
Towards Automated Analysis of Microarchitectural Attacks
using Machine Learning

by

Berk Gulmezoglu

A Dissertation

Submitted to the Faculty of the

WORCESTER POLYTECHNIC INSTITUTE

In partial fulfillment of the requirements for the

Degree of Doctor of Philosophy in

Electrical and Computer Engineering
by

July 2020

APPROVED:

Professor Dmitry Ponomarev Professor Patrick R. Schaumont
Dissertation Committee Dissertation Committee
State University of New York at Binghamton ECE Department

Professor Thomas Eisenbarth Professor Berk Sunar
Dissertation Co-Advisor Dissertation Co-Advisor
Universität zu Lübeck ECE Department

Professor Donald R. Brown
Department Head
ECE Department

Abstract

Cloud computing has gained tremendous popularity among small and mid-size

businesses, providing many companies to access cloud services without the need for

investing in computer software and hardware. In order to offer the highest per-

formance to clients, multi-core servers are mostly preferred by the cloud providers,

which yields to sharing the same hardware resources among clients. Although it

is expected that hardware virtualization is a sufficient protection against potential

attackers from co-located users, microarchitectural attacks still pose a significant

threat in the cloud due to the shared hardware resources. Moreover, similar attack

techniques are applicable in both personal computers and mobile phones when a

benign-looking malicious application is installed in the system. Today, microarchi-

tectural attacks are more important threat than ever, since the capabilities of the

attacks have been extended tremendously.

In order to recover confidential information from a third-party by implementing

a microarchitectural attack, thousands or millions of side-channel measurements are

collected. Since the side-channel analysis requires engineering expertise to extract

the information such as handling mis-alignment and extracting the secret bits one by

one, it takes huge amount of time to process millions of side-channel data samples.

Thanks to recent advances in Machine Learning, the complex tasks can be handled

efficiently with the high computation power of GPUs. The linear and non-linear

problem solving capabilities of Machine Learning algorithms are integrated with

giant matrix multiplications, the success rate improves drastically. However, the

appropriate application of Machine Learning techniques on side-channel measure-

ments is still an ongoing research area, which can provide huge time and performance

gain in terms of leakage extraction.

The goal of this dissertation is to propose Machine Learning based approaches to

processing of side-channel measurements in different platforms. First, we introduce

a targeted co-location technique by using cryptographic libraries on public clouds.

Then, a full RSA key recovery attack based on last-level cache is demonstrated on

Amazon EC2 public cloud. Next, we implement a Machine Learning assisted cache

attack on a public cloud as well as showing that ping requests can be used to iden-

tify the co-located VMs. Furthermore, we show that privacy of personal computer

and mobile phone users can be violated by third-party applications through mi-

croarchitectural attacks. For this purpose, we detect the visited websites, launched

applications and watched trailers, as well as, comparing the performance of sev-

eral Machine Learning techniques. Finally, we propose a Recurrent Neural Network

based unsupervised detection mechanism for microarchitectural attacks. We achieve

a low false alarm rate and performance overhead by combining the sequence learning

capabilities of RNNs and computation power of GPUs.

2

Acknowledgments

The studies in this dissertation are funded by the National Science Foundation

grants CNS-1618837, CNS-1318919, and CNS-1314770. I would like to thank the

National Science Foundation for their support.

First, I would like to thank my advisor Prof. Berk Sunar for his support, advice

and guidance that helped me to find the most suitable projects that I can work

on. Especially, his guidance on Machine Learning topics helped me think about

challenging problems the security community faces. I hope that our collaboration

will continue and I will always remember his advice in my future career.

I also would like to thank my co-advisor Prof. Thomas Eisenbarth for his support

and guidance. He always paid attention to details to improve my projects. He spent

his valuable time to explain to me the cryptographic functions, architectural details

and so on. I also hope that our collaboration will continue on many other projects.

I would like to thank my dissertation committee members Professor Berk Sunar,

Professor Thomas Eisenbarth, Professor Dmitry Ponamorev, and Professor Patrick

Schaumont. I am grateful for their guidance, feedback and their invaluable time

spent for the preparation of this dissertation.

I have been fortunate to collaborate with awesome colleagues in the Vernam Lab.

I would like to thank Mehmet Sinan Inci for helping me on both research and explor-

ing the Worcester area in my first year. My sincere thanks also go to Yarkin Doroz

i

for his help with the immigration process. I also thank Koksal Mus for being there

whenever I need help. I also would like to thank my dear friends Aria Shahverdi,

Okan Seker, Gizem Cetin, Micheal Moukarzel, Wei Dai, Marc Green, Gorka Irazo-

qui, Daniel Moghimi, Saad Islam, Koray Yurtseven and Caner Tol for both their

social and academic conversations. Finally, I am really grateful to Andreas Zankl

for both his help during my Germany visit, as well as, his unique perspective on our

projects.

I would also like to thank my parents for their support through my education

since I started school. I always felt their confidence in me, especially at times when

I was stressful. I will never forget how much time they spent with me to understand

every single concept in my curriculum all the way to high school. Thanks to their

guidance, I understood the importance of higher education for being successful in

every area of my life.

Last but not least, I would like to thank my wife, Sumeyra Gok, for going through

this journey with me. We faced many challenges in our career and reached many

milestones together. I feel lucky to have her in my life and I am looking forward to

spending the rest of my life with her.

ii

Contents

1 Introduction 1

1.1 Cryptography . 3

1.2 Cloud Security . 4

1.3 Microarchitectural Attacks . 5

1.4 Machine Learning and Deep Learning 6

1.5 Problem Statement . 8

1.6 Thesis . 8

1.7 Contributions . 9

1.7.1 The publications resulted in this dissertation 11

2 Background 12

2.1 Computer Architecture . 13

2.1.1 Memory Hierarchy . 13

2.1.2 CPU Cache . 14

2.1.3 Cache Attacks . 15

2.2 Hardware Performance Events (HPEs) 18

2.2.1 Profiling with Perf . 19

2.3 Machine Learning Techniques . 21

iii

3 Related Work 26

3.1 Co-location Detection . 26

3.2 Microarchitectural Attacks . 28

3.3 Other Microarchitectural Attacks . 30

3.4 Website Fingerprinting . 30

3.5 Machine Learning and Side-Channel Attacks 31

3.6 Defense Mechanisms against Attacks 32

4 Co-location Detection 34

4.1 Motivation . 34

4.2 Software Profiling on LLC . 36

4.3 Results . 37

4.4 Outcome . 40

5 Microarchitectural Attacks in the Cloud 41

5.1 Faster Flush+Reload Attack . 41

5.1.1 Motivation . 41

5.1.2 A single cache line attack on AES 44

5.1.3 Distinguishers for the AES Attack 47

5.1.4 Attack Scenarios . 50

5.1.5 Experiment Setup . 52

5.1.6 Results . 53

5.1.7 Outcome . 57

5.2 Prime+Probe Attack on Amazon Cloud 58

5.2.1 Motivation . 58

5.2.2 Cross-VM RSA Key Recovery 61

5.2.3 Leakage Analysis Method . 64

iv

5.2.4 Outcome . 68

6 Machine Learning based Application Detection in the Cloud 69

6.1 Motivation . 69

6.2 Methodology . 73

6.2.1 Extracting Feature Vectors from Applications on Cache 73

6.2.2 Extracting feature vectors from L1 cache 76

6.2.3 Extracting feature vectors from LLC 79

6.2.4 Targeted co-location by ping detection on the cloud 82

6.3 Application Detection Results . 84

6.3.1 Experiment Setup . 84

6.3.2 Application Detection in Native Environment 85

6.3.3 Application Detection on EC2 Cloud 91

6.3.4 Ping detection on EC2 . 91

6.4 Conclusion . 93

7 Machine Learning based Website Detection 95

7.1 Motivation . 95

7.2 Browser Profiling Scenarios . 97

7.3 Website Profiling Results . 100

7.4 Discussion . 107

7.5 Outcome . 109

8 Machine Learning based Side-Channel Attacks on Mobile Plat-

forms 110

8.1 Motivation . 110

8.2 Inference Attack . 113

8.2.1 Attack Outline . 114

v

8.2.2 Finding Eviction Sets . 114

8.2.3 Post-processing and Feature Vectors 122

8.3 Experiment Setup and Results . 124

8.3.1 Target Device . 125

8.3.2 ML/DL Configuration . 125

8.3.3 Evaluation Results . 128

8.4 Discussion . 134

8.5 Outcome . 137

9 FortuneTeller: Machine Learning based Defense Mechanism 138

9.1 Motivation . 138

9.1.1 Methodology . 141

9.1.2 Implementation . 143

9.2 Evaluation . 147

9.2.1 Experiment Setup . 147

9.2.2 RNN Model Training . 148

9.2.3 Server Experiments . 150

9.2.4 Laptop Environment . 153

9.2.5 Optimizing the Sliding Window Size 154

9.2.6 Prediction Time in Testing Phase 155

9.2.7 Performance Overhead . 156

9.3 Comparison of FortuneTeller with Prior Detection Methods 157

9.4 Discussion . 161

9.5 Outcome . 163

10 Conclusion 164

vi

A 184

A.1 List of the Websites . 184

A.2 Additional Tables and Figures for Mobile Phones Attack 185

A.2.1 Profiled Applications, Websites, Videos 185

A.2.2 CNN Parameter Selection . 187

A.3 Appendix for FortuneTeller . 187

A.3.1 Tables for Performance Counters and Benchmarks 187

vii

List of Figures

1.1 An overview of publications resulting from this dissertation work.

The papers broadly contribute to cloud security, and use Machine

Learning to automate microarchitectural attacks and attack detection

techniques. 11

2.1 RNN, LSTM, GRU cells . 24

4.1 Red and blue lines represent idle and RSA decryption/AES encryp-

tion access times respectively . 38

4.2 The difference of clock cycles between base and RSA decryption pro-

filing for each set-slice pairs over 10 experiments 39

5.1 Data access time in hardware cycles when the data is located in the

cache and in the memory . 45

5.2 Leakage Distributions f0 and f1 if Hypotheses H0 and H1 are correct.

The measurements were taken in an Intel i5 2430M CPU in SSA

scenario. 46

viii

5.3 Comparison of the scores of key guesses in the natively executed FSA

scenario for three different distinguishers based on the miss counter

(a), difference of means (b) and difference of variances (c), applied to

10000 traces. The correct key is 180 and clearly distinguishable in all

three cases. 54

5.4 Comparison of results in native execution for FSA scenario for differ-

ent distinguishers based on the miss counter (a), difference of means

(b) and difference of variances (c). 55

5.5 Comparison of results in native execution for the SSA for different

distinguishers based on the miss counter (a), difference of means (b)

and difference of variances (c). 56

5.6 Results in cross-VM execution for different attack scenarios using the

miss counter distinguisher FSA (a) SSA (b) ASA (c) and the means

distinguisher FSA (d) SSA (e) and ASA (f). 57

5.7 Different sets of data where we find a) trace that does not contain

information b) trace that contains information about the key 65

5.8 10 traces from the same set where a) they are divided into blocks for

a correlation alignment process b) they have been aligned and the

peaks can be extracted . 65

5.9 Eliminating false detections using a threshold (red dashed line) on

the combined detection graph. 66

5.10 Comparison of the final obtained peaks with the correct peaks with

adjusted timeslot resolution . 67

5.11 Combination of two sets . 68

6.1 The flow chart of the approach for both L1 and LLC profiling 74

ix

6.2 Visualization of 10 core LLC. Gray set-slice pairs are noisy, white

set-slice pairs are unused sets and black set-slice pairs are actively

used by target application. 76

6.3 Eliminated noisy sets in LLC . 80

6.4 One of the active sets for an application 80

6.5 Hit(0) and miss(1) graph of an active set 81

6.6 Frequency components of an active set 81

6.7 Combination of frequency components of all active sets 82

6.8 The scenario for ping detection on Amazon EC2 83

6.9 Success rate graph for varying number of sets to train the data 87

6.10 Success rate for different tests in L1-data (blue) and L1-instruction

(yellow). The last bar represents the average of success rates for 40

tests . 88

6.11 LLC success rate with varying number of frequency components . . . 90

6.12 LLC success rates for different tests in native scenario. The blue bar

represents the success rate for different tests. The last bar shows the

average success rate for all tests . 90

6.13 LLC success rates for different tests in cloud scenario. The blue bar

represents the success rate for different tests. The last bar shows the

average success rate for all 25 tests 92

6.14 Cache miss pattern of received ping requests in LLC 93

6.15 Frequency components of ping requests in LLC 93

7.1 Success rates per website for (a) Google Chrome on ARM with the

dashed line showing an average classification rate of 84%, and (b) Tor

Browser on Intel with the dashed line showing an average classifica-

tion rate of 68%. 101

x

7.2 Success rate vs. number of training measurements for Google Chrome

(Incognito), and (a) 30 different websites (b) 10 same domain web pages.102

7.3 Number of guesses vs. classification rate for (a) Google Chrome

(Incognito), and (b) Tor Browser. Solid lines represent results for

Alexa Top 30, while the dashed lines illustrate the same domain re-

sults. 103

7.4 Success rate vs. number of training measurements for the Tor Browser

and (a) 30 different websites, or (b) 10 same domain web pages. . . . 104

7.5 (a) Success rate vs. number of training measurements for Tor Browser

and all websites. (b) Number of guesses vs. classification rate for

whistleblowing (dashed) and all websites (solid). 105

8.1 Mapping of virtual memory to cache sets. 113

8.2 Virtual/physical address and its interpretation. 114

8.3 Plots of (a) tT and (b) tp, as used in Algorithm 3. 118

8.4 Classification results for application inference over an increasing num-

ber of LLC profiles for (a) ordered, (b) unordered, and (c) FFT feature

vectors. 127

8.5 Average receiver operating characteristic (ROC) curves for SVM,

SAE, CNN during application inference. 129

8.6 Average receiver operating characteristic (ROC) curves for SVM,

SAE, CNN during website inference. 129

8.7 Probability estimates from the CNN softmax layer while classifying

known and unknown apps. 131

8.8 Website classification with our CNN for ordered (solid), unordered

(dotted), and FFT (dashed) feature vectors. 131

xi

8.9 Video classification with our CNN for ordered (solid), unordered (dot-

ted), and FFT (dashed) feature vectors. 132

8.10 Average receiver operating characteristic (ROC) curves for SVM,

SAE, CNN during video inference. 134

9.1 FortuneTeller implementation . 142

9.2 Validation error with increasing number of measurements for Gnupg

benchmark . 149

9.3 Prediction error in Gnupg for LSTM algorithm 149

9.4 ROC curve for LSTM and GRU models in server and laptop environ-

ments . 152

9.5 The validation error for different sizes of the sliding window 155

xii

List of Tables

5.1 Distribution of cache accesses vs. memory accesses for the two hy-

potheses over the three attack scenarios. SSA provides the best dis-

tinguishability. 55

5.2 Successfully recovered peaks on average in an exponentiation 68

6.1 Symbol Descriptions . 77

9.1 The False Alarm Rate in percentage per second for applications . . . 154

9.2 Comparison of previous methods . 160

A.1 List of websites profiled PerfWeb. 184

A.2 List of profiled applications. 186

A.3 List of profiled websites. 187

A.4 List of profiled videos. 187

A.5 CNN parameter exploration. Final selection highlighted in bold. . . . 188

A.6 Counter Selection for core counters 189

A.7 Benchmark tests used in the experiments 190

xiii

Chapter 1

Introduction

Computers and smartphones play an important role in our lives as they enable

many individuals to connect with the rest of the world. While people use these

devices to access email accounts, social media, and workplaces, they also share their

confidential information such as credit card information, passwords and even social

security numbers with third-party applications and websites. Now that internet

access has become widely available in all devices, usage of third-party applications

has increased drastically in the last decade. Hence, many application providers

started to build their infrastructure in cloud servers to handle intense application

usage as well as to provide better security and safety for their customers.

For companies, security protocols have long been a part of standard business

practices. The first action taken by companies is to teach employees the basic

security protocols such as secure ways of using employees’ own devices at work.

Besides employee education, software and network security are also primary concerns

to protect company’s assets against cyber-attackers. While network security aims

to protect incoming and outgoing network traffic, software security’s purpose is

to prevent confidential information leakage by providing software-based security

1

services. Both network and software infrastructure rely on the underlying hardware

in which any design flaw could also be exploited through network and software.

Unfortunately, hardware security is of secondary importance since companies

have considered physical access to devices as the main threat against hardware.

Particularly with the increasing cloud resources usage, companies put the respon-

sibility of hardware security on cloud computing providers. In order to provide a

secure cloud environment, various virtualization methods such as hypervisors are

implemented to isolate the cloud clients in the shared hardware architecture. More-

over, to enable high performance on cloud servers many features are integrated into

hypervisors, which might potentially introduce new leakages that can be exploited

by malicious users in public clouds.

Even though cloud service providers have the responsibility of hardware security,

chip vendors such as Intel and AMD, which produce high performance architec-

tures for computers and servers, also have a huge responsibility. At the same time,

personal computers, smartphones and IoT devices also rely on their architecture.

Therefore, any leakage introduced in the design process of an architecture could

affect billions of devices worldwide. For this reason, chip vendors pay significant

attention to designing secure architectures since it is not possible to change the de-

sign after production. However, increasing complexity of microarchitectures makes

identifying potential leakages challenging. Thus, leakage sources must be identified

to improve the level of security before the cyber-attackers exploit them. Moreover,

every company and client introduce various modifications to hardware design by

configuring the hardware features as well as installing third-party libraries, and op-

erating systems. All these modifications might weaken the device security, which

makes it essential to analyze the devices again by considering new threat models.

Since it is almost impossible to identify the leakages manually for a large number

2

of designs, automated analysis techniques such as Machine Learning (ML) algo-

rithms can be employed. In the following sections, a brief overview of cryptography,

hardware security and Machine Learning will be given.

1.1 Cryptography

The implementations of cryptography evolved to symmetric and asymmetric cryp-

tosystems where the same secret key is used in both encryption and decryption op-

erations in symmetric systems such as AES (Advanced Encryption Standard) and

DES (Data Encryption Standard). On the other hand, asymmetric systems involve

distinct keys for encryption and decryption such as RSA (Rivest-Shamir-Adleman),

ECC (Elliptic Curve Cryptography). Both systems provide sufficient defense mech-

anisms against mathematical attacks so that they are used in daily applications to

provide software security.

Even though the cryptographic algorithms establish efficient defenses in theory,

the software implementations would be vulnerable to hardware-based attacks. In

general, the developers try to produce bug-free implementations to verify the cor-

rectness of the cryptographic algorithms. However, it was not expected to introduce

countermeasures in cryptographic implementations against hardware related attacks

until Kocher et. al. [99] showed that the timing information leaks the secret keys.

This novel attack started a new research area in cryptography which shows that the

cryptographic algorithm implementations may leak confidential information due to

the underlying hardware flaws.

3

1.2 Cloud Security

Cloud providers offer an array of computing sources for both small and large com-

panies which race against each other to keep up with the increasing demand from

customers. The transition from local servers to cloud servers began only a decade

ago and 90% of the companies use hosted cloud service in 2019 [8]. The main factors

of the fast transition are flexibility, reliability and security provided by the cloud

companies. All the requested services are handled by cloud providers like maintain-

ing and updating systems as well as giving opportunities to fulfill the core business

strategies. Therefore, the cloud services are under high demand, thus, it is expected

that cloud data centers will process 94% of workloads in 2021 [4]. Depending on the

type of request from the companies, cloud providers offer 4 different cloud services.

Software as a Service (SaaS) is used by the clients who need to access their data in

the applications over the internet. Platform as a Service (PaaS) is used to develop

and test new applications before releasing to the customers. Machine Learning as a

Service (MLaaS) offers many Machine Learning applications to the customers who

are willing to develop new ML algorithms and use cases. Finally, Infrastructure as

a Service (IaaS) cloud offers a vast array of computing sources in a virtualized en-

vironment which includes servers, networking and data storage. It is predicted that

IaaS spending will be the fastest growing category among 4 services in the following

5 years [12].

The privacy and security issues in the cloud environment worry more than 66% of

the IT professionals [47]. These issues mostly arise from both outdated software tools

such as usage of vulnerable cryptographic libraries and design flaws in the underlying

hardware. Therefore, the cloud providers are supposed to follow the patches released

by both software and hardware vendors to establish more secure cloud environment

4

for their clients. However, it is not sufficient all the time since cyber-attackers always

discover new ways to leak confidential information from public clouds. Throughout

my Ph.D. studies, I focused on the side-channel techniques to exploit the leakages

in the shared hardware resources on public cloud servers.

1.3 Microarchitectural Attacks

Side-channel attacks rely on any additional information gathered from the design of

a system. Power consumption, timing, electromagnetic or acoustic information of a

specific operation would give side-channel information which can be collected by an

antenna, magnetic probe or an oscilloscope. Then, the collected measurements are

analyzed to extract the secret information. While some of these techniques require

to have physical access to the targeted device, micro-architectural based side-channel

attacks can be built on a remote access to the device.

Microarchitectural attacks pose a significant threat against shared hardware re-

sources. Starting with Kocher [99], many cryptographic implementations have be-

come targets for the timing-based attacks. This novel attack is capable of observing

the individual operations for each secret key bit. The high resolution-based profiling

enables attackers to extract the secret key partially by observing runtime differences

for different operations and then, partial information obtained from each bit is com-

bined to construct the entire secret key. Hence, Kocher [99] demonstrated that

the mathematical strength of brute force on cryptographic implementations can be

circumvented by implementing side-channel attacks. To understand the root cause

of runtime differences, researchers started analyzing hardware optimization tech-

niques. The first issue was determined as the weaknesses in the cache structure,

which yielded to various cache attacks [128, 132, 172] in the past. The demon-

5

strated cache attacks are based on both access time difference between cache and

main memory, and non-constant time implementations of cryptographic algorithms.

In addition, cache attacks were demonstrated on various targets other than cyrp-

tographic key extraction [26, 85, 171] such as keystroke recovery [107] and browser

profiling [126]. All these attacks indicate the potential destruction of people’s secu-

rity and privacy through cache usage.

