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Abstract

Today’s continuously growing Internet requires users and network applications

to have knowledge of network metrics. This knowledge is critical for decision mak-

ing during the usage of network applications. This thesis studies application related

network metrics. The major approach in this work is to examine the traffic between

a simulated user and network applications. We use the historical data collected from

previous usage of network applications to make predictions for future usage of those

applications. We also use the historical data obtained from a given application to

make predictions about another application. Prediction mechanisms require us to

make parameter choices so that certain weights can be placed on historical data

versus current data. We study these different choices and use the values from our

best experimental results. From these studies we conclude that our data prediction

is quite accurate and remains stable over a range of parameter choices. The use of

shared routing paths between users and network applications are explored in the

performance prediction of applications. Only some servers at the same locations

show similar prediction results. The network applications studied are also varied,

including web, streaming, DNS, etc. We see whether sharing information obtained

from different applications can be used to make predictions of application perfor-

mance. However, we observe limited success in predictions across applications.
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Chapter 1

Introduction

As the Internet continues to grow today, more users and applications are involved.

Users and applications need to make decisions regarding expected performance of the

network. Accurate prediction of metrics is critical for the decision making in these

network-based applications. For example, in the selection of a peer server during

FTP or web-based file transfer, overall throughput is a major selection criterion.

Round trip time (RTT), available bandwidth and rates of packet loss are all useful

in a streaming media application when deciding the quality of video or audio to be

sent to the user. In various degrees, machines at a local cluster can share network

performance information obtained from a remote server, different servers in a remote

cluster, or even different clusters. For a local cluster of many users, it can be useful

to build a database to store network information inferred from previous access of

network applications and use this information to make predictions for performance

of future user access of network applications.

There are various factors that affect the accuracy of prediction. Overall, we wish

to answer the following questions in this research:
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1. How well can previous measurements be used for predicting future measure-

ments? How frequently do these measurements need to be taken in order to

make accurate predictions?

2. How can topological similarities between network paths to servers be used in

making predictions?

3. How effectively can information inferred from one network application be used

to predict application performance of another?

In order to fully explore the answers to these questions, we set up experiments

to periodically send out active probes to network applications. By analyzing the

received packet trace of each connection, we are able to infer the RTT, available

bandwidth, potential packet loss, overall throughput, and generate a summary for

each connection.

To answer the first question, we need to find a way of utilizing information

obtained from old connections to network application servers. Exponential decay

predictors are used to make predictions based on historical data, since they are

computationally inexpensive and achieve good prediction results. The factors of

data recency and quantity are considered. For example, what weight should be

assigned to a network metric inferred from a connection fifteen minutes ago, or two

hours or even eight hours ago, as well as how to combine them to achieve the best

prediction accuracy? We use different time intervals in our exponential predictor,

to identify the significance of data of different ages for the prediction accuracy.

Choices of parameters in the exponential decay predictors are investigated and the

best experimental values are used for each network metric.

To answer the second question, we study the variation in the metrics of the same
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kind of applications at different locations. The correlation between these variations

tells us how effectively shared topologies can be used for predictions.

To answer the third question, different network applications are exploited. They

include the most common Internet usages: web application, streaming media ap-

plication, large FTP transfers, DNS requests, ping and traceroute. Information

inferred from a connection set up to one network application is studied to see how

much of it can be shared by another application which is of the same kind or even

different.

The rest of the thesis is organized as follows: Chapter 2 is related work; Chapter 3

talks about the background of this work; In Chapter 4 we discusses preliminary work

that was done for this research; Chapter 5 discusses the new experiment environment

and data collection; as well as studies the variation of the measurements collected;

In Chapters 6 to 8 we analyze the results obtained from these experiments to show

how predictions can be made; Chapter 9 summarizes conclusions and Chapter 10

points at future work.
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Chapter 2

Related Work

In this chapter we discuss some of the work done by other researchers related to that

of this thesis. Related work has been done in the area of performance prediction

as well as performance modeling and inference. In Section 2.1 we discuss different

approaches that have been developed to make predictions of network metrics. In

Section2.2 we briefly discuss mathematical models used in performance prediction.

2.1 Performance Prediction

Part of the inspiration of doing this research came from [13, 14]. [13] proposed the

idea of using shared passive probes to make predictions of network performance.

The design architecture of a system to implement this idea was also proposed. It

was suggested to build a database to collect historical data and use it for predicting

future performance. [14] was its follow-up work which mainly studied HTTP object

downloading, and used average values to make predictions of further network ac-

cesses. The proposed approach in this work is also mainly passive. However, [13, 14]
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did not try to understand the accuracy of predictions and the factors that could af-

fect this accuracy. Their work did not take into account the age of measurements.

It also did not consider the use of shared routing paths to predict application per-

formance. Their work only used the Web and not other network applications. All

this is taken into consideration in our approach of making predictions.

[4] digitalized network performance into 0’s or 1’s, signifying degradation or non-

degradation, for a small time period. It made predictions based on digitalized values

and proposed exponential decay, polynomial-decay, VW-cover and hidden-markov

predictors as the mathematical models for prediction. We borrowed the exponential

decay model in our predictor model. There were also other works studying predic-

tions for one single network metric. For example, [12] used mathematical models

ARMA and MMPP stochastic processes to predict bandwidth. [6] used the Amherst

model to predict throughput given average RTT, time-out duration, and loss rate.

[9] also used a passive approach to estimate TCP RTTs.

2.2 Performance Modeling and Inference

A great amount of study has been done in performance modeling and inference.

In our work, we integrated some of the useful results from previous research. [10]

proposed a mathematical model presenting the correlation between throughput and

other metrics including round trip times and loss rate. [5] modeled round trip times

in different phases of a typical TCP connection. [11] inferred the TCP version used

in a TCP connection by analyzing the packets sent and received. Different TCP

versions can have different congestion control behavior, which in turn affects the

measurement and prediction of throughput and available bandwidth. [8] modeled
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TCP behavior through passive measurements, and [7] built a model showing the

correlations between bandwidth and throughput.

2.3 Summary

In this chapter we saw the attempts by earlier researchers to make network met-

ric predictions. We also saw the work of other researchers related to performance

modeling and inference. We use some of this work as a basis for this thesis. At

the same time we address the aspects that were not covered in these works. In the

next chapter we discuss the background of our work. We take a close look at TCP

windowing mechanism and explain our choice of predictor model.
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Chapter 3

Background

In this section, we discuss background for the methodology used to collect the data

and the model of the predictor we use for predictions.

3.1 TCP Windowing

Before we start collecting the data, it is important to understand the inner workings

of the TCP protocol. One of the important aspects of TCP that interests us is the

congestion avoidance algorithm.

TCP uses a congestion window (cwnd) in the sender side to do congestion avoid-

ance. The congestion window indicates the maximum amount of data that can

be sent out on a connection without being acknowledged. The sender is allowed

to increase the congestion window either according to the Slow Start algorithm,

that is, by one segment for each incoming acknowledgment (ACK), or according to

Congestion Avoidance, at a rate of one segment in a round-trip time. The slow
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start threshold (ssthresh) is used to determine whether to use Slow Start or Con-

gestion Avoidance algorithm. When the connection first starts, TCP performs Slow

Start, doubles its cwnd in each round trip time. When cwnd reaches ssthresh, TCP

performs Congestion Avoidance. Most servers use TCP NewReno nowadays. In

NewReno, when the sender receives three duplicate ACKs, it performs fast retrans-

mission by sending the packet before a time-out. At the same time, the sender

halves its cwnd and ssthresh, and starts performing Congestion Avoidance. When

the sender experiences a time-out for a packet sent, its ssthresh is halved but its

cwnd is reduced to one and performs Slow Start like the connection just started.

Since TCP uses the above mentioned congestion avoidance mechanism, packets

are observed to be sent in bursts in each round trip time. That is, only the number

of cwnd packets can be sent before an acknowledgment is received, and the server

stalls for the rest of the time. The server stalls after cwnd packets are sent in an

RTT because usually it takes shorter time to send cwnd packets than the round

trip time provided the bandwidth is relatively large and the congestion window size

is relatively small. In this work, we call this observed burst of sending packets in

groups a round. Usually separate rounds are clearly observed at the beginning of a

connection when the cwnd has not grown too large in Slow Start.

In this work, most of the applications we use are web applications. Therefore,

we can only examine the incoming packets at a receiver. Since packets are sent in

rounds, they are received in rounds as well. Separating rounds of received packets

gives us RTT measurements using the difference between the time stamp of the

first packet in each nth round and that in the (n+1)th round. We can also obtain

the available bandwidth in each round using pairs of consecutively received packets.

This can be significantly larger than the overall throughput of the connection since
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the sender has various stall times in rounds due to the TCP windowing. Another

benefit of knowing the inner working of TCP windowing is that we can use the

initial value of cwnd, ssthresh, and available bandwidth and RTT that we measured

to predict how long a transfer takes, given an object size.

3.2 Predictor Model

Exponential predictors have been the most used predictors since they are easy to

implement and do not require extra state keeping. So in our work, we use exponential

predictors to predict RTTs and throughput. It is shown as below:

Mpred(n + 1) = λMpred(n) + (1 − λ)M(n)

where M(n)is the nth measurement we obtained from the data, Mpred(n)is

the predicted value for the nth measurement, and the parameter 0 < λ < 1.

In our algorithm, we set Mpred(1) = M(1), and predictions are valid starting

from Mpred(2). The value of λ gives weights for previous measurements, and it

is additive over all previous measurements. A predictor with λ closer to 0 puts

more emphasis on the most recent measurements, and a predictor with λ closer to

1 emphasizes the quantity of previous measurements. The best value of λ depends

on the data and can be determined experimentally.

3.3 Summary

In this chapter we took a close look at the TCP windowing mechanism. We saw how

it influenced our methods of measuring network metrics such as RTT and available
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bandwidth. For our prediction methods we decided to use the exponential predictor.

Now that we have our methods in place, we discuss the experiments conducted using

these methods in the following chapters.
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Chapter 4

Preliminary Work

This chapter describes the preliminary work carried out in the summer of 2004. The

data was mainly collected for web applications.

4.1 Experimental Setup

In the summer of 2004, we used 33 web servers from 13 clusters, located all over the

continental United States. See Table 4.1. They were mostly the servers of popular

news channels, popular newspapers and state governments. Some web sites had

their DNS servers and web servers in the same cluster, while some did not.

In this preliminary work, only web retrievals were made from a Linux machine

located at Worcester Polytechnic Institute at Worcester, MA to each of the web

servers at a five-minute interval for a time period of seven days. The machine had

SuSE Linux 2.4 kernel. TCP stacks were modified at the kernel level, and fields

were added to the system call getsockopt() to track out-of-order received packets,
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Table 4.1: 33 Web Servers at 13 Remote Clusters

Cluster Name Location DNS Server Web Servers
Boston Globe Boston, MA N/A www.boston.com

weather.boston.com
realestate.boston.com

MBTA Boston, MA ns1.itg.net eagles.mbta.com
csisw1.mbta.com

NY Times New York, NY ns1t.nytimes.com www.nytimes.com
movies.nytimes.com
www.nytco.com

MSN Redmond, WA N/A www.msn.com
shopping.msn.com
mobile.msn.com
groups.msn.com

DJC Seattle, WA lp1.djc.com www.djc.com
CNN Atlanta, GA N/A www.cnn.com

edition.cnn.com
si.cnn.com
money.cnn.com

Augusta Chronicle Atlanta, GA znet.groupz.net www.augustachronicle.com
ap.augustachronicle.com

IL Government Springfield, IL ns1.state.il.us www.illinois.gov
www.dnr.state.il.us
www.kidcareillinois.com

Ameriquest Los Angeles, CA ns1.accads.com www.ameriquestmortgage.com
careers.ameriquest.com
customers.ameriquest.com

San Francisco Freemont, CA ns1.blvds.com www.sanfrancisco.com
mail.sanfrancisco.com

CA Government Sacramento, CA N/A democrats.assembly.ca.gov
republican.assembly.ca.gov
capitolmuseum.ca.gov

Dallas News Dallas, TX ns1.belo.com www.dallasnews.com
signin.dallasnews.com

LA Times Log Angels, CA N/A www.latimes.com
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potential packet losses, and duplicate ACKs sent. getsockopt() was the main system

call used to collect statistics at the packet level for each web retrieval.

4.2 Variation of Network Metrics

In this section, we show the variations of different network metrics over time ob-

tained from web-based applications. The metrics used were Round Trip Time(RTT),

potential packet loss, available bandwidth and throughput.

We found that for the same server, both minimum RTTs and median RTTs

within a connection, varied in different degrees depending on the particular server of

the connection. Server processing times, available bandwidth, and overall through-

put also varied from server to server. Some connections tended to be more stable

than others, which means old RTTs from previous access to a server can provide

different accuracies for network application performance prediction.

4.2.1 RTTs

We show the time series graphs and corresponding CDF (Cumulative Distribution

Function) graphs of minimum RTTs of six remote clusters in Figures 4.1 through

4.12. These clusters include www.boston.com cluster (Boston, MA), www.nytimes.com

cluster (New York City), www.cnn.com(Atlanta, GA), www.msn.com(Redmond,

WA), www.illinois.gov (Springfield, IL), and www.ameriquestmortgage.com cluster

(Los Angeles, CA).
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Some servers had consistent round trip times from the WPI cluster with little

variation over time. For example, the three nytimes servers, servers www.msn.com,

shopping.msn.com, and groups.msn.com at the MSN cluster, and servers www.illinois.gov

and www.kidcareillinois.com at the IL Government cluster, all fall into this category.

This consistency can also be observed at two separate time frames at the cnn servers

and ameriquest servers, except that there was a clear jump or drop in the median

RTT value at a certain time. We suspected this could be caused by a route change

on the network since we did not observe significant change of available bandwidth

during this period. Three servers at the Boston Globe cluster have shown large

variation of their median RTTs.

4.2.2 Median Available Bandwidth

In our data processing, we used packet pairs in each round of a connection, and

calculated available bandwidth for each packet pair. We drew the CDF graph of the

median available bandwidth of a connection. Figure 4.13 through Figure 4.16 are

respectively such CDF graphs for six remote clusters. Surprisingly, we found that the

median available bandwidth of most of servers have similar distributions. They all

concentrate around 700K bytes/sec, except www.nytimes.com and www.nytco.com

which have higher available bandwidth around 1200K bytes/sec. We suspect this is

due to a bottleneck link close to WPI which most of the connections share.
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4.2.3 Connection Throughput

Connection throughput in this work is defined by the number of bytes transferred in

the connection divided by the time taken to transfer them. As we have previously

analyzed the TCP inner workings, the overall throughput for a server having a long

RTT from WPI depends more on the RTT value than the bandwidth in the early

rounds of a connection. This is because the server has to stall in each round to

wait for ACKs from the client. The object sizes at the servers we studied were

mostly 50k - 100k and connections took only a few rounds to finish. Server stalling

dominated most of the connection, especially for the farther clusters. So we expect

to see connection throughput increase as RTT decrease, and vice versa. This has

been shown in Figure 4.17 through Figure 4.20.

4.3 Predictions

Making time-based prediction on this data set is illustrated in this section. In

our experiment, we found by comparing with other more complex mathematical

predictors such as polynomial decay predictor, that the exponential decay predictor

achieved good prediction accuracy with simple computation.

We tried different λ values that could possibly affect the prediction accuracy.

We used λ = 0, 0.3, 0.65, 0.8, 0.95. The smaller λ is, the more importance is placed

on the recent accesses. We found that in predicting RTTs, as the value of λ became

smaller, the performance accuracy became higher; while the opposite was true with

the throughput prediction. However, we saw that overall the choices of different

values of λ did not make a significant difference in terms of the prediction accuracy.
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4.4 Summary

In this chapter we presented some of our preliminary work. We set up connec-

tions to various web servers geographically spread across the U.S. We outlined our

data collection methods and presented some of our results. We saw that metrics

remained mostly stable though they did show a tendency to shift over time. Also

within the same cluster, different web servers had different measurements. We also

experimented with different parameter values for our exponential predictor. How-

ever there were shortcomings with the work done so far. First of all we had only

run the experiments with web applications. Second, the data was collected three

years earlier. It is possible that during this period the routes would have changed.

Hence we felt the need to conduct more experiments. These are described in the

next chapter.
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Chapter 5

New Experiments

This chapter describes the new experiments that were carried out to obtain network

performance metrics in Jan 2007. We also describe how the data was processed so

that it can be utilized to make predictions. This chapter describes the preliminary

work carried out in the summer of 2004. The data was mainly collected for web

applications.

5.1 Experimental Setup

In our experiment, we used 20 DNS servers, 62 web servers, 10 real streaming servers

and tracerouted to 20 servers, located at 20 remote clusters from 8 geographical

locations all over the continental United States, as show in Tables 5.1 and 5.2.

They were mostly the servers of popular news channels, popular newspapers and

state governments. All the clusters that we selected had the DNS server, web servers,

and the real streaming server at the same location. We make the assumption that
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Table 5.1: Network Application Servers at Eight Geographical Locations in the U.S.

