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Abstract

Current congestion control approaches that attempt to provide fair bandwidth al-

location among competing flows primarily consider only data rate when making

decisions on which packets to drop. However, responsive flows with high round trip

times (RTTs) can still receive significantly less bandwidth than responsive flows

with low round trip times. This paper proposes a congestion control scheme called

WHITE that addresses router unfairness in handling flows with significantly dif-

ferent RTTs. Using a best-case estimate of a flow’s RTT provided in each packet

by the flow source or by an edge router, WHITE computes a stabilized average

RTT. The average RTT is then compared with the RTT of each incoming packet,

dynamically adjusting the drop probability so as to protect the bandwidth of flows

with high RTTs while curtailing the bandwidth of flows with low RTTs. We present

simulation results and analysis that demonstrate that WHITE provides better fair-

ness than other rate-based congestion control strategies over a wide-range of traffic

conditions. The improved fairness of WHITE comes close to the fairness of Fair

Queuing without requiring per flow state information at the router.
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Chapter 1

Introduction

The Internet relies upon cooperation between TCP hosts and subnet routers to

adjust source data rates in the presence of network congestion along the path of the

TCP flow. Currently, drop-tail queue management is the primary queue mechanism

used in Internet routers to indicate congestion to edge hosts. While drop-tail schemes

are easy to implement and fit within the best-effort nature of the Internet, these

routers distribute packet drops arbitrarily among competing flows.

RED [FJ93], the best known Active Queue Management (AQM) approach, uses

randomization to distribute packet drops among flows in a manner proportional to

their perceived share of the capacity on a bottlenecked link. While RED drops more

packets from high bandwidth flows, the same packet drop rate is applied to all flows,

regardless of the actual bandwidth used.

Many researchers have shown that end-to-end congestion control can be improved

when bandwidth is allocated more fairly among flows [DKS90, She94]. Furthermore,

congestion increases due to handling packets that never reach their destination may

be the largest unresolved form of congestion collapse in the Internet today [FF99].

In times of heavy congestion, dropping an equal number of packets among all flows

1
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regardless of round trip time (RTT) has the potential to increase the network ca-

pacity wasted on undelivered packets that have come a long way only to be dropped

by a router before reaching their final destination. This inherent bias against flows

with high round trip times decreases overall goodput 1.

For TCP-friendly flows, a flow’s round trip time (as well as packet size and drop

rate) is directly responsible for determining a flow’s data rate [Flo91, PFTK98].

With TCP’s congestion control algorithms, a flow’s throughput varies inversely with

RTT. Thus, especially for flows with low round trip times, small RTT differences

can dramatically effect the number of packets dropped for a flow. Approaches

that are designed for increased fairness over RED [LM97, SSZ98] do not consider

round trip time in making packet dropping decisions and are unfair with respect to

heterogeneous flows with wide variances in round trip times.
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Figure 1.1: Classification of AQMs

There have been numerous approaches to achieving per flow fair bandwidth allo-

cation at congested routers. As noted in [MFW01], there is a continuum of possible

per-flow treatments, from complete per flow treatment such as in Fair Queuing, to a

complete absence of per-flow treatment such as in drop-tail and RED. Additionally,

for queuing mechanisms without per-flow treatment, there is a continuum of possible

per-packet treatments, from no per-packet treatments such as in RED to complete

1As in [FF99], we define the goodput of a flow as the packet delivery rate at the receiver,
excluding duplicate packets.

2
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per packet treatments from CSFQ core routers. Figure 1.1 depicts the space of

possible flow and packet treatment policies, with the approximate placements of

policies evaluated in this thesis.

Random Early Detection (RED) [FJ93] keeps no per flow state information.

Packets are dropped probabilistically based on the long-term average queue size

and fixed indicators of congestion (thresholds). RED uses randomization to drop

arriving packets to avoid biases against bursty traffic and roughly drops packets in

proportion to the flows data rate at the router. However, flows with high RTTs

and small window sizes are bursty, and this burstiness causes high variability in the

perceived data rate of these flows as seen by RED routers.

At the other extreme, Deficit Round Robin (DRR) [SV95], a variant of Fair

Queuing (FQ) [DKS90], keeps extensive information on every flow. DRR routers

send packets approximately in the order a router would send them if packets could

be sent one bit at a time. While DRR and other FQ variants achieve good fair-

ness among flows, the per-flow state information required and overhead needed to

manage priority queues is expensive. Moreover, these schemes do not scale well

with increased number of flows. This study uses DRR as the best case scenario for

achieving fairness among heterogeneous flows; namely the goal is to seek fairness

comparable to DRR without DRR per-flow costs.

Flow Random Early Drop (FRED) [LM97] uses per-flow preferential dropping to

achieve fairer allocation of bandwidth among flows. FRED builds per-flow state at

the router by examining those packets that are currently in the queue. The packet

drop rate for a flow is determined by the number of packets the flow has in the

queue, and is not directly influenced by the flow’s data rate or round trip time. We

evaluate the effectiveness of FRED as a less expensive means of attempting per-flow

fairness.

3
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In Core Stateless Fair Queuing (CSFQ) [SSZ98], edge routers classify flows based

on their current sending rate and forward these data rates as labels to core routers.

Using these labels, core routers keep a running estimate of the fair share capacity

of a flow on an out-going link. The core router drops packets in a manner aimed

at giving each flow its fair share of the link throughput. However, such preferential

dropping based on data rate alone is not sufficient to achieve fairness. Since the

response function for TCP-friendly flows is based on the RTT, dropping packets

equally between two flows with the same data rate but different round trip times

will result in a higher long-term data rate for the flow with the lower round trip

time. While it has been shown that CSFQ achieves fairness for flows with the same

RTT, we demonstrate that it is ineffective in achieving fairness among flows with

heterogeneous round trip times.

This thesis presents a new approach to fairness that takes into account a flows

round trip time in determining a router’s responsiveness to congestion avoidance.

The primary goal of our work is to achieve fairness 2 among responsive flows with

heterogeneous RTTs without negatively impacting overall router performance (i.e.,

goodput and drop rate). Providing bandwidth fairly to heterogeneous flows par-

tially eliminates the need for Content Distribution Networks (CDNs) because users

connecting from both local and remote locations will get the same bandwidth when

downloading content. The benefit is more significant for servers who have typically

many local clients and few remote clients because the few remote clients may not

justify deployment of CDN due to deployment costs.

The framework for our approach, WHITE 3, is the same edge and core architec-

2We focus on min-max fairness, since it is easy to interpret locally and makes no assumptions
about behaviors elsewhere in the network. For completeness, Jain’s fairness index [Jai91] is also
reported for all experiments.

3The name WHITE comes from a play on the acronym RED. Considering “red” as a type of
wine, there is a family of “white wine” active queue management approaches.

4
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ture presented in CSFQ [SSZ98] wherein core routers drop or mark packets using

hints sent in packet labels by edge routers. In practice, the edge can be an ingress

router or an end host and the hint can consist of the estimated data rate, as in

CSFQ, the estimated window size, a delay tolerance, or any other flow attribute. In

WHITE, the hint is an edge estimate of the best-case round trip time.

