
Approximate Inverse Kinematics Using a Database
Alex Henning

Worcester Polytechnic Institute (WPI)
Worcester, MA 01609

Email: adhenning@wpi.edu

Advisor:
Prof. Dmitry Berenson

Worcester Polytechnic Institute (WPI)
Worcester, MA 01609

Email: dberenson@cs.wpi.edu

A Major Qualifying Project Report submitted to the Faculty of
WORCESTER POLYTECHNIC INSTITUTE

in partial fulfillment of the requirements for the Degree of Bachelor of Science

December 08, 2014

Abstract

The goal of this project was to create an approximate inverse kinematics solver that generates solutions for manipulators that
have less degrees of freedom (DOF) than the space in which their end-effectors move. In such situations, it is improbable that
there is an exact solution to an arbitrary 6-DOF pose. Even though one cannot find an exact solution, one can often find an
approximate solution. In this paper, we propose a database approach for finding the approximate inverse kinematics solution. The
motivating example for this project is the iRobot PackBot. This robot only has a 5-DOF arm, but its end-effector operates in a
6-DOF task-space. Without an approximate inverse kinematics solver, it would be difficult to interface with existing algorithms,
such as grasping algorithms. This approach enables interaction with algorithms that assume that 6-DOF poses can be reached.



1

Approximate Inverse Kinematics Using a Database

I. INTRODUCTION

The goal of this project was to create an approximate
inverse kinematics (IK) solver. The solver generates solutions
for manipulators that have less degrees of freedom (DOF)
than the space in which their end-effectors move. In such
situations, it is improbable that there is an exact solution.
However, an inverse kinematics solution can often be found
within some task-specific tolerance of the target pose. This
tolerance allows us to generate an approximate solution to
what would otherwise be an impossible target.

The motivating example is the iRobot PackBot, which can
be seen in Fig. 1. This robot has an arm which only has 5
degrees of freedom, but its end-effector operates in a 6-DOF
task-space. This problem is not limited to the PackBot, but is
also present in other robots. Another example of a robot with
the same problem is the KUKA YouBot which also has a 5-
DOF arm. More generally, this applies to all non-planar arms
with 4- or 5-DOF and 2-DOF planar arms which are trying to
reach a target position and orientation within the plane.

In this paper, we propose a database approach to finding
the approximate inverse kinematics solution. The proposed
algorithm uses the iterative Jacobian method to improve the
best poses found from the database and return an approximate
solution if it is within a specified tolerance.

II. BACKGROUND

A. Typical Approach

Typically, when approaching the problem of dimension
mismatch between configuration- and task-space, one tries to
change the dimensionality to make it more tractable. This
change in the dimensionality of either configuration- or task-
space makes the problem solvable, but at the cost of additional
limitations.

An example of a task-space change in dimensionality would
be using the PackBot, but only caring about the position of the
end-effector. This provides more dimensions in configuration-
space than task-space and allows the IK solver to take advan-
tage of existing work on IK with redundant manipulators[1].
This approach sacrifices control over the end-effectors orien-
tation, but it will find an exact IK solution. However, this may
not be an option if orientation matters.

An example of changing the configuration-space dimension-
ality — often done with the KUKA YouBot — is to include
one or more of its three driving degrees of freedom when
solving for IK solutions[2]. This allows exact solutions to
be found since the robot now has at least as many degrees
in configuration-space as in task-space. This approach allows
control of the orientation, but it requires accurate control over
the drive base, which is not the case with many robots and does
not work in all conditions. Control of the drive base is usually
worse than control of a robot arm, limiting the precision. The

Fig. 1. The iRobot PackBot, a robot with its 5-DOF, picking up an object.

precision further degrades over rough terrain. This can also
be more difficult for robots without a holonomic drive train,
making manipulation tasks difficult to perform precisely.

B. Approximate is Good Enough

When operating robots, an approximate solution can be
good enough depending on the task and the necessary pre-
cision. In fact, under standard operating conditions for most
manipulators some amount of uncertainty exists in the end-
effector position due to a variety of factors, including:

• Settling error in the controller
• Miscalibration of sensors
• Mechanical tolerances
• Backlash in the joints
These factors are usually ignored when doing IK, since in a

well-designed system, they are within the tolerance necessary
to perform the manipulator’s tasks. Given that the manipulator
can deal with these approximations, it is reasonable for a robot
to deal with approximate IK solutions, so long as the loss in
accuracy is not significant with respect to the task’s tolerance.