In 2018, another class of microarchitectural attacks namely, transient execution

attacks were introduced. Spectre [97] and Meltdown [109] rely on speculative and

out-of-order executions, respectively, integrated into the hardware design by the

chip designers. The attacks also leverage cache attack techniques to extract secret

information, which demonstrates the importance of cache structure in secret infor-

mation recovery. The exploited optimization techniques were present in both Intel

and AMD devices for a long time however, they seemed secure against microarchitec-

tural attacks until Spectre and Meltdown were introduced. Since many attacks rely

on various hardware optimization techniques, some leakages stay hidden for years

until an expert analyzes the specific features deeply. The analysis takes countless

hours of reverse engineering and identifying the weakness in the software/hardware

implementations of targeted applications. Therefore, many leakages exist in the

hardware implementations and they are still not explored due to the required in-

tensive labor. In order to enable the automated leakage detection and side-channel

information analysis we leverage Machine Learning techniques in our works.

1.4 Machine Learning and Deep Learning

In side-channel attacks, the analysis of weaknesses in both software and hardware

implementations is done by the humans. Especially, with the increasing number

6

and diversity of platforms, it becomes more challenging to identify potential leakage

sources. In order to ease the heavy lifting on side-channel analysis experts, we pro-

pose Machine Learning and Deep Learning based solutions to automate the feature

extraction and classification of the side-channel data.

Machine Learning (ML) algorithms are implemented to increase the automation

in various tasks. The main purpose is to automatically learn certain tasks by ob-

serving data without any human intervention or assistance. The first appearance

of ML was in 1960s where pattern classification was the primary focus of ML re-

search [125]. Next, Artificial Intelligence (AI) became popular by focusing on having

machines learn from data. Moreover, the theoretical emphasis on the knowledge-

based approach increases the attention on AI systems. Especially, after the neural

networks were introduced, researchers realized the potential of AI in many tasks.

Finally, in 1990s, machine learning is recognized as a separate field which aims to

solve problems in a practical nature.

Even though ML algorithms were designed to increase the efficiency in automa-

tion, the capabilities of ML were limited due to the lack of huge datasets and com-

putational power. Therefore, until the GPU systems were improved in terms of

computing capabilities, ML was mostly applied to small tasks. Next, the researchers

started improving the algorithms and deep neural networks [55] became the most

popular learning technique as the success rate of Deep Learning (DL) has achieved

human level. Then, the integration of DL algorithms into our lives started. In many

applications, DL algorithms surpassed humans such as playing games [20, 53], de-

tecting the diseases [131], self-driving cars [14] and so on. Motivated by the Deep

Learning capabilities on many challenging tasks, we aim to integrate the capabilities

of DL algorithms into side-channel analysis. We mainly aim to solve most common

problems such as mis-alignment, system noise, feature extraction in the side-channel

7

measurements as well as increasing the success rate of classification tasks without

any expert involvement.

1.5 Problem Statement

Side-channel attacks pose a serious threat against security and privacy of cloud,

personal computer, and mobile phone users. Since each attack technique targets

complex hardware components, cryptographic libraries or third-party applications,

tremendous effort is required to verify that such systems are free from any vulner-

abilities. Due to the increasing diversity of devices as well as hardware/software

complexity, large-scale vulnerability analysis becomes more challenging than before.

1.6 Thesis

We hypothesize that Deep Learning (DL) techniques can be used to mitigate the

scalability problem by automating large-scale vulnerability discovery across plat-

forms. This thesis is motivated by the fact that, DL techniques have proven to be

effective in large-scale and complex automation such as in computer vision, tex-

t/speech processing, self-driving cars, medical diagnosis, industrial design and in

game development. To test this theory, an analysis of potential security and pri-

vacy leakages on cloud and mobile platforms has been automated by processing a

large amount of side-channel data with advanced DL systems. Throughout this

thesis, we demonstrate that DL techniques have the capacity to automate the vul-

nerability discovery by figuring out features without expert intervention. We show

that DL-based vulnerability analysis techniques can discover underlying leakages in

third-party applications as well as hardware designs. This thesis only provides an

initial evidence by showing that applications of DL algorithms on massive-scale vul-

8

nerability discovery are viable. Since the thesis focuses on leakages in the underlying

hardware, in the future work, NLP-based and generative DL techniques should also

be investigated to improve the large-scale vulnerability analysis on other domains

such as software-based vulnerabilities.

1.7 Contributions

In this dissertation, we investigate the potential for Deep Learning-assisted microar-

chitectural attacks to enable large-scale exploitation by targeting the security and

privacy of users as well as prevention of such exploits across cloud computing re-

sources, mobile phones and personal devices. The overview of the contributions is

given in Figure 1.1.

Contributions can be summarized as follows;

� We examine the possibility of achieving co-location in popular public clouds

such as Google Compute Engine (GCE) and Amazon EC2 cloud. We show

that by profiling Last Level Cache (LLC) sets during cryptographic operations,

it is viable to detect the co-located VMs in the cloud.

� We implement a faster version of Flush+Reload attack in virtualized envi-

ronments by exploiting the memory deduplication feature. A secret AES en-

cryption key belonging to a third-party user is recovered by collecting a few

encryption measurements. This study shows that an AES encryption pro-

cess can be detected automatically, which does not require a synchronization

between attacker and victim VMs in the cloud.

� We show that Prime+Probe attack is applicable in the public clouds such

as Amazon EC2. We recover full 2048-bit RSA key from another VM by

9

monitoring active cache sets in LLC. In order to reduce the public cloud noise

in the measurements, we develop a correlation-based analysis technique which

enables the attackers to recover entire RSA decryption key.

� We demonstrate that LLC attacks can be an offensive tool against customers’

privacy in the public clouds. We develop a generic LLC profiling tool which is

based on ML algorithms to identify the running applications in the co-located

VMs as well as detecting the co-located VMs with ping requests.

� We introduce a new technique called PerfWeb which is based on performance

counter profiling to violate the web privacy in the personal computers. Our

tool is improved with advanced Deep Learning algorithms to increase the per-

formance of website classification. Furthermore, we show that privacy pro-

tecting browsers such as Tor browser are not efficient against PerfWeb.

� We analyze the applicability of ML-based cache attacks on mobile platforms.

We discover better methods to implement Prime+Probe attack on commonly

used mobile phones. Our tool achieves high success rate in identifying the

running applications, browsers and even videos in a third-party mobile phones.

� Finally, we propose a DL-based unsupervised detection mechanism called For-

tuneTeller to detect micro-architectural attacks in both personal computer and

server environments. We leverage superior capabilities of advanced RNN algo-

rithms such as Long-short term memory (LSTM) and Gated Recurrent Units

(GRUs) to predict the subsequent performance counter values during benign

application processes. We show that a wide range of microarchitectural attacks

can be detected with a high accuracy.

10

Spoiler [94]

Cloud Attacks Machine Learning

Detection

Seriously get off my
cloud[84]

Bulk key recovery [86]

Faster Flush+Reload [70]

Co-location Detection[85]

Cross-VM Cache Attacks [71]

Application
Detection [69]

PerfWeb [73]

Undermining User
Privacy [74]

FortuneTeller [72]

Figure 1.1: An overview of publications resulting from this dissertation work. The
papers broadly contribute to cloud security, and use Machine Learning to automate
microarchitectural attacks and attack detection techniques.

1.7.1 The publications resulted in this dissertation

The research described in this dissertation is the result and combination of the

following peer-reviewed publications on various conferences and journals [67, 81,

83, 68, 82, 66, 70, 71, 69, 176]. The publications [67, 81, 83, 68] are the result of

the collaborative work with Mehmet Sinan Inci and Gorka Irazoqui. The outcomes

presented in Chapter 7 and Chapter 8 are the results of collaborative work with

Andreas Zankl published in [70, 71, 176]. The results presented in Chapter 9 are

the collaborative work with Daniel Moghimi [69].

11

Chapter 2

Background

In microarchitectural attacks, attackers need to co-locate with a victim through

a covert channel. While in a cloud platform, it might be a co-location with a

victim in the same hardware but in different virtual machines, in mobile phones and

personal devices, third-party applications would execute malicious code snippets. It

is commonly assumed that the attacker is not capable of changing any configuration

in the device since the malicious application has no privilege. The attacker targets

cryptographic libraries to recover secret keys as well as monitors user activity in the

same machine. Hence, the secret dependent operations in the software are targeted

by the attackers. Especially, non-constant time operations on secret information is

subject to reveal the secret to the attackers through microarchitectural components.

As each application has different footprint in the components, attackers can also

identify the actions taken by the user in the device. Once the attacker collects the

side-channel data through covert channel, the data needs to be analyzed to construct

the entire secret or the action.

This dissertation focuses on application of microarchitectural attacks on a va-

riety of targets as well as mounting ML algorithms to analyze the large amount

12

of dataset. Before the explanations of proposed attacks, a brief background on

microarchitectural attacks and implemented ML algorithms are given.

2.1 Computer Architecture

This section explains the details of memory structure, CPU cache and cache attack

techniques which are essential for implementing a cache-based profiling technique.

2.1.1 Memory Hierarchy

The memory design of a computer system consists of primary and secondary mem-

ory. The primary memory includes registers, cache and main memory which can be

accessed by the processor directly. The secondary memory is accessible through an

input/output module which includes external memory resources such as magnetic

or optical disk. While a program is executing, the memory contents are loaded

from the hard-disk to the Dynamic Random Access Memory (DRAM). The loaded

content from DRAM is also brought to the cache and registers since the access time

gets lower when the data resides in upper levels in the memory hierarchy for the

next accesses to the same content. As a result, registers and CPU cache offer fast

access to the content when it is requested later by the same program.

Memory Deduplication

Memory deduplication is an OS memory optimization technique that allows the

OS to keep only a single copy of a data in the memory when multiple processes are

using the same data. While this feature is useful in native execution, it is even more

useful in virtualized setting where many VMs use the same OS and/or the same

software.

Hence, to reap the benefits of the deduplication, VMMs have also implemented

13

memory deduplication techniques to allow more VMs to run on the same physical

machine. For this, the VMM recognizes identical and redundant memory copies by

first checking their hash values and then performs a bit-by-bit comparison. If the

memory content is determined to be shared by more than one process/VM the mem-

ory manager removes multiple copies from the memory. Note that even though this

deduplication process is only performed on shareable memory pages like shared li-

braries, shared libraries are used in many software packages. Memory deduplication

methods are especially effective when hosting multiple processes, as is the case in

virtualized systems. Consequently, VMMs like VMware [161, 162] and KVM [13, 95]

implement variations of memory deduplication, i.e. Transparent Page Sharing(TPS)

and Kernel Samepage Merging(KSM), respectively. While the memory saving op-

timization techniques improve the performance they also create a covert channel

that a malicious VM can exploit. In fact, memory disclosure attacks [149] and

side-channel attacks [172, 25, 89] have been proposed taking advantage of memory

deduplication techniques in the cloud.

2.1.2 CPU Cache

CPU cache is a small memory structure between main memory and CPU cores,

which is used to access the content faster than main memory by CPU. Cache is

divided into levels (L1,L2,L3 and L4) where upper levels are smaller than the lower

levels but the access time is faster. In L1 cache, instruction and data caches are

separated however, other levels store both instruction and data types. The data

transfer between memory and cache is performed in blocks of a fixed size, called

cache lines. If a data resides in a portion of a cache line, the entire cache line is

loaded from memory to the cache. Each cache consists of sets and ways where cache

lines are stored in the ways. The mapping function from virtual memory to cache

14

sets varies among processors. While L1 cache is virtually indexed, physically tagged,

other levels are physically indexed and tagged. Therefore, it is not possible to know

which memory address is mapped to a specific cache set by only using the virtual

address number.

When a cache set is fully occupied i.e. all the ways are filled up with cache lines,

a pre-determined replacement policy is applied to decide on which cache line will be

replaced with the new cache line. The most common policy is least-recently used

(LRU) which evicts the least recently accessed cache line from the cache set. While

LRU is the most common policy among Intel processors, ARM processors mostly

implement a random replacement policy which evicts a random cache line from the

cache set.

2.1.3 Cache Attacks

In this section, two common cache attack techniques namely, Prime+Probe and

Flush+Reload, are described. Both attack techniques have been used to demon-

strate the threats against cloud security in our publications.

2.1.3.1 Flush+Reload Cache Attack

Flush+Reload attack is a trace driven cache side-channel attack that was first used

by Gullasch et al. [65]. Then, a high resolution version of Flush+Reload attack [172]

was proposed. The attack is based on shared memory leakage due to the memory

deduplication process.

Flush+Reload Technique

15

Flush stage:

In this stage, the attacker flushes one or more of the desired memory locations

from the cache by using the clflush command which evicts the desired memory

locations from the entire cache hierarchy. The eviction is implemented on the entire

cache structure even though the memory address is in another core’s cache. Indeed,

this is the main reason why the attack is applicable across cores even in the cloud

environment.

Wait stage:

In this stage, the attacker waits for sufficient time for the victim to use (or not

use) the memory locations that he has flushed in the previous stage. The flushed

memory addresses mostly contain secrets or secret related data/instructions which

are targeted by the attacker.

Reload stage:

In the final stage, the attacker reloads the previously flushed memory locations while

measuring the reload time for each of them. If the victim accessed one of the flushed

memory lines, due to the inclusiveness of the shared last level cache, the memory

address is loaded in both upper level caches and shared last level cache. Thus, the

attacker will measure a lower reload time compared to data accesses from the main

memory since the cache line will be retrieved from the cache. However, if the victim

did not access to the data flushed in the first stage, the data will still reside in the

memory, causing a higher reload time in the reload stage.

16

2.1.3.2 Prime+Probe Cache Attack

In the modern computer architecture, it is not possible for users to see the physical

address of a line because of the security issues. Therefore, the virtual address is

translated from the physical address and it is visible to users. In virtual address the

first 12 bits are exactly same with the first 12 bits of physical address. However,

this is not enough to find the corresponding cache set for the line in LLC. Thus, it

is not possible to create an eviction set with regular 4KB pages in LLC by using

virtual address.

Prime+Probe technique is the most widely applicable profiling technique on the

cloud since all major Cloud Service Providers (CSPs) have disabled deduplication,

making Flush+Reload attacks infeasible. To create an eviction set in LLC, the

spy needs to know more than 12 bits of the physical address. When Huge pages

(2MB) are allocated by the attacker, the first 21 bits (2MB = 21 bits) are converted

from virtual to physical address directly. As the corresponding LLC set number of a

memory address is based on the first 21 bits, the attacker can determine the memory

addresses for the targeted LLC set. Therefore, the attacker creates the eviction set

by filling the LLC set with the corresponding memory addresses. After finding the

eviction set for the targeted set, the eviction process can be implemented. The

Prime+Probe profiling is divided into three main stages as follows:

Prime stage: This stage is used to create an eviction set. To create an eviction

set the spy generates distinct lines which reside on the monitored set. The number

of lines in the eviction set is equal to number of ways in the monitored set. After

all lines accessed by the spy the eviction set is ready.

Waiting stage: In this stage, the spy waits for the target to evict some lines

from the primed set. The waiting time is crucial to determine the resolution of

the profiling. While the time is increasing the frequency and resolution are getting

17

lower.

Probe stage: In the probe stage, the spy accesses the addresses used in the prime

stage. If the monitored set was not accessed by another process, no data has been

evicted; all accesses result in a cache hit, giving a low access time. If another process

has accessed the monitored set, its data must have evicted at least one of the lines

of the spy’s data. Hence, the probe access will include accesses to memory, resulting

in measurably higher access times.

In Intel architectures there are two types of cache slice selection algorithm

namely, non-linear and linear slice selection algorithm. In linear slice selection algo-

rithm, same lines can be used to create an eviction set by changing the set number of

the line. However, in non-linear slice selection algorithm for each set the eviction set

should be created by implementing the algorithm. This makes the process harder

because to find the eviction set for all sets in LLC by hand takes huge amount of

time. Therefore, the algorithm in [68] is implemented in 10 core machine to create

LLC eviction sets faster.

2.2 Hardware Performance Events (HPEs)

Counting HPEs is supported by a large spectrum of modern processors. Typically,

each core implements a performance monitoring unit (PMU) that is responsible for

counting events. The unit implements a set of hardware counters that can each be

configured to count events of a certain type. Often, the number of available events

is considerably larger than the number of available counters. Consequently, only

a limited number of events can be counted in parallel. In order to measure more

events, software layers that use the PMU implement time multiplexing. This works

by frequently re-configuring counters and reading event counts only for a limited

18

period of time. As a result, this yields pseudo-parallel event counts.

Access to PMUs is typically restricted to privileged, i.e., kernel or system level

code, but interfaces exist through which user space applications can gather event

counts. Interfaces can be tailored to operating systems, e.g., on Windows [120], or

defined more generically, e.g., PAPI [105] and perf [106]. In this work, we focus

on the perf interface that is mainly found on Linux systems. Note that this work

demonstrates the general feasibility of website fingerprinting with HPEs. Therefore,

similar results are also expected on systems with other HPE interfaces.

2.2.1 Profiling with Perf

The perf event monitoring subsystem was added to the Linux kernel in version

2.6.31 and subsequently made available to the user space via the perf event open

system call. The perf event attr is the main configuration object. It determines

the type of event that should be counted and defines a wide range of acquisition

properties. We focus only on a very limited number of settings and use zero val-

ues for all others. This renders our measurements to be reproducible on a larger

number of systems. The type field in perf event attr specifies the generic event

type. As we focus on hardware based events, we only use PERF TYPE HARDWARE

or PERF TYPE HW CACHE. The config field determines the actual event type. The

event selection used in this work is given in Section 7.2. In addition, we set the

exclude kernel option, which avoids counting kernel activity. This improves the

applicability of our measurement code, because kernel profiling is prohibited on some

systems. Finally, the size field is set to the size of the event attribute struct. The

pid and cpu parameters are used to set the scope of the event profiling. In this work,

we focus on two profiling scenarios: process-specific and core-wide. To limit event

counting to a single process, pid is set to the process identifier and cpu is set to -1.

19

Subsequently, events are counted only for the given process, but on any processor

core. To enable core-wide counting, cpu is set to the core number that should be

observed and pid is set to -1. Events are then counted only on one processor core,

but for all processes running on it. The group fd parameter is used to signal that

a selection of events belongs to a group. The perf system then counts all members

of a group as a unit, i.e., their values can be meaningfully compared. This is not

a requirement for our approach, as all measured performance events are viewed as

separate inputs to the machine learning algorithms. Thus, we omit group fd and

set it to -1. The flags parameter is used to configure advanced settings including

the behavior when spawning new processes and monitoring Linux control groups

(cgroups). As none of the settings are relevant to our measurement scenarios, we

set flags to zero.

Once perf event open succeeds, the returned file handle can be used to read and

reset event counts as well as to enable and disable counting. In our measurements,

we read event counts using the standard read system call. We found this to yield

a sufficiently high sampling frequency and subsequently high success rates during

website fingerprinting. On our test systems, the duration of the read system call

ranges between 1.5µs and 3.0µs when reading one counter value.

2.2.1.1 Access Control

On Linux, access to HPEs can be configured for user space applications. The access

level is specified as an integer value that is stored in /proc/sys/kernel/perf event paranoid

in the procfs filesystem. A negative value grants user space applications full access

to performance profiling. If the paranoid level is set to 0, comprehensive profiling

of the kernel activity is prohibited. A value of 1 prevents user space applications

from core-wide event counting (pid = -1, cpu > 0). A paranoid level of 2 prohibits

20

process-specific event counts while the application gives control to kernel space, e.g.,

during a system call. Values above 2 deny event counting even in user space and es-

sentially deactivate perf for user space applications. Note that the paranoid setting

is typically overridden by applications started with the CAP SYS ADMIN capability,

e.g., programs started by the root user.

2.3 Machine Learning Techniques

Machine Learning (ML) provides powerful tools to automate the process of under-

standing and extracting relevant information from noisy observations. ML is divided

into three categories namely, supervised, unsupervised and reinforcement learning.

The supervised techniques are mostly implemented in the scenarios where the labels

of each input are given to the ML model. On the other hand, unsupervised tech-

niques require no labeling of the input where the aim of the ML model is to learn

the pattern of the input itself. The reinforcement learning is mostly implemented

in a dynamic environment where the model receives feedback from the environment

depending on the actions taken by the model. In this dissertation, both supervised

and unsupervised techniques have been employed to improve the side-channel data

analysis in microarchitectural attacks and defenses.

The collected data is separated into training, validation and test datasets. While

training and validation datasets are used to train the ML model, the accuracy of

the model is measured by the success rate on the test data. In supervised learning,

the success rate of a ML technique denotes the percentage of unknown samples

that are classified correctly. To reliably determine the success rate, classification

is performed multiple times with different training and test sets that are derived

through statistical sampling. This so-called cross-validation is performed, if the

21

number of overall samples is low.

Anomaly detection is one of the main application areas of unsupervised learning

where the anomaly in the data samples is detected by the ML model. The model is

trained with benign data samples and then, model’s accuracy is calculated by feeding

benign and anomalous activity data. Once the model can separate the benign and

anomalous data with a higher success rate, the training of the model stops. Further

details of the Machine Learning techniques used throughout this dissertation are

given in the following paragraphs.

k-th Nearest Neighbor (kNN). The main goal of kNN is to find a training

sample that is closest to a test sample according to the Euclidean distance. The

smallest distance is taken as the first nearest neighbor and the test sample is marked

with the corresponding label. In our experiments, we use the fitcknn command to

implement kNN and to train our models. By default, the prior probabilities are the

respective relative frequencies of the classes in the data, which are initially set to be

equal to each other.

Decision Tree (DT). Decision Trees are used to classify samples by creating

branches for given data features that yield the best split among all classes. The

values for each branch are chosen such that they minimize the entropy. In our

experiments, we use the fitctree command to train the model. The default value for

maximum split is N − 1, where N denotes the number of classes. For the training

phase, the minimum leaf size is 1 and the minimum parent size is 10.

