm comparison was completed, it was decided to use a LUT for
the LLR values instead of calculating them directly on hardware. The MAX Algorithm was used
to generate the LLR values to store in the LUT. The LLR values are packaged and loaded into
the parameter files and loaded into RAM for the core to use in the LLR calculation. The result is

MITRE Approved for Public Release; Distribution Unlimited 14-0176

51

having all the complex mathematic calculations done in software in MATLAB and having the
results stored in memory. However in order to match to the incoming received symbol with the
correct LLR values, bi-linear interpolation is used to determine the actual value based on the

LUT values.

4.2.3 Lookup Table

In order to save space in RAM not every single possible LLR value was calculated for all
possible I/Q data points. The symbol data received is 16 bits in length where the upper 8 bits
represent the quadrature value, Q, and the bottom 8 bits represent the phase value, I. Therefore
the I/Q plane where the received symbol is located is on a grid that is 256x256. There would be
a total of 65,536 possible I/Q values to store in the LUT. The result would be a large amount of
information stored and defeat the purpose of storing the LLR values because doing the

calculation would be more efficient.

Instead of storing all possible values in LUTs, a solution is to only store certain points on
the I/Q plane and do bi-linear interpolation between the known points in order to figure out the
LLR value at that point. By only using a certain amount of upper bits of I/Q to calculate the
result is a grid where known LLR value locations are separated by the size of the bottom bits.
This relationship is shown in Figure 34 with a LUT width of five. The LUT width allows the
core to have flexibility by including the tradeoff between size and precision. The larger the LUT
width the more space in RAM the data takes up but the more accurate the LLR results.
Consequently the smaller the LUT width the less space in RAM the LUT data takes up but the

LLR values will be less accurate.

MITRE Approved for Public Release; Distribution Unlimited 14-0176

52

8171165 413 2 11

LUT Width Bottom Bits
Figure 34: LUT Width Diagram

Given that the LUT has a width of five, the grid reduces from 256x256 (2°x2%) to 32x32
(2°x2°). This reduces the number of LUT values from 65,536 to 1,024. Since the LUT width is
five, the three extra bits in the I/Q data are used as the remainder and used in the bi-linear
interpolation to approximate the known LLR value based on the five bits. The length between
known LLR points with a LUT width of five is eight. The magnitudes of the bottom bits are
very important in the linear interpolation proportionality calculation. The LLR at an I/Q point
will be between one and eight between the known values and therefore the bottom bits act as the
scaling of the known LLR values to the LLR value at that point based on the magnitude of the

bottom bits of that particular I/Q symbol.

The LLR value at a particular I/Q value changes depending on which bit in the symbol
the LLR calculation is for as well as the overall modulation. Therefore there needs to be four
different LUT depending on the modulation. For a given modulation the LLR, each bit in the
symbol has a different LLR calculation and therefore the LUT for a specific I/Q value needs to
include the LLR value based on which bit in the symbol is currently being determined. The
values returned from the LUT are 6 bits in magnitude and represent the LLR for the modulation,
the specific bit in the symbol, and for the I/Q value. Since each LLR value is 6 bits and the
highest modulation currently implemented has a 5 bit symbol size there needs to be a total of 30

(5x6) bits stored in each LUT location.

MITRE Approved for Public Release; Distribution Unlimited 14-0176

53

In order for the hardware to compute the bi-linear interpolation there are four unique
lookups necessary into the LUT. In order to accomplish the four simultaneous lookups there are
four individual RAM allocations to increase speed and allow all four known values to be
accessed at the same time rather than consecutively. This effectively results in four copies of the
LUT which is why the size of the LUT has to be considered. The larger the LUT width, the
move values are stored, increasing the space needed in RAM to store these LUT. However if not
a large enough LUT width is used, the LLR values will not be as accurate. Simulation of the
MAX Algorithm for 32APSK modulation with a 12.1 E¢/N, with different LUT widths is shown
below in Table 10. A LUT width was chosen for the default implementation of the core because
of its low BER performance which results in having high accuracy LLR calculations from the bi-

linear interpolation and a relatively small amount of memory needed for the LUTs.

1 37,386 96,816 3.862E-1
2 14,439 96,816 1.491E-1
3 7,356 96,816 7.60E-2
4 7,422 96,816 7.67E-2
5 7,136 96,816 7.37E-2
6 7,353 96,816 7.59E-2
7 7,358 96,816 7.60E-2
8 7,341 96,816 7.58E-2

Table 10: LUT Width BER Comparison

4.2.4 Bi-linear Interpolation

Bi-linear Interpolation is linear interpolation but with two variables on two dimensions.
Linear interpolation is a mathematic technique that is used to approximate a value between two
points with known values. A linear interpolation assumes a constant slope between the two
known points to create the curve. If the function between the two points is not linear this

introduces error into the approximation.

MITRE Approved for Public Release; Distribution Unlimited 14-0176

54

The LLR values stored in RAM are separated by an amount specified by the LUT width
and therefore creating a grid-like pattern of known LLR values across the I/Q plane. The goal is
to determine the LLR value at point “P” and coordinates (I, Q) shown in Figure 35. The x-
coordinate represents the phase (I) component and the y-coordinate represents the quadrature (Q)
component of the received signal for the LLR calculation. There are only certain I/Q values that
have known LLR values and therefore creating a grid-like or box pattern across the I/Q plane.
Assuming that the I/Q point is not a known value, there are four I/Q points that form a box
around that unknown point. The four red points (X;;, Xj2, Xz1, and X3,) in Figure 35 represent
the four known LLR values at specific I/Q values relating to their sub-index. Bi-linear
interpolation consists of three separate linear interpolation calculations from X;; to X3, X, to
X2, and R, to R;. The result of this process will give the LLR approximation at point P based on
the LLR four known points. The closer those known points are to the point P the more accurate
the LLR value will be based on the other four values. Conversely, the farther away the four

known points are from point P results in a less accurate the LLR value.

MITRE Approved for Public Release; Distribution Unlimited 14-0176

55

Figure 35: Bi-Linear Interpolation Diagram

The first linear interpolation in the phase direction is calculated across the bottom of the
box shown in Figure 36. This linear interpolation will determine the LLR value for point R1
using proportionality based on the distances from I, I, I, and the known LLR values at X;; and

X51. This relationship is represented below in Equation (7).

MITRE Approved for Public Release; Distribution Unlimited 14-0176

56

Qz """"

1
1
1
1
1
1
1
il el Tt
1
1
1
1
1
1
1
1
B e R
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
L T L

£
1
_—

Figure 36: Linear Interpolation for Point R1

- LLR(X{1) +
,— L WL -n

I I

LLR(Ry) = 5

" LLR(X31)
(7
The second linear interpolation in the phase direction is similar to the first except across the
top of the box in order to determine the LLR value at point R2 shown in Figure 37. This linear
interpolation will determine the LLR value for point R1 using proportionality based on the
distances from I, I, I, and the known LLR values at X;, and Xj,;. This relationship is

represented below in Equation (8).

MITRE Approved for Public Release; Distribution Unlimited 14-0176

57

Ql """""""""""""""""""""""

Figure 37: Linear Interpolation for Point R2

-LLR(Xy,) +
,— L L -L

I Iy

LLR(Ry) = 7

" LLR(X32)
®)
The final linear interpolation is in quadrature direction between the first two linear
interpolation results shown in Figure 38. This linear interpolation will determine the LLR value
for point P using proportionality based on the distances from Q;, Q., Q, and the known LLR

values at R; and R,. This relationship is represented below in Equation 9.

MITRE Approved for Public Release; Distribution Unlimited 14-0176

58

Figure 38: Linear Interpolation for Point P

LLR(P) ~ % - LLR(R,) + % - LLR(R,)
)

4.2.5 Data Flow

Data flow is extremely important in the core design because it a part of a series of receiver
components that connect together. The other components such as the decoder along with the
LLR core act as black boxes where the importance is put on accepting and outputting the correct
parameters and to meet timing constraints. In order to correctly meet these conditions the

information inside the LLR core needs to be handled correctly.

There are several scenarios where data could be lost or corrupted. A specific scenario

could include the LLR core is not ready to accept new data and it receives new data, similarly if

MITRE Approved for Public Release; Distribution Unlimited 14-0176

59

the core sends out data to a component that is not ready to accept that data. Since the core is run
on a clock edge it is constantly pushing data through the pipeline when the next component is
ready to accept that data. However sometimes that data is not valid and therefore the data being

pushed should not be used until that data becomes valid.

In order to account for these scenarios the core uses a “handshake” between the
components it directly interfaces with. This handshake, shown in Figure 39, allows the core to
correctly process the data based on the two input and output “handshake” ports. The input data
in valid port tells the core whether or not the incoming data is valid from the previous
component. The output data out valid port displays to the next component whether or not the
LLR core’s data is valid. The input data out accept displays to the next component whether or
not the LLR core is ready to accept new data. The output data in accept displays the next
component’s accept status. By correctly checking these ports the LLR core can process data

correctly and be able to interact with components before and after the “handshake”.

Input - Data In Output - Data Out
Valid Valid

LLR Core

Input - Data Out Output- Data In
Accept Accept

Figure 39: LLR Core Data Flow Handshake

MITRE Approved for Public Release; Distribution Unlimited 14-0176

60

Inside the LLR core there are two pipelines that store the status of the validity of the data
and the EOB flag. The end of the block flag is related the length of the FECFRAME and
although it is not needed for the LLR core it still needs to be passed on to future components.
The core checks to make sure that the next component is ready to accept data by sampling the
output data in accept port. If this port is high that means the LLR core can start computing the

incoming data.

The core starts processing the received symbols even if the data is not valid because it
keeps track of the valid data in the valid data pipeline array. The LLR core is a sequence of
clocked registers where information is taken out of a register sent through logic and then stored
back into a register. This relationship allows the data to be tracked as it goes through the LLR
core. On every clock edge the input data in valid port is loaded into a pipeline which allows for
the data and its corresponding validity to progress through the core at the same rate. The output
data out valid port is connected to the last index of the data valid pipeline and therefore when the
data is actually being output by the LLR core the corresponding validity is also outputted. The
LLR core is coded to reset these pipelines on a standard reset instruction. Without this
“handshake” the core would not be able to communicate to the other components and therefore
even if the received symbols were being correctly decoded the result would not show up

correctly.

4.2.6 Rounding

The original design of the LLR core’s bi-linear interpolation included an implementation of
division by dropping of least significant bits. The result was correct in theory because the

division was correct but the implementation effectively floored the result instead of rounding.
MITRE Approved for Public Release; Distribution Unlimited 14-0176

61

For example of the LLR value was 22.894 which after dropping the least significant bits, the
result would be 22 instead of the correct result of 23. In order to solve this, a rounding entity
was added to the core to process the LLR result after the bi-linear interpolation and therefore

obtain the correct rounded result.

4.2.7 Timing

The LLR core and other components run on a common clock and therefore it is important
that the proposed core meets timing. The goal for the project design was the ability to run the
core at 150+ MHz. After synthesis testing the core in parallel by two ran at 199MHz, which is
way above the 150 MHz goal. The core was also tested in parallel by four and the result from
that testing showed that the core passed for 142 MHz which is slightly below the 150 MHz goal.
After further investigation the timing issues are related to the lookup time from RAM. Future

work could be done to improve the maximum clock speed by looking into the register timing.

MITRE Approved for Public Release; Distribution Unlimited 14-0176

62

5 Testing and Verification

5.1 MATLAB Testing

The testing and verification process included software and hardware testing. MATLAB
was used extensively throughout the design process specifically in generating BER performance
curves for the different LLR algorithms. The BER curve performances were instrumental in
understanding the core concept of the project. The MATLAB script written to run all the tests
consists of a sequence of parameters the user can choose from in order to specify details such as
the modulation scheme, the number of input data input bits, and which type of BER curve

performance plot to execute.

5.2 C++ Model Testing

Instead of creating a C++ model for the new design the third party IP model was used
instead for comparison. The proposed MITRE core VHDL was run alongside the C++ model
and compared for another reference of comparison. The results from this testing produced zero
errors for all four modulations when the C++ model was compared with the proposed MITRE

core.

5.3 VHDL Data Flow Testing

The VDHL simulation testing was done on MITRE’s servers and was done in several
steps. The original test for the VHDL code included a LUT width of five, QPSK modulation,
and TO. By holding these configurations constant the VHDL code could be tested and modified
to add additional features while maintaining a baseline for what was known to be currently

working.

MITRE Approved for Public Release; Distribution Unlimited 14-0176

63

There are three different test types used in this test sequence labeled as TO, T1, and T2.
The three tests alter the “handshake” ports referenced in section 4.2.5 Data Flow. Test 0 (TO0)
configures the core to always accept data and that the data is always valid. Since this is the
baseline test it was use for the majority of the modulation testing. Test 1 (T1) configures the
core to toggle the input valid data port. Test 2 (T2) configures the core to toggle the output
accept data port. Test 1 and 2 were used to test the data flow by testing the valid pipeline and the
“handshake” control ports on the core. These three tests were tested on all test configurations

used in the final test plan.

The final test plan and the corresponding results are shown in Appendix B. The tests were
broken down into configuring the LLR core to run in parallel by two or four. Parallel by two and
four are the two configurations that will be used for the LLR demapper. In order to properly test
the expandability and flexibility of the design the LUT widths were changed to make sure the
configurations changed properly. The LUT widths tested ranged from 1 to 8 in which, for a
given LUT width, all four modulations were tested and for each modulation all three test types
were run. This test plan shows the ability of the core to have flexibility for different LUT

widths.

5.4 Hardware Results
In order to test the LLR demapper using the Digital LDPC Mini waveform, several tests
were run with different modulations and FEC rates. The types of tests that were originally part

of the test plan included the modulations listed below in Table 11.

MITRE Approved for Public Release; Distribution Unlimited 14-0176

64

LLR Demapper Modulation
Tests

QPSK Y2 Short
QPSK 2 Long
QPSK 7/8 Short
QPSK 7/8 Long
8PSK 7/8 Long
16APSK 7/8 Long

32APSK 7/8 Long
Table 11: LLR Demapper Modulation Test Plan

5.4.1 FPGA Slice Logic Utilization

The addition of the new 64APSK modulation core did not allow for the proposed core and
the 3" party IP core with the new configurations to be deployed at the same time. Instead, the
proposed core was just deployed so some testing could be made since similar hardware results
were already obtained. The slice logic utilization for the proposed MITRE core is shown in
Table 12 below. The current core and the 3™ party IP 32APSK core slice logic utilization is
shown in Table 13. The current core and the 3" party IP 64APSK core slice logic utilization is

shown in Table 14.

Proposed MITRE Core

Name Amount
Slice Registers 11,713
Slice LUTs 9,901

RAMB36E1 68
FIFO36E1 0
DSP48E1 136

Table 12: FPGA Slice Logic Utilization for the Proposed MITRE Core

MITRE Approved for Public Release; Distribution Unlimited 14-0176

65

Current MITRE Core and the 3% party
IP 32APSK Core

Name Amount
Slice Registers 25,177
Slice LUTs 43,009
RAMB36E1 28
FIFO36E1 0
RAMBISE1 132
FIFO18E1 0
DSP48E1 368

Table 13: Slice Logic Utilization for Current MITRE Core and 3" party IP 32APSK Core

Current MITRE Core and the 3% party
IP 64APSK Core

Name Amount
Slice Registers 82,708
Slice LUTs 72,660
RAMB36E1 56
FIFO36E1 0
RAMBISE1 8
FIFO18E1 0
DSP48E1 616

Table 14: Slice Logic Utilization for Current MITRE Core and 3™ party IP 64APSK Core

5.4.2 Digital LDPC Mini Testing

After the proposed MITRE core was deployed to the LDPC Mini waveform, testing on the
hardware could begin. The first step in confirming the validity of the new core on hardware
included testing with no noise added to the symbols. The results indicated a 0 BER for all
modulation, FEC coding rate, and FECFRAME length combinations. When symbols are
transmitted with no noise added it means that they are received with the same I/Q coordinates as

the expected symbol constellation points on the I/Q plane. This basic test confirms that the LLR

core correctly interoperates all possible received symbols for all modulations.

MITRE Approved for Public Release; Distribution Unlimited 14-0176

66

The next step involved the addition of noise to the test process which revealed mixed
results. Poor BER performance prompted a confirmation of the configurations used including
the power level used for mapping the constellation values, the variance values determined
through simulation, and the internal scaling done within the LUT generation. The mapping of
the constellations originally used a power level of 90 for all modulations. However the power
level of 90 is only used for I6APSK and 32APSK for the DVB-S2 standard and a lower power
level is used for QPSK and 8PSK. The power level used when mapping the symbols with the
lower modulations was altered to reflect the correct values provided by the DVB-S2 standard. A
simulation to confirm the sampled variance values revealed that the variance values were not
accurate anymore to the new design and therefore were also updated to reflect these changes.
The last plausible cause of the poor BER performance involved the scaling internally to the core
and the AGC scaling before and after the LLR core. The corrections made to the design
improved the overall performance of the core for the QPSK modulation but not for higher

modulations.

5.4.3 AGC Scaling

The AGC component scales the digital power to account for power loss. The decoder is
looking for LLR values with a certain power level and the AGC is used to scale the LLR values
to the right power level in order for the decoder to interpret the LLR values accurately. In order
for the AGC to scale the LLR values correctly the values must be mapped to the correct power

level on the constellation.

The AGC scaling before the LLR core was the focus of improving performance. A range

of AGC scaling values were tested in order to determine the best scale to use that would result in
MITRE Approved for Public Release; Distribution Unlimited 14-0176

67

the best BER performance for a given Ey/N,. QPSK 7/8 normal AGC scaling test results shown
below in Table 15 illustrate the change in BER when the AGC scaling is altered. Based on these
results an AGC scale value the BER improved from originally being 9.638E-03 to 7.016E-07
Ey/N, of 3.7 by changing the AGC scale from 7694 to 7510. The 3" party IP core has a BER of

7.739E-07 for the same Ey/N, which is an improvement in the BER by 7.23E-08.

3.8 7500 4E-10

1

2 3.8 7450 0

3 3.8 7495 0

4 3.8 7499 0

5 3.8 7501 4E-10

6 3.7 7694 9.638E-03
7 3.7 7500 7.126E-07
8 3.7 7495 9.431E-07
9 3.7 7499 9.431E-07
10 3.7 7505 7.126E-07
11 3.7 7510 7.016E-07
12 3.7 7515 9.647E-03
13 3.7 7450 9.431E-07
14 3.7 7507 7.126E-07
15 3.7 7509 7.126E-07
16 3.7 7508 7.126E-07
17 3.7 7511 7.126E-07
18 3.7 7512 7.126E-07
20 3.7 7513 7.126E-07
21 3.7 7514 7.126E-07

Table 15: QPSK 7/8 Normal AGC Scaling Test Results

The best AGC scaling value was chosen based on the results collected. However the best
AGC scaling value altered depending on several conditions including modulation, FEC coding
rate, FECFRAME length, and current Ey/N,. Future work could be done to improve the AGC
scaling values used in these various situations in order to improve the overall performance of the

LLR core.