Using round trip time hints, the WHITE core router computes an average round

trip time for all packets arriving at the router. When congestion is indicated by the

RED thresholds, packets are dropped based on their round trip time in relation to

the overall average round trip time. This mechanism preferentially drops packets

with lower than average round trip times and favors packets with higher than average

round trip times. This protects fragile flows with high RTTs while inhibiting robust

flows with low round trip times from grabbing an unfair share of link bandwidth.

Through NS-2 [oCB] simulations, WHITE’s effectiveness is demonstrated under a

wide range of scenarios. These scenarios include mixes of flows with round trip times

varying from 20 ms to 400 ms, scenarios with a disproportionately large numbers of

flows in different round trip time clusters, equal clusters of flows in different round

trip time clusters, and scenarios with drastic changes in the round trip times of

active flows.

Our simulation results show that the WHITE strategy provides far superior fair-

ness among flows than RED for all scenarios tested; achieves fairer link capacity

allocation among flows than CSFQ and FRED under all scenarios; provides far bet-

ter fairness than CSFQ and FRED in many scenarios; yields DRR equivalent fairness

for most scenarios; and approximates DRR equivalent fairness for the other scenarios

tested. These WHITE improvements in fairness are accomplished while providing

performance similar to RED with respect to drop rate, goodput and throughput.

The rest of this thesis is organized as follows: Chapter 2 describes related work

5
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that has been done; Chapter 3 focuses on the details and derivation of the Chardon-

nay and Chablis4 mechanisms; Chapter 4 describes the setup and metrics used to

evaluate WHITE; Chapter 5 describes the set of simulation experiments run to evalu-

ate WHITE under a wide-range of conditions and includes analysis of the simulation

results and detailed comparisons of the performance of WHITE with DRR, CSFQ,

RED and FRED. Chapter 6 compares Chablis, the marking version of WHITE with

Chardonnay, the dropping version of WHITE. Chapter 7 summarizes our findings

and considers further extensions and future work.

4Chardonnay and Chablis are type of white wine. We named the dropping version of WHITE
Chardonnay and the marking version of WHITE Chablis (a better white wine than Chardonnay)
because Chablis can improve network goodput.

6
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Chapter 2

Related Work

In this chapter, we present work related to WHITE. In Section 2.1, we discuss other

active queue management techniques that have been proposed. In Section 2.2, we

describe work related to edge hints and how they are used. In Section 2.3, we present

work in modeling TCP behavior.

2.1 Active Queue Management

Active queue management (AQM) is a congestion avoidance mechanism imple-

mented at the router to provide improvements over drop-tail queue management.

Drop-tail simply fills up the buffer with incoming packets and drops packets when

there is no room left in the buffer. In this section, we present four AQM techniques

that have been attempted as improvements over drop-tail queue management.

2.1.1 RED

Drop-tail can cause the problem of global synchronization with TCP flows. Once

the buffer is full at a drop-tail router, it drops all incoming packets until there is

7
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space in the buffer. These dropped packets can be from many sources and the flows

will all reduce their sending window at the same time upon receipt of indication of

congestion in the network. Random Early Detection (RED) [FJ93] addresses the

shortcoming of drop-tail queue management by removing the global synchronization

and lowering queuing delay.

Unlike drop-tail queue management, RED uses average queue size to drop incom-

ing packets probabilistically. RED introduces new parameters for its functionality:

maxp, minth, maxth and these are used as depicted in Figure 2.1.

on receiving packet p
if (qavg >= maxth) then

dropPacket(p, 1)
else

if (avg >= minth) then
d = calcDropProbability(qavg, minth, maxth)
dropPacket(p, d)

else
enQueuePacket(p)

1

max _ p

0

min _ th max _ th

Average q ueue siz e

Figure 2.1: RED Algorithm

RED keeps track of the average queue size using an exponentially weighted av-

8
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erage and uses it as an indication of congestion. As shown in Figure 2.1, the drop

probability is directly related to the average queue size. An average queue size be-

low minth indicates no congestion and RED does not drop any packets. An average

queue size between minth and maxth indicates some level of congestion and RED

drops packets with a linear drop probability between 0 and maxp. An average queue

size above maxth indicates extreme congestion and RED drops all incoming packets.

RED also has capability to deal with ECN (Explicit Congestion Notification) [Flo94]

enabled flows. ECN is an extension of TCP to allow congestion notification without

drop of packets. ECN uses 2 bits in the IP header. One indicates if the flow is

ECN enabled or not and the other tells if the packet experienced congestion or not.

For ECN flows, RED marks the packets instead of dropping them when the average

queue size is between minth and maxth.

RED is one of the first active queue management techniques proposed and due

to its simplicity, it is the base for developing WHITE algorithm.

2.1.2 FRED

As mentioned in Section 2.1.1, RED addresses shortcomings of drop-tail queue man-

agement but does not try to solve the problem of bandwidth fairness. Flow RED

(FRED) [LM97] is a modification of RED to address the fairness issue. Unlike RED,

FRED keeps track of per-flow state information. This means that FRED identifies

flows and maintains information about each flow. FRED considers a flow active if

there are any packets from the flow present in the queue.

Figure 2.2 is not complete but instead shows the differences from the RED al-

gorithm in Figure 2.1. New parameters: qleni, minq and avgcg. qleni keeps track

of how many packets from flow i are in the buffer. minq is either 2 for small buffers

or 4 for large buffers. avgcg is the average per-flow queue size. Instead of just cal-

9
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on receiving packet p
if (qavg >= maxth) then

dropPacket(p, 1)
else

if (avg >= minth) then
if (qleni >= MAX(minq, avgcg)) then

d = calcDropProbability(qavg, minth, maxth)
dropPacket(p, d)

else
enQueuePacket(p)

Figure 2.2: FRED Algorithm

culating the probability to drop the packet, FRED measures if the buffer usage of

a flow is greater than the average per-flow queue size or minq. If it is, then FRED

calculates the probability to drop the packet. If not, FRED enqueues the packet.

FRED is one modification of RED algorithm to ensure bandwidth fairness. How-

ever, maintenance of per-flow state information is expensive and not desired at the

router level. In this work, we compare the performance of FRED to WHITE as a

comparison against another fairness approach.

2.1.3 CSFQ

FRED is a step towards achieving fairness but maintaining per-flow information

is complex and does not scale well. Core-Stateless Fair Queuing (CSFQ) [SSZ98]

is an approach to achieve fairness without the complexity of maintaining per-flow

information at all rates.

While RED and FRED are driven by average queue size, CSFQ is controlled by

rate of the flows. CSFQ distinguishes between edge and core routers. Edge routers

are the routers at the boundaries of the network while core routers are internal to

the network. Edge routers identify flows and estimate the rates of the flows and

label the packets with these estimates. Core routers simply use drop-tail queue

10
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on receiving packet p
if (edge router) then

i = classify(p);
p.label = estimate rate(ri, p);

prob = max(0, 1 - α / p.label);
if (prob > unifrand(0,1))

α = estimate α (p, 1);
drop(p);

else
α = estimate α (p, 0);
enqueue(p);

if (prob > 0)
p.label = α;

Figure 2.3: CSFQ Algorithm

management and employ a probabilistic dropping algorithm based on packet labels

and each flow’s rate estimate.

CSFQ provides a structure to separate edge and core routers so that core routers

do not have to maintain per-flow state information by getting hints from edge

routers. A similar structure is used for the WHITE architecture where edge routers

or sources provide hints and core routers use these hints to treat all flows fairly.

