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Abstract

We consider a new way of looking at quantum mechanical scattering, motivated by

the need for a framework that would allow calculations within complex waveguide

geometries and for small scale systems. The two dimensional scattering problem is

considered as a variational problem. This allows the use of the finite element method,

which discretizes the region of interest so that numerical results may be obtained. We

introduce stealth finite elements at the ends of a waveguide which serve to attenuate

the wave. We demonstrate the numerical power of this framework by considering

complicated scattering centers within wavefunctions. A modal analysis is performed

on the resulting scattered waves.
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1 Introduction

In quantum mechanics, the wave nature of particles gives rise to a number of phenomena

that are unseen in the realm of classical physics. Among these are the tunneling of parti-

cles through energy barriers and the scattering of particles off of potentials. Both of these

phenomena have many applications, including the tunneling diode, the scanning tunneling

microscope, and semiconductor heterostructures. In quantum mechanical scattering theory,

waves come in from infinity and scatter off of a potential barrier. The resultant waves are

detected at infinity. However, in nanoscale systems, these limits are not achieved. Fur-

thermore, the solution to complicated scattering geometries cannot be easily found using

the First Born Approximation and other familiar techniques from scattering theory. This

motivates the need for a new method of looking at scattering problems.

We develop the problem of two-dimensional (2D) quantum mechanical scattering with

the principle of stationary action. In this way, we are able to solve for the amplitude of the

scattered wave. The mixed (Cauchy) boundary conditions that arise during this are difficult

to implement computationally. To avoid this difficulty, we introduce perfectly matched layers

(PMLs) outside of the scattering region. These layers act as absorbing or “stealth” regions,

effectively attenuating the wave to zero. This allows us to reduce the Cauchy boundary

conditions to Dirichlet boundary conditions. The concept of the perfectly matched layer

is based on complex-coordinate stretching, in which a real function is continued onto the

complex plane[1]. PMLs have been used in areas including electromagnetic scattering, heat

transfer, and elastic waves[2, 3, 4] to great effect. They were first applied to quantum scattering

theory by Ram-Mohan[5], where they were called stealth elements.

For our calculations, we utilize the finite element method. Only recently has this powerful

technique been applied to problems in quantum mechanics[5]. This numerical method allows

us to discretize the action within the region of interest. The use of interpolation polynomials

for the wavefunction at nodal points on these elements generates the solution. In particular,

the use of C1-continuous interpolation polynomials gives increased numerical accuracy.
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In Sec. 2, we develop the theory necessary to perform our calculations. We start by

casting the scattering problem in a variational form and deriving the Cauchy boundary

conditions. We then introduce stealth regions into our theory and determine the condition

for no reflection from the interfaces between the scattering and stealth regions. In Sec. 3,

results for scattering from a variety of scattering centers in a 2D waveguide are presented.

Directions for future work are outlined and concluding remarks are given in Sec. 4.
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2 Scattering in Two Dimensions

2.1 The Source Term

For our calculations, we want to generate plane waves of the form

G(x, y) = Aeikx|x−x0|φ(y). (2.1)

Here, the term φ(y) represents a superposition of bound states for a particle in an infinite

well. In order to create these waves, we place a line source at x0. We must add a source

term to Schrödinger’s equation so that it becomes

Sδ(x− x0) = ∇2ψ(x, y)− k20ψ(x, y), (2.2)

where we have defined k20 = 2Em/~2. We are able to separate Schrödinger’s equation in 2D

quite easily. We know that the contribution to the energy eigenvalues in the y-direction will

be k2y = ~2π2n2/2mL2, since the waveguide acts as an infinite well in the y-direction. We

can therefore expand the Eq. 2.2 into

Sδ(x− x0) =

(
∂2

∂x2
+ k2y + k20

)
ψ(x, y). (2.3)