MITRE Approved for Public Release; Distribution Unlimited 14-0176

68

5.4.4 Final Hardware Results

The poor BER performance limited the ability to obtain the results for the higher order
modulations. The AGC scaling that was implemented to QPSK to improve performance did not
affect the higher order modulations which suggest that there are other scaling issues. The limited
time of the project did not allow for additional investigation of the performance issues. As a
result only the QPSK modulation results were obtained and are shown below in Figures 41-44.
The current MITRE core (Old core) is compared with the proposed MITRE core (New core) for
the QPSK modulation with varying FEC coding rates and FECFRAME lengths. The current

MITRE core’s hardware results for all modulations are shown in Figure 40 for reference.

BER Curve
. DVB-S2 Modulation, NASA CCSDS LDPC : ;
10
== == QPSK 1/2; Normal; Iterations:15
== === QPSK 1/2; Short; Iterations:15
. ="~ QPSK7/3; Normal; lterations:15
‘.: QPSK 7/8; Short; Iterations:15
15 == === 8PSK 7/8; Normal; Iterations:15
1“%&% "= 16APSK 7/8; Normal; Iterations:15
— = L} | == === 32APSK 7/8; Normal; Iterations:15 |E
A § Iy L) LY A} r
y H Y * 1 ;
.
10 ”%ﬁ%
= i . i d
i— 1 H 1 .
1 A . ||
i 1“”%%‘%%
— . I I
| | LI | - 1
i — i
10° ”%ﬁ%
= 1 .
| 1 | | | |
' \ H 1 H 1
10 1 -
1 = i 1 =
¥ 1 » L) |
i .
10 1 H 1 1 H
i : i i :
L} 1 1 L)
10 1 . 1 1
) 2 4 6 8 10 12
E/N,

Figure 40: 3rd party IP Hardware Results for all Modes and Modulations

MITRE Approved for Public Release; Distribution Unlimited 14-0176

69

BER Curve

DVB-S2 Madulation, NASA CC

’SDS LDPC

[

[[

[===0ld Core; QPSK 1/2; Short;
== New Core; QPSK 1/2; Short

4

1
X:2.144

Lo Y: 2.183-006 Zessizmzssazaaap
107 \%i‘
08 1 12 14 16 en, 18 2 22 24 26
Figure 41: QPSK 1/2 Short BER Performance Comparison
' b/ No o) o A 0 BER 0 ample
1.00 3261 325 0.993702 | 6.95E-02 | 100000000 | 1438868264
1.05 3261 327 1.04699 5.86E-02 | 100000001 1706219160
1.10 3261 329 1.099952 | 4.85E-02 | 100000001 | 2061855568
1.15 3261 331 1.152594 | 3.93E-02 | 100000000 | 2541889728
1.20 3261 333 1.204919 | 3.08E-02 | 100000000 | 3252402456
1.25 3261 335 1.256931 2.35E-02 | 100000000 | 4248589704
1.30 3261 337 1.308632 1.75E-02 | 100000000 | 5717475216
1.35 3261 339 1.360028 1.27E-02 | 100000003 | 7848669680
1.40 3261 341 1.411122 | 9.00E-03 | 100000001 | 11115407024
1.45 3261 343 1.461917 | 6.09E-03 | 100000000 | 16433180088
1.50 3261 345 1.512416 | 4.05E-03 | 100000000 | 24713839288
1.55 3261 347 1.562624 | 2.62E-03 | 100000002 | 38162780336
1.60 3261 349 1.612543 1.62E-03 | 100000000 | 61846201552
1.65 3261 351 1.662177 | 9.85E-04 | 98510677 1E+11
1.70 3261 353 1.711529 | 5.98E-04 | 59838512 1E+11
1.75 3261 355 1.760602 | 3.38E-04 | 33833407 1E+11
1.80 3261 357 1.809399 1.92E-04 | 19168760 1E+11
1.85 3261 359 1.857923 1.08E-04 | 10750710 1E+11
1.90 3261 361 1.906179 | 5.67E-05 5669698 1E+11
1.95 3261 363 1.954167 | 2.94E-05 2935200 1E+11
2.00 3261 365 2.001892 1.52E-05 1523931 1E+11
2.05 3261 367 2.049356 | 7.71E-06 770686 1E+11
2.10 3261 369 2.096562 | 3.76E-06 376346 1E+11

MITRE Approved for Public Release; Distribution Unlimited 14-0176

70

2.15 3261 371 2.143513 1.80E-06 179589 1E+11
2.20 3261 373 2.190211 8.66E-07 86569 1E+11
2.25 3261 376 2.259791 3.05E-07 30521 1E+11
2.30 3261 378 2.30587 1.32E-07 13231 1E+11
2.35 3261 380 2.351706 | 6.38E-08 6380 1E+11
2.40 3261 382 2.397302 | 2.39E-08 2392 1E+11
2.45 3261 384 2.442659 | 9.75E-09 975 1E+11
2.50 3261 387 2.510254 | 1.67E-09 167 1E+11
2.55 3261 389 2.555026 1.23E-09 123 1E+11
2.60 3261 391 2.59957 5.70E-10 57 1E+11

Table 16: QPSK 1/2 Short Full Hardware Results

BER Curve

DVB-S2 Maqdulation, NASA CGSDS LDPC

Old Core; QPSK 1/2; Normal;
New Core; QPSk 1/2; Normal;

X:1.425

Y:7.177e-006

7
N ————— , 151»

Y
am

X:1.528

Y: 1.519e-007

B 3

Y: 1.514e-007
I

AN
NS
N

NS

0.9

11

1.2

13

&N,

[

14 15

1.6

Figure 42: QPSK 1/2 Normal BER Performance Comparison

Exp Ep/N, Ns gain Din_gain Act E,/N, BER Errors
1.00 3261 325 0.993702 | 6.26E-02 1E+08 1.6E+09
1.05 3261 327 1.04699 | 4.24E-02 1E+08 | 2.36E+09
1.10 3261 329 1.099952 | 2.51E-02 1E+08 | 3.99E+09
1.15 3261 331 1.152594 | 1.26E-02 1E+08 | 7.96E+09
1.20 3261 333 1.204919 | 5.00E-03 1E+08 2E+10
1.25 3261 335 1.256931 | 1.62E-03 IE+08 | 6.17E+10
1.30 3261 337 1.308632 | 4.11E-04 | 41065329 | 1E+I11
1.35 3261 339 1.360028 | 8.37E-05 | 8366183 1E+11
1.40 3261 341 1.411122 | 1.32E-05 | 1316979 1E+11
145 3261 343 1.461917 | 1.50E-06 | 149469 1E+11

MITRE Approved for Public Release; Distribution Unlimited 14-0176

71

1.50 3261 345 1.512416 | 1.51E-07 15139 1E+11
1.55 3261 347 1.562624 | 2.08E-08 2081 1E+11
1.60 3261 349 1.612543 | 3.15E-09 315 1E+11
1.65 3261 351 1.662177 | 1.80E-10 18 1E+11

Table 17: QPSK 1/2 Normal Full Hardware Results

BER Curve

N DVB-S2 Maqdulation, NASA CCSDS LDPC [
10 %

[
i == um== QOld Core; QPSK 7/8; Short; E
| == New Core; QPSK 7/8; Short; ||-

10° %
—— X:4.046

s Y: 1.469e-006

N

-
(]

X: 4.046 i

Y: 1.14e-006

‘n :4.354

<X

=

i
X:4.292

Y: 5.033e-008

~
NGNS =

34 3.6

3.8

4

&N,

L

4.2 44

4.6

4.8 5

Figure 43: QPSK 7/8 Short BER Performance Comparison

Exp_Ey/N, Ns gain Din_gain Act_E,/N, BER Errors Samples
3.30 3261 561 3.304911 | 1.30E-02 | 100000001 | 7717147624
3.35 3261 564 3.351236 | 1.03E-02 | 100000000 | 9702544608
3.40 3261 567 3.397315 | 7.58E-03 | 100000000 | 13190359184
3.45 3261 571 3.458376 | 4.91E-03 | 100000000 | 20387019864
3.50 3261 574 3.503892 | 3.35E-03 | 100000000 | 29853038080
3.55 3261 577 3.54917 | 2.31E-03 | 100000000 | 43363082904
3.60 3261 580 3.594214 | 1.43E-03 | 100000000 | 69770168216
3.65 3261 584 3.653911 | 7.60E-04 | 75986434 1E+11
3.70 3261 587 3.698416 | 4.58E-04 | 45818487 1E+11

MITRE Approved for Public Release; Distribution Unlimited 14-0176

72

3.75 3261 591 3.757404 | 1.94E-04 | 19427144 1E+11
3.80 3261 594 3.801383 | 9.63E-05 | 9634207 1E+11
3.85 3261 597 3.845141 | 4.78E-05 | 4781245 1E+11
3.90 3261 601 3.903143 | 1.71E-05 | 1709055 1E+11
3.95 3261 604 3.946393 | 7.42E-06 | 742315 1E+11
4.00 3261 608 4.003726 | 2.48E-06 248085 1E+11
4.05 3261 611 4.046478 | 1.14E-06 113977 1E+11
4.10 3261 615 4.103156 | 4.52E-07 45243 1E+11
4.15 3261 618 4.145423 | 2.59E-07 25902 1E+11
4.20 3261 622 4.201462 | 1.28E-07 12834 1E+11
4.25 3261 626 4.257141 | 7.91E-08 7912 1E+11
4.30 3261 629 4.298667 | 4.59E-08 4587 1E+11
4.35 3261 633 4.353728 | 3.72E-08 3717 1E+11
4.40 3261 636 4.394796 | 2.90E-08 2898 1E+11
4.45 3261 640 4.449253 | 1.81E-08 1805 1E+11
4.50 3261 644 4.503371 | 1.12E-08 1121 1E+11
4.55 3261 648 4.557154 | 7.06E-09 706 1E+11
4.60 3261 651 4.597274 | 6.15E-09 615 1E+11
4.65 3261 655 4.65048 | 6.12E-09 612 1E+11
4.70 3261 659 4.703362 | 2.36E-09 236 1E+11
4.75 3261 663 4.755925 | 2.35E-09 235 1E+11
4.80 3261 666 4.795139 | 3.42E-09 342 1E+11
4.85 3261 670 4.84715 | 0.00E+00 0 1E+11
Table 18: QPSK 7/8 Short Full Hardware Results
—— Old Core; i]PSK 718; Norri1a|; .

10" == New Core; QPSK 7/8; Normal (Long) | |

S~ s E—

- V. 5.8460-006 %&

3.5 3.55

EN,

Figure 44: QPSK 7/8 Normal BER Performance Comparison

MITRE Approved for Public Release; Distribution Unlimited 14-0176

73

D
 E,/N, sain Din gain A : 0 ample

3.30 3261 561 3.304911 | 1.15E-02 | 100000000 | 8682549536
3.35 3261 564 3.351236 | 7.67E-03 | 100000000 | 13031312616
3.40 3261 567 3.397315 | 3.89E-03 | 100000000 | 25733664176
3.45 3261 571 3.458376 | 1.28E-03 | 100000000 | 78255690520
3.50 3261 574 3.503892 | 4.35E-04 | 43537054 1E+11
3.55 3261 577 3.54917 | 1.42E-04 | 14150347 1E+11
3.60 3261 580 3.594214 | 3.03E-05 | 3032942 1E+11
3.65 3261 584 3.653911 | 3.55E-06 | 354832 1E+11
3.70 3261 587 3.698416 | 6.09E-07 60903 1E+11
3.75 3261 591 3.757404 | 2.69E-08 2689 1E+11
3.80 3261 594 3.801383 | 4.05E-09 405 1E+11
3.85 3261 597 3.845141 | 2.00E-11 2 1E+11

Table 19: QPSK 7/8 Normal Full Hardware Results

6 Conclusion

This project set out to investigate, design, and implement a LLR soft decision demapper for
a HDR modem to replace the current core used by MITRE’s HDR design group. An emphasis
was placed on expandability and flexibility of the design to allow for future implementation.
The major goal of the project is to improve the performance of current system and provide
recommendations for future designs of the soft decision demapper for DVB-S2. The
investigation of the algorithms for DVB-S2 soft-decision demapping allowed for a correct
implementation of the algorithms in MATLAB to analyze the performance. Finally an improved
core design was implemented in VHDL, deployed on an FPGA, and compared against the

current core implementation.

This project provides MITRE with a library of MATLAB scripts and functions for LLR
Algorithm implementation with the DVB-S2 standard. This directory includes algorithm

simulation, BER performance, LUT parameter file generation, test vector creation scripts and all

MITRE Approved for Public Release; Distribution Unlimited 14-0176

74

the documentation in order to repeat the project design. The directory of scripts can be found in
Appendix D. The new MITRE core found in Appendix E is also included in the project

contributions along with the performance results.

The proposed MITRE LLR core is planned to be integrated into the LLR slice after the
conclusion of this project. The addition of the 64 APSK modulation will also be included in the
future along with future higher order modulations. Additional work needs to be done to obtain
the 8PSK, 16 APSK, and 32APSK hardware results for comparison to verify the conclusion that
the proposed core meets the goal of improved performance and the addition of higher order
modulation. The comparison between the MAX Algorithm LUTs and the True LLR Algorithm
could be made to verify the simulation results. This would also prove the algorithm flexibility
the LUT design has compared to the straight algorithm implantation. Additional performance
work could be done to improve the BER performance of each modulation, FEC coding rate, and

Ew/N, values.

In conclusion, the project was able to meet the requirements and specifications of the MQP,

the DVB-S2 standard, and The MITRE corporation.

MITRE Approved for Public Release; Distribution Unlimited 14-0176

75

References

[1]

[2]

[3]

[4]

[3]

[6]

[7]

[8]

[9]

[10]

D.J. Bem, T. W. Wieckowski, and R. J. Zielinski, "Broadband satellite systems,"
Communications Surveys & Tutorials, IEEE, vol. 3, pp. 2-15, 2000.

P. Jang Woong, S. Myung Hoon, K. Pan Soo, and C. Dae-Ig, "Multi-level modulation
soft-decision demapper for DVB-S2," in Signal Processing Systems, 2009. SiPS 2009.
IEEE Workshop on, 2009, pp. 013-017.

R. Aggarwal and P. Moore, "Digital communications for protection. I. General
principles," Power Engineering Journal, vol. 7, pp. 281-287, 1993.

C. J. Birkmaier, "An open architecture for digital communication systems.2. Creating
enabling standards for a digital communication infrastructure," MultiMedia, IEEE, vol. 1,
pp. 79-84, 1994.

B. Sklar, "Defining, designing, and evaluating digital communication systems,"
Communications Magazine, IEEE, vol. 31, pp. 91-101, 1993.

G. Kolumban, M. P. Kennedy, and L. O. Chua, "The role of synchronization in digital
communications using chaos. I . Fundamentals of digital communications," Circuits and
Systems I: Fundamental Theory and Applications, IEEE Transactions on, vol. 44, pp.
927-936, 1997.

A. B. Salberg and A. Hanssen, "Secure digital communications by means of stochastic
process shift keying," in Signals, Systems, and Computers, 1999. Conference Record of
the Thirty-Third Asilomar Conference on, 1999, pp. 1523-1527 vol.2.

E. Casini, R. D. Gaudenzi, and A. Ginesi, "DVB-S2 modem algorithms design and
performance over typical satellite channels," International Journal of Satellite
Communications and Networking, vol. 22, pp. 281-318, 2004.

R. L. Nkumbwa, "Emerging next generation communication technology: Unveiling the
Ubiquitous Society," in Education and Management Technology (ICEMT), 2010
International Conference on, 2010, pp. 1-5.

K. M. Price and R. G. Leamon, "Definition of a commercial mobile satellite services

network to meet DoD communications needs," in Military Communications Conference,

MITRE Approved for Public Release; Distribution Unlimited 14-0176

76

1993. MILCOM '93. Conference record. Communications on the Move., IEEE, 1993, pp.
821-825 vol.3.

[11] E. Lutz, H. Bischl, H. Ernst, D. Giggenbach, M. Holzbock, A. Jahn, et al., "Development
and future applications of satellite communications," in Personal, Indoor and Mobile
Radio Communications, 2004. PIMRC 2004. 15th IEEE International Symposium on,
2004, pp. 2342-2346 Vol 4.

[12] T. E. Mangir, "The future of public satellite communications," in Aerospace Applications
Conference, 1995. Proceedings., 1995 IEEE, 1995, pp. 393-410 vol.1.

[13] A. Morello and U. Reimers, "DVB-S2, the second generation standard for satellite
broadcasting and unicasting," International Journal of Satellite Communications and
Networking, vol. 22, pp. 249-268, 2004.

[14] E.T.S. Institute, "ETSI EN 302 307 V1.2.1 European Standard (Telecommunications
series)," in Digital Video Broadcasting (DVB), Second generation framing structure,
channel coding and modulation systems for Broadcasting, Interactive Services, News
Gathering and other broadband satellite applications (DVB-S2), ed, 2009.

[15] C. Seung-Hyun, O. Cheon-In, O. Doeck Gil, and C. Dae-Ig, "The Mapping and
demmaping algorithms for high order modulation of DVB-S2 systems," in
Communications, 2006. APCC '06. Asia-Pacific Conference on, 2006, pp. 1-5.

[16] T.Ming-Fong, S. Ce-Kuen, H. Tzu-Chi, and D. Der-Jiunn, "Forward-Looking Forward
Error Correction Mechanism for Video Streaming Over Wireless Networks," Systems

Journal, IEEE, vol. 5, pp. 460-473, 2011.

