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Abstract

Automated fact extraction and verification is a challenging task that involves find-

ing relevant evidence sentences from a reliable corpus to verify the truthfulness of a

claim. Existing models either (i) concatenate all the evidence sentences, leading to

the inclusion of unnecessary sentences containing redundant, distracting, noisy or

irrelevant information; or (ii) process each claim-evidence sentence pair separately

and aggregate all of them later, missing the early combination of related sentences

for more accurate claim verification. Unlike the prior works, in this thesis, we pro-

pose Hierarchical Evidence Set Modeling (HESM), a framework to extract evidence

sets (each of which may contain multiple evidence sentences) and verify a claim to

be SUPPORTED, REFUTED, or NOT ENOUGH INFO, by encoding and attend-

ing the claim-evidence set pairs at different levels of hierarchy. Each evidence set

combines only the related sentences while limiting unnecessary sentences. Thus, our

HESM framework overcomes the limitations of existing models that concatenates

evidence sentences or aggregates individual claim-evidence sentence pairs. HESM

consists of document retriever, multi-hop evidence retriever, and claim verification

components. In the framework, we extract multiple evidence sets, and process and

evaluate a claim based on each evidence set. Then, we aggregate all the evidence sets

using word-level and evidence set-level attention for final verification of the claim.

Our experimental results show that HESM outperforms 7 state-of-the-art methods

for fact extraction and claim verification.
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Chapter 1

Introduction

The large amount of user-generated content being produced and consumed on the

web has facilitated the growth and spread of false and inaccurate information. With

the web being the go-to place for every query, this diffusion of false information poses

a serious threat to its audience. Unfortunately, the rise of social media has further

accelerated the communication and propagation of unverified information. A study

has revealed that 60% people on social media share news articles after reading just

the title, skipping to read the content of the news [1]. False information spreads

faster, deeper and broader than the truth in twitter, a micro-blogging social network

service [2]. Moreover, even though the majority of people mistrust information in

social media, they continue to share the information [3]. The presence of enormous

volume of information and the alarming rate at which false information spreads,

renders manual verification impossible and makes automation of fact verification

inevitable. Towards this end, our work focuses on automated fact extraction and

verification task, which requires automatically retrieving evidences related to a claim

from a large corpus, and then verifying the claim based on the evidences retrieved.

The complete evidence to support or refute a claim might be present in a single
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Claim: Janelle Monáe is signed to Warner Music Group.

Evidence set:

[wiki/Janelle Monáe]
Janelle Monáe Robinson (born December 1, 1985) is an American
singer, songwriter, actress, and model signed to her own imprint,
Wondaland Arts Society, and Atlantic Records.

[wiki/Atlantic Records]
In 1967, Atlantic Records became a wholly owned subsidiary of
Warner Bros.-Seven Arts, now the Warner Music Group, and
expanded into rock and pop music with releases by bands such as
Led Zeppelin and Yes.

Verdict: Supported

Figure 1.1: An example of claim, evidence and verdict.

sentence or across multiple sentences. These sentences, in turn, might be present

in a single or multiple document(s). In Figure 1.1, we show an example of a claim,

evidence and its verdict. For the claim ”Janelle Monáe is signed to Warner Music

Group”, the system has to retrieve the relevant evidence sentences from two docu-

ments namely Janelle Monáe and Atlantic Records. Then, the system has to arrive

at a verdict as Supported, based on the context of both the sentences. Specifically,

the system has to understand that Janelle Monáe is signed to Atlantic Records (from

the first sentence), which in turn is a subsidiary of the Warner Music Group (from

the second sentence) and infer that Janelle Monáe is in fact signed to Warner Music

Group. In this work, we refer to the set of sentences that can verify the truthfulness

of a claim as an evidence set. In general, it is possible to find multiple evidence sets

for a claim in the corpus, where each evidence set can either support or refute a

claim.

2



1.1 Motivation and Challenges

Automated fact extraction and verification is important in different contexts of

information including journalism [4], community forums [5], information extraction

or question answering systems [6] such as search engines1 and personal assistants2,

scientific publications [7], crowd-sourced information, product reviews and several

others. Fact verification in journalism, also known as Fake News Detection [8], has

gained the most attention after the potential influence of fake news in the 2016 US

presidential election [9]. Many works have been published for automating fake news

detection [10, 11, 12, 13]. Fake news detection is a complicated task by itself which

includes finding fact-check worthy claims, assessing the credibility of the news source,

finding evidences and verifying the claims. The difficulty in automation of fake news

detection is much more complicated due to the lack of large scale fact-checked fake

news, fine grained annotations for evidences and reliable factual source at a single

place. The fact verification task studied in this thesis is comparatively simpler

where the evidence knowledge base is a single reliable source such as Wikipedia or

Freebase, and the claims can be verified by a small number of evidence sentences.

Nevertheless, this work can be an efficient step towards fully automated fake news

detection. Also, the learned models are transferable to fact verification in different

contexts of information, using transfer learning strategies.

The task is challenging since it requires semantic understanding and reasoning

to learn the subtleties that differ between evidences that support and evidences

that refute a claim. The difficulty of the task is further amplified for claims that

do not have complete evidence that can verify their truthfulness (i.e. claims with

NOT ENOUGH INFO label) and for claims that require aggregating information

1https://www.blog.google/outreach-initiatives/google-news-initiative/

how-we-highlight-fact-checks-search-and-google-news/?
2https://reporterslab.org/fact-checking-comes-amazon-echo/
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Figure 1.2: Types of evidence combinations.

from multiple evidence sentences in different documents. Previous works in fact

verification use different strategies for combining the evidence sentences retrieved

for a claim. They either operate by concatenating all the evidence sentences together

[14] or they operate at each evidence sentence level and aggregate them later [15, 16].

In Figure 1.2, we show the different strategies previously used along with proposed

strategy. We will discuss these strategies, their issues and how our proposed strategy

overcomes these challenges, briefly below.

1.1.1 Concatenation

Figure 1.2 (a) shows the concatenation of the evidence sentences retrieved. The ev-

idence sentences e1 to e4 are concatenated to form a single evidence set e[1;2;3;4]

and a claim c is verified using the evidence set to produce a verdict v (SUP-

PORTS/REFUTES/NOT ENOUGH INFO). Concatenating all the sentences to-

gether may lead to redundant, noisy, distracting and irrelevant information being

combined with the relevant information. In Table 1.1 we show these different kinds

of information present in evidence sentences.
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Redundant information. In the claim (1), ”Kuching is in the state of Johor”,

the relevant evidence sentence (1) has information that states ”Kuching is the capital

of Sarawak state”, while the redundant evidence sentence (2) also has the same

information ”Kuching is the situated in the state of Sarawak”. Note that, the vice-

versa, when sentence (2) is considered relevant, the sentence (1) becomes redundant.

While concatenating these sentences to predict a single verification label for the

claim might not affect the verification accuracy, predicting a verification label for the

claim based on each sentence separately can boost the confidence of the verification

since each sentence can correctly verify the claim individually.

Noise information. In the claim (2), ”Tenacious D was released before 2006”,

the relevant evidence sentence (1) has information that states ”Tenacious D released

in 2001”, while the noisy evidence sentence (2) has the information ”Tenacious D

was certified platinum in 2005”. We term it as noisy evidence sentence since it

can contain confounding information which can make claim verification complicated

even though it does not have redundant or irrelevant information. Note that the

evidence sentence (2) can still verify the claim individually. Similar to redundant

information, while concatenating relevant with noisy sentences might not affect the

verification accuracy, predicting a verification label for the claim based on each

sentence separately can boost the confidence of the verification.

