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Abstract 
The goal of our project was to improve the current paintball firing system which is widely used 

both recreationally and competitively by millions of players.  Our project aimed to increase the accuracy 

and range of the paintball system by researching, designing, building, and testing prototypes that could be 

incorporated into systems currently available to consumers through the use of gyroscopic stabilization and 

improved aerodynamic profile.  The prototype designs created by this project could be refined and 

improved so they could be implemented in the paintball community, ultimately improving the quality and 

scope of its uses. 
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Executive Summary 
The game of paintball is enjoyed globally by millions of players.  One major flaw which 

plagues these players is the inaccuracy of the markers and projectiles they fire.  Throughout the 
course of history, firearms have continuously evolved to be more effective and this always 
includes improving the accuracy and range of projectiles and, in lethal applications, the 
deadliness of these rounds.  Paintball has been established for a long time and it is logical for a 
progression to occur within the game similar to that seen with actual firearms.  

 The goal of this project is to attempt to make an advance to the game of paintball in 
these particular problem areas.  This project focuses on aerodynamic principles, new designs, 
and production and testing of working prototypes to determine if this is indeed feasible.  
Ultimately, we hope to lay a foundation for a product which can successfully be integrated with 
current equipment into the massive paintball community.   

We began our work by researching areas relevant to the areas we hoped to improve.  
From this research, several plausible bullet designs were selected and initial design specifications 
were developed for the construction of the barrel.  As the project progressed the group adapted to 
meet various machining challenges in order to successfully manufacture the desired prototypes 
so that they could be tested for effectiveness and determine if they were indeed affecting the 
accuracy of the paintball marker. 

 The bullets were tested in the wind tunnel facilities to determine aerodynamic 
properties.  Based on performance in the wind tunnel and other considerations such as safety 
factors and practicality, several prototypes were selected to be tested further.  The barrel was 
subsequently tested in conjunction with the final projectile prototypes to determine what 
combination, if any, impacted the accuracy in a positive way.   

The results of the test firing of prototype rounds were mixed.  The equipment was 
compatible with a current paintball marker and the prototypes did indeed fire.  However, due to 
manufacturing capabilities the rounds were not durable enough to withstand the forces imparted 
upon it through rifling.  Theoretically, the improvements to the barrel and projectile shape would 
improve the spread of a group of rounds but the testing was unable to verify this because the 
rounds did not all perform adequately.   

This project attempted to redesign a conventional paintball round and improve the overall 
accuracy of a paintball marker by examining aerodynamic principles.  Creating new round 
shapes and barrel designs provided several manufacturing challenges which led to the creation of 
a new barrel making process and several molds which could be used to produce more rounds.  
Although the testing was not as successful as we would have liked the project was valuable 
because it provided knowledge which could be improved upon and eventually lead to 
applications within a massive industry in need of this type of progression.
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Introduction 
 The game of paintball is enjoyed by millions of participants across the world.  The game 

provides entertainment and competition in a friendly and safe environment.  The success of the 

game lies in the ability to replicate dangerous situations with non-lethal weapons.  The game has 

succeeded in creating markers which can simulate actual firearms and situations which mimic 

real scenarios but there is still room for improvement.  Improving the accuracy of the markers 

would create an even more realistic experience which would benefit the current participants and 

also expand the applications of the game. 

 The inaccuracy of the paintball marker is a result of the current system setup.  Current 

gunpowder based firearms rely on more aerodynamic projectile shapes, grooved barrels and 

much greater projectile speed.  The current paintball marker is not equipped with a grooved 

barrel.  There is no other paintball shape except for a standard circular ball.  Also, the ball 

becomes unstable after being fired due to the shape and firing ballistics.  If these areas could be 

improved it is possible that the accuracy of a paintball marker could be improved to more closely 

resemble the accuracy of a firearm. 

 The problem of a relatively inaccurate paintball system has been a part of the game since 

its inception.  The original markers were not intended for use on human beings or intended to act 

as a substitute for firearms.  As such they were never completely designed to maximize 

aerodynamic capabilities or properties.  As the game has evolved companies have experimented 

with curved barrels or systems utilizing multiple sleeves for barrels.  The design of paintball 

rounds has rarely been manipulated since almost all barrels are standardized to fit the same size 

and shape rounds.   
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 Creating more aerodynamic projectile shapes and complimentary grooved barrels could 

allow the paintball marker to fire consistently and accurately.  It is important to create equipment 

which builds off of current systems and complies with rules and regulations already established 

among the paintball community.  The rounds and barrel will utilize the same firing system and 

even attach to the same body found within some of the most popular marker models.  Rounds 

will travel at the same speed as current rounds and have the same volume.   

 Paintball has established an extremely large community and is a popular form of 

entertainment for millions.  If a system could be devised which could fire more accurate rounds 

it could become useful for applications other than entertainment.  Law enforcement and military 

could use an accurate non-lethal system in an operational setting or a training environment.  

Current players who participate professionally would benefit greatly from more accurate and 

consistent firing as well.  As such, there are immense marketing and expansion opportunities if 

an accurate paintball firing system could be created. 

 Increasing the accuracy of a paintball firing system would benefit millions of current 

users and probably attract many more.  This technology could be utilized by different 

applications and revolutionize an already sizable community.  Improved accuracy could 

transform a recreational and leisurely game and continue to provide an important substitute to 

firearms. 



Background 
The purpose of this chapter is to track the evolution of the game of paintball and gain 

insight on the equipment used by players.  This chapter will explore the roots of the game as well 

as the expansion and growth of the game as a recreational activity or competitive sport.  Also, 

this chapter will explore specific areas of equipment design which may be improved upon in 

order to continue the progression of paintball.  The specific equipment which will be investigated 

includes the barrel, round shape and aerodynamic capabilities of current equipment. 

2.1 Paintball 

 Paintball is played and enjoyed by participants of varied age and experience.  Paintball 

teams are formed to compete professionally for prizes and fame similar to that found in any other 

team sport.  However, paintball also acts as a leisurely recreational activity played in many 

backyards.  The numerous opportunities make paintball attractive to a large audience and as the 

game continues to progress it continues to gain popularity.  
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2.1.2 History of Paintball 

 Paintball began in 1976 as a duel 

between men interested in stalking and hunting 

each other.  These men, Charles Gaines and 

Hayes Noel, used paintball guns designed for 

marking cattle and trees.  They determined that 

the guns would be effective for hunting each other and they would also spare the men from 

serious harm.  The men began to hunt each other through the woods until one was able to 

Figure 1: Professional paintball players



successfully strike the other with a paint marker.  They decided to name the game, “National 

Survival Game,” and this is commonly thought of as the birth of modern day paintball.  

 The men were eager to share their experience and began to offer group games of, 

“Survival.”  One of the members present in these initial large scale games was a writer for Sports 

Illustrated, Bob Jones.  Once the word spread, paintball began to rapidly expand during the 

1980’s and the first National Survival Championship Game was played in 1983 for a grand prize 

of $3,000.  The sport expanded to cities and countries across the globe and it remains popular 

today as a competitive sport. 

 As the sport expanded the desire for common rules began to emerge.  There were initially 

many variations of games and many times, users played by rules created by their groups.  

However, in order for the sport to be standardized, groups commonly utilized the game styles, 

“Capture the Flag,” and “Elimination.”  Capture the Flag requires one team to acquire the flag of 

the opposing team and return it to their home base before the opposing team is able to capture 

their flag.  Elimination style games are the most popular game variation for competitions.  

Elimination games are played until all members of one team are struck or, “marked,” by a 

paintball from the opposing players.  Other 

common rules are practiced by almost all 

users in order to ensure the safety of players.  

One such rule allows the player to surrender 

without being struck and another limits the 

maximum velocity of paintballs to 300 ft/s.   
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Figure 2: Paintball equipment 
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2.1.3 Equipment Used for Paintball  

 In order to play paintball a participant must attain a significant amount of equipment.  As 

a minimum each player needs a gun or, “marker,” paintballs, a propellant, and a mask equipped 

with eye protection.  There is additional equipment some players choose to employ such as paint 

grenades or camouflaged clothing accessories.  Once a player has acquired this equipment the 

last task is finding a place to play.  Facilities are available both indoors and outdoors which can 

be rented at the players expense.   

2.2 Paintball Marker 

  Patrick Henry once stated, “The great object is that every man be armed. Everyone who 

is able may have a gun.’’  For those who do not own firearms or are unable to do so, a paintball 

marker provides a means to satisfy the desire to own a gun.  A paintball gun is a valuable 

substitute for firearms because of the obvious benefit of being non-lethal.  The inherent 

difference in purpose is responsible for other differences between firearms and paintball guns 

such as components that make up each gun and how each gun functions. 

