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Abstract   
 

The most effective treatment against malaria is artemisinin (AN), which is extracted from 

Artemisia annua.  Considerable differences in the content of AN and its direct precursors are 

found in various A. annua plants of different geographical origins. From previous studies, AN 

yield in the Chinese (CH) strain is consistent and high compared to the Yugoslavian (YU) strain 

where the yield is lower and highly variable. Two possible causes of variability of AN content in 

the YU strain are reactive oxygen species (ROS) and AN precursor levels which are analyzed 

using a simple colorimetric method and liquid chromatography-mass spectrometry, respectively. 

There was no difference in H2O2 levels in either strain; the main cause of the low AN level in the 

YU strain is the precursor levels. 
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1. Introduction 
 

Due to the increasing number of people afflicted with malaria every year and the 

development of resistance of different malaria strains to drugs, the need for a treatment that has 

the ability to overcome this disease is necessary. The most effective treatment against this 

disease is the drug called artemisinin (AN). This medicine is extracted from a plant called 

Artemisia annua. Unfortunately, A. annua produces low amount of AN, ranging from 0.1 to 1% 

of the plant dry weight, depending on the geographical origin of the plant (Wallaart et al., 1999).  

This plant was originally found in China, but it can be found in other places, such as Argentina, 

Bulgaria, France, Spain, USA, and the former Yugoslavia (Klayman, 1989, 1993). There is a 

tremendous difference in AN content in different strains of A. annua found in these different 

locations (Delabays et al. 1993; Woerdenbag et al. 1993). Therefore, understanding why certain 

strains produce more AN than other ones might help lead to an increase AN level.  In a variety of 

studies, AN yield in the Chinese (CH) strain is consistent and high compared to the Yugoslavian 

(YU) strain, where the AN yield is lower and highly variable. Therefore, the main goal of this 

project is to determine the possible causes of the variability of the AN content in the YU strain 

by comparing and contrasting it to the CH strain of A. annua. 
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2. Background Information 
 

2.1 Artemisia annua and Artemisinin  

Artemisia annua is a plant that belongs to the Asteraceae family (Figure 1). This plant is 

single stemmed with alternate branches reaching more than 2 meters. This plant was originally 

found in China, but it can be grown in other places such as Argentina, Bulgaria, France, Spain, 

USA, and former Yugoslavia (Klayman, 1989, 1993).  From A. annua an important compound is 

derived; this compound is called artemisinin (AN).  

 

Figure 1: A Yugoslavian strain of Artemisia annua plant on the left; the chemical structure of artemisinin 

in the middle taken from Dhingra et al., 1999, and on the right a Chinese strain of Artemisia annua 

 

AN is one of the secondary metabolites in A. annua (Bhandari et al., 2005). It is a 

sesquiterpene lactone with an endoperoxide bridge (Figure 1). AN can be purified from the aerial 

parts of A. annua (Webster et al., 1994). Roots and pollen were found to be AN deficient, but 

AN is present in main stems, side stems, leaves, and flowers of A. annua (Ferreira, 2004). AN is 

synthesized and sequestered in organs called glandular trichomes in A. annua plants (Figure 2). 

Glandular trichomes are composed of basal, stalk and three secretory pairs of cells (Covello et 

al., 2007).  
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Figure 2: Glandular trichome structure taken from Covello et al., 2007 

 

2.2 Therapeutic Aspects of Artemisinin  

AN has many therapeutic benefits and uses. For example, A. annua has been used in 

China for colds and fevers since 340 AD. The first isolation of AN as the therapeutic entity in 

A.annua was done by Chinese scientists in 1972 (Dalrymple, 2006). AN has played several roles 

in treating various diseases, most importantly malaria, which will be discussed in more detail in 

the following section. 

2.2.1 Artemisinin Use Against Malaria  

 

Malaria is caused by the protozoa Plasmodium that is carried by a mosquito of the genus 

Anopheles (Bouwmeester et al., 2006). In 2006, there were 247 million malaria cases that led to 

nearly 881 000 deaths (World Health Organization, 2009). Malaria is more prevalent in tropical 

countries. The victims of this disease are most often children under the age of five; these children 

tend to live in the sub-Saharan African countries (van Agtmael et al., 1999). It was estimated that 

about 80-90% of the world’s malaria is in Africa (van Agtmael et al., 1999). The second highest 

incidence of malaria is in South East Asia (Kumar et al., 2005). Each year overall incidence of 
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malaria continues to be about 500 million cases, which represents 350 million in the African 

region and 125 million in the South East Asian region (Kumar et al., 2005).  