MITRE Approved for Public Release; Distribution Unlimited 14-0176

77

Appendix A

Appendix A.1 — QPSK Modulation (2 BPS) — 10° Input Bits

BLOCK Configuration:
Input Type: BLOCK_BIT_TYPE
Output Type: BLOCK_BIT_TYPE
esize:UNSIGNED:"16200":The coded size (read-only)
usize:UNSIGNED:"7032":The input size (read-only)
enc_config:STRING:"dvb_12_16.encbin”:Encoder configuration file
interleave_depth:INT:"1”:Encode Interleave Depth
backwards:INT:”0”:Backwards symbol interleave (for 8psk 3/5 S2 code)

Encoding 14 Blocks of 16k at rate V2

#BPS=2 #

Es/N, =0

Euclid =11061 (errors) | 98448 (bits)
MAX = 7185 (errors) | 98448 (bits)
Ir2 = 7185 (errors) | 98448 (bits)
IP_lir = 7544 (errors) | 98448 (bits)

Es/No = 5.000000e-02

Euclid = 10246 (errors) | 98448 (bits)
MAX = 6234 (errors) | 98448 (bits)
Ir2 = 6234 (errors) | 98448 (bits)
IP_llr = 6453 (errors) | 98448 (bits)

Es/No = 1.000000e-01

Euclid = 9635 (errors) | 98448
MAX =4705 (errors) | 98448
Ir2 = 4705 (errors) | 98448
IP_llr =5286 (errors) | 98448

bits)
bits)
bits)
bits)

~ o~~~

Es/No = 1.500000e-01

Euclid = 8606 (errors) | 98448 (bits)
MAX = 3257 (errors) | 98448 (bits)
Ir2 = 3257 (errors) | 98448 (bits)
IP_lir =3867 (errors) | 98448 (bits)

Es/No = 2.000000e-01

Euclid = 8093 (errors) | 98448
MAX = 2907 (errors) | 98448
Ir2 = 2907 (errors) | 98448
IP_llr = 3485 (errors) | 98448

bits)
bits)
bits)
bits)

—~ o~~~

Es/No = 2.500000e-01

Euclid = 6866 (errors) | 98448
MAX =1576 (errors) | 98448
Ir2 = 1576 (errors) | 98448
IP_llr =1821 (errors) | 98448

bits)
bits)
bits)
bits)

~ o~~~

Es/No = 3.000000e-01

Euclid = 6344 (errors) | 98448 (bits)
MAX =1516 (errors) | 98448 (bits)
Ir2 = 1516 (errors) | 98448 (bits)

MITRE Approved for Public Release; Distribution Unlimited 14-0176

78

IP_lir

= 2054 (errors) | 98448 (bits)

Es/No = 3.500000e-01

Euclid =5669 (errors) | 98448 (bits)
MAX =1104 (errors) | 98448 (bits)
r2 = 1104 (errors) | 98448 (bits)
IP_llr = 1555 (errors) | 98448 (bits)
Es/No = 4.000000e-01

Euclid =4825 (errors) | 98448 (bits)
MAX = 440 (errors) | 98448 (bits)
r2 = 440 (errors) | 98448 (bits)
IP_llr = 626 (errors) | 98448 (bits)
Es/No = 4.500000e-01

Euclid =2390 (errors) | 98448 (bits)
MAX = 159 (errors) | 98448 (bits)
Ir2 = 159 (errors) | 98448 (bits)
IP_lir = 302 (errors) | 98448 (bits)
Es/No = 5.000000e-01

Euclid = 2795 (errors) | 98448 (bits)
MAX = 105 (errors) | 98448 (bits)
Ir2 = 105 (errors) | 98448 (bits)
IP_lir = 166 (errors) | 98448 (bits)
Es/No = 5.500000e-01

Euclid = 2332 (errors) | 98448 (bits)
MAX = 117 (errors) | 98448 (bits)
Ir2 = 117 (errors) | 98448 (bits)
IP_llr = 144 (errors) | 98448 (bits)
Es/No = 6.000000e-01

Euclid = 1464 (errors) | 98448 (bits)
MAX = 0 (errors) | 98448 (bits)
Ir2 = 0 (errors) | 98448 (bits)
IP_llr = 0 (errors) | 98448 (bits)

Appendix A.2 — QPSK Modulation (2 BPS) — 10° Input Bits

BLOCK
Input

Configuration:
Type: BLOCK_BIT_TYPE

Output Type: BLOCK_BIT_TYPE
esize:UNSIGNED:”16200”: The coded size (read-only)
usize:UNSIGNED:"7032”:The input size (read-only)
enc_config:STRING:"dvb_12_16.encbin”:Encoder configuration file
interleave_depth:INT:”1”:Encode Interleave Depth
backwards:INT:”0”:Backwards symbol interleave (for 8psk 3/5 S2 code)

Encoding 142 Blocks of 16k at rate V2

#BPS=2#

Es/No =
Euclid
MAX
Ir2

0

104733 (errors) | 998544 (bits)
64433 (errors) | 998544 (bits)
64433 (errors) | 998544 (bits)

MITRE Approved for Public Release; Distribution Unlimited 14-0176

79

IP_Ilr = 68706 (errors) | 998544 (bits)

Es/No = 5.000000e-02

Euclid =99396 (errors
MAX =56708 (errors
r2 = 56708 (errors
IP_llr =62266 (errors

| 998544 (bits)
| 998544 (bits)
| 998544 (bits)
| 998544 (bits)

~— — — —

Es/No = 1.000000e-01

Euclid =94388 (errors
MAX =47455 (errors
r2 = 47455 (errors
IP_llr =52434 (errors

| 998544 (bits)
| 998544 (bits)
| 998544 (bits)
| 998544 (bits)

~— — — ~—

Es/No = 1.500000e-01

Euclid = 88294 (errors
MAX = 38853 (errors
Ir2 = 38853 (errors
IP_lir =44192 (errors

| 998544 (bits)
| 998544 (bits)
| 998544 (bits)
| 998544 (bits)

~— — — —

Es/No = 2.000000e-01

Euclid = 80545 (errors) | 998544 (bits)
MAX =28153 (errors) | 998544 (bits)
Ir2 = 28153 (errors) | 998544 (bits)
IP_lir =33689 (errors) | 998544 (bits)

Es/No = 2.500000e-01

Euclid =76331 (errors
MAX =25047 (errors
Ir2 = 25047 (errors
IP_llr =30226 (errors

| 998544 (bits)
| 998544 (bits)
| 998544 (bits)
| 998544 (bits)

~— — — —

Es/No = 3.000000e-01

Euclid =67430 (errors
MAX =16904 (errors
Ir2 = 16904 (errors
IP_lir =21287 (errors

| 998544 (bits)
| 998544 (bits)
| 998544 (bits)
| 998544 (bits)

~— — — ~—

Es/No = 3.500000e-01

Euclid =57493 (errors)
MAX =11789 (errors)
Ir2 = 11789 (errors)
IP_lir =15160 (errors)

998544 (bits)
998544 (bits)
998544 (bits)
998544 (bits)

Es/No = 4.000000e-01

Euclid =44143 (errors) | 998544 (bits)
MAX = 5427 (errors) | 998544 (bits)
Ir2 = 5427 (errors) | 998544 (bits)
IP_llr = 7475 (errors) | 998544 (bits)

Es/No = 4.500000e-01

Euclid = 37088 (errors) | 998544 (bits)
MAX = 2087 (errors) | 998544 (bits)
Ir2 = 2087 (errors) | 998544 (bits)
IP_llr = 3426 (errors) | 998544 (bits)

Es/No = 5.000000e-01

Euclid = 27794 (errors) | 998544 (bits)
MAX = 1257 (errors) | 998544 (bits)
Ir2 = 1257 (errors) | 998544 (bits)
IP_llr = 2024 (errors) | 998544 (bits)

Es/No = 5.500000e-01
Euclid = 15363 (errors) | 998544 (bits)

MITRE Approved for Public Release; Distribution Unlimited 14-0176

80

MAX = 415 (errors) | 998544 (bits)
r2 = 415 (errors) | 998544 (bits)
IP_llr = 640 (errors) | 998544 (bits)

Es/No = 6.000000e-01

Euclid = 13348 (errors) | 998544 (bits)
MAX = 131 (errors) | 998544 (bits)
r2 = 131 (errors) | 998544 (bits)
IP_llr = 300 (errors) | 998544 (bits)

Es/No = 6.500000e-01
Euclid =4436 (errors) | 998544 (bits)

MAX = 0 (errors) | 998544 (bits)
Ir2 = 0 (errors) | 998544 (bits)
IP_llr = 72 (errors) | 998544 (bits)

MITRE Approved for Public Release; Distribution Unlimited 14-0176

81

Appendix A.3 — 8PSK Modulation (3 BPS) — 10° Input Bits

BLOCK Configuration:
Input Type: BLOCK_BIT_TYPE
Output Type: BLOCK_BIT_TYPE
esize:UNSIGNED:"16200":The coded size (read-only)
usize:UNSIGNED:"7032":The input size (read-only)
enc_config:STRING:"dvb_12_16.encbin”:Encoder configuration file
interleave_depth:INT:”1”:Encode Interleave Depth
backwards:INT:"0”:Backwards symbol interleave (for 8psk 3/5 S2 code)

Encoding 14 Blocks of 16k at rate V2

#BPS=3#

Es/No =3

Euclid =11990 (errors) | 98448 (bits)
MAX = 7360 (errors) | 98448 (bits)
Ir2 = 8084 (errors) | 98448 (bits)
IP_lir = 8055 (errors) | 98448 (bits)

Es/No = 3.050000e+00

Euclid =10590 (errors) | 98448 (bits)
MAX = 5430 (errors) | 98448 (bits)
Ir2 = 6086 (errors) | 98448 (bits)
IP_lir = 6078 (errors) | 98448 (bits)

Es/No = 3.100000e+00

Euclid =10238 (errors) | 98448 (bits)
MAX = 4519 (errors) | 98448 (bits)
Ir2 = 5328 (errors) | 98448 (bits)
IP_llr = 5511 (errors) | 98448 (bits)

Es/No = 3.150000e+00

Euclid =10368 (errors) | 98448 (bits)

) |
MAX = 5528 (errors) | 98448 (bits)
Ir2 = 6051 (errors) | 98448 (bits)
IP_llr = 6150 (errors) | 98448 (bits)

Es/No = 3.200000e+00

Euclid =9013 (errors) | 98448
MAX = 3516 (errors) | 98448
Ir2 = 4070 (errors) | 98448
IP_lir =4452 (errors) | 98448

bits)
bits)
bits)
bits)

~ o~~~

Es/No = 3.250000e+00

Euclid =9350 (errors) | 98448 (bits)
MAX =2543 (errors) | 98448 (bits)
Ir2 = 3031 (errors) | 98448 (bits)
IP_lir =3414 (errors) | 98448 (bits)

Es/No = 3.300000e+00

Euclid = 8441 (errors) | 98448
MAX =1819 (errors) | 98448
Ir2 = 2133 (errors) | 98448
IP_llr =2399 (errors) | 98448

bits)
bits)
bits)
bits)

—~ o~~~

Es/No = 3.350000e+00

Euclid =7529 (errors) | 98448 (bits)
MAX =1152 (errors) | 98448 (bits)
Ir2 = 1564 (errors) | 98448 (bits)
IP_llr =1533 (errors) | 98448 (bits)

MITRE Approved for Public Release; Distribution Unlimited 14-0176

82

Es/No = 3.400000e+00

Euclid =5950 (errors) | 98448 (bits)
MAX = 256 (errors) | 98448 (bits)
Ir2 = 349 (errors) | 98448 (bits)
IP_llr = 438 (errors) | 98448 (bits)

Es/No = 3.450000e+00
Euclid =5046 (errors) | 98448 (bits)

MAX = 236 (errors) | 98448 (bits)
Ir2 = 382 (errors) | 98448 (bits)
IP_llr = 461 (errors) | 98448 (bits)

Es/No = 3.500000e+00

Euclid =4782 (errors) | 98448 (bits)
MAX = 136 (errors) | 98448 (bits)
lIr2 = 83 (errors) | 98448 (bits)
IP_lir = 258 (errors) | 98448 (bits)

Es/No = 3.550000e+00

Euclid =2081 (errors) | 98448 (bits)
MAX = 19 (errors) | 98448 (bits)
Ir2 = 37 (errors) | 98448 (bits)
IP_llr = 34 (errors) | 98448 (bits)

Es/No = 3.600000e+00

Euclid =1032 (errors) | 98448 (bits)
MAX = 0 (errors) | 98448 (bits)
r2 = 0 (errors) | 98448 (bits)
IP_lIr = 0 (errors) | 98448 (bits)

MITRE Approved for Public Release; Distribution Unlimited 14-0176

83

Appendix A.4 — 8PSK Modulation (3 BPS) — 10° Input Bits

BLOCK Configuration:
Input Type: BLOCK_BIT_TYPE
Output Type: BLOCK_BIT_TYPE
esize:UNSIGNED:"16200":The coded size (read-only)
usize:UNSIGNED:"7032":The input size (read-only)
enc_config:STRING:"dvb_12_16.encbin”:Encoder configuration file
interleave_depth:INT:"1”:Encode Interleave Depth
backwards:INT:"0”:Backwards symbol interleave (for 8psk 3/5 S2 code)

Encoding 142 Blocks of 16k at rate V2
#BPS=3#

m
c
e
a
I

118244 (errors) | 998544 (bits)
73755 (errors) | 998544 (bits)
80947 (errors) | 998544 (bits)
81263 (errors) | 998544 (bits)

=
N
m unn

Es/No = 3.050000e+00

Euclid = 114535 (errors) | 998544 (bits)

) |
MAX = 65922 (errors) | 998544 (bits)
r2 = 72592 (errors) | 998544 (bits)
IP_lir = 72323 (errors) | 998544 (bits)

Es/No = 3.100000e+00

Euclid =110125 (errors) | 998544 (bits)
MAX = 58144 (errors) | 998544 (bits)
Ir2 = 65087 (errors) | 998544 (bits)
IP_llr = 65399 (errors) | 998544 (bits)

Es/No = 3.150000e+00

Euclid =102975 (errors) | 998544 (bits)
MAX = 45361 (errors) | 998544 (bits)
Ir2 = 50866 (errors) | 998544 (bits)
IP_llr = 51381 (errors) | 998544 (bits)

Es/No = 3.200000e+00
Euclid = 97509 (errors
MAX = 32395 (errors
Ir2 = 38883 (errors
IP_llr =39188 (errors

| 998544 (bits)
| 998544 (bits)
| 998544 (bits)
| 998544 (bits)

~— — — —

Es/No = 3.250000e+00
Euclid =90388 (errors
MAX =26102 (errors
Ir2 = 32745 (errors
IP_lir =32200 (errors

| 998544 (bits)
| 998544 (bits)
| 998544 (bits)
| 998544 (bits)

~— — — ~—

Es/No = 3.300000e+00
Euclid = 83637 (errors
MAX =18390 (errors
Ir2 = 22748 (errors
IP_llr =22491 (errors

| 998544 (bits)
| 998544 (bits)
| 998544 (bits)
| 998544 (bits)

~— — — ~—

Es/No = 3.350000e+00

Euclid = 72726 (errors) | 998544 (bits)
MAX =10810 (errors) | 998544 (bits)
Ir2 =13792 (errors) | 998544 (bits)

MITRE Approved for Public Release; Distribution Unlimited 14-0176

84

IP_llr =14825 (errors) | 998544 (bits)

Es/No = 3.400000e+00

Euclid = 65065 (errors) | 998544 (bits)
MAX = 5753 (errors) | 998544 (bits)
r2 = 7537 (errors) | 998544 (bits)
IP_llr = 8426 (errors) | 998544 (bits)

Es/No = 3.450000e+00

Euclid =48892 (errors) | 998544 (bits)
MAX = 2326 (errors) | 998544 (bits)
r2 = 3167 (errors) | 998544 (bits)
IP_llr = 3071 (errors) | 998544 (bits)

Es/No = 3.500000e+00

Euclid = 38161 (errors) | 998544 (bits)
MAX = 1201 (errors) | 998544 (bits)
Ir2 = 1553 (errors) | 998544 (bits)
IP_lir = 1737 (errors) | 998544 (bits)

Es/No = 3.550000e+00

Euclid = 31043 (errors) | 998544 (bits)
MAX = 528 (errors) | 998544 (bits)
Ir2 = 630 (errors) | 998544 (bits)
IP_lir = 860 (errors) | 998544 (bits)
Es/No = 3.600000e+00

Euclid =20234 (errors) | 998544 (bits)
MAX = 139 (errors) | 998544 (bits)
Ir2 = 233 (errors) | 998544 (bits)
IP_llr = 500 (errors) | 998544 (bits)

Es/No = 3.650000e+00

Euclid =12041 (errors) | 998544 (bits)
MAX = 66 (errors) | 998544 (bits)
Ir2 = 195 (errors) | 998544 (bits)
IP_llr = 116 (errors) | 998544 (bits)
Es/No = 3.700000e+00

Euclid = 7057 (errors) | 998544 (bits)
MAX = 0 (errors) | 998544 (bits)
Ir2 = 12 (errors) | 998544 (bits)
IP_llr = 13 (errors) | 998544 (bits)

MITRE Approved for Public Release; Distribution Unlimited 14-0176

85

Appendix A.5 — 16APSK Modulation (4 BPS) — 10° Input Bits

BLOCK Configuration:
Input Type: BLOCK_BIT_TYPE
Output Type: BLOCK_BIT_TYPE
esize:UNSIGNED:"16200":The coded size (read-only)
usize:UNSIGNED:"7032":The input size (read-only)
enc_config:STRING:"dvb_12_16.encbin”:Encoder configuration file
interleave_depth:INT:"1”:Encode Interleave Depth
backwards:INT:"0”:Backwards symbol interleave (for 8psk 3/5 S2 code)

Encoding 14 Blocks of 16k at rate V2
#BPS=4#

Es/No =5

Euclid = 13540 (errors) | 98448 (bits)
MAX =10024 (errors) | 98448 (bits)
r2 = 10757 (errors) | 98448 (bits)
IP_llr =11740 (errors) | 98448 (bits)

Es/No = 5.100000e+00

Euclid =12737 (errors) | 98448 (bits)
MAX = 8481 (errors) | 98448 (bits)
r2 = 9797 (errors) | 98448 (bits)
IP_lir =10696 (errors) | 98448 (bits)

Es/No = 5.200000e+00

Euclid =12155 (errors) | 98448 (bits)
MAX = 7698 (errors) | 98448 (bits)
Ir2 = 8888 (errors) | 98448 (bits)
IP_llr =10177 (errors) | 98448 (bits)

Es/No = 5.300000e+00
Euclid =11191 (errors
MAX = 5872 (errors
lr2 = 7478 (errors
IP_llr = 8491 (errors

| 98448 (bits)
| 98448 (bits)
| 98448 (bits)
| 98448 (bits)

~— — — —

Es/No = 5.400000e+00

Euclid =10303 (errors) | 98448 (bits)
MAX = 4889 (errors) | 98448 (bits)
Ir2 = 6803 (errors) | 98448 (bits)
IP_llr = 8302 (errors) | 98448 (bits)

Es/No = 5.500000e+00

Euclid =9177 (errors) | 98448
MAX = 2875 (errors) | 98448
Ir2 = 3991 (errors) | 98448
IP_llr =6157 (errors) | 98448

bits)
bits)
bits)
bits)

~ o~~~

Es/No = 5.600000e+00

Euclid = 7705 (errors) | 98448 (bits)
MAX =718 (errors) | 98448 (bits)
Ir2 = 1843 (errors) | 98448 (bits)
IP_llr =3276 (errors) | 98448 (bits)

Es/No = 5.700000e+00

Euclid = 6453 (errors) | 98448 (bits)
MAX = 362 (errors) | 98448 (bits)
Ir2 = 626 (errors) | 98448 (bits)

MITRE Approved for Public Release; Distribution Unlimited 14-0176

86

IP_llr =1838 (errors) | 98448 (bits)

Es/No = 5.800000e+00

Euclid =4323 (errors) | 98448 (bits)
MAX = 215 (errors) | 98448 (bits)
r2 = 468 (errors) | 98448 (bits)
IP_llr = 997 (errors) | 98448 (bits)
Es/No = 5.900000e+00

Euclid = 2827 (errors) | 98448 (bits)
MAX = 52 (errors) | 98448 (bits)
r2 = 39 (errors) | 98448 (bits)
IP_llr = 397 (errors) | 98448 (bits)
Es/No =6