Looking at Fig. 2, one can see a 2-DOF arm trying to reach
a 3-DOF pose. When solving only for position as seen in Fig.
2(a), the solution leads to a collision with the object. When
solving only for orientation as seen in Fig. 2(c), the solution is
too far away to pick up the object. In Fig. 2(b), a trade-off is
made which happens to be close enough to grasp. While this
is not always guaranteed, by looking at approximate solutions
one can often find a solution within a reasonable tolerance.

An increasing trend in robotics is to design systems that
can work reliably in uncertain environments. The uncertainty
robots designed for these environments allow is often much



2

(a) Position Only (b) Trade-off (c) Orientation Only

Fig. 2. A 2-DOF robot trying to reach a 3-DOF pose. As seen in Fig. 2(a) on the left, when only position is used, the gripper is in collision with the object.
On the right in Fig. 2(c), it can be seen that orientation alone, without position, is too far away and the gripper cannot grab the object. Only in Fig. 2(b) in
the middle, where there is a trade-off, is it possible for the robot to get close enough to grasp the box.

greater than robots that assume precise knowledge of the
environment. For example, Deimel and Brock[3] created a
compliant hand that can be used to robustly grasp a variety
of objects. Some objects it could pickup include eye glasses,
bottles of water and fruit. Systems using these compliant
grippers can take advantage of an approximate solution due to
the robustness of the gripper. This can allow the creation of a
solution with less degrees of freedom which is less expensive,
without a significant loss of reliability.

One example of a less expensive robot is the Baxter man-
ufacturing robot which reduces costs by using less accurate
sensors and actuators. A modified version of the Deimel and
Brock compliant gripper was made at WPI[4] to work with
Baxter. While Baxter’s arms have 7-DOF, a similar robot with
this gripper and a single 5-DOF arm could take advantage
of an approximate IK solver to enable more cost-efficient yet
robust manipulation.

C. Iterative Jacobian Inverse Kinematics

A simple approach to the problem of approximate IK is
iterative Jacobian inverse kinematics. This method can be
very effective if the current pose is near the target pose.
However, the farther away the target pose gets, the more
likely the iterative Jacobian method is to get stuck in a local
minima or at a joint limit. Once it gets stuck, there is no
way to use this method to get near the target pose without
modifying the algorithm. While this algorithm can be used to
help approximate IK solutions, it is insufficient on its own for
most use cases.

D. Database Approaches

Database methods have a history of being used in robotics
for tasks that are expensive to compute, but quick to use
once computed. OpenRAVE[5] uses databases to store grasp
poses relative to the target object. This allows the robot
to use some criteria to quickly choose one of the known
good grasps, knowing that it satisfies more computationally
intensive criteria; one commonly used criteria is the grasps
stability.

An example of using databases for inverse kinematics would
be storing multiple analytical IK solutions in a database.

OpenRAVE[6] implements such a database method for inverse
kinematics as discussed in [5]. It uses the database to store
analytical solvers generated by ikfast[7] which are designed
for different conditions. Each analytical solver assumes that
there is one "free joint" set to a known value. The database
has solvers for each possible free joint. This allows for fast IK
solutions using the pre-computed analytical solvers regardless
of the chosen free joint.

Another example of using a database for IK is the Ro-
boSimian robot that competes in the DARPA Robotics Chal-
lenge. It handles kinematic redundancy while walking[8] by
using a database lookup to generate IK solutions that allow
smooth and statically stable walking motions. The database
ensures that the chosen solution is reachable in a smooth and
reasonable motion, whereas a random IK solution would be
difficult or impossible to reach smoothly.

III. APPROACH

The approach taken in this project was to pre-compute
a database of known relationships between task-space and
configuration-space. Then, during execution when trying to
solve for a given pose, find the K nearest neighbors of the
target position in task-space. For each of these neighbors, the
iterative Jacobian inverse kinematics algorithm is used to get
closer to the target pose. If at any point an exact solution is
found, it is returned immediately. Otherwise, take the closest
solution out of all the trials and return it as the solution if
it is within a tolerance of the target task-space pose. The
closest solution is determined using a parameter λ, which will
be discussed in detail later, to control the trade-off between
position and orientation.