We plug in G(x, y) for ψ(x, y) and integrate from x0 − ε to x0 + ε. In the limit that ε goes

to 0, we find that

S = 2Aikxφ(y), (2.4)

where k2x = k20 − k2y. We now have the coefficient of the source term that will generate the

plane waves we desire.
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2.2 Absorbing Boundary Conditions

Consider the planar interface between the scattering region and the stealth region. We want

to find the condition such that there is no reflection of the wave from this interface. Denote

the scattering region by I and the stealth region as II. This will give rise to wavefunctions

ψI(x, y) = Aei(kIxx+kIyy) +Re−i(kIxx+kIyy) (2.5)

in the scattering region and

ψII(x, y) = Tei(kIIxx+kIIyy) (2.6)

in the stealth region. We introduce parameters a, b, and c, such that aI = bI = cI = 1. The

dispersion relation in region II gives us

1

aII
k2IIx + bIIk

2
IIy = cIIk

2
II . (2.7)

Our requirement that the wavefunctions be continuous across the boundary gives us the

condition that

(A+R)eikIyy = TeikIyy, (2.8)

which reduces to kIy = kIIy. Furthermore, from the condition that the derivative is contin-

uous across the boundary, we find

ikIx(A−R) =
ikIIx
aII

T. (2.9)

This allows us to eliminate the transmitted wave and obtain the ratio of the reflected am-

plitude to the incident amplitude as

R

A
=
kIx − kIIx/aII
kIx + kIIx/aII

. (2.10)
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It’s easy to see that the condition for no reflection is for aIIkIx = kIIx. To enforce this, we

set bII = cII = aII and let aII = 1 + iα, where α is the stealth parameter. The transmitted

wave becomes

ψ(x, y) = TeikIxx(i−α)eikIyy. (2.11)

The stealth parameter α acts to attenuate the wave within the stealth region. A sufficient

choice of α will ensure that the wave dies off quickly and in a continuous manner. Choosing

a discontinuous function for α could cause reflections.
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3 Results and Discussion

In what follows, plane waves are incident upon scattering centers in a waveguide. Electrons

are chosen as the particle, and we set m∗ = 0.067m0, which coincides with the mass ratio

of an electron in a conduction band of a GaAs medium. The waveguides have a height of

300 Å.

3.1 Three Rows of Circular Scatterers

Figure 3.1: The mesh used for the FEM calculation of three rows of circular
scattering centers. Scattering regions are shown in red, while stealth regions are
displayed as green and propagation regions are displayed as blue.

The mesh presented in Fig. 3.1 consists of three rows of circular scatterers. Each scatterer has

an energy of 300 meV. It is challenging to find an analytical solution for this geometry using

the traditional methods of perturbation theory and the First Born Approximation. With

the finite element method, we are able to obtain a solution for this system. Plane waves with

modes up to n = 4 were incident on the array of scatterers. Due to the symmetry within

the waveguide, it can be seen that only odd modes contribute to the total wave when n is

odd, and similarly for the case when n is even.
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Figure 3.2: The plot of the transmission coefficient versus the incident energy
for three rows of circular scatterers. An incident plane wave in the mode n = 1 is
shown. Only odd modes contribute to the total wave due to symmetry within the
waveguide.
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Figure 3.3: The plot of the transmission coefficient versus the incident energy
for three rows of circular scatterers. An incident plane wave in the mode n = 2 is
shown. Only even modes contribute to the total wave due to symmetry within the
waveguide.

Tyler Reynolds 8 Project PH-LRR-4014



Figure 3.4: The plot of the transmission coefficient versus the incident energy
for three rows of circular scatterers. An incident plane wave in the mode n = 3 is
shown. Only odd modes contribute to the total wave due to symmetry within the
waveguide.
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Figure 3.5: The plot of the transmission coefficient versus the incident energy
for three rows of circular scatterers. An incident plane wave in the mode n = 4 is
shown. Only even modes contribute to the total wave due to symmetry within the
waveguide.
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3.2 Randomly Placed Circular Scatterers

Figure 3.6: The mesh used for the FEM calculation of randomly placed circular
scatterers. Scattering regions are shown in red, while stealth regions are displayed
as green and propagation regions are displayed as blue.