Euclid =987 (errors) | 98448 (bits)
MAX = 0 (errors) | 98448 (bits)
Ir2 = 0 (errors) | 98448 (bits)
IP_llr = 85 (errors) | 98448 (bits)

MITRE Approved for Public Release; Distribution Unlimited 14-0176

87

Appendix A.6 — 16APSK Modulation (4 BPS) — 10° Input Bits

BLOCK Configuration:
Input Type: BLOCK_BIT_TYPE
Output Type: BLOCK_BIT_TYPE
esize:UNSIGNED:"16200":The coded size (read-only)
usize:UNSIGNED:"7032":The input size (read-only)
enc_config:STRING:"dvb_12_16.encbin”:Encoder configuration file
interleave_depth:INT:”1”:Encode Interleave Depth
backwards:INT:"0”:Backwards symbol interleave (for 8psk 3/5 S2 code)

Encoding 142 Blocks of 16k at rate V2
#BPS =4 #

m
c
e
a
I

134840 (errors) | 998544 (bits)

98437 (errors) | 998544 (bits)
109776 (errors) | 998544 (bits)
IP_lir =118562 (errors) | 998544 (bits)

Es/No = 5.100000e+00

Euclid =130117 (errors) | 998544 (bits)
MAX = 90050 (errors) | 998544 (bits)
Ir2 = 101884 (errors) | 998544 (bits)
IP_lir =111370 (errors) | 998544 (bits)

Es/No = 5.200000e+00

Euclid =120735 (errors) | 998544 (bits)
MAX = 75148 (errors) | 998544 (bits)
Ir2 = 89174 (errors) | 998544 (bits)
IP_llr = 99785 (errors) | 998544 (bits)

Es/No = 5.300000e+00

Euclid =114022 (errors) | 998544 (bits)
MAX = 61597 (errors) | 998544 (bits)
Ir2 = 76895 (errors) | 998544 (bits)
IP_llr = 90103 (errors) | 998544 (bits)

Es/No = 5.400000e+00

Euclid =103272 (errors) | 998544 (bits)
MAX = 47436 (errors) | 998544 (bits)
Ir2 = 63363 (errors) | 998544 (bits)
IP_lir = 76751 (errors) | 998544 (bits)

Es/No = 5.500000e+00
Euclid =91289 (errors
MAX =29898 (errors
Ir2 = 43145 (errors
IP_lir =59596 (errors

| 998544 (bits)
| 998544 (bits)
| 998544 (bits)
| 998544 (bits)

~— — — ~—

Es/No = 5.600000e+00
Euclid = 79605 (errors
MAX =17891 (errors
Ir2 = 27080 (errors
IP_llr =42884 (errors

| 998544 (bits)
| 998544 (bits)
| 998544 (bits)
| 998544 (bits)

~— — — —

Es/No = 5.700000e+00

Euclid =65054 (errors) | 998544 (bits)
MAX = 6988 (errors) | 998544 (bits)
Ir2 =10760 (errors) | 998544 (bits)

MITRE Approved for Public Release; Distribution Unlimited 14-0176

88

IP_llr =25751 (errors) | 998544 (bits)

Es/No = 5.800000e+00
Euclid =44445 (errors
MAX = 1958 (errors
r2 = 4438 (errors
IP_llr =11221 (errors

| 998544 (bits)
| 998544 (bits)
| 998544 (bits)
| 998544 (bits)

~— — — —

Es/No = 5.900000e+00

Euclid = 25484 (errors) | 998544 (bits)
MAX = 299 (errors) | 998544 (bits)
r2 = 903 (errors) | 998544 (bits)
IP_llr = 3565 (errors) | 998544 (bits)
Es/No =6

Euclid = 11666 (errors) | 998544 (bits)
MAX = 0 (errors) | 998544 (bits)
Ir2 = 52 (errors) | 998544 (bits)
IP_llr = 616 (errors) | 998544 (bits)

MITRE Approved for Public Release; Distribution Unlimited 14-0176

89

Appendix A.7 — 32APSK Modulation (5 BPS) — 10° Input Bits

BLOCK Configuration:
Input Type: BLOCK_BIT_TYPE
Output Type: BLOCK_BIT_TYPE
esize:UNSIGNED:"16200":The coded size (read-only)
usize:UNSIGNED:"7032":The input size (read-only)
enc_config:STRING:"dvb_12_16.encbin”:Encoder configuration file
interleave_depth:INT:”1”:Encode Interleave Depth
backwards:INT:"0”:Backwards symbol interleave (for 8psk 3/5 S2 code)

Encoding 14 Blocks of 16k at rate V2
#BPS=5#

Es/No =7

Euclid = 16057 (errors
MAX =12211 (errors
Ir2 = 13006 (errors
IP_lir =15896 (errors

| 98448 (bits)
| 98448 (bits)
| 98448 (bits)
| 98448 (bits)

~— — — —

Es/No = 7.100000e+00

Euclid = 15259 (errors)
MAX =11309 (errors)
Ir2 =12024 (errors)
IP_lir =14988 (errors)

| 98448 (bits)
| 98448 (bits)
| 98448 (bits)
| 98448 (bits)

Es/No = 7.200000e+00

Euclid =15068 (errors) | 98448 (bits)
MAX =10744 (errors) | 98448 (bits)
Ir2 = 11551 (errors) | 98448 (bits)
IP_llr =14979 (errors) | 98448 (bits)

Es/No = 7.300000e+00

Euclid = 14623 (errors)
MAX =10037 (errors)
Ir2 = 10669 (errors)
IP_lir =14080 (errors)

98448 (bits)
98448 (bits)
98448 (bits)
98448 (bits)

Es/No = 7.400000e+00

Euclid = 13640 (errors) | 98448 (bits)
MAX = 8939 (errors) | 98448 (bits)
Ir2 = 9636 (errors) | 98448 (bits)
IP_llr =12839 (errors) | 98448 (bits)

Es/No = 7.500000e+00

Euclid =12981 (errors) | 98448 (bits)
MAX 7859 (errors) | 98448 (bits)
Ir2 8761 (errors) | 98448 (bits)
IP_llr =12611 (errors) | 98448 (bits)

Es/No = 7.600000e+00

Euclid =12230 (errors) | 98448 (bits)
MAX = 7011 (errors) | 98448 (bits)
Ir2 = 8189 (errors) | 98448 (bits)
IP_llr =12145 (errors) | 98448 (bits)

Es/No = 7.700000e+00

Euclid =11708 (errors) | 98448 (bits)
MAX 5517 (errors) | 98448 (bits)
Ir2 6164 (errors) | 98448 (bits)

MITRE Approved for Public Release; Distribution Unlimited 14-0176

90

IP_llr =11091 (errors) | 98448 (bits)

Es/No = 7.800000e+00

Euclid = 10583 (errors) | 98448 (bits)
MAX = 3923 (errors) | 98448 (bits)
r2 = 4877 (errors) | 98448 (bits)
IP_llr = 9981 (errors) | 98448 (bits)
Es/No = 7.900000e+00

Euclid =9664 (errors) | 98448 (bits)
MAX =1878 (errors) | 98448 (bits)
r2 = 2642 (errors) | 98448 (bits)
IP_llr =8253 (errors) | 98448 (bits)
Es/No =8

Euclid =7998 (errors) | 98448 (bits)
MAX =1338 (errors) | 98448 (bits)
Ir2 = 1832 (errors) | 98448 (bits)
IP_lir =7161 (errors) | 98448 (bits)

Es/No = 8.100000e+00

Euclid = 6553 (errors) | 98448 (bits)
MAX = 462 (errors) | 98448 (bits)
Ir2 = 818 (errors) | 98448 (bits)
IP_lir =4739 (errors) | 98448 (bits)
Es/No = 8.200000e+00

Euclid =4511 (errors) | 98448 (bits)
MAX = 23 (errors) | 98448 (bits)
Ir2 = 72 (errors) | 98448 (bits)
IP_llr =3479 (errors) | 98448 (bits)
Es/No = 8.300000e+00

Euclid =4204 (errors) | 98448 (bits)
MAX = 0 (errors) | 98448 (bits)
Ir2 = 0 (errors) | 98448 (bits)
IP_llr =2335 (errors) | 98448 (bits

MITRE Approved for Public Release; Distribution Unlimited 14-0176

91

Appendix A.8 — 32APSK Modulation (5 BPS) — 10° Input Bits

BLOCK Configuration:
Input Type: BLOCK_BIT_TYPE
Output Type: BLOCK_BIT_TYPE
esize:UNSIGNED:"16200":The coded size (read-only)
usize:UNSIGNED:"7032":The input size (read-only)
enc_config:STRING:"dvb_12_16.encbin”:Encoder configuration file
interleave_depth:INT:”1”:Encode Interleave Depth
backwards:INT:"0”:Backwards symbol interleave (for 8psk 3/5 S2 code)

Encoding 142 Blocks of 16k at rate V2
#BPS=5#

Es/No =7

Euclid =163231 (errors) | 998544 (bits)
MAX =123049 (errors) | 998544 (bits)
lIr2 = 131034 (errors) | 998544 (bits)
IP_lir =159464 (errors) | 998544 (bits)

Es/No = 7.100000e+00

Euclid = 158591 (errors) | 998544 (bits)
MAX =117233 (errors) | 998544 (bits)
Ir2 = 125375 (errors) | 998544 (bits)
IP_lir =155207 (errors) | 998544 (bits)

Es/No = 7.200000e+00

Euclid = 152257 (errors) | 998544 (bits)
MAX =109154 (errors) | 998544 (bits)
Ir2 =119132 (errors) | 998544 (bits)
IP_lir =149193 (errors) | 998544 (bits)

Es/No = 7.300000e+00

Euclid = 146780 (errors) | 998544 (bits)
MAX =100222 (errors) | 998544 (bits)
Ir2 = 108765 (errors) | 998544 (bits)
IP_lir =141909 (errors) | 998544 (bits)

Es/No = 7.400000e+00

Euclid = 138845 (errors) | 998544 (bits)
MAX = 89204 (errors) | 998544 (bits)
Ir2 = 97912 (errors) | 998544 (bits)
IP_llr =135471 (errors) | 998544 (bits)

Es/No = 7.500000e+00

Euclid = 130809 (errors
MAX 77470 (errors
Ir2 87771 (errors
IP_lir =126217 (errors

| 998544 (bits)
| 998544 (bits)
| 998544 (bits)
| 998544 (bits)

~— — — ~—

Es/No = 7.600000e+00

Euclid =125279 (errors) | 998544 (bits)
MAX = 69434 (errors) | 998544 (bits)
Ir2 = 76897 (errors) | 998544 (bits)
IP_llr =120698 (errors) | 998544 (bits)

Es/No = 7.700000e+00

Euclid =117005 (errors) | 998544 (bits)
MAX 53618 (errors) | 998544 (bits)
Ir2 62860 (errors) | 998544 (bits)

MITRE Approved for Public Release; Distribution Unlimited 14-0176

92

IP_llr =110894 (errors) | 998544 (bits)

Es/No = 7.800000e+00

Euclid =107893 (errors
MAX = 38822 (errors
r2 = 46845 (errors
IP_llr =101450 (errors

| 998544 (bits)
| 998544 (bits)
| 998544 (bits)
| 998544 (bits)

~— — — —

Es/No = 7.900000e+00

Euclid =98508 (errors) | 998544 (bits)

)|
MAX =23119 (errors) | 998544 (bits)
r2 = 28121 (errors) | 998544 (bits)
IP_llr =90302 (errors) | 998544 (bits)
Es/No =8

Euclid =82159 (errors
MAX = 9864 (errors
lIr2 =12047 (errors
IP_lir =71357 (errors

| 998544 (bits)
| 998544 (bits)
| 998544 (bits)
| 998544 (bits)

~— — — —

Es/No = 8.100000e+00

Euclid = 71505 (errors) | 998544 (bits)
MAX = 4151 (errors) | 998544 (bits)
Ir2 = 6406 (errors) | 998544 (bits)
IP_lir =60160 (errors) | 998544 (bits)

Es/No = 8.200000e+00
Euclid =55020 (errors
MAX 1120 (errors
Ir2 1375 (errors
IP_llr =39869 (errors

| 998544 (bits)
| 998544 (bits)
| 998544 (bits)
| 998544 (bits)

~— — — —

Es/No = 8.300000e+00

Euclid = 36237 (errors) | 998544 (bits)
MAX = 220 (errors) | 998544 (bits)
Ir2 = 210 (errors) | 998544 (bits)
IP_lir =23106 (errors) | 998544 (bits)

Es/No = 8.400000e+00
Euclid =21175 (errors
MAX 40 (errors
Ir2 32 (errors
IP_lir =10213 (errors

| 998544 (bits)
| 998544 (bits)
| 998544 (bits)
| 998544 (bits)

~— — — ~—

Es/No = 8.500000e+00
Euclid =9834 (errors) | 998544 (bits)

MAX = 0 (errors) | 998544 (bits)
Ir2 = 23 (errors) | 998544 (bits)
IP_llr =3990 (errors) | 998544 (bits)

MITRE Approved for Public Release; Distribution Unlimited 14-0176

93

Appendix B VHDL Testing Results

Appendix B.1 Parallel by Two Testing Results

P2
LUT_W | Modulation | TO,T1,T2 | Pass or Fail | Errors | Samples
1 QPSK TO PASS 0 159984
T1 PASS 0 159984
T2 PASS 0 159984
8PSK TO PASS 0 159984
T1 PASS 0 159984
T2 PASS 0 159984
16APSK TO PASS 0 159984
T1 PASS 0 159984
T2 PASS 0 159984
32APSK TO PASS 0 159984
T1 PASS 0 159984
T2 PASS 0 159984
2 QPSK TO PASS 0 159984
T1 PASS 0 159984
T2 PASS 0 159984
8PSK TO PASS 0 159984
T1 PASS 0 159984
T2 PASS 0 159984
16APSK TO PASS 0 159984
T1 PASS 0 159984
T2 PASS 0 159984
32APSK T0 PASS 0 159984
T1 PASS 0 159984
T2 PASS 0 159984
3 QPSK TO PASS 0 159984
T1 PASS 0 159984
T2 PASS 0 159984
8PSK TO PASS 0 159984
T1 PASS 0 159984
T2 PASS 0 159984
16APSK T0 PASS 0 159984

MITRE Approved for Public Release; Distribution Unlimited 14-0176

94

T1 PASS 0 159984

T2 PASS 0 159984

32APSK T0 PASS 0 159984
T1 PASS 0 159984

T2 PASS 0 159984

QPSK TO PASS 0 159984
T1 PASS 0 159984

T2 PASS 0 159984

8PSK TO PASS 0 159984
T1 PASS 0 159984

T2 PASS 0 159984

16APSK T0 PASS 0 159984
T1 PASS 0 159984

T2 PASS 0 159984

32APSK T0 PASS 0 159984
T1 PASS 0 159984

T2 PASS 0 159984

QPSK TO PASS 0 159984
T1 PASS 0 159984

T2 PASS 0 159984

8PSK TO PASS 0 159984
T1 PASS 0 159984

T2 PASS 0 159984

16APSK T0 PASS 0 159984
T1 PASS 0 159984

T2 PASS 0 159984

32APSK T0 PASS 0 159984
T1 PASS 0 159984

T2 PASS 0 159984

QPSK T0 PASS 0 159984
T1 PASS 0 159984

T2 PASS 0 159984

8PSK T0 PASS 0 159984
T1 PASS 0 159984

T2 PASS 0 159984

16APSK T0 PASS 0 159984
T1 PASS 0 159984

T2 PASS 0 159984

32APSK T0 PASS 0 159984
T1 PASS 0 159984

MITRE Approved for Public Release; Distribution Unlimited 14-0176

95

T2 PASS 0 159984

QPSK TO PASS 0 159984
T1 PASS 0 159984

T2 PASS 0 159984

8PSK T0 PASS 0 159984
T1 PASS 0 159984

T2 PASS 0 159984

16APSK T0 PASS 0 159984
T1 PASS 0 159984

T2 PASS 0 159984

32APSK TO PASS 0 159984
T1 PASS 0 159984

T2 PASS 0 159984

QPSK TO PASS 0 159984
T1 PASS 0 159984

T2 PASS 0 159984

8PSK T0 PASS 0 159984
T1 PASS 0 159984

T2 PASS 0 159984

16APSK T0 PASS 0 159984
T1 PASS 0 159984

T2 PASS 0 159984

32APSK TO PASS 0 159984
T1 PASS 0 159984

T2 PASS 0 159984

MITRE Approved for Public Release; Distribution Unlimited 14-0176

96

Appendix B.2 Parallel by Four Testing Results

P4
LUT_W | Modulation | TO,T1,T2 Panas"or Errors | Samples
1 QPSK TO PASS 0 19968
T1 PASS 0 19968
T2 PASS 0 19968
8PSK T0 PASS 0 19968
T1 PASS 0 19968
T2 PASS 0 19968
16APSK TO PASS 0 19968
T1 PASS 0 19968
T2 PASS 0 19968
32APSK TO PASS 0 19968
T1 PASS 0 19968
T2 PASS 0 19968
2 QPSK TO PASS 0 19968
T1 PASS 0 19968
T2 PASS 0 19968
8PSK T0 PASS 0 19968
T1 PASS 0 19968
T2 PASS 0 19968
16APSK TO PASS 0 19968
T1 PASS 0 19968
T2 PASS 0 19968
32APSK TO PASS 0 19968
T1 PASS 0 19968
T2 PASS 0 19968
3 QPSK TO PASS 0 19968
T1 PASS 0 19968
T2 PASS 0 19968
8PSK T0 PASS 0 19968
T1 PASS 0 19968
T2 PASS 0 19968
16APSK TO PASS 0 19968
T1 PASS 0 19968