2.2.1 Components of a Paintball Marker 

 A paintball gun is comprised of several components which work together to produce the 

result of firing projectiles.  Most paintball guns are formed from the following parts, a hopper, a 

body, a barrel and a propellant.  The body is usually formed from aluminium and contains the 

firing elements, the trigger frame, bolt and valve.  The hopper acts as a device designed to hold 

and load ammunition for the marker.  The propellant stores and releases compressed gas to 

provide force to launch the projectiles.  The barrel is responsible for releasing the projectile and 

affects the aim of the paintball. 
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2.3 The Manufacture of Barrels 
 The manufacture of most components of a rifle or a paintball marker can be envisioned 

by any experienced machinist and can be replicated in any well-equipped shop.  However, the 

barrel presents a challenge to make with accuracy that allows shots to land within a 6.94E-5 

degree arc. 

 The first step in machining a barrel is to make sure the outer profile is perfectly straight.  

When the rod stock arrives, it has a matte surface finish and a diameter tolerance of about ±.01 

inch.  The straightness tolerance is roughly .005 inchlateral/inchaxial.  In order to make the stock 

absolutely straight and tightly sized, the stock must be placed in a spindle with a tailstock and 

intermediate.  This prevents chatter and allows the entire part to be straightened in a single 

operation, eliminating mating lines or potential straightness discrepancies from forming. 

 The next step is to drill a hole down the long axis of the barrel.  This is not done in a 

traditional manner with a traditional drill.  A traditional helical drill has a tendency to wander 

after traveling more than three diameters deep.  Also, at that depth there is no way for the chips 

to be extracted and they tend to bind up on the cutting surfaces.  This makes the tool ineffective 

and also places the tool and operator at risk of catastrophic failure.  Instead, a special deep-hole 

drill, commonly called a gun drill, is purchased for the specific undersized bore diameter (-.005 

inch) and tailored to the material used.  The tool takes the cutting head of a traditional helical 

drill, uses a single flute, and places it at the end of a long rod.  The helical flute is replaced by a 

straight flute that runs along the entirety of the rod.  There is a hole (or two) 120º offset from the 

cutting edge that runs the length of the drill.  This feature carries high pressure oil (between 500-

1000 PSI) to the end of the gun drill to flush away swarf back along the single flute of the drill. 



 The deep hole drill is placed in a guide hole while 

being supported by multiple bushings on intermediate rests so 

that its unbalanced form does not destroy it when spun at its 

nominal speed between two and five thousand RPM.  Once in 

place, the coolant is activated, followed by the spindle, and 

lastly the (slow) feed.  This allows the gun drill to basically scrape away the surface of the 

material until it has worked its way through the barrel. 

 
1Figure 3: A Deep Hole Drill Tip  

 After this operation is complete a special barrel reamer is run through the barrel.   

 
Figure 4: Gun Barrel Reamers1 

 

The special barrel reamer is similar to a chucking reamer but with greater overall length and 

appropriate stiffening.  The reamer is generally spun at 500 RPM at a feed of approximately 1 

inch per minute with 200 PSI coolant flushing away chips.  In many production barrels this will 

create the surface finish of the bore.  In this case the reamer should have a nominal diameter 

equal to the intended bore diameter.  However, many specialty barrels require honing process to 

                                                 

1 http://www.drillmasterseldorado.com/reamers.htm 
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take off additional material.  If this is the case, the reamer should be .001 inches smaller in 

diameter than the intended bore diameter. 

 The final step is to hone the barrel to the desired finish, often 4 RU.  This is achieved by 

waiting until after all rifling operations are completed and then gently placing a bore-diameter-

undersized steel rod through the bore and pouring molten lead down the rod to fill up the barrel.  

Once lead cools, the rod is pulled out of the barrel and twisted at the twist rate of the rifling.  

Then, the lead negative-mold that has been extracted is covered in abrasive paste and slid 

through the barrel repeatedly, successively stepping down the roughness of the paste until the 

bore and groove diameters have met nominal size and have reached their desired surface finish.  

This process also helps to set the groove diameter to be constant and free of burrs throughout the 

length of the barrel. 

2.3.1 Rifling History 

 Rifling was first put into firearms in 1492 by German gunsmiths with the intent of 

creating a depository for carbon fouling during firing to allow for longer firing without needing 

to clean the weapon.  In the American Revolutionary War, Continental forces employed snipers 

who utilized Kentucky long rifles.  After officers were sniped off and Armies stifled about 

leaderless, the power of a spinning projectile became apparent.  However, it was not widely 

adopted until the American Civil War largely due to the fact that military tactics had not deemed 

it necessary.  By the time of the Civil War, the creation of the French Minié ball (Figure 6) made 

rifles even more accurate compared to earlier spherical rounds.  In 1898, the conical Minié round 

was replaced with an ogive-shaped round created by the Germans, called the “Spitzer,” as shown 

on the left of Figure 6. 



 

 
Figure 5: A Spitzer Round (left) and a Minie Ball (right) 

While the spitzer round has remained largely unchanged since its invention, it was found 

merely by trial-and-error, as was much of ballistics study at the time.  In 1926, a US Army 

ordnance officer by the name of Major Forest Ray Moulton published a mathematical analysis of 

exterior ballistics supported by empirical data collected during World War I, called “Methods in 

Exterior Ballistics.”  It has since been referred to for all matters concerning external and internal 

ballistics.  It has been challenged and confirmed by empirical data from nearly every arms-

producing country in the world, and was republished in 1962.  Since then, external ballistics 

theory has not changed with the exception of some super-long-range artillery, and has allowed 

designers to predict results before ever firing a round.  His calculations are discussed in 

Appendix B. 
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2.4 Rifling Processes  
 The cutting of rifling in a barrel is a difficult task.  There are four different ways that a 

manufacturer forms rifling.  These are cut-rifling, broach-rifling, button-rifling, and hammer-

rifling.  Invented in that order, they have different advantages and disadvantages as well as 

different requirements to implement. 

2.4.1 Cutting 

The first and oldest way to create rifling is by cutting the rifling.  The gunsmith does this 

by creating a custom tool that is similar in construction to a miniature wood plane that is fixed to 

a long rod.  That tool, known as a “hook,” is then placed into an axial slot on a short rod with the 

same diameter as the bore.  A screw pushes on the hook to set it so that it emerges .0001 inch 

above the bore diameter.  The complete tool is pulled or pushed through the barrel while the 

barrel is twisted, both at very controlled rates.  The standard feed rate is 46 in/min for aluminum, 

12 in/min for carbon steel, and 7 in/min for stainless steel, with the spindle speed set appropriate 

to the desired twist rate.  The whole process is performed in the presence of pressurized 

lubricant/coolant to flush away swarf, prevent thermal stresses, and to lubricate.  This is typically 

oil, but can sometimes be tapping fluid or synthetic coolant.  The tool is returned to its starting 

position, indexed to the next groove, and repeats until all grooves have been cut to a depth of 

.0001 inches.  Then, the operator twists the control screw to add .0001 inches of height to the 

hook and repeats the process until all grooves are cut to the desired depth.  With a typical groove 

depth being somewhere between .0025 inches and .004 inches, this method requires hundreds of 

passes to form rifling.  Figure 7 and Figure 8 depict a hook and a completed rifling-cutter 

containing a hook. 



 

 

 
      Figure 6: A Complete Rifling Cutter2 

 
 

Figure 7: A Rifling-Cutter Hook3 
 

Although the process of cut rifling is tedious, it does have advantages.  The first major 

advantage is that it does not require much special equipment.  The tools can be made in most 

shops, and the process can be done on many lathes.  The second advantage is that this can make 

a barrel of any caliber and any twist rate with the same tool.  The third advantage is that it is 

highly accurate because it is a relatively low-stress process and does not require any heat 

treatment for stress-relief. 

2.4.2 Broach Rifling  

The second method to come about was broach rifling.  Broach-rifling works similar to 

cut-rifling and shares its low-stress accuracy.  Broach-rifling works by placing multiple hooks, 

all with successively taller heights behind one another in the desired spiral pattern on a rod.  This 

spiral of hooks is indexed around the rod at equal intervals. Figure 9 shows a completed rifling 

broach designed to make five grooves. 
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Figure 8: A Rifling Broach4 

 

 The tool is pushed or pulled through the barrel blank with identical speeds and feeds as 

cut-rifling, with pressurized coolant.  It essentially performs the same function as a rifling 

cutter’s many passes in just one pass.  This makes the manufacture of barrels significantly 

quicker.  However, there are also disadvantages to this strategy.  First, a barrel broach can only 

be used for a barrel of a single caliber and twist rate.  Second, this broach can only be made by a 

manufacturer who has access to 4-axis machining.  Third, because of the large amount of 

material removal, it requires a large amount of force to operate while also maintaining a steady 

speed and feed.  This is usually not available in general-purpose lathes or milling centers and 

requires a dedicated machine. 