Distracting information. In the claim (3), ”Gal Gadot was ranked behind Esti

Ginzburgh”, the relevant evidence sentence (1) has information that states ”Gal

Gadot was ranked ahead of Esti Ginzburg”, while the distracting evidence sentence

(2) has the information ”Gal Gadot was ranked behind Bar Refaeli”. It is distracting

since it can confuse the model in understanding who is ahead and who is behind in

the rankings. Note that the distracting sentence does not contradict the information

5



Claim
Evidence
type

Evidence sentence

(1) Kuching is
in the state of
Johor

Relevant
(1) Kuching, officially the City of Kuch-
ing, is the capital of Sarawak state in
Malaysia

Redundant
(2) Kuching city is situated on the
Sarawak River at the southwest tip of the
state of Sarawak

(2) Tenacious D
was released before
2006

Relevant
(1) Tenacious D album released on
September 25, 2001

Noise
(2) Tenacious D album was certified plat-
inum by the Recording Industry Associa-
tion of America by the end of 2005

(3) Gal Gadot was
ranked behind Esti
Ginzburgh for
highest earning
actress/models in
Israel

Relevant
(1) Gal Gadot was ranked ahead of Esti
Ginzburg and Shlomit Malka, in highest
earning actress/models in Israel

Distracting
(2) Gal Gadot was ranked as the second
highest earning actress/models in Israel,
behind Bar Refaeli

Irrelevant
(3) According to Forbes Israel, she was
among the top ten highest paid models in
Israel

Table 1.1: Different kinds of information found in evidence sentences.

in relevant evidence sentence. Concatenating these evidence sentences, makes claim

verification more complicated in terms of identifying and learning the context of only

the relevant sentences. This was observed in the work [17], which shows that the

state-of-the-art models in a similar semantic understand task (question answering)

are not robust and the performance of the models drop significantly when distracting

sentences are added. While making the model more robust despite the presence of

distracting sentences is the expected approach, it is much more challenging and is

a study of its own. Therefore, in this work, we only focus on omitting distracting

sentences from combining with relevant sentences as much as possible and leave

6



Claim
Evidence
type

Evidence sentence

(1) Wentworth
is an Australian
television series

Relevant
(1) Wentworth was first broadcast on
SoHo on 1 May 2013

Relevant
(2) SoHo was an Australian cable and
satellite channel

Table 1.2: Claim requiring composition of multiple evidence sentences.

improving the robustness of the model as a future work.

Irrelevant information. Finally, in the claim (3), ”Gal Gadot was ranked behind

Esti Ginzburgh”, the irrelevant evidence sentence (3) has information that states

”Gal Gadot was among top ten highest paid models”. This sentence does not contain

any information that can support or refute the claim and thus it is irrelevant to the

claim. Similar to distracting information, this can make claim verification more

complicated in terms of identifying and learning the context of only the relevant

sentences.

1.1.2 Evidence sentence level processing

Figure 1.2 (b) shows the processing of each claim-evidence sentence pair separately.

The claim c is verified based on each evidence sentence e1 to e4 individually and

then produces a final verdict v (SUPPORTS/REFUTES/NOT ENOUGH INFO)

by aggregating the verdicts from all the evidence sentences. In Table 1.2, we show

an example of a claim requiring composition of multiple evidence sentences. In

the claim (1), ”Wentworth is an Australian television series”, the relevant evidence

sentence (1) has information that states ”Wentworth was first broadcast on SoHo”,

while the relevant evidence sentence (2) has the information ”SoHo was an Aus-

tralian cable and satellite channel”. Here, neither of the sentences can verify the

7



Claim
Wentworth is an Australian television series.

Wentworth [TV series]
A sixth season was commissioned

by Foxtel on 9 May 2017.

Foxtel 
Foxtel is an Australian pay

television company.

Wentworth [TV series]
It was first broadcast on SoHo on

1 May 2013.

Verdict
Supports / Refutes / Not

Enough Info

Verdict
Supports / Refutes / Not

Enough Info

SoHo [TV channel]
SoHo was an Australian cable

and satellite channel.

Evidence set [1] Evidence set [2]

Final Verdict
Supports / Refutes / Not

Enough Info

Figure 1.3: Ideal verification system. The arrows represent the hierarchy of the fact
extraction and verification process.

claim individually, but can verify the claim when they are combined. Therefore, the

system has to arrive at a verdict based on the context of both the sentences. Specif-

ically, the system has to understand that ”Wentworth was broadcast on SoHo which

is an Australian channel”. While individually processing each evidence sentence

overcomes many of the issues in concatenation strategy, it delays the combination

of these relevant sentences which belong to the same evidence set. This makes claim

verification harder since it summarizes information without complete context and

then aggregates the summarized information of all the sentences.

1.1.3 Proposed evidence set level processing

Figure 1.3 depicts an example of an ideal verification system, which extracts evi-

dence sets, processes them individually, and then aggregates them later. For better

understanding of the comparison between the proposed strategy and the previous

strategies, we also show a corresponding minimal version of the Figure 1.3 in Figure

1.2 (c). In the example, four evidence sentences are retrieved. Sentences which

are relevant and hyperlinked, are combined to form evidence sets (called Evidence

Set [1] and Evidence Set [2] in the figure). Each evidence set verifies the claim

individually, and then they are aggregated for the final verification. This strategy

8



of combining evidence sentences into evidence sets can potentially get the best of

both previous strategies (concatenation and evidence sentence level processing). We

achieve this by combining only the sentences that belong to the same evidence set,

which is identified by hyperlinks between the sentences. Then, we formulate two

different aggregation strategies for combining multiple evidence sets to form a final

verification label, which we explain in detail in the following sections. These two

different aggregation strategies account for improved performance of our model by

their division of labour in obtaining best of both the concatenation and evidence sen-

tence level processing strategies. We also follow a training procedure that naturally

allows for a division of labour between the two aggregation strategies, in verifying

claims with NOT ENOUGH INFO label and SUPPORTS/REFUTES label.

1.2 Contribution

Like Figure 1.3, our proposed framework also retrieves and combines evidence sen-

tences into evidence sets. Then, it processes each evidence set individually to form

a representation of the evidence set using word-level attention. Then, it combines

information from all the evidence set representations using contextual and non-

contextual aggregation methods, which use evidence set-level attention. The word-

level attention along with evidence set-level attention forms a hierarchical attention

mechanism. Finally, our framework learns to verify the claim at different levels of

hierarchy (i.e., at each evidence set-level and at the aggregated evidence level).

Our main contributions are as follows:

1. We propose Hierarchical Evidence Set Modeling which consists of document

retriever, multi-hop evidence retriever and claim verification.

2. Our multi-hop evidence retriever retrieves evidence sentences and combines

9



them as evidence sets. Our claim verification component conducts the hierar-

chical verification based on each evidence set individually and then based on

all the evidence sets combined.

3. Our analysis of the contextual and non-contextual aggregation methods shows

that, each method has a different role in claim verification in terms of the

verification labels and number of evidence sentences required for verification.

4. Our experimental results show that our model outperforms 7 state-of-the-art

baselines in both evidence retrieval and claim verification.

1.3 Problem Definition

Given a set of m textual documents and a claim ci, the problem is to find a set of ev-

idence sentences Êi = {s1, s2, ..., s|Êi|} and classify the claim ci as ŷi ∈ {S,R,NEI}

(i.e., SUPPORTED, REFUTED or NOT ENOUGH INFO). For a successful veri-

fication of the claim ci, there are two conditions: (1) Êi should match at least one

evidence set Ei in the list of ground truth evidence sets and (2) ŷi should match the

ground truth entailment label yi.

10



1.4 Remainder of the Document

The rest of the sections are structured as follows. Background and related work is

provided in the section 2. Methodology is provided in chapter 3, where we discuss

our strategy for Document retrieval in section 3.2, Multi-hop evidence retrieval in

section 3.3 and Claim verification in section 3.4. We provide the experiment setting

and results in chapter 4 where we discuss the dataset used, implementation and

training process and results of the experiments and analysis. In chapter 5, we

describe our future work and conclude in chapter 6. Lastly, we provide additional

information of our implementation, code and other resources relevant to this work

in the appendix.

11



Chapter 2

Background

In this chapter, we review the tasks similar to fact verification. Then, we briefly

discuss the previous works in fact verification.

2.1 Similar Tasks

Several works in fact verification exist based on different forms of claim and evidence.

Numerical claims are verified using subject-predicate-object triples from knowledge

graph as evidence in [18, 19]. Claims in subject-predicate-object triple format are

verified in [20, 21]. Textual claims are verified using evidences in a tabular format

in [22]. In this work, we focus on fact verification using FEVER dataset [23], which

consists of textual claims and evidences and requires both retrieval of correct evi-

dences and claim verification based on the retrieved evidences. A thorough survey

of the existing datasets and task formulations for fact checking and verification is

provided in [24].