MITRE Approved for Public Release; Distribution Unlimited 14-0176

97

T2 PASS 0 19968

32APSK TO PASS 0 19968
T1 PASS 0 19968

T2 PASS 0 19968

QPSK T0 PASS 0 19968

T1 PASS 0 19968

T2 PASS 0 19968

8PSK T0 PASS 0 19968

T1 PASS 0 19968

T2 PASS 0 19968

16APSK TO PASS 0 19968
T1 PASS 0 19968

T2 PASS 0 19968

32APSK TO PASS 0 19968
T1 PASS 0 19968

T2 PASS 0 19968

QPSK T0 PASS 0 19968

T1 PASS 0 19968

T2 PASS 0 19968

8PSK T0 PASS 0 19968

T1 PASS 0 19968

T2 PASS 0 19968

16APSK TO PASS 0 19968
T1 PASS 0 19968

T2 PASS 0 19968

32APSK TO PASS 0 19968
T1 PASS 0 19968

T2 PASS 0 19968

QPSK T0 PASS 0 19968

T1 PASS 0 19968

T2 PASS 0 19968

8PSK T0 PASS 0 19968

T1 PASS 0 19968

T2 PASS 0 19968

16APSK TO PASS 0 19968
T1 PASS 0 19968

T2 PASS 0 19968

32APSK TO PASS 0 19968
T1 PASS 0 19968

T2 PASS 0 19968

MITRE Approved for Public Release; Distribution Unlimited 14-0176

98

QPSK T0 PASS 0 19968

T1 PASS 0 19968

T2 PASS 0 19968

8PSK TO PASS 0 19968

T1 PASS 0 19968

T2 PASS 0 19968

16APSK TO PASS 0 19968
T1 PASS 0 19968

T2 PASS 0 19968

32APSK T0 PASS 0 19968
T1 PASS 0 19968

T2 PASS 0 19968

QPSK T0 PASS 0 19968

T1 PASS 0 19968

T2 PASS 0 19968

8PSK TO PASS 0 19968

T1 PASS 0 19968

T2 PASS 0 19968

16APSK TO PASS 0 19968
T1 PASS 0 19968

T2 PASS 0 19968

32APSK T0 PASS 0 19968
T1 PASS 0 19968

T2 PASS 0 19968

MITRE Approved for Public Release; Distribution Unlimited 14-0176

99

Appendix C Terms and Abbreviations

Appendix C.1 Field Terminology

Abbreviation | Definition

ACM Adaptive Coding and Modulation

AGC Automatic Gain Control

AWGN Additive White Gaussian Noise

BPS Bits Per Symbol

CCM Constant Coding and Modulation

DOD Department of Defense

1P Intellectual Property

HDL Hardware Description Language

HDR High Data Rate

HDTV High Definition Television

LDPC Low-Density Parity Check

LLR Log Likelihood Ratio

LSB Least Significant Bit

LUT Lookup Table

MPEG-2 Motion Picture Expert Group

MSB Most Significant Bit

PDF Probability Density Function

PSK Phase Shift Key

QAM Quadrature Amplitude Modulation

QEF Quasi-Error Free

QPSK Quadrature Phase Shift Keying

SNR Signal to Noise Ratio

VCM Variable Coding and Modulation

VHDL VHSIC Hardware Description Language
8PSK 8-ary Phase Shift Keying

16 APSK 16-ary Amplitude and Phase Shift Keying
32APSK 32-ary Amplitude and Phase Shift Keying

MITRE Approved for Public Release; Distribution Unlimited 14-0176

100

Appendix D MATLAB Scripts and Functions

Appendix D.1 demapper_euclid_algorithm.m

o
|
|

o\
|
|

This software was produced for the U.S. Government under Contract
No. FA8721-09-C-0002, and is subject to the Rights in Noncommercial
Computer Software and Noncommercial Computer Software Documentation
Clause (DFARS) 252.227-7014 (JUN 1995)

o° 0P o oe
| I I |
| I N |

oe
|
|

Copyright (C) 2013 The MITRE Corporation. ALL RIGHTS RESERVED.

oe
|
|

oe
|
|

File name: demapper euclid algorithm.m
Author : Brian Leslie

o
|
|

o
|
|

oe

o
o

Description

o

This function is used to generate the LLR values using the Euclid
algorithm given a vector of I/Q Data Points based on the BPS and the
variance of the input vector.

o

oe

o\
o

Files

o

In order for this script to work the following files need to be
included in the same directory or the path to the directory where they
can be found needs to be added

oe

oe

oe

Files:
mapper.m

oe

function demodulated=demapper euclid algorithm(vector, bps, hard decode)

% Hard decode Setup
if nargin<3

hard decode=0;
end

Q

s Vector Setup

demodulated = zeros(l,length(vector) *bps) ;
d = zeros (2"bps, length (vector) *bps) ;
b = zeros (bps, length (vector)) ;

is0 = cell(1l,bps);

MITRE Approved for Public Release; Distribution Unlimited 14-0176

101

isl = cell(l,bps);

o

°

= zeros (1,2"bps) ;

Ratio of the concentric circles of LLR points in the Constellation

ratio={0, 1, 1, 3.15, [2.84 5.271};

o

°

Map Expected Constellation points (P)

for i=0:2"bps-1

P(i+1l)=mapper (fliplr (dec2bin(i,bps)-48),bps, 90, ratio{bps});

end

binary=fliplr (dec2bin(0:2"bps-1)-48) ;

for c=0:bps-1 %check bit 0 or 1
is0{c+l}=find (binary(:,c+1l)==0);
isl{c+l}=find(binary(:,c+l)==1);
end
% 1s0 - set of vectors of indices in a binary number that have a value of 0
% isl - set of vectors of indices in a binary number that have a value of 1

d° o° 0 o° d° o oP°

o\°

The minimum distances that would make the bit a value of 0 are subtracted
by the minimum distance that would make the bit a value of 1. If the
resulting subtraction is negative the bit has a value of 0, otherwise if
the result is positive the value is 1.

is0 isl
LSB min(dl1,d3)-min(d2,d4);
MSB = min(dl1,d2)-min(d3,d4);

for i=1l:length (vector)

for j=1:2"bps
d(j,1i)=abs(vector(i)-P(J)); % pi = r - si
end

for y=1l:bps

o)

s Reset vectors
closeToOne = zeros (1l,2" (bps-1));
closeToZero = zeros(l,2” (bps-1));

for x=1:2" (bps-1)

closeToOne (x) = d(isl{y}(x),1

) ;
closeToZero (x) = d(isO0{y} (x),1);
end
% Determine the bits of the symbol from MSB to LSB
% bl - MSB
% b2 - LSB
b(y,i) = min(closeToZero) - min(closeToOne) ;

end

% Store the bits into the demodulated vector

MITRE Approved for Public Release; Distribution Unlimited 14-0176

102

for j=bps:-1:1
demodulated (bps*i-j+1) = b(bps-j+1,1);
end

end
% Hard Decode
if hard decode~=0
bits=zeros (numel (demodulated), 1) ;
idx=(demodulated>=0) ;
bits (idx)=1;
demodulated=bits;
end

Appendix D.2 demapper MAX algorithm.m

oe
|
|

oe
|
|

This software was produced for the U.S. Government under Contract
No. FA8721-09-C-0002, and is subject to the Rights in Noncommercial
Computer Software and Noncommercial Computer Software Documentation
Clause (DFARS) 252.227-7014 (JUN 1995)

o d° o oe
| I |
| I |

oe
|
|

Copyright (C) 2013 The MITRE Corporation. ALL RIGHTS RESERVED.

oe
|
|

o
|
|

File name: demapper MAX algorithm.m
Author : Brian Leslie

o oo
| |
| |

oe

oe
oe

Description

o

This function is used to generate the LLR values using the MAX algorithm
given a vector of I/Q Data Points based on the BPS and the variance
of the input vector.

oe

oe

o\
o\

Files

oe

In order for this script to work the following files need to be
included in the same directory or the path to the directory where they
can be found needs to be added

oe

oe

oe

Files:
mapper.m

oe

%% Code
function demodulated=demapper MAX algorithm(vector, bps, variance)

variance = max (variance,l); %$variance of the white Gaussian noise

% Ratio of the concentric circles of LLR points in the Constellation
$ratio={0, 1, 1, 3.15, [2.84 5.27]};

MITRE Approved for Public Release; Distribution Unlimited 14-0176

103

ratio={0, 1, 1, 2.70, [2.64 4.64]1};

% Defined Power Level
if (bps == 2)

Power Level = 49*sqgrt(2);

% FEC= 1/2 -> 49*sqgrt (2);

% FEC= 5/6 (7/8) -> 56*sqgrt(2)
elseif (bps==3)

Power Level
else

Power Level = 90;
end

86;

o)

s Vector Setup
demodulated = zeros(1l, length (vector) *bps) ;
p = zeros (2”bps, length (vector) *bps) ;
b = zeros (bps, length (vector)) ;
is0 = cell(1l,bps);
isl = cell(1l,bps);
P = zeros(l,2"bps);
% Map Expected Constellation points (P)
for i=0:2"bps-1
P(i+1l)=mapper (fliplr (dec2bin(i,bps)-48),bps, Power Level,ratio{bps});
end

$figure;
$scatter (real (P),imag(P))

binary=fliplr (dec2bin(0:2"bps-1)-48);

for c=0:bps-1 %check bit 0 or 1
isO{c+l}=find (binary(:,c+1)==0);
isl{c+l}=find (binary(:,c+l)==1);

end

0 - set of vectors of indices in a binary number that have a value of 0
1 - set of vectors of indices in a binary number that have a value of 1

for i=1l:length (vector)
for j=1:2"bps
p(j,1)=-(abs (vector (i)-P(J)) ."2)/(2*variance) ;

for y=1l:bps

% Reset vectors
closeToOne = zeros(1l,2" (bps-1))

closeToZero = zeros(l,2” (bps-1));

for x=1:2" (bps-1)
closeToOne (x) = p(isl{y}(x),1i);
closeToZero (x) = p(isO{y}(x),1);

MITRE Approved for Public Release; Distribution Unlimited 14-0176

104

end
Determine the bits of the symbol from MSB to LSB

o\

% bl - MSB || b2 - LSB
b(y,1) = max(closeToOne) - max (closeToZero);

end

o)

% Store the bits into the demodulated vector
for j=bps:-1:1

demodulated (bps*i-j+1) = b(bps-j+1,1);
end

end

Appendix D.3 demapper_trueLLR algorithm.m

oe
|
|

oe
|
|

This software was produced for the U.S. Government under Contract
No. FA8721-09-C-0002, and is subject to the Rights in Noncommercial
Computer Software and Noncommercial Computer Software Documentation
Clause (DFARS) 252.227-7014 (JUN 1995)

o o° o° o°
| N |
| T B |

oe
|
|

Copyright (C) 2013 The MITRE Corporation. ALL RIGHTS RESERVED.

o
|
|

o
|
|

File name: demapper trueLLR algorithm.m
Author : Brian Leslie

o oe
| |
| |

oe

[

% Description

oe

oe

This function is used to generate the LLR values using the true LLR
algorithm given a vector of I/Q Data Points based on the BPS and the
variance of the input vector.

oe

o\°

Q

% Files

oe

oe

In order for this script to work the following files need to be
included in the same directory or the path to the directory where they
can be found needs to be added

oe

o\°

oe

Files:
mapper.m

o\°

MITRE Approved for Public Release; Distribution Unlimited 14-0176

105

function demodulated=demapper trueLLR algorithm(vector, bps, variance)
variance = max(variance,l); Svariance of the white Gaussian noise

o)

s Vector Setup

demodulated = zeros(l,length(vector) *bps) ;
p = zeros (2”bps, length (vector) *bps) ;
b = zeros (bps, length (vector));

is0 = cell(1l,bps);
cell (1,bps);
P = zeros(1l,2"bps);

-

@]

=
Il

o)

% Ratio of the concentric circles of LLR points in the Constellation
ratio={0, 1, 1, 3.15, [2.84 5.27]1};

% Defined Power Level

Power Level = 90;

% Map Expected Constellation points (P)
for i=0:2"bps-1

P(i+1l)=mapper (fliplr (dec2bin(i,bps)-48),bps, Power Level,ratio{bps});
end

binary=fliplr (dec2bin(0:2"bps-1)-48);
for c=0:bps-1 %check bit 0 or 1

isO{c+l}=find (binary(:,c+1l)==0);
isl{c+tl}=find (binary(:,c+l)==1);

end
% 1s0 - set of vectors of indices in a binary number that have a value of O
% isl - set of vectors of indices in a binary number that have a value of 1

o\°

The minimum distances that would make the bit a value of 0 are subtracted
by the minimum distance that would make the bit a value of 1. If the
resulting subtraction is negative the bit has a value of 0, otherwise if
the result is positive the value is 1.

d° d° o° oe

o\°

is0 isl
LSB = min(dl1,d3)-min(d2,d4);
MSB min(dl,d2)-min(d3,d4);

oe

oe

for i=1l:length (vector)
for j=1:2"bps
p(j,1)=(1/sqgrt (2*pi*variance)) *exp (-1* (abs (vector (i) -
P(j))"2)/(2*variance)) ;
end

for y=1:bps

% Reset vectors
closeToOne = zeros(l,2” (bps-1))

closeToZero = zeros(l,2” (bps-1));

MITRE Approved for Public Release; Distribution Unlimited 14-0176

106

for x=1:2" (bps-1)

closeToOne (x) = p(isl{y}(x),1

));
closeToZero (x) = p(isO0{y}(x),1);
end
% Determine the bits of the symbol from MSB to LSB
% bl - MSB
% b2 - LSB
b(y,1) = log(sum(closeToOne) / sum (closeToZero));

end

[

% Store the bits into the demodulated vector
for j=bps:-1:1

demodulated (bps*i-j+1) = b(bps-j+1,1);
end

end

Appendix D.4 generate DVBS2 BER.m

oe
|
|

o
|
|

This software was produced for the U.S. Government under Contract
No. FA8721-09-C-0002, and is subject to the Rights in Noncommercial
Computer Software and Noncommercial Computer Software Documentation
Clause (DFARS) 252.227-7014 (JUN 1995)

o o° o° o°
| N |
| N B |

o
|
|

Copyright (C) 2013 The MITRE Corporation. ALL RIGHTS RESERVED.

o
|
|

oe
|
|

File name: generate DVBS2-BER.m
Author : Brian Leslie

o o
| |
| |

o

[

% Description

oe

oe

This script is used to generate BER performance curves for different LLR
Algorithms with different modulation schemes using the DVB-S2 Standard.
Several of the modulations include:

QPSK (BPS=2)

8PSK (BPS=3)

16APSK (BPS=4)

32APSK (BPS=5)

The code should work for higher modulations but has not been implemented
or tested.

d° P o° o° o° o o

o\°

o\°

Execution Instructions:

1) Choose the number of input bits to run the tests with on the order of
10%amount.

2) Choose which algorithms to run or which plots to run. The plots will
automatically run the right algorithms depending on what is needed to
generate the correct plot.

MITRE Approved for Public Release; Distribution Unlimited 14-0176

d° d° o° oe

o\

107

o\

o\

4) Save/Run

[

% Files

o\°

o oo

o

can be found needs to be added

o\

Files:

demapper MAX algorithm.m
demapper euclid algorithm.m
demapper trueLLR algorithm.m
demapper IP algorithm.m

demapper old mitre LLR algorithm.m
dvbs2 enc.m

dvbs2 dec.m

o° 0 o° d° oP° o°

o

% Path and Command Window Setup

addpath ../mapper

addpath ../utilities

addpath ../demapper algorithms
clc;

clear;

close all;

[}
0

Code

o)

% random bits
amount = 5;
in=round (rand (1*10”amount, 1)) ;

Demapper plot for Const vs.
Euclid vs.

3) Choose a modulation range by selecting the start and end BPS values.

In order for this script to work the following files need to be
included in the same directory or the path to the directory where they

Demapper method plot for all methods

True Plot (QPSK and 8PSK)
Calc Variance
IP(not scaled) Demapper plot

(Direct) wvs.

% setup 1 - yes | 0 - no
run_old mitre 1lr = 0;
run euclid algorithm = 0;
run_euclid algorithm sweep = 0;
run_ MAX algorithm = 0;
run MAX algorithm interp = 0;
run_ MAX algorithm sweep = 0;
run MAX algorithm cv = 0;
run MAX algorithm 1 var = 0;
run_trueLLR algorithm = 0;
run_trueLLR algorithm sweep = 0;
run_IP algorithm = 0;
run IP algorithm no sweeep = 0;

% Plots

run_plot 0; %

run_plot2 = 0; % LLR Demapper ApPpProx.
run plot3 = 0; % MAX

run_plot4 = 0; % MAX vs. LLR vs.
run_plotb = 1; % MAX

run _ploté6 = 0; % LLR

run_plot7? =0; %

Demapper plot with sweeping Scale
Demapper plot with sweeping Scale

IP LLR Demapper plot with no scale vs. scale

MITRE Approved for Public Release; Distribution Unlimited 14-0176

108

o

run_plot8 = 0;
run_plot?9
run _plotl0 = 0;

LLR Algorithm Comparison Plot
FEuclid Demapper plot with sweeping Scale
MAX vs. Interp Demapper Plot

Il
(@)
~
o\

o

% setup BPS range
startbps = 5;
endbps = 5;

% Configurations

stop = 0;

index = 0;

scale = [10, 12, 15, 18, 231;

scale2 = [10, 9, 11, 12, 13]1;

ratio={0, 1, 1, 3.15, [2.84 5.27]1};

modcod=[0, 4, 12, 18, 24];

target=[0, 48.5026, 56.7131, 55.6821, 49.5085];

const var = {1, 7056.7, 3345.6, 280, 115};

rate array = [0, 12, 23, 23, 34]; % changed bps3 from 35 to 23
backwards away = [0, O, 0, 0, 0];

iterations array = [0, 35, 38, 55, 55];

rscale range={1, 1:30, 1:30, 15:45, 30:60};
rscale range euclid={1, 1:30, 1:30, 1:30, 1:30};

scale MAX = [1, 12, 17, 29, 45];

scale LLR = [1, 12, 17, 22, 43];

scale EUC (1, 9, 12, 16, 20];

%$range={[], .6:.05:15, 5:.05:15, 7.5:.05:15, 12:.05:15}; % current version
%$range={[], .75:.0025:15, 6.7, 8.8, 12.8}; % var testing version
$range={[], .8:.01:15, 5.5:.01:15, 8.7:.01:15, 12.5:.01:15}; % Es/No test
version

%$range={[], 0:.025:15, 3:.05:15, 5:.1:15, 7:.1:15};

%$range={[], .6:.05:15, 5:.05:15, 6:.05:15, 8.5:.05:15}; before iteration
range={[], .7:.05:15, 5.5:.05:15, 8.7:.05:15, 12.5:.05:15};% version for
sweeping

%$range={[], .60:.05:15, 10:.1:12, 12:.1:14, 15:.1:17};
%$range={[], 5:.1:7, 10:.1:12, 12:.1:14, 15:.1:17};

col="kbgrc';

% plot setups

if (run _plot)
run_old mitre 1lr = 1;
run_euclid algorithm = 1;
run MAX algorithm = 1;

run_truelLLR algorithm = 1;
run IP algorithm = 1;
end
if (run plot2)
run old mitre 1lr = 1;
run_truelLLR algorithm = 1;
end
if (run plot3)
run MAX algorithm = 1;
run MAX algorithm cv = 1;

MITRE Approved for Public Release; Distribution Unlimited 14-0176

109

run MAX algorithm 1 var = 1;
end
if (run plotd)
run_trueLLR algorithm = 1;
run MAX algorithm = 1;
run_euclid algorithm = 1;
run IP algorithm no sweeep = 1;
end
if (run plotd)
run MAX algorithm sweep = 1;
run MAX algorithm = 1;

end

if (run ploté6)
run_trueLLR algorithm sweep = 1;
run_truelLLR _algorithm = 1;

end

if (run plot7)

run IP algorithm = 1;

run IP algorithm no sweeep = 1;
end
if (run plot8)

run_truelLLR _algorithm = 1;

run MAX algorithm = 1;

run_euclid algorithm = 1;
run IP algorithm = 1;
end
if (run plot9)
run_euclid algorithm = 1;
run_euclid algorithm sweep = 1;

end
if (run plotl0)

run MAX algorithm = 1;

run MAX algorithm interp = 1;
end

for bps=startbps:endbps

$ tx

rate=rate array (bps) ;

iterations = iterations_ array (bps);