More formally this algorithm can be expressed in pseudo-
code:

1: procedure IK(pose, . target final pose
λ, . trade-off in position vs. orientation
threshold, . max acceptable distance
K) . number of nearest neighbors to check

2: db← LoadDatabase(λ)
3: nn← NewDatabase(λ)
4: for p ∈ db.Nearest(pose,K) do
5: if not InCollision(p) then



3

6: p← IterativeJacobianIK(p, pose)
7: if IsExact(p) then
8: return p
9: end if

10: if not InCollision(p) then
11: nn.Add(p)
12: end if
13: end if
14: end for
15: nearest← nn.Nearest(pose)
16: if distance(nearest, pose) < threshold then
17: return nearest
18: else
19: return failure
20: end if
21: end procedure

A. Database Creation

One of the key aspects of this approach is the database
generation. The generation of the database can have a major
impact on the performance. This subsection describes how to
generate the database. The initial database used by this algo-
rithm was generated by discretizing the 5-DOF of the PackBot
arm and moving it to all permutations of the discretized joint
values. At each permutation the configuration-space location
and the corresponding task-space pose are recorded into the
database. The resulting database is uniformly distributed in
configuration-space, but in task-space the distribution depends
on the kinematics of the arm and is unlikely to be distributed
uniformly. Target poses in areas with higher density in task-
space are more likely to have a good approximate inverse
kinematic solution when compared to target poses in areas
with a lower density.

When generating the database, there is a trade-off to be
made between the sampling density and the time to generate
the database. Finer discretization is more likely to have poses
close to the target pose, but doubling the discretization of
each joint increases the database size and generation time
by a factor of 2dof — a factor of 32 for the PackBot and
other 5-DOF robots. This causes diminishing returns on finer
discretization. However, if the discretization is too coarse, the
number of nearby poses in task-space shrinks, decreasing the
likelihood of finding a solution.

One way to minimize the exponential increase in database
size and generation time is to discretize the different joints
with different levels of granularity depending on their signifi-
cance. A small change to the base joint is likely to have a much
larger effect on the end-effector pose than the final joint in
the kinematic chain. By selectively choosing the discretization
of each joint, it is possible to improve the database quality
without increasing its size.

The naive way to discretize different joints is to guess
based on an intuition and assign finer discretization to joints
closer to the root of the kinematic chain. A more optimal
way is to weight joints based on their swept volumes. Joint
resolutions for discretization can then be calculated using the
swept volumes. The result can be used to generate a database

with a more useful distribution of poses in both task- and
configuration-space.

When adding configurations to the database during creation,
some configurations are pruned if they are impossible. In the
general case, this includes all poses where the robot would be
in collision with itself, such as when the manipulator is inside
the body. This pruning does not affect the generality of the
IK solver since these poses cannot be used as solutions. The
following subsection will discuss ways to shrink the size of
the database at a cost of generalizability.

B. Shrinking the Database

The database is likely to be quite large when generated
using the above method. If the database is too large, it can
take too long to lookup values in addition to using too much
RAM. As a result, larger databases can make this method
infeasible to actually use. This problem can be mitigated using
a number of methods to remove poses from the database.
These methods make the IK solver less general by taking
advantage of additional information to prune database for
specific use cases.

The simplest way to shrink the database is to only keep
solutions that are within a task-space volume of interest. For
example, with the PackBot, most manipulation happens in
front of the robot. Using this knowledge, on can reduce the
task-space from anywhere the robot can reach to just the area
in front of the robot. By doing this, it is possible to reduce the
number of poses in the database by orders of magnitude —
exactly how much depends on the size of the new task-space.

Another way that poses can be reduced is by making
assumptions about the environment. If you assume that the
PackBot is going to be operating on relatively flat ground, it is
possible to add the ground to the model and prune poses where
the robot is in collision with the ground. The size reduction
due to this is likely not as significant as from limiting task-
space, but can still reduce the size of the database noticeably.
The actual reduction depends on the kinematics of the robot.