                                                                                                                                                             

3 http://www.firearmsid.com/Feature%20Articles/RifledBarrelManuf/BarrelManufacture.htm 
4 http://www.pyramydair.com/blog/images/rifling-broach-web.jpg 
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2.4.3 Button Rifling  

 The third way to make rifling is to button-rifle.  A rifle button is a football-shaped portion 

of hardened steel or carbide that has a negative of the desired rifle pattern cut into it.  Typically, 

it also has a front and/or rear guide sized to bore diameter surrounding it.  It is mounted on a 

long, high-strength steel rod. 

 
Figure 9: A Rifle Button5 

 

A rifle button, when pulled or pushed through a barrel, cold-forges rifling grooves into the bore 

of the barrel.  This process is even faster than broaching, requires less replacement of tools, 

work-hardens the barrel, and requires less skill to accomplish.  However, it needs even more 

force than broaching, requiring a dedicated machine.  Also, the residual stresses it leaves in the 

barrel needs to be relieved to maintain accuracy. 

                                                 

5 http://www.pyramydair.com/blog/images/rifling-button-web.jpg 
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2.4.4 Hammer Rifling 

 The final technique for making barrel rifling is hammer rifling.  Hammer rifling involves 

sliding an oversized barrel over a hardened mandrel with the negative images of the inside of the 

barrel.  Once it is locked into place, a series of massive hammers compress the barrel into the 

mandrel to cold-forge the rifling and elongate the barrel by up to 20 percent.  This is the fastest 

method for making barrels.  It can also make different barrel designs if a different mandrel is 

made.  However, it leaves extensive stresses in the barrel which needs to be relieved.  This also 

requires a tremendous investment to install. 



2.5 Projectile Design Considerations 
 For the shape of the new projectile, consideration was given to any shape that had 

undergone investigation in the fields of ballistics and aerodynamics. Ballistic science focuses 

especially on bullets, gravity bombs, and rockets; therefore, many of our shapes mimic 

projectiles in those fields. A circular front profile was chosen to limit the difficulty presented in 

producing projectiles with fins or any other added structure. 

2.5.1 Tangential or Spitzer Ogive 

In ballistics and aerodynamics, an ogive is a curved, pointed surface used to form the 

front of a projectile, generally a bullet, missile, shell, or aircraft. 

The tangential, or Spitzer, ogive is a shape where the radius of the circular front of the 

projectile meet the shank of the projectile at zero angle, as shown in Figure 11. This is a very 

common ogive for high velocity rifle bullets. 

The sharpness of this ogive is expressed by the ratio of its radius to the diameter of the 

shank, or R/D from Figure 11. A value of one half would be a hemispherical nose, and larger 

values would be progressively sharper. Values from 4 to 10 are commonly used in rifles, with 6 

being the most common.  

 

Figure 10: Geometry of an ogive projectile 
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We chose to design and test a 3-S and 6-S projectile, 3 and 6 referring to the respective 

R/D ratio, and S identifying it as a Spitzer Ogive.  Although our rounds will never approach 

speeds close to a rifle round, we still chose to test a 6-S projectile due to its aerodynamic shape. 

Although 3-S is not a commonly used shape in firearms, it was still tested to see if the pointed, 

but much less sharp nose would be beneficial.  

The downside to this shape is that due to its sharper nose, the centre of gravity is further 

aft. This makes the projectile less stable, causing the round to be pushed more than it is pulled. 

This means smaller perturbations may potentially cause the round to want to flip around. 

Gyroscopic stabilization solves this problem; however, due to the slow speed of paintball rounds, 

our spin rate will be smaller than a typical rifled projectile. 

 

Figure 11: Numbered Sizing of multiple spitzer ogive rounds 

2.5.2 Elliptical Ogive 

The elliptical ogive is similar to a Spitzer ogive; however, the nose is more rounded. The 

profile of this shape is half of an ellipse, with the minor axis being the diameter of the shank, and 

the major axis being the length of the nose. 

The value that designates this shape is the ratio of the length of the nose to the diameter 

of the shank, or B/D in Figure 13.  Akin with the Spitzer, a value of one half would be a 

hemispherical nose. A ¾-E bullet is the most common pistol round shape, 1-E is common in 
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round nose rifle rounds, and the ½-E shape is used in some pistol rounds.  All three of these 

shapes were used in our testing.  Since these shapes are used in pistols, it is closer to the speed 

paintballs travel at, but still significantly faster. 

 

      

Figure 12: Geometry of elliptical ogive (left) and numbered sizing of elliptical ogive rounds (right) 
 

2.5.3 Cone 
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Figure 13: Geometry of cone shaped round

The cone nose is a simple shape common 

in rockets and rifle bullets. It consists of two lines 

joining the shank at an angle, designated as a in 

. For bullets, this value is commonly 9 

to 12 degrees and is sometimes referred to as a 

spire point bullet. They are very similar to spitzer bullets of the same axial length; however, they 

take a straight path to the shank, cutting off some of the volume and making a lighter bullet. The 

projectiles tested in this project are of the same volume so do not benefit from reduced weight 

characteristics. Cones of 9 to 12 degrees are rather sharp; so, a 30 degree cone was chosen to be 

tested. 

Figure 14

 



2.5.4 Double-Sided Projectiles 

Bullets generally have a flat base or a slight boat-tail, shown in the bottom of the bullet in 

. At the base of projectiles, there originates a pressure drag which is termed “base 

drag.”  This drag is caused by turbulence in the air which has been displaced by the front of the 

bullet and fills in the area behind the base. This drag is most consequential in subsonic flow.  The 

boat-tail design would be most effective in low-speed pistol rounds, but weight and length 

restrictions limit its use. It is most often found in longer rifle rounds 

where its use causes little improvement.

Figure 15
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6 

Streamlining the aft portion of a projectile gives the air a 

smoother path to travel with less turbulence. Conventional bullets 

are limited in the use of these shapes because it creates bullets too 

long, taking up space generally used for powder. This problem does 

not arise with paintball projectiles, making double-sided rounds a 

viable option. An ellipsoid was chosen to be tested along with a double-sided ogive projectile. 

 

Figure 14: Bullet with boattail 

Problems with a streamlined aft section arise in rifling. Air is more likely to seep into the 

grooves of the rifling if it can easily flow along the rear of the projectile. There is also less 

contact with the barrel, which may cause rounds to receive less of the spinning force. For this 

reason, an ellipsoid with an added shank was chosen to be tested. 

 

6 Hoerner, Sighard F. Fluid-Dynamic Drag. 3-18 – 3-21 
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2.5.5 Tear-drop shape. 

Both ogive shapes and the cone have centres of gravity ahead of the midpoint of the axial 

length of the projectiles. This means that, without spin, the projectiles would tend to flip over 

and want to travel with their aft portion forward.  With the double-sided rounds, the centre of 

gravity is in the centre of the projectile, creating better stability without spin.  The tear-drop 

shape is a ½-E round with an angled shank which eliminates base drag and creates a centre of 

gravity more towards the nose of the projectile. 

2.6 Safety Factor 
Before selecting our final bullet design prototype it was necessary to consider safety 

factors associated with the game of paintball.  Since the rounds would theoretically be fired with 

the intention of accurately striking human beings it was important to consider certain safety 

factors related to bullet design.  It was not practical to implement a round with an extremely 

pointed nose or sleek, sharp shape which could possibly impale or break the skin of an opposing 

player.  Since injury and unnecessary pain are undesired side effects of paintball it was important 

to select a design which minimized additional damage incurred by the current circular paintball 

design.  As a result a balance between aerodynamic performance in the wind tunnel and 

appropriate safety considerations was selected.  The final selection was a more user friendly oval 

shaped round similar to a circular round but with better aerodynamic properties. 

 



Methodology  
 This project designed a series of paintball rounds and a complimentary barrel to 

determine if an improved paintball firing system based on aerodynamic and ballistic principles 

could be fired more accurately.  These prototypes were modified from specifications common to 

popular paintball markers and comply with rules and regulations observed by participants.  We 

achieved this goal by completing the following objectives described within this chapter and 

depicted below: 

• Design new, more aerodynamic paintball shapes and a grooved barrel which are 
compatible with common current paintball equipment 

• Build prototypes of the paintball rounds and barrel  
• Test the prototypes to determine the success of the modifications 

 

Modify Designs 

Build 
Prototypes 

Identify Areas for 
Improvement 

Paintball 
Shape 

Paintball 
Ballistics 

Test Prototypes

New Projectile Shapes Rifling 
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3.1 Identify Areas for Improvement 

 In order to create a more accurate system it was important to determine which areas of 

the current system could be improved upon.  We decided the two areas which impact the 

accuracy of the projectile were the shape of the paintball rounds and the components that affect 

the ballistics of the paintball, namely the barrel.  We chose to focus on these two elements for 

several reasons.  First, it would be possible to make these changes compatible with the current 

systems and this was important since it would not require rebuilding the entire conventional 

paintball marker.  Also, these elements have the most drastic impact on the projectile trajectory 

so they have the best chance of improving the accuracy. 