Location Cluster Name DNS Server Web Servers Real Streaming Server Traceroute to Server

Boston, MA

Boston Globe ns-a.pnap.net www.boston.com N/A www.boston.com
weather.boston.com
www.explorenewengland.com

MBTA ns1.itg.net www.mbta.com N/A www.mbta.com
trip.mbta.com

Web Hosting ns2.cwwebs.com www.aviationdisasterlawyers.com www.consultwebs.com www.consultwebs.com
www.asbestoslaw.info
www.pharmaceuticallawyers.com

New York, NY

NY Times ns1t.nytimes.com www.nytimes.com N/A www.nytimes.com
movies.nytimes.com
homefinance.nytimes.com
query.nytimes.com

UN ns.undp.org www.undp.org www.undp.org www.undp.org
www.rbas.undp.org
www.dz.undp.org
google.undp.org

Atlanta, GA

CNN twdns-04.ns.aol.com www.cnn.com N/A www.cnn.com
edition.cnn.com
si.cnn.com
money.cnn.com

Weather.com dns2.weather.com www.weather.com N/A www.weather.com
forgetaway.weather.com
ktopfw.weather.com
br.weather.com

GA Government ns3.state.ga.us www.georgia.gov www.georgia.gov www.georgia.gov
www.files.georgia.gov
oca.awe.gta.ga.gov
www.gov.state.ga.us

Springfield, IL

IL Government ns1.state.il.us www.dnr.state.il.us www.illinois.gov www.dnr.state.il.us
www.illinois.gov
www.allkidscovered.com

IL Education ns1.illinois.net www.isbe.net www.isbe.net www.isbe.net
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Table 5.2: Network Application Servers at Eight Geographical Locations in the U.S. (Continued)

Location Cluster Name DNS Server Web Servers Real Streaming Server Traceroute to Server

Raymond, WA

MSN ns1.msft.net www.msn.com N/A www.msn.com
entertainment.msn.com
music.msn.com
weather.msn.com

Real ns1.real.com www.realnetworks.com rxns-rbn-sea10.rbn.com www.realnetworks.com
brasil.real.com
musicstore.real.com

Los Angeles, CA

Ameriquest ns1.accads.com www.ameriquestmortgage.com N/A www.ameriquestmortgage.com
careers.ameriquest.com
www.ameriquestracing.com

City of LA citylans1.lacity.org www.lacity.org realav.lacity.org www.lacity.org
eng.lacity.org
publiccsd.lacity.org
parc1.lacity.org
www.griffithobservatory.org

San Francisco, CA

San Francisco ns1.blvds.com sanfrancisco.com N/A sanfrancisco.com
www.santa-clara.com
www.santacruz.com
www.oakland.com

CA Government ns1.net.ca.gov democrats.assembly.ca.gov N/A democrats.assembly.ca.gov
www.legislature.ca.gov
republican.assembly.ca.gov

City of Davis wheel.dcn.davis.ca.us www.city.davis.ca.us media.city.davis.ca.us www.city.davis.ca.us
events.dcn.org
www.dcn.org

Dallas, TX

Dallas News ns1.belo.com www.dallasnews.com N/A www.dallasnews.com
www.cowboysplus.com
www.guidelive.com

City of Irving sob.ci.irving.tx.us www.ci.irving.tx.us www.ci.irving.tx.us www.ci.irving.tx.us

Online Video ns.rackspace.com www.lapdonline.org www.lapdonline.org www.lapdonline.org
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if the first two bytes of server IP addresses are the same, the servers are at the same

location. Each location would include at least one streaming server.

In identifying the location of a server, we normally use traceroute to observe the

intermediate routers’ names and make a proper guess. For example, for www.msn.com,

we have the following traceroute results shown in Table 5.3. As we can see in hop

13 “microsoft-1-lo-jmb-706.sttlwa.pacificwave.net”, “sttlwa” means Seattle in WA.

From the RTT at this hop, we know this hop is close to the final destination of

www.msn.com, and the rest on the route could be on MSN’s internal network. Be-

sides traceroute, we also use AntiOnline [1] and Geobytes IP locator [2] to verify

the location we inferred from traceroute.

> traceroute www.msn.com
traceroute to www.msn.com (207.68.173.76), 30 hops max, 40 byte packets
1 RTR-PHSR1-FULLER.INF.WPI.EDU (130.215.24.3) 0.334 ms 0.230 ms 0.207 ms
2 RTR-GPOP1-BACKBONE.INF.WPI.EDU (130.215.0.131) 0.728 ms 0.565 ms 0.522 ms
3 WPI-GODDARD.GODDARD.GIGAPOP.NET (130.215.7.17) 0.695 ms 0.652 ms 0.666 ms
4 WORCESTER-BOSTON.GODDARD.GIGAPOP.NET (130.215.6.2) 1.620 ms 1.632 ms 1.628 ms
5 nox1sumgw1-Vl-591-NoX-WPI.nox.org (192.5.89.41) 1.723 ms 1.619 ms 1.643 ms
6 nox300gw1-Vl-803-NoX.nox.org (192.5.89.238) 1.836 ms 1.798 ms 1.648 ms
7 nox300gw1-PEER-NoX-INTERNET2-192-5-89-222.nox.org (192.5.89.222) 6.739 ms 6.694 ms 6.659 ms
8 so-0-0-0.0.rtr.wash.net.internet2.edu (64.57.28.11) 35.503 ms 43.231 ms 39.360 ms
9 so-0-2-0.0.rtr.chic.net.internet2.edu (64.57.28.12) 28.453 ms 28.244 ms 28.321 ms
10 so-4-3-0.0.rtr.kans.net.internet2.edu (64.57.28.36) 38.840 ms 38.770 ms 38.789 ms
11 so-0-0-0.0.rtr.salt.net.internet2.edu (64.57.28.24) 63.572 ms 63.430 ms 63.400 ms
12 so-0-0-0.0.rtr.seat.net.internet2.edu (64.57.28.26) 80.023 ms 79.780 ms 79.801 ms
13 microsoft-1-lo-jmb-706.sttlwa.pacificwave.net (207.231.240.7) 80.076 ms 80.031 ms 79.976 ms
14 ge-7-3-0-58.wst-64cb-1a.ntwk.msn.net (207.46.36.177) 80.112 ms 79.897 ms 79.937 ms
15 ge-7-0-0-0.wst-64cb-1b.ntwk.msn.net (207.46.34.122) 80.076 ms 79.987 ms 80.015 ms
16 ge-6-1-0-0.tuk-64cb-1b.ntwk.msn.net (207.46.35.33) 80.412 ms 80.419 ms 80.354 ms
17 ten1-2.tuk-76c-1a.ntwk.msn.net (207.46.44.50) 80.219 ms 80.126 ms 80.310 ms
18 * * *
19 207.68.173.76 80.548 ms 80.590 ms 80.581 ms

Table 5.3: Traceroute to www.msn.com

Four Internet applications were used in obtaining the network metrics. They

were DNS requests, web page retrievals, real streaming object downloading, and
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traceroute. All requests were sent from a machine located at Worcester Polytechnic

Institute at Worcester, MA to each of the servers at a certain time interval for a

time period of 21 days in Jan 2007. DNS requests, web page retrievals, and real

streaming were run every 10 minutes, and traceroutes were sent every three hours

to show if there was any route change. Each stream was run for 15 seconds.

The machine used to send requests were running SuSE 10.1 with a 2.6 Linux

kernel. Tcpdump was used to capture the packets received from the kernel level

at the client side. Tcpdump recorded the time stamp when each data packet and

acknowledgments were sent and received. For each data packet, we recorded its

sequence number, its packet size, and the time stamp when it was received. For

each acknowledgment, we recorded the sequence number it acknowledges and the

time stamp it was sent out. We also kept track of the number of duplicate ACKs

sent out for each connection.

5.2 Measurement Mechanism

For each web page retrieval, we inferred network metrics from it by studying the TCP

packets received. We summarize the metrics for each retrieval to give the connection

a health rating of good, bad or medium. The network metrics used included round

trip time, available bandwidth, overall throughput, out of order received packets,

and duplicate acknowledgments sent.

As mentioned earlier, received packets were grouped together in analyzing per-

formance of one web retrieval. Figures 5.1 through 5.3 show the patterns of packets

received. They are xplot graphs from tcptrace results by processing the original

tcpdump data. Figures 5.1 through 5.3 are connections with health ratings of 2, 1,

31



and 0 respectively, which will be discussed in more detail in Subsection 5.2.7.

r pkt grp = 1;

foreach received packet r pkt do
if r pkt is a RST or duplicate SYN packet then

rst dupsyn = TRUE;
break; /* stop packet grouping */

end

if r pkt is the first received packet then
set syn rtt;
add packet r pkt to packet group r pkt grp;

else /* not the first packet */
r pkt dist← time interval between r pkt and pre r pkt;
if r pkt dist < 0.35× syn rtt then /* same group */

add packet r pkt to current packet group r pkt grp;
else /* not the same group */

grp dist← time interval between r pkt and 1st packet of r pkt grp;
if 0.75× syn rtt < grp dist < 1.3× syn rtt then // new group

r pkt grp + +; /* start a new packet group */

add packet r pkt to packet group r pkt grp;
else

/* stop packet grouping when the group pattern

becomes unclear */

break;
end

end

end
pre r pkt = r pkt;

end
Algorithm 1: Grouping Received Packets in a TCP Connection

We separated the received packets into groups so that the time intervals between

separated groups are approximately one round trip time. We could obtain the initial

window size of cwnd, which is the number of packets in the first group. We could

also infer the pattern of cwnd growing, either linearly or exponentially by observing

the number of packets in each group. When the pattern of groups is not clear any

more as the number of rounds goes up or there is potential packet loss, we stop
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Figure 5.1: Packet Time Sequence for WPI client and Web Server music.msn.com, Connection Health Rating=2

33



Figure 5.2: Packet Time Sequence for WPI client and Web Server trip.mbta.com, Connection Health Rating=1
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Figure 5.3: Packet Time Sequence for WPI client and Web Server eng.lacity.org, Connection Health Rating=0
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grouping. Most of the network metrics are inferred from the grouping information.

The detailed algorithm used to group TCP received packets is illustrated in

Algorithm 1. In this algorithm we first measure the RTT using the SYN packets.

Then we measure the time difference of each received packet from the previous

packet and based on this distance we make one of the following three decisions:

1. add the packet to the current group,

2. start a new group, and

3. stop the process of grouping.

We make the decision of adding a packet to the current group if its time distance

from the previously received packet is less than 0.35 times the RTT. If this distance

is greater than 0.35 the RTT, then we measure the distance of this packet from the

first packet of the current group. If this time distance is between 0.75 times the

RTT and 1.3 times the RTT then a new group is started with the current packet at

the head. Any distance outside this range is an indication that grouping pattern is

not clear and the algorithm terminates.

Our approach of grouping packets and therefore inferring metrics is different

than tcptrace [3]. Tcptrace can only infer the RTT at the sender side upon its

receiving the ACK for the packet it just sent. This approach is only effective at

the sender side. Since we are mostly passively receiving data in accessing a web

application at the client side, this approach becomes ineffective in inferring the

RTT as well as other metrics. The only RTT measurement tcptrace can give is the

first SYN RTT. In contrast, our approach only uses received packets and separates

them into groups, where the group distance in a well-behaved TCP connection would
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be roughly an RTT measure. Our approach increases more data points than what

tcptrace can infer, while it is at the risk of wrong measurements in using wrong

grouping information. However, we checked the grouping results using Algorithm

1, and most of the grouping results coincide with visual confirmation. For example,

Fig 5.1 shows a perfectly well-behaved connection, where packets arrive in clear

groups and the group distances are RTTs. The algorithm generated the same results

and inferred five RTT measurements from it. Fig 5.2 shows a medium connection,

where packet groups are clear, and we only use the SYN RTT measurement in that

connection.

5.2.1 Metrics Used

In this section we discuss the metrics used to infer overall connection health ratings

and to make predictions; and how they were obtained from the network trace. These

metrics include round trip time(RTT), available bandwidth, overall throughput, out-

of-order received packets, and duplicate acknowledgments sent.

5.2.2 RTTs

As mentioned in previous section, we group the packets by analyzing the packet

receiving pattern so that time interval between groups were approximately one RTT.

Our collected RTT measurements include the time intervals between packet groups

and the first SYN-ACK round trip time. Average RTT and RTT standard deviation

are calculated based on these RTT data points.

37



5.2.3 Available Bandwidth

We define available bandwidth as the highest rate at which data can be transferred

between the client and the server. Our calculations are based on observations made

at the receiver. For any packet group that contains n packets (r pkt[0] through

r pkt[n-1]) and n ≥ 4, we can infer one measurement for available bandwidth. We

collect one data point per group. The calculation of the available bandwidth can be

expressed as:

available bandwidth =
sum of packet sizes of r pkt[1] through r pkt[n-1]]

time interval between packet r pkt[0] and r pkt[n-1]
(5.1)

If we are able to separate the packets into a few groups whose size is greater than

four, we obtain a few data points for available bandwidth from that connection. We

use a minimum of four packets per group to avoid outliers. Only when there are at

least four packets in a group, do we use it to calculate one data point of available

bandwidth.

5.2.4 Overall Throughput

Overall throughput is defined as the data received over the entire connection divided

by the time elapsed, in a particular network application. This metric can only be

measured more accurately in web and streaming applications compared with others,

since there is more data pumped through in these two cases.
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5.2.5 Out-of-Order Received Packets

Packets received out of order can be an indication of a potentially degraded network

connection. Therefore, the number of out-of-order received packets is also considered

as a measurement in evaluating one connection. Although it is not used as a direct

prediction metric, it is used to rate the health level of the entire connection.

5.2.6 Duplicate/Triple-Duplicate ACKs Sent

As we mentioned in Section 3.1 “TCP Windowing”, both three duplicate ACKS

received for a TCP version using fast retransmission and a time-out at the sender

side can indicate a potential packet loss, or at least some potential performance

degradation. In most cases a network application client cannot know for sure if a

packet sent from the server was lost. Since we can only infer the performance at the

client side, we consider a packet loss event when more than three duplicate ACKs

are sent. At the same time we also keep track of the number of duplicate ACKs

sent.

5.2.7 Connection Health Ratings

As mentioned earlier, we give a health rating to each run of a network application

as a summary to indicate if it is a good, bad or medium connection.

The detailed algorithm used to rate a connection is illustrated in Algorithm 2.

This algorithm reads the packet patterns and empirically rates each connection as

0 (bad), 1(medium) or 2(good). If in a connection we see triple duplicate ACKs or
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duplicate received packets then it is a bad connection. It is also a bad connection

if we see a connection reset or duplicate SYN packets. If total bytes received are 0

then obviously it is a bad connection. To differentiate between a good and medium

connection we use the conditions listed below. If all of these conditions are satisfied

then it is a good connection, else it is a medium one:

Output:
0: bad connection;
1: medium connection;
2: good connection

if rst dupsyn == TRUE and
num of triple duplicate sent acks >= 1 and
num of duplicate received packets >= 1 and
total received bytes == 0

then
return 0 ; /* bad connection */

else /* good or medium connection */
bndwdth data point prcnt =

num of bandwidth data points / total received packets;

rtt stddev avg ratio = average rtt / rtt standard deviation;

out of order rcv pkt prcnt =
num of out of order received packets / total received packets;

dup ack snt prnt =
num of duplicate acks sent / total received packets;

if bndwdth data point prcnt >= 0.6 or
rtt stddev avg ratio <= 0.2 or
out of order rcv pkt prcnt <= 0.2 or
dup ack snt prnt <= 0.2 or

then
return 2 ; /* good connection */

else
return 1 ; /* medium connection */

end

end
Algorithm 2: Rating Connection Health
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1. Grouped packet percentage: This is the percentage of total received packets

that could be placed into groups as determined by algorithm 1. At least sixty

percent of total packets should be groupable for a good connection.

2. Mean to Standard Deviation ratio for RTT: This ratio should not be greater

than 0.2.

3. Percentage of packets received out of order: This value should be less than

twenty percent.

4. Percentage of total packets that had duplicate ACKs: This value should be

less than twenty percent.

As we presented at the beginning of Section 5.2, Figures 5.1 through 5.3 show

connections rated as 2, 1, and 0 respectively, using Algorithm 2.

5.3 Summary

In this section we showed our expanded set of experiments. Not only were the

experiments run for a longer time, but also on a larger range of network applications.

We collected data for a larger set of metrics. Our algorithms for grouping received

packets and rating the health of TCP connections have been described. In the

following chapters we analyze this data and see how predictions can be made using

observed network metrics.
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Chapter 6

Time-Based Prediction

In this chapter, we discuss the variations of different network metrics over time. We

study how historical data can be used to make predictions for future accesses. Only

web-based applications have been studied in the experiments for this chapter.

6.1 Actual Results of Measurements

We have found that for the same server, connection health ratings, RTTs, available

bandwidth, and overall throughput varied in different degrees, depending on the

particular connection. Some connections tend to be more stable than others for

certain metrics. This means, historic metrics from previous accesses to a server can

provide different accuracies for prediction.

6.1.1 Round Trip Time (RTT)

For all sixty-two web servers studied in our experiment, their average RTTs remained

relatively stable over time. Figures 6.1 through 6.6 show a few examples of the CDF
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(Cumulative Distribution Function) graphs of clusters with their servers all plotted

in the same graphs. These clusters have shown rather good stability of RTT values,

as we can see each CDF is roughly concentrated on a single value.

Figures 6.7 through 6.8 show two clusters with relatively more varied RTTs. The

variance is only slightly larger than that in Figures 6.1 through 6.6.

6.1.2 Available Bandwidth

In our data processing, we obtain one data point of available bandwidth for each

group, and use the median value of all data points as available bandwidth observed

for the entire connection. We also find the connection level available bandwidth for

each web server remains relatively stable over time. See Figures 6.9 through 6.12.

6.1.3 Connection Throughput

Connection throughput exhibits more variance than RTTs. Some of the clusters

and servers show good stability over the entire collection period, while some have

rather large variation. The variation exists either over one server or over multiple

servers from the same cluster.

Figures 6.13 through 6.16 show the clusters with little variance on overall through-

put. We can see all the servers within the cluster center around one value in the

CDF graphs.
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In contrast, Figures 6.17 through 6.20 show more distribution variance. The vari-

ance is either exhibited over the data set for one server, as in server www.boston.com

in cluster Boston Globe, or among multiple servers belonging to one cluster, as in

cluster Dallas News.

As we have analyzed the TCP inner workings previously, the overall throughput

for a server having a long RTT from WPI, depends more on the RTT value than the

bandwidth in the early rounds of a connection, since the server has to stall in each

round to wait for ACKs from the client. The object sizes at the servers we study are

mostly 50KB - 100KB. A connection only took a few RTTs to finish. Server stalling

dominated most of the connection, especially for servers with longer RTTs. So we

expect to see connection throughput increase as RTT decreases, and vice versa.

We can basically observe this behavior in the RTT and throughput graphs. For

example, servers at cluster CNN have a relatively shorter RTT than those at cluster

MSN, as shown in Figures 6.1 (RTT 30ms), 6.5 (RTT 90ms), 6.13 (throughput

250KB/s) and 6.15(throughput 50KB/s).