Fact verification has been studied in different natural language settings namely

Recognizing Textual Entailment or Natural Language Inference [25, 26] and Stance

Detection [27]. A differently motivated but closely related problem is fact checking

12



in journalism also known as fake news detection [11]. Question answering [28, 29] is

another task that requires similar semantic understanding of natural language. All

the tasks are related to each other in terms of understanding and reasoning about

natural language and we benefit from using these works to refer best practices. In

the following subsections, we explain each task briefly.

2.1.1 Natural Language Inference

Recognizing Textual Entailment (RTE) is a task that is defined as recognizing

whether the meaning of one text can be inferred (entailed) from another. Natu-

ral Language Inference (NLI) task extends RTE to predict if a premise sentence

entails, contradicts or is neutral to a given hypothesis sentence. There are a number

of large annotated datasets such as SNLI [30] and MNLI [31]. These datasets are

constructed with the intention of improving fundamental understanding and rea-

soning of natural language and not just facts. Different works exist to successfully

improve textual entailment [32, 33, 34]. Fact verification task can be considered as

an instance of NLI task for facts, which additionally requires evidence retrieval.

2.1.2 Stance Detection

Another closely related task is stance classification, which requires a model to predict

the stance of an evidence sentence as favorable or against a claim sentence. Stance

detection task is different from fact verification in that the same claim might have

multiple stances from different entities, for example, stance detection is used to

predict stances in debates [35], tweets [27], and different news media reports [36].

A more recent work [37] adds retrieval of evidence candidates as an additional task

similar to evidence sentence retrieval in fact extraction and verification.

13



2.1.3 Fake News Detection

Fake news detection task requires prediction of the veracity (true or fake) of a piece

of news. It can be thought of as stance detection task in the context of news and

journalism, followed by veracity prediction based on the stance of different sources

of evidence. Fake news detection has become an important area after the potential

influence of fake news to the 2016 US presidential election [9]. Many fact-checking

websites have emerged and aimed to educate the public regarding such fake news

(ex.: Snopes, PolitiFact). They have also provided information that are manually

verified by trained journalists with evidences obtained from trusted and unbiased

sources. It has fueled the research in automation of fake news detection since the

journalists created vast amount of ground truth data. Several datasets [11, 13, 38]

and several works [39, 40, 41] exist that has accelerated the automation of fake news

detection.

2.1.4 Question Answering

Question answering is a reading comprehension task that requires reading text and

answering questions about it. Several types of question answering task exists such as

multiple choice, Yes or No, Cloze style answering, and text span extraction amongst

others. Open Domain Question Answering (ODQA) [42] requires retrieval of relevant

documents and paragraphs of text that contains answers to the question and then

answering the question itself. There are many large open domain question answering

datasets such as SearchQA [43], MS-MARCO [44], and QUASAR-T [45]. Similar to

unverifiable (NOT ENOUGH INFO) claims in fact verification task, the SQUAD 2.0

dataset [29] has unanswerable questions. Question answering is a well explored task.

Numerous works exist to improve the performance, efficiency, robustness and speed
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of the ODQA systems. Therefore, there is an abundance of literature available

to understand what works and what aspect has not been studied yet in natural

language understanding.

2.2 Existing Fact Verification Models

Previous works on the fact extraction and claim verification task follow a three

stage pipeline that includes document retrieval, evidence sentence retrieval and claim

verification. In the following sections, we briefly explain the strategies followed in

previous works in each component of the pipeline.

2.2.1 Document retrieval

In the Document retrieval component, the potential documents relevant to the claim

are retrieved. Since the textual corpus consists of a large number of documents and

since most of them will be irrelevant to a claim, it is necessary to filter them out

in an efficient manner. It is computationally infeasible to apply semantic matching

approaches to filter the irrelevant documents due to the vast amount of documents

present. Therefore, most previous works adopt traditional Information retrieval

approaches such as Keyword matching, TF-IDF and Entity linking amongst others.

Since the title of the documents usually contain the name of the entity about whose

information is contained in the document, the claim is compared to the documents’

titles to measure their relevance. The top performing systems [46, 15, 14] in the

FEVER Shared Task 1.0 challenge [47] follow different approaches for Document

Retrieval that set strong baselines for Document retrieval and other previous works

followed suit. [46] follows an entity linking approach to match entities in the claim

to the entities in titles of documents using the MediaWiki API. In [15], first the
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documents whose title is present in the claim are retrieved. Then, it uses a feature-

based logistic regression approach where statistical features (such as position and

capitalization within the claims, presence of stop words, token match counts between

first sentence of the documents and claim) are used from the claim and first sentence

of the documents to predict their relevance to the claim. Finally, [14] uses a keyword

matching technique to retrieve the documents whose title is present in the claim.

Then, it uses a neural semantic matching network for resolving ambiguities in a title

by predicting the relevance of the first sentence of the retrieved documents with the

claim.

2.2.2 Evidence sentence retrieval

In Evidence sentence retrieval component, the most relevant sentences in the re-

trieved documents from the upstream document retrieval component are retrieved.

To predict the relevance of the sentences, [15] uses a feature-based logistic regression

model with features such as the position of the sentence within the document, its

length, whether the document name is present in the sentence, token matching be-

tween the sentence and the claim, and the document retrieval score. Both [46] and

[14] use supervised training with Enhanced LSTM (RNN based) [32] model proposed

for Natural Language Inference task. Few recent works [48], [49], [50] and [51] use

transformer [52] based pre-trained models. Evidence sentence retrieval component

in most previous works retrieves all the evidences through a single iteration. Alter-

natively, [49] uses a multi-hop retrieval strategy through two iterations to retrieve

evidence sentences that are conditioned on the retrieval of other evidence sentences.

Then, all the top-most relevant evidence sentences with highest relevance scores

are selected and combined into a single evidence set. Our work follows a similar

strategy, but differs from the prior work by combining only evidence sentences that
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belong to the same evidence set.

2.2.3 Claim verification

In claim verification component, for a given claim, the sentences retrieved from the

upstream evidence sentence retrieval component are aggregated and classified as

whether they support, refute or do not provide enough information about the claim.

Thed [46] processes each claim-evidence sentenc top performing models [14, 15, 46]

from the FEVER Shared Task 1.0, use a modified Enhanced LSTM [32] model

proposed for Natural Language Inference task. [14] aggregates evidence sentences by

concatenating them into a string, while [15] ane pair separately and aggregates their

features or labels. [15] uses a Multi-Layer Perceptron model containing 2 hidden

layers with 100 hidden units each for combining the classification probabilities for

the three classes (SUPPORTS, REFUTES, NOT ENOUGH INFO) from all the

sentences to form a final aggregated classification label. Similarly, [46] uses an

attention based model, where each sentence is attended based on the aggregated

representation of the claim from all the sentences, to obtain the relative importance

of each sentence with the claim. Then, the sentences are aggregated based on

their respective attention weights to form a final aggregated classification label.

Recent works [48, 49, 53] use BERT based model [54] for claim verification. While

[49] and [48] aggregates evidences by concatenation, [53] experiments with both

concatenation and claim-evidence sentence pair aggregation. Few other works [53,

50] use graph based models for fine-grained semantic reasoning. Different from

the previous works, our model operates with claim-evidence set pairs instead of

claim-evidence sentence pairs. Our model benefits from encoding, attending and

evaluating at different levels of hierarchy, as well as from both contextual and non-

contextual aggregations of the evidence sets.
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2.3 Modeling Natural Language

In recent years, Deep Learning has shown incredible success in several fields in-

cluding Natural Language Processing, Computer Vision and Audio Analysis. Deep

Learning models such as Convolutional Neural Networks (CNN) [55] and different

variants of Recurrent Neural Networks (RNN) such as Long Short-Term Memory

(LSTM) [56] and Gated Recurrent Unit (GRU) [57] have been predominantly used

to model Natural Language. A more recent model called the Transformer [52] has

shown promising results in different NLP tasks and has attracted the vast major-

ity of NLP research community because of its potential for increased parallelism,

allowing training of deeper models on several orders of magnitude larger datasets.