3.1.1 Paintball Shape 

 There were many factors which affected the design of the new paintball round shapes.  

The new paintball rounds were going to be shaped more aerodynamically than the ordinary 

circular paintball round but they were going to have the same volume.  This required modifying 

common aerodynamic shapes with changes in order to match the volume requirement.  

3.1.2 Barrel Characteristics 

 The current paintball barrel system works well at launching projectiles through a sealed 

tube; however, our shapes would become unstable without the added stability of rotating the 

round. The rotation of the round serves two purposes, gyroscopic stability and drag reduction.  

Hoerner describes the drag reduction due to rotation in the following exerpt: 

“The influence of rotation on drag reduction seems to be fourfold. First, the boundary 

layer is thickened because of the added speed component… however, this causes 
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increased drag on streamlined bodies. Second, the thickened boundary layer is likely to 

cause separation and additional form drag in the afterbody. Third, on account of 

centrifugal forces in the rotating boundary layer, separation from the base appears to be 

increased. Fourth, the added velocity component affects the stability of the boundary 

layer, thus reducing the critical Reynolds number of sensitive bodies such as spheres.”7 

3.2 CAD/CAM for Bullets and Barrel 

 Different forms of software were utilized in order to create a prototype design that was 

ready to be machined.  Virtual part models were created using Pro-Engineer and SolidWorks.  

These files were imported into GibbsCAM and machining operations were added using 

specifications appropriate for the materials and machines which would be used.  The post file 

was created using GibbsCAM after all machining operations were rendering properly and the 

prototype was ready to be created. These files can be found in Appendix D and Appendix E. 

3.3. Build and Test Prototypes  

 After the finalized bullet and barrel designs were selected, the next step was to produce 

prototypes of each component and test the effectiveness of these parts.  The parts were 

manufactured for the most part at the WPI machine shop using CNC lathes and various other 

finishing tools located within the shop.  The testing was performed at several locations including 

the wind tunnel and an open field. 

 

7 Hoerner, Sighard F. Fluid-Dynamic Drag. 3-13 
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3.3.1 Machining Prototype Rounds 

 The process of machining the ten wind-tunnel prototype paintball rounds was basically an 

assembly line operation.  The first step was to cut two inch diameter PVC piping into sections 

approximately eight inches long using a bandsaw.  Next, the PVC sections were placed into a 

CNC lathe loaded with the CAM software for each round shape.  The tool offsets were 

programmed before each round could be created and the software for a round was run.  The 

machine produced a round which was ready to be drilled, tapped and pressed. 

 The rounds needed to be mounted on the force balance system present in the wind tunnel 

so it was necessary to create a system to hold them into place.  Each round needed to be drilled 

using the vertical drill press so that a steel rod could be inserted.  The steel rods were drilled and 

set screws were inserted into each rod.  The final step was to insert the rod and set screw 

combination into the round using the arbour press.   



3.3.2 Wind Tunnel and Drag Force Testing 

There were two purposes to the wind tunnel testing that was being performed. One was to 

determine the drag force that the projectiles would be exposed to under normal firing conditions. 

The second was to determine which shapes received the least drag and were, therefore, the most 

aerodynamic. 

The wind tunnel being used was not capable of, nor would it 

be particularly safe, testing our rounds at full speed, around 90 m/s. 

The following equation is used to calculate drag: 
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Equation 1: Coefficient of drag equation 

 

Where CD is the coefficient of drag, D is the drag force, ρ is the fluid 

density, V is the velocity, and S is the sectional area. 

So, in order to get an accurate drag reading, we would have 

to increase the size of the projectiles that would be tested to 

compensate for the lower speed.  The maximum speed of the wind 

tunnel used was 55 m/s; however, as a safety precaution and to decrease instability in our testing 

device, we chose to operate at half of that speed, or 27.5 m/s. This is roughly ¼ of the speed our 

final projectiles would be travelling at. This would mean our V value in the equation would be 

multiplied by ¼, meaning the area S would need to be multiplied by 16 to compensate. Since 

, r would have to be increased by a factor of 4 to increase S by a factor of 16. This meant 

that, to test our rounds, we would have to scale them up by a factor of 4. 

Figure 15: Drag measuring 
device in wind tunnel 

 

 



The testing device works by measuring the distance that the unit has moved. The upper 

portion of the device is mounted on metal strips which can bend, allowing the device to move 

slightly when force is applied. The device shown in  measures the distance between its 

tip and the metal sheet directly in front of it in Volts. As the force increases, the distance will 

increase, and so will the voltage. The voltage is displayed on the device shown in Figure 17. 

Figure 18

 
 

Figure 16: Voltage readout  
Figure 17: Force measuring device (base) 

To translate these voltage readings to force measurements, the device had to be 

calibrated. This was done with the pulley system shown in Figure 20. Voltage readings were 

taken while hanging various weights from the pulley system.  Values for weight were then 

plotted against their voltage values. The slope of this trend line would then show how changes in 

voltage translated to changes in force. 

To test the force on each shape, 
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Figure 19: Round mounted on force measuring 

 

Figure 18: Force measuring device calibration 
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measurements were taken while the wind tunnel was running with nothing on the device, and 

then measurements were taken while the wind tunnel was running with a round placed on the 

device, shown in Figure 19. The difference between these two values was then recorded. This 

value is converted to Newtons using the calibration value determined earlier.  This value is the 

drag force, and is roughly the same force the tested shape would encounter if it was travelling at 

300 ft/s and was 0.5 in. in diameter. 

This drag force value can also be used to determine the coefficient of drag using the 

formula at the beginning of the section. The values calculated can be compared with those from 

historical data to confirm the validity of our testing. 
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3.4 Selection of a Firing Platform 
Many different paintball markers were available for our testing, but ultimately the 2004 

Shocker Sport was chosen as the firing platform for the barrel testing.  It was chosen for multiple 

reasons relating to its unique firing mechanism.  These reasons are the closed bolt firing position, 

the controlled firing volume, low firing pressure, and ease of adaptation. 

In order to understand the advantage of the Shocker, it is necessary to understand how a 

typical firing system works.  There are hundreds of different designs for paintball marker valves.  

For this example the Tippmann A-5 is being used, due to the fact that most other designs follow 

a similar system or suffer from the same flaws.  Figure 21 shows a Tippmann A-5 at rest.  The 

black outline represents the cast-iron receiver and ergonomic fixtures of the marker.  All orange 

parts represent parts made of HDPE.  Moving from left to right is the ball-detent, made for 

keeping the ball in place while in the rest position.  To the right and slightly above that is the 

bolt.  Moving on, there are orthogonal orange lines representing the valve housing.  The final 

plastic component is the trigger, located furthest to the right.   

All grey components represent pieces made from stainless steel.  The most notable are 

the large body in center constituting the valve wall, and the long horizontal bar known as the 

connection rod.  The large lime green component is made from aluminum and is known as the 

hammer.  The pink component is known as the sear and is also made of stainless steel, but is 

colored differently to be distinguished.  Likewise, a guide pin for the drive spring (a red zigzag) 

is placed within the hammer that is colored pink for visibility.  The yellow area is pressurized 

CO2, running a pressure between approximately 500 PSI and 2200 PSI, depending on ambient 

temperature (in accordance with Appendix A: CO2 phase change diagram), supplied by a high-

pressure gas bottle.  All zigzag markings are springs, while all blue lines represent o-rings.  



However, the blue-swirled circle represents a COTS .68 caliber paintball.  All dark-green 

components are made from brass with the rightmost component being called the valve pin.  The 

red component is a COTS carbon steel pipe bushing using NPT threads. 