[enc, esize, dsize]=dvbs2 enc(in,rate,64,1,backwards away(bps)); % 16 to

64
fec rate=dsize/esize;
% enc=in;
map=mapper (enc,bps, 90, ratio{bps}) ;
c_pow=mean (real (map) .”2+imag (map) ."2) ;

MITRE Approved for Public Release; Distribution Unlimited 14-0176

110

fprintf (1, "\n#######4#4#\n# BPS = d #\n#######44##\n\n",bps) ;
for Es/No=range{bps}

tempber7 = [
tempber8 =
tempberll =
tempberl?2
temperrs7 =
temperrs8 =
temperrsll =
temperrsl2 =

—

|
—_ —— e

fprintf (1, '-——------- \n');
fprintf (1, 'esno = %d\n',esno);
noisy=round (awgn (map, esno, 'measured')) ;
noise=noisy-map;

n_pow=mean (real (noise) .”2+imag (noise) ."2);

index = index + 1;
ebno (index) = 10*1logl0(c_pow/n pow)-10*1ogl0 (bps*fec rate);

if (run MAX algorithm || run trueLLR algorithm ||
run MAX algorithm sweep || run trueLLR algorithm sweep ||
run MAX algorithm interp)
variance = var (noise);
varout (index) = variance;
end

if (run _old mitre llr && bps < 4)

fprintf (1, '\nRunning run old mitre 1lr...\n\n'");
demap=demapper old mitre LLR algorithm(noisy,bps,0);
% demap=demapper euclid(noisy,bps,0)/4;

demap=demap*scale (bps) /rms (demap) ;

demap=rail (demap+32,0,63);

dec=dvbs2 dec (demap, rate, 64, esize, dsize, ebno, 1,
backwards away (bps), iterations);

errs=sum(abs (in(l:length(dec))-dec'));
ber (index) = errs/length (dec)
fprintf (1, 'MITRE LLR = %d (errors) | $d (bits)\n' errs,

length (dec)) ;

if (errs == 0)
stop = 1;
end
end
if (run_euclid algorithm)

MITRE Approved for Public Release; Distribution Unlimited 14-0176

111

fprintf (1, '\nRunning run euclid algorithm...\n\n'");

demap3=demapper euclid algorithm(noisy,bps);

demap3=demap3*scale EUC (bps)/rms (demap3) ;

demap3=rail (demap3+32,0,63);

dec3=dvbs2 dec(demap3, rate, 64, esize, dsize, ebno, 1,
backwards away (bps), iterations);

errs3=sum(abs (in(l:1length (dec3))-dec3"));
ber3(index) = errs3/length (dec3);
fprintf (1, 'EUCLID = %6d (errors) | %d (bits)\n', errs3,

length (dec3)) ;

if (errs3 == 0)

stop = 1;
end
end
if (run_euclid algorithm sweep)
fprintf (1, '\nRunning run euclid algorithm sweep...\n\n');
tempdemapll=demapper euclid algorithm(noisy,bps):;
index2 = 0;
for rscale=rscale range euclid{bps}
index2 = index2 + 1;

demapll=tempdemapll*rscale/rms (tempdemapll) ;

demapll=rail (demapll+32,0,63);

decll=dvbs2 dec(demapll, rate, 64, esize, dsize, ebno, 1,
backwards away (bps), iterations);

errsll=sum(abs(in(l:length(decll))-decll'));

temperrsll (index2) = errsll;

tempberll (index2) = errsll/length(decll);
end
berll = [berll tempberll];
array loc = 0;

fprintf (1, "EUCLID\n"') ;
for rscale=rscale range euclid{bps}

array loc = array loc + 1;
fprintf(l, 'Scale = %d | %d (errors) | %d (bits)\n', rscale,
temperrsll (array loc), length(decll));

end

if (min(temperrsll) == 0)
stop = 1;
end
end

if (run MAX algorithm)

fprintf (1, '\nRunning run MAX algorithm...\n\n'");

demap4=demapper MAX algorithm(noisy,bps,variance);

demap4=demap4*scale MAX (bps)/rms (demap4) ;

demap4=rail (demap4+32,0,63);

decd4=dvbs2 dec (demap4, rate, 64, esize, dsize, ebno, 1,
backwards away (bps), iterations);

errs4=sum(abs (in(l:length(decd4))-decd"));

ber4d (index) = errsd/length (deci);

MITRE Approved for Public Release; Distribution Unlimited 14-0176

112

fprintf (1, 'MAX = %6d (errors) | %d (bits)\n', errs4,
length (decd)) ;
if (errsd4 == 0)
stop = 1;
last esno _value (bps-1) = esno;
end
end

if (run MAX algorithm interp)
fprintf (1, '\nRunning run MAX algorithm interp...\n\n');
index2=0;
for bitscale=0:7
index2 = index2 + 1;
demapl2 = demapper interp llr(noisy,bps,variance,bitscale);
demapl?2 = demapl2*scale (bps)/rms (demapl?2) ;
demapl2= rail (demapl2+32,0,63);
decl2=dvbs2 dec(demapl2, rate, 64, esize, dsize, ebno, 1,
backwards away (bps), iterations);
errsl2=sum(abs (in(l:length(decl2))-decl2"'));

temperrsl?2 (index2) = errsl2;

tempberl2 (index2) = errsl2/length(decl?);
end
berl2 = [berl2 tempberl2];

fprintf (1, "MAX\n') ;
for bitscale=1:8

fprintf (1, 'Bottom Bits = %d | %6d (errors) | %d (bits)\n',
(bitscale-1), temperrsl2(bitscale), length(decl2));
end
if (min (temperrsl2) == 0)
stop = 1;
end

end

if (run MAX algorithm sweep)
fprintf (1, '\nRunning run MAX algorithm sweep...\n\n');
tempdemap7=demapper MAX algorithm(noisy,bps,variance);

index2 = 0;
for rscale=rscale range{bps}
index2 = index2 + 1;

demap7=tempdemap7*rscale/rms (tempdemap7) ;

demap7=rail (demap7+32,0,63);

dec7=dvbs2 dec (demap7, rate, 64, esize, dsize, ebno, 1,
backwards away (bps), iterations);

errs/=sum(abs (in(l:length(dec7))-dec7"));
temperrs7 (index2) = errs7;
tempber7 (index2) = errs7/length (dec?);
end
ber7 = [ber7 tempber7];
array loc = 0;

fprintf (1, "MAX\n') ;
for rscale=rscale range{bps}
array loc = array loc + 1;
fprintf(l, 'Scale = %d | %d (errors) | %d (bits)\n', rscale,
temperrs’/ (array loc), length(dec7));

MITRE Approved for Public Release; Distribution Unlimited 14-0176

113

end

if (min (temperrs7) == 0)
stop = 1;
end
end

if (run MAX algorithm cv)

fprintf (1, '\nRunning run MAX algorithm cv...\n\n');

demap6=demapper MAX algorithm(noisy,bps,const var{bps});

demap6=demap6*scale (bps) /rms (demap6) ;
demap6=rail (demap6+32,0,63);
sdumpdemap = demap6(1:10)"';

sdumpdemap
dec6=dvbs2 dec (demap6, rate, 64, esize, dsize, ebno,
backwards away (bps), iterations);
errs6=sum(abs (in(l:length (dec6))-dec6'));

ber6 (index) = errs6/length (dechb) ;
fprintf (1, 'MAX

%d (errors) | %d (bits)\n', errsé6,
length (dec6)) ;

if (errso == 0)
stop = 1;
end
end

if (run MAX algorithm 1 var)
fprintf (1, '\nRunning run MAX algorithm 1 var.
demaplO=demapper MAX algorithm(noisy,bps,1);
demaplO=demaplO*scale (bps) /rms (demapl0) ;
demaplO=rail (demapl0+32,0,63);
$dumpdemap = demaplO(1:10)"';

..\n\n");

$dumpdemap

declO=dvbs2 dec (demaplQ, rate, 64, esize, dsize, ebno,
backwards away (bps), iterations);

errsl0=sum(abs (in(l:length(decl0))-decl0"'));

berl0 (index) = errsl0/length(decl0);

fprintf (1, 'MAX = %d (errors) | %d (bits)\n', errsloO,
length (decl0)) ;

if (errsl0 == 0)

stop 1;

end
end

if (run_truelLLR algorithm)

fprintf (1, '\nRunning run truelLLR algorithm...\n\n'");
demap5=demapper trueLLR algorithm(noisy,bps,variance);
demap5:demap5*scale_LLR(bps)/rms(demapS);
demap5=rail (demap5+32,0,63);
dec5=dvbs2 dec (demap5, rate, 64,

esize, dsize, ebno, 1,
backwards away (bps), iterations);
errsb=sum(abs (in(l:length (decb))-decb"));
ber5 (index) = errsb5/length (decbh);

MITRE Approved for Public Release; Distribution Unlimited 14-0176

114

fprintf (1, 'TRUE LLR = %6d (errors) | %d (bits)\n', errs5,
length (decb)) ;

if (errs5 == 0)
%stop = 1;
end
end

if (run truelLLR algorithm sweep)
fprintf (1, '\nRunning run trueLLR algorithm sweep...\n\n'");
tempdemap8=demapper truelLLR algorithm(noisy,bps,variance);
index2 = 0;
for rscale=rscale range{bps}
index2 = index2 + 1;
demap8=tempdemap8*rscale/rms (tempdemap8) ;
demap8=rail (demap8+32,0,63);
dec8=dvbs2 dec(demap8, rate, 64, esize, dsize, ebno, 1,
backwards away (bps), iterations);

errs8=sum(abs (in(l:length (dec8))-dec8"));
temperrs8 (index2) = errs8;
tempber8 (index2) = errs8/length (dec8);
end
ber8 = [ber8 tempber8];
array loc = 0;

fprintf (1, '"TRUE LLR\n'");
for rscale=rscale range{bps}

array loc = array loc + 1;
fprintf(l, 'Scale = %d | TRUE LLR = %d (errors) | %d
(bits)\n', rscale, temperrs8(array loc), length(dec8));
end
if (min (temperrs8) == 0)
stop = 1;
end

end

if (run IP algorithm)
fprintf (1, '\nRunning run IP algorithm...\n\n'");

tempnoisy=noisy*target (bps)/sqgrt (mean (real (noisy) .”"2+imag (noisy) .”2)/2);
demap2=demapper IP algorithm(tempnoisy/128,modcod (bps)):;
$demap2=demap2*scale (bps) /rms (demap?2) ;
demap2=rail (demap2+32,0,63);
dec2=dvbs2 dec (demap2, rate, 64, esize, dsize, ebno, 1,

)

backwards away (bps), iterations); % 16 to 64

errs2=sum(abs (in(l:length(dec2))-dec2"'));
ber2 (index) = errs2/length (dec?);
fprintf (1, 'IP LLR = %6d (errors) | %d (bits)\n', errs2,

length (dec2)) ;

if (errs2 == 0)
$stop = 1;
end
end

MITRE Approved for Public Release; Distribution Unlimited 14-0176

115

if (run IP algorithm no_ sweeep)
fprintf (1, '\nRunning run IP algorithm no sweeep...\n\n');

tempnoisy=noisy*target (bps)/sgrt (mean (real (noisy) .”2+imag (noisy) .”2)/2);
demap9=demapper IP algorithm(tempnoisy/128,modcod (bps));
$demap9=demap2*scale (bps) /rms (demap2); % compare without scale
demap9=rail (demap9+32,0,63);
dec9=dvbs2 dec (demap9, rate, 64, esize, dsize, ebno, 1,
backwards away (bps), iterations);

errs9=sum(abs (in(l:length (dec9))-dec9"));
ber9 (index) = errs9/length (dec?9);
fprintf (1, 'IP LLR = %d (errors) | %d (bits)\n', errs?9,

length (dec9)) ;

if (errs9 == 0)

stop = 1;
end
end
if (stop)
stop = 0;
break
end

end

if (run plot)
figure;
if (run _old mitre llr && bps < 4)
semilogy (ebno,ber, 'r', 'linewidth', 3)
end

if (bps < 4)
hold on
end

if (run euclid algorithm)
semilogy (ebno,ber3, 'b', 'linewidth', 3)

end

if (bps > 3)

hold on
end
if (run IP algorithm)

semilogy (ebno,ber2, 'k', 'linewidth', 3)
end

if (run MAX algorithm)
semilogy (ebno,berd, '
end

g','linewidth', 3)

if (run_ truelLLR algorithm)

MITRE Approved for Public Release; Distribution Unlimited 14-0176

116

semilogy (ebno,ber5, 'm', 'linewidth', 3)
end

grid on
if (bps < 4)
legend ('LLR', "Euclid', 'IP LLR', '"MAX', 'True LLR");
else
legend ('Euclid', 'IP LLR', 'MAX', 'True LLR');
end
title(['ber vs esno demapper method plot for BPS=',48+bps,', Number

of Bits= 1*10""',48+amount]) ;

end

if

(run _plot2)

figure;

semilogy (ebno,ber, 'r', 'linewidth', 3)

hold on

semilogy (ebno,ber5, 'b', 'linewidth', 3)

grid on

legend ('LLR Approx', 'LLR True')

title(['BER vs ESNO, LLR Demapper Approx vs True Plot for

BPS=',48+bps, ', Number of Bits= 1*10"',48+amount])

end

if

(run _plot3)

figure;

semilogy (ebno,berd4, 'r', 'linewidth', 3);

hold on

semilogy (ebno,ber6, 'b', 'linewidth', 3);

semilogy (ebno,berl0, 'k', 'linewidth',3);

grid on

legend('Variable Variance', 'Constant Variance', 'Variance of One');
title(['BER vs ESNO, MAX Demapper plot for BPS=',b48+bps,', Number of

Bits= 1*10""',48+amount]) ;

end

if

(run_plot4d)

figure;

semilogy (ebno,ber5, 'b', 'linewidth', 3);

hold on

semilogy (ebno,berd4, 'r', 'linewidth', 3);

semilogy (ebno,ber3, 'k', 'linewidth', 3);

semilogy (ebno,ber9, 'g', 'linewidth', 3);

grid on

legend ('LLR(scale) ', '"MAX (scale) ', 'Euclid(scale) ', 'IP LLR(no scale)');
title(['BER vs ESNO, MAX vs LLR vs Euclid vs IP Demapper plot for

BPS=',48+bps, ', Number of Bits= 1*10"',48+amount]);

end

if

(run_plot5)

figure;
semilogy (ebno,ber7(8,:),'b', 'linewidth', 2)

MITRE Approved for Public Release; Distribution Unlimited 14-0176

117

hold on

semilogy (ebno, ber?
semilogy (ebno, ber?7
semilogy (ebno, ber?7

((10 ', '"linewidth', 2

((12

((15
semilogy (ebno,ber7 (18, :

((23,

((25,

)
', 'linewidth', 2)
', 'linewidth', 2)
'linewidth', 2)
)
)

~
~

~
~

~
~

', '"linewidth', 2
', '"linewidth', 2

semilogy (ebno, ber? ,

semilogy (ebno, ber?
grid on
legend('g8',"'10',"12","'15",'18","'23",'25");
title(['BER vs ESNO, MAX Demapper plot with sweeping Scale for
BPS="',48+bps, ', Number of Bits= 1*10"',48+amount]);
end

20 A< QB

4

if (run plot6)

figure;

semilogy (ebno,ber8(8,:),'b"', "linewidth', 2)
hold on

semilogy (ebno,ber8(10,:),'r', "linewidth', 2)
semilogy (ebno,ber8(12,:),'g', 'linewidth', 2)
semilogy (ebno,ber8(15,:),'y', 'linewidth', 2)
semilogy (ebno,ber8(18,:), "'k', "linewidth', 2)
semilogy (ebno,ber8(23,:),'c', 'linewidth', 2)
semilogy (ebno,ber8(25,:), 'm', 'linewidth', 2)
grid on

legend('g8',"10"'",'12","15","'18",'23","'25");
title(['BER vs ESNO, LLR Demapper plot with sweeping Scale for
BPS=',48+bps, ', Number of Bits= 1*10"',48+amount])
end

if (run _plot7)
figure;
semilogy (ebno,ber2, 'b', 'linewidth', 3)
hold on
semilogy (ebno,ber9, 'r', 'linewidth', 3)
grid on
legend ('IP with Scale','IP without Scale');
title(['IP LLR Demapper plot with no scale vs scale for
BPS=',48+bps, ', Number of Bits= 1*10"',48+amount]);
end

if (run plot8)

figure;

if (bps==2)
semilogy (ebno,ber2, 'b', 'linewidth',3) % IP
hold on
semilogy (ebno,ber3, 'r', 'linewidth',3) % euclid
semilogy (ebno,ber4, 'k', "linewidth',3) % max/1llr
legend('IP', "Euclid', "MAX/LLR") ;

else
semilogy (ebno,ber2, 'b', 'linewidth',3) % IP
hold on
semilogy (ebno,ber3, 'r', 'linewidth',3) % euclid
semilogy (ebno,ber4, 'k', 'linewidth',3) % max
semilogy (ebno,ber5, 'g', 'linewidth',3) % 1llr

legend('IP', 'Euclid', 'MAX', 'LLR');
MITRE Approved for Public Release; Distribution Unlimited 14-0176

118

Bits= 1*10""',48+amount]) ;

end

if

BPS=',48+bps, ',

end

if

Bits=4"

end

end

end
grid on

xlabel ('"EbNo [dB]');

ylabel ('BER") ;

title(['LLR Algorithm Comparison Plot for BPS=',b48+bps,', Number of

(run _plot9)
figure;

semilogy (ebno,berll1(8,:), 'b', 'linewidth', 2)

hold on

semilogy
semilogy
semilogy
semilogy
semilogy
semilogy
grid on

~ o~ o~~~ —~

ebno,berll
ebno,berll
ebno,berll
ebno,berll
ebno,berll
ebno,berll

', 'linewidth', 2)
', 'linewidth', 2)
', 'linewidth', 2)
2)
2)
2)

~

~

', '"linewidth',
', '"linewidth',
', '"linewidth',

~

4

2 0 A QB

(10
(12
(15
(18, :
(23
(25,

4

legend('8',"'10',"12","'15","'18","'23",'25");
title(['BER vs ESNO, LLR Demapper plot with sweeping Scale for

pause (.1)

(run_plotl0)
figure;

Number of Bits= 1*10"',48+amount]);

semilogy (ebno,berd4, 'b', 'linewidth', 3);

hold on

semilogy (ebno, berl?2
semilogy (ebno,berl?2
semilogy (ebno,berl?2
semilogy (ebno, berl?2
semilogy (ebno, berl?2
semilogy (ebno,berl?2 (
$semilogy (ebno,berl?
$semilogy (ebno,berl?
%semilogy (ebno,berl?

grid on

),'g','linewidth', 3
) r','linewidth', 3
),'c','linewidth', 3
),'m','linewidth',3
), 'y
), "k

4

]
4

~

~

1,:
2,
3,:
4,:
5,: ', '"linewidth', 3
6 -]

(
(
(

', '"linewidth', 3

)
) 7
)

’

7, :
8, :
9,:

4

)
)
)
)
)
’)
), 'b',"linewidth"', 3
),'g','linewidth', 3
),'r','linewidth',3

legend ('MAX', 'Btm Bits=0"', 'Btm Bits=1"', 'Btm Bits=2"', 'Btm Bits=3', 'Btm

, 'Btm Bits=5");

title(['BER vs ESNO, MAX vs Interp Demapper Plot for BPS=', 48+bps, ',
Number of Bits= 1*10"',48+amount]);

Appendix D.5 generate_llrParams.m

o° oo
|
|

o

-—- No

-- This software was produced for the U.S. Government under Contract
FA8721-09-C-0002,

and is subject to the Rights in Noncommercial

MITRE Approved for Public Release; Distribution Unlimited 14-0176

119

o\
|
|

Computer Software and Noncommercial Computer Software Documentation
Clause (DFARS) 252.227-7014 (JUN 1995)

o° o
| |
| |

o
|
|

Copyright (C) 2013 The MITRE Corporation. ALL RIGHTS RESERVED.

o\
|
|

o\
|
|

File name: generate llrParams.m
Author : Brian Leslie

o\
|
|

o
|
|

o

o\

% Description

o

This function is used to update the LLRParam files by adding the LUT
values to be stored in RAM.

o

o)

$ Files

o

oe

In order for this script to work the following files need to be
included in the same directory or the path to the directory where they
can be found needs to be added

o

o

o

Z:\designtop\src\components\1llr\tb rtl\testConfig\...
%% Code

function [] = generate llrParams(data, bps)
% Modulation

modes={"'qgpsk', '8psk', 'lbapsk', '32apsk'};

% Test Types

testNumber={'t0', 'tl1', 't2'"'};

% mtc values based on BPS
mtc value={'l6"', "48', '72', '96'"};

% Parallel Test Mode
testMode={"p2', 'pd'};

for testModelLoop=1l:length(testMode) % p2 or p4 $ for
modesLoop=1:length (modes) % gpsk
for testNumberLoop=1l:length (testNumber) % tO

sfid=1;

fprintf (1, '\n\n MODE: %s NAME: mitre $s %s\n',
testMode{testModeLoop}, modes{ (bps-1)}, testNumber{testNumberLoop}):;

fid=fopen(['Z:\designtop\src\components\llr\tb rtl\testConfig\'
testMode {testModeLoop} '\mitre_' modes{ (bps-1)} " '
testNumber{testNumberLoop} '\llrParams.txt'],'w');

fprintf (£id, "####44H#44 4 4H 4 HHHHHHHHHHHHHRHHHHHHHRHHHHHHERHHERHHE SR HESS
HheFHFEE A EEEEE\D") ;
fprintf (£id, "#\n'");

MITRE Approved for Public Release; Distribution Unlimited 14-0176

120

fprintf (fid, '# Parameter setting script. Automatically
generated.\n');

fprintf (£id, "#\n'");

fprintf (fid, '# Note, a blank line halts processing of this
script\n');

fprintf (fid, "#\n');

fprintf (£id, "### #4444 FHHHHHHHHEHAHFHHHEHAHFHHHAAHHHEHAHHHHHE A AR H SR A EH S
#HEfHHEE A A \D")

fprintf (fid, 'null null 1000000 setDelayConstant\n');

fprintf (fid, '11rTop.l11rRTLPSChannelpsl mct %s configure\n',
mtc_value{ (bps-1)1});

fprintf (fid, '11rTop.1l1rRTLPSChannelpsl use IP 0 configure\n');

fprintf (fid, '11rTop.l11rRTLPSChannelpsl addr 0 configure\n');

fprintf (fid, '11rTop.l1rRTLPSChannelpsl burst incr 1 configure\n');

for j=1l:length (data)
fprintf(fid, '11rTop.l11rRTLPSChannelpsl data %d configure\n',

round (data(3)));
end
fclose (fid) ;
end
end
end

Appendix D.6 generate LUT.m

oe
|
|

oe
|
|

This software was produced for the U.S. Government under Contract
No. FA8721-09-C-0002, and is subject to the Rights in Noncommercial
Computer Software and Noncommercial Computer Software Documentation
Clause (DFARS) 252.227-7014 (JUN 1995)

o o° o° o°
| N |
| T B |

oe
|
|

Copyright (C) 2013 The MITRE Corporation. ALL RIGHTS RESERVED.

o\°
|
|

o\°
|
|

File name: generate LUT.m
Author : Brian Leslie

o oe
| |
| |

oe

oe
oe

Description

oe

This script is used to generate the Lookup Tables for the LLR values.

By creating a matrix of data points based on the precision specified for
the LUT the LLR value is then generated at each of those points. The LUT
are different depending on the BPS because of how the LLR value is
calculated. This script generates the LUT for:

QPSK (BPS=2)

8PSK (BPS=3)

MITRE Approved for Public Release; Distribution Unlimited 14-0176

o 0P o° o° oe

o

121

o\

16APSK (BPS=4)

32APSK (BPS=5)

The code should work for higher modulations but has not been implemented
or tested.

o° o

o

o)

$ Files

o\

o

In order for this script to work the following scripts need to be
included in the same directory or the path to the directory where they
can be found needs to be added

o

o

o

Files:
demapper MAX algorithm.m
generate LLRParams.m

o

oe°

% Path and Command Window Setup
addpath ../mapper

addpath ../utilities

addpath ../demapper algorithms
clc;

clear;

close all;

$ LUT Width - Number of Bits (MAX 8)

LUT wWidth = 5;

% Create test vectors until the maximum modulation.
Max Bps = 5;

o\°

Update LLRParams File Control

1 - sends LUT to update the Param files

0 - Does NOT send LUT to update the Param files
LLRParams Flag = 0;

oe

oe

Save/Update MAT data files
1 - Save/Update

0 - Does NOT Save/Update
gen MAT Files = 0;

o° oo

o\°

% Master Plot Control
Master Plot Flag = O;

o\°

Imagesc Plot OR Mesh Plot Control
1 - Imagesc Plot

0 - Mesh Plot

Imagesc Plot Flag = 1;

Mesh Plot Flag = ~Imagesc Plot Flag;

oe

oe

% Vector Setup
in = zeros(1,2”(2*LUT_Width));
sample = zeros(1l,4);

MITRE Approved for Public Release; Distribution Unlimited 14-0176

122

Q

% Indexing Variable
count = 0;

Sampled Variance for each BPS value that is used to calculate the LLR
values

$var = [1, 6964.5, 3477.7, 1546.8, 718.6246]; % OLD

var = [1, 6964.5, 1742.76, 832.07593, 259.93593]; % New

o° oo

% Calc distance between I/Q Points in LUT
Dist Point to Point = 27 (8-LUT Width) ;
Max Pos Value = 128 - Dist Point to Point;
Max Neg Value = 0 - Dist Point to Point;
% Seperate I/Q plane into data points based on LUT percision.
for Q = [0:Dist Point to Point:Max Pos Value -
128:Dist Point to Point:Max Neg Value]
for I = [0:Dist Point to Point:Max Pos Value -
128:Dist Point to Point:Max Neg Value]
count = count + 1;
in(count) = complex(I,Q);
end
end

% Generate LUT

for BPS=2:Max Bps
% Calc LLR values for all I/Q Data Points for a given BPS
LLR_MAX Results = demapper MAX algorithm(in,BPS,var (BPS));

% Sample Maximum LLR value
%sample (BPS-1) = max(abs (LLR MAX Results));

LLR MAX Results Reshaped = reshape (LLR MAX Results,BPS,[])"';

for i1i=1:BPS

sample (BPS-1,1i) = max(abs(LLR MAX Results Reshaped(:,1i)));
LLR_MAX Results Reshaped(:,1) =
LLR MAX Results Reshaped(:,1i).*(31/max (abs (LLR _MAX Results Reshaped(:,1))));

end

LLR MAX Results Reshaped=rail (LLR MAX Results Reshaped,-32,31);
LLR MAX Results Reshaped=round(LLR MAX Results Reshaped) ;

$LLR MAX Results=LLR MAX Results.* (31/max (abs (LLR _MAX Results)));
$LLR MAX Results=rail (LLR MAX Results,-32,31);
$LLR MAX Results=round(LLR MAX Results);

% Reshape Results
$LLR MAX Results Reshaped = reshape (LLR MAX Results,BPS,[])';

if (Master Plot Flag)
for i=1:BPS

o)

% Reshape Table for Plotting
MITRE Approved for Public Release; Distribution Unlimited 14-0176

123

LLR_MAX Results Reshaped2 =
reshape (LLR_MAX Results Reshaped(:,1),32,32)"';

figure;

if (Imagesc Plot Flag) % Imagesc Plot
colormap('gray')
imagesc (flipud (LLR MAX Results Reshaped2))

else % Mesh Plot
mesh (flipud (LLR_MAX Results Reshaped2))

end

end
end

[

% Shift values that are negative by the offset value

offset = 64;

index = LLR MAX Results Reshaped<O0;

LLR _MAX Results Reshaped(index) = LLR MAX Results Reshaped(index)+offset;
generated LUT Vector = zeros(length(LLR MAX Results Reshaped(:,1)),1);

% Reshape LUT into a Vector
for i=1:BPS

generated LUT Vector=generated LUT Vector+(LLR MAX Results Reshaped(:,1i)*offs
et~ (i-1));
end
data=generated LUT Vector;
if (gen MAT Files)
if (BPS==2)
save('llr data gpsk.mat', 'data');
elseif (BPS == 3)
save ('llr data 8psk.mat', 'data');
elseif (BPS == 4)
save ('llr data loapsk.mat', 'data');
elseif (BPS == 5)
save ('llr data 32apsk.mat','data');
end
end

% Update Param Files with Updated LUT
if (LLRParams_Flag)
fprintf (1, 'Generated LUT Vector for BPS = %d\n',6BPS);
generate llrParams (generated LUT Vector',6 BPS);
end
end

Appendix D.7 demapper_interp llr.m

oe
|
|

o

-- This software was produced for the U.S. Government under Contract
-- No. FA8721-09-C-0002, and is subject to the Rights in Noncommercial
-- Computer Software and Noncommercial Computer Software Documentation

o\

o\

MITRE Approved for Public Release; Distribution Unlimited 14-0176

124

o\
|
|

Clause (DFARS) 252.227-7014 (JUN 1995)

o\
|
|

o
|
|

Copyright (C) 2013 The MITRE Corporation. ALL RIGHTS RESERVED.

o
|
|

o\
|
|

File name: demapper interp llr.m
Author : Brian Leslie

o oo
| |
| |

o

\o
o\

Description

o\°

This function is used to calculate LLR values using bi-linear
interpolation using the MAX algorithm.

o

\
oe

Files

oe

In order for this script to work the following files need to be
included in the same directory or the path to the directory where they
can be found needs to be added

oe

o

oe

Files:
demapper MAX algorithm.m

o

function [output] = demapper interp 1llr(noisy, BPS, variance, bottom bits

)

format long;

o\°

Flags: 1 - ON | 0 - OFF

Print debug statements *WARNING* DO NOT RUN WITHOUT BREAKPOINT AT LINE
143

debug flag = 0;

% Include Scatter plot of I/Q data with output

scatter plot flag = 0;

oe

oe

% LUT Width
LUT Width = 8-bottom bits;

o)

% Create test vectors until the maximum modulation.
Max Bps = 5;
%% LUT Scale Calculation

% Vector Setup
in = zeros (1,27 (2*LUT _Width));

sample = zeros(1l,4);
count = 0;
var = [1, 6964.5, 1742.76, 832.07593, 259.93593]; % New

MITRE Approved for Public Release; Distribution Unlimited 14-0176

125

% Calc distance between I/Q Points in LUT
Dist Point to Point = 27 (8-LUT_Width) ;

Max Pos Value = 128 - Dist Point to Point;
Max Neg Value = 0 - Dist Point to Point;

% Seperate I/Q plane into data points based on LUT percision.
for Q = [0:Dist Point to Point:Max Pos Value -
128:Dist Point to Point:Max Neg Value]
for I = [0:Dist Point to Point:Max Pos Value -
128:Dist Point to Point:Max Neg Value]
count = count + 1;
in(count) = complex(I,Q);
end
end

% Generate LUT
for temp BPS=2:Max Bps
% Calc LLR values for all I/Q Data Points for a given BPS
LLR_MAX Results = demapper MAX algorithm(in,temp BPS,var (temp BPS));

oe

Sample Maximum LLR value
%sample (BPS-1) = max (abs (LLR MAX Results));

LLR MAX Results Reshaped = reshape (LLR MAX Results,temp BPS, [])';

for i=l:temp BPS
Max LLR Values (temp BPS-1,1i) =
max (abs (LLR_MAX Results Reshaped(:,1)));
end
end

%% Function Code

% Vector Setup

I btm bits = zeros(1l,length(noisy));
Q btm bits = zeros(1l,length(noisy));
% Split noisy signal into I/Q Data
noisy I = rail(real(noisy),-128,127);
noisy Q = rail (imag(noisy),-128,127);

% Calc I Low and I High points

_Low = floor((noisy I+128)./(2"bottom bits)).* (2"bottom bits)-128;
I High = I Low+ (2"bottom bits);

too _high = (I High == 128);

I High(too_high) = 128-(2%bottom bits);

[

% Calc Q Low and Q High points

 Low = floor((noisy Q+128)./(2"bottom bits)).* (2"bottom bits)-128;
Q High = Q Low+ (2"bottom bits);

too_high = (Q High == 128);

MITRE Approved for Public Release; Distribution Unlimited 14-0176

O

126

Q High(too high)

o\

% offset in
%1 _btm bits
%Q btm bits

128-

(2"bottom bits);

(2"bottom bits))';
2%bottom bits))';

if (scatter plot flag)
scatter (I Low(l),Q Low(l),'r');
hold on
scatter (I _Low(l),Q High(1l),'g");
scatter (I _High(1l),Q Low(l),'b");
scatter (I _High(1l),Q High(1),'k");
axis ([-128 127 =128 1277])

end

% Calculate the
fprintf (1,
results I
results I
results I
results I

L
L
_H
H

demapper MAX algorithm(complex (I High,Q High)

results I L Q L Reshaped = reshape(results I
results I L QO H Reshaped = reshape(results I
results I H Q L Reshaped = reshape(results I
results I H Q H Reshaped = reshape(results I

Sresults I L Q L Reshaped2

for i=1:BPS

$sample scale results (BPS-1,1)
Q L Reshaped(:

results I

$results I L Q L Reshaped2(:,1)
;1) .*(31/sample scale results(BPS-1,1));

Reshaped(:,1) .*
Q H Reshaped(:
Reshaped(:,1) .*
Q L Reshaped(:
Reshaped(:,1) .*
Q H Reshaped(:
Reshaped(:,1) .

r1)

r1)

P 1)

P 1)

%sample scale results (BPS-1,1)
%Max LLR Values (BPS-1,1)

end

I L Q L = round(reshape
I L. 9 H = round(reshape
I HQ L = round(reshape
I HQ H = round(reshape

$d\n'

demapper MAX algorithm(complex (I Low,Q Low)
demapper MAX algorithm(complex
= demapper MAX algorithm(complex (I High,Q Low)

(
(
(

LLR values at each of the 4 Points
-—-——-\nBottom Bits

Generate vector of bottom bits of the noisy I/Q Data to be used as the
the interpolation
= mod (noisy I,
mod (noisy Q, (

bottom bits);

I Low,Q High)

,BPS,variance) ;

L
L
_H
_H

lIO IIO IIO IO

reshape (results I L Q L,BPS,

(results I L Q L Reshaped',
(results I L Q H Reshaped',
(results I H Q L Reshaped',
(results I H Q H Reshaped',

oy}
U

~

[T e i
o W w
'y U g
0 n nn n

~

= max (abs(results I L Q L Reshaped(:,

(31/Max_LLR Values (BPS-1,1));
(31/Max_ LLR Values (BPS-1,1));
(31/Max_LLR Values (BPS-1,1));

*(31/Max LLR Values (BPS-1,1));

PE H -

(1"

,BPS, variance
,BPS,variance

MITRE Approved for Public Release; Distribution Unlimited 14-0176

127

,BPS, variance) ;

) ;
)

’

’

i)));

[

% Bi-Linear Interpolation

for j = l:length(noisy)

); $(I_btm3 bits./(2"bottom bits)) ;
)

x = noisy I + I LQOL
; %(Q btm3 bits./(2%bottom bits)) + I L Q L;

(
y = noisy 0O
x1 = I Low (]
x2 = I High(

yl = Q Low(3);

y2 = Q High(Jj);

btm bit offset I direction = x-x1; % bottom bit offset for I direction
btm bit offset I direction m = x2-x;

btm bit offset Q direction = y-yl; % bottom bit offset for Q direction
btm bit offset Q direction m = y2-y;

)7

]
J
)
]
)

if (debug flag)
fprintf (1, ")
fprintf (1, "\nx=%d | y=%d\n', x, Vy);
fprintf (1, 'x1=%d | x2=%d | yl=%d | y2=%d\n', x1, x2, yl, y2);
fprintf (1, 'btm bit offset I direction=%d |
btm bit offset I direction m=%d\n', btm bit offset I direction,
btm bit offset I direction m);
fprintf (1, 'btm bit offset Q direction=%d |
btm bit offset Q direction m=%d\n', btm bit offset Q direction,
btm bit offset Q direction m);
end

for i=1:BPS
if (x2==x1)
horizontal low_interp(BPS*(j-1)+i) = I L Q L(BPS*(j-
1)+1i) * (2"bottom bits); S%R1
horizontal high interp(BPS*(j-1)+i) = I L Q H(BPS*(j-
1)+i)* (2%bottom bits); %R2

else
horizontal low interp left (BPS*(j-1)+i) =
btm bit offset I direction*I H Q L(BPS*(j-1)+1i);
horizontal low _interp right (BPS* (j-1)+1)
btm bit offset I direction m*I L Q L(BPS*(j-1)+i);

horizontal high interp left (BPS* (j-1)+i) =
btm bit offset I direction*I H Q H(BPS*(j-1)+i);

horizontal high interp right (BPS*(j-1)+i) =
btm bit offset I direction m*I L Q H(BPS*(j-1)+1i);

horizontal low interp(BPS* (j-1)+i) =
horizontal low_interp left (BPS*(j-1)+i)+horizontal low interp right (BPS* (j-
1)+1);

horizontal high interp (BPS* (j-1)+i) =
horizontal high interp left (BPS*(j-1)+i)+horizontal high interp right (BPS* (j-
1)+1);

if (debug flag)

MITRE Approved for Public Release; Distribution Unlimited 14-0176

128

fprintf(1l,'s L Left =

btm bit offset I direction,I L Q L (BPS
horlzontal_low_lnterp_left(BPS*(j 1)+1
fprintf(l, 'S L Right =
btm bit offset I direction m,I H Q L(BP
+

%d) = %d\n',

~ %X —~

$d\n'
horlzontal_low_lnterp_rlght(BPg*Yj_l
fprintf(l,'S H Left

)