Plus, we compare the fairness in bandwidth achieved by WHITE to that achieved

by CSFQ.

2.1.4 DRR

Deficit Round Robin (DRR) [SV95] is one implementation of fair queuing. DRR

identifies flows and keeps a separate queue for each flow. When the overall queue is

full, a packet from the queue of a flow with the most packets is dropped.

Figure 2.4 summarizes the DRR algorithm. Upon receiving a packet, it separates

the packet into a flow and sees if it is an active flow at the router. If it is not, then

it creates an active state for the flow. It enqueues packets normally until there is

11
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on receiving packet p
i = Extract Flow (p)
if (ExistsInActiveList(i) == FALSE) then

InsertActiveList(i)
if no free buffer left then

FreeBuffer()
Enqueue(i, p);

Figure 2.4: DRR Algorithm

no space left and then it drops packets from the queue with the most packets in the

buffer.

DRR, being an implementation of fair queuing, provides the best bandwidth

fairness possible. Our goal is that WHITE provides bandwidth fairness as close as

possible to DRR’s.

2.1.5 AECN

Adaptive ECN (AECN) [Zhe01] is an extension of RED using marking. AECN

attempts to treat heterogeneous flows fairly by classifying flows into three categories:

robust, average and fragile. AECN keeps three virtual queues for each class.

Figure 2.5 summarizes the AECN algorithm. Once a packet comes in with a

round trip time hint (described further in Section 2.2), AECN puts the packet in

one of the three virtual queues depending on its round trip time. Based on the mark

probability, AECN decides to mark the packet and finds the first unmarked packet

in the virtual queue it is in.

WHITE’s objective is to eliminate these classes and instead have completely

dynamic assignment of drop probability to any packet with different round trip

time hints.

12
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on receiving packet p
if (qavg >= maxth) then

dropPacket(p, 1)
else

if (avg >= minth) then
class = classify(p.RTT );
d = calcDropProbability(qavg, minth, maxth, class)
markPacket(d, class)

else
enQueuePacket(p, class)

1

M ax _ p

average

0 min _ th max _ th

Average q ueue siz e

M ax _ p

fragile

M ax _ p

robust

Figure 2.5: AECN Algorithm

2.2 Edge Hints

An edge hint is a packet label that includes information that routers can use to

achieve bandwidth fairness or other QoS requirements. CSFQ [SSZ98] uses rate

estimate hints. As described in Section 2.1.3, the core routers use them to compute

drop probability. Multiprotocol Label Switching (MPLS) [RVC01] networks use la-

bels to accomplish different tasks. MPLS networks rely on labels on the packets for

routing, but other labels for MPLS can be implemented. Class Based Threshold

(CBT) [PJS99] classifies flows into UDP and TCP flows and uses different thresh-

13
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olds for each class. Alternative Best-Effort (ABE) [HKBT01] has two classes of

flows: green and blue flows. Green flows require low delay and blue flows do not

suffer from delay. ABE applies different drop probability to green and blue packets.

AECN [Zhe01], described in Section 2.1.5, uses the round trip time hints from the

sources to classify the packets into three different categories: robust, average and

fragile. There are other useful hints that sources or edges can provide the routers

such as window size of TCP sources, delay requirements and round trip times. In

this thesis, round trip time is of particular interest because we deal with heteroge-

neous flows with different latencies between sources and destinations. We explain

more on how this hint was implemented and used at the router in Chapter 3.

2.3 TCP Friendly

”TCP Friendly” is a term used to describe flows whose rate does not exceed any

other TCP comformant flows’ rate in all circumstances. [PFTK98] models TCP

throughput mathematically as shown in the following equation.

T =
s

R
√

2p
3

+ tRT O

√
3p
8
p (1 + 32p2)

(2.1)

T is the throughput, s is the packet size, R is the round trip time, p is the

steady state loss rate, tRT O is the retransmission time out. Throughput is directly

proportional to the packet size and inversely proportional to round trip time, steady

loss rate and retransmission timeout. The larger the packet size, the higher the

throughput because there are more bytes sent per packet. Large round trip times

reduce the throughput because the TCP flow cannot advance its window as fast.

Higher loss rates result in halving of window and this decreases the throughput.

Longer retransmission timeouts cause long idle times when packets are dropped,
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leading to lower throughput. [FF99] discusses ways to detect non TCP-friendly

flows based on this TCP modeling. It discusses how measuring throughput, loss

rate and others to detect non TCP friendly and unresponsive flows and proposes

how to handle them along with mention of limitations of such approaches. TCP

Friendly Rate Control (TFRC) [FHPW00] is a transport layer protocol that is rate

based unlike window-based TCP. The authors base their rate control mechanism on

the formula. This mathematical model is the basis for deriving a fundamental part

of WHITE and described in Section 3.3.
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Chapter 3

Approach

In this chapter, we present the WHITE algorithm, summarized in Figure 3.1.

WHITE is a modification of RED [FJ93]. Each packet contains a round trip time

(RTT) label, as described in Section 3.1. For each incoming packet, the RTT label

is used to update the RTT average kept by the router, as described in Section 3.2.

If there is extreme congestion, indicated by the queue average being above maxth,

the packet is dropped. If there is no congestion indicated by the queue average

being below minth, no packet is dropped. If there is congestion, as indicated by the

queue average being between minth and maxth, the drop probability for the packet

is computed based on the queue parameters, the RTT label, and the RTT average,

as described in Section 3.3. If the packet is not dropped, it is enqueued in a normal

first-in, first-out fashion. A feature inherited by WHITE from RED is that WHITE

can support both dropping and marking of packets. To distinguish the two different

versions of WHITE, we call the dropping version of WHITE Chardonnay and the

marking version Chablis.
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on receiving packet p
if (p.RTT > 0) then

updateAvg(Raverage, Rformula, p.RTT )
if (qavg >= maxth) then

dropPacket(p, 1)
else

if (avg >= minth) then
d = calcDropProbability(qavg, minth, maxth, p.RTT , Rformula)
dropPacket(p, d)

else
enQueuePacket(p)

Figure 3.1: WHITE Algorithm

3.1 Average Round Trip Time at the Edge

As in [SSZ98], we assume an architecture where edge routers on the ingress of a

network cloud label a packet with additional information, called an edge hint. Core

routers on the interior of the network cloud can make more informed packet drop

decisions by using the edge hints. In our case, the edge hint is given by the sending

host using TCP-Reno and it is the lowest RTT recorded, as computed using the

baseRTT computation from TCP Vegas code.

Based on discussion in [SZ99], there are from 4 to 17 bits available that can be

used to carry edge hint information. We store the RTT in the IP packet using a

16-bit integer, but in practice our range of RTTs would only require about 9 bits.

Moreover, 9 bits still allows coverage of up to 80% of RTTs typically observed on

the Internet [All00]. At a granularity of 10 ms, 9 bits would be sufficient to cover

RTT ranges of up to 5 seconds.
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3.2 Round Trip Time at the Router

The average RTT at the router is calculated using an exponential weighted moving

average, called Raverage. To adjust quickly to possible RTT changes in the network,

the weight wRT T is set to 0.1, which is much higher than a typical wq of 0.002 used

as a weight for a RED queue average. The value of 0.1 is necessary to quickly detect

changes in the RTT of incoming packets, caused by the the addition of new flows,

the termination of old flows or a change in route of some flows. To prevent excessive

variation in RTT under steady state, the algorithm uses a stabilized measure of the

RTT, called Rformula, to compute drop probabilities (see Section 3.3). Rformula is

only changed when Raverage has significantly moved (defined to be an interval of

25ms centered around Rformula in our implementation) for an entire time interval

(defined to be 100ms in our implementation, an approximate RTT (same one used

in [FGS01])). If Raverage has moved from one side of the range to the other, called

crossing over in Figure 3.2, we reset the time interval. When it is determined that

Raverage has moved, Rformula is updated to move towards the new Raverage with the

following formula.