The progress of Natural Language Understanding and Reasoning has been further

accelerated by the tasks involving learning general representation of words, called

Word Embeddings. An important architectural component that is a crucial part of

several recent models is Attention. The following subsections will provide a brief

explanation of different Word Embeddings and Attention mechanisms.

2.3.1 Word Embeddings

Traditional representation of words involved one hot encoding, bag of words, count

vectorization, TF-IDF vectorization amongst others. These representations are in-

dependent of other words in the corpus and do not capture the semantics of the

words. Rather, they capture only the statistical features such as the occurence or

frequency of words across a large training corpora. Distributed representations, on

the other hand, capture the semantics of words based on their surrounding context

or co-occurrence with other words. Word Embeddings are distributed representa-

tion of words that maps words to real-valued distributed feature vectors. The word
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embeddings are learned using self-supervised learning on large corpora of long doc-

uments such that the word vectors for relevant words have similar representation in

the vector space. Word2Vec [58] and Glove [59] are well known examples of Word

Embeddings and have been proven to be useful in representation of words. More

recent advancements to Word Embeddings come from learning contextual represen-

tation of the words. Contextualized word embedding is required since words can

have different meaning depending on their context. For example, ”bat” refers to an

object in the sentence ”A baseball bat” and refers to an animal in the sentence ”Bats

are awake at night”. Embeddings from Language Models (ELMo) [60] is one of the

early works in contextual word embedding, which is based on a modified version of

RNN-LSTM called Highway Networks [61]. Since RNN based models only encode

one word at a time, the models does not allow much parallelization. In order to

train deeper models on longer and larger number of documents, recent contextual-

ized word embedding models have adopted a more recently proposed Transformer

model which is highly parallelizable. Several works have been published including

Bidirectional Encoder Representations from Transformer (BERT) [54], Generative

Pre-Training (GPT) [62], Transformer-XL [63], XL-Net [64] and several successors

of BERT such as A Robustly Optimized BERT pretraining Approach (RoBERTa)

[65], DistilBERT [66], Tiny BERT [67] and A Lite BERT (ALBERT) [68]. Tasks

such as Masked Language Modeling, Next Sentence Prediction and Sentence or-

der prediction amongst others are used for self supervised language representation

training. Since these models are trained on large number of long documents such

as documents from Wikipedia, they form a more generalizable way of representing

language. As a result, the important advantage of these contextualized word embed-

ding models are that they can be fine-tuned for downstream tasks providing better

accuracy as well as faster training.

19



2.3.2 Attention

Attention is the mechanism of focusing on or attending to a particular segment of

the input that is relevant and ignoring other segments of input that are not relevant.

The two major types of attention are Hard attention and Soft attention. While Hard

attention attends only to the important input segment, Soft attention attends to

all the segments but with higher attention weights on the important input segment.

Most architectures use soft attention since it can be trained using back propagation

whereas hard attention cannot be trained using back propagation since it replaces a

deterministic method with a stochastic sampling of the input segments. Attention

mechanism was introduced in Natural Language Processing for Machine Translation

task [69] to capture the alignment between the source and the target language (i.e.)

to focus on the words important in the source language to the word being trans-

lated in the target language. Several ways exist to compute the attention weight

such as Cosine-similarity attention [70], Additive attention [69], Multiplicative at-

tention [71] and Dot product attention [71] amongst others. A difference between

global and local attention was also introduced in [71]. Different variants of attention

mechanism exist based on the source and the target for attention such as Two-way

attention [72], Co-attention [73] and Self Attention [74]. Several multi-level atten-

tion mechanisms exists such as Attention over Attention [75], Iterative Attention

[76], Hierarchical Attention [77] and a similarly motivated multi-hop memory model

called the Memory Networks [78]. Attention mechanisms based on syntactic trees

(constituency or dependency trees) have also been employed [79, 80, 81]. Other

uses of attention include using attention as pointers [82], Attention flow [83] and

Attention Propogation [84]. Finally, attention can also be used as an explanation

under certain constraints [85]. Transformer model [52] is based on the Self Attention

mechanism and it uses a scaled version of the Dot product attention.
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Chapter 3

Methodology

In this chapter, we explain our methodology for fact extraction and verification

using Hierarchical Evidence Set Modeling Framework.

3.1 Hierarchical Evidence Set Modeling

Our Hierarchical Evidence Set Modeling (HESM) framework consists of three com-

ponents namely Document Retriever, Multi-hop Evidence Retriever and Claim Ver-

ification. Figure 3.1 shows an overview of our framework. The document retriever

component retrieves the top K1 documents that are relevant to the claim. The

multi-hop retriever component retrieves the relevant top K2 evidence sets from the

K1 retrieved documents via an iterative fashion. The claim verification component

classifies the claim as SUPPORTS, REFUTES or NOT ENOUGH INFO based on

the retrieved K2 evidence sets. Following prior works, in our framework, we reuse

the document retriever component from [14] which works well in terms of relevant

document retrieval. We mainly focus on and propose novel multi-hop evidence re-

triever and claim verification components.
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Figure 3.1: Our HESM framework.

3.2 Document Retriever

Document retrieval is the task of selecting documents related to a given claim. First,

documents are selected by an exact match between their titles and a span of text of

the claim. In particular, CoreNLP toolkit [86] is used for retrieving text spans from

the claim. To obtain more relevant documents, the same procedure is applied again

after eliminating articles such as ’a’, ’an’ or ’the’ from the claim, and once again after

singularizing each word in the claim. For documents, whose titles are ambiguous

(e.g., ”Savages (band)” and Savages (2012 film)), a semantic understanding strategy

based on Neural Semantic Matching Network (NSMN) [14] is used to calculate the

relevance of each of the documents by comparing the first line of each document

with the claim. NSMN consists of four key components namely encoding, alignment,

matching and output. The claim and the evidence are encoded using a recurrent

neural network, after which the tokens in the claim and the evidence are aligned

with each other using attention. Finally, the aligned representations are matched
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Figure 3.2: Multi Hop Evidence Retrieval.

using another recurrent neural network and the relevance score for document d is

obtained using a linear classifier. Only the top K1 ranked documents are selected.

3.3 Multi-hop Evidence Retriever

According to statistics of the FEVER dataset [23], 16.82% claims require multiple

evidence sentences to verify their truthfulness, and 12.5% claims’ evidence sentences

are located across multiple documents. Based on this, we propose a multi-hop evi-

dence retriever which is an iterative retrieval mechanism with N number of iterations

or hops. From analysing the FEVER dataset, almost all the evidence sentences are

at most two hops away from a claim, and thus can be retrieved in two iterations.

Hence, for this work we set N as 2. We retrieve a maximum of K2 evidence sets

for each claim. Each evidence set contains a maximum of Ms evidence sentences.

With the recent success of Transformer [52] based pre-trained models in NLP, we
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incorporate the ALBERT model [68] as a part of our multi-hop evidence retriever.

ALBERT is a lightweight BERT based model that is pre-trained on large-scale En-

glish language corpus for learning language representation.

In the first iteration, given a claim ci, each sentence j in the selected documents

from the document retriever is concatenated with the claim ci as [[CLS];ci;[SEP ];j]

and passed through the ALBERT model. [CLS] and [SEP ] are classification and

separator tokens required by ALBERT model. From the ALBERT model represen-

tation of each input token, the representation of the [CLS] token is pooled and fed

to a linear layer classifier to produce the two scores m+ and m− for selecting and

discarding the sentence, respectively. In Transformer based models, [CLS] token

is considered as representation of the whole input. Then, a selection probability

p(x = 1|ci, j) is calculated as a softmax normalization between the two scores. Only

the top K2 sentences with highest m+ scores and probability score greater than or

equal to a threshold thevi1 are selected.

In the second iteration, each of the K2 evidence sentences from the first iter-

ation is considered as an evidence set. In FEVER dataset, for claims requiring

multiple sentences for verification, most of the sentences missed in the first itera-

tion of retrieval are found in hyperlinked documents of the sentences retrieved in

first iteration. Therefore, in second iteration, the claim ci, each of the K2 evidence

sentences j, and each sentence k from the hyperlinked documents in sentence j are

concatenated as [[CLS]; ci; [SEP ]; j; k] and fed as input to the ALBERT model.