Traditionally malaria has been treated using different drugs such as chloroquine, quinine, 

mefloquine, and primaquine and with antifolates such as Fansidar (sulfadoxinepyrimethamine). 

Unfortunately, some malaria parasites have become resistant to these drugs (WHO, 2003). The 

main cause of this resistance is a genetic mutation in malarial parasites (Olliaro et al., 2004). 

Resistant cases can also occur when AN is given in short course monotherapy regimens (van 

Agtmael et al., 1999). Thus, the use of combination therapies with formulations including AN is 

the optimal solution to treat malaria (Kumar et al., 2005). This method is called artemisinin-

based combination therapies “ACT”. In ACT, AN kills most of the parasites rapidly, and what 

remains is killed by the combined drug (Olliaro et al., 2004). Examples of the combined drugs 

are chloroquine and sulfdoxime/pyrimethamine (Covello et al., 2007).  ACT is considered the 

most successful therapy because of the absence under these regimens of any recorded cases of 

artemisinin-resistant malaria (WHO, 2003).  

2.2.2 Artemisinin Mode of Action in Treating Malaria 

The unique chemical structure of AN enables it to be a potent drug against malaria. The 

part of AN that is crucial in destroying a malaria parasite is a peroxide within a 1, 2, 4 trioxane 

configuration. The presence of this moiety in AN has led to several hypothesized mechanisms by 

which this drug works as an anti-malarial agent. Most of these mechanisms were based on 

understanding peroxide chemistry and chemical behavior of AN (Krishna et al., 2006).  

One of these mechanisms propose that the destruction of malaria parasites by AN is 

based on the heme-mediated decomposition of the endoperoxide bridge to produce carbon-
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centered free radicals (Meshnick et al., 2002). Unlike other oxidant drugs where it is necessary to 

react with oxygen to produce large quantities of oxygen-containing free radicals, AN itself is 

converted into a free radical in a reaction catalyzed by iron (Dhingra et al., 1999). The 

mechanism can be summarized in the following two steps. In the first step, AN is activated by an 

iron molecule, so free radicals are formed. Second, these free radicals work as electrophilic or 

alkylating intermediates damaging specific malarial membrane-associated proteins that are 

critical for the survival of P.falciparum (Meshnick et al., 1996).                           

A second mechanism by which AN destroys malaria parasites was recently proposed. 

This hypothesized mechanism is also based on free radical mechanism, but this time the free 

radicals specifically damage PfATP6, which is a sarco-endoplasmic reticulum Ca
2+

 -ATPase 

(SERCA) of P. falciparum (Eckstein-Ludwig et al., 2003). SERCA plays an important role in 

reducing cytosolic free calcium concentration by concentrating calcium into membrane-bound 

stores. This action is essential for cellular survival, specifically for intracellular signaling 

(Haynes et al., 2004). AN molecules show discrete specificity for SERCA of malarial PfATP6 as 

opposed to mammalian pumps. The detail of this mechanism is still under study (Haynes et al., 

2004). 

2.2.3 Artemisinin and other diseases  

AN and its derivatives were shown to be therapeutic against schistosomiasis disease 

caused by the protozoan species Schistosoma japonicum, S.mansoni, and S.haematobium. This 

disease is known to cause about 1.5 million disabilities each year (Shuhua et al., 2002). AN is 

active against other protozoan infectious diseases such as leishmaniasis. In addition, AN can 

prove lethal to cancer cell lines, fungi, and bacteria (Kumar et al., 2005). Also, it has been used 
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to eliminate necrotic material from the body such as from wounds, intestines of people who have 

ulcerative colitis, and from Crohn’s disease (Rowen, 2002).  

2.3 Artemisnin Biosynthesis Pathway and Aretmisnin Production  

 It can be seen that AN can play a role in treating malaria and other diseases, including 

cancer. Unfortunately, an average A. annua plant produces little AN, about 0.01-0.8 % of the 

plant mass. Because neither total nor semi-synthesis is economically feasible (Abdin et al. 2003), 

the only source of AN is the plant that produces it (Bouwameester et al., 2006). Researchers have 

tried to enhance AN yields in different ways. One strategy is to understand the biosynthetic 

pathway of AN, including the enzymes that catalyze each step leading to AN and the factors that 

might increase the yield of AN. 