Rformula =
1

3
Rformula +

2

3
Raverage (3.1)

The original approach was to just update Rformula with Raverage but experimen-

tally the above equation worked better at stabilizing Rformula.

3.3 Drop Probability Based on Round Trip Time

In order to compute a drop probability based on a packet’s RTT relative to the

average RTT (Raverage), we start with the TCP response function [PFTK98]:
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now = getCurrentTime()
Raverage = (1 - wRT T) Raverage + (wRT T) p.RTT
if (((Rformula-12.5) < Raverage AND (Rformula+12.5) > Raverage) OR Raverage crossed
over) then

lasttime = now
else

if ((now - lasttime) > 100ms) then
lasttime = now
update Rforumula towards new Raverage

Figure 3.2: Algorithm for Computing Round Trip Time at the Router
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Figure 3.3: Contribution of p-Terms vs. Drop Probability.

T =
s

R
√

2p
3

+ tRT O

√
3p
8
p (1 + 32p2)

(3.2)

This provides the upper bound on the sending rate of T (bandwidth) as a function

of the packet size s, steady state loss rate p, round trip time R, retransmission time

out tRT O. Although the drop probability in RED is not exactly equivalent to the

steady state loss rate p, p will be used to estimate the relationship between the drop

probability and the round trip time. Combining the three terms involving p above

using a constant c and exponent a, we get the simplified equation:

T =
s

Rcpa
(3.3)
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Consider two flows with throughputs T1 and T2 and round trip times R1 and

R2, respectively. In order to achieve fair bandwidth allocation, T1 and T2 should

be equal. For simplicity, we assume that the packet sizes s1 and s2 are equal. This

leads to the following derivation:

T1 = T2, s1 = s2 = s

s

R1cpa
1

=
s

R2cpa
2

pa
2 = pa

1

(
R1

R2

)

p2 = p1

(
R1

R2

) 1
a

(3.4)

The exponent a needs to summarize the behavior of the denominator of the

original equation. The three terms involving p in equation (2) have exponents of

1/2, 3/2 and 7/2. When p approaches 0, p1/2 dominates, but when p approaches 1.0,

each p-term contributes nearly equally. We divide the range of p from 0 to 1 into

two regions, 0.0 to 0.5 and 0.5 to 1.0, and calculate a best-fit power curve for the

sum of the p terms for each region. Figure 3.3 depicts each p-term’s contribution to

the sum, and the best fit curve to the sum. When p is small, Figure 3.3-left shows

that the sum of the p-terms follows closely to square root of p as expected, with

the estimated exponent a in the fitted curve function being about 0.63. When p

approaches 1, Figure 3.3-right shows that each p-term contributes to the sum, with

the estimated exponent a in the fitted curve function being about 1.39.

WHITE starts with a base drop probability p computed from minth, maxth,

maxp and qavg, as in traditional RED [FJ93]. For robust flows whose RTTs are

smaller than the average RTT, their drop probability, probust, should be higher than
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the average drop probability pbase. On the other hand, for fragile flows whose RTTs

are higher than the average RTT, their drop probability, pfragile, should be lower

than pbase.

For Chardonnay, the dropping version of WHITE, the robust flow treatment

should use the coefficient from the right graph because the drop probably should

be in the higher range for the robust flows. The fragile flow treatment should use

the coefficient from the left graph because we want to protect the fragile flows by

dropping packets less.

probust = pbase

(
Rformula

Rrobust

)0.71

pfragile = pbase

(
Rformula

Rfragile

)1.58
(3.5)

For Chablis, the marking version of WHITE, the same principle applies but for the

robust flows, the drop rate is still low because packets get marked instead of being

dropped. Therefore, the coefficient from the left graph is also used for the robust

flows. The fragile flow treatment remains the same as Chardonnay.

probust = pbase

(
Rformula

Rrobust

)1.58

pfragile = pbase

(
Rformula

Rfragile

)1.58
(3.6)

For the rest of the paper, the exponent used for the drop probability for robust flows

is called α and the exponent used for the drop probability for fragile flows is called

β. Although the theoretical values are shown as above, simulation results indicate

Chardonnay performed the best with α of 0.65 and β of 1.40 and Chablis with α of

1.60 and β of 1.40. We use these latter values in the rest of the work.
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WHITE has a basic complexity similar to that of RED. In addition, Chardonnay

has four additional variables (α, β Raverage, and Rformula). For each packet that

arrives, Chardonnay must read the round trip time label in each packet, and compute

Raverage, adjusting Rformula as necessary. No per flow state information is required.
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Chapter 4

Simulation Setup

In this section, we evaluate Chardonnay and Chablis by comparing their performance

with the four additional algorithms described in the introduction: RED, with no

explicit attempt at fairness as the current status quo of (un) fairness; DRR, with

packet scheduling to achieve bandwidth fairness as the model of fairness; and CSFQ

and FRED as less complex ways of achieving the fairness sought by DRR. We used

the NS-2 simulator [oCB], which provides packet-level implementation of many TCP

protocols and many buffer queue management algorithms including DRR and RED.

For CSFQ and FRED, we used the code developed in [SSZ98].

We implemented Chardonnay and Chablis by extending the existing RED code

with the drop probability algorithms described in Chapter 3. Then we set up the

network topology shown in Figure 4.1. There are 30 sources, N0 through N29 going

through a bottleneck router R to destination D. The bottleneck bandwidth is 10

Mbps and the delay is 5 ms. The settings for RED, FRED, CSFQ, Chardonnay, and

Chablis are in Figure 4.1. For CSFQ, the averaging constants K (used in estimating

the flow rate), Kα (used in estimating the fair rate), and Kc (used in making the

decision on whether the link is congested or not) are set as recommended in [SSZ98].
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Figure 4.1: Network Topology and Settings

Any setting not listed in the figure is set to the default NS-2 configuration. All flows

use TCP-Reno with the RTT modification described in Section 3.2 and a maximum

window size of 64 packets.

A set of six experiments were run using this topology. All settings remain the

same across experiments, except that the latencies between each node Ni and the

router R differ and the active queue management (AQM) technique was one of RED,

FRED, CSFQ, DRR, Chardonnay or Chablis. We compare fairness in a series of

graphs depicting goodput. To numerically compare the fairness, we computed Jain’s

fairness index [Jai91] for each experiment (Figure 5.9). Jain’s fairness index takes the

average throughputs of the flows and computes a normalized number between 0 and

1, where 0 denotes the maximum unfairness and 1 denotes the maximum fairness.

We also collected the minimum and maximum goodput values in Figure 5.10.

In general, shown in Chapters 5 and 6, Chardonnay and Chablis achieve reason-

able fairness, significantly closer to DRR than RED, and Chardonnay and Chablis

24

No license: PDF produced by PStill (c) F. Siegert - http://www.this.net/~frank/pstill.html



are moderately fairer than CSFQ and FRED.

