MIT LL Group 105 MQP Final Presentation

Design of a Ku-Band Instrumentation Synthetic Aperture Radar System

David Kelly

WPI-MIT Lincoln Laboratory

10/14/2015

LINCOLN LABORATORY MASSACHUSETTS INSTITUTE OF TECHNOLOGY

This work is sponsored by the Department of the Air Force under Air Force Contract #FA8721-05-C-0002. Opinions, interpretations, recommendations and conclusions are those of the authors and are not necessarily endorsed by the United States Government. Approved for public release

Project Description

- Design \bullet
- Lab Test Results
- Field Test Results
- Conclusion

MIT Lincoln Laboratory has developed a small form factor Ku-band Synthetic Aperture Radar (SAR) intended for deployment on a Tier-1 UAV

Example SAR Image https://engineering.purdue.edu/~ace/sar/libcong.jpg

Pro: Small form factor great for field use on UAVs

Con: Performance sacrificed for a small form factor, not good as an instrumentation radar

Goal: Design a chassis based radar system that is not limited by size, weight, or power

	LL LITE SAR	MQP radar	
Operating Frequency	16 to 17 GHz	16 to 17 GHz	
Usable Instantaneous Bandwidth	500 MHz	1 GHz	
SAR Resolution	12"	6"	
point-scatter side lobes	-20 dB	-30 dB	
Recording Mechanism	Compact Flash	1 GbE Streaming	
Real-time Display	No Yes		
Nominal Range	700 feet 700 feet		
Range Swath	200 feet 200 feet		
NEσ0 (SAR Sensitivity)	-40 dB	-40 dB	

*The relationship of basic radar parameters to performance can be obtained in open literature and textbooks such as: Introduction to Radar Systems (Skolnik 1981)

- Project Description
- Design

- Lab Test Results
- Field Test Results
- Conclusion

Frequency Modulated Continuous Wave (FMCW) Radar

KuSAR Final Presentation- 6 DAK 10/14/15

Basic System Model

LINCOLN LABORATORY MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Final Product

- Project Description
- Design
- Lab Test Results

- Field Test Results
- Conclusion

- Measured the signal out of the Power Amplifier with a 60 Gsps Oscilloscope
- Frequency range of the signal was 16-17 GHz
- Signal was attenuated with a high power attenuator
- Waveform was saved with the Oscilloscope and analyzed in Matlab

Spectrogram

- Useable Bandwidth of the Signal Measured to be 1.0923 GHz
- Noise cause by DAC spurs that can be removed with future work

- Project Description
- Design
- Lab Test Results
- Field Test Results

Conclusion

LINCOLN LABORATORY MASSACHUSETTS INSTITUTE OF TECHNOLOGY

KuSAR Final Presentation- 15 DAK 10/14/15

Intermodulation signals caused by frayed cables and a bad variable gain amplifier.

Retest with New Amplifier and Cables

control used

Range Sidelobe values of about -35*dB*, 10*dB* lower than measured in the lab

KuSAR Final Presentation-18 DAK 10/14/15

Semi Truck Car

- Project Description
- Design
- Lab Test Results
- Field Test Results
- Conclusion

	LL LITE SAR	MQP radar	How the Parameter was Measured
Operating Frequency	16 to 17 GHz	16 to 17 GHz	Lab Oscilloscope
Usable Instantaneous Bandwidth	500 MHz	1 GHz	Lab Oscilloscope
SAR Resolution	12"	5"	Calculated
point-scatter side lobes	-20 dB	-35 dB	Field Data
Recording Mechanism	Compact Flash	1 GbE Streaming	n/a
Real-time Display	No	Possible	n/a
Nominal Range	700 feet	700 feet	Field Data
Range Swath	200 feet	200 feet	Field Data
NEo0 (SAR Sensitivity)	-40 dB	-40 dB	Calculated

*Values are approximated

- Remove DAC spurs with post processing or equalization
- Add isolators and check mixer power levels to remove unwanted signals
- Test with a more powerful laptop for more real time data
- Adapt the design for a Ka-band instrumentation radar system
- Test SAR capabilities of radar

Project Supervisor

Andy Messier – Group 105

Initial Learning and Setup

- Jeffery Blanco Group 105
- Tasadduq Hussain Group 105

Hardware Debugging

- Ricky Hardy - Group 105

Field Testing

- Will Bartlett Group 107
- Dennis Blejer Group 105

Matlab Analysis

Gerald Benitz – Group 105

Supplemental Slides

Bandwidth Issues of the Old Radar System

Old radar used two analog waveform generators

One would start an LMF chirp when the other finished it's chirp

When the two signals overlapped, the filters in the radar could not remove the resulting peaks

Only about half of the bandwidth could be used

Time Delay:
$$2 * \frac{d}{c} = 2 * \frac{(707)*.3048 m}{3*10^8 m/s} = 1.437 us$$

Pulse Slope: $\frac{f}{t_{delay}} = \frac{0.014 GHz}{1.437 us} = 9.74 MHz \ per \ us$
Pulse Width: $\frac{\Delta f}{m_{pulse}} = \frac{17.3 GHz - 16.2 GHz}{9.74 MHz \ per \ us} = 112.82 us$
SAR Resolution: $\frac{c}{2B} = \frac{3e8}{2(1.0923e9)} = 0.137m = 0.450 ft$