2.3.1 IPP and DMAPP Biosynthesis  

AN falls under the family of terpenoids. The primary precursor of terpenoids is 

isopentenyl diphosphate (IPP) and its isomer dimethyllallyl diphospahte (DMAPP). There are 

two pathways in which IPP is synthesized. One occurs in the cytosol, hence called the cytosolic 

mevalonic acid (MVA) pathway, and the other one occurs in the plastid, thus called the plastidial 

methylerythritol phosphate (MEP) pathway (Croteau et al., 2000). 

In the MVA pathway, IPP is derived from acetyl CoA. The conversion of 3-hydroxyl-3-

methylglutaryl CoA (HMG-CoA) into mevalonic acid is catalyzed by an enzyme called HMG-

CoA reductase. For the MEP pathway, IPP originates from the condensation of pyruvate with D-

glyceraldehyde-3-phosphate (Croteau et al., 2000).This condensation reaction is catalyzed by the 

enzyme deoxy-D-xylulose-5-phosphate synthase (DXS), which represents the first step of the 
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MEP pathway leading to the product 1-deoxy-D-xylulose-5-phosphate. IPP can be exchanged 

between the two compartments, the cytosol and plastid (Mahmoud et al., 2001).  

 A key enzyme responsible for catalyzing the step that produces many sesquiterpenes, 

including AN, is farnesyl diphosphate sythase (FPPase). This enzyme catalyzes the condensation 

of the C5 substrate DMAPP with two molecules of IPP to the C15 product farnesyl diphosphate 

(FPP).  FPP can then be cycled to sesquiterpene by a variety of sesquiterpene cyclase or go on to 

form sterols. 

2.3.2 Artemisinin Biosynthesis Pathway  

The committed step of AN synthesis is the cyclization of farnesyl diphosphate (FDP) into 

amorpha-4,11-diene by the enzyme amorphadiene synthease (ADS) (Figure 3). Then formation 

of artemisinic alcohol is catalyzed by the enzyme cytochrome p450 (CYP 71AV1). Artemisinic 

alcohol is oxidized by either CYP 71AV1 or artemisinic alcohol dehydrogenase into artemisinic 

aldehyde (Bouwameester et al., 1999). Artemisinic aldehyde has two fates, and each reaction is 

catalyzed via a different enzyme as shown in Figure 3. CYP 71AV1 action leads to the formation 

of artemisinic acid (AA), and artemisinic aldehyde hydrogenase (DBR2) activity leads to the 

formation dihydroartemisinic aldehyde. Dihydroartemisinic aldehyde forms dihydroartemisinic 

acid (DHAA) in a reaction step catalyzed by the enzyme dihydroartemisinic aldehyde 

dehydrogenase (AldH1). DHAA has only one possible route in the biochemical pathway. This 

route leads to the formation of AN in a hypothesized non-enzymatic photo-oxidative step. On the 

other hand, AA leads to the formation of arteannuin B (Zhang et al., 2008).  
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Figure 3: Artemisinin biosynthesis pathway adopted from Weathers et al., 2006, Zhang et al., 2008 and 

Wallaart et al., 1999 

 

As stated in the introduction, the main goal of this project is to determine the possible 

causes of the variability in AN content in the YU strain as opposed to the CH strain of A. annau. 

This might be explained by the differences in precursor levels specifically, DHAA and AA. In 
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the CH strain, there might be more DHAA than AA, which would guarantee the production of 

AN.  In the YU strain, the AN level might vary as the result of the presence of more AA than 

DHAA, which leads to the formation of AB. Some works suggested that the metabolites AB and, 

artemisitene are also precursors of AN (Zhang et al., 2008). 

2.5 Reactive Oxygen Species and Artemisnin Production  

In the last step of artemisinin biosynthesis, it is hypothesized that DHAA is converted into 

AN via a non-enzymatic step, which involves reactive oxygen species (ROS).  It was proposed 

that dihydroartemisinic acid protects the plants by reacting with ROS yielding AN as a stable end-

product (Wallaart et al., 1999).Therefore, another cause that might be responsible for the 

variability of AN content in the YU stain is the amount of ROS. Thus, it is important to 

understand what ROS are, learn some examples and sources, and comprehend their major roles in 

the bio-chemistry of plants. In this section, an overview of ROS will be given.   

ROS are highly responsive reduced oxygen molecules. Some examples of ROS include 

singlet oxygen, superoxide anion, hydrogen peroxide, and hydroxyl radical. All these molecules 

share common properties in being highly reactive, toxic, and capable of causing oxidative 

damages to the cells (Asada et al., 1987).  