Support Vector Machine (SVM). In SVM based learning, input data is con-

verted to a multi-dimensional representation by using mapping functions. Hyper-

planes are then created to classify the data. The general strategy is to find the

optimal decision boundaries between classes by increasing the distance between

22

them. In our experiments, we use libsvm [34] to implement multi-class Support

Vector Machines. The model is created and trained based on a linear SVM. We set

the type of the SVM to C-SVC, where the parameter C is used to regularize the

mapping function.

Convolutional Neural Network (CNN). In contrast to the other ML tech-

niques, Convolutional Neural Networks automatically determine important features

of the input data. This is achieved by creating nodes between higher and lower

dimensional input data mappings. The meaningful features are then extracted by

finding the optimal functions for each node. In our experiments, we choose two

autoencoders to classify our measurements into N classes. In each autoencoder,

different levels of abstraction are learned from the feature vectors and mapped to

a lower dimensional space. While the number of layers in the first autoencoder is

100 ·N , the second autoencoder has 10 ·N layers. The maximum number of itera-

tions is set to 400 and L2 weight regularization is set to 0.001 for both autoencoders.

The last layer is the softmax layer. The training data is trained in a supervised

fashion using labels. After the neural network is established and first classification

results are obtained, the accuracy of the multilayer network model is improved using

backpropagation and repeated training using labeled data. While CNNs have many

advantages, the most important disadvantage is their memory demands. When we

run out of GPU memory, we downsample the input data to reduce the length of the

feature vectors.

Recurrent Neural Networks (RNNs). RNNs are a type of Artificial Neural

Network algorithm, which is used to learn and predict the sequential data. RNNs

are mostly applied to speech recognition and currently used by Apple’s Siri [146]

and Google’s Voice Search [36]. The reason behind the integration of RNNs into

real-world applications is that it is the first algorithm to remember the temporal

23

𝜎

𝜎 zt

ht

Output

Cellxt

ht-1

(a) RNN Cell

𝜎

𝜑𝜑

𝜎𝜎

Forget
Gate

Memory
Cell

Output
Gate

Input Gate

Input
Modulation

Gate

ht

xt

ht-1

(b) LSTM Cell

𝜎

𝜎

𝜑

ht-1

xt

Update Gate

Reset Gate

ht

Current
Memory

(c) GRU Cell

Figure 2.1: RNN, LSTM, GRU cells

relations in the input through its internal memory. Therefore, RNNs are mostly

preferred for tasks where sequential data is involved.

In a typical RNN structure, the information cycles through a loop. When the

algorithm needs to make a decision, it uses the current input xt and hidden state

ht−1 where the learned features from the previous data samples are kept as shown

in Figure 2.1a. An RNN algorithm produces output based on the previous data

samples and provides the output as a feedback into the network. However, tradi-

tional RNN algorithms are not good at learning the long-term sequences because the

amount of extracted information converges to zero with the increasing time steps.

In other words, the gradient has vanished and the model stops learning after long

sequences. To overcome this problem, two algorithms were introduced, as described

below:

Long-Short Term Memory. Long-Short Term Memory (LSTM) networks are

modified RNNs, which essentially extend the internal memory to learn longer time

sequences. LSTM network cells consist of a memory cell, input, forget and output

gates as shown in Figure 2.1b. The memory cell keeps the learned information from

the previous sequences. While the cell state is modified by the forget gate, the

output of the forget gate multiplies the specific positions in the input matrix by 0 to

forget and by 1 to keep the information. In the input gate, the useful information

24

sections are determined to be fed into the cell state. The activation function for

input modulation gate is in general, tanh. Finally, the output gate passes the output

to the next hidden state As a result, LSTM networks can select distinct features

in the time sequence data more efficiently than RNNs, which enables learning the

long-term temporal relations in the input.

Gated Recurrent Unit. Gated Recurrent Unit (GRU) is an improved version of

RNNs. GRU uses two gates called, update gate and reset gate. Both current input

and the previous hidden state are multiplied with their weights and added together in

update gate. Then, a sigmoid activation function is applied to map the data to values

between 0 and 1. The role of the update gate is to determine the amount of the past

information to be passed along to the future. Next, the reset gate is used to decide

how much of the past information to forget. The element-wise product between the

reset gate and weighted previous hidden layer state determines the information to

be removed from previous time steps. Finally, the current information is calculated

The purpose of this part is to use the information obtained from the update gate and

combine both reset and update gate information. Hence, while the relevant samples

are learned by update gate, the redundant information such as noise is eliminated

by the reset gate.

In this work, the RNN algorithms are used in an unsupervised fashion where

there is no need for separate validation dataset in the training phase. The validation

error is calculated for each prediction in the next timestamp and the total validation

error is given after each epoch.

25

Chapter 3

Related Work

Our work consists of micro-architectural attacks, co-location detection, website fin-

gerprinting and defense mechanisms against micro-architectural attacks. For each

subject the corresponding related work is given in the following sections.

3.1 Co-location Detection

In the last few years several methods were proposed to detect co-location on com-

mercial clouds [134, 180, 23, 183, 81]. These works use methods such as deducing

co-location from instance and hypervisor IP address, hard disk drive performance

degradation, network latency and L1 cache covert channel. However, in response

to these works, most of the proposed techniques have been closed by public cloud

administrators. Later Zhang et al. [180] were able to determine whether a particular

user’s VM had someone else co-residing in the same physical core. In particular, they

utilized the well known Prime+Probe cache based side-channel technique to guess

this information. However, the technique was applied in the upper level caches,

thereby limiting its applicability to a physical core rather than the entire CPU or

the machine. Furthermore, the technique was not tested in commercial clouds.

26

Shortly later, Bates et al. [23] demonstrated that a malicious VM can inject a

watermark in the network flow of a potential victim. In fact, this watermark would

then be able to broadcast co-residency information. Again, even though the tech-

nique proved to be extremely fast (less than 10 seconds), it was never tested in

commercial clouds. Recently, Zhang et al. [183] demonstrated that Platform as a

Service (PaaS) clouds are also vulnerable to co-residency attacks. They used the

Flush+Reload cache side-channel technique together with a non-deterministic fi-

nite automaton method to infer co-location with a particular server. The technique

proved to be effective in commercial PaaS clouds like DotCloud or OpenShift, but

would never work in IaaS clouds where the memory de-duplication is not imple-

mented, as in most of the commercial IaaS clouds.

Finally, Inci et al. [81] demonstrated that many of the previously utilized tech-

niques in [134] are no longer exploitable. Nevertheless, they prove to detect co-

location across cores in Amazon EC2 by monitoring the usage of the LLC with the

Prime+Probe technique. To enable the co-location test, the authors make use of

hugepages commonly available in commercial clouds. This feature provides a large

memory space for the attacker to move and hit necessary addresses to prime cache

sets. Also in 2015, Varadarajan et al. [158] investigated co-location detection in

public clouds by triggering and detecting performance degradations of a web server

using the memory bus locking mechanism. Simultaneously Xu et al. [170] used

the same memory bus locking mechanism to explore co-location threat in Virtual

Private Cloud (VPC) enabled cloud systems.

27

3.2 Microarchitectural Attacks

A typical microarchitecture has many components to increase the performance of a

system. Each component would be subject to a micro-architectural attack. In the

following paragraphs, relevant microarchitectural attacks are explained:

Cache Attacks While L1 and L2 cache are shared within the core, L3 cache is

shared among all the cores in the CPU. When a cache attack targets L1 or L2

cache, Simultaneous Multithreading (SMT) feature is exploited where multiple in-

dependent threads can share the same features in a core. For instance, Percival [132]

exploited L1 and L2 caches by applying Prime+Probe attack to recover RSA keys

from OpenSSL 0.9.7c’s implementation. In a similar way, Acıiçmez [16] targeted

L1 instruction cache to distinguish square and multiply operations in an RSA de-

cryption process. Later, Acıiçmez et al. [17] extended his previous work to DSA

implementation of OpenSSL 0.9.8I. Tromer et al. [152] and Osvik et al. [128] also

implemented Prime+Probe attack to L1 data cache to steal AES keys.

Even though L1 and L2 cache attacks are less noisy and faster due to the low

number of cache sets and ways, they are not applicable for cross-core attacks. On

the other hand, L3 cache-based attacks can be implemented to exploit confiden-

tial information from other processes running in another core. The Flush+Reload

attack [171, 172] was used to steal cryptographic keys from RSA and ECDSA im-

plementations. Irazoqui et al. [89] showed that AES keys can be recovered in a

virtualized environment by exploiting page deduplication feature as well as running

cryptographic libraries [90]. On the other hand, Prime+Probe attack on L3 cache

requires the knowledge of physical bits of an address, which makes the attack more

challenging. In 2015, Irazoqui et al. [85] applied a Prime+Probe attack on L3 cache

by allocating 2MB huge-pages which give partial information on physical address.

28

The implementation of Flush+Reload, Evict+Reload and Prime+Probe attacks was

also demonstrated on mobile phones [107] to recover AES keys and keystrokes.

Transient Execution Attacks The speculative and out-of-order executions are

integrated into chip designs to optimize the performance. If some instructions are

executed speculatively, the results are not committed to registers until the con-

dition on the branch is resolved. When there is a mis-speculation a roll-back is

implemented so that wrong results are discarded. However, after the roll-back the

microarchitectural states are not cleaned which would cause secret leakage.

In the first Spectre study [97], two variants were introduced. While Spectre-V1

exploits the conditional branch prediction mechanism when a bound check is present,

Spectre-V2 manipulates the indirect branch predictions to leak the secret. Next, re-

searchers discovered new variants of Spectre-based attacks. For instance, a variant

of Spectre focuses on poisoning Return-Stack-Buffer (RSB) entries with the desired

malicious return addresses [100, 114]. Another variant of Spectre called ”Specula-

tive Store Bypass” [74] takes the advantage of memory disambiguator’s prediction

to create leakage. Similarly, Islam et al. [91] leverages the speculative execution of

dependent load-store operations to leak a part of physical address from user-space

applications, which can be used to boost Rowhammer and cache attacks. Then, re-

searchers showed that there are also other covert channels than cache covert channel

to measure the time difference: namely, using network latency [140], port contention

[28], or control flow hijack attack based on return-oriented programming [116].

Meltdown [109] exploited out-of-order execution feature to reach secrets in kernel.

Then, the work was extended to leak data from line-fill buffer [138, 156], load and

store buffers [121]. The Meltdown-based attack techniques [153, 154] were also

implemented in SGX environment.

29

3.3 Other Microarchitectural Attacks

Other than cache structure, several microarchitecture components were targeted.

For instance, Translation Look-aside Buffer (TLB) was exploited to attack on libgcrypt

EdDSA. TLBleed [57] implements a Prime+Probe-based attack on L1dtlb and

STLB which are shared within a core. Another popular target is branch predic-

tion units which are used to predict the outcome of a conditional branch or a jump

instruction. Evtyushkin et al. [44] leverages directional branch predictor to sim-

plify the direction recovery. Other than constructing a side-channel, Evtyushkin et

al. [43] presents a Branch Target Buffer (BTB) based attack to bypass the ASLR

protection. Furthermore, Aldaya et al. [18] exploits different ports in the execution

engine in a SMT attacker model to leak the cryptographic keys.

Rowhammer is a type of microarchitectural attack which aims to flip the bits in

DRAM to gain a privileged mode or achieving a fault injection. First, Seaborn et

al. [141] showed that bit flips can be triggered by using clflush instruction to gain

kernel level privilege. Then, the applicability of Rowhammer attacks was demon-

strated in a cloud environment [169], Javascript [61] and mobile phones [155]. Re-

cently, Frigo et al. [48] applied a Rowhammer attack on new generation DRAMs

to show the continuing threat of bit-flips. For the remaining attacks, we refer the

readers to microarchitectural attacks survey [176].

3.4 Website Fingerprinting

In literature, the inference of visited websites has been investigated from many per-

spectives. Server-side website inference has been proposed through caching [46] and

rendering [103] of website elements, visited URL styles [92], user interactions [165],

quota management [96], and shared event loops [159]. Felten et al. [46] infer opened

30

websites from the server-side through caching, whereas Liang et al. [103] exploit

the rendering of website elements and Vila et al. [159] use shared event loops. Vila

et al. [159] use shared event loops to infer opened websites from the server side.

Panchenko et al. [130] use traffic analysis to detect visited websites in the Tor net-

work. Zhang et al. [178] exploit iOS APIs to infer visited websites and running

applications. Spreitzer et al. [144, 145] obtain distinct features from the procfs

filesystem and use Android APIs to infer opened web pages and applications. Lee et

al. [101] exploit uninitialized GPU memory pages to detect websites, while Naghibi-

jouybari et al. [124] exploit OpenGL APIs and GPU performance counters for this

task. Gulmezoglu et al. [70] observe hardware performance events of modern pro-

cessors to infer visited websites. Diao et al. [42] infer applications through system

interrupts. Jana and Shmatikov [94] demonstrate that websites leave a distinct

memory footprint in the browser application. Hornby [75] shows that this foot-

print can be observed from a malicious application via the processor cache. Oren

et al. [127] as well as Gruss et al. [58] demonstrate that opened websites and their

individual elements can be inferred from cache observations taken from a malicious

JavaScript applet. Shusterman et al. [143] extend this work by inferring websites

from JavaScript with simple last-level cache profiles that are classified by convolu-

tional neural networks and long short-term memory.

3.5 Machine Learning and Side-Channel Attacks

Side-channel attacks (SCAs) typically rely on signal processing and statistics to infer

information from observations. Since 2011, advanced machine learning approaches

were introduced to side-channel literature. Lerman et al. [102] use random forests

(RFs), SVMs, and self-organizing maps (SOMs) to compare the effectiveness of ma-

31

chine learning techniques against template attacks. Martinasek et al. [119, 118]

showed that basic neural network techniques can recover AES keys with a 96% suc-

cess rate. With the increasing popularity of deep learning, corresponding techniques

were also studied for SCAs. In 2014, Zheng et al. [185] used CNNs to classify time

series data with high accuracy. In 2015, Beltramelli [24] introduced Long-Short

Term Memory (LSTM), a special DL technique, to classify 12 different keypads ob-

tained from smart watch motion sensors. In 2016, Maghrebi et al. [113] compared

four deep learning techniques with template attacks while attacking an unprotected

AES implementation using power consumption. The results indicated that CNNs

outperform template attacks thanks to their advanced feature extraction capability.

In 2017, Schuster et al. [137] showed that encrypted streams can be used to classify

videos with CNNs.

3.6 Defense Mechanisms against Attacks

Low-level performance monitoring events such as HPCs have been used as security

sensors to detect malicious activities [115, 73]. Similar to [175, 168], Numchecker

[163] and Confirm [164] adopt these sensors to detect control flow violations, which

are applied to rootkits and firmware modifications, respectively. In addition, classical

ML algorithms such as support vector machines (SVMs) and k-nearest neighbors

(KNNs) are adapted to naive heuristic-based techniques for multi-class classification

[22, 40]. The latter explores neural network in a supervised fashion [40]. Tang et

al. [150] train One-Class Support Vector Machine (OC-SVM) with benign system

behavior and detect the malware in the system.

Despite the detection of malware and rootkits in the system, HPCs have also

been used to detect microarchitectural attacks. Firstly, Chiappetta et al. [35] pro-

32

poses to monitor HPCs and the data is analyzed by using Gaussian Sampling (GS)

or probability density function (pdf) to detect the anomalies on cryptographic im-

plementations dynamically. Later, Zhang et al. [177] apply Dynamic Time Wrap-

ping (DTW) to catch cryptographic implementation executions in the victim VMs.

Then, the number of cache misses and hits in the attacker VMs are monitored dur-

ing the execution of sensitive operations. Briongos et al. [30] implement the Change

Point Detection (CPD) technique to determine the sudden changes in the time series

data to detect F+F, F+R, and P+P attacks. Finally, Mushtaq et al. [123] detect

the cache oriented microarchitectural attacks with supervised Linear Discriminant

Analysis (LDA), Support Vector Machine (SVM) and Linear Regression (LR) tech-

nique under various system loads. We further compare the most related works with

FortuneTeller in Section 9.3.

33

Chapter 4

Co-location Detection

In this chapter, we analyze a new co-location detection technique as a first step of

public cloud attacks. Typically, attackers own a VM in a public cloud to execute

their attack codes in a shared server. However, it is not visible to attackers whether

there are other VMs which are used by other clients. Mostly, co-located VMs’ IPs

are not known by the attackers which poses a challenge for an attacker to target a

specific client. In addition, the old methods used in [134] such as ping timing, traffic

rates and computational load variations are not applicable to public clouds anymore,

which requires a new technique for co-location detection. In the following sections,

a novel technique is introduced to detect the co-location with targeted victims in a

public cloud environment.

4.1 Motivation

Cloud computing is getting more popular with the recent advances in computing

research. Therefore, their security is also important to protect the costumers against

potential microarchitectural attacks. These attacks violate the security and privacy

of information. One of the examples is the cache attacks on ASLR [78] protection,

34

which enables the control-flow hijacking attacks in the cloud environments. There

are also other techniques to exploit the vulnerable cryptographic implementations

in the co-located VMs. While early works such as [181] still required attacker and

victim to co-reside on the same core within a processor, latest works [85, 111] work

across cores and managed even to drop the memory de-duplication requirement of

Flush+Reload attacks [173, 171, 89, 67].

All of the above attacks rely on the attacker’s ability to co-locate with a potential

victim. While co-location is an immediate consequence of the benefits of cloud

computing (better utilization of resources, lower cost through shared infrastructure

etc.), whether exploitable co-location is possible or easy has so far not been studied

in detail. In his seminal work, Ristenpart et al. [134] studied the general feasibility of

co-location in Amazon EC2, the most popular public cloud service provider (CSP)

then and now, in detail. However, the cloud landscape has changed significantly

since then: The EC2 has grown exponentially and operates data centers around

the globe. A myriad of competitors have popped up, all competing for the rapidly

growing customer base [49]. CSPs are also more aware of the potential security

vulnerabilities and have since worked on making their systems leak less information

across VM boundaries. Furthermore, in their experiments, both co-located parties

were colluding to achieve co-location. That is, both parties were willingly involved in

communicating with the other to detect co-location. While being of high importance

to show the feasibility in the first place, trying to co-locate with a specific and most

likely unwilling target can be considerably harder. Since that initial work, until very

recently only little work has dealt with a more detailed study on the difficulty of co-

location. Therefore, we believe, the problem of co-location on cloud requires further

in depth analysis examining different detection methods under diverse scenarios and

access levels for the attacker.

35

4.2 Software Profiling on LLC

The software profiling method works in a realistic setting with minimal assump-

tions. The method focuses on a non-cooperative scenario where the victim is not

involved in a covert communication and continues its regular operations. Memory

de-duplication or any form of shared libraries is not required to implement soft-

ware profiling based co-location detection. The attacker employs the Prime+Probe

technique to monitor and profile a portion of the LLC while a targeted software is

running. As for the memory addressing, we profile the targeted code address as a

relative address to the page boundary. Since the targeted library is page aligned,

target code’s relative address (the page offset) remains the same between execu-

tions. Using this information, we reduce our search space in the detection stage as

explained below.

The experiment server has 10 cores and 2048 LLC sets in total. While 11 bits

(b6 to b16) are used to determine the cache set number, the first 6 bits (b6 to b11)

are known to the attacker since virtual to physical address translation has no effect

on the first 12 bits (b0 to b11). On the other hand, each core has its own LLC set

which means there are 10 different slices for each cache set number. Therefore, we

need to monitor 320 different set-slice pairs such as X mod 64 = Y where X is 320

different set numbers (since we have 10 cores and 32 different set numbers satisfying

the equation) and Y is the first 6 bits of the set number for the desired function.

The targeted software implementation is the RSA decryption. In our scenario,

the attacker sends a RSA decryption request to the victim and LLC sets are mon-

itored by attacker in parallel. However, for the RSA detection, the slice-selection

algorithm of the CPU is required to locate the targeted multiplication code in the

LLC in a reasonable time. Without the algorithm, it would take too much time to

36

monitor potential cache sets. For our experiments, we have used the algorithm that

was reverse engineered by Inci et. al in [81].

In summary, the co-location detection involves two steps for the software profiling

on LLC;

� Profiling Stage: The first step of the profiling is to monitor the targeted LLC

sets while the profiled code, the software is not running. After the regular op-

eration of sets are observed, the RSA request will be sent to several candidate

IP addresses. Before the detection stage is started all 320 set-slice pairs are

profiled several times and the average access time to 20 (the set associativity)

lines for each set-slice pair are calculated.

� Detection Stage: We send RSA decryption requests to candidate IPs in order

to discover the IP address of the victim. After triggering the decryption we

begin to monitor the portion of LLC to detect accesses due to the decryption.

If we detect accesses in targeted set-slice pairs then we know that the correct

IP address is found. As a double check, in addition to the RSA detection, we

also detect AES encryption. Thus, we monitor another portion of the LLC

where the AES T-tables potentially reside. If the victim is co-located with the

attacker, we can detect and monitor these T-table accesses.

4.3 Results

We conducted the LLC Software Profiling experiments on the co-located Amazon

EC2 instances with 10 core E5-2670 v2 processors. As for the software target, in

order to demonstrate the versatility of the attack, we chose the RSA (Libgcrypt ver-

sion 1.6.2) that uses sliding window exponentiation and the AES (OpenSSL version

1.0.1g, C implementation) that uses T-tables. Note that the detection method is

37

Number of PnP ×104
0 0.5 1 1.5 2 2.5 3

A
cc

es
s

T
im

e

0

50

100

150

200

(a) RSA Pattern

Number of Traces
0 10 20 30 40 50 60 70 80 90 100

A
cc

es
s

T
im

e

60

80

100

120

140

160

180

200

(b) AES Pattern

Figure 4.1: Red and blue lines represent idle and RSA decryption/AES encryption
access times respectively

not limited to these targets since the attacker can run and profile any software in

his instance and perform the attack.