 
Figure 20: Tippmann A-5 at rest 

 

Figure 22 shows a Tippmann A-5 in its first stage of firing.  Note that the orange trigger has been 

tilted, causing the pink sear to release the hammer, powered by the red drive spring.  
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Figure 21: Tippmann A-5 in its first stage of firing 

 

Figure 23 shows a Tippmann A-5 in its second stage of firing.  A number of changes have taken 

place.  The force of the drive spring has pushed the hammer forward.  Likewise, the connection 

rod has forced the bolt and paintball into the barrel, forming a seal between the barrel and valve 

assembly.  Also, the kinetic energy of the hammer has temporarily overcome the tension of the 

valve spring holding the valve pin shut.  This has caused the pressurized gas to flood out through 

the newly opened hole. 
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Figure 22: Tippmann A-5 in its second stage of firing 

 

Figure 24 shows the Tippmann A-5 in its third and final stage of firing.  The cutaway of the 

valve has been covered by the stainless steel wall of the valve.  Note that the pressurized CO2 

wrapped around the valve, followed the valve housing through the bolt, and expelled the 

paintball down the barrel. 
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Figure 23: Tippmann A-5 in its third stage of firing 

 

Figure 25 shows the Tippmann A-5 in its first stage of reloading.  It is important to note that 

there is no time delay or manual input between firing and reloading stages in most designs.  Note 

that the hammer has been repulsed by the expanding gas leaking through the hole left by the 

valve pin, and is retreating.  The sear is in place in its original position to catch the hammer when 

it returns and prevent it from cycling again prematurely. 
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Figure 24: Tippmann A-5 in its first stage of reloading 

 

Figure 26 shows the Tippmann A-5 in its second stage of reloading.  Note the valve spring has 

moved the valve pin back to the rest position, closing the valve.  This has left the hammer to 

complete its cycle on its own momentum and allowed the valve to recharge.  The sear has been 

pushed down by the bevel in the hammer and is scraping along the bottom of the hammer.  With 

the movement of the hammer came the movement of the bolt, which broke the seal with the 

barrel, allowing all remaining pressure to escape.  A paintball is also slipping into the chamber 

through a hole in the receiver through gravitational pull, or in some cases, a spring- or gas-

powered feed system. 
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Figure 25: Tippmann A-5 in its second stage of reloading 

 

Figure 27 shows the Tippmann A-5 in its third and final stage of reloading.  This stage takes 

place immediately before the rest state.  The hammer and bolt have moved to the rear of the rest 

position and allowed the sear to engage a slot in the hammer without simultaneously engaging 

the trigger.  This allows the trigger-sear mechanism to function as a semi-automatic, and cycle 

once per trigger pull.  Before the paintball marker returns to its rest position, a number of actions 

will take place.  The hammer and bolt will move forward, making the sear reengage the trigger, 

the valve will recharge, a new paintball will fall into place, and the ball detent will spring back 

into place to keep the ball from rolling down the barrel. 
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Figure 26: Tippmann A-5 in its third stage of reloading 

 

The accuracy disadvantages of this system are numerous.  First, the mechanical trigger-

sear mechanism creates a great deal of friction at many joints, making for a heavy trigger-pull 

which can cause the marker to inadvertently jerk.  Second, the entire machine depends on the 

movement of a heavy cylinder of aluminum bucking back and forth inside the marker.  This 

causes a shift in the center of gravity, which causes the whole marker to bounce even in the 

steadiest hands in the midst of the firing sequence.   

These factors can be mitigated by using a bench-rest; however, there are three factors that 

can not.  The first is that the rate at which the gas reaches the ball is controlled by a set screw 

that is placed partially through the long neck of the valve housing.  This provides a poorly 

regulated and disrupted airflow onto the rear of the ball.  This leads to inconsistent muzzle 

velocities and unintended spinning.   

Second, the volume of CO2 released during the firing sequence is dependent entirely 

upon the force with which the hammer strikes the valve pin.  The velocity component is 
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dependent on the amount of friction encountered by the hammer during its sliding.  This is 

subject to change in any sliding part where the hole is as loosely-fitting as cast iron, especially if 

factors such as temperature change or fouling take place.   

Finally, the biggest disadvantage is that the hammer slams into the valve upon firing.  

This causes a transfer of momentum into the firing platform and audible vibrations throughout 

the paintball marker.  These vibrations are normally ignored in a firearm because a bullet moves 

supersonic and outruns these vibrations.  However, in a paintball marker, these vibrations cause 

the barrel to whip at the muzzle, resulting in an unpredictable terminal direction of the barrel 

when the ball is last in contact with it. 

 While hundreds of paintball markers mitigate one or more of these many inaccuracy 

factors, all failed to successfully solve two major issues.  The first issue was how to control the 

volume of gas expelled, and the second was how to keep from moving a heavy hammer to start a 

high-energy firing cycle.  Produced from 1995 to 2002, the Shocker Sport solved all of these 

issues. 

 Figure 28 shows the Shocker Sport at the rest position.  There are 4 different levels of the 

Shocker shown here, partitioned by tan-designated aluminum.  The bottom level contains two 

solenoid-controlled valves and an unseen computer board and battery pack to coordinate them; 

one marked 4000 and the other marked 3000.  Above that is the power tube, indicated by a small 

white arrow.  Above that is the valve tube containing the valve mechanism straddling the gas 

chamber.  Placed on top is the bolt tube containing the bolt, barrel, and ammunition feeder.  It is 

important to note that in reality, the power tube and valve tube are next to one another, not 

stacked.   



 Unlike the previous drawing, all components are machined aluminum.  The exceptions 

are as follows.  All green sections are made from PTFE.  Although not shown, the bolt head has 

an array of Venturi tubes, similar to magician’s levitator.  All light-blue areas are pressurized air 

or nitrogen, running between 200 and 500 PSI, depending on the setting of the regulator and 

desired velocity.  Gas is supplied through the white arrow in the rear, indicating a COTS NPT 

attachment leading to the gas regulator.  All dark pink sections indicate O-rings.  There is a 

series of black circles located to the rear of the valve mechanism, which indicates a cutaway 

view of a spring.  The large grey circles in the upper right represent paintballs. 

 Note that at the rest position a paintball is already loaded into the barrel and ready to fire, 

eliminating all the need for any motion of the bolt before firing.  Also, the gas is required to be 

low-pressure regulated air or nitrogen, a gas that is far from a phase change and acts in an ideal 

manner.  This allows for consistent and predictable input into the valve. 

 

 
Figure 27: Shocker Sport at rest 
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 Figure 29 shows the Shocker Sport in its first phase of firing.  Note that the 3000-

solenoid valve, known as the valve solenoid, is charged.  This creates a small channel between 

the power tube and the valve.  In essence, this provides a small pilot push on the valve.  

Meanwhile, the rear of the valve mechanism has closed off the gas chamber in order that the gas 

enclosed is the only gas expelled. 

 
Figure 28: Shocker Sport in its first stage of firing 

 

 Figure 30 shows the Shocker Sport in its second stage of firing.  The paintball is expelled 

by the fixed volume of air that has been released.  Note that the valve solenoid remains powered 

in order to freeze the marker in its pre-firing state until the round is completely expelled.  After 

the round has left the barrel, firing is complete. 
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Figure 29: Shocker Sport in its second stage of firing 

 

 Figure 31 shows the Shocker Sport in its first stage of reloading.  Note that the valve 

solenoid has had its power cut off, allowing pressure from the power tube to push the whole 

assembly to the rear.  This, in turn has opened the gas chamber to refilling from the power tube.  

Meanwhile, the 4000-solenoid valve, also known as the bolt solenoid has vented the pressure on 

one side of the bolt and pressurized the other side of a three-way valve, pushing the bolt to the 

rear.  This has allowed another paintball to feed. 

 
Figure 30: Shocker Sport in its first stage of reloading 
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 Figure 32 shows the Shocker Sport in its second stage of reloading.  Note that the bolt 

solenoid has been discharged, which allows gas from one side of the three way valve to vent 

while re-pressurizing the other.  Before returning to the resting position, the bolt has to move all 

the way to the front. 

 
Figure 31: Shocker Sport in its second stage of reloading 

 

 While this system gave many gaming advantages such as firing rate and reliability, it 

mitigates all the factors of inaccuracy inherent in other markers.  By controlling the entire system 

by computer, the trigger pull could be set to no more than a mouse-click.  By making the valve 

smaller, operating using gas pressure, well-lubricated, internalized, and made from lightweight 

PTFE, the amount of impact and center-of-gravity shift that is produced is negligible.  With a 

consistent input and isolated gas chamber, the amount of volume could be predicted, and velocity 

can be changed with regulation of the gas pressure alone.  The addition of Venturi tubes onto the 

bolt-face made for laminar flow in the barrel to prevent unintentional spinning of the ball.  

Additionally, the Shocker Sport is nearly twice as heavy as the Tippmann A-5, allowing any 

vibrations that are created to be greatly dissipated. 
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3.5 Creation of a Rifling Cutter 
 Given the fact that button and hammer rifling were far beyond the capability of WPI’s 

machine shop and the means of our project, the only options remaining were to create a broach 

or cutter system.  However, considering that only one barrel was to be built, investing time into a 

mass-production tool such as a broach was impractical, and a simpler tool would be favorable.  