6.1.4 Connection Health Ratings

Since the health rating of a connection only takes three possible values, where 2

means ’good’, 1 ’medium’, and 0 ’bad’, we use histograms instead of CDF graphs

to present its distribution in this section. We find from the histograms that most of

the clusters and the servers have a health rating of 2, and the health rating remains
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stable over time. See Figures 6.21 through 6.26.

We can also see that the clusters with a health rating of 2 have good and concen-

trated distribution of RTTs and connection throughput, which further validates the

connection health rating algorithm. For example, cluster IL Government, in Figures

6.3, 6.14 and 6.24.

Figures 6.27 and 6.28 are two clusters where servers’ connection health ratings

varied between two values instead of having one concentrated value. If we look at

their RTTs and throughput, there are also large variance in these two metrics, which

coincides with the connection health rating distribution.

6.2 Predictions

In this section, we discuss how well predictions can be made using the exponential

predictor model proposed in the background.

6.2.1 Choices of Parameters

In our experiments, we find that exponential decay predictor achieves good predic-

tion accuracies while keeping the computation simple. Therefore, we use exponential

decay predictor for our metric prediction.

We use different λ values that can possibly affect the prediction accuracy. From

our preliminary work we determined that lambda did not affect overall prediction.

Hence this time we select fewer values with a more even distribution. The λ values

we use are λ = 0, 0.25, 0.5, 0.75. In theory, the smaller λ is, the more importance
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Figure 6.26: Health Ratings of Cluster SanFrancisco.com at San Francisco, CA
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Figure 6.29: RTT Normalized Prediction Errors with Different Lambda Values
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Figure 6.30: Connection Throughput Normalized Prediction Errors with Different
Lambda Values
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Figure 6.31: Available Bandwidth Normalized Prediction Errors with Different
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is placed on the more recent accesses; the larger λ is, the more important is placed

on a weighted average over all the previous accesses. However, in our experiment,

we find that prediction accuracy does not rely much on the choice of λ, but on the

variance of the data itself.

In Appendix A , Tables A.1 through A.8 show the detailed prediction results

with different λ values, at each web server for RTT, connection throughput, available

bandwidth and connection health ratings respectively. The prediction errors, i.e.,

the difference between the actual values and the predicted values, are expressed in

the absolute values in each column for the corresponding λ values. In order to make

prediction errors comparable, we also put in the tables their normalized values in the

parenthesis after the absolute ones. The normalized value is expressed in the form

of percentage and calculated as the ratio of the prediction error to the actual value.

The web servers are numbered from 1 to 62 as shown in the tables. In Figures 6.29

through 6.32, we use these web server numbers and plot the normalized prediction

errors in the percentage of the actual values for each λ values for different metrics.

Web servers that belong to the same cluster are connected by lines in the figures.

As we can see, most prediction errors fall in the range of 10-20%(bandwidth

is 20-30%), which is good or acceptable for some applications. Those which have

higher prediction errors are normally servers with more variation. For example,

server www.boston.com had large variation of throughput in Figure 6.17 and of

bandwidth in Figure 6.10, and the prediction for both metrics have large errors too

in Figures 6.30 and 6.31. We can also see servers from the same cluster do not

necessarily have similar prediction errors and can vary significantly. We believe this
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is also due to difference in individual server behavior and metric variance over time.

In most of the cases, λ values do not make a significant difference, except for a few

web servers and clusters such as “MBTA” and “NYTimes” in RTT and bandwidth

prediction, where larger λ values achieve smaller prediction errors. As we can see

in Fig 6.29 - 6.32, most lines with different λ values coincide with each other. We

believe this is due to the stability of the data set itself, therefore the λ value used

is not critical to prediction accuracy.

We also plotted the absolute values of prediction errors shown in Figures 6.33

through 6.36 in comparison to the normalized ones. As we can see some servers could

have similar values of absolute prediction errors, while the normalized prediction

errors in terms of the ratio of prediction errors to the actual values could be different.

For example, in Figure 6.36, server 1-3, 6-16 and 21-24 all have similar absolute

prediction errors, but in Figure 6.29, their normalized prediction errors are more

varied. This discrepancy between actual and normalized errors is because their

actual values are different and the same amount of data change do not have the

same affect on different servers.

In the cases where we see large prediction errors for certain metrics for some

servers, we show here some CDF graphs for normalized prediction errors to have

a closer look at whether the choice of λ makes a difference for connections with large

variation. Figure 6.37 shows the RTT normalized prediction errors for www.mbta.com

(server 2 in Figure 6.29), where we do not see significant difference in the overall dis-

tribution of normalize prediction errors. So is the case with other metrics and other

servers. Figure 6.38 shows another example, the bandwidth normalized prediction
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Figure 6.33: RTT Prediction Errors with Different Lambda Values
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errors for music.msn.com (server 35 in Figure 6.31).

6.2.2 Choices of Data Collection Intervals

Another aspect of the prediction is to investigate whether the frequency of accesses

significantly affects the prediction accuracy. Our default collection interval for web

servers was ten minutes. We extract from the original data set data points of every

one hour, every two hours and every four hours respectively, and use them together

with the original data set to do prediction. We compare the prediction accuracy for

the different collection intervals. In all the cases here, we fix λ value as λ = 0.5.

The detailed prediction results with different collection intervals for RTT, connection

throughput, available bandwidth and connection health ratings are listed in Table

A.9 through A.16 in Appendix A. In the same way for different λ values, we plot the

normalized prediction errors in the percentage of the actual values for each collection

interval for each metric, with servers from the same clusters connected by lines. See

Figures 6.39 through 6.42.

Interestingly enough, as we can see from these figures, using large collection

intervals, for example four hours, does not degrade prediction accuracy in most

cases. However, there are a few exceptions where larger collection intervals do cause

degradation of prediction accuracy, for example, cluster “Boston Globe” and cluster

“MBTA” in RTT, throughput, and available bandwidth. In both cases, the variance

of the data itself determines the prediction accuracy in reaction to the choice of the

collection intervals. For a relatively stable set of data, use of a large collection

interval does not impact prediction accuracy, while it does for a more varied data
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Figure 6.39: RTT Normalized Prediction Errors with Different Connection Intervals
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Figure 6.43: RTT Prediction Errors with Different Connection Intervals
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set.

Similarly as for the choice of λ values, Figures 6.43 through 6.46, show the

absolute prediction errors for different collection intervals.

6.3 Summary

The work in this section covered two main topics. We first studied the variations

in network metrics using the data collected in Chapter 5. We can see the different

behavior of these metrics, e.g. RTT is stable, but throughput varies a lot with object

sizes.

We also saw that time-based predictions using the exponential predictor gave

good prediction results in most cases. Using normalized prediction values we were

able to study the accuracy of these variations. In the following chapters we see some

more predictions and their analysis.
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Chapter 7

Topology-Based Prediction

In this chapter, we discuss how well network metrics’ prediction can be made using

data from other web servers or other clusters. We want to find out if the change in

data of one metric at one server is also reflected on another server.

As we mentioned in earlier chapters, a database at a local cluster can be built to

make predictions about the next user access, using information on previous accesses

to the same server as well as to other server locations. The choice of λ values for

the predictor and time intervals of using has been discussed in the previous chapter.

The task for this chapter is to investigate the possibility of utilizing accesses to other

servers to make prediction for a given server. In order to verify this idea, we want

to find out if there is such correlation of network metrics among servers.

7.1 Correlation of Actual Values of Network Met-

rics Among Web Servers

Before studying the correlation of data variance of network metrics among web

servers, we want to investigate the correlation of the actual data itself. For each of
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the network metrics: RTT, connection throughput, available bandwidth and con-

nection health rating, we calculate the correlation coefficient for every web server

pair. For correlation coefficients, a commonly accepted mathematical understanding

of their values is as follows,























0 ≤ |r| < 0.5 weak correlation

0.5 ≤ |r| < 0.8 moderate correlation

0.8 ≤ |r| ≤ 1 strong correlation

Therefore, we only examine correlation coefficients greater than 0.5. Among all the

network metrics, servers demonstrate moderate to strong correlation only on their

RTT values. The reason being that the calculation of other network metrics such as

connection throughput and available bandwidth are sensitive to object sizes which

can vary from server to server. Therefore, we have only observed correlation for the

RTT metric.

Table 7.1: Correlation Coefficients of RTT Actual Values

location cluster name web server 1 web server 2 correlation
coefficient

Boston, MA Boston Globe www.boston.com weather.boston.com 0.97

Atlanta, GA

Weather.com www.weather.com forgetaway.weather.com 0.78
GA Government www.georgia.gov www.gov.state.ga.us 0.80

www.georgia.gov www.files.georgia.gov 0.67
www.gov.state.ga.us www.files.georgia.gov 0.68

Raymond, WA

MSN www.msn.com entertainment.msn.com 0.59
www.msn.com weather.msn.com 0.56
entertainment.msn.com weather.msn.com 0.76
entertainment.msn.com music.msn.com 0.62
weather.msn.com music.msn.com 0.88

Real www.realnetworks.com brasil.real.com 0.82

Los Angeles, CA City of LA publiccsd.lacity.org parc1.lacity.org 0.67

Dallas, TX
Dallas News www.dallasnews.com www.cowboysplus.com 0.86

www.dallasnews.com www.guidelive.com 0.85

www.cowboysplus.com www.guidelive.com 0.95

Note: Correlation coefficients greater than 0.8 are in bold font.
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Table 7.1 shows all the web server RTT correlation coefficients with a value

greater than 0.5, where values greater than 0.8 are marked with bold. As we can

see, all the server pairs that have moderate to strong correlation belong to the

same cluster, but not all clusters or all servers in a cluster are present in the table.

That all correlated servers belong to the same cluster can be explained by the

fact that these servers share most of their routes except the last one or two hops.

The clusters that do not exhibit server correlation could be because data variation

mostly dominates server performance instead of network condition. We can also see

in Table 7.1, some server pairs can have higher correlation coefficient than others.

We suspect the difference among server pair correlation be due to the two servers’

host configuration or implementation and path difference on last hops.

7.2 Correlation of Prediction Errors of Network

Metrics among Web Servers

In order to use data collected from one server to make prediction for another, we

want to find out whether there is a correlation of data change between the two

servers. In other words, if data change at server 1 is ∆1 (the difference between

two measurements obtained at t and t-∆t at server 1) and data change at server 2

is ∆2 (the difference between two measurements obtained at t and t-∆t at server

2), we want to find out whether ∆1 is linearly correlated to ∆2. This idea is based

on the hypothesis that performance change on the shared route of the two servers

is the cause of the network metric change on both servers. In order to verify this
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hypothesis, data variation correlation is studied. Particularly, we use prediction

errors as an expression of data change.

When we discussed the choice of λ values in chapter 6, we used λ = 0, 0.25,

0.5 and 0.75, respectively. When λ = 0, the previous data point is used as the

predicted value, so the prediction error (the difference between the actual values

and the predicted values) in that case reflects change of the data set itself, i.e., the

variation of two consecutive data points. When λ takes on other non-zero values,

the only difference is that the prediction error is a variation measurement for the

current data point over all the previous ones with a weight parameter set to decide

the emphasis to be put on previous accesses. With this in mind, we examined

the correlation coefficients of the prediction errors for every web server pair, to

demonstrate if data change at one server results in similar change on the other. We

calculated the correlation coefficients for all λ values (λ = 0, 0.25, 0.5 and 0.75), and

the results were similar. Therefore, we only show the prediction error correlation

coefficients with λ = 0.75 in Table 7.2, where all the values greater than 0.5 are

shown and those greater than 0.8 are marked with bold.

As we can see, Table 7.2 has the same set of locations of server pairs that have

moderate/strong correlation as Table 7.1 does. Not surprisingly, most of clusters

and servers present in Table 7.1 are also present in Table 7.2. Table 7.2 contains

more clusters and server pairs, however, than Table 7.1. However, in Table 7.2, many

clusters in the second locations are not from the same locations as the first ones,

and they two do not even seem to share much of the common route. For example,

www.aviationdisasterlawyers.com is located in Boston, and all three servers that

have moderate correlation to it on prediction errors are from three different locations
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Table 7.2: Correlation Coefficients of RTT Prediction Errors at λ = 0.75

location 1 cluster 1 web server 1 location 2 cluster 2 web server 2 correlation
coefficient

Boston, MA

Boston Globe www.boston.com - - weather.boston.com 0.98

www.explorenewengland.com San Francisco, CA City of Davis www.dcn.org 0.58
Web Hosting www.aviationdisasterlawyers.com Raymond, WA MSN www.msn.com 0.53

Los Angeles, CA Ameriquest careers.ameriquest.com 0.58
San Francisco, CA Sanfrancisco www.legislature.ca.gov 0.70

www.asbestoslaw.info Raymond, WA MSN music.msn.com 0.72
weather.msn.com 0.57

Atlanta, GA

CNN www.cnn.com - Weather.com br.weather.com 0.52
Springfield, IL IL Government www.illinois.gov 0.62
Dallas, TX Online Video www.lapdonline.org 0.58

Weather.com www.weather.com - - forgetaway.weather.com 0.80

br.weather.com San Francisco, CA City of Davis www.dcn.org 0.51
Dallas, TX Online Video www.lapdonline.org 0.58

Raymond, WA

MSN www.msn.com Los Angeles, CA Ameriquest careers.ameriquest.com 0.57
- - entertainment.msn.com 0.57

entertainment.msn.com - - music.msn.com 0.51
weather.msn.com 0.68

music.msn.com - - weather.msn.com 0.91

Real www.realnetworks.com - - brasil.real.com 0.78
Los Angeles, CA City of LA publiccsd.lacity.org - - parc1.lacity.org 0.62

Dallas, TX
Dallas News www.dallasnews.com - - www.cowboysplus.com 0.85

www.guidelive.com 0.85

www.cowboysplus.com - - www.guidelive.com 0.96

Note: “-” means location 2 or cluster 2 is the same as location 1 or cluster 1. Correlation coefficients greater than 0.8 are in bold font.
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(www.msn.com in Raymond, WA, careers.ameriquest.com in Los Angeles, CA, and

www.legislature.ca.gov in San Francisco, CA) and have little shared route with

www.boston.com. The reason why this is happening is unclear.

Overall, we can conclude that using performance change at other servers sharing

some common route may not be an effective approach in predicting a given server’s

performance change. We suspect that the insufficiency is due to performance vari-

ation being largely caused by variations occurring on the non-shared routes or dif-

ferent server behavior. Different server behavior can include various user loads at

the different servers, server configuration and implementation difference, and other

known server-related reasons.

7.3 Summary

For topology-based predictions we examined the possibility of predicting the metrics

of a given web server using data from another web server, by studying the correla-

tion of data collected for different servers. Then we examined our hypothesis that

network variation is mostly introduced in the shared paths, by calculating the cor-

relation of prediction errors for different servers. In the following chapter we predict

the metrics of one application using the data of another application.
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Chapter 8

Prediction Across Applications

In the previous chapters, we have only studied one network application – web re-

trievals. In this chapter, network metrics prediction across different applications is

examined. Besides web retrievals, two more applications are studied in predicting

performance for each other. They are DNS requests and real video streaming.

8.1 Motivation

There are a variety of popular Internet applications, for example, web retrievals,

streaming media application, gaming application, large FTP transfers, and DNS

requests. Internet accesses to one application can be used to predict performance of

another at the same cluster. To find out how well we can possibly utilize this kind of

information is the motivation of studying cross-application metrics for performance

prediction.

At the same time, we also know different applications can have varied require-

79



ments for different metrics. For example, a streaming application is more sensitive

to jitter in the RTT and bandwidth than a file transfer application. Similarly a

gaming application is more sensitive to the change of RTTs than that of bandwidth,

since most of the packets are in small sizes. Data collected at a short HTTP connec-

tion may not be useful to make predictions of available bandwidth for a streaming

application. All of these issues become a challenge for making predictions for an

application using the measured data for another. Therefore, identifying the factors

that significantly affect the performance for each individual network application is

an aspect that should be taken into consideration as well.

Let us assume we already know what the QoS demands for each application are.

The next task would be to know how confidently data obtained for a given metric

from one application can be used for another. Can the available bandwidth inferred

from the web access of a small page be used by a streaming media application to

select a low or high bandwidth version?

8.2 DNS Requests vs. Web Retrievals

As we have mentioned in Chapter 5, in Tables 5.1 and 5.2, we collected traces

of DNS requests to 20 DNS servers from 20 different clusters at 8 geographical

locations. Since we can only infer RTT measurement from a DNS request, it is the

only metric to be studied for cross application prediction between DNS requests and

web retrievals.
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8.2.1 Data Distribution

We put DNS request data together with that of web retrievals at the same cluster.

First, we want to look at the distribution of the raw data for the two applications

at each cluster. Most of the DNS requests have their RTTs’ distributions coinciding

with other web servers from the same cluster, as shown in Figures 8.1 through 8.4.

In each figure, DNS data is represented in red. In some of the clusters, DNS RTT

measurements lag behind those obtained from web servers. See Figures 8.5 through

8.6.

8.2.2 Correlation Coefficients

Next, we want to find out if there is any moderate to strong correlation between

metrics collected from the DNS server and those from any of the web servers in

the same cluster. If there is, using across application information for performance

prediction is applicable to those servers, and vice versa. Here we use the same idea

mentioned in Chapter 7, investigating the correlation between the two applications

for both the actual values and their prediction errors. Table 8.1 shows all the DNS

servers that have RTT correlation coefficients of 0.5 or greater with web servers

at the same cluster. Values greater than 0.8 are marked with bold. Correlation

coefficients for both the actual values and prediction errors at λ = 0.75 are shown

in Table 8.1. As we can see, in only a few clusters, the DNS servers show moderate

to strong correlation to some of the web servers from the same cluster. For these

web servers, we can use RTTs collected from DNS requests to make predictions.

We can see that for those servers whose actual RTT measurements have correlation
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coefficients greater than 0.5 with web servers, coincide with their prediction errors

as well.