For our evaluation, we will use a slightly modified Jain’s fairness index to use

goodput instead of throughput. For convenience, we will still refer to this modified

version as Jain’s fairness index. Metrics used to make comparison across simulation

results are goodput, Jain’s fairness index [Jai91] and min-max fairness. Goodput is

very similar to throughput except retransmissions are not taken into account in cal-

culation for goodput. Jain’s fairness index is a per-flow fairness measure calculated

by the following equation.

Jain′sFairnessIndex =
(
∑n

i=1 xi)
2

n
∑n

i=1 xi
2

(4.1)

In the above equation, n is the total number of flows and xi is goodput of flow i.

Jain’s fairness index is a positive number with maximum value of 1. The closer to

1 it is, the fairer the flows are. In other words, the goodputs of all flows are about

the same as fairness index approaches 1.

Min-max fairness is another metric to compare fairness of all flows. As name

suggests, it picks out the minimum and maximum goodput among all flows. Smaller

difference between the minimum and maximum goodput suggests that all the good-

puts are all about the same.
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Chapter 5

Chardonnay

In this chapter, we evaluate Chardonnay, the dropping version of WHITE by com-

paring its performance with the four additional algorithms mentioned in the intro-

duction: RED, with no explicit attempt at fairness as the current status quo of (un)

fairness; DRR, with packet scheduling to achieve bandwidth fairness as the model

of fairness; and CSFQ and FRED as less complex ways of achieving the fairness

sought by DRR.

5.1 Uniformly Distributed Latencies

Experiment 1 considers many sources with various round trip latencies. Each source

latency is calculated using Equation 5.1, which introduces a linear increase in latency

from one source to the next.

latency (Ni) = 2 [(i + 1) 5ms + 5ms] (5.1)

Therefore, the 30 sources have round trip latencies ranging from 20 ms to 310 ms.

The results of experiment 1 were used to tune the α and β parameters for Chardon-
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Figure 5.1: Experiment 1 (Uniformly Distributed Latencies). The 30 flows have
round trip latencies ranging from 20 ms (left) to 310 ms (right).

nay. Although the theoretical values derived in Chapter 3 were 0.72 and 1.58 re-

spectively, the actual values used based on the best results from this experiment, as

shown in Figure 4.1, are 0.65 and 1.40.

The experiment simulations were run for 150 seconds and the goodput was av-
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eraged over a 120 second period starting 30 seconds after the beginning of each

simulation. Figure 5.1 depicts the goodput for each flow. With 30 different flows,

the fair share of each flow is 1
3

Mbps, depicted by the horizontal line in each graph.

Without any fair treatment, RED provides the most bandwidth (0.79 Mbps) to the

most robust source and the least bandwidth (0.15 Mbps) to a fragile source. FRED

does not improve the bandwidth for the most fragile flow at all (0.14 Mbps) but

reduces the bandwidth of the most robust flow (0.69 Mbps). CSFQ provides high

bandwidth to every other robust flow (the largest getting 0.82 Mbps), while the

least bandwidth is comparable to that of RED (0.14 Mbps). Visually, DRR and

Chardonnay perform much better (more sources are near the horizontal line), with

DRR providing reasonable fairness between the most robust flow (0.53 Mbps) to the

most fragile flow (0.20 Mbps), and Chardonnay providing the best fairness between

the most robust flow (0.40 Mbps) and the most fragile flow (0.25 Mbps).

5.2 Balanced Clustered Latencies

Experiment 2 considers flows uniformly balanced in three clusters of latencies. There

are 10 robust flows with 50 ms of round trip latency, 10 average flows with 100 ms

of round trip latency, and 10 fragile flows with 200 ms of round trip latency.

The experiment simulations were run for 150 seconds, but only the region be-

tween 30 seconds and 60 seconds is depicted to show the network in steady state.

Figure 5.2 depicts the goodput averaged over all the flows in each cluster, measured

every 250 ms. For the three clusters of flows, the fair share of bandwidth is 10
3
Mbps.

RED provides the fragile flows with only 1.5 Mbps while the robust flows get 6.0

Mbps. FRED improves the bandwidth of the fragile flows to 1.9 Mbps and reduces

the bandwidth of the robust flows to 5.0 Mbps. CSFQ yields 2.0 Mbps to the
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Figure 5.2: Experiment 2 (Balanced Clustered Latencies). 10 robust flows (50 ms
round trip latency), 10 average flows (100 ms round trip latency), and 10 fragile
flows (200 ms of round trip latency).

clusters of fragile flows and 5.7 Mbps to the cluster of robust flows. DRR provides

reasonably fair bandwidth allocation with the robust flows getting 3.5 Mbps and

the fragile flows getting 2.8 Mbps. Chardonnay performs the best with the robust
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flows getting only 3.6 Mbps and the fragile flows getting 3.1 Mbps.

5.3 Unbalanced Latencies
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Figure 5.3: Experiment 3 (Unbalanced Latencies). 1 robust (flow 0, 20 ms round
trip latency) and 29 fragile (flows 1-29, 200 ms round trip latency).
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Figure 5.4: Experiment 4 (Unbalanced Latencies). 1 fragile (flow 0, 200 ms round
trip latency) and 29 robust (flows 1-29, 20 ms round trip latency).

Experiment 3 and 4 consider cases where most (29) of the flows have the same

latency, while one flow has an extremely different latency. Experiment 3 has 1 robust

flow (20ms) and 29 fragile flows (200ms). Experiment 4 has 1 fragile flow (200ms)

and 29 robust flows (20ms). Both experiments ran simulations for 150 seconds with
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the first 30 seconds omitted in order to depict a steady state. For both experiments,

we compare all 30 flows individually, so the fair share of network bandwidth is

1
3
Mbps.

Figure 5.3 depicts the goodput of each flow for the simulations in experiment 3.

RED fails to reduce the goodput of the robust flow (flow 0) and gives it 0.85 Mbps.

FRED and CSFQ perform worse than RED, giving the robust flow 1.17 Mbps and

1.04 Mbps, respectively. DRR performs the best, restraining the robust flow to 0.42

Mbps. However, DRR gives as low as 0.21 Mbps to the fragile flows. Chardonnay

comes close to DRR by only allowing the robust flow 0.53Mbps, treating the fragile

flows better by giving them at least 0.36Mbps.

Figure 5.4 depicts the goodput of each flow for the simulations in experiment 4.

RED does not assist the fragile flow, giving it only 0.16 Mbps. FRED is able to help

the fragile flow get 0.21 Mbps. CSFQ performs worse than RED, giving the fragile

flow only 0.07 Mbps. DRR provides fairness similar to that of FRED, giving the

fragile flow 0.22 Mbps. Chardonnay provides the smallest bandwidth gap, giving

the fragile flow 0.39 Mbps, slightly more bandwidth than the fair share.

5.4 Dynamic Latencies

Robust

Average

Fragile

0 30 60 90 120

Time (s)

Figure 5.5: Experiment 5 and 6 Timeline
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Figure 5.6: Experiment 5 (Dynamic Latencies). 10 robust (50 ms round trip la-
tency), 10 average (100 ms round trip latency), and 10 fragile (200 ms of round trip
latency).