For the RSA detection, the slice-selection algorithm of the CPU is required to

locate the targeted multiplication code in the LLC within reasonable time. In our

experiments, we have used the algorithm that was reverse engineered by Inci et. al

in [81]. The first step of the profiling is to monitor the targeted LLC sets while the

profiled code, RSA is not running. After the regular operation of sets are observed,

the RSA request is sent to several IP addresses, starting from attacker’s own subnet.

As soon as the request is sent, the profiling starts and traces are recorded by the

Prime+Probe. If the RSA decryption is running on the other VM, the pattern of

38

Set Number
0 50 100 150 200 250 300

D
iff

er
en

ce
 o

f C
lo

ck
 C

yc
le

s

-2

0

2

4

6

8

(a) RSA Analysis for the first co-located instance

Set Number
0 50 100 150 200 250 300

D
iff

er
en

ce
 o

f C
lo

ck
 C

yc
le

s

-4

-2

0

2

4

6

8

(b) RSA Analysis for the second co-located instance

Figure 4.2: The difference of clock cycles between base and RSA decryption profiling
for each set-slice pairs over 10 experiments

multiplication can be observed as in Figure 4.1. In general, the multiplication is

performed between 2000-8000 traces. In these traces, we look for the delta of two

profiles for each set-slice pair. In Figure 4.2, the difference between two profiles is

illustrated for two co-located instances. Both figures show that there are two set-slice

pairs with significantly higher access times (4-8 cycles) in average of 10 experiments.

Hence, it can be concluded that these two sets are used by RSA decryption and this

candidate instance is probably co-located with the attacker.

After we obtain IP addresses of several co-location candidates, we trigger an AES

encryption by sending random ciphertexts and at the same time monitor the LLC.

For this part of the detection stage, since AES encryption is much faster than RSA

39

decryption we can only catch one access to monitored T-table position. Hence, we

send 100 AES encryption requests to each instance in the IP list. If we observe 90%

cache miss for one of the set-slice pairs, it can be concluded that the AES encryption

is performed by the co-located instance, as seen in Figure 4.1(b). After these steps,

the attacker can start secret key recovery process in a public cloud.

4.4 Outcome

In conclusion, we represent three co-location detection methods that work in some

of the most popular commercial clouds (Amazon EC2, Google Compute Engine, Mi-

crosoft Azure) and compare their efficiencies. In addition, for the first time we have

achieved targeted co-locations in Amazon EC2 Cloud by applying the LLC software

profiling for the AES encryption and the RSA decryption processes. For memory

bus locking experiments, we have observed that if there is a frequent memory ac-

cess, then there is more significant degradation. As for the cache covert channel,

we showed that while it works in a cooperative scenario, it has high accuracy. And

finally we presented the LLC software profiling technique that can be used variety of

purposes including co-location detection without the help of memory de-duplication

or cooperation from the victim side.

40

Chapter 5

Microarchitectural Attacks in the

Cloud

After the co-location is established with a targeted victim, the attacker deploys

a microarchitectural attack to leak sensitive information belonging to the victim.

However, it is challenging to design various attack techniques which can work in

public clouds. The main obstacle of the microarchitectural attacks is the need for

high number of encryption/decryption request and measurements. To increase the

performance of Flush+Reload attacks, a realistic Flush+Reload attack is introduced

in the following section:

5.1 Faster Flush+Reload Attack

5.1.1 Motivation

Cloud computing and virtualization are getting popular more than ever with large

companies like Microsoft, Google, Amazon, IBM, Oracle, Rackspace and many oth-

ers investing billions of dollars trying to get a foothold in this new area of lucrative

41

business. This rapid increase in the number of cloud service providers is directly

related to the emergence of server-less companies like Netflix, Dropbox, Instagram,

Pinterest, Reddit, Imgur and many others that are using commercial cloud infras-

tructure [38]. Instead of buying expensive servers without knowing exactly how

many of them they need, and then hiring IT personnel to maintain those servers,

these fast growing companies have chosen to use public cloud systems to maintain

their software and services.

The opportunities of using the commercials cloud are fairly obvious however,

threats are not. Sharing a physical system between users reduces the cost while

increasing the utilization hence the productivity. The isolation between the Virtual

Machines (VM) in these systems is maintained by the Virtual Machine Manager

(VMM) at the software level. However, software layer confinement techniques that

force the sandboxing does not guarantee complete isolation and cannot ensure the

prevention of data leakage from one VM to the other. While assigning only a sin-

gle user to a physical machine, it goes against the idea of the cloud and prevents

reaping of the benefits that come with the cloud systems. The most common source

of information leakage across VM boundaries is the shared cache and the memory

of the underlying physical system. Particularly memory deduplication allowed re-

searchers to mount attacks that threaten both the user privacy and the security of

the cryptographic systems.

In 2009, Ristenpart et al. [134] showed that it is possible to co-locate with a

target on a cloud environment, namely Amazon EC2, and extract keystrokes from

the co-located VM. In 2011, by exploiting the Kernel Samepage Merging (KSM),

Suzaki et al. [149] was able to detect processes like sshd, apache2, IE6 and Firefox

running on a co-resident VM. The significance of this study is that it is possible to

not just detect the existence of a target VM, but also detect running processes.

42

In 2013, Yarom et al. [173] applied the Flush+Reload attack across VMware

VMs to recover a RSA key. Later in 2014, Irazoqui et al. [88] used Bernstein’s AES

cache timing attack to partially recover an AES key from various AES crypto library

implementations in a cross-VM setting under XEN and VMware ESXI hypervisors.

Also in 2014, Irazoqui et al. [89] implemented a cross-VM access driven cache attack

on AES in a VMware ESXI system using the Flush+Reload attack.

Our Contribution

In this work, we implement for the first time a known-ciphertext cross-VM attack

on AES using the Flush+Reload method and use three distinct data analysis meth-

ods to fully recover the secret key with varying encryption observations for different

scenarios. For the attack, we take advantage of VMware ESXI’ s memory dedupli-

cation mechanism called the Transparent Page Sharing. The attack is mounted on

a multi-core high-end server, a specification found commonly on commercial cloud

systems and does not require the attacker and the victim to be running on the same

physical CPU core. Compared to the attack in [65], our attack is minimally invasive

and works with less assumptions since the attacker does not need to control or ex-

ploit in any way the target process execution. Also compared to [89], the new attack

does not assume to have access to the encryption server and works only by listening

to the encryption server via cache covert channel and obtaining the ciphertexts from

the network channel.

In summary, this work

� for the first time, mounts a cross-VM, known-ciphertext only AES key

recovery attack using the Flush+Reload technique

� improves upon the previous cross-VM AES cache attacks by flushing in be-

43

tween the encryption rounds

� presents three distinct analysis methods that can be adapted to any table-

based block ciphers

Our attack uses the side-channel technique known as Flush+Reload to monitor

accesses to memory blocks. The Flush+Reload is applicable in the cross-VM setting

if deduplication is enabled by the hypervisor and the monitored part of the memory

is deduplicated. The latter is true if the monitored data is marked as shared (as

is the common case for all crypto libraries) and the hypervisor has detected the

duplicated data referenced from within both VMs. Also, different than the attack

in [89], we utilize a separate AES detection step to detect the AES execution on

the co-located target VM and eliminate the synchronization requirement with the

server through the plaintext generation. This makes the proposed attack much more

practical. We access the AES function memory address to detect the beginning of

AES execution by Flush+Reload method. The reason why we access the memory

location instead of simply running AES is that accessing a single memory location

is much faster than running AES, allowing a higher attack resolution.

5.1.2 A single cache line attack on AES

The adversary monitors accesses to a single block of one of the T tables used in

the last round of AES. In addition to the information t whether the T Table was

accessed, the adversary needs to know the corresponding ciphertext c (or plaintext

for a first-round attack). That is, we assume the adversary is able to collect several

tuples 〈c, t〉. The monitored memory block corresponds to n T table entries T known

to the adversary. For a monitored ciphertext byte Ci, these entries correspond to n

T table outputs Si, which are mapped one-to-one to n ciphertext byte values through

44

Figure 5.1: Data access time in hardware cycles when the data is located in the
cache and in the memory

addition with the key. Hence, ci,j = ki ⊕ si,j, where i is a byte position (ignoring

the shift rows operation) and j indicates different values. If si,j is equal to one of

the values of the monitored T table memory block, i.e. si,j ∈ T, then the monitored

memory block will be accessed hence loaded to the cache. We will refer to this case

as H0. However, if si,j /∈ T, i.e. si,j takes a value stored in a different memory block,

then the monitored memory block is not loaded. Nevertheless, since each T table is

accessed l times, there is still a high probability that the memory block was loaded

by any of the other accesses. In fact, the probability that a memory block is not

accessed during an encryption is given as: Pr [no access to Tj] = (1− n/256)l. We

will refer to this event as H1.

For AES-128 in OpenSSL 1.0.1g, n = 16 and l = 40 per Tj, and therefore

100%− ε0 of reloads are expected to come from the cache in H0, and only 92% + ε1

for H1, where εi are noise terms. Hence, a side-channel containing information about

memory/cache accesses will feature differing leakage distributions f0 and f1 for cases

H0 and H1, respectively. To distinguish H0 from H1 the Flush+Reload method can

be applied. In fact, using the Flush+Reload method, one can, with high probability,

distinguish a cache access from a memory access as seen in Figure 5.1.

In our scenario (as described in Section 5.1.5) the leakage distributions f0 and

45

(a) Distribution f0 for case H0

(b) Distribution f1 for case H1

Figure 5.2: Leakage Distributions f0 and f1 if Hypotheses H0 and H1 are correct.
The measurements were taken in an Intel i5 2430M CPU in SSA scenario.

f1 are depicted in Figure 5.2. The distributions are derived from the reload times

measured by the Flush+Reload attack. The first peak in both distributions (at

around 35 cycles) corresponds to a noisy cache reload, and the second peak (at

around 220 cycles) corresponds to a memory reload. Since f0 corresponds to H0

and hence has more cache reloads than f1, these distributions are distinguishable.

This leakage was successfully exploited in [89].

46

5.1.3 Distinguishers for the AES Attack

To process the side-channel data, we describe and compare three distinguishers. The

distinguishers we present here analyze one byte of the ciphertext c together with

the access time t to the corresponding T table block to recover one byte k of the

last round key.

As described earlier, our observations are split into two sets according to a hy-

pothesis. If this hypothesis is correct, the resulting leakage distributions f0 and

f1 for the two sets differ and hence, with sufficiently many observations—become

distinguishable. For wrong key guesses, however, the hypotheses will be invalid,

and both sets will sample from the same mixed distribution, making them indis-

tinguishable. To detect whether samples for hypotheses H0 and H1 are actually

from different distributions, we can apply several distinguishers. In the following we

propose three distinguishers. The probably most common distinguisher is based on

the difference of the means of the two distributions [98, 41]. As for the zero-value

DPA [117], our hypothesis deviates from a single-bit prediction, yet, the test still

just distinguishes two cases. Similarly, the variance test uses a statistical moment to

distinguish the two distributions [99, 98, 41]. The last distinguisher applies a miss

counter, as in [89]. The list is neither exhaustive, nor do we make an optimality

claim. The latter is interesting future work that needs to be preceded by a better

understanding and analysis of the underlying noise characterization, as noise can

come from several different sources and is far from being Gaussian.

For the following descriptions we refer to the average miss counter value for Hi

as ctrHi
, whereas we refer to the difference of means and difference of variances for

fi as τHi
and var τHi

, respectively.

47

Miss-counter based Distinguisher

This distinguisher counts and compares the memory block misses for the two cases

H0 and H1. Ideally, there should be no misses for H0, as the memory block must have

been accessed by the AES execution. To establish a miss counter, reload timings

are converted to either a hit (0) or a miss (1), depending on whether the value is

above or below a threshold access time. As seen in Figure 5.1, a good threshold for

our processor and probing code is 130 cycles. Since H1 contains significantly more

values than H0, we compare the relative counters instead of absolute ones. Our

distinguisher becomes:

Dmiss ctr = arg max
k̂

(
ctrH1 − ctrH0

)
Difference of Means Distinguisher

The difference of means distinguisher approximates the means of the two distribu-

tions and outputs their difference in cycles.

Dmeans = arg max
k̂

(τH1 − τH0)

Since H0 should feature more cache accesses than H1, τH0 is expected to be smaller,

i.e. the biggest positive difference corresponds to the most likely key hypothesis.

Welch’s t-test distinguisher (which divides the means with their respective vari-

ance) can be equally well applied to guess the correct key. Indeed, Welch’s t-test is

commonly applied to check two hypothesis where two gaussian distributions have

different means and variances. In this work, we studied Welch’s t-test and did not

obtain an improvement over the difference of means. Thus, we use the difference of

means distinguisher due to its simplicity.

48

Variance based Distinguisher

The difference of variances distinguisher outputs the difference of variances in cycles.

Dvars = arg max
k̂

(var τH1 − var τH0)

Note that, as before, the variance of H0 should be smaller than that of H1. However,

outliers can badly affect this distinguisher. In cache attacks, significant outliers that

can be orders of magnitude larger than regular data are not uncommon and need to

be filtered to make this distinguisher work. Since Hi is key dependent, the guessed

key k̂ that maximizes the difference is the most likely to be correct. Note that

the sign carries information in all three tests. In fact, the case H0 and its leakage

f0 correspond to fewer cache misses, hence a lower miss counter, a lower average

(mean) access time, and also a lower variance. The results will show that taking the

sign into account derives a much better distinguisher.

When the three distinguishers are compared, the miss counter approach has the

most interesting properties: It is quite intuitive, as cache misses and hits are what

we are looking for. Furthermore, the method is only marginally affected by outliers.

The main disadvantage of this method is the requirement of a threshold, which is

processor-dependent and requires some minimal profiling. The other two methods

are more affected by outliers. All three distinguishers can easily be converted to a

correlation method. Indeed, by correlating the right term (e.g. τH0) to 0 for H0 (a

guaranteed cache hit with low reload time) and 1 for H1 (a possible cache miss with

higher reload time), the most likely key k̂ features the highest correlation.

49

5.1.4 Attack Scenarios

Next, we describe the principles of our new Flush+Reload attack as well as the

original and the improved versions of the attack in [89]. We will refer to the attack

in [89] as the Fully Synchronous Attack (FSA) and the improved version of it with

the additional AES detection step as the Semi-Synchronous Attack (SSA). Finally,

the attack scenario where the attacker requires no synchronization with the server

will be referred as the Asynchronous Attack (ASA). In the following, we explain and

compare these attacks in detail, listing challenges and advantages of each version.

FSA

This is the original attack used in [89] where the attacker first flushes the T tables,

then sends a plaintext to the encryption server to trigger an AES encryption. The

server receives the plaintext from the attacker, and sends the ciphertext back. Upon

receipt of the ciphertext, the attacker reloads the monitored T table blocks to learn

which entries were accessed by the encryption.

SSA

In this version of the attack, we improved over the FSA by detecting the AES

encryption using the Flush+Reload method but there is still a need for trigger event

by the adversary. The advantage of this attack is the usage of an AES encryption

detector that detects whether the victim is performing an AES encryption. Once the

AES encryption function call is detected, the attacker flushes the monitored T table

blocks during the AES execution in between AES rounds. Flushing in between

rounds reduces the number l−1 of unrelated accesses to the T table accesses, hence

increasing the number of memory accesses for case H1. In addition, we know that

the detection algorithm takes half of the timing of an AES encryption. Therefore,

50

at least half of the rounds of the AES encryption is eliminated by this detection

mechanism. This results in a more biased distribution f1, i.e. a stronger leakage.

Consequently, the attack succeeds with fewer encryptions.

ASA

In the ASA, we improve over the previous two attacks by not requiring any trigger

event by the adversary. Instead, plaintexts are generated by the server in regular

intervals of 5M cycles. The adversary uses an AES detector to detect the AES func-

tion call and perform the Flush+Reload attack on the fly. In addition the network

is monitored to recover transmitted ciphertexts. Unlike the previous attacks, this

attack is a true ciphertext-only attack.

Note that the ASA presents a more realistic attack scenario than those presented

in [65] and [89]. In [65] Gullasch et al. described a Flush+Reload attack on AES

implementation of the OpenSSL library where they overload the CPU and suspend

the AES encryption by controlling CFS. In [89] authors require synchronization with

the server through the plaintext generation. In contrast to these previous attacks,

our attack differs in the following ways:

� Our attack flushes the T tables during the AES encryption rather than before;

� CFS exploitation or any other type of CPU overloading is not necessary;

� Synchronization through the plaintext is no longer required, but the AES

encryption call is detected instead;

� Improved side-channel data analysis/key recovery methods recover the key

with fewer encryptions.

51

5.1.5 Experiment Setup

For the experiments, we have used the following two setups;

� Native Execution: In this setup, the AES encryption process and the at-

tacker run on a native Ubuntu 12.04 LTS version with no virtualization. In this

setting, we have used a two core Intel i5-2430M CPU clocked at 2.4 GHz. The

purpose of this scenario is to run the attack in an environment with minimal

noise and to achieve comparability to former non cross-VM cache attacks.

� Cross-VM Execution: In this setup, two up-to-date Ubuntu VMs, VM1 and

VM2 are launched and managed by VMware ESXI 5.5 baremetal hypervisor.

The attacks are then performed across hypervisor isolation boundaries. The

first VM is used as the target that does the AES encryption while the second

VM acts as the attacker and executes the Flush+Reload attack, trying to

recover the secret key. The experiments in this setting were performed on an

Intel Xeon E5-2670 v2 CPU. This setup reflects a realistic attack scenario by

using a modern CPU commonly used in commercial cloud systems [1, 5]. In

this setup, data access from the cache takes 30 cycles and the memory takes

233 cycles on average. Also in the same specification, single AES encryption

without and with pre-flushed T-tables requires 257 and 659 cycles, respectively.

As the Figure 5.1 shows, the timing separation between the CPU cache and the

main memory is clear with very few outliers. We further observe in Figure 5.1

that the AES execution time changes greatly depending on whether or not the

T-tables used for the encryption are loaded in the cache.

Note that all the timing measurements in the experiments are gathered using the

Read Time Stamp Counter and Processor ID (RDTSCP) instruction. The usage

52

of the RDTSCP instruction is allowed in VMware user mode, but not in KVM. More-

over, this instruction is not emulated by the VMM but executed directly, unlike

other serializing instructions like CPUID used in [89]. Also, the flushing operation is

performed using the Cache Line Flush (CLFLUSH) instruction.

In all experiments, one target process executes AES encryption while the at-

tacker process tries to recover the secret key by monitoring the T-tables with the

Flush+Reload technique. In order to clearly show the the attack success under

different assumptions, we have used two distinct attack environments.

5.1.6 Results

We performed the experiments for all three attack scenarios, i.e. FSA, SSA and

ASA in both native and virtualized environments. Furthermore, we analyze the

timing behavior to show the improvement on the success rate by using the three

different distinguishers mentioned in Section 5.1.3: the miss counter distinguisher,

the difference of means distinguisher and the difference of variances distinguisher.

At first we present and compare the scores of the key guesses using the three

different distinguishers in native execution in Figure 5.3. The difference of means

and variances distinguishers suffer more from noise due to heavy outliers stemming

from different microarchitectural sources of noise. However the experiments shown

in Figure 5.3 were taken cutting off outliers with an outlier threshold value of 5

times the memory access time. It can be seen that for 10,000 encryptions the three

distinguishers clearly maximize the score for the correct key, i.e. 180 in this case.

Then, the results of the three different attack scenarios is presented in Table 5.1

by comparing the ratio between cache accesses and memory accesses for cases H0

and H1. The precise distribution for the SSA scenario was given in Figure 5.2.

Recall that without noise, the ratio should be 100%/0% for H0 vs. 92%/8% for H1

53

(a) Ctr Dist. (b) Mean Dist. (c) Var. Dist.

Figure 5.3: Comparison of the scores of key guesses in the natively executed FSA
scenario for three different distinguishers based on the miss counter (a), difference
of means (b) and difference of variances (c), applied to 10000 traces. The correct
key is 180 and clearly distinguishable in all three cases.

for the FSA scenario and even more biased for the SSA scenario. The probability

distribution shows that for H0 approximately 95% of the reload values are coming

from L3 cache while only the 5% come from the main memory. In H1 however,

the reload values coming from L3 cache are down to 88%, while the values coming

from the main memory increase to 12%. Also, it can be seen from the Table 5.1

that there is a significant improvement in the distinguishability for SSA scenario

due to flushing during AES encryption. Flushing during the encryption translates

into lower noise in the T table measured access times and an improved success rate.

However, the increased number of detected memory accesses for SSA is likely caused

by flushes occurring after AES encryption has terminated. Thus, although the more

realistic ASA scenario decreases the success rate, in comparison to the SSA scenario

due to the difficulty of the AES detection. Hence, SSA is the most efficient way to

decrease the noise and have a good resolution to find the correct key with a small

number of encryptions.

Finally the number of traces needed for the recovery of the key are presented

in Figures 5.4,5.5. As for the attack scenario success rates, our experiments in

the native execution setting show that the SSA yields higher success rate than the

FSA and the ASA which require 3,000, 25,000 and 30,000 encryptions ,respectively.

Also, the variance distinguisher works better in native setting than the other two

54

Table 5.1: Distribution of cache accesses vs. memory accesses for the two hypotheses
over the three attack scenarios. SSA provides the best distinguishability.

Attack Scenarios H0 H1

Cache Memory Cache Memory

Ideal case 100% 0% 92% 8%
FSA 99% 1% 97% 3%
SSA 95% 5% 88% 12%
ASA 97% 3% 96% 4%

(a) Ctr Dist. (b) Mean Dist. (c) Var. Dist.

Figure 5.4: Comparison of results in native execution for FSA scenario for different
distinguishers based on the miss counter (a), difference of means (b) and difference
of variances (c).

distinguishers. For other attack scenarios e.g. the ASA, the mean distinguisher works

the best, see Figure 5.5(b). Note that, since ASA is the most realistic scenario, it

requires more encryption samples than the other two, most notably compared to

the SSA where only 3,000 encryption samples are needed.