Based on different studies, including pharmacological, molecular, and genetic studies, all 

suggest that the main source of ROS is a superoxide anion (O
-
2) generated by membrane-bound 

NADPH oxidase (Lamb et al., 1997). The major organelles responsible for the high production of 

ROS include the chloroplasts, mitochondria, and microbodies (Mittler et al., 2004).  Usually under 

physiological steady-state circumstances, ROS are scavenged by different antioxidants. Therefore, 

there is a maintained level between the production and the scavenging of ROS, but in some cases 
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this balanced level gets disrupted. This interruption can be caused by environmental factors, which 

induce production of ROS. Consequently, ROS levels in the cells must be highly regulated 

(Pitzsche et al., 2006). 

2.5.1 Reactive Oxygen Species Role in Plants  

 ROS have gained a bad reputation because in some cases they cause permanent damage 

and cell death. In fact, ROS are involved in a range of strategies to control diverse biological 

activities (Apel et al, 2004). ROS have an effect on cell signaling and gene expression. The 

success of ROS as signaling molecules implies that during the course of evolution, plants were 

able to attain a high degree of control over ROS toxicity. Thus, being able to manage ROS toxicity 

and enable ROS to act as a signaling molecule is all due to a large gene network (Mittler et al., 

2004).This large gene network is known as “ROS gene network”. It is responsible for directing a 

balanced level of ROS inside the cells, in addition to the duration, intensity, and subcellular 

localization of ROS signals (Mittler et al., 2004). In plants ROS play a significant role in the 

following biological processes: growth, development, stomata signaling, biotic and abiotic stress 

(Miller et al., 2007), cell cycle, programmed cell death (PCD) and hormone signaling (Mittler et 

al., 2004).  

2.5.2 Oxidative Stress  

As mentioned before, ROS can be produced via several means. In plants, ROS could be 

generated by activating different oxidases and peroxidases in response to environmental 

alterations (Apel et al., 2004). When the level of ROS production increases rapidly this might lead 

to an oxidative burst (Apostol et al., 1989). Oxidative burst “consists of a biphasic production of 

apoplastic ROS at the site of attempted invasion” (Zaniontto et al., 2006). Oxidative stress can be 
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initiated and triggered due to external conditions, which include biotic or abiotic stresses. Biotic 

stress might be caused by other organisms while abiotic stress occurs due an increase or decrease 

in the physical or chemical properties of the environment. Abiotic stress factors include high light, 

drought, cold, high temperature and mechanical stress (Apel et al., 2004). Ozone is found to be a 

direct precursor of ROS, and has the ability to induce PCD. Therefore, it is considered to be an 

abiotic inducer (Pitzschke, et al., 2006). 

2.5.3 Hydrogen Peroxide  

H2O2 is one of the ROS generated as a by-product in plant tissues during normal 

metabolism and under various stress conditions such as oxidative stress (Lu et al., 2008). H2O2 is 

mainly produced in chloroplasts and mitochondria through electron transport. In this process, first 

oxygen is reduced to superoxide and then dismuted into H2O2 spontaneously, or its conversion 

might be catalyzed by an enzyme called superoxide dismutase (SOD) (Asada 1999; Moller 2001). 

H2O2 can be produced by glycolate oxidase in peroxisomes (Noctor et al. 2002), membrane bound 

NADPH oxidase (Jiang et al., 2003), and oxalate oxidase (Hu et al. 2003). When plants are 

exposed to oxidative stress H2O2 acts as a signaling molecule. This is possible due to the fact that 

these molecules are small and diffuse over short distances, thus crossing the cellular membrane 

and act as a signaling molecule (Pitzsche et al., 2006). Thus, ROS metabolism in a specific 

compartment could change the ROS homeostasis of an adjacent compartment (Miller et al., 2007). 
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3. Hypothesis 
 

 The high and consistent level of AN in the CH strain of A. annua, as opposed to the low 

and variable level of AN in YU strain, is due to precursor levels, specifically DHAA,  and a 

higher level of ROS facilitating the conversion of DHAA into AN.  
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4. Objectives  
 

a. To quantify AN precursor levels in CH and YU strains using the method of liquid 

chromatography-mass spectrometry (LC-MS) with selective ion monitoring (SIM). The major 

metabolites this experiment will be focusing on are AN, AA, DHAA and AB. 

b. To quantify ROS, specifically hydrogen peroxide, in YU and CH strains using a simple 

colorimetric method and relate the results to the amount of AN yields.  
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5. Methodology  
 

5.1 Plant Growth Conditions  

YU and CH seeds were grown in a liquid media for four days. After four days, seedlings 

emerged and then were transferred into Metro-Mix 360 soil and grown in a controlled 

environment inside a growth chamber with 16 hour days and 8 hour nights. The CH plants were 

maintained inside a growth chamber where the light intensity and temperature were 61µmol/m
2 

and 28 ̊C, respectively. YU plants were kept inside a growth chamber where the light intensity 

was 64.2µmol/m
2
 and temperature 25 ̊C, respectively. Leaves were harvested from both strains 

after four weeks. 