For experiments 5 and 6, we consider abrupt changes in the latencies of clusters

of flows. We set up a scenario where the 3 clusters of flows, 30 flows in each cluster,

33

No license: PDF produced by PStill (c) F. Siegert - http://www.this.net/~frank/pstill.html



0

2

4

6

8

10

12

14

0 20 40 60 80 100 120

G
oo

dp
ut

 (
M

bp
s)

Time (s)

RED

Robust
Average

Fragile
Total

0

2

4

6

8

10

12

14

0 20 40 60 80 100 120

G
oo

dp
ut

 (
M

bp
s)

Time (s)

FRED

Robust
Average

Fragile
Total

0

2

4

6

8

10

12

14

0 20 40 60 80 100 120

G
oo

dp
ut

 (
M

bp
s)

Time (s)

CSFQ

Robust
Average

Fragile
Total

0

2

4

6

8

10

12

14

0 20 40 60 80 100 120

G
oo

dp
ut

 (
M

bp
s)

Time (s)

DRR

Robust
Average

Fragile
Total

0

2

4

6

8

10

12

14

0 20 40 60 80 100 120

G
oo

dp
ut

 (
M

bp
s)

Time (s)

Chardonnay

Robust
Average

Fragile
Total

Figure 5.7: Experiment 6 (Dynamic Latencies). 10 robust (20 ms round trip la-
tency), 10 average (80 ms round trip latency), and 10 fragile (320 ms of round trip
latency).

where all run for the first 30 seconds (period A). The robust flows stop for the next

30 seconds (period B). The robust flows come back on and the average flows turn
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off for 30 seconds (period C). Lastly, the average flows turn back on and the fragile

flows stop for 30 seconds (period D). Figure 5.5 graphically shows what happens

during the 120 seconds of simulation. When there are three clusters of flows, the

fair share of bandwidth is 10
3

Mbps. When there are two clusters of flows, the fair

share of bandwidth is 10
2

Mbps. We run the experiment with two sets of latencies. In

Experiment 5, robust flows have 50 ms of round trip time, average flows have 100 ms

of round trip time and fragile flows have 200 ms of round trip time. In Experiment

6, we extend the range of round trip time and separate each class latencies farther

apart. Robust flows have 20 ms of round trip time, average flows have 80 ms of

round trip time and fragile flows have 320 ms of round trip time.

Experiment 5 uses the latency clusters as in Section 5.2, with 10 robust flows

having 50 ms of round trip latency, 10 average flows having 100 ms of round trip

latency, and 10 fragile flows having 200 ms of round trip latency. In experiment 6,

the differences in latencies for each cluster is larger, with 10 robust flows having 20

ms of round trip latency, 10 average flows having 80 ms of round trip latency, and

10 fragile flows having 320 ms of round trip latency.

For experiment 5, Figure 5.6 depicts the goodput averaged over all the flows

in each cluster, measured every 250 ms. Visually, RED, FRED and CSFQ are

very unfair. Period A is exactly the same as Experiment 2 (Balanced Clustered

Latencies) in Section 5.2. In period B, RED, FRED and CSFQ allow the average

flows to get around 6-7 Mbps while allowing the fragile flows to get only around 2-3

Mbps. Chardonnay provides fairness very close to that of DRR by giving 4.5 Mbps

to the fragile flows and 5.3 Mbps to the average flows. In period C, the difference in

bandwidth grows bigger for RED and FRED, with the robust flows getting around 7

Mbps and the fragile flows getting only 2.5 Mbps. CSFQ performs better than RED

and FRED, giving 2 Mbps to the fragile flows and 5.6 Mbps to the robust flows.
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Chardonnay is again comparable to DRR by giving 4.4 Mbps to the fragile flows and

5.3 Mbps to the robust flows. In period D, RED, FRED and CSFQ provide slightly

better fairness by allowing the robust flows to get around 5-6 Mbps and allowing

the fragile flows to get 3-4 Mbps. Chardonnay was close to DRR, with the robust

flows getting 4.7 Mbps and the fragile flows getting 5.0 Mbps.

For experiment 6, Figure 5.7 depicts the goodput averaged over all the flows

in each cluster, measured every 250 ms. Visually, RED, FRED and CSFQ clearly

demonstrate unfairness. Both DRR and Chardonnay provide slightly worse fairness

than in experiment 5. During period A, DRR gave the fragile flows 1.8 Mbps and the

robust flows 4.5 Mbps. Chardonnay gave the fragile flows 2.3 Mbps and the robust

flows 4.5 Mbps. In period B, RED, FRED and CSFQ allow the average flows to get

around 7-8 Mbps and the fragile flows to get only around 1-2 Mbps. Chardonnay

provides fairness similar to that of DRR by giving 4.1 Mbps to the fragile flows

and 5.7 Mbps to the average flows. In period C, RED, FRED and CSFQ are even

more unfair, with the robust flows getting 7-8 Mbps while the fragile flows get only

around 1 Mbps. Once again, Chardonnay is comparable to DRR by giving 4.2 Mbps

to the fragile flows and 5.5 Mbps to the robust flows. In period D, RED and FRED

provide a bit more fairness by allowing the robust flows to get around 6 Mbps and

the fragile flows around 3 Mbps. CSFQ provides the worst fairness by only giving 1

Mbps to the fragile flows and 8.9 Mbps to the robust flows. Chardonnay is close to

DRR, with around 4 Mbps for the fragile flows and 6 Mbps for the robust flows.

Comparing the results of Experiment 5 and Experiment 6, we can see that

Chardonnay provides better stability and fairness with narrower range of round

trip times. Experiment 5 result shows that the flows do not vary too much farther

away from the fair share than Experiment 6 result.
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5.5 Overall Goodput and Drop Rate

It is important that the modifications made to RED for Chardonnay do not degrade

the overall performance of RED. In addition to the fairness results for experiments

1-6, we compared the packet drop rate in steady state and the total goodput for the

bottleneck link.

Experiment RED Chardonnay
Drop Goodput Drop Goodput
(%) (Mbps) (%) (Mbps)

1 1.85 9.65 1.80 9.59
2 2.85 9.94 2.70 9.91
3 1.45 9.65 1.46 9.67
4 3.61 9.97 3.59 9.96
5 2.90 9.73 2.56 9.76
6 2.60 9.64 2.49 9.69

Figure 5.8: Drop Rate and Total Goodput for RED and Chardonnay

Figure 5.8 shows that Chardonnay’s drop rate is about the same as or slightly

lower than RED’s. The goodput is very comparable between RED and Chardonnay,

and in some cases, Chardonnay actually provided more total goodput than RED.