Table 8.1: Correlation Coefficients of RTT Measurements from DNS Servers vs.
Web Servers (Actual Values / Prediction Errors at λ = 0.75)

Location Cluster Name DNS Server Web Servers Correlation
coefficients

Springfield, IL
IL Government ns1.state.il.us www.illinois.gov 0.62/0.60
IL Education ns1.illinois.net www.isbe.net 0.86/0.61

Raymond, WA
Real ns1.real.com www.realnetworks.com 0.79/0.79

brasil.real.com 0.81/0.79

Los Angeles, CA
City of LA citylans1.lacity.org publiccsd.lacity.org 0.88/0.85

parc1.lacity.org 0.60/0.53

Dallas, TX
Dallas News ns1.belo.com www.dallasnews.com 0.92/0.91

www.cowboysplus.com 0.87/0.85

www.guidelive.com 0.91/0.92

Note: Correlation coefficients greater than 0.8 are in bold font.

8.3 Real Streaming Videos vs. DNS Requests

and Web Retrievals

Besides the DNS application, another type of network application we study is the

real streaming videos. The streaming servers used in our experiments are listed

in Tables 5.1 and 5.2 in Chapter 5. Only ten clusters have real streaming servers,

with one server in each, but they cover all the eight locations listed in the tables.

We want to find out if metrics inferred from real streaming accesses can be used to

predict performance of DNS and web applications located at the same cluster.

8.3.1 Metrics Inferred from Real Streaming

A typical real streaming access normally involves two flows: one TCP flow of RTSP

messages between the the client and the server to set up the data transfer connection
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and exchange streaming related parameters; one UDP flow for data transfer of real

streaming videos. In the TCP flow, the client initiates packets and receives replies

along with ACKs. Such a scenario enables us to infer an RTT measurement once

we see the client receives an immediate ACK to the packet it just sent. In the

UDP flow, we observe real streaming data is usually received by the client at an

even rate. This rate is normally negotiated between the client and the server at

the initial connection setup stage in the TCP flow. In the following discussion of

Section 8.3, we call this receiving rate as throughput for the real streaming access,

a reflection of how fast data is pushed through the connection. Therefore, we use

both RTTs and throughput as the metrics studied for the streaming application.

8.3.2 Data Distribution

First, we want to look at the distribution of the raw data for web, DNS, and stream-

ing applications. We find that all the streaming servers have their RTT measure-

ments coincide with those obtained from the DNS and web servers at the same

clusters. Figures 8.7 through 8.12 show the distributions of RTTs obtained from

web, DNS and streaming applications at some clusters. In each figure, DNS data is

represented in red, and streaming data in light green.

As we mentioned earlier in Subsection 8.3.1, the throughput we define for the

streaming application is actually the receiving rate of the real streaming data. We

also plot the distributions of the raw data of it measured from streaming and web

applications. Most throughput measurements obtained from streaming applications

have comparable distribution to those from web applications, as shown in Figures

8.13 through 8.16. Again, in each of the figures, streaming data is represented
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in light green. However, we also observe that at some of the clusters, streaming

throughput measurements are much smaller than those obtained from web servers.

See Figures 8.17 through 8.18.

8.3.3 Correlation Coefficients

Second, we want to find out if there is any moderate to strong correlation between

metrics collected from the streaming server and the DNS server, as well as between

the streaming server and web servers in the same cluster. Again, we investigate the

correlation between two applications for both the actual values and the prediction

errors.

Table 8.2 shows all the streaming servers that have RTT correlation coefficients

of 0.5 or greater with either a DNS server or a web server at the same cluster. Values

greater than 0.8 are marked with bold. Correlation coefficients for both actual values

and prediction errors at λ = 0.75 are shown in Table 8.2. As we can see, six out of

ten streaming servers studied show up in the table. There are stronger correlations

between the actual values than between the prediction errors. The streaming servers

show moderate to strong correlation to some (not necessarily all) of the web servers

at the same clusters, and so does it to the DNS servers. For these clusters and

servers that show correlation, we use RTTs collected from one application to make

prediction for another.

We also study the correlation for throughput between the streaming servers and

any of the web servers at the same clusters. However, we do not find any moderate to

strong correlation between any of the pairs of a streaming server and a web server

at the same cluster. We believe that because the receiving rate for a streaming
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Table 8.2: Correlation Coefficients of RTT Measurements from Streaming Servers
vs. DNS and Web Servers (Actual Values / Prediction Errors at λ = 0.75)

Location Cluster Name Streaming Server DNS/Web Servers Correlation
coefficients

New York, NY
UN www.dz.undp.org DNS: ns.undp.org 0.61/-

Web: google.undp.org 0.84/0.89

Springfield, IL

GA Government www.georgia.gov Web: www.georgia.gov 0.83/-
Web: www.files.georgia.gov 0.67/-
Web: www.gov.state.ga.us 0.83/0.55

IL Education www.isbe.net DNS: ns1.illinois.net 0.85/0.63
Web: www.isbe.net 0.83/0.75

Los Angeles, CA
City of LA realav.lacity.org DNS: citylans1.lacity.org 0.80/0.77

Web: publiccsd.lacity.org 0.85/0.82

Web: parc1.lacity.org 0.58/-
Dallas, TX Dallas News www.ci.irving.tx.us DNS: sob.ci.irving.tx.us 0.73/0.68

Online Video www.lapdonline.org Web: www.lapdonline.org 0.71/0.64
Note: Correlation coefficients greater than 0.8 are in bold font.

A value less than 0.5 is shown as “-”.

application is negotiated between the client and the server at the initial connection

setup, it may not be good reflection of the throughput of a web access. We also

investigate such correlation between receiving rates from streaming applications and

measured bandwidth from web retrievals at the same cluster. Again, for the same

reason, we do not see any moderate to strong correlation between the two metrics

collected from the two applications.

8.4 Summary

In this section we examined the possibility of using network metrics from one ap-

plication for prediction of another application. The different applications studied

here were web transfers, DNS lookups and Real streaming videos. We compared the

measured RTTs across these applications by studying the correlation coefficients.

We saw good correlation of RTT between some web retrievals and DNS requests.

We studied the working of the real time streaming protocol (RTSP). We defined
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our method to measure RTTs and receiving rates for real streaming videos. We ob-

served good correlation for RTT measurements between streaming servers and web

servers for some locations. The same behavior was observed for streaming servers

and DNS servers. However we did not observe good correlation for receiving rate

measurements between real streaming servers and web servers.
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Chapter 9

Conclusions

Looking back at the original questions we raised in Chapter 1 “Introduction”, we

want to summarize our findings in the form of the answers to those questions.

The first set of questions were “How well can previous measurements be used

for predicting future measurements?” and “How frequently do these measurements

need to be taken in order to make accurate predictions?” In our study of time-based

predictions we can conclude that the exponential predictor provides good accuracy

in using previous data points to predict future network accesses. This is also due

to the stability of the data set itself, because our experiments were run over a good

network connection from WPI. We also find in most cases the value of the parameter

to the exponential predictor (λ) is not significant. Using λ=0.75 generally provides

good results. In exploring different collection frequencies, we find that the choice of

collection time intervals is not critical. The data remains relatively stable when we

experiment with different time intervals. However large intervals do cause significant

prediction errors for some servers.

The second question was “How can topological similarities between network
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paths to servers be used in making predictions?”. We studied topology-based predic-

tions, i.e. predicting performance among servers that share certain common paths

from WPI. At some clusters, we see prediction results show good correlation among

some web servers in the same cluster. However not all servers in the same cluster

show correlation, and not all the clusters have servers whose prediction results cor-

relation. Therefore, using topology commonality in server performance prediction

has to be analyzed on a case by case basis.

The third question was “How effectively can information inferred from one net-

work application be used to predict application performance of another?”. We look

at the feasibility of making predictions across applications e.g. using RTT measured

from DNS to make predictions for web servers. The findings are similar here to the

topology-based prediction. We can see that correlation between DNS requests and

web servers is observed in a few clusters but not all. Again, using across application

performance data for prediction should be evaluated depending on the individual

servers involved. We look at real streaming videos in this context as well. We can see

that for RTT measurements there is some correlation between streaming videos and

web retrievals. We also see that there is RTT correlation between streaming videos

and DNS lookups. However when we do the same for throughput measurements,

we see no correlation between real streaming servers and web servers.
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Chapter 10

Future Work

As an extension of this work we would like to analyze additional kinds of applications

and the correlation of different metrics. For example we could study real streaming

media and study correlation of its bandwidth with web retrievals. As a result, we

will have more datasets to analyze feasibility of prediction.

In our current work, we studied time-based, topology-based and cross-application

prediction mechanism. However we studied them in isolation. In the future we

intend to build a more comprehensive model which will integrate these three tech-

niques. One way would be to build a local database at a cluster storing metrics from

all user accesses. This database can then be accessed by different servers running

different applications. If this approach shows some success then a mechanism to

share information among different clusters through their databases can be built as

well.

The experiments in this work were all run from the network at Worcester Poly-

technic Institute. Hence all our design decisions were influenced by the well con-

nected OC1 link. As a variation the experiments can be done on networks with
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different bandwidths e.g. a DSL/cable home link. It would be interesting to study

the behavior of network metrics over the range of parameters on such relatively

slower networks. Having data collected from different networks will provide us a

better insight into the behavior of the various parameters used in our work. It may

also help to generalize the design choices such as with a higher degree of confidence

For example the choice of λ, measurement intervals etc. could differ on a DSL/cable

link.
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Appendix A

Time-Based Prediction Errors

Table A.1: RTT Prediction Results with Different λ Values

average λ=0 mean λ=0.25 mean λ=0.5 mean λ=0.75 mean
location cluster name web servers actual values prediction errors prediction errors prediction errors prediction errors

(ms) (ms) (ms) (ms) (ms)

Boston, MA

Boston Globe 1: www.boston.com 17.56 7.92 (45.1%) 7.67 (43.7%) 7.76 (44.19%) 8.00 (45.58%)
2: weather.boston.com 15.48 6.60 (42.64%) 6.48 (41.88%) 6.69 (43.25%) 7.16 (46.25%)
3: www.explorenewengland.com 11.86 5.16 (43.48%) 4.85 (40.86%) 4.70 (39.65%) 4.65 (39.2%)

MBTA 4: www.mbta.com 36.74 38.96 (106.05%) 37.28 (101.47%) 36.12 (98.33%) 35.01 (95.29%)
5: trip.mbta.com 27.85 19.55 (70.2%) 18.06 (64.86%) 17.22 (61.84%) 16.76 (60.2%)

Web Hosting 6: www.aviationdisasterlawyers.com 10.42 6.44 (61.83%) 5.93 (56.87%) 5.56 (53.4%) 5.27 (50.61%)
7: www.asbestoslaw.info 10.36 5.89 (56.82%) 5.33 (51.45%) 4.95 (47.81%) 4.67 (45.12%)
8: www.pharmaceuticallawyers.com 9.85 5.89 (59.79%) 5.41 (54.88%) 5.07 (51.46%) 4.81 (48.87%)

New York, NY

NYTimes 9: www.nytimes.com 16.09 6.14 (38.18%) 5.76 (35.81%) 5.56 (34.59%) 5.42 (33.69%)
10: movies.nytimes.com 16.74 5.81 (34.73%) 5.34 (31.9%) 5.07 (30.28%) 4.88 (29.16%)
11: homefinance.nytimes.com 17.10 6.84 (40.01%) 6.37 (37.28%) 6.14 (35.91%) 6.00 (35.12%)
12: query.nytimes.com 16.07 5.64 (35.1%) 5.21 (32.38%) 4.97 (30.93%) 4.82 (29.96%)

UN 13: www.undp.org 18.27 6.90 (37.74%) 6.32 (34.56%) 5.98 (32.73%) 5.71 (31.27%)
14: www.rbas.undp.org 17.69 5.86 (33.15%) 5.37 (30.35%) 5.05 (28.53%) 4.82 (27.22%)
15: www.dz.undp.org 18.31 6.53 (35.67%) 6.10 (33.31%) 5.84 (31.88%) 5.65 (30.84%)
16: google.undp.org 17.76 6.86 (38.64%) 6.35 (35.74%) 6.08 (34.23%) 5.91 (33.3%)

Atlanta, GA

CNN 17: www.cnn.com 38.65 1.19 (3.08%) 1.09 (2.83%) 1.04 (2.69%) 1.01 (2.61%)
18: edition.cnn.com 40.41 3.79 (9.37%) 3.63 (8.98%) 3.53 (8.73%) 3.45 (8.55%)
19: si.cnn.com 39.36 2.33 (5.92%) 2.23 (5.67%) 2.18 (5.54%) 2.14 (5.43%)
20: money.cnn.com 44.24 11.15 (25.2%) 10.99 (24.83%) 10.90 (24.64%) 10.83 (24.49%)

Weather.com 21: www.weather.com 33.45 2.80 (8.38%) 2.72 (8.12%) 2.68 (8.02%) 2.66 (7.95%)
22: forgetaway.weather.com 33.90 2.84 (8.38%) 2.68 (7.9%) 2.59 (7.63%) 2.53 (7.45%)
23: desktopfw.weather.com 34.28 3.03 (8.84%) 2.82 (8.21%) 2.68 (7.83%) 2.60 (7.58%)
24: br.weather.com 34.62 3.13 (9.05%) 2.90 (8.37%) 2.77 (8.01%) 2.73 (7.88%)

GA gov 25: www.georgia.gov 38.57 3.90 (10.1%) 3.56 (9.24%) 3.39 (8.79%) 3.35 (8.69%)
26: www.files.georgia.gov 37.61 3.01 (8.01%) 2.85 (7.58%) 2.77 (7.38%) 2.81 (7.48%)
27: oca.awe.gta.ga.gov 40.22 9.51 (23.64%) 9.37 (23.31%) 9.33 (23.2%) 9.38 (23.33%)
28: www.gov.state.ga.us 37.08 2.96 (7.97%) 2.75 (7.41%) 2.66 (7.18%) 2.63 (7.1%)

Springfield, IL

IL gov 29: www.dnr.state.il.us 46.41 4.29 (9.25%) 4.06 (8.74%) 3.95 (8.51%) 3.97 (8.56%)
30: www.illinois.gov 43.39 2.28 (5.26%) 2.14 (4.93%) 2.11 (4.87%) 2.23 (5.14%)
31: www.allkidscovered.com 47.64 5.73 (12.02%) 5.44 (11.41%) 5.32 (11.16%) 5.34 (11.21%)

IL Education 32: www.isbe.net 42.12 4.33 (10.29%) 4.21 (10%) 4.29 (10.19%) 4.85 (11.51%)
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Table A.2: RTT Prediction Results with Different λ Values (Continued)

average λ=0 mean λ=0.25 mean λ=0.5 mean λ=0.75 mean
location cluster name web servers actual values prediction errors prediction errors prediction errors prediction errors

(ms) (ms) (ms) (ms) (ms)

Raymond, WA

MSN 33: www.msn.com 93.43 2.49 (2.66%) 2.28 (2.45%) 2.19 (2.34%) 2.22 (2.38%)
34: entertainment.msn.com 92.10 1.63 (1.77%) 1.50 (1.63%) 1.45 (1.58%) 1.46 (1.58%)
35: music.msn.com 92.04 1.59 (1.73%) 1.48 (1.61%) 1.43 (1.55%) 1.44 (1.57%)
36: weather.msn.com 92.48 2.32 (2.51%) 2.13 (2.3%) 2.03 (2.2%) 2.01 (2.17%)

Real 37: www.realnetworks.com 97.85 7.21 (7.37%) 6.79 (6.94%) 6.78 (6.93%) 7.05 (7.2%)
38: brasil.real.com 98.08 7.43 (7.58%) 7.01 (7.14%) 6.94 (7.07%) 7.12 (7.26%)
39: musicstore.real.com 76.98 1.52 (1.98%) 1.38 (1.8%) 1.29 (1.67%) 1.22 (1.59%)

Los Angeles, CA

Ameriquest 40: www.ameriquestmortgage.com 89.04 1.40 (1.58%) 1.26 (1.42%) 1.16 (1.3%) 1.07 (1.2%)
41: careers.ameriquest.com 89.02 2.01 (2.26%) 1.82 (2.04%) 1.68 (1.88%) 1.56 (1.75%)
42: www.ameriquestracing.com 92.11 5.59 (6.07%) 5.01 (5.44%) 4.62 (5.02%) 4.33 (4.7%)

City of LA 43: www.lacity.org 115.76 32.34 (27.94%) 30.16 (26.06%) 28.83 (24.91%) 28.10 (24.28%)
44: eng.lacity.org 98.29 12.26 (12.48%) 12.18 (12.39%) 12.51 (12.73%) 13.20 (13.43%)
45: publiccsd.lacity.org 98.26 9.37 (9.53%) 9.14 (9.31%) 9.39 (9.56%) 10.32 (10.5%)
46: parc1.lacity.org 97.47 10.74 (11.02%) 10.58 (10.86%) 10.85 (11.13%) 11.63 (11.93%)
47: www.griffithobservatory.org 109.91 32.92 (29.95%) 32.41 (29.48%) 32.20 (29.29%) 32.68 (29.73%)

San Francisco, CA

Sanfrancisco 48: sanfrancisco.com 85.39 3.31 (3.88%) 3.19 (3.74%) 3.10 (3.63%) 3.01 (3.53%)
49: www.santa-clara.com 84.60 1.82 (2.16%) 1.66 (1.96%) 1.55 (1.83%) 1.48 (1.75%)
50: www.santacruz.com 84.96 5.53 (6.51%) 5.02 (5.91%) 4.63 (5.45%) 4.26 (5.02%)
51: www.oakland.com 83.56 3.39 (4.06%) 3.11 (3.72%) 2.90 (3.47%) 2.70 (3.23%)

CA gov 52: democrats.assembly.ca.gov 87.78 5.41 (6.17%) 5.15 (5.87%) 4.99 (5.68%) 4.88 (5.56%)
53: www.legislature.ca.gov 87.20 2.84 (3.25%) 2.59 (2.97%) 2.42 (2.78%) 2.31 (2.64%)
54: republican.assembly.ca.gov 86.96 6.33 (7.28%) 6.07 (6.98%) 5.90 (6.79%) 5.76 (6.63%)