Similar to the first iteration, two scores m+ and m−, and a selection probability

p(x = 1|ci, j, k) are obtained. Finally, for each evidence sentence j, a maximum of

(Ms − 1) sentences with highest m+ scores and probability score greater than or

equal to a threshold thevi2 are selected and added to the corresponding evidence set.

Different from previous works, we combine a sentence j retrieved in first itera-
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tion, only with the sentences retrieved from hyperlinked documents in j, in second

iteration. Thus, we form multiple evidence sets for a given claim, similar to Figure

1.3. Figure 3.2 summarizes the multi-hop retrieval. The number present along with

each sentence is its selection probability p(x = 1|ci, j, k). For simplicity, we assume

the m+ score and p(x = 1|ci, j, k) are same. Let thevi1 be 0.5 and thevi2 be 0.8.

For a claim, K1 documents are retrieved by Document retrieval. Let A be the total

number of sentences present in the K1 documents. In iteration 1, sentences with

probability greater than or equal to thevi1 are selected for iteration 2. Here, sentence

a has a probability 0.4 which is lesser than thevi1 and thus not selected for iteration

2. Let us assume that only the sentences 1 and A are selected for second iteration.

In iteration 2, the selection probability is obtained for all the sentences 1.1 to 1.B

found in hyperlinked documents in sentence 1, where B is the total number of sen-

tences found in the hyperlinked documents. Similarly, the selection probability is

obtained for all the sentences in the hyperlinked documents of sentence A. Let us

assume that for sentence 1, only the sentences 1.1, 1.B have probability greater than

or equal to thevi2 and for sentence A, only A.1, A.B have probability greater than

or equal to thevi2. Then, sentences 1, 1.B, 1.1 form an evidence set and sentences

A,A.1, A.B form another evidence set. Notice the order in the evidence set with

sentence 1. The sentences retrieved in second iteration are sorted according to their

m+ scores. Then, the two evidence sets are sorted according to the m+ score of

sentence retrieved in first iteration. Here, evidence set with sentence A has prece-

dence over evidence set with sentence 1, since score for sentence A (0.9) is greater

than score for sentence 1 (0.8). Assuming that, for evaluation of evidence retrieval,

at most 5 sentences are considered, sentence 1.1 is omitted. Therefore, the final

evidence sentences selected for evaluation are A,A.1, A.B, 1, 1.B.
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Figure 3.3: Evidence Set Modeling Block.

3.4 Claim Verification

Claim verification is a three-way classification task to label the claim as SUP-

PORTED, REFUTED or NOT ENOUGH INFO, based on the extracted evidences.

Inspired by Hierarchical Attention Network [77], we propose a neural network that

combines evidence sets hierarchically. While [77] uses word-level and sentence-level

attention to hierarchically combine words into sentences and sentences into a docu-

ment, in this task we use word-level and evidence set-level attention to hierarchically

combine words and sentences into evidence sets, and evidence sets into an aggre-

gated evidence. Different from [77], we propose two ways of aggregating evidence

sets. Also, we train each evidence set to be able to verify the claim individually. The

model consists of two parts: (1) Evidence Set Modeling Block that contains word-

level encoder and attention layers to model each evidence set based on its words and

sentences; and (2) Hierarchical Aggregator that contains evidence set-level encoder

and attention layers to combine multiple evidence sets.
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3.4.1 Evidence Set Modeling Block

The Evidence Set Modeling Block in Figure 3.3 takes a claim ci and each evidence

set ej as input, and returns: (1) a sequence output u1, u2, ..., uT , that is the represen-

tation of each token in the sequence; (2) a pooled output pj, that can be considered

as a joint representation of the claim and the evidence set (3) a summarized vector

sj, that is also a joint representation of the claim and the evidence set obtained

using word level attention; and (4) the logits lj from classification of the claim as

SUPPORTS, REFUTES or NOT ENOUGH INFO, based on the evidence set ej.

Word Encoder. We use the ALBERT model for word level encoder. Let J be

the number of evidence sets retrieved for the claim ci. First, all the sentences in

an evidence set j are concatenated to form the evidence set sequence ej, where

j ∈ [1, J ]. Then, the claim ci and the evidence set sequence ej are concatenated as

[[CLS]; ci; [SEP ]; ej; [SEP ]] to form the input sequence xj. The word embeddings,

Xj ∈ RT×d, of the input sequence xj is obtained from the ALBERT embedding

layer, where T denotes the number of tokens in the input sequence xj and d is the

size of the word embedding. Then, the ALBERT model processes the input Xj and

produces a sequence output u1, u2, ..., uT denoted by Uj ∈ RT×d, which consists of

the representation of each token t in xj. The ALBERT model also consists of a

pooling layer that returns the vector representation pj of the [CLS] token which is

considered to be representation of the whole sequence in Transformer based models.

Uj = ALBERT(Xj) ∈ RT×d (3.1)

pj = ALBERT POOLER(Uj) ∈ Rd (3.2)
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Attention Sum Block. The Attention Sum block in Figure 3.4 returns a weighted

sum of all the value token vectors v1 to vR, where the weights are calculated using

attention between input token vectors q1 to qR and a trainable weight vector uq

that is randomly initialized. Each vector qr is passed through a linear layer to get

hidden representation fr for each token r ∈ [1, R]. The hidden representation fr is

then subjected to a dot product with the vector uq to form a scalar ct which is the

attention score for each qr. Then, softmax is computed over all the attention scores c1

to cR to get an attention weight ar for each token r. Finally, the value token vectors

vr are subjected to a weighted sum with attention probabilities from the softmax

operation as weights and returns the summarized vector s. The attention weights

denote the importance of each token in the value vectors sequence. The Attention

Sum block is used in the following Word Attention and Hierarchical Aggregation

components.

fr = Wqqr + bq, r ∈ [1, R] (3.3)

cr = fT
r uq (3.4)

ar = softmax(cr) (3.5)

s =
∑
r

vrar (3.6)

Word Attention. In the word-level attention component, the sequence output

ut, where t ∈ [1, T ], of the evidence set j obtained from Word Encoder is passed (as

both the input qr and value vr vectors) through the Attention Sum block to obtain a

summarized vector representation sj (denoted as s in Attention Sum block), based on

the importance of each word. sj is used in the Hierarchical Aggregation component
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Figure 3.4: Attention Sum Block.

in Section 3.4.2.

sj = ATTN SUM(u1, u2, ..., uT ) ∈ Rd (3.7)

Classifier. The pooled output vector pj containing representation of [CLS] token

from the Word Encoder is passed through a linear layer to obtain a three way

classification score lj (SUPPORTS, REFUTES and NOT ENOUGH INFO classes)

of the claim ci based on the evidence set ej. This classifier verifies the claim based

on the evidence set.

lj = Wwpj + bw (3.8)
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3.4.2 Hierarchical Aggregation Modeling

The hierarchical aggregation component in Figure 3.5 takes the output of the Evi-

dence Set Modeling block of all J evidence sets as input, and produces the three-way

classification score for the claim based on all the evidence sets. It consists of two

types of aggregations namely contextual and non-contextual aggregations. Both

components compute an evidence set level attention to combine all the evidence

sets, forming a hierarchy.