5.1.6.1 Cross-VM Execution Results

In the cross-VM setting, the FSA scenario requires 30,000 encryptions to recover

the full key using the miss counter hypothesis as seen in Figure 5.6(a). In the same

setting, 50,000 encryptions are needed when the difference of means distinguisher

is used as in Figure 5.6(d). As for the SSA, only 10,000 encryptions are enough

to recover the full key using the mean distinguisher in Figure 5.6(b). If the miss

counter distinguisher is used instead of the mean distinguisher, 40,000 encryptions

55

(a) Ctr Dist. (b) Mean Dist. (c) Var. Dist.

Figure 5.5: Comparison of results in native execution for the SSA for different
distinguishers based on the miss counter (a), difference of means (b) and difference
of variances (c).

are needed as seen in Figure 5.6(e).

For the ASA scenario, 30,000 encryptions are enough to recover the full key using

miss-counter and mean distinguishers as seen in Figures 5.6(c), 5.6(f). Also, when

we compare different distinguisher methods in the cross-VM setting for different

attack scenarios, we see that the difference of means distinguisher works better than

the miss-counter distinguisher for the most successful attack which is the SSA. While

the miss-counter distinguisher gives better results for the FSA, the two distinguishers

have the same impact on the results for the ASA which is the most realistic attack

scenario.

We would like to note that the difference of means and the difference of variances

distinguishers work better in the SSA and ASA scenarios, whereas the miss counter

yields better results for the FSA. Moreover, the main advantage of using the vari-

ance and mean distinguishers is that they do not need an architecture dependent

threshold, whereas the miss counter approach needs the access time distribution of

the cache hierarchy.

Also note that the improvement of SSA is due to flushing during the AES

execution which yields lower noise in the reloading stage. As for the ASA, we would

like to emphasize that the higher number of encryptions requirement is due to the

56

(a) FSA (b) SSA (c) ASA

(d) FSA (e) SSA (f) ASA

Figure 5.6: Results in cross-VM execution for different attack scenarios using the
miss counter distinguisher FSA (a) SSA (b) ASA (c) and the means distinguisher
FSA (d) SSA (e) and ASA (f).

more realistic nature of the attack setting i.e. the lack of synchronization between

the server and the spy process. Finally, we would like to remark that only 15

seconds are enough to recover the whole key in SSA scenario, which to the best of

our knowledge is the fastest working attack in a realistic cross-VM setting without

the scheduler exploitation.

5.1.7 Outcome

In conclusion, for the first time we have accomplished a cache side-channel attack on

AES by flushing in between rounds. We also used an additional AES detection stage

to create an asynchronous attack setting. In addition to that, we improved upon the

previous work on cross-VM AES attacks by utilizing three different distinguishers for

the key recovery. Finally, our experiments show that among three attack scenarios,

SSA works with the minimum number of encryptions, requiring only 3,000 in the

native and 10,000 in the cross-VM setting.

57

5.2 Prime+Probe Attack on Amazon Cloud

5.2.1 Motivation

Cloud computing services are more popular than ever with their ease of access, low

cost and real-time scalability. With increasing adoption of cloud, concerns over cloud

specific attacks have been rising and so has the number of research studies exploring

potential security risks in the cloud domain. A main enabler for cloud security is the

seminal work of Ristenpart et al. [134]. The work demonstrated the possibility of co-

location as well as the security risks that come with it. The co-location is the result

of resource sharing between tenant Virtual Machines (VMs). Under certain condi-

tions, the same mechanism can also be exploited to extract sensitive information

from a co-located victim VM, resulting in security and privacy breaches. Methods

to extract information from VMs have been intensely studied in the last few years

however remain infeasible within public cloud environments, e.g. [184, 126, 148].

The potential impact of attacks on crypto processes can be even more severe, since

cryptography is at the core of any security solution. Consequently, extracting cryp-

tographic keys across VM boundaries has also received considerable attention lately.

Initial studies explored the Prime+Probe technique on L1 cache [182, 65]. Though

requiring the attacker and the victim to run on the same physical CPU core simulta-

neously, the small number of cache sets and the simple addressing scheme made the

L1 cache a popular target. Follow up works have step by step removed restrictions

and increased the viability of the attacks. The shared Last Level Cache (LLC) now

enables true cross-core attacks [172, 25, 89] where the attacker and the victim share

the CPU, but not necessarily the CPU core. Most recent LLC Prime+Probe attacks

no longer rely on de-duplication [111, 85] or core sharing, making them more widely

applicable.

58

With the increasing sophistication of attacks, participants of the cloud industry

ranging from Cloud Service Providers (CSPs), to hypervisor vendors, up all the way

to providers of crypto libraries have fixed many of the newly exploitable security

holes through patches [3, 11, 9]—many in response to published attacks. However,

many of the outdated cryptographic libraries are still in use, opening the door for

exploits. A scan over the entire range of IPs in the South America East region

yields that 55% of TLS hosts installed on Amazon EC2 servers have not been up-

dated since 2015 and are vulnerable to an array of more recently discovered attacks.

Consequently, a potential attacker such as a nation state, hacker group or a gov-

ernment organization can exploit these vulnerabilities for bulk recovery of private

keys. Besides the usual standard attacks that target individuals, this enables mass

surveillance on a population thereby stripping the network from any level of privacy.

Note that the attack is enabled by our trust in the cloud. The cloud infrastructure

already stores the bulk of our sensitive data. Specifically, when an attacker instan-

tiates multiple instances in a targeted availability zone of a cloud, she co-locates

with many vulnerable servers. In particular, an attacker trying to recover RSA keys

can monitor the LLC in each of these instances until the pattern expected by the

exploited hardware level leakage is observed. Then the attacker can easily scan the

cloud network to build a public key database and deduce who the recovered private

key belongs to. In a similar approach, Heninger et al. [72] scan the network for

public keys with shared or similar RSA modulus factors due to poor randomization.

Similarly Bernstein et al. [27] compiled a public key database and scanned for shared

factors in RSA modulus commonly caused by broken random number generators.

In this work, we explore the viability of full RSA key recovery in the Amazon EC2

cloud. More precisely, we utilize the LLC as a covert channel both to co-locate and

perform a cross-core side-channel attack against a recent cryptographic implementa-

59

tion. Our results demonstrate that even with complex and resilient infrastructures,

and with properly configured random number generators, cache attacks are a big

threat in commercial clouds.

Our Contribution

This work presents a full key recovery attack on a modern implementation of RSA in

a commercial cloud and explores all steps necessary to successfully recover both the

key and the identity of the victim. This attack can be applied under two different

scenarios:

1. Targeted Co-location: In this scenario, we launch instances until we co-

locate with the victim as described in [158, 82]. Upon co-location the secret

is recovered by a cache enabled cross-VM attack.

2. Bulk Key Recovery: We randomly create instances and using cross-VM

cache attacks recover imperfect private keys. These keys are subsequently

checked and against public keys in public key database. The second step

allows us to eliminate noise in the private keys and determine the identity of

the owner of the recovered key.

Unlike in earlier bulk key recovery attacks [72, 27] we do not rely on faulty random

number generators but instead exploit hardware level leakages.

Our specific technical contributions are as follows:

� We first demonstrate that the LLC contention based co-location detection

tools are plausible in public clouds

� Second, we reverse-engineer the undocumented non-linear slice selection algo-

rithm implemented in Intel Xeon E5-2670 v2 [6] used by our Amazon EC2

60

instances, and utilize it to automate and accelerate the attack

� Third, we describe how to apply the Prime+Probe attack to the LLC and

obtain RSA leakage information from co-located VMs

� Last, we present a detailed analysis of the necessary post-processing steps to

cope with the noise observed in a real public cloud setup, along with a detailed

analysis on the CPU time (at most 30 core-hours) to recover both the noise-free

key and the owner’s identity (IP).

5.2.2 Cross-VM RSA Key Recovery

To prove the viability of the Prime+Probe attack in Amazon EC2 across co-located

VMs, we present an expanded version of the attack implemented in [111] by showing

its application to RSA. It is important to remark that the attack is not processor

specific, and can be implemented in any processor with inclusive last level caches.

In order to perform the attack:

� We make use of the fact that the offset of the address of each table position

entry does not change when a new decryption process is executed. Therefore,

we only need to monitor a subsection of all possible sets, yielding a lower

number of traces.

� Instead of the monitoring both the multiplication and the table entry set (as

in [111] for El-Gamal), we only monitor a table entry set in one slice. This

avoids the step where the attacker has to locate the multiplication set and

avoids an additional source of noise.

The attack targets a sliding window implementation of RSA-2048 where each po-

sition of the pre-computed table will be recovered. We will use Libgcrypt 1.6.2 as

61

our target library, which not only uses a sliding window implementation but also

uses CRT and message blinding techniques [104]. The message blinding process

is performed as a side channel countermeasure for chosen-ciphertext attacks, in

response to studies such as [52, 50].

Algorithm 1 RSA with CRT and Message Blinding

Input: c ∈ ZN , Exponents d, e, Modulus N = pq
Output: m

r
$← ZN with gcd(r,N) = 1 . Message Blinding

c∗ = c · re mod N
dp = d mod (p− 1) . CRT conversion
dq = d mod (q − 1)
m1 = (c∗)dp mod p . Modular Exponentiation
m2 = (c∗)dq mod q
h = q−1 · (m1 −m2) mod p . Undo CRT
m∗ = m2 + h · q
m = m∗ · r−1 mod N . Undo Blinding
return m

We use the Prime+Probe side channel technique to recover the positions of the

table T that holds the values c3, c5, c7, . . . , c2
W−1 where W is the window size. For

CRT-RSA with 2048 bit keys, W = 5 for both exponentiations dp, dq. Observe that,

if all the positions are recovered correctly, reconstructing the key is a straightforward

step.

Recall that we do not control the victim’s user address space. This means that

we do not know the location of each of the table entries, which indeed changes

from execution to execution. Therefore we will monitor a set hoping that it will be

accessed by the algorithm. However, our analysis shows a special behavior: each

time a new decryption process is started, even if the location changes, the offset

field does not change from decryption to decryption. Thus, we can directly relate a

monitored set with a specific entry in the multiplication table.

The knowledge of the processor in which the attack is going to be carried out

62

gives an estimation of the probability that the set/slice we monitor collides with the

set/slice the victim is using. For each table entry, we fix a specific set/slice where

not much noise is observed. In the Intel Xeon E5-2670 v2 processors, the LLC is

divided in 2048 sets and 10 slices. Therefore, knowing the lowest 12 bits of the table

locations, we will need to monitor one set/slice that solves s mod 64 = o, where s is

the set number and o is the offset for a table location. This increases the probability

of probing the correct set from 1/(2048·10) = 1/20480 to 1/((2048·10)/64) = 1/320,

reducing the number of traces to recover the key by a factor of 64. Thus our spy

process will monitor accesses to one of the 320 set/slices related to a table entry,

hoping that the RSA encryption accesses it when we run repeated decryptions.

Thanks to the knowledge of the non linear slice selection algorithm, we can easily

change our monitored set/slice if we see a high amount of noise in one particular

set/slice. Since we also have to monitor a different set per table entry, it also helps

us to change our eviction set accordingly. The threshold is different for each of the

sets, since the time to access different slices usually varies. Thus, the threshold

for each of the sets has to be calculated before the monitoring phase. In order to

improve the applicability of the attack the LLC can be monitored to detect whether

there are RSA decryptions or not in the co-located VMs as proposed in [82]. After

it is proven that there are RSA decryptions the attack can be performed.

In order to obtain high quality timing leakage, we synchronize the spy process

and the RSA decryption by initiating a communication between the victim and

attacker, e.g. by sending a TLS request. Note that we are looking for a particular

pattern observed for the RSA table entry multiplications, and therefore processes

scheduled before the RSA decryption will not be counted as valid traces. In short,

the attacker will communicate with the victim before the decryption. After this

initial communication, the victim will start the decryption while the attacker starts

63

monitoring the cache usage. In this way, we monitor 4,000 RSA decryptions with

the same key and same ciphertext for each of the 16 different sets related to the 16

table entries.

We investigate a hypothetical case where a system with dual CPU sockets is used.

In such a system, depending on the hypervisor CPU management, two scenarios can

play out; processes moving between sockets and processes assigned to specific CPUs.

In the former scenario, we can observe the necessary number of decryption samples

simply by waiting over a longer period of time. In this scenario, the attacker would

collect traces and only use the information obtained during the times the attacker

and the victim share sockets and discard the rest as missed traces. In the latter

scenario, once the attacker achieves co-location, as we have in Amazon EC2, the

attacker will always run on the same CPU as the target hence the attack will succeed

in a shorter span of time.

5.2.3 Leakage Analysis Method

Once the online phase of the attack has been performed, we proceed to analyze the

leakage observed. There are three main steps to process the obtained data. The first

step is to identify the traces that contain information about the key. Then we need

to synchronize and correct the misalignment observed in the chosen traces. The last

step is to eliminate the noise and combine different graphs to recover the usage of

the multiplication entries. Among the 4,000 observations for each monitored set,

only a small portion contains information about the multiplication operations with

the corresponding table entry. These are recognized because their exponentiation

trace pattern differs from that of unrelated sets. In order to identify where each

exponentiation occurs, we inspected 100 traces and created the timeline shown in

Figure 5.7(b). It can be observed that the first exponentiation starts after 37% of

64

timeslot
0 2000 4000 6000 8000 10000

R
el

oa
d

tim
e

0

50

100

150

200

250

timeslot
0 2000 4000 6000 8000 10000

R
el

oa
d

tim
e

0

50

100

150

200

250
Second Secret
Exponent (dq)

Decryption
Start

First Secret
Exponent (dp)

Figure 5.7: Different sets of data where we find a) trace that does not contain
information b) trace that contains information about the key

timeslot
0 500 1000 1500 2000 2500 3000

0

2

4

6

8

10

12

timeslot
0 500 1000 1500 2000 2500 3000

0

2

4

6

8

10

12

Figure 5.8: 10 traces from the same set where a) they are divided into blocks for
a correlation alignment process b) they have been aligned and the peaks can be
extracted

the overall decryption time. Note that among all the traces recovered, only those

that have more than 20 and less than 100 peaks are considered. The remaining ones

are discarded as noise. Figure 5.7 shows measurements where no correct pattern

was detected (Fig. 5.7(a)), and where a correct pattern was measured (Fig. 5.7(b)).

In general, after the elimination step, there are 8−12 correct traces left per set.

We observe that data obtained from each of these sets corresponds to 2 consecutive

table positions. This is a direct result of CPU cache prefetching. When a cache line

that holds a table position is loaded into the cache, the neighboring table position

is also loaded due to cache locality principle.

65

timeslot
0 500 1000 1500 2000 2500 3000

M
ag

ni
tu

de

0

5

10

Figure 5.9: Eliminating false detections using a threshold (red dashed line) on the
combined detection graph.

For each graph to be processed, we first need to align the creation of the look-up

table with the traces. Identifying the table creation step is trivial since each table

position is used twice, taking two or more time slots. Figure 5.8(a) shows the table

access position indexes aligned with the table creation. In the figure, the top graph

shows the true table accesses while the rest of the graphs show the measured data.

It can be observed that the measured traces suffer from misalignment due to noise

from various sources e.g. RSA or co-located neighbors.

To fix the misalignment, we take most common peaks as reference and apply a

correlation step. To increase the efficiency, the graphs are divided into blocks and

processed separately as seen in Figure 5.8(a). At the same time, Gaussian filtering

is applied to peaks. In our filter, the variance of the distribution is 1 and the

mean is aligned to the peak position. Then for each block, the cross-correlation is

calculated with respect to the most common hit graph i.e. the intersection set of all

graphs. After that, all graphs are shifted to the position where they have the highest

correlation and aligned with each other. After the cross-correlation calculation and

the alignment, the common patterns are observable as in Figure 5.8(b). Observe

that the alignment step successfully aligns measured graphs with the true access

graph at the top, leaving only the combining and the noise removal steps. We

combine the graphs by simple averaging and obtain a single combined graph.

66

Normalized timeslot
0 200 400 600 800 1000 1200

R
ea

l
 D

at
a

0

1

2

Figure 5.10: Comparison of the final obtained peaks with the correct peaks with
adjusted timeslot resolution

In order to get rid of the noise in the combined graph, we applied a threshold filter

as can be seen in Figure 5.9. We used 35% of the maximum peak value observed in

graphs as the threshold value. Note that a simple threshold was sufficient to remove

noise terms since they are not common between graphs.

Now we convert scaled time slots of the filtered graph to real time slot indexes.

We do so by dividing them with the spy process resolution ratio, obtaining the

Figure 5.10. In the figure, the top and the bottom graphs represent the true ac-

cess indexes and the measured graph, respectively. Also, note that even if addi-

tional noise peaks are observed in the obtained graph, it is very unlikely that two

graphs monitoring consecutive table positions have noise peaks at the same time

slot. Therefore, we can filter out the noise stemming from the prefetching by com-

bining two graphs that belong to consecutive table positions. Thus, the resulting

indexes are the corresponding timing slots for look-up table positions.

The very last step of the leakage analysis is finding the intersections of two

graphs that monitor consecutive sets. By doing so, we obtain accesses to a single

table position as seen in Figure 5.11 with high accuracy. At the same time, we have

total of three positions in two graphs. Therefore, we also get the positions of the

neighbors. A summary of the result of the leakage analysis is presented in Table 5.2.

We observe that more than 92% of the recovered peaks are in the correct position.

67

normalized timeslot
0 100 200 300 400 500 600 700 800 900 1000

0

1

2

3

4 set 1 set 2 intersection true table position

Figure 5.11: Combination of two sets

Table 5.2: Successfully recovered peaks on average in an exponentiation

Average Number of traces/set 4000
Average number of correct graphs/set 10
Wrong detected peaks 7.19%
Missdetected peaks 0.65%
Correctly detected peaks 92.15%

However, note that by combining two different sets, the wrong peaks will disappear

with high probability, since the chance of having wrong peaks in the same time slot

in two different sets is very low.

5.2.4 Outcome

In conclusion, we show that even with advanced isolation techniques, resource shar-

ing still poses security risk to public cloud customers that do not follow the best

security practices. The cross-VM leakage is present in public clouds and can be a

practical attack vector for data theft. Therefore, users have a responsibility to use

latest improved software for their critical cryptographic operations. Even further,

we believe that smarter cache management policies are needed both at the hardware

and software levels to prevent side-channel leakages.

68

Chapter 6

Machine Learning based

Application Detection in the

Cloud

6.1 Motivation

In the last decade the cloud infrastructure has matured to the point where com-

panies, government agencies, hospitals and schools alike have outsourced their in-

frastructure to cloud service providers. The main benefit of moving to the cloud is

the reduction of money spent on IT by pooling servers and storages in bigger cloud

services. In many cases, rented servers are instances shared through virtualization

among many users. Sharing is the basis for the reduction in the IT costs. Despite

the clear cost benefit, given the vast amount of personal and sensitive information

kept on shared resources, rightfully security concerns have been steadily growing

among cloud customers.

Naturally, the cloud infrastructure has come under the scrutiny of security re-

69

searchers. The first breakthrough result was reported by Ristenpart et al. [134] who

showed that it is possible to co-locate in a controlled manner with possible target

instances on commercial public clouds, e.g. Amazon EC2. This work opened the

door to a series of investigations that examined the threats from an attacker, i.e. a

legitimate cloud user, exploiting cross VM leakage to steal sensitive information. A

number of methods have been proposed to steal private keys or valuable informa-

tion between VMs in IaaS and PaaS clouds [89, 81, 68, 181, 183]. In these works,

the cryptographic keys and other sensitive information are stolen by attacker by

exploiting leakages at the microarchitectural level, i.e. through the shared cache ar-

chitecture. Especially, the shared last-level cache (LLC) is a dangerous information

leakage source in public clouds. IaaS instance allocation policy commonly allocate

an instance per core. This means that the LLC is a shared resource among multiple

user instances. Thus by timing his own LLC access times, a user can gleam infor-

mation on another user’s co-located instance’s cache access behavior. LLC attacks

proliferated to the point that the most recent LLC Prime&Probe attacks do not

depend on the de-duplication feature [85, 111] to be enabled to mount cross core

cache attacks in public commercial clouds.

Cross-VM leakage attacks are extremely destructive in nature. They require al-

most no privileges. Anyone can rent an instance on EC2 for a small fee and run an

attack code on an instance co-located typically with multiple target instances out

of potentially millions of targets. The attack code does only legitimate accesses,

e.g. collection of cache access times, for accesses in its own memory/application

space. Thus, Cross-VM attacks pose a great threat. Potentially, one could auto-

mate the attack and mine the entire compute cloud for cryptographic keys. There

are practical difficulties in carrying out such attacks on a mass scale. Cross-VM

security attacks on public clouds require a sophisticated methodology to extract the

70

sensitive information from data. For instance, the cache pattern is extracted and

by using personal effort the relation between pattern and key is established [81].

This makes discovery of vulnerabilities, a manual process, rather costly and time-

consuming. Cryptographic library designers experience a similar difficulty. Crypto-

graphic libraries are constantly patched for newly discovered leakages and emerging

vulnerabilities. This in itself is a painstaking process requiring careful inspection

of the code for any potential leakage for a target platform1. Software bugs may re-

sult in secondary leakages confounding the problem further. Thus, in practice, even

constant execution flow/time implementation may be compromised due to bugs.

With the growing complexity of cryptographic libraries, or more broadly of code

that handles sensitive data, it becomes impossible to manually verify the code for

leakages across the numerous platforms exhaustively. Clearly, there is a great need

for automated verification and testing of sensitive code against leakages. Firstly,

Brumley et al. [31] proposed vector quantization and HMM to classify ECC ops

with respect to L1-D cache. Then, an automated profiling attack on LLC was in-

troduced by Gruss et al. [63]. In this work, the access pattern of different events

are first extracted in a non-virtualized (less noisy) environment. The attacker learns

the cache access templates from the cache. During an attack the new data is com-

pared against the learned templates. While this is a worthy effort, machine learning

(ML) algorithms have advanced to the point where they offer sophisticated solutions

to complicated recognition, classification, clustering, and regression problems. For

instance, image and speech recognition, sense extraction in text and speech [129],

recommendation systems and search engines, as well as malicious behavior detec-

tion [33]. Further, cryptographers recently started to consider machine learning

algorithms for side channel analysis, [102, 76].