City of Davis 55: www.city.davis.ca.us 103.86 10.46 (10.07%) 10.01 (9.64%) 9.71 (9.35%) 9.33 (8.98%)
56: events.dcn.org 94.20 2.39 (2.54%) 2.16 (2.3%) 2.01 (2.13%) 1.90 (2.01%)
57: www.dcn.org 95.51 3.18 (3.33%) 2.86 (2.99%) 2.64 (2.76%) 2.49 (2.61%)

Dallas, TX

Dallas News 58: www.dallasnews.com 53.72 3.22 (5.99%) 3.11 (5.8%) 3.14 (5.84%) 3.22 (6%)
59: www.cowboysplus.com 54.90 3.58 (6.53%) 3.47 (6.32%) 3.51 (6.4%) 3.61 (6.57%)
60: www.guidelive.com 53.12 2.76 (5.19%) 2.75 (5.17%) 2.84 (5.34%) 2.97 (5.59%)

City of Irving 61: www.ci.irving.tx.us 90.70 42.79 (47.17%) 41.32 (45.55%) 40.85 (45.04%) 40.79 (44.97%)

Online Video 62: www.lapdonline.org 54.00 2.15 (3.98%) 2.03 (3.75%) 1.95 (3.61%) 1.92 (3.56%)
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Table A.3: Connection Throughput Prediction Results with Different λ Values

average λ=0 mean λ=0.25 mean λ=0.5 mean λ=0.75 mean
location cluster name web servers actual values prediction errors prediction errors prediction errors prediction errors

(KB/s) (KB/s) (KB/s) (KB/s) (KB/s)

Boston, MA

Boston Globe 1: www.boston.com 410.03 210.96 (51.45%) 196.40 (47.9%) 190.08 (46.36%) 187.70 (45.78%)
2: weather.boston.com 354.59 59.43 (16.76%) 53.96 (15.22%) 50.39 (14.21%) 49.02 (13.82%)
3: www.explorenewengland.com 261.94 35.59 (13.59%) 32.41 (12.37%) 30.47 (11.63%) 29.57 (11.29%)

MBTA 4: www.mbta.com 153.09 53.45 (34.91%) 48.68 (31.8%) 46.33 (30.27%) 46.01 (30.06%)
5: trip.mbta.com 236.20 85.28 (36.1%) 76.94 (32.57%) 71.79 (30.39%) 69.29 (29.34%)

Web Hosting 6: www.aviationdisasterlawyers.com 1466.44 747.67 (50.99%) 671.83 (45.81%) 617.69 (42.12%) 581.14 (39.63%)
7: www.asbestoslaw.info 1926.40 829.69 (43.07%) 752.82 (39.08%) 699.25 (36.3%) 668.33 (34.69%)
8: www.pharmaceuticallawyers.com 1738.13 700.67 (40.31%) 636.84 (36.64%) 594.55 (34.21%) 566.82 (32.61%)

New York, NY

NYTimes 9: www.nytimes.com 826.75 130.65 (15.8%) 118.67 (14.35%) 110.23 (13.33%) 103.86 (12.56%)
10: movies.nytimes.com 765.26 145.28 (18.98%) 130.44 (17.04%) 119.40 (15.6%) 110.70 (14.47%)
11: homefinance.nytimes.com 310.01 35.54 (11.46%) 32.28 (10.41%) 30.18 (9.73%) 28.58 (9.22%)
12: query.nytimes.com 69.27 21.63 (31.23%) 20.30 (29.3%) 19.30 (27.86%) 18.08 (26.11%)

UN 13: www.undp.org 295.06 51.69 (17.52%) 46.96 (15.91%) 43.36 (14.7%) 40.33 (13.67%)
14: www.rbas.undp.org 364.88 57.44 (15.74%) 51.73 (14.18%) 47.41 (12.99%) 43.89 (12.03%)
15: www.dz.undp.org 233.30 62.44 (26.76%) 58.75 (25.18%) 57.09 (24.47%) 57.95 (24.84%)
16: google.undp.org 28.54 9.66 (33.86%) 8.57 (30.04%) 7.77 (27.24%) 7.16 (25.09%)

Atlanta, GA

CNN 17: www.cnn.com 305.56 22.97 (7.52%) 21.34 (6.98%) 20.37 (6.67%) 19.54 (6.39%)
18: edition.cnn.com 259.17 22.16 (8.55%) 20.20 (7.79%) 19.00 (7.33%) 18.11 (6.99%)
19: si.cnn.com 214.58 54.70 (25.49%) 50.52 (23.54%) 47.68 (22.22%) 45.16 (21.05%)
20: money.cnn.com 230.45 21.71 (9.42%) 19.73 (8.56%) 18.35 (7.96%) 17.27 (7.5%)

Weather.com 21: www.weather.com 457.36 60.44 (13.21%) 56.17 (12.28%) 53.90 (11.78%) 52.29 (11.43%)
22: forgetaway.weather.com 267.24 28.34 (10.6%) 26.17 (9.79%) 24.80 (9.28%) 23.65 (8.85%)
23: desktopfw.weather.com 246.97 34.26 (13.87%) 31.28 (12.67%) 29.41 (11.91%) 28.06 (11.36%)
24: br.weather.com 156.74 13.80 (8.81%) 12.86 (8.2%) 12.20 (7.79%) 11.63 (7.42%)

GA gov 25: www.georgia.gov 67.05 32.76 (48.86%) 31.16 (46.47%) 30.37 (45.29%) 29.82 (44.47%)
26: www.files.georgia.gov 132.81 49.42 (37.21%) 47.25 (35.58%) 45.85 (34.52%) 44.79 (33.73%)
27: oca.awe.gta.ga.gov 180.52 15.61 (8.65%) 14.49 (8.03%) 13.73 (7.61%) 13.12 (7.27%)
28: www.gov.state.ga.us 280.68 58.61 (20.88%) 54.62 (19.46%) 52.22 (18.61%) 50.96 (18.16%)

Springfield, IL

IL gov 29: www.dnr.state.il.us 81.86 31.25 (38.18%) 29.30 (35.8%) 28.30 (34.57%) 27.62 (33.74%)
30: www.illinois.gov 71.90 14.84 (20.63%) 13.64 (18.97%) 12.94 (18%) 12.55 (17.46%)
31: www.allkidscovered.com 64.90 5.62 (8.66%) 5.25 (8.09%) 5.01 (7.73%) 4.83 (7.44%)

IL Education 32: www.isbe.net 155.14 7.87 (5.08%) 7.49 (4.83%) 7.35 (4.74%) 7.57 (4.88%)
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Table A.4: Connection Throughput Prediction Results with Different λ Values (Continued)

average λ=0 mean λ=0.25 mean λ=0.5 mean λ=0.75 mean
location cluster name web servers actual values prediction errors prediction errors prediction errors prediction errors

(KB/s) (KB/s) (KB/s) (KB/s) (KB/s)

Raymond, WA

MSN 33: www.msn.com 50.97 17.34 (34.02%) 16.20 (31.79%) 15.60 (30.61%) 15.32 (30.06%)
34: entertainment.msn.com 51.96 5.40 (10.38%) 4.90 (9.44%) 4.53 (8.72%) 4.17 (8.03%)
35: music.msn.com 64.52 5.19 (8.04%) 4.77 (7.39%) 4.46 (6.92%) 4.17 (6.46%)
36: weather.msn.com 53.40 3.60 (6.74%) 3.47 (6.5%) 3.46 (6.49%) 3.51 (6.58%)

Real 37: www.realnetworks.com 54.13 6.27 (11.58%) 5.71 (10.55%) 5.33 (9.85%) 5.05 (9.33%)
38: brasil.real.com 54.13 11.85 (21.9%) 10.77 (19.9%) 10.02 (18.5%) 9.50 (17.55%)
39: musicstore.real.com 46.25 2.64 (5.71%) 2.48 (5.36%) 2.36 (5.11%) 2.24 (4.84%)

Los Angeles, CA

Ameriquest 40: www.ameriquestmortgage.com 31.79 6.94 (21.84%) 6.30 (19.83%) 5.87 (18.47%) 5.51 (17.34%)
41: careers.ameriquest.com 24.21 6.51 (26.88%) 6.01 (24.82%) 5.70 (23.55%) 5.44 (22.48%)
42: www.ameriquestracing.com 13.73 0.83 (6.02%) 0.78 (5.67%) 0.74 (5.39%) 0.70 (5.07%)

City of LA 43: www.lacity.org 46.79 9.68 (20.7%) 8.77 (18.75%) 8.23 (17.58%) 7.90 (16.89%)
44: eng.lacity.org 39.16 4.55 (11.61%) 4.31 (10.99%) 4.22 (10.78%) 4.28 (10.92%)
45: publiccsd.lacity.org 31.67 5.60 (17.69%) 5.16 (16.29%) 4.88 (15.41%) 4.72 (14.9%)
46: parc1.lacity.org 4.13 0.70 (16.94%) 0.64 (15.55%) 0.60 (14.61%) 0.58 (13.96%)
47: www.griffithobservatory.org 28.77 4.48 (15.56%) 4.13 (14.37%) 3.95 (13.74%) 3.87 (13.46%)

San Francisco, CA

Sanfrancisco 48: sanfrancisco.com 138.60 16.30 (11.76%) 15.46 (11.15%) 14.93 (10.77%) 14.57 (10.52%)
49: www.santa-clara.com 73.96 6.73 (9.09%) 6.30 (8.51%) 5.99 (8.1%) 5.71 (7.73%)
50: www.santacruz.com 76.46 5.88 (7.69%) 5.57 (7.28%) 5.35 (7%) 5.15 (6.73%)
51: www.oakland.com 119.42 12.76 (10.68%) 12.03 (10.08%) 11.68 (9.78%) 11.44 (9.58%)

CA gov 52: democrats.assembly.ca.gov 18.76 0.99 (5.28%) 0.92 (4.9%) 0.88 (4.68%) 0.84 (4.45%)
53: www.legislature.ca.gov 32.92 1.95 (5.92%) 1.82 (5.52%) 1.74 (5.27%) 1.65 (5.02%)
54: republican.assembly.ca.gov 23.84 3.42 (14.36%) 3.23 (13.55%) 3.09 (12.96%) 2.96 (12.41%)

City of Davis 55: www.city.davis.ca.us 52.92 7.57 (14.31%) 7.10 (13.41%) 6.80 (12.85%) 6.52 (12.32%)
56: events.dcn.org 92.78 7.79 (8.4%) 7.30 (7.87%) 6.96 (7.51%) 6.67 (7.19%)
57: www.dcn.org 16.65 2.49 (14.93%) 2.32 (13.91%) 2.21 (13.29%) 2.11 (12.68%)

Dallas, TX

Dallas News 58: www.dallasnews.com 301.15 42.57 (14.14%) 39.70 (13.18%) 38.25 (12.7%) 37.34 (12.4%)
59: www.cowboysplus.com 147.28 18.76 (12.74%) 17.24 (11.7%) 16.23 (11.02%) 15.38 (10.45%)
60: www.guidelive.com 94.31 20.69 (21.94%) 18.82 (19.95%) 17.49 (18.55%) 16.50 (17.49%)

City of Irving 61: www.ci.irving.tx.us 42.13 7.97 (18.91%) 7.49 (17.79%) 7.26 (17.23%) 7.26 (17.24%)

Online Video 62: www.lapdonline.org 195.61 23.28 (11.9%) 22.13 (11.31%) 21.77 (11.13%) 21.46 (10.97%)
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Table A.5: Available Bandwidth Prediction Results with Different λ Values

average λ=0 mean λ=0.25 mean λ=0.5 mean λ=0.75 mean
location cluster name web servers actual values prediction errors prediction errors prediction errors prediction errors

(Mbits/s) (Mbits/s) (Mbits/s) (Mbits/s) (Mbits/s)

Boston, MA

Boston Globe 1: www.boston.com 802.28 667.59 (83.21%) 614.89 (76.64%) 578.04 (72.05%) 554.05 (69.06%)
2: weather.boston.com 809.11 714.26 (88.28%) 685.27 (84.69%) 666.06 (82.32%) 649.99 (80.33%)
3: www.explorenewengland.com 539.48 694.43 (128.72%) 683.14 (126.63%) 680.56 (126.15%) 679.63 (125.98%)

MBTA 4: www.mbta.com 240.09 274.94 (114.51%) 266.82 (111.13%) 260.83 (108.64%) 256.66 (106.9%)
5: trip.mbta.com 272.37 316.56 (116.22%) 302.03 (110.89%) 290.70 (106.73%) 279.24 (102.52%)

Web Hosting 6: www.aviationdisasterlawyers.com 3029.81 937.00 (30.93%) 890.34 (29.39%) 855.44 (28.23%) 833.53 (27.51%)
7: www.asbestoslaw.info 2991.38 994.73 (33.25%) 948.13 (31.7%) 914.02 (30.56%) 890.13 (29.76%)
8: www.pharmaceuticallawyers.com 2961.10 1018.14 (34.38%) 958.73 (32.38%) 913.90 (30.86%) 884.39 (29.87%)

New York, NY

NYTimes 9: www.nytimes.com 2158.96 1035.36 (47.96%) 955.27 (44.25%) 882.57 (40.88%) 817.04 (37.84%)
10: movies.nytimes.com 2118.18 1118.28 (52.79%) 1022.22 (48.26%) 933.98 (44.09%) 864.52 (40.81%)
11: homefinance.nytimes.com 1879.20 1018.38 (54.19%) 932.35 (49.61%) 853.69 (45.43%) 791.33 (42.11%)
12: query.nytimes.com 1858.99 974.36 (52.41%) 892.91 (48.03%) 814.88 (43.83%) 748.42 (40.26%)

UN 13: www.undp.org 2203.93 785.93 (35.66%) 717.39 (32.55%) 661.15 (30%) 619.71 (28.12%)
14: www.rbas.undp.org 2430.16 946.66 (38.95%) 887.61 (36.52%) 827.48 (34.05%) 774.73 (31.88%)
15: www.dz.undp.org 2134.97 658.81 (30.86%) 602.96 (28.24%) 556.59 (26.07%) 518.64 (24.29%)
16: google.undp.org 2164.12 1124.75 (51.97%) 1033.55 (47.76%) 950.92 (43.94%) 896.68 (41.43%)

Atlanta, GA

CNN 17: www.cnn.com 3588.08 217.15 (6.05%) 215.63 (6.01%) 214.12 (5.97%) 213.00 (5.94%)
18: edition.cnn.com 3358.65 426.84 (12.71%) 422.92 (12.59%) 418.34 (12.46%) 413.76 (12.32%)
19: si.cnn.com 3474.39 359.14 (10.34%) 354.83 (10.21%) 350.42 (10.09%) 347.09 (9.99%)
20: money.cnn.com 3323.31 444.64 (13.38%) 434.04 (13.06%) 428.98 (12.91%) 427.78 (12.87%)

Weather.com 21: www.weather.com 3451.94 254.81 (7.38%) 242.81 (7.03%) 231.77 (6.71%) 222.21 (6.44%)
22: forgetaway.weather.com 3226.51 420.86 (13.04%) 413.40 (12.81%) 407.00 (12.61%) 402.33 (12.47%)
23: desktopfw.weather.com 3187.47 431.39 (13.53%) 420.47 (13.19%) 410.96 (12.89%) 401.59 (12.6%)
24: br.weather.com 3065.98 500.85 (16.34%) 489.74 (15.97%) 479.84 (15.65%) 473.58 (15.45%)

GA gov 25: www.georgia.gov 2324.80 621.08 (26.72%) 584.12 (25.13%) 550.46 (23.68%) 521.28 (22.42%)
26: www.files.georgia.gov 2884.89 474.01 (16.43%) 464.42 (16.1%) 455.18 (15.78%) 446.20 (15.47%)
27: oca.awe.gta.ga.gov 3176.62 403.33 (12.7%) 398.81 (12.55%) 394.19 (12.41%) 391.06 (12.31%)
28: www.gov.state.ga.us 3190.60 492.54 (15.44%) 473.79 (14.85%) 455.86 (14.29%) 441.43 (13.84%)

Springfield, IL

IL gov 29: www.dnr.state.il.us 2959.29 452.84 (15.3%) 451.80 (15.27%) 448.53 (15.16%) 441.15 (14.91%)
30: www.illinois.gov 3100.57 447.81 (14.44%) 440.66 (14.21%) 435.24 (14.04%) 430.81 (13.89%)
31: www.allkidscovered.com 2645.86 373.11 (14.1%) 361.04 (13.65%) 342.82 (12.96%) 312.41 (11.81%)

IL Education 32: www.isbe.net 3093.16 431.13 (13.94%) 430.43 (13.92%) 430.05 (13.9%) 430.41 (13.91%)
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Table A.6: Available Bandwidth Prediction Results with Different λ Values (Continued)

average λ=0 mean λ=0.25 mean λ=0.5 mean λ=0.75 mean
location cluster name web servers actual values prediction errors prediction errors prediction errors prediction errors

(Mbits/s) (Mbits/s) (Mbits/s) (Mbits/s) (Mbits/s)

Raymond, WA

MSN 33: www.msn.com 3211.42 506.86 (15.78%) 501.78 (15.63%) 495.31 (15.42%) 487.29 (15.17%)
34: entertainment.msn.com 3306.96 451.37 (13.65%) 451.15 (13.64%) 450.58 (13.63%) 448.95 (13.58%)
35: music.msn.com 3329.37 429.87 (12.91%) 433.85 (13.03%) 434.23 (13.04%) 431.68 (12.97%)
36: weather.msn.com 3136.28 430.85 (13.74%) 429.89 (13.71%) 430.01 (13.71%) 430.59 (13.73%)

Real 37: www.realnetworks.com 2965.63 577.68 (19.48%) 563.20 (18.99%) 549.11 (18.52%) 539.36 (18.19%)
38: brasil.real.com 2881.89 607.19 (21.07%) 586.05 (20.34%) 566.31 (19.65%) 554.67 (19.25%)
39: musicstore.real.com 2817.36 501.55 (17.8%) 481.97 (17.11%) 455.43 (16.17%) 415.41 (14.74%)