5.2 Measuring Metabolites Level 

LC-MS with selected ion monitoring SIM as developed by Patrick Arsenault was the 

technique used in this study for determination of the metabolite levels, specifically AN, DHAA, 

AA and AB in A. annua.  LC-MS analyses were done using Aglient 1100 system equipped with 

an autosampler, a quaternary pump system, a photodiode array and multiple wavelength detector, 

a thermostated column compartment, a degasser, and Chemstation software.  

5.2.1 Analytical Standards 

An individual stock solution of each metabolite was prepared by dissolving each one in 

appropriate volume of toluene: 0.06 mg AN in 600 µl, 1.6 mg AA in 1600 µl, 1.4 mg of AB in 

1400 µl, 0.05 DHAA in 500 µl. 
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5.2.2 Sample Preparation 

Approximately 2 g of leaves from each of six plants were frozen in liquid nitrogen and 

ground separately in a mortar into fine powder. Then, 0.1 g of each plant tissue was placed into 

individual glass test tubes and 2 ml of toluene was added. Tubes were sonicated in an ice bath for 

30 minutes. The tubes were removed and the supernatant was decanted into new tubes, while the 

plant pellets were resuspended in another fresh 2 ml of toluene. Tubes were sonicated again for 

30 minutes and the resulted supernatant was added into the first supernatant.     

The supernatant was then semi-purified using the technique of flash chromatography. A 3 

ml column was packed with 0.5g of silica gel 60 Å was preconditioned with 2 ml of toluene. 

About 4 ml of plant tissue extract was loaded on the column, followed by washing with 2ml of 

toluene. Subsequently, the samples were eluted with 2x 0.5 ml of methanol. Vacuum was applied 

at the end to make sure that all metabolites were eluted. The 2 ml collected fractions were 

evaporated under nitrogen gas to dryness and resuspended in 1 ml of acetonitrile then vortexed. 

Finally, the 1 ml sample was filtered using a 0.2 µm syringe filter.  

5.2.3 Sample Analysis Using Liquid Chromatography-Mass Spectrometry 

The purified samples were run on the Agilent 1100 LC-MS with an ODS3 column. The 

mobile phase consisted of 75 % water (0.1% formic acid) 25% acetonitrile. The flow rate was set 

at 0.400 ml/min. Injection volume was 1.0 µl, the stop time was 32 minutes, and the post running 

time was 3 minutes. The heater temperature surrounding the LC/MS column was 35 ̊C.  High-

purity nitrogen (99.999%) was used as dry gas, the flow rate was 10.1 L/min, the capillary 

temperature was 350 ̊C, and helium was used as nebulizer at 40 psi. Table 1 shows the polarity of 

the ion optics in the ion transport while Table 2 shows SIM parameters.   
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Each sample was further separated in the LC-MS, and different peaks were generated. 

These peaks corresponded to various components in the sample mixture. To obtain qualitative 

information regarding the sample composition, peak positions were compared with analytical 

standards as discussed in section 5.2.1. Quantitative information was obtained from peak areas, 

and the standard curves were used to determine the amount of the metabolites 

 

 

 

 

Table 1: Polarity of the ion optics in the ion transport  

 

 

 

 

 

 

 

 

Table 2: SIM parameters 

 

 

5.3 Hydrogen Peroxide Detection and Quantification  

 Hydrogen peroxide (H2O2) quantification was adopted from Zhou (et al., 2006). The 

principle of this technique is based on production of a stable red product upon the reaction of 

H2O2 with 4-aminoantipyrine and phenol in the presence of the enzyme peroxidase.  

Signal 

number 

Polarity 

1 Positive 

2 Negative 

3 Negative 

4 Positive 

Signal 

number  

Time 

(min) 

Group 

Name  

SIM Frag-

Ion 

Gain 

mentor 

Actual 

EMV 

1 0.00 Group 

1 

283.20 

284.20 

70 

70 

1.0 

---- 

97 

---- 

2 0.00 Group 

1 

235.20 

236.20 

70 

70 

1.0 

---- 

97 

---- 

3 0.00 Group 

1  

233.20 

234.20 

70 

70 

1.0 

---- 

97 

---- 

4 0.00 Group 

1 

266.2 

267.2 

70 

70 

1.0 

---- 

97 

---- 
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5.3.1 Sample Preparation  

The leaves of six different plants from each CH and YU strain were frozen in liquid 

nitrogen and ground in a mortar with pestle. Once thoroughly ground, 0.5g of plant tissue was 

added into 15 ml conical tubes. To each tube, 5 ml of 5% trichloroacetic acid (TCA) solution and 

0.25g of polyvinylpolypyrrolidone (PVPP) were added.  Each tube was vortexed prior to 

centrifugation at 8,000 rpm for 20 minutes at 4 ̊C.  