Non-contextual Evidence Set Aggregation. Non-contextual aggregation com-

bines the logits l1, ..., lJ of all the evidence sets to produce the aggregated verification

logits lnc. Here, we do not contextually combine the evidence sets since the majority

of claims only needs a single evidence sentence/evidence set for verification. The
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pooled output p1, ..., pJ and the classification logits l1, ..., lJ of all the evidence sets,

from the Evidence set modeling block, are passed through the Attention Sum block

to compute the aggregated representation of all the evidence sets. Here, the se-

quence of vectors p1, p2, ....pJ forms the input vectors of Attention Sum block and

the logits l1, l2, ..., lJ forms the value vectors of the Attention Sum block. Thus, it

aggregates the logits of all evidence sets based on the importance of each evidence

set.

lnc = ATTN SUM(p1, ..., pJ ; l1, ..., lJ) (3.9)

Contextual Evidence Set Aggregation. Contextual aggregation combines the

representation sj of each evidence set j with one another to produce the claim ver-

ification logits lc. Even though we combine evidence sentences into evidence sets

through the multi-hop retriever, our extracted evidence sets might not be com-

pletely accurate for some claims (i.e., some evidence sentences that belong to the

same ground truth evidence set might be distributed across our extracted evidence

sets). Therefore, we combine the evidence sets contextually to overcome the lim-

itation. Let S ∈ RJ×d denotes the summarized representations s1, s2, ..., sJ of all

the evidence sets [1, J ]. S is passed through a Transformer encoder, in order to

obtain contextual representations m1,m2, ...,mJ denoted by M ∈ RJ×d. Here, the

Transformer encoder layer ensures that the context from one evidence set is com-

bined with other evidence sets. Then, the evidence set representations mj, where

j ∈ [1, J ], from the encoder are passed (as both the input qr and value vr vectors)

through the Attention Sum block to obtain an aggregated vector representation k

of all the evidence sets. Finally, the vector representation k is fed into a linear layer
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classifier to obtain the three way classification logits lc of the claim.

M = Transformer Encoder(S) ∈ RJ×d (3.10)

k = ATTN SUM(m1,m2, ...,mJ) (3.11)

lc = Wsk + bs (3.12)

Aggregated Logits. The aggregated logits are computed based on a weighted

combination of the scores from contextual and non-contextual aggregations. The

weights β1 and β2 are trainable weights that denote importance of each aggregation.

l = β1lc + β2lnc (3.13)

3.4.3 Training Loss and Inference

The three-way classification logits lj from the Evidence set Modeling block for each

evidence set j are subjected to a cross entropy loss. All the losses from each evidence

set j are averaged to get an aggregated loss Lesm. The aggregated classification logits

l from the Hierarchical Aggregation Modeling block are subjected to a cross entropy

loss Lham. The final loss is the sum of Lesm and Lham.

During the inference, the aggregated logits l from the Hierarchical Aggregation

Modeling is used as the final three-way classification score of the claim verification.

The label with the maximum score is selected as the final classification label.
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Chapter 4

Experimentation and Results

In this chapter, we describe the dataset used, evaluation metrics, baselines, and

implementation details, results in our experiments and further analysis.

4.1 Experiment Setting

4.1.1 Dataset

We evaluate our framework HESM in the FEVER dataset, a large scale fact verifica-

tion dataset [23]. The dataset consists of 185, 445 claims with human-annotated ev-

idence sentences from 5, 416, 537 documents. Each claim is labeled as SUPPORTS,

REFUTES or NOT ENOUGH INFO. The dataset consists of training, development

and test sets as shown in Table 4.1. The training and development sets along with

their ground truth evidences and labels are available publicly. But, the ground

truth evidences and labels of the test set are not publicly available. Instead, once

extracted evidence sets/sentences and predicted labels of the test set by a model

are submitted to the online evaluation system1, its performance is measured and

1https://competitions.codalab.org/competitions/18814
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Split SUPPORTED REFUTED NOT ENOUGH INFO
Train. 80,035 29,775 35,639
Dev. 6,666 6,666 6,666
Test 6,666 6,666 6,666

Table 4.1: Statistics of FEVER Dataset.

displayed at the system. In this work, we train and tune our hyper-parameters on

training and development sets, respectively.

4.1.2 Baselines

We compare our model with 7 state-of-the-art baselines including the top performed

models from FEVER Shared task 1.0 [47], BERT based models, and a graph based

model. Although we compare ours against all of them, the BERT based models

are our major baselines since we use ALBERT which is a light weight BERT based

model. The detailed description of the baselines is presented below.

The top performed models from FEVER shared task 1.0 include UNC NLP [14],

UKP Athene [16] and UCL MRG [15]. All three models use a modified version of

Enhanced Sequential Inference Model [32] for claim verification. UNC NLP model

concatenates all retrieved evidence sentences together to verify the claim whereas

UCL MRG and UKP Athene models process each evidence sentence separately and

aggregate them at a later stage. UCL MRG reports the best results with linear layer

aggregation. UKP Athene uses an attention based aggregation.

The BERT based models include [48, 49, 53]. [48] uses BERT-base and BERT-

large for evidence retrieval and claim verification, respectively. They also experiment

with both pairwise and point-wise ranking for evidence retrieval. [49] uses two it-

erations of evidence retrieval similar to our work, but different from our work they

concatenate all the sentences retrieved. [53] reports performance for both BERT-

concat that concatenates all the sentences, and BERT-pair model that processes
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each claim-evidence sentence pair separately. GEAR [53] uses BERT Base as back-

bone and aggregates claim-evidence sentence pair using fully-connected graph based

evidence reasoning network. A graph based model KGAT [50] uses a modified ver-

sion of Graph Attention Network [87] to model a graph constructed from claim and

evidences. KGAT experiments with both BERT Base and BERT Large models as

its backbone.

4.1.3 Evaluation Metrics

The official evaluation metrics of the FEVER dataset are Label Accuracy (LA)

and FEVER score. Label Accuracy is the three-way classification accuracy for

the labels SUPPORTS, REFUTES and NOT ENOUGH INFO, regardless of the

retrieved evidence. FEVER score considers a claim to be correctly classified only

if the retrieved evidence set matches at least one of the ground truth evidence sets

along with the correct label. Between the two metrics, FEVER score is considered

as the most important evaluation metric because it considers both correct evidence

retrieval and correct label prediction.

For evidence retrieval performance evaluation, recall and OFEVER are reported

since these two scores matter for the claim verification process. Note that OFEVER

is the oracle fever score calculated assuming that the claim verification component

has 100% accuracy. As formulated by [23], a maximum of 5 evidence sentences are

extracted to calculate evidence retrieval performance. For our model’s evaluation

purpose, we assign the score of evidence sentences retrieved in first iteration to their

corresponding evidence sets. Then, we sort the evidence sets based on their assigned

scores and select at most 5 sentences from the evidence sets in the same sorted order.

35



4.1.4 Implementation and Training details

In the Document retrieval stage we follow the retrieval mechanism used by [14] which

involves keyword matching and training a neural network to resolve the documents

containing ambiguous title. For training the neural network, Adam optimizer [88]

is used with a batch size of 128. Cross Entropy Loss is used to train the network.

The maximum number of documents retrieved, given by K1 is set to 10.

In the Multi-hop evidence retrieval stage we mainly use ALBERT model. The

number of iterations N is set to 2. For both iterations, ALBERT-Base model for

sequence classification is used and is trained using a batch size of 64 along with

AdamW optimizer [89] and a learning rate of 5e-5. In the first iteration, we set the

threshold probability thevi1 for selection to 0.5 and maximum number of sentences

per claim K2 to 3. We also use the annealed sampling strategy followed by [14] to

decrease the number of negative examples after each epoch so that model learns

to be more tolerant about selecting sentences while being discriminative enough to

filter out apparent negative sentences.

In the second iteration we use the ALBERT-Base model to retrieve relevant sen-

tences in hyperlinked documents of evidence sentences retrieved in first iteration.

Similar to first iteration, we use annealed sampling here as well. We set the maxi-

mum number of sentences in an Evidence set, Ms to be 3. Finally, we choose either

K2 evidence sets or lesser if lesser number of evidence sets leads up to 5 or more

evidence sentences, since only 5 evidence sentences are considered for calculating

FEVER score. We set the threshold probability thevi2 to 0.8 since we find that the

model is able to retrieve correct evidence sentences with a high probability and low-

ering this probability to 0.5 adds a lot of irrelevant evidence sentences thus reducing

the precision score. Both the iterations are trained for 4 epochs. Cross entropy loss

is used in both iterations.
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Finally, in claim verification stage, we use hierarchical evidence set modeling

which uses ALBERT model as its backbone. We use AdamW optimizer with a

batch size of 32 and a learning rate of 2e-5 in our final model. It also uses a 2 layer

transformer encoder for evidence-set level encoding. We set the maximum token

count for the model to be 300. The claim verification is trained for 4 epochs.