Thus, the rifling would need to be cut using a rifling cutter. 

 A rifling cutter hook is traditionally made from high-speed steel or carbide in order that it 

can cut hardened steel.  However, for this application, the material would be aluminum, which is 

significantly softer.  This allowed the cutting tool to be made from a more widely available and 

easily machinable material.  We used a 14-inch long, .5-inch OD, .25-inch ID, piece of 4130 

steel that had remained from the manufacture of wind tunnel prototypes to make up the body.  

This was subsequently machined down to a .487 inch diameter on all areas except the head. 

While a customized cutting bit was beyond our means and technology, a stainless steel 

set screw roughly seven times as hard as aluminum, would easily cut our material.  Thus, the rod 

would have a set screw’s base emitting from it to scrape the surface of the barrel to form the 

rifling.  During rifling, the set screw used Loctite threadlocker to keep from twisting back into 

the cutter, which would be reapplied every time the screw was stepped to a greater height. 

In order to keep the bit coaxial and concentric with the ID of the barrel, a front and rear 

guide near to the bit were needed.  They were quarter inch bands of OD .494, or .001 under bore 

diameter in accordance with the Machinery’s Handbook8’s slip fits.  Between the two bands 

 

8 Jones, Franklin D., and Henry H. Ryffel. Machinery's Handbook. Machinery's Handbook. 28th ed. 2008 
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would be a quarter inch band of .490, into which a 6-32 through hole would be placed through 

the long axis of the tool.   

3.6 Creation of Ammunition 
 After the completion of wind tunnel testing, we decided on which shape the projectiles 

would best take to incorporate internal, external, and terminal ballistics.  Then, we needed a way 

to create these rounds in a relatively quick manner to make testing possible.  While the 

traditional method for making paintball ammunition would theoretically make rounds in our 

needed shape the machinery to do this was well beyond our means. 

 There were three different designs for rounds that we wanted to test, all with the same 

outside shape but with different insides.  The first was a solid round.  This round would be 

essentially a light bullet and would prove the maximum accuracy of the barrel.  The next type of 

round was the liquid-filled.  This round would be made through the same process as a paintball 

and would test what affect the rifling would have on it.  The final type of round would be a 

finned round.  This round would be similar to a liquid-filled round, but would have a fin 

protruding into the liquid fill so as to agitate it when spun and make all the mass spin.   

 In order to make these rounds, we decided to use a casting process, as it was inexpensive 

and easy to manufacture.  Though the rounds would not be marketable, they would be able to 

demonstrate the objectives.  This required the creation of several molds.  Figure 33 shows a 

photograph of the 4 molds that we made using SolidWorks, GibbsCAM, and a VM-3 CNC 

vertical milling machine. 



 

Figure 32: Photograph of Ammunition Molds 
 

Note in Figure 33 that numbers 2 and 4 are concave, while 1 and 3 are convex.  Also, 1 

and 4 have dowel pins protruding from them, while 2 and 3 have holes to match.  When creating 

solid rounds, 2 and 4 are placed together and filled with liquid wax through a syringe entering 

through a notch in the top and then cooled.  When creating liquid filled rounds, the holes of 3 are 

lined up with the pins of 4 and liquid wax is placed into the mold and cooled.  This would create 

half of a round, would be matched up with another similar half, and would be placed inside of 2 

and 4.  While inside there, a syringe would inject them with hot water, causing the wax to melt 

and the seam between the two halves to form.  Finned rounds were produced the same way, 

except using numbers 1 and 2 initially to make round-halves.  Note that number 1 is similar to 

number 3, but has a slit going through it to form the fin within the round. 
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3.7 Creation of the Barrel 
 Because the barrel presented so many manufacturing challenges, it took the longest time 

to create.  Creation of a barrel takes many steps, including deep-hole drilling, reaming, polishing, 

rifling, and profiling. 

 Due to the fact that WPI’s machine shops did not have the capability to run pure oil 

coolant through the spindle at 1000 PSI, it was impossible to deep-hole drill the barrel ourselves.  

Rather than set up some sort of contraption that may have accuracy issues, we instead opted to 

contract it out.  Two rods of aluminum round was turned down to .995 inch OD and faced off to 

be just over 10 OAL, and sent to Gartman Arms in Wrentham, MA.  At Gartman Arms, the rods 

had a .494 inch hole cut down the entire length of the barrel. 

 Then, in order to ream it, we ordered a .495 reamer, and placed it in a VM-3 vertical 

milling machine.  We centered the reamer by performing a bore touch-off on the freshly made 

hole.  We used copious coolant that was programmed to aim at the entrance hole to the barrel, 

rather than the head of the reamer.  The coolant would then wick down the reamer and flush 

away the flake-like chips that the reamer was producing.  The reamer was spun at 500 RPM at a 

rate of 1 inch per minute, and fed in two inches (length of the cutting head) at a time, and then 

fed outwards, and then repeated.  This was repeated for each two inch section for the entire 

length. 

 Following that, the barrels were polished.  This was done using a section of threaded 

plastic rod and a rag due to their low hardness that would not scratch the barrel and their quick 

availability.  The rag was smeared with a paste of polish and wrapped tightly on the barrel, and 

then run through the same program as the reamer.  After the cycle was finished, a less abrasive 
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polish was smeared on a new section of rag and the cycle repeated.  This process was used for 

three successively less abrasive polishes and gave the inside of the barrel a mirror finish. 

 Finally, we needed to rifle one of the barrels, while leaving the other smoothbore for 

testing purposes.  The barrel that needed to be rifled had all but the last two inches turned down 

to .9 inch in order to create a step where the future rifling would be.  This would give the spindle 

something to push against during the rifling process.  In order to rifle this barrel, the rifle cutter 

had to be mounted in a collet, which in turn, had to be tightly screwed into a machine tool holder 

mounted on the turret of the SL-20 lathe.  The SL-20 was selected to be used because it had fine 

spindle control and could turn at the slow, controlled rate used in making rifling.  With the rifling 

tool being 14 inches long there was very little clearance between the end of the tool, and the head 

of the spindle.  Thus, in order to load the barrel for rifling, the turret would have to be turned into 

place, the barrel loaded behind the spindle, and then the tool loaded.  Then, once that was 

complete, the barrel would be pulled forward to the point that the chuck teeth engaged the step.  

Then, the turret was slowly handle-jogged forward until the front guide had been placed into the 

bore, with the cutting tooth just outside the barrel.  Before running the program, the tool was 

coated in AlumTap aluminum cutting solution.  Finally, with the optional-stop on, the rifling 

program (written in Appendix D) was run.  Every time an optional stop was met, more AlumTap 

was applied to the tool.  Once the end of the program was met, the set screw was stepped up to 

its new height by adding an additional .0001 inch, threadlocked into place. This process was 

repeated without removing the barrel or tool from their position. 

 Finally, once threading was completed, the external profile of the barrel was cut.  This 

was done by first observing a barrel made for the Shocker Sport under the optical comparator 

and measuring its threads.  These threads were found to be two different threads that were 8 TPI 
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with a major diameter of .92, but with a depth-of-cut equal to a UNC 16 TPI screw.  Then, a 

GibbsCAM lathe program was written that would rough at the recommended feed and speed of 

the Machinery’s Handbook9 that would leave .001 inches of material on the shaft.  Then, the 

lathe was programmed to follow the profile of the barrel at a 10 percent feed rate to leave a clean 

surface finish. 

 

9 Jones, Franklin D., and Henry H. Ryffel. Machinery's Handbook. Machinery's Handbook. 28th ed. 2008 
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We tried to keep the barrel and round as the 

only variables.  The same marker, distance, 

target size, velocity, and volume were used. 

 For the first set of tests, a target was 

placed at a distance of 50 ft, shown in Figure 34.  The marker was placed in a gun vice placed on 

a solid surface to ensure there would be no movement of the marker after the recoil of a shot, 

shown in Figure 35.  The first barrel placed on the marker was the traditional barrel for spherical 

rounds.  A custom fitting allowed the barrel to keep a tight seal on the balls to ensure optimal 

performance of the balls. Each round was loaded into the chamber with the barrel off, then the 

barrel was screwed in and the round was fired. A chronometer was placed on the end of the 

r to ensure consistency and also to analyze what 

3.8 Test Firing 
 The test firing process was 

developed to compare our barrel and 

projectiles against the traditional spherical 

round altering as few variables as possible. 

barrel to measure the speed of each round in orde

effect any minor changes in velocity had on the 

rounds. The target for the spherical rounds was a 

paper target that the rounds were able to 

penetrate without breaking. This made it easy to 

mark each shot and determine a grouping. Ten 

shots were fired on the target. 