  The supernatants were decanted into a plastic test tubes and the pH was adjusted to 8.4 

using 2 M sodium hydroxide. Once the pH was adjusted, the solution was filtered using a 0.45 

µm syringe filter. From the filtrate, two equal amounts of 1 ml aliquot were taken and put into 

separate glass tubes. To one aliquot of the original filtrate, 1.6 µl of catalase was added. Both 

aliquots were then kept at room temperature for 10 minutes. One ml of colorimetric reagent, 

which consisted of 10 mg of 4-aminoantipyrine, 10 mg of phenol, and 5 mg of peroxidase, 

dissolved in 50 ml of 100 mM acetic acid buffer (pH 5.6), was added to both aliquots. The 

resultant mixture was incubated for 10 minutes in a water bath at 30 ̊C. The absorbance was 

determined spectrophotometrically at 505 nm.  

5.3.2 Constructing a Standard Curve 

Five different concentrations of H2O2 were prepared using 0.88 M H2O2 stock solution. 

At the beginning 0.88 M H2O2 was 10x diluted in 5% TCA. Once it was diluted, 6.8 µl was 

added to 2ml diH2O to reach a final concentration of 300 µM. A 2-fold serial dilution was 

performed achieving concentrations of 150 µM, 75 µM, 37.5 µM and 18.75 µM. One blank 

consisting of only 2ml of diH2O was prepared. To the blank solution, 1.6 µl of catalase was 

added and kept for 10 minutes. Then, 1 ml of the colorimetric reagent was added to the six tubes 
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including the blank and incubated in a water bath for 10 minutes at 30 ̊C. The absorbance of each 

sample was taken at 505 nm. Using these absorbences, a graph of absorbance at 505 nm versus 

H2O2 concentration for each H2O2 standard was generated (Figure 5). 

   

Figure 4: Standard curve of absorbance vs. hydrogen peroxide concentration.  

5.4 Effect of Polyvinylpolypyrrolidone on Measuring Hydrogen Peroxide 

 This experiment was conducted to judge the correct amount of polyvinylpolypyrrolidone 

(PVPP) that should be added to the plant tissue extracts discussed in section 5.3.1. PVPP was 

added to the plant samples to eliminate interfering compounds such as phenol and ascorbic acid. 

These compounds must be removed because they might cause failure to detect H2O2 in the 

measuring system. In this method, various amount of PVPP and different concentrations of H2O2 

stock solution (concentration 0.88 M) were used. Table 3 illustrates this experimental design. 
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Table 3: The relationship between various amounts of PVPP at different hydrogen peroxide 

concentrations 

 

5.5 Superoxide Detection Method 

 Superoxide detection was adopted from a method developed by Fryer et al., 2001. In this 

method, nitroblue tetrazolium (NBT) was the dye used to detect superoxide. This dye has a pale 

yellow color, but once it reacts with superoxide a dark insoluble formazan compound is 

produced. This technique is qualitative only. A. annua leaves were infiltrated with 6 mM of 

NBT.  Only one CH plant was used for this part of the experiment. A section of leaf on this plant 

was taken, and submerged inside a test tube filled with NBT solution. The tube was placed in a 

beaker covered with a larger beaker inside a bell jar that was connected to a vacuum pump. 

Figure 4 illustrates the vacuum infiltration set up. The air inside the beaker was drawn until 

bubbles formed on the leaf and stem surface. Once the solution started to bubble, the vacuum 

was released very rapidly. 

Group 

number 

Samples 

labeling 

Volume 

of 5% 

TCA 

(ml) 

Amount 

of PVPP 

(g) 

[H2O2] 

(µM) 

 

1 A 5 0.25 300 

B 5 0.25 150 

C 5 0.25 37.5 

2 A 5 0.5 300 

B 5 0.5 150 

C 5 0.5 37.5 

3 A 5 1.0 300 

B 5 1.0 150 

C 5 1.0 37.5 
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Chlorophyll pigment was removed by placing the leaf in a beaker of 100 % boiling 

ethanol. Once the leaf turned white with some dark blue spots, it was examined under the light 

microscope. This experiment was repeated for multiple leaves on this plant. 