Los Angeles, CA

Ameriquest 40: www.ameriquestmortgage.com 2580.57 470.15 (18.22%) 436.67 (16.92%) 401.37 (15.55%) 360.02 (13.95%)
41: careers.ameriquest.com 1913.84 686.36 (35.86%) 644.22 (33.66%) 615.67 (32.17%) 599.53 (31.33%)
42: www.ameriquestracing.com 704.36 678.48 (96.33%) 645.13 (91.59%) 622.75 (88.41%) 609.54 (86.54%)

City of LA 43: www.lacity.org 2013.87 712.23 (35.37%) 649.83 (32.27%) 602.75 (29.93%) 568.98 (28.25%)
44: eng.lacity.org 2524.40 612.83 (24.28%) 577.01 (22.86%) 540.53 (21.41%) 502.00 (19.89%)
45: publiccsd.lacity.org 2217.67 707.25 (31.89%) 660.05 (29.76%) 619.89 (27.95%) 587.34 (26.48%)
46: parc1.lacity.org 3012.80 571.28 (18.96%) 556.38 (18.47%) 539.60 (17.91%) 521.67 (17.32%)
47: www.griffithobservatory.org 1722.67 550.78 (31.97%) 508.75 (29.53%) 473.34 (27.48%) 439.57 (25.52%)

San Francisco, CA

Sanfrancisco 48: sanfrancisco.com 3144.97 455.60 (14.49%) 441.48 (14.04%) 426.65 (13.57%) 407.55 (12.96%)
49: www.santa-clara.com 2597.90 578.36 (22.26%) 547.64 (21.08%) 522.97 (20.13%) 505.18 (19.45%)
50: www.santacruz.com 1096.01 877.24 (80.04%) 812.50 (74.13%) 757.42 (69.11%) 696.55 (63.55%)
51: www.oakland.com 2938.73 523.51 (17.81%) 502.98 (17.12%) 479.12 (16.3%) 448.43 (15.26%)

CA gov 52: democrats.assembly.ca.gov 1853.14 722.08 (38.97%) 668.66 (36.08%) 628.59 (33.92%) 598.39 (32.29%)
53: www.legislature.ca.gov 2312.80 686.32 (29.67%) 638.13 (27.59%) 598.88 (25.89%) 568.21 (24.57%)
54: republican.assembly.ca.gov 1953.91 747.22 (38.24%) 688.85 (35.26%) 646.73 (33.1%) 618.79 (31.67%)

City of Davis 55: www.city.davis.ca.us 1661.41 397.25 (23.91%) 368.86 (22.2%) 341.84 (20.58%) 312.01 (18.78%)
56: events.dcn.org 1772.14 365.25 (20.61%) 339.57 (19.16%) 314.95 (17.77%) 288.08 (16.26%)
57: www.dcn.org 915.14 636.52 (69.55%) 593.40 (64.84%) 558.84 (61.07%) 527.98 (57.69%)

Dallas, TX

Dallas News 58: www.dallasnews.com 3635.06 162.60 (4.47%) 161.38 (4.44%) 160.03 (4.4%) 158.29 (4.35%)
59: www.cowboysplus.com 3371.22 449.23 (13.33%) 446.05 (13.23%) 442.57 (13.13%) 438.70 (13.01%)
60: www.guidelive.com 3371.00 420.36 (12.47%) 420.64 (12.48%) 419.51 (12.44%) 418.75 (12.42%)

City of Irving 61: www.ci.irving.tx.us 42.02 37.78 (89.92%) 36.59 (87.08%) 36.21 (86.17%) 36.24 (86.26%)

Online Video 62: www.lapdonline.org 2853.44 489.08 (17.14%) 472.76 (16.57%) 461.83 (16.19%) 463.53 (16.24%)
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Table A.7: Connection Ratings Prediction Results with Different λ Values

average λ=0 mean λ=0.25 mean λ=0.5 mean λ=0.75 mean
location cluster name web servers actual values prediction errors prediction errors prediction errors prediction errors

Boston, MA

Boston Globe 1: www.boston.com 0.94 0.15 (16.42%) 0.15 (16.49%) 0.16 (16.59%) 0.16 (16.66%)
2: weather.boston.com 1.06 0.23 (22.01%) 0.23 (21.83%) 0.23 (21.4%) 0.22 (20.55%)
3: www.explorenewengland.com 1.27 0.43 (33.72%) 0.42 (33.32%) 0.42 (32.82%) 0.41 (32.17%)

MBTA 4: www.mbta.com 0.92 0.41 (44.78%) 0.41 (44.26%) 0.40 (43.35%) 0.39 (41.64%)
5: trip.mbta.com 1.11 0.40 (36.13%) 0.39 (35.38%) 0.38 (34.29%) 0.36 (32.69%)

Web Hosting 6: www.aviationdisasterlawyers.com 1.18 0.30 (25.57%) 0.30 (25.66%) 0.30 (25.66%) 0.30 (25.54%)
7: www.asbestoslaw.info 1.15 0.27 (23.1%) 0.27 (23.13%) 0.27 (23.23%) 0.27 (23.36%)
8: www.pharmaceuticallawyers.com 1.16 0.28 (24.52%) 0.28 (24.39%) 0.28 (24.14%) 0.28 (23.89%)

New York, NY

NYTimes 9: www.nytimes.com 1.45 0.56 (38.61%) 0.55 (37.76%) 0.53 (36.7%) 0.52 (35.75%)
10: movies.nytimes.com 1.32 0.49 (37.1%) 0.48 (36.4%) 0.47 (35.37%) 0.45 (33.94%)
11: homefinance.nytimes.com 1.38 0.42 (30.66%) 0.42 (30.58%) 0.42 (30.6%) 0.42 (30.72%)
12: query.nytimes.com 1.43 0.50 (35.03%) 0.50 (34.77%) 0.49 (34.24%) 0.48 (33.57%)

UN 13: www.undp.org 1.32 0.46 (34.58%) 0.45 (34.14%) 0.44 (33.48%) 0.43 (32.66%)
14: www.rbas.undp.org 1.32 0.42 (31.41%) 0.41 (31.12%) 0.41 (30.71%) 0.40 (30.23%)
15: www.dz.undp.org 1.46 0.52 (35.84%) 0.52 (35.48%) 0.51 (35.09%) 0.51 (34.85%)
16: google.undp.org 1.39 0.49 (34.83%) 0.48 (34.41%) 0.47 (33.86%) 0.46 (33.25%)

Atlanta, GA

CNN 17: www.cnn.com 1.96 0.06 (3.24%) 0.07 (3.41%) 0.07 (3.58%) 0.07 (3.78%)
18: edition.cnn.com 1.93 0.11 (5.61%) 0.11 (5.63%) 0.11 (5.68%) 0.11 (5.86%)
19: si.cnn.com 1.94 0.09 (4.86%) 0.10 (5%) 0.10 (5.14%) 0.10 (5.32%)
20: money.cnn.com 1.74 0.10 (5.52%) 0.10 (5.56%) 0.10 (5.67%) 0.10 (5.88%)

Weather.com 21: www.weather.com 1.88 0.17 (8.77%) 0.17 (9%) 0.18 (9.34%) 0.18 (9.82%)
22: forgetaway.weather.com 1.87 0.22 (11.84%) 0.22 (11.82%) 0.22 (11.88%) 0.23 (12.06%)
23: desktopfw.weather.com 1.85 0.25 (13.34%) 0.25 (13.36%) 0.25 (13.38%) 0.25 (13.49%)
24: br.weather.com 1.85 0.25 (13.74%) 0.25 (13.74%) 0.25 (13.72%) 0.25 (13.71%)

GA gov 25: www.georgia.gov 0.94 0.23 (24.68%) 0.23 (24.63%) 0.23 (24.68%) 0.23 (24.88%)
26: www.files.georgia.gov 1.88 0.22 (11.43%) 0.21 (11.22%) 0.21 (11.04%) 0.21 (11.01%)
27: oca.awe.gta.ga.gov 1.87 0.22 (11.98%) 0.22 (11.88%) 0.22 (11.79%) 0.22 (11.84%)
28: www.gov.state.ga.us 1.62 0.54 (33.52%) 0.54 (33.43%) 0.54 (33.34%) 0.54 (33.39%)

Springfield, IL

IL gov 29: www.dnr.state.il.us 1.85 0.26 (14.14%) 0.26 (14.21%) 0.26 (14.25%) 0.27 (14.31%)
30: www.illinois.gov 1.85 0.11 (6.04%) 0.11 (6.14%) 0.12 (6.26%) 0.12 (6.5%)
31: www.allkidscovered.com 1.95 0.09 (4.57%) 0.09 (4.54%) 0.09 (4.52%) 0.09 (4.49%)

IL Education 32: www.isbe.net 1.96 0.04 (1.79%) 0.04 (1.91%) 0.04 (2.09%) 0.05 (2.4%)
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Table A.8: Connection Ratings Prediction Results with Different λ Values

average λ=0 mean λ=0.25 mean λ=0.5 mean λ=0.75 mean
location cluster name web servers actual values prediction errors prediction errors prediction errors prediction errors

Raymond, WA

MSN 33: www.msn.com 1.88 0.11 (6.02%) 0.11 (6.09%) 0.12 (6.25%) 0.13 (6.76%)
34: entertainment.msn.com 1.99 0.02 (1.24%) 0.03 (1.26%) 0.03 (1.29%) 0.03 (1.34%)
35: music.msn.com 1.99 0.01 (0.49%) 0.01 (0.51%) 0.01 (0.54%) 0.01 (0.6%)
36: weather.msn.com 1.99 0.02 (1.06%) 0.02 (1.12%) 0.02 (1.19%) 0.03 (1.29%)

Real 37: www.realnetworks.com 1.65 0.22 (13.56%) 0.22 (13.59%) 0.23 (13.77%) 0.24 (14.81%)
38: brasil.real.com 1.34 0.59 (44.06%) 0.58 (43.41%) 0.58 (43.09%) 0.59 (43.89%)
39: musicstore.real.com 1.96 0.08 (4.04%) 0.08 (4.05%) 0.08 (4.04%) 0.08 (4.06%)

Los Angeles, CA

Ameriquest 40: www.ameriquestmortgage.com 1.52 0.60 (39.52%) 0.60 (39.26%) 0.60 (39.04%) 0.60 (39.09%)
41: careers.ameriquest.com 0.86 0.99 (114.47%) 0.99 (114.05%) 0.98 (113.74%) 0.98 (113.34%)
42: www.ameriquestracing.com 0.44 0.69 (157.02%) 0.69 (156.95%) 0.69 (156.52%) 0.69 (155.88%)

City of LA 43: www.lacity.org 1.21 0.64 (53.09%) 0.62 (51.21%) 0.59 (48.87%) 0.56 (46.25%)
44: eng.lacity.org 1.73 0.31 (17.68%) 0.30 (17.59%) 0.31 (17.63%) 0.31 (18.13%)
45: publiccsd.lacity.org 1.81 0.25 (13.52%) 0.24 (13.45%) 0.24 (13.37%) 0.25 (13.61%)
46: parc1.lacity.org 1.05 0.45 (42.61%) 0.44 (42.01%) 0.43 (41.28%) 0.43 (40.86%)
47: www.griffithobservatory.org 1.79 0.29 (16.19%) 0.29 (15.91%) 0.28 (15.73%) 0.28 (15.82%)

San Francisco, CA

Sanfrancisco 48: sanfrancisco.com 1.72 0.43 (24.82%) 0.42 (24.77%) 0.42 (24.76%) 0.43 (25.05%)
49: www.santa-clara.com 1.82 0.32 (17.64%) 0.32 (17.6%) 0.32 (17.64%) 0.32 (17.75%)
50: www.santacruz.com 1.11 0.27 (24.57%) 0.27 (24.49%) 0.27 (24.12%) 0.26 (23.28%)
51: www.oakland.com 1.66 0.50 (30.3%) 0.50 (30.16%) 0.50 (30.06%) 0.50 (30.31%)

CA gov 52: democrats.assembly.ca.gov 1.93 0.12 (6.15%) 0.12 (6.09%) 0.12 (6%) 0.11 (5.94%)
53: www.legislature.ca.gov 1.93 0.13 (6.79%) 0.13 (6.82%) 0.13 (6.84%) 0.13 (6.87%)
54: republican.assembly.ca.gov 1.91 0.15 (7.87%) 0.15 (7.9%) 0.15 (7.89%) 0.15 (7.96%)

City of Davis 55: www.city.davis.ca.us 1.83 0.30 (16.25%) 0.30 (16.27%) 0.30 (16.31%) 0.30 (16.33%)
56: events.dcn.org 1.92 0.14 (7.08%) 0.14 (7.08%) 0.14 (7.13%) 0.14 (7.22%)
57: www.dcn.org 0.95 0.09 (9.81%) 0.09 (9.77%) 0.09 (9.75%) 0.09 (9.76%)

Dallas, TX

Dallas News 58: www.dallasnews.com 1.83 0.24 (13.14%) 0.24 (13.16%) 0.24 (13.33%) 0.25 (13.8%)
59: www.cowboysplus.com 1.96 0.08 (3.94%) 0.08 (4%) 0.08 (4.07%) 0.08 (4.16%)
60: www.guidelive.com 1.88 0.15 (7.74%) 0.15 (7.9%) 0.15 (8.15%) 0.16 (8.63%)

City of Irving 61: www.ci.irving.tx.us 1.64 0.30 (18.15%) 0.30 (18.17%) 0.30 (18.12%) 0.30 (18.26%)

Online Video 62: www.lapdonline.org 1.78 0.37 (20.76%) 0.37 (20.8%) 0.37 (20.82%) 0.37 (20.89%)
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Table A.9: RTT Prediction Results with Different Collection Intervals when λ = 0.5
average interval=10min interval=1hr interval=2hr interval=4hr

location cluster name web servers actual values mean prediction mean prediction mean prediction mean prediction
(ms) errors (ms) errors (ms) errors (ms) errors (ms)

Boston, MA

Boston Globe 1: www.boston.com 17.56 7.76 (44.19%) 9.33 (53.12%) 9.92 (56.48%) 10.57 (60.17%)
2: weather.boston.com 15.48 6.69 (43.25%) 8.63 (55.78%) 9.30 (60.12%) 10.02 (64.73%)
3: www.explorenewengland.com 11.86 4.70 (39.65%) 5.14 (43.35%) 5.46 (46.02%) 5.73 (48.36%)

MBTA 4: www.mbta.com 36.74 36.12 (98.33%) 36.65 (99.75%) 38.70 (105.34%) 40.65 (110.65%)
5: trip.mbta.com 27.85 17.22 (61.84%) 19.55 (70.22%) 21.37 (76.76%) 23.12 (83.02%)

Web Hosting 6: www.aviationdisasterlawyers.com 10.42 5.56 (53.4%) 5.49 (52.65%) 5.53 (53.07%) 5.58 (53.55%)
7: www.asbestoslaw.info 10.36 4.95 (47.81%) 5.02 (48.44%) 5.03 (48.59%) 5.04 (48.66%)
8: www.pharmaceuticallawyers.com 9.85 5.07 (51.46%) 5.08 (51.55%) 5.08 (51.59%) 5.12 (51.98%)

New York, NY

NYTimes 9: www.nytimes.com 16.09 5.56 (34.59%) 5.60 (34.8%) 5.78 (35.94%) 5.87 (36.5%)
10: movies.nytimes.com 16.74 5.07 (30.28%) 5.06 (30.22%) 5.20 (31.08%) 5.40 (32.26%)
11: homefinance.nytimes.com 17.10 6.14 (35.91%) 6.23 (36.46%) 6.29 (36.81%) 6.37 (37.25%)
12: query.nytimes.com 16.07 4.97 (30.93%) 4.90 (30.5%) 5.05 (31.43%) 5.25 (32.64%)

UN 13: www.undp.org 18.27 5.98 (32.73%) 5.94 (32.49%) 6.05 (33.1%) 6.20 (33.95%)
14: www.rbas.undp.org 17.69 5.05 (28.53%) 5.16 (29.16%) 5.34 (30.17%) 5.44 (30.78%)
15: www.dz.undp.org 18.31 5.84 (31.88%) 6.02 (32.87%) 6.05 (33.06%) 6.36 (34.71%)
16: google.undp.org 17.76 6.08 (34.23%) 6.32 (35.58%) 6.40 (36.06%) 6.50 (36.6%)

Atlanta, GA

CNN 17: www.cnn.com 38.65 1.04 (2.69%) 1.15 (2.99%) 1.21 (3.13%) 1.31 (3.38%)
18: edition.cnn.com 40.41 3.53 (8.73%) 3.62 (8.95%) 3.68 (9.11%) 3.79 (9.38%)
19: si.cnn.com 39.36 2.18 (5.54%) 2.32 (5.89%) 2.36 (6.01%) 2.46 (6.25%)
20: money.cnn.com 44.24 10.90 (24.64%) 11.01 (24.89%) 11.08 (25.05%) 11.20 (25.32%)

Weather.com 21: www.weather.com 33.45 2.68 (8.02%) 2.89 (8.65%) 2.96 (8.86%) 3.11 (9.28%)
22: forgetaway.weather.com 33.90 2.59 (7.63%) 2.79 (8.22%) 2.84 (8.37%) 2.89 (8.52%)
23: desktopfw.weather.com 34.28 2.68 (7.83%) 2.87 (8.37%) 2.96 (8.62%) 3.07 (8.95%)
24: br.weather.com 34.62 2.77 (8.01%) 3.00 (8.66%) 3.07 (8.87%) 3.20 (9.26%)

GA gov 25: www.georgia.gov 38.57 3.39 (8.79%) 4.30 (11.15%) 5.16 (13.38%) 6.06 (15.72%)
26: www.files.georgia.gov 37.61 2.77 (7.38%) 3.71 (9.86%) 4.59 (12.21%) 5.41 (14.37%)
27: oca.awe.gta.ga.gov 40.22 9.33 (23.2%) 10.20 (25.37%) 10.95 (27.22%) 11.42 (28.4%)
28: www.gov.state.ga.us 37.08 2.66 (7.18%) 3.61 (9.72%) 4.49 (12.1%) 5.36 (14.45%)