 

  
Figure 34: Target for spherical rounds (left) and 

ellipsoidal rounds (right) 

 
Figure 33: Paintball marker mounted in gun vice 
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 The next test was the rifled barrel and the ellipsoidal rounds. We planned to reuse the 

ellipsoidal rounds since they were difficult to manufacture.  To do this, the target for the 

ellipsoidal rounds, shown in Figure 34, was an easily penetrated tissue paper mounted on a 

sleeping bag to create a cushion for the projectiles to land on.  The marker remained in the same 

position as before and the barrels were swapped. The ellipsoidal projectiles were loaded in the 

same manner as the spherical ones, with the barrel off. A round was fired, and then ad

w ade to the marker to get the projectile to hit the target. If the velocity of the round was 

high or low, adjustments could be made to the pressure. Ten shots were to be fired.  This 

process would be repeated for the smooth barrel with ellipsoidal rounds. After this set of tes

was complete, the target would be moved 25 ft and the process repeated. The targets would be 

moved out another 25 ft for the third set of tests.  The targets could then be analyzed to 

determine which round and barrel combination caused the smallest grouping at various distances

 



Results and Analysis 

4.1 Wind Tunnel and Drag Force Testing 
Figure 21 shows the calibration of the force measuring device.  Each weight was tested 

several times and a trendline was made to determine that there was a 2.9 millivolt increase for 

every gram of force applied to the device.   

 
 

Figure 23 shows the voltage that was measured while running the tunnel in volts.  These 

values were then converted to grams using the conversion factor from the graph above. A 

Newton force value is also shown which was used in determining the rifling spin rate.  The 

Coefficient of Drag could then be calculated using the equation, 

 

where D is the Drag value in Newtons, ρ is the density of air (1.2 kg/m3), V is the velocity of the 

wind tunnel (27.5 m/s), and S is the area of the front view of the projectile (0.002027m2). The 

coefficient of drag is used to check and make sure our testing matches up with historic data. 

Cylindrical bodies in axial flow, shown in Figure 22, with length to diameter ratios similar to 
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ours (between 1.5 and 3) should have Cd values ranging from 0.2 to 0.4, which they do. Our cone 

should have a Cd value ranging from 0.2 to 0.5, which it did.10  

 Shapes with lower Cd and Drag force values are the most aerodynamic. 
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Figure 36: Drag Coefficient of cylindrical 
bodies in axial flow 

Volts grams Newtons Cd Shape 
0.0792 27.33 0.2681 0.2915 cone 
0.0825 28.45 0.2791 0.3035 .75E 
0.0830 28.62 0.2808 0.3053 6S 
0.0837 28.88 0.2833 0.3081 3S 
0.0840 28.97 0.2842 0.3090 double ogive 
0.0935 32.24 0.3163 0.3439 tear 
0.1065 36.72 0.3603 0.3917 1E 
0.1250 43.10 0.4228 0.4598 ellipsoid w/o shank 
0.1367 47.13 0.4623 0.5027 .5E 
0.1378 47.53 0.4663 0.5070 ellipsoid w/ shank 

Table 1: Force and Cd values for projectiles 

4.2 Results from Test Firing 
The test setup we developed was successfully able to create a grouping at 50 ft with 

spherical rounds as a base to determine the success of our rounds and barrel. Once we began 

firing ellipsoidal rounds out of the rifled barrel, problems began to arise. The rounds were 

successfully fired out of the barrel at speeds in the range of a standard paintball; however, 

consistency could not be upheld.  Rounds would begin to fall apart as they were loaded. Other 

 

10 Hoerner, Sighard F. Fluid-Dynamic Drag. 3-22 



rounds seemed to get damaged while traveling down the barrel. This would then cause the 

rounds to spiral out of control in the air.  Several wounds were able to accurately hit the target, 

but we were not able to manufacture enough rounds to test either barrel enough times. 
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Figure 38

The rifling process did work.  Figure 38 shows the markings left on the ellipsoidal rounds 

as the rifling cut into them and caused them to turn. The turning also explains the helical 

trajectory that damged rounds took after leaving the barrel.  

 
Figure 37: Ellipsoidal round after firing (left) and a closeup of the rifling marks (right) 

 also shows that some rounds caved in at the back under the pressure of the 

CO2. Although this may seem like a negative characteristic at first, rounds that had this type of 

damage withstood testing for longer with better accuracy than whole rounds.  This implies that 

having a smooth aft portion of the projectile may lead to a more streamlined profile in the air, it 

may allow gas to leak through the grooves of the barrel during the firing process.  Having this 

“pocket” behind a projectile allows the gas to more easily push the projectile forward.
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Conclusions and Recommendations 

 Our project set out to develop and test a modification to a well established firing system 

in hopes to improve accuracy and range. This chapter will discuss what our project was able to 

prove and recommend future endeavors that could be taken to further develop this firing system 

5.1 Conclusions 
 After a long development and some testing, we were able to conclude that there is 

potential to increase paintball accuracy through modified rounds and rifled barrels.  We analyzed 

various shapes and through considerations for both safety, aerodynamics, and manufacturing, 

chose a shape that successfully travelled, with rotation, to a small target at 50 ft away. However, 

we were not able to consistently replicate that firing in order to merit an actual conclusion on 

whether this system is actually more accurate. 

 We concluded that a system could easily be integrated into current paintball equipment. 

The only changes necessary would be to swap out a barrel and load a different type of projectile.  

If this system were further developed, the paintball community would be able to easily reap the 

potential benefits. 

 Through unforeseen circumstances, we were able to prove that a projectile with a pocket 

for air, similar to that found in many bullets, would be able to travel down a barrel with more 

stability. A greater variety of projectiles would certainly bring further conclusions on this front. 
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5.2 Recommendations 
 The many different aspects of developing a complicated firing system creates a daunting 

task when trying to modify the means of launching a projectile.  This leads to many problems 

throughout the platforms development and many recommendations for future investigation into 

the system.  

 When developing projectiles, it is important to remember that paintball projectiles must 

be unlike other projectile. Although some shapes may be more aerodynamic, they may pose a 

safety risk for a game developed to mimic firearms without the dangers. It is also important to 

consider the ease of manufacturing such projectiles. Since paintballs are meant to break, the 

chosen shape must be strong enough to withstand the forces applying while they are being fired, 

and must also be weak enough to shatter when making contact with a person. The process used 

to create the rounds was not reliable enough to produce a significant amount of rounds for 

testing.  The area with the largest room for improvement was the quality of the test rounds.  A 

shape and material must be chosen that can withstand the pressure of the gas combined with the 

cutting and turning force from the rifling. The method for developing that round must also be 

reliable enough to create enough rounds to show a consistent grouping on a target. This requires 

enough rounds to get the marker position correctly along with the rounds considered for the 

grouping. 

 Creating a rifled barrel was the most difficult task. It is not a common process in most 

machine shops, so it requires a lot of problem solving for the inevitable incapability of the 

facilities in use.  The tools and processes used created a very successful rifled barrel.  The most 

significant area for improvement for the barrel would be to better smooth out the interior.  
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During testing, some roughness in the rifling may have caused a piece of some of the rounds to 

fall off, causing very erratic flight. 

 This project proved there is definitely potential to improve upon and revolutionize an 

already extremely popular recreational activity with little extra cost to the user.  It is a difficult 

task, but one that seems as though it would work if the materials were correct. 

  

 

 

 



Appendix A: CO2 Phase Diagram 
This diagram is used made specifically for paintball for use by airsmiths.  In a paintball 

CO2 tank, under normal conditions, there is a section of the tank that is liquid, and a section that 

is gas. CO2-powered paintball markers work on the idea of latent pressure, that pressure remains 

the same until all of a substance has changed phases.   

 
Figure 38: CO2 Phase Change Diagram 

 

Note that at 2200 PSI, a safety burst disk fails, and the bottle has a controlled release of the 

entirety of the contents.  As is shown, in extreme temperatures or low tank fills, pressure is not 

consistent due to a lack of liquid within the bottle.  It is also important to note that firing of the 

paintball marker cools the tank, moving its pressure to a different isobar. 
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Appendix B: Moulton’s Calculations 
 Major Forest Ray Moulton started from the previous calculations by Newton that defined 

how much resistance to transverse twist a longitudinal twist would produce.  This is described by 

the angular momentum equation illustrated as Equation 1. 