1A code that is considered secure on one platform, may not be on another due to microarchi-
tectural differences.

71

In this work we take another step in this direction. We are motivated by the

need for automation in cross-VM leakage analysis. Our goal is to minimize the

need for human involvement in formulating an attack. While more sophisticated

techniques such as deep neural networks can solve more complicated problems, they

require significantly more training data and take longer. Instead here we focus on

more traditional ML techniques for classification. In particular, we are interested in

automating classification of applications through their cache leakage profiles in the

Cross-VM setting. A successful classification technique would not only compromise

the privacy of a co-located user, but could also serve as the initial discovery phase for

a more advanced follow-up high precision attack to extract sensitive information.

To this end, in this work we first profile the cache fingerprints of representative

benchmark applications, we then identify the minimal processing steps required to

extract robust features. We train these features using support vector machines and

report success rates across the studied benchmarks for experiments repeated for L1

and LLC. Finally, we take the attack to AWS EC2 to solve a specific problem, i.e. we

use the classification technique to show that it is possible to detect other co-located

VMs. We achieve this by sending ping requests to open ports by simultaneously

monitoring LLC on Amazon EC2. If the ping receiver code is detected running on

the co-located instance we infer co-location with the targeted IP.

Our Contribution

We present a study in automation of cache attacks in modern processors using

machine learning algorithms. In order to extract fine grain information from cache

access patterns, we apply frequency transformation on data to extracted fingerprints

to obtain features. To classify a suite of representative applications we train a model

using a support vector machine. This eliminates the need for manually identifying

72

patterns and crafting processing steps in the formulation of the cache attack. In our

experimental work, we classify the applications bundled in the Phoronix Test Suite.

Note that we do not have any information about the content of the code and nor

have we studied any internal execution patterns.

In summary, this work

� for the first time implements machine learning algorithm, i.e. SVM, to profile

the activity of other users on the cloud

� extracts the feature vectors from cache access data for different types of ap-

plications using a straightforward FFT computation,

� demonstrates that there is no need for synchronization between spy and target

to profile an application while SVM based approach is implemented,

� shows that targeted co-location is achievable by sending ping requests on Ama-

zon EC2 if the targeted IP is known by spy

The rest of the study is divided as follows. The approach is presented in Sec-

tion 6.2. The experiment setup and results are explained in Section 6.3.

6.2 Methodology

In this section, we show how machine learning can be used on cache profiles to detect

running programs. One specific use case is the detection of the ping service, which

can serve as an implicit co-location test.

6.2.1 Extracting Feature Vectors from Applications on Cache

Our thesis is to show that programs have unique fingerprints in cache and it is

possible to learn and classify application fingerprints using ML algorithms with a

73

Figure 6.1: The flow chart of the approach for both L1 and LLC profiling

high accuracy. The proposed approach starts by creating profiles for every software

using the Prime&Probe technique. This way, dynamic and static functions of the

application are detected, resulting in fairly reliable fingerprints. The raw cache

timing traces are first turned into hits and misses, followed by a Fourier transform.

Performing a Fourier transform on the cache profiles removes the need for tight

synchronization and makes the approach more resilient to noise. The FFT output

can then directly be fed into a machine learning method of choice. The process to

obtain application fingerprints is visualized in Figure 6.1. Our approach differs from

previous works in cache-based information extraction in several ways:

Fourier Transform Most previous works [64, 81, 89], assume the monitoring pro-

cess to be synchronized. The synchronization is handled by triggering the

event, then the profiling phase is started. However, it is not trivial when the

monitoring process and the target do not have communication. In addition,

the functions periodically accessed in the application would give a certain in-

formation which could be exploited by using Fourier transform. Therefore,

we transform the data to frequency domain from time domain in order to

eliminate a strong assumption like synchronization and to extract the periodic

functions’ cache accesses as fingerprints of the applications.

No Deduplication Deduplication enables incredibly powerful side channel attacks [64,

74

29, 133], most prominently the Flush and Reload technique [172, 64]. How-

ever, public cloud service providers are aware of this issue and have disabled

deduplication. Therefore, it is impossible to track data of other VMs in shared

memory in IaaS and most PaaS clouds. Hence, the Prime&Probe technique

is preferred to implement in our scenario instead of the Flush and Reload

method to eliminate the strong assumption for deduplication. Prime&Probe

technique is simply based on fill all ways in the monitored LLC set by enabling

Huge pages which is possible in all public clouds.

The resolution of the resulting analysis is lower than Flush and Reload method

in LLC, however the results show that after training enough data it is efficient

to detect programs used by other co-located VMs.

Detecting Dynamic Code Our method does not make any assumption on whether

code is dynamic, static or a shared function. Instead, we profile one of the

columns in the cache, as shown in Figure 6.2. This means the location of a line

in LLC might change from one run to another run if the function is dynamic.

However, the offset bits (o) never change therefore, it resides on one of the

set-slice pairs solving s mod 64 = o.

Long profiles Our method shows that even if the entire process of a program is

not profiled, the spectral density of a small part of the program can give

enough information to detect the program (in fact, the length of the analyzed

programs varies from two seconds to 3.5 hours).

Our approach starts by creating cache profiles for every application by using the

Prime&Probe technique in the same core to monitor all L1 cache sets. The analysis

of L1 cache leakage provides a very high-resolution channel, thereby describing a

best-case scenario for the learning technique. In addition, the L1 cache experiments

75

Figure 6.2: Visualization of 10 core LLC. Gray set-slice pairs are noisy, white set-slice
pairs are unused sets and black set-slice pairs are actively used by target application.

provide valuable information which cache sets are actively used by the application.

This information can be used as a preparatory step for LLC profiling to find the

corresponding active sets in LLC. After the data is collected for a set of application,

the Fourier transform is applied to extract the feature vectors subsequently used in

an ML algorithm.

6.2.2 Extracting feature vectors from L1 cache

We assume that the number of L1-instruction and L1-data cache sets are SL1 for

either cache. In L1 cache, the data and instruction cache are monitored separately,

while profiling process and target application are running in the same core. The

overall process to monitor L1 sets and creating feature vectors for different applica-

tions is given in Algorithm 2.

For L1-data and L1-instruction monitoring, a total of NT traces is collected per

set for each data set. Therefore, for each data set we have SL1 ·NT traces in total.

76

After collecting several data sets, the total number of traces is equal to SL1 ·NT ·ND

where ND is the total number of data sets per application collected by the spy.

The outliers in the data should be filtered before the raw data (R) is converted

to binary data (B). Hence, the L1-data and L1-instruction sets are monitored in

idle case and base Probe values are recorded. The outlier threshold (τo) and binary

conversion threshold (τc) are obtained based on the idle values.

Table 6.1: Symbol Descriptions

Symbols Description

SL1 Number of sets in L1 cache
NT Number of traces collected
ND Number of data sets per test
NS Number of applications
NC Number of cores
NA Number of active sets
τo Outlier threshold for samples
τc Hit&Miss threshold
Fs Sampling Frequency
FCPU CPU frequency
Tcc Prime&Probe time
Lf Length of fingerprint

The Probe timings are compared to τo and τc. The values are higher than τo are

set to median value of idle case of that set to get rid of the outliers. The conversion

from R to B is also implemented by comparing with τc. If the Probe time is higher

than τc, then the trace is converted to 1, implying an access to the cache set. If it is

below than τc, the trace is converted to 0, implying no cache access. The resulting

binary trace is converted by using Fourier transform.

In the transformation phase, the sampling frequency should be computed. In

order to calculate the sampling frequency (Fs), the total Prime&Probe time for

monitored set is computed in clock cycle (Tcc), then the CPU frequency (Fcpu) is

divided by Tcc to get Fs for L1-data and L1-instruction cache. We assume that

77

the sampling frequency is same for all sets in L1-data and L1-instruction cache. To

calculate the frequency components of binary data, Fs is used in FFT and the length

of the outcome is NT . However, the result has two symmetric sides of which only

the first half is used as a fingerprint. Therefore, the length of a fingerprint obtained

from one data set is NT/2.

Algorithm 2 L1 Profiling Algorithm

Fs = FCPU/Tcc
for i from 1 to NS do

for j from 1 to ND do
for k from 0 to SL1 − 1 do

for l from 1 to NT do
if R(i, j, k, l) ≥ τo then

R(i, j, k, l) = median(R(i, j, k, 1 : NT))
end if
if R(i, j, k, l) ≥ τc then

B(i, j, k, l) = 1
else

B(i, j, k, l) = 0
end if

end for
L(i, j, k) = FFT [B(i, j, k, 1 : NT)]

end for
Li,j
f = L(i, j, 0 : SL − 1)

end for
end for

For each process there are SL1 different fingerprints hence, these fingerprints are

concatenated from set 0 to set SL1 − 1 sequentially. Thus, the total length of the

fingerprint of a process is Lf = SL1 · NT/2. If the total number of data sets is ND

then, the size of a training matrix of a process is ND · Lf .

The SVM then processes all matrices combined and labeled from 1 to NS where

NS is the number of different applications. The final success rate is computed using

10-fold cross-validation.

78

6.2.3 Extracting feature vectors from LLC

Next, we apply the approach on LLC leakage. LLC has the advantage that is

accessible for all processes on the same system. Hence, as long as the monitored

process runs on the same system as the monitor, the side channel is accessible, even

if the two processes run in different VMs.

After finding the most used L1 set, the corresponding sets in LLC should satisfy

s mod 64 = o where o is the L1 set number. The number of corresponding sets

vary with the number of cores NC . In total, the number of LLC set-slice pairs on

current Intel CPUs can be determined by

SL3 = 2NLLCB−No ·NC (6.1)

where NLLCB is the number of LLC bits and No is the number of offset bits. After

the eviction set for each set-slice pair is created by using the algorithm [68], the

Prime&Probe profiling starts. For LLC profiling NT is same with L1 profiling and

after NT traces are monitored in one set-slice pair, the next set-slice pair is profiled.

The reason behind this is to increase the temporal resolution for each set-slice pair

which is crucial to catch dominant frequency components in frequency domain.

After collecting NT ·SL3 data, the same process in L1 profiling is applied to LLC

traces to get rid of the outliers. Before the binary data is derived from the raw

data, the noisy set-slice pairs need to be eliminated. For this purpose, the number

of cache misses are calculated in idle case and if the number of cache misses are

higher than 1% of NT that set-slice pair is marked as noisy, as shown in Figure 6.3.

After noisy sets are determined all of them are excluded from the next steps since

the spectral density of these sets is not stable.

The active set-slice pairs are determined by checking the number of cache misses

79

Set Number
0 50 100 150 200 250 300 350

N
um

be
r

of
 c

ac
he

 m
is

se
s

0

500

1000

1500

2000

2500

Figure 6.3: Eliminated noisy sets in LLC

Sample Number
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

T
im

in
g(

cl
oc

k
cy

cl
e)

80

100

120

140

160

180

200

220

240

Figure 6.4: One of the active sets for an application

in the data. If the number of cache misses is higher than 3% of NT in Figure 6.4, then

the set-slice pair is marked as an active set. After all active sets are derived, they

can be converted to binary data with the same process in L1 profiling in Figure 6.5

before the Fourier transform starts.

For the Fourier transform Fs should be calculated for LLC sets. Fs is lower in

LLC profiling since the number of ways in the sets are higher than L1 sets and the

access time to lines reside on LLC is greater than L1 lines. Therefore, the total

Prime&Probe time for each set-slice pair should be calculated and the average of all

of them are used as LLC Fs. After Fs is calculated, the active sets are transformed

80

Sample number
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

H
it(

0)
 v

s
M

is
s(

1)

0

0.5

1

1.5

2

Figure 6.5: Hit(0) and miss(1) graph of an active set

Frequency component
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

M
ag

ni
tu

de

0

0.005

0.01

0.015

Figure 6.6: Frequency components of an active set

to frequency domain in Figure 6.6. The number of frequency components per NT is

same with the L1 profiling.

The number of active sets (NA) may vary for each process therefore, the con-

catenated active sets have different length for each software. To solve this issue we

propose to combine all frequency components of active sets. All frequency compo-

nents are summed up element-wise and a fingerprint is obtained from each data set.

In LLC profiling the length of the fingerprint is smaller than L1 profiling because in

LLC scenario we cannot concatenate all active sets.

After obtaining all data sets for each application the total size of matrix for LLC

81

Frrequency component(Hz) ×105
0 1 2 3 4 5 6 7 8

M
ag

ni
tu

de

0

0.02

0.04

0.06

0.08

0.1

0.12

Figure 6.7: Combination of frequency components of all active sets

training data is ND · (NT/2). The SVM algorithm is applied as in the L1 profiling

case and the results are recorded.

6.2.4 Targeted co-location by ping detection on the cloud

Another use case of the described methodology is the detection of whether or not

a specific application is being executed. For this purpose we propose to detect

ping requests sent to a target VM. We then try to detect the execution of the

ping response process to verify and detect co-location with that target VM. In

order to detect the co-location on the cloud, different types of covert channels such

as LLC [82] and memory bus locking [158] have been used. These methods can

be effective to verify the co-location between spy and target VMs. Our method

also uses LLC, but, due to the omnipresence of ping support, this method is very

widely applicable. The scenario is as follows: the spy VM monitors LLC sets by

Prime&Probe to check the co-location with the target VM in the same cloud region.

Another collaborating process of the spy sends ping requests to the target VMs

with a certain frequency. These ping requests trigger executions of the ping service,

which is then observable by the spy VM.

82

Figure 6.8: The scenario for ping detection on Amazon EC2

The used approach is similar to the previous cases: The monitored sets are

determined by s mod 64 = 0. The reason behind this is the ping receptions are

seen random sets. Therefore, we find that it is sufficient to monitor these sets to

detect the ping. The steps to detect ping on the cloud are as follows:

1. Spy VM1 finds the noisy sets and excludes them from SL3 sets in VM1

2. Ping requests are sent by spy VM2 with a certain frequency

3. Spy VM1 begins to implement Prime&Probe on remaining sets

4. Spy VM1 determines the active sets in LLC

5. Fourier Transform is applied to the active sets

6. The frequency components are compared with the ping frequency

In our method, first the active IPs and the open ports should be found. In

Amazon EC2 every region has different IP ranges. We focus on South America

region and the IP range is documented [2]. Open ports can be found using the

nmap tool.

There are two types of ping namely hping and ping commands. The hping

command is more useful since specific ports can be pinged such as port 22 which

is used for SSH connection. Furthermore, the frequency of ping requests for hping

83

command can be set higher than in the ping command. There is a need to have

more frequent ping requests, as high-frequent calls to ping strengthen the LLC profile

and thus decrease the number of traces needed to detect the ping requests in LLC.

Therefore, we used hping in our Amazon EC2 experiments.

6.3 Application Detection Results

In this section, we explain the experiment setup used to collect data and make our

scenario applicable.

6.3.1 Experiment Setup

For the experiments, we have used the following two setups;

� Native Environment: In this setup, the applications are running on a na-

tive Ubuntu 14.04 version with no virtualization. The processor is a 10 core

Intel(R) Xeon(R) E5-2670 v2 CPU clocked at 2.50 GHz. The purpose of this

scenario is to run experiments in a controlled environment with minimal noise

and to show the high success rate of our methods. In addition, this processor

is the same type of processor mainly used in Amazon EC2 cloud.

� Cloud Environment: In this setup, Amazon EC2 cloud servers are used to

implement our experiments in a cross-VM scenario. In Sao Paulo region, the

processors are same with the one used in native environment with a modified

Xen hypervisor. The instance type is medium.m3 which has 1 vCPU. The aim

of this setup is to show the huge thread of our scenario in a public cloud. In

this setup, there are two co-located VMs in the same physical machine sharing

the LLC which is verified by the techniques [82].

84

To evaluate our approach on a broad range of commonly used yet different ap-

plications, we decided to use the Phoronix test benchmarks as sample applications

for classification [10]. We performed classification experiments on these applications

in three different scenarios. As baseline experiments we first performed the experi-

ments in the above-described native scenario, both by monitoring L1 cache leakages

and also by monitoring LLC leakages. The former shows the potential of L1 cache

leakages if they are accessible. The latter assumes a realistic observation scenario

for any process running on the same system. Finally, we performed the same ex-

periments on Amazon EC2 cloud to show the feasibility in a noisy and cross-VM

scenario. In this public cloud scenario, only LLC is profiled to classify benchmarks

since each VM has only one thread in the core and they do not reside on the same

core. For both L1 cache and LLC experiments, our methodology is applied to 40

different Phoronix benchmark tests in including cryptography, gaming, compress-

ing, SQL, apache and so on Appendix. Last but not least, we present a scenario

where we only try to detect the presence of a single application, the ping detection

described in Section 6.2.4.

6.3.2 Application Detection in Native Environment

We first performed experiments in the native environment.

6.3.2.1 Monitoring L1 Cache

In native case, first we implemented our profiling on L1 cache. There are two types

of cache structure namely, data and instruction. Therefore, in our experiments we

profiled each of them separately. In our processor there are SL1 = 64 sets for each

L1-data and L1-instruction cache and the sets are 8 way associative.

The profiling and application code run on the same core to detect misses in

85

L1 cache. Hence, the hyper-threading feature of Intel processors is used. Before

the training data is collected, an idle case of L1-data and L1-instruction sets are

monitored and base Probe values are recorded. For L1-data the base value is around

65 clock cycles and for L1-instruction it is around 75 clock cycles. Hence, the

outlier threshold is chosen as τo = 150 for both data and instruction cache. For the

conversion from raw data to binary data the threshold value is τo,d = 80 for data

cache and τo,d = 90 for instruction cache. The number of traces collected per set

for each data set is NT = 10, 000. Therefore, the total number of traces is equal to

640,000 which belongs to one data set for L1-instruction or L1-data.

To compute the sampling frequency, we checked the total Prime&Probe time

and it is almost same for all sets in L1 cache which is around Tcc = 200 clock

cycle. Hence, the sampling frequency is Fs = 2.5GHz/200 = 12.5MHz for L1

cache profiling. Fs for L1 cache is higher than LLC profiling because the number

of ways in L1 sets is smaller than LLC sets and accessing to L1 cache lines is faster

than LLC lines. Thus, the resolution of L1 profiling is higher than LLC profiling

which results more distinct feature vectors and high success rates in ML algorithm.

After Fs is determined, FFT can be applied to traces. The outcome of FFT

is NT/2 which is equal to 5,000 frequency components in our case. This process

is applied to all 64 sets in data and instruction cache for each test. Hence, the

feature vector of a test consists of 320,000 frequency components after all sets are

concatenated. The number of data sets per test is ND = 60 which means the training

data is a matrix of the size 2, 400× 320, 000.

To classify the training data, first 10-fold cross validation is implemented in

SVM. For cross-validation we implement both C-SVC and nu-SVC SVM types in

the LIBSVM library. Our results show that C-SVC gives better success rates, so

we preferred this option. For the kernel type, the linear option is chosen since the

86

1 2 4 8 16 32 64
Number of sets

40

60

80

100

S
uc

ce
ss

 r
at

e(
%

)
data
instruction

Figure 6.9: Success rate graph for varying number of sets to train the data

success rate is much higher than for the other options. After these options are chosen

kernel parameters and the penalty parameter for error are optimized by LIBSVM.

In both training and test phases the chosen parameters are used to implement SVM.

Therefore, there is no user interaction to choose the best parameters and the steps

are automated.

In cross-validation experiments, we show the effect of number of L1 sets on

success rate. If only 1 set is used to generate the training model, the cross-validation

success rate is 46.8% for instruction and 60.71% for data cache. With the increasing

number of sets, the cross-validation success rate for data and instruction cache is

increasing to 95.74% and 97.95%, respectively in Figure 6.9.

For training and individual success rate of test, 60 data sets per test are trained

where the SVMMODEL is obtained with C-SVC and linear kernel options. With

the cross-validation technique, the success rate for instruction cache is higher than

data cache. The reason behind this is some of the Phoronix tests do not use L1-data

cache however all tests use L1-instruction cache. Therefore, extracting the feature

vectors for tests in instruction cache is more successful than L1-data cache.

The results also show that the cross-validation success rate is 98.65% if all in-

formation in L1 cache (both instruction and data) is used in the machine learning

87

Test Number
0 5 10 15 20 25 30 35 40 Avg.

S
uc

ce
ss

 R
at

e
(%

)

0

10

20

30

40

50

60

70

80

90

100

110

Figure 6.10: Success rate for different tests in L1-data (blue) and L1-instruction
(yellow). The last bar represents the average of success rates for 40 tests

algorithm. To achieve this success rate we used all 64 cache sets and in total we

have 50× 640, 000 size feature vectors per test. Therefore, the size of training data

is 2, 000× 640, 000.

6.3.2.2 LLC Results

L1 profiling is not realistic in the real world since the probability of two co-located

VMs in the same core is really low. Therefore, before switching to public cloud we

implemented our attack in LLC with a cross-core scenario. The number of cores

is NC = 10 in our processor and the number of set-slice pairs solving the equation

in 6.1 s mod 64 = o is SL3 = 25 · 10 = 320 where NLLCB = 11 because of 2,048

LLC sets in total and the number of offset bits is No = 6. o is the set number which

is the most used one in L1 profiling for that test. Therefore, we have 320 set-slice

pairs in total to monitor.

Before collecting data for every test, the idle case of each set is monitored to

determine the base value (τb). τb changes between 90 and 110 clock cycle among

88

different set-slice pairs. Hence, for each set-slice pair τb is different. The outlier

threshold (τo) is 250 clock cycle. The threshold value (τc) for the conversion from

raw data to binary data is τb + 15 clock cycle. After obtaining the binary data, it

is trivial to find the noisy sets. If the number of cache misses is higher than 100 in

a set-slice pair, it is marked as noisy. These noisy sets are not processed when the

data is collected.