We now consider randomly placed circles in a waveguide, as shown in Fig. 3.6. The circles

all have equal radii of 10 Åand each has an energy of 300 meV. The circles were arranged

in a manner such that no circle was within a distance of two radii of another circle. Planes

waves were incident upon the scatterers with modes up to n = 4. It can be seen in the

transmission versus incident energy plots that all modes contribute to the total wave in this

case, due to the loss of symmetry from the randomized positions of the circles.
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Figure 3.7: The plot of the transmission coefficient versus the incident energy for
randomly placed circular scatterers. An incident plane wave in the mode n = 1 is
shown. The odd modes are shown.
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Figure 3.8: The plot of the transmission coefficient versus the incident energy for
randomly placed circular scatterers. An incident plane wave in the mode n = 1 is
shown. The even modes are shown.
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Figure 3.9: The plot of the transmission coefficient versus the incident energy for
randomly placed circular scatterers. An incident plane wave in the mode n = 2 is
shown. The even modes are shown.

Tyler Reynolds 14 Project PH-LRR-4014



Figure 3.10: The plot of the transmission coefficient versus the incident energy for
randomly placed circular scatterers. An incident plane wave in the mode n = 2 is
shown. The odd modes are shown.
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Figure 3.11: The plot of the transmission coefficient versus the incident energy for
randomly placed circular scatterers. An incident plane wave in the mode n = 3 is
shown. The odd modes are shown.
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Figure 3.12: The plot of the transmission coefficient versus the incident energy for
randomly placed circular scatterers. An incident plane wave in the mode n = 3 is
shown. The even modes are shown.
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Figure 3.13: The plot of the transmission coefficient versus the incident energy for
randomly placed circular scatterers. An incident plane wave in the mode n = 4 is
shown. The even modes are shown.
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Figure 3.14: The plot of the transmission coefficient versus the incident energy for
randomly placed circular scatterers. An incident plane wave in the mode n = 4 is
shown. The odd modes are shown.
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4 Summary and Future Work

4.1 Summary

The treatment of quantum mechanical scattering given here is important for the modeling

of systems with complicated geometries or small scales. Usually in scattering theory, waves

come in from infinity and are scattered out to infinity. On smaller scales, however, this limit

is never attained. With complicated geometries, the energy is not easily separable and it is

difficult, or sometimes impossible, to obtain an analytical solution. Using the finite element

method helps to model these systems and provide accurate results.

In this paper, we started by recasting the problem of quantum mechanical scattering

in a variational form. This allowed us to work within the framework of the finite element

method.We also used a source term to control the incident wave introduced into the system.

The introduction of stealth elements around the scattering region allowed us to reduce the

Cauchy boundary conditions we obtained to simpler Dirichlet boundary conditions. These

layers introduced a stealth parameter α, which attenuated the wave once it had crossed

into the stealth region. For our finite element calculations, we worked with C1-continuous

interpolation polynomials, giving a higher degree of accuracy in the results. We calculated

the transmission coefficient versus the incident energy for several scattering geometries within

a waveguide.

4.2 Future Work

Scattering in the open domain in 2D remains to be pursued. The entire scattering regions will

be surrounded by stealth regions so as to attenuate the wave in all directions. The outgoing

waves will be given by Hankel functions of the first kind. It may be beneficial to surround

the region with a circular stealth region, so that the stealth parameter depends on the radial

distance instead of linear distance. This would help avoid any possible complications that

would arise from sharp corners.
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Furthermore, scattering in 3D remains to be explored. In the 3D case, tetrahedral el-

ements will be used. There will be a substantial increase in the matrix sizes in the finite

element calculations, necessitating more computing power. It will be very important for the

codes that handle the 3D case to use parallelization and be highly optimized.
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