It is also possible to have multiple databases and load the
most appropriate one for the task at hand. As an example,
when picking up an object in front of the robot as seen in Fig.
3(a), it can use a database that assumes there is ground and
that the task-space is in front of the robot above the ground.
However, when working with the NERVE Center’s cliff test,
as seen in Fig. 3(b), a different database optimized for a task
space below the robot can be loaded. Separating these two
concerns requires less resources when performing the given
task, but requires that the proper database is loaded when
performing that task. This is an extra step compared the more
general, but resource intensive, version of this algorithm.

When applying these filters to the database, there are two
ways they can be applied. One is during the initial database
creation, while the other is after the fact. The latter is rec-
ommended, since it allows multiple databases to be created
as described above even for tasks that may not have been
intended during the initial database generation. The increase
in computation time for filtering after the fact is negligible
compared to the generation time.



4

(a) Object in Front (b) NERVE Center Cliff

Fig. 3. The iRobot PackBot manipulating objects in different environments.

For this project, we defined a volume in front of the robot
and limited the database to only include poses in the volume.
The volume limited the positions to be within a rectangular
volume in front of the robot and the orientations are limited
to be orientations used by the PackBot for manipulation tasks.
This allowed us to have a database with only 18, 708 entries
instead of the 1, 963, 585 entries in the full database created
from the above discretization method.

C. Measuring Pose Distance

When measuring the quality of an approximate pose, one
must measure the distance between the approximate pose and
the target pose. However, this is difficult, because there is no
clear way of combining the position and orientation distances.
Depending on the task at hand, the relative importance of the
two components vary. Some tasks care more about position,
while others care more about orientation.

For example, when using the PackBot to pick up an object,
the position is generally more important than the orientation,
since if the object is not between the grippers, it is impossible
to pick it up. Another task is looking at objects with the
PackBot’s camera. For this task, orientation matters far more.
In fact, the farther away the object of interest is, the less
the position matters relative to orientation. However, there
are tasks with a much more uncertain trade-off. Using the
PackBot’s camera to look through a car window requires that
the position and angle are both close enough or it will not be
able to see into the car.

Since there is no well-defined solution to this problem,
the IK solver leaves the relationship between position and
orientation as a parameter that can be specified to reflect the
task at hand. The trade-off is formulated as a Pareto trade-
off, using a parameter λ to determine the relative weights
of position vs. orientation. This is given in the following
equation:

distance = λ∆p+ (1− λ)θ

The value of λ is in the interval [0, 1], where a value of
λ = 1 only takes the euclidean distance between the positions
into account and a value of λ = 0 takes only the angle between
the orientations into account. Values in between correspond to
different trade-offs that the user is willing to make in order to
get an approximate solution. For instance, when λ = 0.5 an
error of 1 meter is considered equal to an error 1 radian. This
value can be tuned as necessary for the task.

D. Nearest Neighbors

A key element to this algorithm is efficiently finding a
number of the nearest poses in task-space to the target pose.
This is the well studied K nearest neighbors problem and there
are many libraries for finding approximate nearest neighbors.
The two most popular are ANN[9][10] and FLANN[11][12].
This implementation uses FLANN, since it allows us to specify
custom distance metrics. This matters for two reasons: First,
since end-effector pose in 3D space is not a euclidean space
due to the rotational elements of pose, it is necessary to define
a custom distance metric to get the true distance. Second, in
order to include the Pareto trade-off, the distance metric must
use the specified λ-value.

The custom distance function calculates the distance be-
tween the position and the rotation as represented by a unit
quaternion. These are then combined using the parameter λ
(as discussed above) to account for the relative importance of
position vs. orientation. In addition to varying the weight for
position and orientation, it would also be possible to modify
the FLANN distance metric to weight different axes more or
less heavily, for example if the z-axis mattered more than the
x- and y-axes.

Since quaternions are being used to represent rotation, the
distance metric must take special care when measuring the
distance between them. The proper way to get the distance
between two unit quaternions representing rotations is to find
the angle between them. However, this method does not allow
the database to be efficiently stored by FLANN as a KD-
Tree and significantly reduces the performance of database
lookups. Instead, an alternative approach to the distance be-
tween quaternions is taken. The approach produces the same
ordering for nearest neighbors of quaternions. The distance
between quaternions is treated as a euclidean distance and the
nearest neighbors are looked up in the database twice: once as
its value and once with the quaternion of opposite sign which
represents the same rotation. The results of these two lookups
are then merged. Finally, the K nearest neighbors are returned.
This method results in the same K nearest neighbors as using
the proper method, but allows the database to be stored as
a KD-tree. The benefit of using a KD-tree is that it enables
efficient lookups, even as the database size increases.