Springfield, IL

IL gov 29: www.dnr.state.il.us 46.41 3.95 (8.51%) 4.67 (10.07%) 5.06 (10.89%) 5.35 (11.52%)
30: www.illinois.gov 43.39 2.11 (4.87%) 2.85 (6.57%) 3.13 (7.22%) 3.29 (7.57%)
31: www.allkidscovered.com 47.64 5.32 (11.16%) 6.15 (12.91%) 6.48 (13.61%) 6.72 (14.1%)

IL Education 32: www.isbe.net 42.12 4.29 (10.19%) 7.53 (17.88%) 9.87 (23.44%) 11.97 (28.43%)
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Table A.10: RTT Prediction Results with Different Collection Intervals when λ = 0.5 (Continued)

average interval=10min interval=1hr interval=2hr interval=4hr
location cluster name web servers actual values mean prediction mean prediction mean prediction mean prediction

(ms) errors (ms) errors (ms) errors (ms) errors (ms)

Raymond, WA

MSN 33: www.msn.com 93.43 2.19 (2.34%) 2.92 (3.12%) 3.44 (3.68%) 3.99 (4.27%)
34: entertainment.msn.com 92.10 1.45 (1.58%) 1.75 (1.9%) 1.88 (2.04%) 2.02 (2.2%)
35: music.msn.com 92.04 1.43 (1.55%) 1.71 (1.86%) 1.85 (2.01%) 1.99 (2.16%)
36: weather.msn.com 92.48 2.03 (2.2%) 2.31 (2.5%) 2.46 (2.66%) 2.59 (2.8%)

Real 37: www.realnetworks.com 97.85 6.78 (6.93%) 8.93 (9.12%) 9.96 (10.18%) 10.96 (11.2%)
38: brasil.real.com 98.08 6.94 (7.07%) 8.86 (9.04%) 9.80 (9.99%) 10.74 (10.95%)
39: musicstore.real.com 76.98 1.29 (1.67%) 1.34 (1.74%) 1.34 (1.74%) 1.36 (1.77%)

Los Angeles, CA

Ameriquest 40: www.ameriquestmortgage.com 89.04 1.16 (1.3%) 1.17 (1.31%) 1.18 (1.33%) 1.21 (1.36%)
41: careers.ameriquest.com 89.02 1.68 (1.88%) 1.70 (1.91%) 1.72 (1.94%) 1.72 (1.93%)
42: www.ameriquestracing.com 92.11 4.62 (5.02%) 4.65 (5.04%) 4.64 (5.04%) 4.64 (5.03%)

City of LA 43: www.lacity.org 115.76 28.83 (24.91%) 32.12 (27.75%) 33.60 (29.03%) 34.47 (29.78%)
44: eng.lacity.org 98.29 12.51 (12.73%) 15.55 (15.82%) 17.23 (17.53%) 18.09 (18.4%)
45: publiccsd.lacity.org 98.26 9.39 (9.56%) 13.03 (13.26%) 14.24 (14.5%) 14.94 (15.21%)
46: parc1.lacity.org 97.47 10.85 (11.13%) 14.58 (14.96%) 15.78 (16.19%) 16.60 (17.03%)
47: www.griffithobservatory.org 109.91 32.20 (29.29%) 36.65 (33.35%) 38.75 (35.26%) 39.38 (35.83%)

San Francisco, CA

Sanfrancisco 48: sanfrancisco.com 85.39 3.10 (3.63%) 3.15 (3.69%) 3.19 (3.74%) 3.22 (3.77%)
49: www.santa-clara.com 84.60 1.55 (1.83%) 1.63 (1.93%) 1.65 (1.95%) 1.66 (1.97%)
50: www.santacruz.com 84.96 4.63 (5.45%) 4.70 (5.54%) 4.65 (5.48%) 4.65 (5.48%)
51: www.oakland.com 83.56 2.90 (3.47%) 2.94 (3.52%) 2.98 (3.57%) 3.00 (3.59%)

CA gov 52: democrats.assembly.ca.gov 87.78 4.99 (5.68%) 5.11 (5.83%) 5.20 (5.92%) 5.28 (6.01%)
53: www.legislature.ca.gov 87.20 2.42 (2.78%) 2.51 (2.88%) 2.58 (2.96%) 2.71 (3.11%)
54: republican.assembly.ca.gov 86.96 5.90 (6.79%) 6.06 (6.97%) 6.18 (7.11%) 6.31 (7.25%)

City of Davis 55: www.city.davis.ca.us 103.86 9.71 (9.35%) 8.75 (8.42%) 9.87 (9.5%) 10.85 (10.45%)
56: events.dcn.org 94.20 2.01 (2.13%) 2.24 (2.38%) 2.48 (2.63%) 2.79 (2.96%)
57: www.dcn.org 95.51 2.64 (2.76%) 2.84 (2.97%) 3.01 (3.15%) 3.19 (3.34%)

Dallas, TX

Dallas News 58: www.dallasnews.com 53.72 3.14 (5.84%) 3.75 (6.98%) 3.98 (7.41%) 4.24 (7.89%)
59: www.cowboysplus.com 54.90 3.51 (6.4%) 4.13 (7.52%) 4.41 (8.04%) 4.67 (8.52%)
60: www.guidelive.com 53.12 2.84 (5.34%) 3.52 (6.63%) 3.83 (7.21%) 4.11 (7.73%)

City of Irving 61: www.ci.irving.tx.us 90.70 40.85 (45.04%) 46.60 (51.38%) 47.36 (52.22%) 50.81 (56.02%)

Online Video 62: www.lapdonline.org 54.00 1.95 (3.61%) 2.33 (4.31%) 2.53 (4.68%) 2.81 (5.2%)
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Table A.11: Connection Throughput Prediction Results with Different Collection Intervals when λ = 0.5
average interval=10min interval=1hr interval=2hr interval=4hr

location cluster name web servers actual values mean prediction mean prediction mean prediction mean prediction
(KB/s) errors (KB/s) errors (KB/s) errors (KB/s) errors (KB/s)

Boston, MA

Boston Globe 1: www.boston.com 410.03 190.08 (46.36%) 199.81 (48.73%) 216.24 (52.74%) 236.88 (57.77%)
2: weather.boston.com 354.59 50.39 (14.21%) 63.24 (17.84%) 77.63 (21.89%) 91.90 (25.92%)
3: www.explorenewengland.com 261.94 30.47 (11.63%) 35.76 (13.65%) 39.71 (15.16%) 43.67 (16.67%)

MBTA 4: www.mbta.com 153.09 46.33 (30.27%) 55.92 (36.53%) 60.58 (39.57%) 65.11 (42.53%)
5: trip.mbta.com 236.20 71.79 (30.39%) 80.31 (34%) 86.97 (36.82%) 95.17 (40.29%)

Web Hosting 6: www.aviationdisasterlawyers.com 1466.44 617.69 (42.12%) 659.87 (45%) 686.93 (46.84%) 708.24 (48.3%)
7: www.asbestoslaw.info 1926.40 699.25 (36.3%) 759.18 (39.41%) 790.91 (41.06%) 831.88 (43.18%)
8: www.pharmaceuticallawyers.com 1738.13 594.55 (34.21%) 647.43 (37.25%) 667.58 (38.41%) 694.79 (39.97%)

New York, NY

NYTimes 9: www.nytimes.com 826.75 110.23 (13.33%) 119.34 (14.43%) 122.93 (14.87%) 127.18 (15.38%)
10: movies.nytimes.com 765.26 119.40 (15.6%) 121.37 (15.86%) 125.63 (16.42%) 130.84 (17.1%)
11: homefinance.nytimes.com 310.01 30.18 (9.73%) 31.46 (10.15%) 31.83 (10.27%) 32.88 (10.61%)
12: query.nytimes.com 69.27 19.30 (27.86%) 19.47 (28.1%) 19.56 (28.24%) 19.71 (28.45%)

UN 13: www.undp.org 295.06 43.36 (14.7%) 45.12 (15.29%) 46.42 (15.73%) 48.50 (16.44%)
14: www.rbas.undp.org 364.88 47.41 (12.99%) 49.98 (13.7%) 52.43 (14.37%) 55.19 (15.13%)
15: www.dz.undp.org 233.30 57.09 (24.47%) 73.64 (31.56%) 85.28 (36.55%) 99.02 (42.44%)
16: google.undp.org 28.54 7.77 (27.24%) 7.40 (25.93%) 7.52 (26.35%) 7.65 (26.82%)

Atlanta, GA

CNN 17: www.cnn.com 305.56 20.37 (6.67%) 21.92 (7.17%) 22.33 (7.31%) 23.16 (7.58%)
18: edition.cnn.com 259.17 19.00 (7.33%) 19.82 (7.65%) 20.40 (7.87%) 21.36 (8.24%)
19: si.cnn.com 214.58 47.68 (22.22%) 48.24 (22.48%) 48.22 (22.47%) 47.65 (22.21%)
20: money.cnn.com 230.45 18.35 (7.96%) 19.47 (8.45%) 20.56 (8.92%) 22.22 (9.64%)

Weather.com 21: www.weather.com 457.36 53.90 (11.78%) 59.24 (12.95%) 60.18 (13.16%) 63.03 (13.78%)
22: forgetaway.weather.com 267.24 24.80 (9.28%) 26.30 (9.84%) 26.79 (10.02%) 27.48 (10.28%)
23: desktopfw.weather.com 246.97 29.41 (11.91%) 31.83 (12.89%) 33.29 (13.48%) 35.73 (14.47%)
24: br.weather.com 156.74 12.20 (7.79%) 12.79 (8.16%) 13.15 (8.39%) 13.59 (8.67%)

GA gov 25: www.georgia.gov 67.05 30.37 (45.29%) 32.21 (48.03%) 32.57 (48.58%) 33.51 (49.97%)
26: www.files.georgia.gov 132.81 45.85 (34.52%) 46.93 (35.34%) 48.18 (36.28%) 49.47 (37.25%)
27: oca.awe.gta.ga.gov 180.52 13.73 (7.61%) 15.35 (8.5%) 16.90 (9.36%) 18.81 (10.42%)
28: www.gov.state.ga.us 280.68 52.22 (18.61%) 55.62 (19.82%) 58.76 (20.94%) 62.84 (22.39%)

Springfield, IL

IL gov 29: www.dnr.state.il.us 81.86 28.30 (34.57%) 29.61 (36.17%) 30.56 (37.33%) 31.58 (38.58%)
30: www.illinois.gov 71.90 12.94 (18%) 14.37 (19.99%) 15.84 (22.03%) 17.57 (24.44%)
31: www.allkidscovered.com 64.90 5.01 (7.73%) 5.64 (8.68%) 5.92 (9.11%) 6.16 (9.49%)

IL Education 32: www.isbe.net 155.14 7.35 (4.74%) 10.23 (6.6%) 12.54 (8.08%) 15.10 (9.73%)
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Table A.12: Connection Throughput Prediction Results with Different Collection Intervals when λ = 0.5 (Continued)

average interval=10min interval=1hr interval=2hr interval=4hr
location cluster name web servers actual values mean prediction mean prediction mean prediction mean prediction

(KB/s) errors (KB/s) errors (KB/s) errors (KB/s) errors (KB/s)

Raymond, WA

MSN 33: www.msn.com 50.97 15.60 (30.61%) 16.66 (32.69%) 17.84 (34.99%) 18.82 (36.93%)
34: entertainment.msn.com 51.96 4.53 (8.72%) 4.64 (8.94%) 4.77 (9.18%) 4.88 (9.39%)
35: music.msn.com 64.52 4.46 (6.92%) 4.62 (7.16%) 4.72 (7.32%) 4.83 (7.49%)
36: weather.msn.com 53.40 3.46 (6.49%) 4.05 (7.59%) 4.17 (7.81%) 4.47 (8.37%)

Real 37: www.realnetworks.com 54.13 5.33 (9.85%) 5.80 (10.71%) 6.16 (11.39%) 6.68 (12.35%)
38: brasil.real.com 54.13 10.02 (18.5%) 10.92 (20.16%) 11.64 (21.5%) 12.75 (23.55%)
39: musicstore.real.com 46.25 2.36 (5.11%) 2.45 (5.29%) 2.46 (5.33%) 2.49 (5.39%)

Los Angeles, CA

Ameriquest 40: www.ameriquestmortgage.com 31.79 5.87 (18.47%) 5.99 (18.83%) 5.98 (18.81%) 6.04 (19.01%)
41: careers.ameriquest.com 24.21 5.70 (23.55%) 5.68 (23.48%) 5.75 (23.76%) 5.78 (23.86%)
42: www.ameriquestracing.com 13.73 0.74 (5.39%) 0.75 (5.48%) 0.78 (5.65%) 0.81 (5.87%)

City of LA 43: www.lacity.org 46.79 8.23 (17.58%) 9.14 (19.54%) 9.84 (21.04%) 10.73 (22.94%)
44: eng.lacity.org 39.16 4.22 (10.78%) 5.17 (13.2%) 5.89 (15.05%) 6.76 (17.26%)
45: publiccsd.lacity.org 31.67 4.88 (15.41%) 5.57 (17.57%) 6.37 (20.11%) 7.27 (22.95%)
46: parc1.lacity.org 4.13 0.60 (14.61%) 0.63 (15.2%) 0.66 (16%) 0.71 (17.08%)
47: www.griffithobservatory.org 28.77 3.95 (13.74%) 4.59 (15.94%) 5.30 (18.43%) 6.05 (21.04%)

San Francisco, CA

Sanfrancisco 48: sanfrancisco.com 138.60 14.93 (10.77%) 15.51 (11.19%) 15.83 (11.42%) 16.31 (11.77%)
49: www.santa-clara.com 73.96 5.99 (8.1%) 5.89 (7.97%) 5.93 (8.02%) 5.99 (8.09%)
50: www.santacruz.com 76.46 5.35 (7%) 5.58 (7.3%) 5.65 (7.38%) 5.63 (7.36%)
51: www.oakland.com 119.42 11.68 (9.78%) 11.92 (9.98%) 12.12 (10.15%) 12.22 (10.24%)

CA gov 52: democrats.assembly.ca.gov 18.76 0.88 (4.68%) 0.92 (4.89%) 0.93 (4.96%) 0.95 (5.04%)
53: www.legislature.ca.gov 32.92 1.74 (5.27%) 1.81 (5.5%) 1.90 (5.77%) 2.00 (6.07%)
54: republican.assembly.ca.gov 23.84 3.09 (12.96%) 2.99 (12.55%) 2.70 (11.32%) 2.85 (11.94%)

City of Davis 55: www.city.davis.ca.us 52.92 6.80 (12.85%) 7.01 (13.24%) 7.27 (13.75%) 7.41 (14%)
56: events.dcn.org 92.78 6.96 (7.51%) 7.26 (7.83%) 7.46 (8.04%) 7.74 (8.34%)
57: www.dcn.org 16.65 2.21 (13.29%) 2.27 (13.62%) 2.33 (13.99%) 2.38 (14.29%)

Dallas, TX

Dallas News 58: www.dallasnews.com 301.15 38.25 (12.7%) 42.79 (14.21%) 45.36 (15.06%) 48.63 (16.15%)
59: www.cowboysplus.com 147.28 16.23 (11.02%) 17.48 (11.87%) 18.05 (12.26%) 18.72 (12.71%)
60: www.guidelive.com 94.31 17.49 (18.55%) 18.54 (19.66%) 19.59 (20.77%) 20.87 (22.13%)

City of Irving 61: www.ci.irving.tx.us 42.13 7.26 (17.23%) 8.60 (20.41%) 9.24 (21.93%) 10.55 (25.03%)

Online Video 62: www.lapdonline.org 195.61 21.77 (11.13%) 23.92 (12.23%) 24.24 (12.39%) 25.00 (12.78%)
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Table A.13: Available Bandwidth Prediction Results with Different Collection Intervals when λ = 0.5

average interval=10min interval=1hr interval=2hr interval=4hr
location cluster name web servers actual values mean prediction mean prediction mean prediction mean prediction

(Mbits/s) errors (Mbits/s) errors (Mbits/s) errors (Mbits/s) errors (Mbits/s)

Boston, MA

Boston Globe 1: www.boston.com 802.28 578.04 (72.05%) 606.59 (75.61%) 626.59 (78.1%) 654.42 (81.57%)
2: weather.boston.com 809.11 666.06 (82.32%) 686.95 (84.9%) 711.96 (87.99%) 744.06 (91.96%)
3: www.explorenewengland.com 539.48 680.56 (126.15%) 688.51 (127.63%) 686.94 (127.34%) 696.42 (129.09%)

MBTA 4: www.mbta.com 240.09 260.83 (108.64%) 262.09 (109.16%) 272.16 (113.36%) 281.75 (117.35%)
5: trip.mbta.com 272.37 290.70 (106.73%) 291.10 (106.88%) 295.31 (108.42%) 297.88 (109.37%)

Web Hosting 6: www.aviationdisasterlawyers.com 3029.81 855.44 (28.23%) 860.53 (28.4%) 879.89 (29.04%) 877.98 (28.98%)
7: www.asbestoslaw.info 2991.38 914.02 (30.56%) 920.46 (30.77%) 911.35 (30.47%) 913.57 (30.54%)
8: www.pharmaceuticallawyers.com 2961.10 913.90 (30.86%) 929.13 (31.38%) 916.53 (30.95%) 917.72 (30.99%)

New York, NY

NYTimes 9: www.nytimes.com 2158.96 882.57 (40.88%) 885.48 (41.01%) 886.91 (41.08%) 879.20 (40.72%)
10: movies.nytimes.com 2118.18 933.98 (44.09%) 929.90 (43.9%) 934.73 (44.13%) 946.27 (44.67%)
11: homefinance.nytimes.com 1879.20 853.69 (45.43%) 852.54 (45.37%) 845.20 (44.98%) 850.15 (45.24%)
12: query.nytimes.com 1858.99 814.88 (43.83%) 802.45 (43.17%) 811.67 (43.66%) 823.17 (44.28%)