In the few cases where Chardonnay’s total goodput is lower than RED’s, it is only

60 Kbps lower.
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AQM Experiment
1 2 3 4

RED 0.785 0.872 0.930 0.982
FRED 0.828 0.867 0.788 0.992
CSFQ 0.781 0.796 0.860 0.977
DRR 0.927 0.975 0.984 0.991
Chardonnay 0.982 0.993 0.985 0.991

AQM Experiment
AQM 5 6

A B C D A B C D
RED 0.680 0.769 0.654 0.867 0.844 0.885 0.812 0.931
FRED 0.738 0.823 0.642 0.867 0.883 0.900 0.801 0.930
CSFQ 0.740 0.647 0.641 0.610 0.915 0.734 0.965 0.986
DRR 0.880 0.933 0.960 0.970 0.962 0.972 0.985 0.977
Chardonnay 0.888 0.959 0.903 0.915 0.971 0.976 0.970 0.948

Figure 5.9: Jain’s Fairness Index for All Experiments
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AQM Experiment
1 2 3 4

RED [0.15, 0.79] [1.47, 5.98] [0.27, 0.85] [0.16, 0.40]
FRED [0.14, 0.69] [1.85, 4.98] [0.24, 1.17] [0.21, 0.38]
CSFQ [0.14, 0.82] [1.98, 5.66] [0.27, 1.04] [0.07, 0.38]
DRR [0.20, 0.53] [2.84, 3.50] [0.21, 0.42] [0.22, 0.37]
Chardonnay [0.25, 0.40] [3.14, 3.56] [0.36, 0.53] [0.28, 0.39]

AQM Experiment 5
A B C D

RED [1.76, 4.78] [3.26, 6.48] [2.61, 7.01] [3.81, 5.86]
FRED [1.87, 4.60] [3.41, 6.15] [2.50, 7.13] [3.68, 6.21]
CSFQ [2.25, 4.41] [2.02, 7.82] [4.07, 5.57] [4.46, 5.26]
DRR [2.70, 3.68] [4.66, 5.30] [4.93, 4.96] [4.84, 5.10]
Chardonnay [3.09, 3.28] [4.51, 5.33] [4.38, 5.26] [4.72, 5.08]

AQM Experiment 6
A B C D

RED [0.68, 5.87] [2.25, 7.60] [1.45, 8.26] [3.13, 6.57]
FRED [1.01, 5.68] [2.62, 6.92] [1.31, 8.28] [3.14, 6.77]
CSFQ [1.57, 5.87] [1.36, 8.61] [1.20, 7.22] [1.07, 8.89]
DRR [1.84, 4.57] [4.24, 5.71] [4.24, 5.63] [4.60, 5.33]
Chardonnay [2.26, 4.49] [4.11, 5.77] [4.16, 5.47] [3.97, 5.81]

Figure 5.10: Minimum and Maximum Goodput (Mbps) for All Experiments
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Chapter 6

Chablis

In this section, we evaluate Chablis, the marking version of WHITE by comparing

its performance with Chardonnay, the dropping version of WHITE, using the same

set of six experiments used in Chapter 5.

6.1 Uniformly Distributed Latencies
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Figure 6.1: Experiment 1 (Uniformly Distributed Latencies). The 30 flows have
round trip latencies ranging from 20 ms (left) to 310 ms (right).

As described in Section 5.1, Experiment 1 has flows with round trip latencies

ranging from 20 ms to 310 ms. The results of experiment 1 were also used to
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tune α and β parameters for Chablis. Although the theoretical values derived in

Chapter 3 were 1.58 for both, the actual values used based on the best results from

this experiment, as shown in Figure 4.1, are 1.60 and 1.40.

Figure 6.1 depicts goodput for each flow. With 30 different flows, the fair share

of each flow 1
3

Mbps, depicted by the horizontal line in each graph. Chardonnay

provides good fairness between the most robust flow (0.40 Mbps) and the most

fragile flow (0.25 Mbps) resulting in Jain’s fairness index of 0.982. Chablis performs

as well by providing fairness between the most robust flow (0.37 Mbps) and the

most fragile flow (0.27 Mbps) with Jain’s fairness index of 0.994.

6.2 Balanced Clustered Latencies

As described in Section 5.2, Experiment 2 has clusters of flows: 10 robust flows with

50 ms of round trip latency, 10 average flows with 100 ms of round trip latency, and

10 fragile flows with 200 ms of round trip latency.

Figure 6.2 depicts the goodput averaged over all the flows in each cluster, mea-

sured every 250 ms. For the three clusters of flows, the fair share of bandwidth is

10
3
Mbps. Chardonnay performs fairly with the robust flows getting only 3.6 Mbps

and the fragile flows getting 3.1 Mbps with Jain’s fairness index of 0.993. Chablis

performs about the same with the robust flows getting 3.5 Mbps and the fragile

flows getting 3.1 Mbps with Jain’s fairness index of 0.994.

6.3 Unbalanced Latencies

As described in Section 5.3, Experiment 3 and 4 have unbalanced latencies: 29

flows with same round trip latency and 1 flow with a very different round trip

latency. Experiment 3 has 1 robust flow (20 ms) and 29 fragile flows (200 ms) while
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Experiment 4 has 1 fragile flow (200 ms) and 29 robust flows (20 ms).

Figure 6.3 depicts the goodput of each flow for the simulations in Experiment

3. Chardonnay allows the robust flow 0.53 Mbps, treating the fragile flows better

by giving them at least 0.36 Mbps. Chablis performs slightly better by allowing the

robust flow only 0.41 Mbps while treating the fragile flows by giving them at least

0.28 Mbps. Jain’s fairness indices for Chardonnay and Chablis are 0.985 and 0.993

respectively.

Figure 6.4 depicts the goodput of each flow for the simulations in Experiment

4. Chardonnay provides a small bandwidth gap, giving the fragile flow 0.39 Mbps,

slightly more bandwidth than the fair share. Chablis does not help the fragile flow

as much as Chardonnay and allows the fragile flow to get 0.26 Mbps. However,

Jain’s fairness index is better for Chablis with 0.997 compared to Chardonnay with

0.991. As shown in Figure 6.4, the goodputs for Chablis are closer to each other

than those for Chardonnay.

6.4 Dynamic Latencies

As described in Section 5.4, Experiments 5 and 6 involves abrupt changes in the

latencies of clusters of flows. In the first period (A) with all three clusters active,

the fair share of bandwidth is 10
3

Mbps. In the rest of the periods (B, C, D) with

only two clusters active, the fair share of bandwidth is 10
2

Mbps.

For experiment 5, Figure 6.5 depicts the goodput averaged over all the flows in

each cluster, measured every 250 ms. Period A is exactly the same as Experiment

2 (Balanced Clustered Latencies) in Section 6.2. In Period B, Chardonnay gives

4.5 Mbps to the fragile flows and 5.3 Mbps to the average flows. Chablis performs

slightly better by giving 4.7 Mbps to the fragile flows and 5.2 Mbps to the average
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flows. In Period C, Chardonnay gives 4.4 Mbps to the fragile flows and 5.3 Mbps to

the robust flows. Chablis performs a little better by giving 4.8 Mbps to the fragile

flows and 5.0 Mbps to the robust flows. In Period D, Chardonnay has the robust

flows getting 4.7 Mbps and the fragile flows getting 5.0 Mbps. Chablis performs

much fairer with both robust and fragile flows getting 5.0 Mbps.

For experiment 6, Figure 6.6 depicts the goodput averaged over all the flows in

each cluster, measured every 250 ms. In Period A, both Chardonnay and Chablis

are not as fair as they are in Experiment 5. It takes a long time for both to provide

the fair share. Chardonnay gives the fragile flows 2.3 Mbps and the robust flows

4.5 Mbps. Chablis performs better with 3.1 Mbps to the fragile flows and 3.3 Mbps

to the robust flows. In Period B, C and D, Chablis performs much fairer than

Chardonnay visually. In Period B, Chardonnay gives 4.1 Mbps to the fragile flows

and 5.7 Mbps to the average flows. Chablis gives 4.7 Mbps to the fragile flows and

5.1 Mbps to the average flows. In Period C, Chardonnay gives 4.2 Mbps to the

fragile flows and 5.5 Mbps to the robust flows. Chablis gives 4.8 Mbps to the fragile

flows and 5.0 Mbps to the robust flows. In Period D, Chardonnay gives 4.0 Mbps

to the fragile flows and 5.9 Mbps to the robust flows. Chablis gives 4.7 Mbps to the

fragile flows and 5.2 Mbps to the robust flows.