Once the nearest neighbors are found, they are then used as
the starting point for the iterative Jacobian inverse kinematics
algorithm[13] to get as close to the target pose as possible.
This is done from the K nearest neighbors instead of just
the single nearest neighbor since it can get stuck at local
minima due to joint limits and numerical issues such as
singularities. However, by trying to approach from multiple



5

nearby neighbors, the chance of running into joint limits and
singularities is greatly reduced.

E. Alternatives to Pareto

Using Pareto optimality to control the trade-off is one
method to find an approximate solution. However, there are
other options and we explored one of them. Instead of using
the orientation directly, we treated the manipulator as two
manipulators, one for each finger. From here the position
Jacobians of the two fingers were used. An extra step was
added where each finger’s target was assigned based on which
minimized the distance between the two fingers and their
targets.

This setup naturally takes advantage of the fact that the
PackBot’s gripper is rotationally symmetric, opening up the
possibility for more solutions that potentially could get closer
to the target. It also removes the need to specify the λ
parameter, which can be unintuitive to pick. Instead, the
two position Jacobians naturally minimizes the position error
between both fingers and their targets. If the orientation is
defined by the finger locations, the result will be a more natural
trade-off between the placement of the fingers.

One problem with just using the fingers on the PackBot is
that it only has two fingers, so there is a degree of freedom
left where the gripper can be at any rotation about the line
between the two finger targets. This can be constrained without
sacrificing the ability to choose between the two symmetric
orientations of the gripper by adding a third point forming
an isosceles triangle. The geometry of this triangle implicitly
controls the trade-off in orientation. This alternative measure
allows you to ignore measuring the orientation distance and
define the error as the sum of the distances between the three
points and their corresponding targets.

IV. RESULTS

In order to verify our method and its feasibility, we per-
formed a number of tests using three algorithms. The tests
all work within a volume of interest which is in front of
the robot — an area in which it would commonly be doing
manipulation. This volume constrains both the position and the
orientation to what one would use for manipulation in front
of the robot.

The first algorithm is simply the iterative Jacobian method
from a single fixed pose. The single pose has an end-effector
pose as close to the center of the volume of interest as the
PackBot could get. When trying to solve for a pose it sets the
PackBot to this pose and tries to get as close as possible to
the target.

The second algorithm is the database method described
above. It takes a number of the nearest neighbors from the
database, uses the iterative Jacobian method to get as close
as possible to the target pose and returns the closest of all
these points to the target. This has the advantage of trying
from many locations that are nearby, minimizing the chance of
getting stuck at a joint limit or local minima. The λ parameter
was set to 0.5 for all tests as this allowed rotation and position
to be treated with similar weighting.

TABLE I
TEST RESULTS FOR LEAVE-ONE-OUT TESTING.

Algorithm Used Successes Average Time Variance
(out of 1000) (milliseconds) (in time)

From a Fixed Point 164 35 0.0070
From Points in the Database 1000 27 0.0027
Finger Points from Database 998 115 0.31

The third algorithm tested is the finger method discussed
above, which creates a triangle of points using the two
fingers and stacks the three position Jacobians when running
the iterative Jacobian method. This method uses the same
database. The advantage of this is that the fingers can go either
way since the PackBot’s gripper is symmetric. It also implicitly
takes care of the trade-off between position and orientation,
getting rid of the need to have a lambda parameter.

A. Leave One Out Testing

The first test we did was standard leave-one-out testing. For
1000 end-effector/robot pose pairs in the database, we removed
one pair at a time and ran the IK solver to get a solution for
the target pose. The success rate of each algorithm and average
time to solve 1000 targets was recorded in table I. This test
was run to verify that the methods can get exact solutions to
poses that the PackBot is known to be able to reach.

B. Sampled Grasps

To test under more realistic scenarios, we ran a test to get
as close as possible to grasps from a grasp set. This allows
the methods to be tested under a real usage scenario. Using
grasp sets gives the solvers extra chances to get close, whereas
a single target may be impossible to approximate with the
kinematic structure of the PackBot.