UN 13: www.undp.org 2203.93 661.15 (30%) 659.06 (29.9%) 660.71 (29.98%) 669.90 (30.4%)
14: www.rbas.undp.org 2430.16 827.48 (34.05%) 834.19 (34.33%) 845.58 (34.8%) 846.79 (34.85%)
15: www.dz.undp.org 2134.97 556.59 (26.07%) 573.00 (26.84%) 579.85 (27.16%) 583.69 (27.34%)
16: google.undp.org 2164.12 950.92 (43.94%) 974.87 (45.05%) 980.64 (45.31%) 980.79 (45.32%)

Atlanta, GA

CNN 17: www.cnn.com 3588.08 214.12 (5.97%) 215.46 (6%) 215.70 (6.01%) 219.65 (6.12%)
18: edition.cnn.com 3358.65 418.34 (12.46%) 423.22 (12.6%) 424.54 (12.64%) 425.77 (12.68%)
19: si.cnn.com 3474.39 350.42 (10.09%) 349.92 (10.07%) 354.40 (10.2%) 353.39 (10.17%)
20: money.cnn.com 3323.31 428.98 (12.91%) 433.16 (13.03%) 427.31 (12.86%) 426.66 (12.84%)

Weather.com 21: www.weather.com 3451.94 231.77 (6.71%) 244.81 (7.09%) 248.79 (7.21%) 268.97 (7.79%)
22: forgetaway.weather.com 3226.51 407.00 (12.61%) 411.62 (12.76%) 418.52 (12.97%) 441.53 (13.68%)
23: desktopfw.weather.com 3187.47 410.96 (12.89%) 420.52 (13.19%) 430.43 (13.5%) 446.48 (14.01%)
24: br.weather.com 3065.98 479.84 (15.65%) 485.69 (15.84%) 489.44 (15.96%) 504.67 (16.46%)

GA gov 25: www.georgia.gov 2324.80 550.46 (23.68%) 566.93 (24.39%) 564.91 (24.3%) 567.87 (24.43%)
26: www.files.georgia.gov 2884.89 455.18 (15.78%) 452.98 (15.7%) 459.75 (15.94%) 462.80 (16.04%)
27: oca.awe.gta.ga.gov 3176.62 394.19 (12.41%) 400.99 (12.62%) 403.59 (12.7%) 397.88 (12.53%)
28: www.gov.state.ga.us 3190.60 455.86 (14.29%) 463.74 (14.53%) 464.80 (14.57%) 471.86 (14.79%)

Springfield, IL

IL gov 29: www.dnr.state.il.us 2959.29 448.53 (15.16%) 447.32 (15.12%) 446.16 (15.08%) 436.21 (14.74%)
30: www.illinois.gov 3100.57 435.24 (14.04%) 436.35 (14.07%) 434.21 (14%) 435.42 (14.04%)
31: www.allkidscovered.com 2645.86 342.82 (12.96%) 339.99 (12.85%) 342.06 (12.93%) 345.56 (13.06%)

IL Education 32: www.isbe.net 3093.16 430.05 (13.9%) 431.24 (13.94%) 434.59 (14.05%) 436.95 (14.13%)
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Table A.14: Available Bandwidth Prediction Results with Different Collection Intervals when λ = 0.5 (Continued)

average interval=10min interval=1hr interval=2hr interval=4hr
location cluster name web servers actual values mean prediction mean prediction mean prediction mean prediction

(Mbits/s) errors (Mbits/s) errors (Mbits/s) errors (Mbits/s) errors (Mbits/s)

Raymond, WA

MSN 33: www.msn.com 3211.42 495.31 (15.42%) 503.97 (15.69%) 507.58 (15.81%) 514.83 (16.03%)
34: entertainment.msn.com 3306.96 450.58 (13.63%) 456.52 (13.8%) 452.11 (13.67%) 450.76 (13.63%)
35: music.msn.com 3329.37 434.23 (13.04%) 429.23 (12.89%) 428.72 (12.88%) 434.06 (13.04%)
36: weather.msn.com 3136.28 430.01 (13.71%) 430.03 (13.71%) 437.82 (13.96%) 439.23 (14%)

Real 37: www.realnetworks.com 2965.63 549.11 (18.52%) 609.97 (20.57%) 659.67 (22.24%) 704.38 (23.75%)
38: brasil.real.com 2881.89 566.31 (19.65%) 623.51 (21.64%) 670.16 (23.25%) 717.97 (24.91%)
39: musicstore.real.com 2817.36 455.43 (16.17%) 453.18 (16.09%) 454.81 (16.14%) 456.29 (16.2%)

Los Angeles, CA

Ameriquest 40: www.ameriquestmortgage.com 2580.57 401.37 (15.55%) 400.34 (15.51%) 399.67 (15.49%) 403.79 (15.65%)
41: careers.ameriquest.com 1913.84 615.67 (32.17%) 628.70 (32.85%) 630.34 (32.94%) 630.28 (32.93%)
42: www.ameriquestracing.com 704.36 622.75 (88.41%) 621.46 (88.23%) 623.99 (88.59%) 634.64 (90.1%)

City of LA 43: www.lacity.org 2013.87 602.75 (29.93%) 597.58 (29.67%) 599.75 (29.78%) 602.13 (29.9%)
44: eng.lacity.org 2524.40 540.53 (21.41%) 546.56 (21.65%) 551.09 (21.83%) 551.99 (21.87%)
45: publiccsd.lacity.org 2217.67 619.89 (27.95%) 628.12 (28.32%) 624.10 (28.14%) 626.85 (28.27%)
46: parc1.lacity.org 3012.80 539.60 (17.91%) 554.31 (18.4%) 558.45 (18.54%) 566.00 (18.79%)
47: www.griffithobservatory.org 1722.67 473.34 (27.48%) 479.71 (27.85%) 476.45 (27.66%) 471.61 (27.38%)

San Francisco, CA

Sanfrancisco 48: sanfrancisco.com 3144.97 426.65 (13.57%) 423.22 (13.46%) 428.13 (13.61%) 431.53 (13.72%)
49: www.santa-clara.com 2597.90 522.97 (20.13%) 528.84 (20.36%) 527.81 (20.32%) 533.67 (20.54%)
50: www.santacruz.com 1096.01 757.42 (69.11%) 753.43 (68.74%) 748.75 (68.32%) 748.46 (68.29%)
51: www.oakland.com 2938.73 479.12 (16.3%) 483.37 (16.45%) 481.78 (16.39%) 486.45 (16.55%)

CA gov 52: democrats.assembly.ca.gov 1853.14 628.59 (33.92%) 621.95 (33.56%) 618.22 (33.36%) 618.76 (33.39%)
53: www.legislature.ca.gov 2312.80 598.88 (25.89%) 602.94 (26.07%) 599.17 (25.91%) 613.50 (26.53%)
54: republican.assembly.ca.gov 1953.91 646.73 (33.1%) 642.89 (32.9%) 644.72 (33%) 644.47 (32.98%)

City of Davis 55: www.city.davis.ca.us 1661.41 341.84 (20.58%) 338.90 (20.4%) 338.95 (20.4%) 340.07 (20.47%)
56: events.dcn.org 1772.14 314.95 (17.77%) 314.24 (17.73%) 312.47 (17.63%) 313.49 (17.69%)
57: www.dcn.org 915.14 558.84 (61.07%) 553.32 (60.46%) 553.94 (60.53%) 553.75 (60.51%)

Dallas, TX

Dallas News 58: www.dallasnews.com 3635.06 160.03 (4.4%) 163.99 (4.51%) 165.20 (4.54%) 167.30 (4.6%)
59: www.cowboysplus.com 3371.22 442.57 (13.13%) 440.91 (13.08%) 445.07 (13.2%) 443.65 (13.16%)
60: www.guidelive.com 3371.00 419.51 (12.44%) 442.59 (13.13%) 446.68 (13.25%) 449.59 (13.34%)

City of Irving 61: www.ci.irving.tx.us 42.02 36.21 (86.17%) 36.72 (87.39%) 37.16 (88.43%) 38.56 (91.78%)

Online Video 62: www.lapdonline.org 2853.44 461.83 (16.19%) 531.40 (18.62%) 564.30 (19.78%) 618.81 (21.69%)
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Table A.15: Connection Ratings Prediction Results with Different Collection Intervals when λ = 0.5
average interval=10min interval=1hr interval=2hr interval=4hr

location cluster name web servers actual values mean prediction mean prediction mean prediction mean prediction
errors errors errors errors

Boston, MA

Boston Globe 1: www.boston.com 0.94 0.16 (16.59%) 0.16 (17.46%) 0.17 (18.18%) 0.17 (18.65%)
2: weather.boston.com 1.06 0.23 (21.4%) 0.23 (21.4%) 0.23 (22.01%) 0.24 (22.37%)
3: www.explorenewengland.com 1.27 0.42 (32.82%) 0.41 (32.73%) 0.42 (33.54%) 0.42 (33.11%)

MBTA 4: www.mbta.com 0.92 0.40 (43.35%) 0.43 (46.27%) 0.45 (48.91%) 0.47 (50.54%)
5: trip.mbta.com 1.11 0.38 (34.29%) 0.40 (35.81%) 0.40 (35.97%) 0.41 (36.97%)

Web Hosting 6: www.aviationdisasterlawyers.com 1.18 0.30 (25.66%) 0.30 (25.79%) 0.31 (26%) 0.30 (25.75%)
7: www.asbestoslaw.info 1.15 0.27 (23.23%) 0.28 (23.97%) 0.28 (24.17%) 0.28 (24.24%)
8: www.pharmaceuticallawyers.com 1.16 0.28 (24.14%) 0.28 (24.52%) 0.28 (23.85%) 0.28 (24.26%)

New York, NY

NYTimes 9: www.nytimes.com 1.45 0.53 (36.7%) 0.53 (36.37%) 0.54 (37.33%) 0.55 (37.87%)
10: movies.nytimes.com 1.32 0.47 (35.37%) 0.46 (35.26%) 0.47 (36.03%) 0.48 (36.42%)
11: homefinance.nytimes.com 1.38 0.42 (30.6%) 0.44 (31.64%) 0.44 (31.64%) 0.44 (31.74%)
12: query.nytimes.com 1.43 0.49 (34.24%) 0.48 (33.65%) 0.49 (34.43%) 0.49 (34.6%)

UN 13: www.undp.org 1.32 0.44 (33.48%) 0.44 (33.49%) 0.45 (33.87%) 0.45 (33.97%)
14: www.rbas.undp.org 1.32 0.41 (30.71%) 0.41 (30.9%) 0.43 (32.21%) 0.43 (32.74%)
15: www.dz.undp.org 1.46 0.51 (35.09%) 0.52 (35.53%) 0.52 (35.77%) 0.52 (35.91%)
16: google.undp.org 1.39 0.47 (33.86%) 0.48 (34.42%) 0.48 (34.62%) 0.49 (35.39%)

Atlanta, GA

CNN 17: www.cnn.com 1.96 0.07 (3.58%) 0.08 (4.09%) 0.08 (4.17%) 0.08 (4.24%)
18: edition.cnn.com 1.93 0.11 (5.68%) 0.12 (6.17%) 0.12 (6.34%) 0.13 (6.51%)
19: si.cnn.com 1.94 0.10 (5.14%) 0.11 (5.52%) 0.11 (5.65%) 0.10 (5.4%)
20: money.cnn.com 1.74 0.10 (5.67%) 0.11 (6.31%) 0.12 (6.65%) 0.13 (7.21%)

Weather.com 21: www.weather.com 1.88 0.18 (9.34%) 0.20 (10.77%) 0.20 (10.82%) 0.21 (11.31%)
22: forgetaway.weather.com 1.87 0.22 (11.88%) 0.23 (12.34%) 0.23 (12.17%) 0.23 (12.31%)
23: desktopfw.weather.com 1.85 0.25 (13.38%) 0.26 (14.01%) 0.26 (14.2%) 0.26 (14.21%)
24: br.weather.com 1.85 0.25 (13.72%) 0.25 (13.66%) 0.25 (13.78%) 0.26 (13.97%)

GA gov 25: www.georgia.gov 0.94 0.23 (24.68%) 0.26 (27.83%) 0.27 (28.36%) 0.27 (28.58%)
26: www.files.georgia.gov 1.88 0.21 (11.04%) 0.21 (11.12%) 0.22 (11.44%) 0.22 (11.72%)
27: oca.awe.gta.ga.gov 1.87 0.22 (11.79%) 0.23 (12.11%) 0.23 (12.53%) 0.24 (12.61%)
28: www.gov.state.ga.us 1.62 0.54 (33.34%) 0.56 (34.45%) 0.57 (35.26%) 0.59 (36.24%)

Springfield, IL

IL gov 29: www.dnr.state.il.us 1.85 0.26 (14.25%) 0.27 (14.42%) 0.27 (14.47%) 0.27 (14.51%)
30: www.illinois.gov 1.85 0.12 (6.26%) 0.14 (7.45%) 0.16 (8.84%) 0.21 (11.27%)
31: www.allkidscovered.com 1.95 0.09 (4.52%) 0.09 (4.48%) 0.09 (4.52%) 0.09 (4.5%)

IL Education 32: www.isbe.net 1.96 0.04 (2.09%) 0.06 (3.02%) 0.07 (3.35%) 0.07 (3.69%)
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Table A.16: Connection Ratings Prediction Results with Different Collection Intervals when λ = 0.5 (Continued)

average interval=10min interval=1hr interval=2hr interval=4hr
location cluster name web servers actual values mean prediction mean prediction mean prediction mean prediction

errors errors errors errors

Raymond, WA

MSN 33: www.msn.com 1.88 0.12 (6.25%) 0.16 (8.56%) 0.19 (9.89%) 0.21 (10.89%)
34: entertainment.msn.com 1.99 0.03 (1.29%) 0.03 (1.44%) 0.03 (1.45%) 0.03 (1.44%)
35: music.msn.com 1.99 0.01 (0.54%) 0.01 (0.71%) 0.01 (0.71%) 0.01 (0.72%)
36: weather.msn.com 1.99 0.02 (1.19%) 0.03 (1.41%) 0.03 (1.4%) 0.03 (1.4%)

Real 37: www.realnetworks.com 1.65 0.23 (13.77%) 0.32 (19.59%) 0.43 (25.93%) 0.54 (32.92%)
38: brasil.real.com 1.34 0.58 (43.09%) 0.66 (49.49%) 0.72 (54.11%) 0.81 (60.48%)
39: musicstore.real.com 1.96 0.08 (4.04%) 0.08 (4.07%) 0.08 (4.03%) 0.08 (4.1%)

Los Angeles, CA

Ameriquest 40: www.ameriquestmortgage.com 1.52 0.60 (39.04%) 0.60 (39.46%) 0.61 (40.19%) 0.61 (39.99%)
41: careers.ameriquest.com 0.86 0.98 (113.74%) 0.98 (113.43%) 0.98 (113.55%) 0.97 (112.18%)
42: www.ameriquestracing.com 0.44 0.69 (156.52%) 0.69 (155.86%) 0.68 (154.47%) 0.69 (156.67%)

City of LA 43: www.lacity.org 1.21 0.59 (48.87%) 0.59 (49.22%) 0.61 (50.63%) 0.62 (51.13%)
44: eng.lacity.org 1.73 0.31 (17.63%) 0.35 (20.1%) 0.40 (22.83%) 0.44 (25.47%)
45: publiccsd.lacity.org 1.81 0.24 (13.37%) 0.28 (15.19%) 0.31 (16.93%) 0.34 (18.57%)
46: parc1.lacity.org 1.05 0.43 (41.28%) 0.47 (44.59%) 0.50 (47.89%) 0.53 (50.7%)
47: www.griffithobservatory.org 1.79 0.28 (15.73%) 0.31 (17.21%) 0.33 (18.51%) 0.36 (20.03%)

San Francisco, CA

Sanfrancisco 48: sanfrancisco.com 1.72 0.42 (24.76%) 0.45 (25.95%) 0.45 (26.31%) 0.46 (26.76%)
49: www.santa-clara.com 1.82 0.32 (17.64%) 0.32 (17.57%) 0.32 (17.72%) 0.33 (18.2%)
50: www.santacruz.com 1.11 0.27 (24.12%) 0.27 (24.22%) 0.27 (23.98%) 0.26 (23.81%)
51: www.oakland.com 1.66 0.50 (30.06%) 0.51 (30.96%) 0.52 (31.44%) 0.54 (32.29%)

CA gov 52: democrats.assembly.ca.gov 1.93 0.12 (6%) 0.12 (6.08%) 0.12 (6.03%) 0.12 (6.06%)
53: www.legislature.ca.gov 1.93 0.13 (6.84%) 0.13 (6.86%) 0.13 (6.86%) 0.13 (6.87%)
54: republican.assembly.ca.gov 1.91 0.15 (7.89%) 0.15 (8.05%) 0.16 (8.29%) 0.16 (8.28%)

City of Davis 55: www.city.davis.ca.us 1.83 0.30 (16.31%) 0.30 (16.47%) 0.31 (16.97%) 0.31 (16.96%)
56: events.dcn.org 1.92 0.14 (7.13%) 0.14 (7.4%) 0.14 (7.49%) 0.15 (7.77%)
57: www.dcn.org 0.95 0.09 (9.75%) 0.10 (10.02%) 0.10 (10.03%) 0.09 (9.9%)

Dallas, TX

Dallas News 58: www.dallasnews.com 1.83 0.24 (13.33%) 0.28 (15.34%) 0.29 (16.01%) 0.31 (16.9%)
59: www.cowboysplus.com 1.96 0.08 (4.07%) 0.08 (4.27%) 0.08 (4.27%) 0.08 (4.17%)
60: www.guidelive.com 1.88 0.15 (8.15%) 0.19 (9.94%) 0.20 (10.53%) 0.21 (11.36%)

City of Irving 61: www.ci.irving.tx.us 1.64 0.30 (18.12%) 0.33 (20.24%) 0.35 (21.37%) 0.40 (24.14%)

Online Video 62: www.lapdonline.org 1.78 0.37 (20.82%) 0.37 (20.96%) 0.37 (20.72%) 0.38 (21.24%)
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