While collecting the training data 10,000 traces are collected per set-slice pair.

The active sets are determined by checking the number of cache misses in each set-

slice pair excluding the noisy sets. If the number of cache misses is higher than

300, then that set-slice pair is marked as active and they are included in Fourier

transform.

The Prime&Probe timings change between 1,800 and 2,200 clock cycle so the

sampling frequency (Fs) is taken 1.3 MHz. After FFT is applied to active sets, the

left symmetric side of the outcome is recorded. The length of the fingerprint for a

set-slice pair consists of 5,000 frequency components. If there are 6 active sets for

a test, the fingerprint of each active set are combined by element-wise in each data

set and final fingerprint is obtained from one data set per test.

For LLC experiments, we used 40 different benchmark tests to profile in LLC.

The number of data set per test is 50 and the length of vector for each feature

vector is 5,000. After collecting the data the training model is generated and the

cross-validation is applied to training data.

For the cross-validation, same options in L1 profiling are used in SVM. The

success rate for LLC test in average is 77.65% with 5,000 frequency components.

With the decreasing number of frequency components the success rate drops to 45%

in Figure 6.11.

The details of success rates for different tests are presented in Figure 6.12 by

89

Number of feature values
100 500 1000 1500 2000 2500 3000 4000 5000

S
uc

ce
ss

 R
at

e(
%

)

0

50

100

Native
Amazon EC2

Figure 6.11: LLC success rate with varying number of frequency components

Test Number
0 5 10 15 20 25 30 35 40 Avg.

S
uc

ce
ss

 R
at

e
(%

)

0

10

20

30

40

50

60

70

80

90

100

110

100

40

100 100100100

92

28

92

42

78

38

63

58

98

83

66 68

83 82

13

93

78 78

98100 100 100100100

88

60

80

72
73

33

100

87

93

75
78,5

Figure 6.12: LLC success rates for different tests in native scenario. The blue bar
represents the success rate for different tests. The last bar shows the average success
rate for all tests

using 10-fold cross-validation technique. The results are obtained from 5,000 fre-

quency components and 60 data sets per test. The lowest recognition rate is 13%

for GMPBENCH test since the success rate for this test is low in L1-data cache in

Figure 6.10.

90

6.3.3 Application Detection on EC2 Cloud

To show the applicability of ML technique to real world, we also perform our pro-

filing method on Amazon EC2. The challenges of performing the experiments on

a public cloud are hypervisor noise and the noise of other VMs in the monitored

sets. Therefore, some set-slice pairs are marked as active even if those pairs are not

used by target VM. Redundant cache misses in the active sets also pose a problem.

During Fourier Transform, these cache misses may cause shifts in frequency domain.

To overcome these difficulties, SVM technique is applied to the data, and as a result,

the success rate gets higher.

The number of tests decreases in cross-VM scenario since some tests do not work

properly and some of them have installation problems on Amazon EC2. Thus, the

number of tests used in this experiment decreases to 25. To classify the different

benchmark tests, same process in LLC profiling is used, then training data is pro-

cessed in SVM. The result is lower than native case because of the aforementioned

types of noise. The 10-fold cross-validation result is 60.22% in Figure 6.11 with

5,000 frequency components. This result shows that on public cloud the classifica-

tion success rate drops with increasing noise.

The success rates for individual tests change between 16% and 100% in Fig-

ure 6.13. The success rate decreases when the hypervisor and other VMs noise affect

the cache miss patterns. Even though the success rate is lower than native scenario,

this result demonstrates the applicability of out method in the cloud platform.

6.3.4 Ping detection on EC2

To detect the co-located VMs with spy VM, ping requests are sent by one of the

VMs controlled by the spy in the same region. The purpose of this is to decrease

91

Test Number
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Avg.

S
uc

ce
ss

 R
at

e
(%

)

0

10

20

30

40

50

60

70

80

90

100

110

60.22

48

32
38

44

100

84

36

100

92

82

44

68

100

68

78

22
28

16

52

100

88

36

5252

44

Figure 6.13: LLC success rates for different tests in cloud scenario. The blue bar
represents the success rate for different tests. The last bar shows the average success
rate for all 25 tests

RTT and increase the frequency of ping requests. At the same time, spy VM 2

monitors 320 set-slice pairs since the processor has 10 slices and 32 different set

numbers satisfying s mod 64 = 0.

The set-slice pairs are very noisy on the cloud therefore even if the candidate

VM is not co-located with the spy VM, there are some active sets in LLC because

of the noise from other VMs. However, when the frequency domain of active sets

is checked by the spy, there is no dominant frequency component or the dominant

frequency components are not consistent with the ping frequency. If the target VM

is co-located with the spy VM, then the periodic cache misses can be seen in one of

the active sets in Figure 6.14.

After applying Fourier Transform with an appropriate Fs, the dominant frequen-

cies are clearly seen in Figure 6.15. In order to calculate the frequency domain the

sampling frequency Fs should be computed before the frequency transformation is

applied to the data. After averaging all LLC sets, Fs is determined to be around

1,800 clock cycle. The normal CPU frequency of the processor is 2.5 GHz so Fs is

92

Prime and Probe Sample
0 2000 4000 6000 8000 10000

C
ac

he
 a

cc
es

s

0

0.5

1

1.5

2

Figure 6.14: Cache miss pattern of received ping requests in LLC

Frequency (Hz) ×104
0 0.5 1 1.5 2

0

0.2

0.4

0.6

0.8

Figure 6.15: Frequency components of ping requests in LLC

equal to 1.56 MHz on Amazon EC2 VMs. When the ping requests are sent every

0.4 ms from Spy VM2, then Spy VM1 can monitor the cache misses in active sets as

in Figure 6.14. When the frequency domain is generated, the frequency components

overlap with the frequency of ping requests in Figure 6.15.

6.4 Conclusion

In this paper we tackled the problem of automating cache attacks using machine

learning. Specifically, we devised a technique to extract features from cache access

profiles which subsequently are used to train a model using support vector machines.

93

The model is used later for classification applications based on their cache access

profiles. This allows, for instance, a cloud instance to spy on applications co-located

on the same server. Even further, our technique can be used as a discovery phase

of a vulnerable application, to be succeeded by a more sophisticated fine grain

attack. We validated our models on test executions of 40 applications bundled in

the Phoronix benchmark suite. Using L1 and LLC cache access profiles our trained

model achieves classification rates of 98% and 78%, respectively. Even further, our

model achieves a 60% (for a suite of 25 applications) in the noisy cross-VM setting

on Amazon EC2.

94

Chapter 7

Machine Learning based Website

Detection

7.1 Motivation

Web browsers have become indispensable components in our lives: They provide

access to news and entertainment. More importantly, browsers have become the de

facto platform through which we perform privacy and security sensitive interactions

such as online banking, web enabled healthcare, social networking etc. Due to nu-

merous vulnerabilities sandboxing has become a standard feature across browsers,

offering isolation from other sites viewed and other processes executing in the OS.

To thwart remote tracking, browser also commonly implement an incognito mode.

In the extreme case we have Onion routing, i.e. Tor, enabled browsers which allow

users to protect their privacy against Internet surveillance by randomizing the rout-

ing algorithm to hide the path packets take. By using a Tor browser a user may

hide the websites she visited. Such tools have become indispensable for whistleblow-

ers and dissidents who try to protect their identity against powerful corporations

95

and repressive governments. Besides privacy preserving browsers, other tools have

emerged to mask the identity of the user, e.g. Signal/Redphone, Silent Phone and

Telegram. Even the installation of such tools can be viewed as subversive action

by a repressive regime. In contrast, privacy enabled browsers come pre-installed

on most platforms. While browsers have significantly matured in providing privacy

assurances, they are still far from perfect. For instance, an attacker can still com-

promise the users privacy by exploiting microarchitectural leakages at the hardware

level. In 2012, Jana et al. [94] found out that memory footprints of processes are

unique and they could be used to detect the visited websites in the victim machine.

In 2015, Liu et al. [111] profiled the whole LLC in the system and Oren et al. [127]

implemented this technique to detect a small set of webpages in Javascript. What

enables such attacks is that many of the applications we use every day run in the

background in user space. Users trust these applications, even though they have

little control over what is executed by third-parties.

In this work, we show that it is possible for such a third party application to

collect data using hardware performance events (HPEs) and infer private user ac-

tivity across application boundaries, e.g. to track visited websites, even if privacy-

protecting technology, such as Incognito mode or the Tor browser are used. Such

malicious behavior is straightforward in Linux, as the perf subsystem of the kernel

allows to monitor HPEs from user space. Since the used HPE side channel informa-

tion is incidental and often noisy, advanced methods for data analysis are needed.

The recent advances in Machine Learning (ML) provide us with a powerful tool to

classify the complex noisy data in an effective manner. We show that while SVM,

Decision Tree and other classic ML methods are not sufficient to classify the complex

and noisy observed data into a high number of different classes, methods such as

Convolutional Neural Networks (CNN), a Deep Learning technique, can efficiently

96

extract meaningful data even in the presence of severe noise. By comparing the

various ML methods on data collected by a malicious user space process monitoring

HPEs with perf, we show that with CNNs, private user information can be inferred

with very high success rates in a highly automated fashion even if precautions such

as Tor browser are used.

Our Contribution. In summary, in this work:

� We combine advanced Machine Learning techniques to classify websites and

compare the efficiency of ML techniques in various scenarios.

� We use perf to access different types of hardware based side channels in the

system and combine them to get a better classification rate.

� We cover a wide-range of websites to classify (40 different web-pages) in the

victim machine, including 30 of the top ALEXA sites and 10 whistleblowing

web sites. In addition, we detect different subdomains in a domain to show

that finer-grained and leveled browsing tracking is possible.

� We demonstrate that the attacker does not need to synchronize with the

browser, as the alignment process is handled by the ML techniques.

� It suffices to monitor events for 1 second in Google Chrome and 5 seconds in

Tor browser scenarios to classify the websites with high accuracy.

7.2 Browser Profiling Scenarios

We investigate the inference of opened websites via HPEs in three distinct scenarios

hosted on two Linux test systems. The first system features an ARM Cortex-A53

processor with six programmable hardware counters, the second one comprises an

97

Intel i5-2430M processor with three programmable counters. Given the limited

number of counters on both systems, only a selection of HPEs is measured in each

experiment. A complete list of events supported by perf can be obtained from

the Linux man-pages[106]. As we are relying on the standardized perf event open

system call of the Linux kernel, there is no need to change the measurement code

when switching between systems. Further details about the profiling scenarios are

given in the following paragraphs.

Google Chrome on ARM. In this scenario, we profile the Google Chrome browser

(v55.0.2883) with default options on the ARM system. While the browser loads

websites, a malicious user space application is measuring six hardware performance

events: HW INSTRUCTIONS, HW BRANCH INSTRUCTIONS, HW CACHE REFERENCES, L1 -

DCACHE LOADS, L1 ICACHE LOADS, and HW BUS CYCLES. This selection of events cov-

ers instruction retirements, cache accesses, and external memory interfaces. It gives

a comprehensive view of the microarchitectural load the browser is putting on the

processor. The selected events are measured core-wide, hence including noise from

other processes and background activity of the operating system. Since we want

to assess the feasibility of core-wide profiling, the browser process is bound to the

measured processor core. The events are then measured for five seconds.

Google Chrome (Incognito) on Intel. In this scenario, we profile Google

Chrome in Incognito mode with default options on the Intel system. Since the

number of counters is limited to three on this processor, the malicious user space

application is measuring only three events: HW BRANCH INSTRUCTIONS, HW CACHE -

REFERENCES, and LLC LOADS. Moreover, the events are acquired in a process-specific

fashion, hence the browser processes float on all processor cores. The events are

then measured for one second specifically for the rendering process of the opened

website. Compared to the ARM scenario, the reduced event selection still provides

98

a meaningful view of the microarchitectural load. As the browser processes are not

bound to one core anymore, we substitute events related to the L1 cache with last-

level cache loads. In addition, the bus cycle event is omitted, because it is noisier on

the Intel platform. Also, overall retired instructions are omitted, because we found

the retired branch instructions to yield more usable information.

Tor Browser on Intel. In this scenario, we profile the Tor Browser (v6.5.1, based

on Firefox v45.8.0) on the same Intel platform as before. In contrast to Chrome, the

Tor Browser renders all tabs in one process, which is subsequently profiled by the

malicious application. While the same three performance events are observed, the

measurement duration is prolonged to 5 seconds. This is because the Tor network

introduces significant delays while opening websites.

Synchronization. None of the scenarios require strict synchronization between the

browser and the malicious application. Small misalignment is simply passed on to

the Machine Learning step. Therefore, we only investigate simple synchronization

techniques that can be achieved in practice. For Google Chrome on Intel, the

adversary scans the running processes twice per second and checks whether a new

rendering process has been spawned. Once a new process is detected, the adversary

starts to measure the corresponding process-specific events. The Tor Browser, in

contrast, is started freshly for every opened website. Again, the adversary checks

all running processes twice per second and once the Tor Browser is detected, the

process-specific profiling is started. This includes additional noise as the browser

startup phase is also captured. In the ARM scenario, the measurements are precisely

aligned with the start of loading a website. This is used to investigate whether more

precise alignment yields better results. Such a trigger signal could be derived from

a sudden change or characteristic pattern in the event counts, as the load of the

system changes when a website is opened.

99

7.3 Website Profiling Results

In each of the profiling scenarios described in Section 7.2, we monitor events when

loading the homepages of the most visited websites according to Alexa [19]. The

tested websites, excluding adult ones, is listed in Appendix A.1 (1-30). This il-

lustrates the general effectiveness of the Machine Learning techniques to classify

websites based on HPEs. To demonstrate that also fine-grained profiling is feasible,

10 different sub-pages of the Amazon.com domain are monitored in Google Chrome

on Intel. Finally, a selection of whistleblowing websites is measured when visited

with the Tor browser. They are also given in Appendix A.1 (31-40).

Google Chrome on ARM. For the experiments on ARM, each website is mon-

itored 20 times to train the models. For each of these visits, 25,000 samples are

acquired per hardware performance event. The samples of all events are then con-

catenated to yield a final measurement size of 150,000 samples. For 30 websites,

the total training data size is therefore 90 · 106 samples. Based on this training set,

the success rates after cross-validation are 84% for linear SVM, 80% for kNN, and

less than 50% for DT and CNN. The low success rates of DT and CNN indicate

that not enough samples have been acquired. Figure 7.1(a) illustrates the success

rates for each of the visited websites when classified with SVM. Since the number

of samples collected in this scenario is small, 10-fold cross-validation is used. The

lowest detection rate is 70%, which shows that core-wide profiling is feasible even in

the presence of background noise. The average classification rate of 84% is shown

as a dashed line in the figure.

Google Chrome (Incognito) on Intel. For the Google Chrome experiments

on Intel, the number of measurements per website is increased to 50. As more

samples are acquired, fixed training and test sets are derived instead of using cross-

100

0 5 10 15 20 25 30

Website Number

0

20

40

60

80

100

S
u
c
c
e
s
s
 R

a
te

 (
%

)

(a) SVM Success Rates

0 10 20 30 40

Website Number

0

20

40

60

80

100

S
u

c
c
e

s
s
 r

a
te

(b) CNN Success Rates

Figure 7.1: Success rates per website for (a) Google Chrome on ARM with the
dashed line showing an average classification rate of 84%, and (b) Tor Browser on
Intel with the dashed line showing an average classification rate of 68%.

validation. Out of the 50 observations, 40 are used for the training phase whereas

10 are collected to test the derived models. Since each website is monitored for only

one second, every measurement now consists of 10,000 samples per event. With

three observed events, this yields a total training set size of 36 · 106 and a test set

size of 9 · 106 samples.

Figure 7.2(a) shows the success rates over an increasing number of training mea-

surements for all Machine Learning techniques. Clearly, CNN achieves the highest

101

5 10 15 20 25 30 35 40
Number of training samples

40

60

80

S
uc

ce
ss

 r
at

e(
%

)
CNN
SVM
kNN
DT

(a) Alexa Top 30

5 10 15 20 25 30 35 40
Number of training samples

20

30

40

50

60

70

S
uc

ce
ss

 r
at

e(
%

)

CNN
SVM
kNN
DT

(b) Same Domain Pages

Figure 7.2: Success rate vs. number of training measurements for Google Chrome
(Incognito), and (a) 30 different websites (b) 10 same domain web pages.

classification rate, if enough training samples are available. In particular, the suc-

cess rate for 40 training observations per website is 86.3%. If the training data size

is small, SVM and kNN achieve similar success rates as CNN. Due to the large size

of feature vectors in the training and test data, DT gives lower success rates than

other ML techniques. Regarding the computational effort, the training phase of

CNN takes 2 hours on a GPU and is consequently the longest among the Machine

Learning techniques. In contrast, the test phase takes approximately 1 minute for

every ML technique.

The second experiment for Google Chrome in Incognito mode on Intel assumes

102

1 2 3 4 5
Number of guesses

0

20

40

60

80

100

S
u

c
c
e

s
s
 r

a
te

 (
%

)
SVM
CNN
Random

(a) Google Chrome (Incognito)

1 2 3 4 5
Number of guesses

0

20

40

60

80

100

S
u

c
c
e

s
s
 r

a
te

 (
%

)

SVM
CNN
Random

(b) Tor Browser

Figure 7.3: Number of guesses vs. classification rate for (a) Google Chrome (Incog-
nito), and (b) Tor Browser. Solid lines represent results for Alexa Top 30, while the
dashed lines illustrate the same domain results.

that an adversary has detected a website that the user has visited. Consequently, the

attacker tries to infer which page of the website the user is interested in. To illustrate

the feasibility of this attack, we selected 10 pages of the Amazon.com domain that

display different sections of the online store (kitchen, bedroom, etc.). Naturally,

this scenario is more challenging, as the difference between web pages of the same

domain is smaller than for entirely different websites. Nevertheless, it is still possible

103

5 10 15 20 25 30 35 40

Number of training samples

20

40

60

80

S
u

c
c
e

s
s
 r

a
te

 (
%

)
CNN
SVM
kNN
DT

(a) Alexa Top 30

5 10 15 20 25 30 35 40

Number of training samples

20

30

40

50

60

S
u
c
c
e
s
s
 r

a
te

 (
%

)

CNN
SVM
kNN
DT

(b) Same Domain Pages

Figure 7.4: Success rate vs. number of training measurements for the Tor Browser
and (a) 30 different websites, or (b) 10 same domain web pages.

to correctly classify the visited web pages with moderate success. This is illustrated

in Figure 7.2(b). When using CNN and SVM, the success rate is 64%. kNN yields

60% success rate, while DT drops to 52%. For CNN and SVM, we also investigate

the success rates when the number of guesses is increased in Figure 7.3(a). If the

first 5 result classes are considered, websites can be detected with 99% accuracy

for SVM and CNN. Similar results are obtained for the same domain experiments,

where both CNN and SVM yield 92% accuracy.

Tor Browser on Intel. For the Tor Browser experiments, the same events as

104

1 2 3 4 5 6 7 8

Number of training samples

10

20

30

40

50

60

70

S
u

c
c
e

s
s
 r

a
te

 (
%

)

CNN
SVM
kNN
DT

(a) All Websites

1 2 3 4 5

Number of guesses

0

20

40

60

80

100

S
u
c
c
e
s
s
 r

a
te

 (
%

)

SVM
CNN
Random

(b) Whistleblowing vs. Others

Figure 7.5: (a) Success rate vs. number of training measurements for Tor Browser
and all websites. (b) Number of guesses vs. classification rate for whistleblowing
(dashed) and all websites (solid).

before are observed as well as the same number of measurements are taken for each

website. Again, 40 of those measurements are used to construct the training set,

while 10 measurements form the test set. As the Tor Browser is monitored for 5

seconds, 50,000 samples are acquired for each event and website. This yields 150,000

samples for one measurement, 180·106 samples for the entire training set, and 45·106

samples for the test set.

Figure 7.4(a) shows the success rates over an increasing number of training mea-

105

surements for all Machine Learning techniques. CNN yields the highest success rate

of 71%. While SVM and kNN have similar success rates around 66%, Decision Tree

yields a lower accuracy of 60%. The results show that CNN can handle noisy data

and misalignment problems better than other methods, since CNN learns the rela-

tions between traces. The experiment results for the 10 web pages on Amazon.com

are illustrated in Figure 7.4(b). In contrast to the Google Chrome results, Decision

Tree yields the highest success rate of 59%. We believe the reason is the small num-

ber of classes that increases the efficiency of DT. The remaining algorithms classify

the same domain web pages with a similar success rate of approximately 49%. In

addition, Figure 7.3(b) shows the success rates for CNN and SVM over an increasing

number of guesses. While the random selection success rate is around 16% for 5

guesses, CNN achieves a success rate of 94%. For the same domain web pages, the

success rate of CNN is 88% for 5 guesses. SVM achieves slightly worse results.

Finally, we investigate whistleblowing websites, as visiting them anonymously

is an important reason to use the Tor Browser. For this experiment, we select 10

whistleblowing portals from [7] (also given in Appendix A.1). In the first step,

these websites are classified using all ML techniques. While CNN yields the best

classification rate of 84%, SVM exhibits a success rate of 78%. In contrast, DT and

kNN have lower success rates around 60%. In the second step, the classification

is repeated for all websites considered so far (whistleblowing and Alexa Top 30).

Figure 7.5(a) illustrates the success rates for all ML techniques. When classifying

40 websites, CNN yields a success rate of 68%, while SVM achieves 55%. In contrast,

kNN and DT algorithms cannot classify the websites effectively. When the number

of guesses is increased, the success rate improves again. Figure 7.5(b) shows the

classification rates over an increasing number of guesses. If only whistleblowing

websites and 5 guesses are considered, CNN yields a success close to 100%. When

106

all websites are considered, the success rate of CNN is 89.25%. SVM achieves slightly

worse results. Individual success rates for CNN are shown in Figure 7.1(b). The

lowest success rate is around 20% for two websites and seven websites are classified

correctly with 100% accuracy. An interesting observation is that among the 40

websites, the whistleblowing portals are still classified with good success rates. With

an average success rate of 68%, CNN is more capable than other ML techniques to

correctly classify websites opened in Tor browser.