For this test, a cylinder was placed at a random pose inside
a volume in front of the robot. Thirty-two grasps were then
found spaced evenly around the cylinder. The IK solver was
then run on each of the target grasp poses and the closest
match was returned. If the solution was within a tolerance of
0.01 or 0.05 of the target grasp, it was marked as a success.
These tolerances were chosen, since they were both small. In
fact, applying a small force to the PackBot’s end-effector can
shift the pose by more than 1 cm. Once orientation change is
factored in, a tolerance of 0.05 is reasonable.

C. Effect of Database Size

For this test, new databases were created with from 1000 to
18000 poses in intervals of 1000. The points were randomly
chosen from the original database. Leave-one-out testing was
run for 1000 data-points and the values were recorded. They
all correctly solved 100% of the poses, so that was not
recorded. The values recorded included the average number
of nearest neighbors and iterations of the iterative Jacobian
method before finding a successful result. The corresponding
times and the total time were also recorded. The raw data can
be seen in table III, with the data plotted in Fig. 4.



6

(a) Lookup Time (b) Iteration Time (c) Total Time

Fig. 4. The effect of database size on performance. Fig. 4(a) and Fig. 4(b) show the time — averaged over 1000 leave-one-out trials — for database lookup
and the iterative Jacobian method respectively. Fig. 4(c) shows the total time. All figures show a regression line in red fit to the points.

TABLE II
TEST RESULTS FOR GRASPS AROUND A RANDOMLY PLACED CYLINDER.

Algorithm Used Cutoff Successes Average Time Variance
(out of 1000) (milliseconds) (in time)

From a Fixed Point 0.01 217 505 0.0042
From a Fixed Point 0.05 826 505 0.0042
From Points in the Database 0.01 251 4535 0.60
From Points in the Database 0.05 966 4535 0.60

TABLE III
RESULTS FOR TESTING THE IMPACT OF DATABASE SIZE ON PERFORMANCE.

Size Average Nearest Neighbors Average # Iterations Average DB Time Average Jacobian Time Average Total Time
(milliseconds) (milliseconds) (milliseconds)

1000 1.912 83.952 4.311 150.821 155.132
2000 2.002 93.193 6.102 187.693 193.795
3000 2.100 94.811 7.523 194.652 202.175
4000 2.078 88.151 7.879 169.044 176.923
5000 2.337 113.035 9.009 225.340 234.349
6000 2.153 98.613 9.521 191.819 201.340
7000 2.137 92.256 10.126 181.092 191.218
8000 2.212 92.571 11.228 190.806 202.034
9000 2.182 89.658 9.900 152.036 161.936

10000 2.192 89.079 11.978 169.782 181.760
11000 2.255 92.693 13.174 182.336 195.510
12000 2.260 92.260 13.213 173.419 186.632
13000 2.320 95.823 13.872 185.465 199.337
14000 2.260 94.976 14.861 182.245 197.106
15000 2.234 96.284 15.384 185.117 200.501
16000 2.249 95.568 15.064 170.466 185.530
17000 2.144 90.589 16.531 170.116 186.647
18000 2.120 89.487 18.247 176.436 194.683

V. DISCUSSION

A. IK Leave-one-out testing

Looking at the results from leave-one-out testing as seen
in table I, one can see that our database method outperforms
the fixed-point algorithm and finds a solution for every pose.
It also runs faster than the iterative Jacobian method since
nearby poses take less iterations to get close to the target and
our algorithm returns immediately on an exact match.

Running the iterative Jacobian method performs signifi-
cantly worse in our test volume, but the success rate is
relatively optimistic in the more general case. Larger test
volumes would require more iterations to be successful and
the fixed point method would be more likely to run into joint

limits and other problems as it approached the edges of the
larger volume.

The third test method using points on fingers got a 99.8%
success rate, but ran significantly slower than the other two
methods tested. It is comparable in accuracy to our database
method, though it runs 4 times slower and had 2 failures out
of 1000 trials due to getting stuck at joint limits.

The results of this test show that our algorithm can success-
fully solve the inverse kinematics problem when a solution
exists even though the straight iterative Jacobian method from
a fixed point fails most of the time. This illustrates that our
algorithm will work when an exact solution is possible and
there is no loss in accuracy by using our approximate IK solver
when an exact solution is available.