Equation 2: Angular Momentum 
 

Where: 

L represents angular momentum (rad-lbf-in2/s) 

I represents the moment of inertia around the rotating axis (lbf-in2) 

ω represents the angular velocity (rad/s) 

However, this raised the question of why a highly-stabilized round would have a sporadic 

flight path.  The answer lay in that a round needs to pitch at a slow rate to stay tangential to its 

parabolic flight path.  The challenge that lay before Major Moulton was to find out just how 

much twist needed to be applied to a round to prevent yawing, but to allow for the pitch of the 

flight path.  In order to do this, he defined what the strength of the force was that caused the 

round to pitch.  Then, he turned to the Newtonian equation relating torque and angular 

acceleration, as exhibited in Equation 2. 

Equation 3: Newtonian Equation relating Torque and Angular Acceleration 

 

Where: 

α represents angular acceleration (rad/s2) 

τ represents torque (lbf-in) 

I represents moment of inertia (slug-in2) 
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He reasoned that the force that causes any oblong projectile to stay tangential to its path 

is the force of drag applied to the circumferential edge of the projectile.  From there, he 

determined that the force of drag, multiplied by the moment arm, in this case being the radius of 

the projectile, would have to overcome the angular momentum caused by the rotation of the 

projectile, but only by a small amount. 

He substituted αT for α, IT for I, and Fd*r for τ, where r represents radius of the projectile 

as viewed from the front in order to calculate the angular acceleration a projectile would go 

through during its flight.  Assuming that a projectile is a cylinder (a good approximation), and IT 

for a cylinder is as stated in Equation 3, and the force of drag, then the equation for αT would be 

Equation 4. 

Equation 4: Moment of Inertia of a Cylinder about its Transverse Axis 

 

Where: 

IT represents the moment of inertia of a solid cylinder about its transverse axis (slug-in2) 

m represents the mass of the cylinder (slug) 

r represents the radius of the cylinder (in) 

h represents the height of the cylinder (in) 

Equation 5: Extended Description of Transverse Angular Acceleration 

 

Where: 

αT represents the angular acceleration about a transverse axis (rad/s2) 

ρ represents the density of air (slug/in3) 
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v represents the velocity of the round (in/s) 



Cd represents the coefficient of drag (unitless) 

r represents the radius of the round when viewed from the front 

m represents the mass of the round (slug) 

h represents the height of the cylinder (in) 

 

All elements of αT could be measured using simple instruments.  However, the issue became 

discovering the optimal ratio between longitudinal angular momentum (LL) and transverse torque 

(τT).  By setting τT equal to LL multiplied with a constant, C, he created the following equation: 

 

Then, substituting in their Newtonian equivalents, the following equation is formed: 

 

Then, since αT could be calculated by Equation 4, it would be made into a standalone variable: 
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Finally, in order to find out the value of C, Moulton fired thousands of rounds of varying calibers 

and twist rates, and recorded the trueness of each flight.  He noticed that there was actually a 

parabolic correlation between ωT and αT.  What resulted was Equation (93) from Methods in 

Exterior Ballistics, defined here as Equation 5.  It is important to note the less-than sign rather 

than an equal sign because it is safer to for the barrel to over-stabilize the round than to under-

stabilized it. 

 

Equation 6: Necessary Spin for Stabilization 

 

Where: 

αT represents angular acceleration about a transverse axis (rad/s2) 

ώL represents angular velocity about the longitudinal axis, ie twist rate (rad/s) 

IL represents the moment of inertia about the longitudinal axis (lbf-in) 

IT represents the moment of inertia about a transverse axis (lbf-in) 
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Appendix C: Calculating Reynolds Number 
An important factor when researching the forces that our projectiles would undergo is the 

Reynolds Number.  It is calculated using the equation: 

Equation 7: Reynold's Number Equation 

 

where: 

vs is the mean fluid velocity, 300 ft/s or 91.44 m/s 

L is the characteristic length, ranging from 1 to 1.5 inches 

μ is the (absolute) dynamic fluid viscosity, 3.75x10-7 lb*s/ft2 

ν is the kinematic fluid viscosity, defined as ν = μ/ρ, 1.58x10-4 ft2/s or 15.11x10-6m2/s 

ρ is the density of the fluid, .0745 lb/ft3 or 1.2 kg/m3 

This gives us a Reynolds number in an approximate range of 1.54 x10-5  to 2.37 x10-5.  
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Appendix D: THE RIFLING G-CODE 
 
% 
O1( SmoothRiflingCode.NCF ) 
 
G20G40G56G80G97G98m154; 
 
G00C360.; 
G01W-11.F46.4C218.6; 
M01; 
G01W11.F46.4C360.; 
M01; 
G00C300.; 
M01; 
 
G01W-11.F46.4C158.6; 
M01; 
G01W11.F46.4C360.; 
M01; 
G00C240.; 
M01; 
 
G01W-11.F46.4C98.6; 
M01; 
G01W11.F46.4C360.; 
M01; 
G00C180.; 
M01; 
 
G01W-11.F46.4C38.6; 
M01; 
G01W11.F46.4C360.; 
M01; 
G00C120.; 
M01; 
 
G01W-11.F46.4C338.6; 
M01; 
G01W11.F46.4C360.; 
M01; 
G00C60.; 
M01; 
 
G01W-11.F46.4C278.6; 
M01; 
G01W11.F46.4C360.; 
M01; 
 
G00C360.; 
 
% 



 Appendix E: CAD Drawings of Projectile Shapes 
 The shapes for the projectiles were designed using Pro/Engineer software. The front 

profile of all the projectiles is the same, a 0.5in diameter circle, shown in Figure 25. All 

projectiles also have a volume of 0.1628 in3, the same as current spherical paintballs.  All 

dimension values are in inches and represent the size of a round that would potentially be fired 

out of our test barrel. 
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Figure 40: .5E Elliptical Ogive 

 
Figure 41: .75E Elliptical Ogive 

Figure 39: Front view of all 
projectile shapes
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Figure 48: Teardrop Shape 

 
Figure 47: Ellipsoid 

 
Figure 46: Double Ogive 

 
Figure 45: Cone 

 
Figure 44: 6S Spitzer Ogive 

  
Figure 42: 1E Elliptical Ogive Figure 43: 3S Spitzer Ogive 
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Glossary 
FPS: Feet Per Second; A common measurement of muzzle velocity. 
 
COTS: Commercial-Off-The-Shelf; available for purchase without custom manufacturing. 
 
NPT: National Pipe Thread; a standardized 60-degree thread pattern with a 1.7899-degree taper 
used in the United States to hold pressurized vessels together. 
 
HDPE: High Density Polyethylene; a common plastic used for its ease of manufacture, high 
strength, low cost, and light weight 
 
Bench-rest: A testing position for a paintball marker in which the marker is placed in a vice on a 
steady firing platform, such as a bench or table. 
 
Muzzle Velocity: The speed of the paintball when it exits the barrel.  As a matter of safety, all 
paintball markers are tested once per game by using a radar chronograph to ensure that it is not in 
excess of 300 feet per second. 
 
Airsmith: A technician who builds and repairs paintball markers and accessories. 
 
PTFE: Polytetrafluoroethylene; developed by DuPont and commonly marketed under name 
“Teflon.”  Having a density of 0.0795 lb/in3, it is lightweight and has very low coefficients of 
friction. 
 
Venturi Tubes: An array of holes cut in a pattern so that it reduces the Reynolds number of 
passing flow to the point that turbulent flow becomes laminar. 
 
Internal Ballistics: The study of how a projectile interacts with the barrel, the bolt, and the 
propellant. 
 
External Ballistics: The study of how a projectile interacts with the flight medium, in most cases, 
air. 
 
Terminal Ballistics: The study of how a projectile impacts with its target. 
 
Caliber: A measure of the diameter of a projectile, when viewed from the front, measured in 
decimal-inches.  For example, 68 caliber means that the projectile is .68 inches in diameter. 
 
Barrel: A pressure vessel that carries a projectile along a tubular path, powered by pressure on 
one side of the projectile and atmospheric pressure on the other. 
 
Bore Diameter: Diameter of a barrel measuring from the top of one land to the top of the 
opposing land 
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Groove Diameter: Diameter of a barrel measuring from the bottom of one groove to the bottom 
of the opposing groove. 
 
OAL:  Overall Length.  The total length of the object 
 
OD: Outer Diameter.  The distance across a round object as measured from the outside 
 
ID: Inner Diameter.  The distance across a round hole 
 
Threadlocker: An adhesive solution that is activated when oxygen is not present.  It is used to 
make an inner thread and an outer thread in stick to one another, and thus lock a screw into 
place. 
 
TPI: Threads Per Inch.  It is a measurement of how tight the twist on a screw is 
 
UNC: United National Coarse.  It is the large-thread, low-TPI standard threading system in 
America and all places that use Imperial Units. 
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