 

Figure 5: Vacuum infiltration set up, viewed from the outside; detailed view from the inside 
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6. Results and Discussion  

6.1 Precursor level quantification  

To determine the possible causes of AN variation in the YU strains of A. annua, AN and 

its precursors were quantified using LC-MS. The four metabolites quantified were artemisinin, 

dihydroartemisinic acid, artemisinic acid, and arteannuin B. The quantification of the metabolite 

levels in the CH and YU strains of A. annua was based on the LC-MS peak area for each 

metabolite, and a standard curve was used for calculation. The detection and identification of the 

peaks were performed by comparison to known reference standards. AN, AA, and AB were 

quantified for 6 plants from each strain, CH and YU. Figure 6 shows the amount of AB in the 

CH (blue bar) and YU (red bar) strains. The amount of AB in the YU strain is 25X the amount of 

AB in the CH. Therefore, YU might follow, or emphasize, the AB pathway most of the time 

where it produces AB as its final product (Figure 3). Also, the variability of AN levels in the YU 

strain can be explained from the AN biosynthesis pathway. In this pathway, AB might not be 

always the final product, because it might go to form AN or artemisitene as shown in Figure 3.  

 

Figure 6: Comparison of the amount of arteannuin B in the CH and YU strains of A. annua 
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AN levels for the CH strain are 10X the amount of AN in the YU strain as shown in      

Figure 7. Therefore, the CH strain might follow the AN pathway most of the time. In this case, it 

might start from farnesyl diphosphate going directly through DHAA to AN. According to 

Wallaart et al. (1999), plants with a higher AN yield tend to have a higher DHAA yield. 

Unfortunately, we could not determine the relationship between DHAA and AN, since DHAA 

data were not available. Another possible explanation for the high AN production in the CH 

strain is that there might be a step that involves a highly efficient enzyme (the last hypothesized 

step in Figure 3 going from AB to AN directly), converting substantial amounts of AB to AN in 

the CH. On the other hand, in the YU strain, this enzyme is less efficient. Thus, a lot of AB 

accumulates instead of being converted to AN.  

 

Figure 7: Comparison of the amount of artemisinin in the CH and YU strains of A. annua 

 

Figure 8 shows that the amount of AA in the CH strain is 5X the amount of AA in the 

YU strain. This might be explained by the presence of reactive oxygen species (the 

quantification of these species is in the next section) up-regulating enzymes earlier in the 

biosynthetic pathway responsible for producing a lot of AA in the CH strain. AA is very high 
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relative to the other metabolites, including AN and AB, in both YU and CH strains. This is 

probably an indication that AA is the main precursor for both AN and AB in both strains. 

 

Figure 8: Comparison of the amount of artemisinic acid in the CH and YU strains of A. annua 

6.2 Superoxide Detection Method 

We hypothesized that the other possible cause of AN variation in YU strain was the 

presence of low concentrations of reactive oxygen species compared to the CH strain.  The two 

ROS looked at were hydrogen peroxide and superoxide. A simple colorimetric method was used 

to quantify H2O2 in both strains, and superoxide was detected using a dye. 

The dye nitroblue tetrazolium (NBT) has a pale yellow color, but once it reacts with 

superoxide, a dark insoluble formazan compound is produced. Figure 9 shows the staining area 

on one section of a CH leaf. The stained area corresponds to the presence of superoxide.  This 

methodology to detect superoxide was not helpful because it only gave qualitative information 

and not quantitative results as shown. Therefore, the focus was shifted to quantify hydrogen 

peroxide and relate the amount of hydrogen peroxide to the overall amount of reactive oxygen 

species in the system.  
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Figure 9: NBT staining on a CH A. annua leaves. The blue staining on the leaf corresponds to the 

areas where superoxide is present 

6.3 Effect of Polyvinylpolypyrrolidone on Measuring Hydrogen Peroxide 

The simple colorimetric method used to quantify hydrogen peroxide involves the use of 

charcoal to remove of all compounds that might interfere with H2O2 detection. However, some 

H2O2 was also removed; this is also shown in Zhou et al. (2006). Then we looked at other 

compounds that have the ability to remove the interfering compounds from the assay without 

affecting H2O2 levels. Lu et al. (2008) found polyvinylpolypyrrolidone (PVPP) is an alternative 

solution to charcoal.  