7

B. Sampled Grasps

Table II contains the result of trying to find the best grasp
from a set of grasps around a cylinder at random locations.
This test was run at two different tolerances, 0.01 which allows
for up to 1 centimeter or up to 1 centiradian of error and a
0.05 which allows up to five times the error.

In the scenario with a very tight tolerance, both solutions
did poorly. Without the database, it had 21.7% success rate
and when using the database it had a success rate of 25.1%.
The database method outperforms testing from a fixed point,
but it can still only grasp one fourth of the target objects.

When the tolerance was increased, performance increased
significantly for both methods. The database method was
able to successfully get close to a grasp 96.6% of the time
whereas the iterative Jacobian algorithm from a fixed point
had a success rate of 82.6%. The database method performs
significantly better here, succeeding in 140 out of the 1000
cases where the fixed point method was unsuccessful.

This test illustrates that the approximate solutions can
usually get close enough to at least one of a set of target poses.
Due to the kinematics of the PackBot and its 5-DOF, there are
many targets that are not only impossible to get to, but also
impossible to get within a reasonable tolerance. However, once
you are willing to use a set of target poses, the approximate
solver is able to come up with at least one acceptable solution
for the task.

While requiring a set of targets may at first seem to make
this IK solver useless, there are areas of robotics where sets
of targets are not only acceptable, but already regularly used.
The example used for this test was grasping. This works
with one common technique, which is to generate a set of
possible grasps offline. Then, during execution, try to get to
one of the grasps using some criteria. These grasp sets can be
combined with our proposed IK solver and generate successful
IK solutions even though an analytical solver would fail. This
allows our solver to be used with existing grasping software.

C. Effect of Database Size

One big factor that affects the feasibility of using the pro-
posed algorithm is its performance. The resulting performance
scales well with database size. Looking at Fig. 4(a), one can
see that roughly speaking, lookup time doubles every time the
database size quadruples. This is expected since the database
lookup is based on KD-trees, which are an efficient way of
storing nearest neighbors that should take O(log2(n)) time per
look up.

For the database size used in our testing, calculating the
iterative Jacobian took roughly 10x longer than the longest
database lookup. As can be seen in Fig. 4(b), the larger
databases performed slightly better in general since they were
able to lookup closer points, but this trend was not always true.
Most notably, the database with only 1000 poses spent the least
amount of time running the iterative Jacobian method, this
variance is likely due to the random points tested. In the end,
ignoring the outliers, the time savings from a larger database
is less than the increase in lookup time.

Based on these results, increasing database size is most
useful for increasing the volume of interest. You can increase
the volume to include significantly more points with minimal
performance impact. However, increasing the size within the
same volume takes slightly longer, which can be seen in
Fig. 4(c). It is not until you get a very large database that
lookup time becomes comparable to the time spent running
the iterative Jacobian algorithm.

VI. CONCLUSION

We proposed a database method for finding approximate
inverse kinematic solutions for robots that have less degrees
of freedom (DOF) than the space in which their end-effectors
move. We compared this method to the naive approach of
simply using the iterative Jacobian method from a single-pose
and found that our proposed method outperformed the naive
approach when finding exact IK solutions that the robot was
known to be able to reach. It was also shown that this method
can get close enough to at least one of the targets in a grasping
set 96.6% of the time. We investigated the time it took to solve
and found that the database can scale to handle large number
of poses without a major change in runtime performance.

The proposed algorithm was unable to get approximate IK
solutions that were close to the target in the general case,
due to the kinematic structure of PackBot. Our approach is
limited to working within that scope and requires a number
of potential targets in order to have a high chance at success.
Otherwise, a high tolerance for failure is necessary. This is
still useful and allows our solver to integrate with algorithms,
such as grasp sets that assume that the robot is able to reach 6-
DOF poses without having to modify them to support a special
5-DOF parametrization.

REFERENCES

[1] N. Makondo, J. Claassens, N. Tlale, and M. Braae, “Geometric technique
for the kinematic modeling of a 5 dof redundant manipulator,” in
Robotics and Mechatronics Conference of South Africa (ROBOMECH),
2012 5th. IEEE, 2012, pp. 1–7.

[2] S. Sharma, G. K. Kraetzschmar, C. Scheurer, and R. Bischoff, “Unified
closed form inverse kinematics for the kuka youbot,” in Robotics;
Proceedings of ROBOTIK 2012; 7th German Conference on, May 2012,
pp. 1–6.