6.5 Overall Goodput and Drop Rate

It is important that the movement from Chardonnay, the dropping version of WHITE

to Chablis, the marking version does not degrade the overall performance. In addi-

tion to the fairness results for experiments 1-6, we compared the packet drop rate

in steady state and the total goodput for the bottleneck link.

Figure 5.8 shows that Chablis has rare drops due to marking. The only drops
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reported for Chablis are during the stabilization period only. The goodput for

Chablis is either same or better than that for Chardonnay because marking does

not require a drop of packets which can lead to retransmitted packets.

This chapter shows that Chablis performs as well as or slightly better than

Chardonnay in terms of fairness, goodput and drop rate. However, Chapter 5 shows

that Chardonnay provides a comparable fairness to DRR, the target of optimum

fairness. This indicates that Chardonnay alone is already good enough at providing

fairness and also leaves little room for improvement. The significance of Chablis

is that it improves on Chardonnay despite the small room for improvement and

provides marking of packets which reduces waste of bandwidth considerably.
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Figure 6.2: Experiment 2 (Balanced Clustered Latencies). 10 robust flows (50 ms
round trip latency), 10 average flows (100 ms round trip latency), and 10 fragile
flows (200 ms of round trip latency).
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Figure 6.3: Experiment 3 (Unbalanced Latencies). 1 robust (flow 0, 20 ms round
trip latency) and 29 fragile (flows 1-29, 200 ms round trip latency).
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Figure 6.4: Experiment 4 (Unbalanced Latencies). 1 fragile (flow 0, 200 ms round
trip latency) and 29 robust (flows 1-29, 20 ms round trip latency).
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Figure 6.5: Experiment 5 (Dynamic Latencies). 10 robust (50 ms round trip la-
tency), 10 average (100 ms round trip latency), and 10 fragile (200 ms of round trip
latency).
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Figure 6.6: Experiment 6 (Dynamic Latencies). 10 robust (20 ms round trip la-
tency), 10 average (80 ms round trip latency), and 10 fragile (320 ms of round trip
latency).
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Experiment Chardonnay Chablis
Drop Goodput Drop Goodput
(%) (Mbps) (%) (Mbps)

1 1.80 9.59 0.000 9.65
2 2.70 9.91 0.000 9.98
3 1.46 9.67 0.000 9.78
4 3.59 9.96 0.007 9.96
5 2.56 9.76 0.002 9.85
6 2.49 9.69 0.003 9.82

Figure 6.7: Drop Rate and Total Goodput for RED and Chardonnay

AQM Experiment
1 2 3 4

Chardonnay 0.982 0.993 0.985 0.991
Chablis 0.994 0.994 0.993 0.997

AQM Experiment
AQM 5 6

A B C D A B C D
Chardonnay 0.888 0.959 0.903 0.915 0.971 0.976 0.970 0.948
Chablis 0.904 0.987 0.965 0.993 0.990 0.988 0.986 0.992

Figure 6.8: Jain’s Fairness Index for All Experiments

AQM Experiment
1 2 3 4

Chardonnay [0.25, 0.40] [3.14, 3.56] [0.36, 0.53] [0.28, 0.39]
Chablis [0.27, 0.37] [3.09, 3.50] [0.28, 0.41] [0.26, 0.36]

AQM Experiment 5
A B C D

Chardonnay [3.09, 3.28] [4.51, 5.33] [4.38, 5.26] [4.72, 5.08]
Chablis [2.03, 3.32] [4.69, 5.18] [4.84, 4.98] [4.96, 5.01]

AQM Experiment 6
A B C D

Chardonnay [2.26, 4.49] [4.11, 5.77] [4.16, 5.47] [3.97, 5.81]
Chablis [3.07, 3.32] [4.72, 5.10] [4.76, 5.04] [4.72, 5.23]

Figure 6.9: Minimum and Maximum Goodput (Mbps) for All Experiments
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Chapter 7

Conclusion and Future Work

This thesis presents WHITE, an active queue management approach for achieving

fairness among flows with heterogeneous round trip times (RTTs). Using the dis-

tributed architecture presented in [SZ99], packets are tagged with their minimum

observed RTT, allowing the WHITE router to make dropping decisions based upon

the RTT of each flow relative to the average RTT observed at the router. This

provides the potential to protect fragile flows with a high RTT from receiving un-

necessarily low bandwidth, while curtailing robust flows with a low RTT to their

fair bandwidth share. Moreover, the use of the RTT tag at the network edge allows

WHITE to avoid keeping per-flow information.

We tested WHITE over a range of flows and over a wide-range of RTT conditions

among the flows. We find WHITE achieves a significant degree of fairness under

all conditions. We also compared WHITE with CSFQ [SSZ98], FRED [LM97] and

DRR [SV95], algorithms specifically designed to achieve fairness, as well as to RED

[FJ93]. In all cases, WHITE performs far better than RED, and in many cases,

WHITE performs far better than either CSFQ or FRED, often performing nearly

as well as does DRR. We are not aware of any other router queue management
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techniques that can achieve better fairness than WHITE without using per-flow

information.

Currently, WHITE does not curtail unresponsive flows receiving more than their

fair share of bandwidth. Unresponsive flows do not react to the congestion control

mechanism based on packet drops. Therefore, regardless of RTT hints, unresponsive

flows receive more bandwidth if they are sending at a higher rate than the fair share

of bandwidth. Most of the multimedia applications use unresponsive flows using

UDP and they require high bandwidth, especially for video streams. The natural

extension to WHITE is to combine it with a rate-based active queue management

technique, such as CSFQ [SSZ98] or RED-PD [MFW01]. High-bandwidth flows

could be detected and monitored as in [MFW01], or per packet drop probabilities

could be computed based on both the bandwidth used by the flow as well as the

RTT.

All experiments in this thesis deals with 30 flows at most. However, WHITE

needs to be able to handle flows fairly at all levels of load. As more flows come

through WHITE router, the average queue size will exceed maxth, forcing a drop

of all incoming packets, greatly reducing fairness. Adaptive RED [FGS01] is an

extension of RED that handles a larger range of loads by keeping the average queue

size at a target between minth and maxth. WHITE, being a RED extension, can

perhaps be extended using Adaptive RED as well. Preliminary results show that

simple combination of ARED and WHITE does not provide the fairness at any loads

of network traffic. Further investigation to tune parameters is necessary.

All the evaluation of WHITE has involved a dumbbell topology with one con-

gested router and TCP flows only. We also separate evaluation into cases where the

TCP flows use and do not use marking. Practically, the Internet is a more compli-

cated network with many congested routers and flows using variety of protocols. In
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addition, there are many other protocols such as application-layer protocols using

TCP and/or UDP and TCP-friendly protocols like TFRC. WHITE needs to be able

to handle any mix of traffic, not just one type. It is also essential to determine the

scalability of WHITE. We would like WHITE to provide benefit to fairness even

with incremental deployment.
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