= %d) = %d\n',
btm bit offset I direction,I L Q H(BPS

) +1

horlzontal_hlgh_lnterp_left(ng*Yj 1
fprintf (1, 'S H Right

btm bit offset I direction m,I H Q H

horlzontal_hlgh_lnterp_rlght(BPS*(j

= = %d\n',
B
)
fprintf (1, '\nS L = (%d
(3
*

I—‘A

%d\n' horizontal low interp left (BPS
1)+1), horlzontal low _interp right (BP
1)+1));

n *

fprintf(l,'s H = (3d + 3d) =
$d\n',horizontal high interp left (BPS* (j-
1)+i) ,horizontal high interp right (BPS*(j-1)+i),
horizontal high interp (BPS*(j-1)+1i));
end

end

if (y2==yl)
LLR(BPS*(j-1)+i) = horizontal low interp (BPS* (j-
1)+1i) * (2"bottom bits);
else
LLR (BPS* (j-1) +1)
btm bit offset Q direction*horizontal high interp(BPS* (j-1)+i) +
btm bit offset Q direction m*horizontal low interp (BPS*(j-1)+i);
if (debug flag)
fprintf (1, "\nLLR = %d*%d +
$d*%d\n',btm bit offset Q direction,horizontal high interp (BPS* (j-
1)+i),btm bit offset Q direction m,horizontal low interp (BPS*(j-1)+i));
fprintf (1, 'LLR = %d + %d =
%d\n' btm bit offset Q direction*horizontal high interp (BPS* (j-
1)+i),btm bit offset Q direction m*horizontal low interp (BPS* (j-
1)+1i), btm blt offset Q direction*horizontal hlgh interp (BPS* (-
1)+)+btm bit offset _Q direction m*horizontal low interp (BPS* (j-1)+i));
end
end
LLR(BPS* (j-1)+1i) = LLR(BPS* (j-
1)+1i)/ ((2"bottom _bits)* (2"bottom bits));

if (debug flag)
fprintf (1, '"LLR(%d)=%d\n"',i-1,LLR(BPS* (j-1)+1));
fprintf (1, '-———=="""""""“"“"“"“"""""—"—"—~—~(—(—— \n');
end
end
end

LLR = round(LLR) ;
output = LLR;

MITRE Approved for Public Release; Distribution Unlimited 14-0176

129

end

Appendix D.8 create_test_vectors.m

o\
|
|

o
|
|

This software was produced for the U.S. Government under Contract
No. FA8721-09-C-0002, and is subject to the Rights in Noncommercial
Computer Software and Noncommercial Computer Software Documentation
Clause (DFARS) 252.227-7014 (JUN 1995)

o 0P o° o°
| R B |
| I N B |

o
|
|

Copyright (C) 2013 The MITRE Corporation. ALL RIGHTS RESERVED.

o
|
|

oe
|
|

File name: create test vectors.m
Author : Brian Leslie

o° oP
| |
| |

o

oe
o\

Description

oe

This script is used to generate the test vectors used when running the
LLR Demapper component designed in VHDL to test the datalIn and dataOut.

o

oe
o\

Files

o

In order for this script to work the following files need to be
included in the same directory or the path to the directory where they
can be found needs to be added

oe

oe

oe

Files:
mapper.m

oe

[

% Path and Command Window Setup
addpath ../mapper

addpath ../utilities

addpath ../demapper algorithms
clc;

clear;

close all;

Q

% Local output or Server output
output local = 0;
home dir = 'bleslie';

% LUT Width - Number of Bits (MAX 8)

LUT Width = 5;
bottom bits = 8-LUT Width;

MITRE Approved for Public Release; Distribution Unlimited 14-0176

130

% create test vectors until the maximum modulation.
max BPS = 6;

% Use default seed value for random number generator so that it produces
% the same random numbers as i1if you restarted MATLAB.
rng ('default');

Q

% random bits -> 10”amount
amount = 5;
in=round (rand (1*10”amount, 1)) ;

%$range={[], 0:.025:15, 3:.05:15, 5:.1:15, 7:.1:15};
ratio={0, 1, 1, 3.15, [2.84 5.27]};
esnovalues=[0, 0.81, 6.64, 8.8, 12.65];

% Sampled Variance for each BPS value that is used to calculate the LLR
% values

$var = [6964.5, 3477.7, 1546.8, 718.6246]; % 0ld

var = [6964.5, 1742.76, 832.07593, 259.93593]; % New

% Use DVB-S2 encoding on the incoming data bits.
[enc, esize, dsize]=dvbs2 enc(in,12,16,1,0);

fec rate=dsize/esize;

% Power Level
Power Level = 90;

o)

% Modulations

modes={"'qgpsk', '8Bpsk', 'loéapsk', '32apsk'};
% Test Types

testNumber={'t0', 'tl1', 't2'};

% Parallel Test Mode
testMode={"p2', 'p4d'};

% LUT Width
LUT Width string={'1', '2', '3', '4', 'S5', '6', 7', '8'};

for testModeLoop=1l:length (testMode
for modesLoop=1l:length (modes)

BPS=modesLoop+l;
fprintf (1, 'BPS=%d | esno=%d\n',BPS, esnovalues (BPS));
% Data In
if (BPS == 2)

Power Level = 56*sqrt(2);

% FEC= 1/2 -> 49*sqgrt(2);

% FEC= 5/6 (7/8) -> 56*sqgrt(2)
elseif (BPS==3)

Power Level = 86;
else

Power Level
end

MITRE Approved for Public Release; Distribution Unlimited 14-0176

% Parallel Test Mode Loop
Modulations Loop

)

90;

131

dataIn=mapper (enc, BPS, Power Level,ratio{BPS});
noisyDataIn=round (awgn (dataln,esnovalues (BPS), 'measured',0));
noisyDataIn=complex(rail (real (noisyDataln), —
128,127),rail (imag(noisyDataln),-128,127));
noise=noisyDataIn-dataln;
Svariance = var (noise);
variance = var (modesLoop) ;
% Data Out
dataOut=demapper interp llr(noisyDataln,BPS,variance,bottom bits);

for testNumberLoop=1l:length (testNumber)
if (output local)
fprintf (1, 'Created llr_dataln/Out at: C: Users %s Documents
local testing testVector LUT Width %s %s mitre %s %s llr dataIn.txt\n',
home dir, LUT Width string{LUT Width}, testMode{testModeLoop},
modes {modesLoop}, testNumber{testNumberLoop})
mat2drive (noisyDatalIn, ['C:\Users\' home dir
"\Documents\local testing\testVector\LUT Width ' LUT Width string{LUT Width}
"\' testMode{testModelLoop} '\mitre ' modes{modesLoop} "' '
testNumber{testNumberLoop} '\llr dataIn.txt'], (testModeLoop*2), 1, 600);
mat2drive (dataOut, ['C:\Users\' home dir
"\Documents\local testing\testVector\LUT Width ' LUT Width string{LUT Width}
"\' testMode{testModelLoop} '\mitre ' modes{modesLoop} "' '
testNumber{testNumberLoop} '\llr dataOut.txt'], ((testModeLoop*2)*max BPS),
0, 600* (modesLoop+l));
else
fprintf (1, 'Created 1llr data at: Z: designtop src components
llr tb_rtl testVector $s mitre $s %s\n', testMode{testModeloop},

modes {modesLoop}, testNumber{testNumberLoop}) ;

mat2drive (noisyDataln, ['Z:\designtop\src\components\llr\tb rtl\testVector\'
testMode{testModeLoop} '\mitre_' modes {modesLoop} ' '
testNumber{testNumberLoop} '\llr dataIn.txt'], (testModeLoop*2), 1, 600);

mat2drive (dataOut, ['Z:\designtop\src\components\llr\tb rtl\testVector\'
testMode{testModeLoop} '\mitre_' modes {modesLoop} ' '
testNumber {testNumberLoop} '\llr_dataOut.txt'], ((testModeLoop*2) *max BPS),
0, 600* (modesLoop+1l)) ;

end

end
end
end

Appendix E MITRE LLR Core

MITRE Approved for Public Release; Distribution Unlimited 14-0176

132

Appendix E.1 VHDL

-- This software was produced for the U.S. Government under Contract

-- No. FA8721-09-C-0002, and is subject to the Rights in Noncommercial

-- Computer Software and Noncommercial Computer Software Documentation
-- Clause (DFARS) 252.227-7014 (JUN 1995)

-- Copyright (C) 2013 The MITRE Corporation. ALL RIGHTS RESERVED.

-- Function: This core is designed to calculate the LLR values using bi-linear
-- interpolation and Lookup tables (LUT).
-- Author : Brian Leslie

library ieee;
use ieee.std logic 1164.all;
use ieee.numeric_std.all;

use work.utility pk.all;

entity mitre llr core is
generic (
P DIN W :integer :=8;
P DOUT W : integer :=6;
P MAX BPS : integer :=5;
P LUT W :integer :=5

);
port (
i clk : in std_logic;
1 reset :in std_logic;
i_bps : in unsigned(bitwidth(P. MAX BPS+1)-1 downto 0);

--1_symbol data -> q (Top 8 Bits), i (Bottom 8 Bits)
1 symbol data :instd logic vector(2*P _DIN W-1 downto 0);

1_eob in :in std_logic;
i din_valid :instd logic;
o_din_rdy : out std_logic;

o_llr data :out std_logic vector(P. MAX BPS*P DOUT W-1 downto 0);

o_eob out : out std_logic;
o _dout valid :outstd logic;
i _dout rdy :in std_logic;

MITRE Approved for Public Release; Distribution Unlimited 14-0176

133

i data :in std_logic_vector(P. MAX BPS*P DOUT W-1 downto 0);
1 addr :1in std_logic vector(2*P_LUT_ W-1 downto 0);
i wr :in std_logic

);

end mitre llr_core;
architecture synth of mitre llr core is

-- Constant Declarations
constant C PIPELINE DELAY : integer := 7;
constant C R W :integer ;== P_DIN W-P_LUT W+2;
constant C LLR W : integer := (P_ DOUT_W+(2*(P_DIN W-P LUT W+2)));
constant C LLR VECTOR W :integer := ((P_ DOUT W+(Q2*(P_DIN W-
P LUT W+2)))*P_ MAX BPS);

-- RAM
type ram_t is array(natural range <>) of unsigned(P_ MAX BPS*P_DOUT_W-1 downto 0);
type ram_tt is array(natural range<>) of ram_t(2**(2*P_LUT W)-1 downto 0);

--LLR

type llr_t is array(natural range <>) of signed(P. DOUT_W-1 downto 0);

type llr_round t is array(natural range <>) of signed(C_LLR W-C R _W-1 downto 0);
type llr_round large t is array(natural range <>) of signed(C_LLR W-1 downto 0);

--RAM
signal ram : ram_tt(3 downto 0);

-- Four cordinates on the I/Q plane

signal 1 1 : unsigned(P_LUT_ W-1 downto 0);

signal i_h :unsigned(P_LUT W-1 downto 0);

signal q 1 : unsigned(P_LUT W-1 downto 0);

signal q_h :unsigned(P_LUT W-1 downto 0);

-- Remainder of I/Q Data bits not used for the Four LUT Cordinates
signal r i : signed(C_R_W-1 downto 0);

signal r i _delay :signed(C_R_W-1 downto 0);

signalr q : signed(C_R_W-1 downto 0);

signal r q delay :signed(C_R W-1 downto 0);

signal r_q delay two :signed(C_R_W-1 downto 0);

signal r_q delay three : signed(C_R_W-1 downto 0);

signal r 1 _minus_delay : signed(C_R_W-1 downto 0); -- P DIN W -r i delay
signal r q minus_delay : signed(C_R_W-1 downto 0); -- P DIN W -r q delay

MITRE Approved for Public Release; Distribution Unlimited 14-0176

134

-- Four points using the cordinates for Bilinear Interpolation
signal ¢ low i low :l1lr t(P. MAX BPS-1 downto 0);
signal q_high i low :llr t(P. MAX BPS-1 downto 0);
signal ¢ low i high :llr t(P. MAX BPS-1 downto 0);
signal q_high i high : lIr t(P. MAX BPS-1 downto 0);

-- Linear Interpolation in the i-direction (x-direction)

signal s h :lIr round t(P. MAX BPS-1 downto 0); -- upper interpolation
signal s 1 :1lIr_ round t(P. MAX BPS-1 downto 0); -- lower interpolation
signal s h left :lIr_round t(P. MAX BPS-1 downto 0);

signal s h right :1lr round t(P. MAX BPS-1 downto 0);

signal s | left :llr round t(P. MAX BPS-1 downto 0);

signal s | right :IIr round t(P. MAX BPS-1 downto 0);

-- Pipeline for Tracking Data Validity
signal valid pipeline : std logic vector(C_PIPELINE DELAY downto 0);

-- Pipeline for Tracking End of Block Flag
signal eob_pipeline : std logic vector(C_PIPELINE DELAY downto 0);

-- Rounding Implemenation

signal stall : std_logic;

signal llr_pad :lIr_round large t(P. MAX BPS-1 downto 0);

signal llr_pad left :IlIr round large t(P. MAX BPS-1 downto 0);

signal llr_pad_right : lIr round large t(P. MAX BPS-1 downto 0);
signal lIr_pad flat :std logic vector(C_LLR VECTOR W-1 downto 0);

begin

-- Load Lookup Table Values into RAM
sRAMPrc: process(i_clk)
begin
if (rising_edge(i_clk)) then
if (i_wr ="1") then
fori1in 0 to 3 loop
ram(i)(to_integer(unsigned(i_addr))) <= unsigned(i_data(P. MAX BPS*P DOUT W-1
downto 0));
end loop;
end if}
end if;,
end process;

MITRE Approved for Public Release; Distribution Unlimited 14-0176

135

-- Calculate LLR Values and Load them into output buffer
gen LLR values: process(i_clk)
begin
if (rising_edge(i_clk)) then
if (i_reset ="'1") then

-- Set Valid and EOB Pipelines on Reset
valid pipeline <= (others =>'0");
eob pipeline <= (others =>"'0");

elsif (i_dout_rdy ='1") then

-- Shift Valid Data Pipeline Values and Load the next Value from

-- the i_din_valid Input Port

valid_pipeline(valid_pipeline'high downto 1) <= valid pipeline(valid_pipeline'high-1
downto 0);

valid_pipeline(0) <=1_din_valid;

-- Shift End of Block Flag Pipeline Values and Load the next Value from

-- the i_din_valid Input Port

eob_pipeline(eob_pipeline'high downto 1) <= eob_pipeline(eob_pipeline'high-1 downto 0);
eob pipeline(0) <=1 _eob in;

-- Define 4 cordinate points on I/Q plane for interpolation
i | <=unsigned(i_symbol data(P_ DIN W-1 downto P DIN W-P_LUT W));
if (unsigned(i_symbol data(P_ DIN W-1 downto P DIN W-P LUT W))=
2*¥(P_LUT_W-1)-1) then

1_h <=unsigned(i_symbol data(P_ DIN W-1 downto P. DIN W-P_LUT W));
else

1_h <=unsigned(i_symbol data(P DIN W-1 downto P. DIN W-P_LUT W))+1;
end if;,

q_l <= unsigned(i_symbol data((2*P_DIN_ W)-1 downto (2*P_DIN W)-P_LUT W));
if (unsigned(i_symbol data((2*P_DIN_ W)-1 downto (2*P_DIN W)-P LUT W))=
2*¥(P_LUT_W-1)-1) then
q_h <=unsigned(i_symbol data((2*P_DIN_ W)-1 downto (2*P_DIN W)-P_ LUT W));
else
q_h <=unsigned(i_symbol data((2*P_DIN_ W)-1 downto (2*P_DIN W)-P LUT W))+1;
end if;,

-- Determine remainder of I/Q data to be used for offset in the interpolation

r 1 <=signed("00" & i_symbol data(P DIN W-P_LUT W-1 downto 0));

r_q <=signed("00" & i_symbol data((2*P_DIN W)-P LUT W-1 downto P_DIN W));
MITRE Approved for Public Release; Distribution Unlimited 14-0176

136

-- Signal Delays to Allign the Data Output

r i delay<=r i;

r q delay<=r q;

r q delay two <=r q delay;

r q delay three <=r q delay two;

r 1 minus delay <= 2**(P_DIN W-P LUT W))-r i;

r q minus_delay <= (2**(P_DIN W-P_LUT W))-r q delay two;

-- Calculate LLR for each bit in the symbol
foriin P. MAX BPS-1 downto 0 loop

-- Load LLR values from the LUT in RAM

q_low i low(i) <= signed(ram(0)(to_integer(q 1&i 1))(P_DOUT_ W*(i+1)-1 downto
P DOUT W*i));

q_high i low(i) <= signed(ram(1)(to_integer(q h&i_1))(P_ DOUT_W*(i+1)-1 downto
P DOUT W*i));

q_low i high(i) <= signed(ram(2)(to_integer(q 1&i h))(P_DOUT_ W*(i+1)-1 downto
P DOUT W*i));

q_high i high(i) <= signed(ram(3)(to_integer(q_h&i_h))(P_ DOUT W#*(i+1)-1 downto
P DOUT W*i));

-- Lower Horizontal Linear Interpolation

s 1 left(i) <= q _low 1 high(i)*r i_delay;

s 1 right(i) <= q_low i low(i)*r_i minus_delay;
s 1(1) <=s_1 left(i)+s_I right(i);

-- Upper Horizontal Linear Interpolation

s_h left(i) <= q high i high(i)*r i delay;

s_h right(i) <= q_high i low(i)*r 1 minus_delay;
s _h(i) <=s_h left(i)+s_h_ right(i);

-- Vertical Linear Interpolation

llr_pad left(i) <=s_h(i)*r_q delay three;
lIr pad right(i) <=s_1(i)*r_q minus_delay;
llr_pad(i) <=llr_pad_left(i)+lIr pad right(i);

end loop;
end if;,
end if;
end process;

-- Set ready pipeline output to input value

o_din_rdy <=1 _dout rdy;

MITRE Approved for Public Release; Distribution Unlimited 14-0176

137

-- stall signal definition to the opposite of i_dout rdy

stall <= not(i_dout rdy);

-- Rounding Entity

round: entity work.bitQuantize
generic map(
DIN W =>(P_DOUT W+2*(2+(P_DIN W-P_LUT W))),
DOUT W =>P DOUT W,
SHIFT =>(2*(P_DIN W-P_LUT W)),
COUNT =>P MAX BPS,
Q MODE =>1,
V_MODE =>2
)
port map(
clk =>1i clk,
reset =>1_reset,
stall => stall,
din =>llIr pad flat,
dout =>o llr data,
started => open,
overflow => open

);

-- Load Rounding Buffer

load round bus: foriin 0 to P. MAX BPS-1 generate
llr_pad_flat(((C_LLR_W)*(i+1)-1) downto (C_LLR W¥*i)) <=std logic_vector(llr_pad(i));
end generate load round bus;

-- Load Valid Data Flag into output port

o_dout valid <= valid pipeline(valid_pipeline'high);

-- Load End of Block Flag into output port

0_eob_out <=eob_pipeline(eob_pipeline'high);

end synth;

MITRE Approved for Public Release; Distribution Unlimited 14-0176

138

