Analysis and Mitigation of Harmonics in Wind Turbine Transformers

A Major Qualifying Project by Stephen Cialdea, Marcus Peart, and Warranyu Walton

Advisor: Prof. Alexander Emanuel

Background

- There are many types of generators used in Wind Turbine designs.
- It is chosen because of its overall efficiency and wide operating wind speed.

RSC – Rotor-Side Converter

GSC - Grid Side Converter

GB – Gearbox

IG – Induction Generator

John Fletcher and Jin Yang (2010). Introduction to the Doubly-Fed Induction Generator for Wind Power Applications, Paths to Sustainable Energy, Jatin Nathwani and Artie Ng (Ed.), ISBN: 978-953-307-401-6, InTech, Available from: http://www.intechopen.com/articles/show/title/introduction-to-the-doubly-fed-induction-generator-for-wind-power-applications

Problem Statement and Project Objectives

Problem:

DFIG back to back converter introduces current harmonics in the line. These harmonics cause heating in the transformer connected by way of eddy current losses and skin effect losses.

Objectives:

- Analyze a DFIG harmonics.
- Design a proof-of-concept single phase active filter that minimizes current harmonics.

DFIG Modeling

- PSPICE was used to analyze current harmonics. Model based on Fuhrlander FLI 500 wind turbine.
- Results suggests a need for either filtering system or an oversized transformer.

Active Filter Basic Concept

Design Objectives

- Develop a reduced scale model, single phase active filter that can be scaled up to higher power ratings.
- Significantly reduces 2nd to 13th harmonics.
- Operates at a line voltage of I2Vrms
- Up to 10A peak correction current

Preliminary Modeling

PSPICE models

- Used to verify IGBT switching logic for generating arbitrary waveforms
 - Conditions:
 - □ A: Target Current > 0
 - ☐ B: Correction Current Target Current > 0
 - \square XI, X4 = A && ~B
 - □ X2, X3 = B && ~A

.SUBCKT ActiveFilterV1 1 2 11 12 13 14 15

X1-X4 are .SUBCKT IdealTransistorSwitch

Modeling Continued

Single Phase Active Filter Design

Hardware

- Allegro ACS714 Hall Effect Sensor
 - Handles up to 20A
 - ▶ 100mV per 1A resolution

- International Rectifier IRGB8B60KPBF
 - Continuous collector current of I9A at I00°C
 - $V_{GE(th)}$ of 4.5V typical
- International Rectifier IR2110 High and Low Side Driver
 - Floating channel design for bootstrap operation
 - ► Gate drive supply range 10-20V

- > 24MHz Operation
- Easy to integrate peripherals with ST standard peripheral library
- Free Atollic C Compiler and IDE.

Active Filter Block Diagram

Modeling

▶ H-Bridge Circuit Simple Switching

Experimental Setup

- Large auto-transformer to step down input voltage to 12VAC.
- Single phase rectifier as source of non-linear current.
 - Drawing a peak current of approximately 7A

Non-Linear Waveform

Non-Linear Harmonics

Experimental Results

Experimental Results (Cont.)

	Α	В
% THD	123.8	13.4
% Odd Harmonic	110.0	9.7
% Even Harmonic	56.9	9.3

Conclusion

- Our single phase active filter performed satisfactorily.
- Switching noise from the active filter may be eliminated via a passive filter.
- A more fine tuned inductor would improve performance and reduce switching noise.

Schematics

H-Bridge

Future Recommendations

- Capacitor instead of power supply
- 3 phase
- High power
- Additional passive filter to eliminate switching noise

Acknowledgement

- Professor Alexander Emanuel
- Three-C Electrical Inc.
- Princeton Municipal Power and Light
- Professor Stephen Bitar