Hyper-parameter Tuning. We use PyTorch framework to optimize both Multi-

hop evidence retriever and claim verification components. We use grid-search on

development set to search over a batch size from {32, 64}, a learning rate from {2e-

5, 5e-5}, and number of epochs from {2, 4, 6}. The maximum number of evidence

sets K2 is selected from {2, 3, 4} and maximum number of sentences per evidence

set Ms is selected from {2, 3, 4}. In claim verification, the number of transformer

encoder layers in contextual aggregation is selected from {1, 2, 3}.

4.2 Experimental Results and Analysis

Experiments are conducted to evaluate performance of evidence retrieval, claim

verification and aggregation approaches. In addition, we conduct ablation study.

Only claim verification experiment is conducted in the test set since each baseline’s

officially evaluated results are reported in the FEVER leaderboard. In other experi-

ments and analysis, we use the development set since the test set does not contain the

ground truth of evidence sets/sentences and claim classification labels, The leader-

board does not provide all the necessary evaluation results for these experiments on

test set as well.
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Model # of Iterations Recall OFEVER (%)
UNC NLP [14] 1 0.868 91.19
BERT-Base [49] 2 0.898 93.20
our HESM (ALBERT-Base) 2 0.905 93.70

Table 4.2: Evidence retrieval performance of the baselines and our model in devel-
opment set.

Model LA(%) FEVER(%)
UKP Athene [46] 65.46 61.58
UCL MRG [15] 67.62 62.52
UNC NLP [14] 68.21 64.21
BERT Pair [53] 69.75 65.18
BERT Concat [53] 71.01 65.64
BERT (Base) [48] 70.67 68.50
GEAR (BERT Base) [53] 71.60 67.10
KGAT (BERT Base) [50] 72.81 69.40
our HESM (ALBERT Base) 73.25 70.06
BERT (Large) [48] 71.86 69.66
BERT (Large) [49] 72.71 69.99
KGAT (BERT Large) [50] 73.61 70.24
KGAT (RoBERTa Large) [50] 74.07 70.38
our HESM (ALBERT Large) 74.64 71.48

Table 4.3: Performance of the baselines and our model in test set.

4.2.1 Multi-hop evidence retrieval

As shown in Table 4.2, we compare the performance of our model with two baselines,

UNC NLP [14] and BERT based model [49]. UNC NLP uses ESIM [32] based model,

and [49] uses a BERT based model. Since most other previous works either use ESIM

based model or BERT based model for evidence retrieval, we compare with these two

representative baselines (i.e., the results of the other 5 baselines in evidence retrieval

would be similar to one of them). Our HESM with ALBERT Base outperforms the

baselines, achieving 0.905 recall and 93.70% OFEVER score. We can also notice

that multiple-hop evidence retrieval approaches (ours and [49]) performed better

than UNC NLP, which conducts a single iteration.
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Aggregation LA(%) FEVER(%)
Logical 68.92 66.32
Top-1 69.92 67.77
MLP 74.25 72.03
Concat 74.87 72.13
Attention-based 74.96 72.74
HESM 75.77 73.44

Table 4.4: Claim verification with different aggregation methods in development set.

4.2.2 Claim verification

Table 4.3 shows claim verification results of our HESM model and baselines. Our

model with ALBERT Large outperforms all the baselines, achieving 74.64% label

accuracy (LA) and 71.48% FEVER score. In particular, our model performed much

better than the top performed models from FEVER Shared task 1.0 (i.e., UKP

Athene, UCL MRG and UNC NLP). Compared with baselines using BERT Base,

our HESM with ALBERT Base performed better than them. Likewise, compared

with baselines using large language models, our model with ALBERT large still

performed better than them. This experimental result confirms that our model

with ALBERT large improved 1.1% FEVER score compared with the best baseline,

KGAT with RoBERTa Large, indicating our model’s capability of producing more

correct label prediction and evidence extraction.

4.2.3 Aggregation Analysis

We compare our hierarchical aggregation with different baseline aggregation meth-

ods. Table 4.4 shows the results of aggregation analysis in the development set.

Top-1 aggregation is using just the top-1 relevant evidence set to verify the claim.

Logical aggregation involves classifying the claim as SUPPORTS or REFUTES if at

least one of the evidence sets has the label SUPPORTS or REFUTES respectively.
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Model LA(%) FEVER(%)
HESM 75.77 73.44
- w/o Evidence set level Loss 75.35 72.74
- w/o Non-Contextual Aggregation 75.33 72.74
- w/o Contextual Aggregation 73.70 71.96

Table 4.5: Ablation analysis in development set.

In case both labels appear in the evidence sets, then the label from top scoring

evidence set is used to break the tie. If both labels do not appear in any of the

evidence sets, we predict the claim as NOT ENOUGH INFO. MLP aggregation is

to use a MLP layer to aggregate the class label probability of all the evidence sets

to get a final verification label. Concat aggregation concatenates all the sentences

in all evidence sets into a string to verify the claim. Attention-based aggregation is

similar to the aggregation technique used in [46] using attention between claim and

each evidence set to get the importance of each evidence set and then combine them

using Max and Mean pooling. Finally, our HESM model aggregates evidence sets

using hierarchical aggregation. From the results, we can see that our HESM model

outperforms all other aggregation methods.

4.2.4 Ablation Study

Table 4.5 shows the label accuracy and FEVER score of our model after removing

different components including evidence set level loss Lesm, and contextual and non-

contextual aggregations. All of the proposed components positively contributed to

boost performance of our framework.

4.2.5 Contextual and Non-contextual Aggregations

In this section, we study the performance of contextual and non-contextual aggre-

gations in different aspects in the development set.
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Figure 4.1: Performance of contextual and non-contextual aggregations given dif-
ferent claim labels.

Label-wise performance. Figure 4.1 shows performance of contextual and non-

contextual aggregations with respect to the class labels. We use the logits lc and lnc

to calculate performance of contextual and non-contextual aggregations. In both la-

bel accuracy and FEVER score, contextual aggregation performs better for correctly

verifying a claim when the relevant evidence either supports or refutes the claim,

whereas non-contextual aggregation performs better in identifying correct evidences

that do not have enough information to support or refute the claim (i.e., claims with

the label NOT ENOUGH INFO). Thus, each aggregation complements the other

in claim verification. The reason behind the division of labour is the outcome of

the strategic architectural choices made for contextual and non-contextual aggrega-

tion, combined with the training strategy. Since the evidence set modeling block is

trained to verify the claim based on each evidence set (retrieved from the multi-hop

evidence set retrieval component) individually, the classification output from evi-

dence set modeling block is more accurate for evidence sets that cannot completely

verify the claim (i.e.) NOT ENOUGH INFO evidence sets. The reason is that, for

each claim, the majority of the evidence sets retrieved from the multi-hop retrieval

component will not have enough information to verify the claim and thus the ev-
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idence set modeling block can identify these evidence sets more accurately. Since

non-contextual aggregation aggregates the classification labels using word-level at-

tention, rather than aggregating the contextual information from all the evidence

sets, it is still capable of more accurately identifying the NOT ENOUGH INFO evi-

dence sets (and in general NOT ENOUGH INFO claims). On the other hand, since

contextual aggregation aggregates the contextual information from all the evidence

sets, it is able to learn from the context of all sentences (including the sentences

that belong to the same ground truth evidence set, that are mistakenly grouped

into different evidence sets by multi-hop evidence retrieval component), leading to

more accurate classification of claims with SUPPORTS/REFUTES label.

Performance on claims requiring different number of evidences. Figure

4.2 shows performance of contextual and non-contextual aggregations with respect

to claims requiring different number of evidence sentences for verification. Overall

refers to all the claims, Single refers to claims requiring only single evidence sentence

for verification, Any refers to claims that can be verified with one or more evidence

sentences and Multi refers to claims that can be verified only with multiple sentences.

Non-contextual aggregation performs better than contextual aggregation in claims

requiring only Single evidence sentence, whereas contextual aggregation performs

better than non-contextual aggregation in claims requiring Any and Multi evidence

sentences. The results make sense because contextual aggregation combines the

context of multiple evidence sets while non-contextual aggregation usually selects

one of the evidence sets based on the attention mechanism.

Attention analysis. In Table 4.6 we show the weights β1 and β2 of the final

model and also the evidence-set level attention accuracy. The weights can be seen

as the importance of each aggregation. The evidence set-level attention accuracy
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Figure 4.2: Performance of contextual and non-contextual aggregations given claims
requiring different number of evidence sentences.