[3] R. Deimel and O. Brock, “A compliant hand based on a novel
pneumatic actuator,” in Proceedings of the IEEE International
Conference on Robotics and Automation (ICRA), 05 2013, pp.
01–07. [Online]. Available: http://www.robotics.tu-berlin.de/fileadmin/
fg170/Publikationen_pdf/2013-icra13_Deimel_Brock.pdf

[4] T. Murcko, “Soft pneumatic hand,” August 2013. [Online]. Available:
http://arc.wpi.edu/#projects-14

[5] R. Diankov, “Automated construction of robotic manipulation
programs,” Ph.D. dissertation, Carnegie Mellon University,
Robotics Institute, August 2010. [Online]. Available: http:
//www.programmingvision.com/rosen_diankov_thesis.pdf

[6] ——, “Openrave website,” March 2013. [Online]. Available: http:
//openrave.org/

[7] ——, “Ikfast documentation,” March 2013. [Online]. Available:
http://openrave.org/docs/latest_stable/openravepy/ikfast/

[8] B. W. Satzinger, J. I. Reid, M. Bajracharya, P. Hebert, and
K. Byl, “More solutions means more problems: Resolving kinematic
redundancy in robot locomotion on complex terrain,” in Submitted
to IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS),
2014. [Online]. Available: http://www.ece.ucsb.edu/~katiebyl/papers/
Satzinger_IROS_2014.pdf

http://www.robotics.tu-berlin.de/fileadmin/fg170/Publikationen_pdf/2013-icra13_Deimel_Brock.pdf
http://www.robotics.tu-berlin.de/fileadmin/fg170/Publikationen_pdf/2013-icra13_Deimel_Brock.pdf
http://arc.wpi.edu/#projects-14
http://www.programmingvision.com/rosen_diankov_thesis.pdf
http://www.programmingvision.com/rosen_diankov_thesis.pdf
http://openrave.org/
http://openrave.org/
http://openrave.org/docs/latest_stable/openravepy/ikfast/
http://www.ece.ucsb.edu/~katiebyl/papers/Satzinger_IROS_2014.pdf
http://www.ece.ucsb.edu/~katiebyl/papers/Satzinger_IROS_2014.pdf


8

[9] S. Arya and D. M. Mount, “Ann: A library for approximate
nearest neighbor searching,” May 2014. [Online]. Available: http:
//www.cs.umd.edu/~mount/ANN/

[10] S. Arya, D. M. Mount, N. S. Netanyahu, R. Silverman, and A. Y. Wu,
“An optimal algorithm for approximate nearest neighbor searching in
fixed dimensions,” College Park, MD, USA, Tech. Rep., 1995.

[11] M. Muja and D. G. Lowe, “Flann - fast library for approximate
nearest neighbors,” May 2014. [Online]. Available: http://www.cs.ubc.
ca/research/flann/

[12] ——, “Fast approximate nearest neighbors with automatic algorithm
configuration,” in International Conference on Computer Vision Theory
and Application VISSAPP’09). INSTICC Press, 2009, pp. 331–340.

[13] D. Berenson, “Motion planning for articulated robots 1,” p. 15,
May 2014. [Online]. Available: http://users.wpi.edu/~dberenson/courses/
rbe595planning/lectures/Larms1.pdf

http://www.cs.umd.edu/~mount/ANN/
http://www.cs.umd.edu/~mount/ANN/
http://www.cs.ubc.ca/research/flann/
http://www.cs.ubc.ca/research/flann/
http://users.wpi.edu/~dberenson/courses/rbe595planning/lectures/Larms1.pdf
http://users.wpi.edu/~dberenson/courses/rbe595planning/lectures/Larms1.pdf

	Introduction
	Background
	Typical Approach
	Approximate is Good Enough
	Iterative Jacobian Inverse Kinematics
	Database Approaches

	Approach
	Database Creation
	Shrinking the Database
	Measuring Pose Distance
	Nearest Neighbors
	Alternatives to Pareto

	Results
	Leave One Out Testing
	Sampled Grasps
	Effect of Database Size

	Discussion
	IK Leave-one-out testing
	Sampled Grasps
	Effect of Database Size

	Conclusion
	References