An experiment was performed to determine the correct amount of PVPP that should be 

added to the plant tissue extracts to eliminate interfering compounds, such as phenol and 

ascorbic acid. In this experiment, different amounts of PVPP were (0.25, 0.5 and 1 g) added to 

different concentrations of H2O2 stock solution (concentration 0.88 M). These concentrations 

were 300, 150, 75 µM.  

Comparing the results generated using 0.25g and 0.5g PVPP, it can be seen that PVPP 

increases absorbance for group 2 samples, which contain 0.5g of PVPP, although the same H2O2 



32 

 

concentrations were used in groups 1 and 2; thus, the expected outcome was that the same H2O2 

signal would be generated. From Figure 10, it is clear that the outcome from each group (1 and 

2) was different.  This implies that the amount of PVPP affects the signal H2O2. Since increasing 

the amount of PVPP affects the experimental results, only 0.25g of PVPP will be used to prevent 

this problem from happening while performing hydrogen peroxide quantification.  Figure 10 also 

shows that 0.25g is preferable because there is a linear relationship between H2O2 absorbance 

and the presence of 0.25 PVPP; the square of the correlation coefficient is higher than that of 

group 2. The relationship between H2O2 absorbance and 0.5g PVPP is not linear and the 

correlation coefficient is lower. Group 3, which represents 1g of PVPP that was added to H2O2 

samples, was ignored because the solution was too saturated; hence no liquid was generated for 

analysis. In conclusion, among the three groups, Group 1 was the optimal one.  

 

Figure 10: Effect of different amount of PVPP on measuring hydrogen peroxide 

Key:  0.25 g PVPP group   0.50 g PVPP group 

6.4 Hydrogen peroxide quantification   

Hydrogen peroxide was quanified using a simple colorimetric method. The method is 

based on hydrogen peroxide producing a stable red product upon the reaction with 4-

aminoantipyrine and phenol in the presence of the enzyme peroxidase. The concentration of the 

product was determined spectrophotometrically at 505 nm and related to hydrogen peroxide. As 
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seen in Figure 11, the amount of hydrogen peroxide was not statistically different in the two 

strains.  

 

Figure 11: Comparison of the amount of hydrogen peroxide in the CH and YU strains of A. annua 

To determine if there is a relationship between the amount of hydrogen peroxide and the 

amount of artemisinic acid in the YU strain, we tested several individual plants. 5 YU plants 

were harvested after four weeks; Tissue from each of five different plants was split into two 

samples. One was used to measure H2O2 levels as above; the other half was used to quantify 

metabolites via LC-MS. From Figure 12, it can be seen that there is a direct correlation between 

the amount of ROS (hydrogen peroxide) and the amount of artemsinic acid in 5 individual plants 

of YU strain. At higher amounts of H2O2, there is more AA. For example, from Figure 12, when 

the amount of hydrogen peroxide went from 0.29 to 0.35 µmoles/ g F.W., the amount of AA 

went from 3503.4 to 4550.8 µg/ g F.W. Thus, a linear relationship can be obtained with a square 

of the correlation coefficient at 0.6521. As explained before, this might happen because ROS up-

regulate some enzymes responsible for the high production of AA. This data was not conclusive 

because of the small sample numbers. 



34 

 

 

Figure 12: Correlation of hydrogen peroxide amount and artemisinic acid level in 5 plants of YU strain of 

A. annua 
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7. Conclusions and Future Work  

There is an inverse relationship between AN and AB levels in both strains. When AB is 

low, AN is high and when AB is high, AN is low, which occurred in the CH and YU strains, 

respectively. Hence, it appears that YU follows the AB pathway and CH follows the AN 

pathway. ROS might be up-regulating some enzymes that may be responsible for high 

production of artemisinic acid in CH strain of A. annua. The levels of hydrogen peroxide in both 

strains (CH and YU) are the same and might have no affect on the variability of AN in the YU 

strains of A. annua, but there could be variations in the other ROS that could be influencing AN 

production in both strains. 

Future work should include measuring the levels of DHAA to provide further information 

about the differences in AN production in YU and CH strains. The ROS data suggests that we 

should quantify reactive oxygen species other than H2O2, such as singlet oxygen, superoxide 

anion to further conclude if there are differences in ROS in the two strains.  Also, future work 

will focus on the role of redox state in the regulation of AN biosynthesis. Since there is a balance 

between oxidants and antioxidants in the system, there might be no change in the overall 

oxidative stress. Therefore, amounts of oxidants and antioxidants must be measured and checked 

for their effects on AN production. If oxidants increase AN production then we need to inhibit 

antioxidants from functioning to increase AN production.  
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