Aggregation Weights Attention acc.
Contextual 0.48 84.88
Non-contextual 0.52 85.98

Table 4.6: Contextual and Non-contextual aggregation attention metrics

evaluates whether the evidence sets that match one of the ground truth evidences

has highest attention of all the evidence sets. The evidence set-level block in both

non-contextual and contextual aggregation calculates the weight of each evidence

set using attention-sum block. The evidence set-level attention accuracy for each

aggregation is calculated by taking the evidence set with maximum attention and

checking if this evidence set matches with one of the ground truth evidence sets.

The overall attention accuracy for contextual and non-contextual are 84.88% and

85.98% respectively, which shows that our evidence-set level attention is capable of

weighting the correct evidence sets more.

Finally, in Figure 4.3, we show the the concentration of maximum attention on

evidence sets for all 19998 instances in dev set sorted according to the attention

value. We can see that the attention is mostly focused on single evidence for both

contextual and non-contextual aggregation. For non-contextual aggregation the at-
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Figure 4.3: Evidence-set level attention in Contexual and Non-contextual aggrega-
tion

tention becomes less focused around 16000th instance and for contextual aggregation

the attention becomes less concentrated around 16000th instance which is agreement

with the better performance of contextual aggregation on claims requiring textit-

Multi evidence sentences for verification seen in Figure 4.2.

4.2.6 Impact of noisy evidence sentences on Concat and

HESM models.

Figure 4.4 shows the performance of Concat model with ALBERT-Base backbone

which concatenates all the evidence sentences and HESM with contextual aggrega-

tion which contextually aggregates the evidence sets. The number of noisy evidences

denote the number of non-ground truth evidence sentences selected from multi-hop

retriever. We consider only the claims for which the retrieved evidence sentences

match at least one ground truth evidence set. Here, we choose the result from con-

textual aggregation lc, since in section 4.2.5 we show that contextual aggregation is
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Figure 4.4: Performance comparison of Concat and HESM with different noise evi-
dence sentences retrieved

responsible for higher scores in claims with SUPPORTS and REFUTES label. Here,

we can see that concatenation works best when there are no noisy evidence sentences

and HESM with contextual aggregation performs better than Concat model when

number of noisy evidence sentences increase. This supports our initial claim that

concatenation of sentences suffer from learning the context of only the relevant

sentences when noisy or distracting sentences are present. Our HESM model’s per-

formance shows that it can predict better results when noisy evidence sentences are

present which mostly is the case in any open domain information extraction task.
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Chapter 5

Future Work

5.1 Joint Learning

Since we are training multi-hop retriever and claim verification separately, the claim

verification component relies heavily on the performance of multi-hop retriever.

When the multi-hop retriever fails to retrieve the correct evidences, recovering from

the failure is not possible in the claim verification component. Therefore, if we jointly

train the two components the errors from the claim verification will be propagated

to the multi-hop retriever providing a way to recover from its failure. This has been

observed by research works in open domain question answering [90, 91] and this

applies to fact verification task as well. Also, in this work we end up with picking

several hyper-parameters such as K2, thevi1 and thevi2. These hyper-paramaters are

crucial in inference and tuning them is a complex task. To overcome this limitation

and to solve the discrete selection of evidences in each component, several models in

question answering task train the whole architecture using Reinforcement learning

[92], [93], [94]. Similar training procedure can be adopted for fact verification.
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5.2 Alternative Approaches

Forming evidence sets without hyperlink information. In this work, evi-

dence sets are constructed based on selecting sentences from hyperlinks, but an ideal

system should be capable of combining evidence sentences into evidence sets with-

out hyperlink information. Combining evidence sentences into evidence sets without

hyperlink information could benefit systems not only in fact verification, but several

other tasks such as open-domain question answering and fake news detection.

Incorporating Constituency and Dependency trees Many textual encoders

including Transformer based models, process text as a sequential input. Text can

also be seen as a hierarchical input when it is represented using constituency and

dependency trees. Incorporating the tree structure has several advantages includ-

ing capturing the compositional effects of language and phrase-level encoding and

attention. It also imposes strong inductive bias which can be helpful when training

data is minimal. Several works exist to incorporate the tree structure [95, 96, 97],

which we can use for fact-verification.

Adversarial attention for learning partial associations. From analysis we

find that some words in evidence sentences are partially associated with more than

one label. For example, for the claim ”Statue of Liberty is in New York” and

the evidence sentence ”Statue of Liberty is in USA”, the word USA is partially

associated with SUPPORTS since New York is in USA, and partially associated with

NOT ENOUGH INFO since the evidence does not mention where exactly Statue

of Liberty is in USA. Exploiting these partial associations can be an interesting

direction of research. [98] solves a similar problem in multi-dimensional emotion

regression by using adversarial attention to learn one encoding per label for each
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word in a sentence.

Incorporating world knowledge and numerical processing Some claims in

the FEVER dataset require additional world knowledge and numerical processing

to verify a claim. For example, for the claim ”Statue of Liberty is in USA” and the

evidence sentence ”Statue of Liberty is in New York”, the model has to have world

knowledge to know that New York is part of USA. Without this information, the

model might refute the claim. Also, for the claim ”Syracuse metropolitan area has

more than 600,000 residents” and evidence sentence ”Syracuse metropolitan area

has a population of 662,577”, the model has to understand that 662,577 is more

than 600,000. This could be a potential research direction to exploit.

Better handling of Not Enough Info claims From analysis we find that, NOT

ENOUGH INFO class still seems to be the problematic label to classify because of its

minor and subtle differences from claims with SUPPORTS/REFUTES label. One

straight-forward approach is to collect to more data for SUPPORTS/REFUTES

label. Other modeling approaches [99, 100, 101, 102] used in NO ANSWER classi-

fication for question answering task in SQUAD 2.0 dataset can be utilized in fact

verification.

5.3 Fake News Detection

Fake news detection is a complex task requiring immediate attention since fake news

is spreading at an alarming rate. Several datasets exist for fake news detection,

but most of them are several orders of magnitude smaller than FEVER dataset.

Therefore, it would be interesting to check whether the learned knowledge is directly

transferrable to fake news domain. A recently released fake news detection dataset
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that is large scale and following a similar task formulation is Richly Annotated FC

[38]. It would also be interesting to jointly train and evaluate our HESM model on

both Richly Annotated FC dataset and the FEVER dataset.

5.4 Robustness

Robustness of natural language understanding architectures is a major concern

[17, 103]. To address this issue, FEVER Shared Task 2.0 [103] has hosted a Build-

It, Break-It, Fix-it style challenge for fact-verification on FEVER dataset. To this

extent, we could evaluate our model on adversarial examples provided in [103] and

improve our model based on the analysis. [104] points out the lexical bias towards re-

futed claims in FEVER dataset. To solve this, we can consider a meaning-preserving

data-augmentation technique called back-translation [105], to obtain different word-

ings of the same claim which might help in alleviating the bias.
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Chapter 6

Conclusion

In this thesis, we have proposed HESM framework for automated fact extraction

and verification. HESM operates at evidence set level initially and combines infor-

mation from all the evidence sets using hierarchical aggregation to verify the claim.

Our experiments confirm that our hierarchical evidence set modeling outperforms

7 state-of-the-art baselines, producing more accurate claim verification. Our aggre-

gation and ablation study show that our hierarchical aggregation works better than

many baseline aggregation methods. Our analysis of contextual and non-contextual

aggregations illustrates that the aggregations perform different roles and positively

contribute to different aspects of fact-verification.
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Appendix A

Resources

A.1 Links to resources

In Table A.1, we provide links to important resources related to our work.

Resource URL

FEVER Training set
https://s3-eu-west-1.amazonaws.com/fever.

public/train.jsonl

FEVER Dev set
https://s3-eu-west-1.amazonaws.com/fever.

public/shared_task_dev.jsonl

FEVER Test set
https://s3-eu-west-1.amazonaws.com/fever.

public/shared_task_test.jsonl

FEVER Website https://fever.ai/resources.html

Test set Leaderboard
https://competitions.codalab.org/competitions/

18814

Table A.1: Links to resources
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