7.4 Discussion

The experiments on ARM were conducted with core-wide measurements, whereas

HPEs were acquired in a process-specific fashion on Intel. In general, core-wide

acquisition is expected to introduce more noise in the measurements, e.g., from

system activity in the background. For process-specific acquisition the activity of

the rest of the system does not impair the measurements, as the perf subsystem

accumulates event counts only when the specified process is running. According

to the results presented in the previous section, however, both scenarios allow to

classify websites with success rates of over 80% for SVM. This is because the test

systems were mostly idling during the experiments. If this is not the case, the effects

of increased system load can be countered by increasing the profiling time in order to

obtain more information from the renderer process. Furthermore, an adversary can

train multiple models for multiple levels of system load to account for an unknown

load of the target system. Also, a slight increase of the number of guesses yields a

significant increase in classification success. These measures also help against other

impairments of the measurement quality, e.g., if multiple websites are opened in

parallel in the Tor browser, if direct URLs are used instead of visiting the homepage

of a website, if the number of profiled websites grows, or if websites are visited that

107

have not been profiled and cannot be classified as a consequence.

Compared to Google Chrome in Incognito mode, the results of the Tor Browser

are worse on average. This can be explained with the browser start-up phase, which

is always captured for Tor. Also, random network delays introduce jitter in the

observations of the website loading. Large delays require to prolong the event ac-

quisition phase, otherwise the success rates are expected to drop. Another adverse

effect is the changing geo-location of the Tor exit nodes. Many websites, particularly

news sites like New York Times and Yahoo, customize their appearance based on

the location of their visitors and therefore introduce additional noise in the mea-

surements. Similar effects can occur if websites contain personalized advertisements

and other frequently changing content. While this potentially decreases the suc-

cess rates, we believe that an important part of the profiling relies on the website

templates.

Among the Machine Learning techniques, Convolutional Neural Networks have

proven to be the most capable for classifying websites, if enough samples are avail-

able. This is the reason why CNNs performed well in Google Chrome and Tor

Browser experiments, but not in ARM experiments. CNNs are built for multi-

classification of complex structures by extracting meaningful features. On the con-

trary, SVM and kNN are designed to create hyperplanes to separate space into

classes. Since the number of dimensions is high in the experiments, it is difficult

to find the best hyperplane for each dimension. Nevertheless, there is still a need

for further studies on CNN, since the results could be improved by modifying the

parameters, number of layers and neurons.

In general, the feasibility of website fingerprinting via hardware performance

events is not limited to the specific profiling scenarios and test platforms used in

our experiments. This is because of the fundamental phenomenon that loading

108

different websites creates different microarchitectural footprints. This a logical con-

sequence of optimized software that is designed to provide best user experience.

Therefore, similar results are expected also for other x86 and ARM processors, as

well as for other HPE interfaces and web browsers, unless mitigation strategies are

implemented.

7.5 Outcome

When websites are loaded in the browser, they stress the underlying hardware in a

distinct pattern that is closely related to the contents of the website. This pattern is

reflected in the microarchitectural state of the processor that executes the browser,

which can be observed with high precision by counting hardware performance events.

Since these events can be legitimately measured by user space applications, it is

feasible to infer opened websites via performance event measurements. We showed

this by utilizing machine learning techniques, achieving recognition rates of up to

99% with 5 guess in Incognito mode. In addition, the results show that CNN is

more powerful to obtain better classification rates from high number of classes in

the presence of noise. By applying CNN, the whistleblowing websites are classified

with 79% accuracy among 40 websites while the overall classification rate increases

up to 89.25% with 5 guesses in Tor browser.

109

Chapter 8

Machine Learning based

Side-Channel Attacks on Mobile

Platforms

8.1 Motivation

Today, more than 1 billion people use Android applications [151]. The security

and privacy of these applications are therefore of great relevance. The Android

OS therefore employs a variety of protection mechanisms. Apps run in sandboxes,

inter-process communication is regulated, and users have some degree of control via

the permission system. The majority of these features protects against software-

based attacks and logical side-channel attacks. The processor hardware, however,

also constitutes an attack surface. In particular, the shared processor cache heavily

speeds up the execution of applications. As a side effect, each application leaves

a footprint in the cache that can be profiled by others. These footprints, in turn,

contain sensitive information about the application activity. Jana et al. [94] showed

110

that browsing activity yields unique memory footprints that allow to infer accessed

web pages. Oren et al. [127] demonstrated that these footprints can be observed

in the cache even from JavaScript code distributed by a malicious website. While

these attacks have succeeded based on a solid amount of engineering, the increas-

ing complexity of applications, operating systems (OS), and processors make their

implementation laborious and cumbersome. Yet, studying side-channel attacks is

important to protect security and privacy critical applications in the long term.

We believe that machine learning techniques, especially Deep Learning (DL), can

help make side-channel analysis significantly more scalable. DL thereby reduces the

human effort by efficiently extracting relevant information from noisy and complex

side-channel observations. At the same time, DL introduces a new risk as attacks

become more potent and easier to implement in practice.

In this work, we demonstrate this risk and compile a malicious Android appli-

cation, which, despite having no privileges or permissions, can infer private user

activities across application and OS boundaries. With the App, we are able to

detect other running applications with high confidence. With this information, we

focus on activities that happen within an application. We detect visited websites in

Google Chrome and identify videos that are streamed in the Netflix and Youtube ap-

plications. Those inferences are possible by analyzing simple last-level cache (LLC)

observations of at most 6 seconds with advanced DL algorithms. The entire attack

succeeds in well under a minute and reveals sensitive information about the mobile

phone user. None of the currently employed protection mechanisms prevent our

attack, as the LLC is shared between different processes and can be monitored from

user space. Our cache profiling technique is based on the Prime+Probe (P+P) at-

tack [152], which relies on cache eviction to monitor certain cache sets. In contrast

to previous work, we implement this eviction with a dynamic eviction set test that

111

succeeds even for imprecise timing sources, random line replacement policies, and

missing physical memory addresses information. This comes at the cost of measure-

ment accuracy and introduces a certain amount of noise in the cache observations.

We counter this effect by applying machine learning to the observations, and com-

pare classical algorithms to advanced deep learning along the way. While Support

Vector Machines (SVMs) and Stacked AutoEncoders (SAEs) struggle during the

classification, Convolution Neural Networks (CNNs), a DL technique, succeed in

efficiently extracting distinct features and classifying the observations. As CNNs

have recently gained attention in the field of side-channel analysis, we explain our

parameter selection and compare it to related work. For the implementation of our

attack, we neither require the target phone to be rooted nor the malicious appli-

cation to have certain privileges or permissions. On our test device, a Nexus 5X,

the Android OS is up-to-date and all security patches are installed. The malicious

code runs in the background, requires no human contribution during the attack, and

draws little attention due to the short profiling phase.

Our Contribution. In summary, we

� propose an inference attack on mobile devices that works without privileges,

permissions, or access to special interfaces.

� find eviction sets with a novel dynamic timing test that works even with im-

precise timing sources, random line replacement policies, and virtual addresses

only.

� classify cache observations using ML/DL techniques (SVMs, SAEs, CNNs) and

thereby infer running applications, opened websites, and streaming videos.

� achieve classification rates up to 98% with a profiling phase of at most 6

112

Figure 8.1: Mapping of virtual memory to cache sets.

seconds. The entire attack succeeds in well under one minute.

8.2 Inference Attack

The threat model of our proposed inference attack assumes that a mobile device

user installs a malicious application from an app store on Android. This happens

regularly, as malicious apps offer benign functionality to disguise malicious back-

ground activities (e.g. hidden crypto currency mining). The malicious code needed

for our attack operates from user space and does not need any app permissions.

This means that we neither require a rooted phone, nor ask the user for certain

permissions, nor rely on any exploits, e.g., to escalate privileges or to break out of

sandboxes. Furthermore, we do not rely on features or programming interfaces that

might not be available on all Android versions. The sole task of our malicious code

is to profile the LLC and classify victim activities with pre-trained ML/DL models.

Once the LLC profiles have been gathered, the models are queried to infer sensitive

information.

113

05611121516...63

cache linecache set

page offsetpage table index /
page frame number

Figure 8.2: Virtual/physical address and its interpretation.

8.2.1 Attack Outline

The proposed inference attack consists of two main phases. In the training phase,

the attacker creates ML/DL models on a training device that is similar to the

target device. Ideally, the processor and operating system are identical on both

devices. The models are created by recording raw LLC profiles of target applications,

websites, and videos, followed by preparing the feature vectors, and training the

ML/DL algorithms with them. The trained models are then directly integrated into

the malicious application, which is subsequently published in the app store. In the

attack phase, the malicious app prepares eviction sets for profiling the LLC on the

target device. Subsequently, the LLC sets are profiled in a Prime+Probe manner

and the feature vectors are extracted. Finally, the feature vectors are classified with

the pre-trained models to infer opened applications, visited websites, and streamed

videos. All steps of the attack phase are lightweight and can be executed in the

background without drawing notable attention.

8.2.2 Finding Eviction Sets

Once deployed, the first task of the malicious app is to find eviction sets on the

target device. An eviction set is a group of memory addresses that map to the

same cache set. These addresses are called set-congruent. Figure 8.1 illustrates the

problem of finding set-congruent addresses and forming eviction sets. The graphic

shows a block of virtual memory that is backed by two fixed-size memory pages. In

114

the figure, we assume a common page size of 4 KiB. As soon as an address within

the block is accessed, the corresponding memory content is brought into the pro-

cessor cache. Since the cache manages data on fixed-size cache lines, one access

will cache multiple bytes. We assume a common cache line size of 64 bytes. The

illustrated cache is set-associative and holds multiple lines per cache set. Memory

that is brought into the cache is deterministically assigned to a cache set. For last-

level caches, this assignment is commonly derived from physical addresses that are

unavailable to most user space applications. Figure 8.2 illustrates the link between

virtual and physical addresses, and how they are interpreted by the cache. The

most significant bits of each virtual address are the page table index, while the least

significant bits are the page offset. A page size of 4 KiB yields log2(4096) = 12

offset bits. The page table index is used to lookup an entry in the page tables that

contains the page frame number. The page frame number and the page offset form

the physical address. The page offset bits are thereby identical in both virtual and

physical address. The least significant bits of the physical address are then used by

the cache controller for basic indexing. The lowest bits are used to address a byte on

a cache line, while the subsequent bits determine the cache set in which the address

will be placed. For 1024 cache sets, 10 bits are used as cache set index. As shown in

Figure 8.2, these bits do not fit entirely within the page offset (highlighted in gray).

Therefore, the exact cache set cannot be determined from the virtual address, as

the most significant index bits are unknown. This complicates the mapping of vir-

tual addresses to cache sets and may cause consecutive pages to map to completely

different parts of the cache, as indicated in Figure 8.1. Finding eviction sets from

user space is therefore a non-trivial problem. To fully solve it, one must (a) group

virtual addresses according to cache sets, and (b) obtain the correct order such that

group 0 maps to cache set 0 and so on. We refer to this as an ordered mapping

115

Algorithm 3 Finding eviction sets.

1: T = {}
2: told = 0
3: for i from 1 to n do
4: add (T , i)
5: tT = access (T , r)
6: if (tT − told) > τjump then
7: E ← {}
8: for all p in T do
9: tp = access (T n{p}, r)

10: if (tT − tp) > τjump then
11: add (E , p)
12: end if
13: end for
14: report (E)
15: remove (T , E)
16: told = access (T , r)
17: else
18: told = tT
19: end if
20: end for

between virtual addresses and cache sets. In practice, one must obtain physical

address bits to derive this mapping, e.g., by gaining elevated privileges [108] or by

exploiting additional vulnerabilities [62]. Alternatively, it is possible to find an un-

ordered mapping that only fulfills (a). This can be achieved with search algorithms

that perform simple timing measurements and thereby find groups of set-congruent

virtual addresses. While the algorithms do not reveal which group corresponds to

which cache set, they can be run entirely from user space. In literature, the study

by Vila et al. [160] investigates this type of search algorithms. The authors give a

comprehensive overview of previous approaches, but limit their evaluation to Intel

processors. We discuss approaches relevant to this work in the following paragraph

and refer the interested reader to this study for further information.

Lipp et al. [108] compile eviction sets from physical addresses which they obtain

116

from the pagemap file that is present on many Linux systems. After their work

was published, Android restricted the access to pagemap entries from user space.1

Irazoqui et al. [86] and Gruss et al. [61] rely on huge pages, i.e. pages with typical

sizes of bigger than 1 MiB. Huge pages increase the page offset and thereby reveal

the missing bits that determine the cache set. Oren et al. [127] and Bosman et

al. [29] rely on special page allocation mechanisms in web browsers and operating

systems that simplify the eviction set search. Genkin et al. [51] build eviction sets

from sandboxed code within a web browser, while only relying on virtual addresses.

Yet, they still require a precise and low-noise timing source to distinguish cache hit

and miss. In contrast to these previous works, we propose a search algorithm that

neither relies on physical addresses (whether obtained from pagemap, huge pages,

or elsewhere), nor on certain features of memory allocators, nor on a precise timing

source. Our approach for finding eviction sets is purely based on virtual addresses

and robust against imprecise and noisy timing sources. In addition, we found our

approach to be resilient against the random line replacement policy implemented in

many ARM application processors.

Algorithm 3 outlines our approach for finding eviction sets. Prior to execution,

we assume that n memory pages have been requested and are available as a memory

pool. Note that we do not pose any requirements on the memory pages, thus, our

algorithm works with any page size, including, but not limited to, 4 KiB. Since we

want to evict the entire LLC, we need to choose n such that the requested memory

area is large enough to fill it. In our experiments, we request a memory area that is

twice as large as the LLC. This turned out to be sufficient for deriving all eviction

sets. Algorithm 3 iterates over the allocated memory pages in sequential order.

Each unused page is first added to a temporary eviction set T (line 4). Next, the

1https://source.android.com/security/bulletin/2016-03-01

117

https://source.android.com/security/bulletin/2016-03-01

0 100 200 300 400
Page Number

0

2500

5000

A
cc

es
s

T
im

e
(n

s)

(a) Average page access time, tT , for an increasing number of pages in T .

0 50 100 150 200
Page Number

3800

4400

5000

A
cc

es
s

T
im

e
(n

s)

(b) Average page access time, tp, used to filter an eviction set from T .

Figure 8.3: Plots of (a) tT and (b) tp, as used in Algorithm 3.

first byte of each page in T is accessed and the average time tT of this access cycle

is measured. The parameter r determines how often the access cycle is repeated.

In each cycle, all pages in T are accessed once. The overall timing is then divided

by r to obtain the average. This is useful to account for imprecise timing sources

and different replacement policies. A detailed discussion of r is given later in this

section. The access time tT is then compared with the time from the previous loop

cycle (line 6), where T was one page smaller. If the time difference is higher than a

threshold τjump, then there is a systematic contention in a cache set. In other words,

the pages in T entirely fill one cache set and cause a line replacement in the process.

This is illustrated in Figure 8.3(a), which shows the average access time tT over an

increasing number of pages in T . As long as no set contention occurs, the average

timings increase steadily. Once a contention happens, the timing peaks. Each peak

118

in the plot indicates that one cache set is completely filled.

After a set contention is detected, Algorithm 3 iterates over all pages in T ,

temporarily excludes one of them from T , accesses this reduced set, and stores the

average access time in tp (line 9). If the time difference between tT and tp is again

bigger than τjump, then the excluded page p belongs to the eviction set. This is

illustrated in Figure 8.3(b), which shows the average access time tp for all candidate

pages p in T . As soon as a candidate is part of the eviction set, the systematic set

contention vanishes and the access time tp drops. Each drop in the plot therefore

indicates a member of the eviction set. Those pages are then added to the final

eviction set E , which is reported on line 14. The entries in E are subsequently

removed from T , before the outer loop continues to add unused pages to T . Once

the outer loop reaches n, the reported eviction sets are expanded. This procedure

is outlined in the following paragraph.

Eviction Set Expansion and Duplicates. Each of the m eviction sets reported

by Algorithm 3 contains a list of memory pages. Since one page fits more than one

cache line, we can derive multiple evictions sets from one E . This is indicated in

Figure 8.1. With 4 KiB pages and 64-byte cache lines, there are 64 lines on one

page. As memory pages are contiguous physical memory, we know that those 64

lines belong to 64 consecutive cache sets. Hence, we can derive 64 adjacent eviction

sets from one E (the first being E itself) by simply adding multiples of 64 to the

start address of the pages. Depending on how large we chose n, it can happen that

Algorithm 3 reports more than one eviction set for each cache set. We therefore need

to check all reported eviction sets for duplicates and remove them. This procedure

is outlined in Algorithm 4. It starts by storing the indices of all m reported eviction

sets from Algorithm 3 in the list B for bookkeeping (line 2). As long as B is not

empty, the first index is removed and assigned to f (line 4). The algorithm then

119

Algorithm 4 Removing duplicates.

1: F = {}
2: B = {1..m}
3: while notempty (B) do
4: f = pop (B)
5: for s in B do
6: tE = access ([onepage (Ef) , Es] , r)
7: if (tE > τjump) then
8: remove (B, s)
9: end if

10: end for
11: add (F , f)
12: end while

iterates over all remaining indices s and accesses the corresponding eviction sets Ef

and Es. In particular, one page in Ef and all pages in Es are accessed consecutively,

and the whole process is repeated r times. If the average timing tE of these access

cycles is larger than a threshold τjump, then Ef and Es map to the same cache set.

If this happens, the affected index s is removed from B (line 8), and the iteration

continues. After all eviction sets have been tested, the index in f is added to the

final list F (line 11). With each loop, B is shrinking as duplicate eviction sets are

removed. Once B is empty, F contains the list of unique eviction set indices.

Timer Precision and Noise. Both algorithms 3 and 4 are designed to compen-

sate imprecise and noisy timing sources. Although previous works [51, 139] suggest

that accurate timers can be crafted even in environments that restrict access to

high-precision timing sources, this engineering effort can be saved here. We believe

this adds to the practicality of our attack. The precision and noise compensation

in our algorithms is done by tuning the parameter r, as well as the threshold τjump.

r defines the number of access cycles, i.e., how often a selection of memory pages

is accessed. τjump defines how the timings of these access cycles are evaluated. In

Algorithm 3, the accesses on line 5 will typically cause cache hits until the gathered

120

pages trigger a systematic set contention. The difference between tT and told will

therefore be in the order of tmiss, where tmiss is the duration of a cache miss. Simi-

larly, the accesses on line 9 will cause cache hits, if the candidate page p is part of

the eviction set. In this case, the difference between tT and tp will again be around

tmiss. Therefore, τjump can initially be set slightly smaller than tmiss. Adjustments

can be made subsequently based on experimental data. The choice of r depends

on the precision of the timer and the measurement quality. In general, r should be

set such that r · tmiss is larger than the precision of the timer. It can be increased

further, if high levels of noise are encountered, e.g., due to high system load. The

choices for τjump and r also hold for Algorithm 4, where the accesses on line 6 will

typically cause cache hits until Ef and Es are duplicates. When this happens, a

systematic set contention will occur, as the chosen page from Ef will be evicted by

Es. In our experiments, we set r between 900 and 1000, and τjump to 500. The

timer available on our test device, a Nexus 5X, provides a precision of 52 ns. This

corresponds to approximately 100 clock cycles. In many related attacks (e.g. [173]),

where timers typically have clock cycle accuracy, this rather low resolution would

already introduce difficulties. In our approach, we simply tune r to compensate the

low resolution.

Line Replacement Policies. We can also use r to compensate the effects of

replacement policies. This is because the parameter r causes repetitive accesses to

cache lines, which signals the cache controller that the accessed lines are of height-

ened interest and should not be replaced. For least-recently-used (LRU) policies,

this is obviously beneficial, as unrelated cache activity will less likely interfere with

the eviction set finding. But also random replacement policies benefit, because av-

eraging over r access cycles attenuates the effect of unintended line replacements

that happen due to random line selection. Our experiments outlined in Section 9.2

121

show that the choice of r as stated above is sufficient to compensate the effects of

the random line replacement found on our test device.

Implementation and Limitations. Only few requirements have to be satisfied

to find eviction sets with our approach. Memory must be allocated and accessed,

and the accesses must be timed. Memory pages can be of arbitrary size and the

timing source can be coarse-grained. This allows our algorithm to be implemented

in user space and, thus, in a plethora of environments beyond mobile devices, e.g.,

desktop computers and cloud servers. Even sandboxes and virtual machines are

typically no obstacle, enabling remote attacks, e.g., from JavaScript. The limitation

of our approach is that the exact mapping of eviction sets to cache sets remains

unknown. However, this is not a deficiency but a direct consequence of not knowing

physical addresses. This choice makes our approach more practical and, thanks to

the application of machine learning, still allows successful inference attacks.

Performance. We evaluated Algorithms 3 and 4 on our test device with the

parameters stated previously. The targeted last-level cache is 16-way set-associative

and contains 1024 cache sets. It implements a random replacement policy and

features 64-byte cache lines. Requested memory pages have a standard size of 4 KiB.

Based on 1000 evaluation runs, Algorithms 3 and 4 successfully yield all eviction

sets with an average runtime of 20 seconds. Note that during our inference attack,

eviction sets must be found only once and remain unchanged until the malicious

app is restarted.

8.2.3 Post-processing and Feature Vectors

With the eviction sets obtained from Algorithms 3 and 4, the last-level cache can

be profiled in a traditional Prime+Probe [152] manner. This is done by filling each

122

cache set with the corresponding eviction set (prime), before re-filling it immediately

afterwards (probe). High levels of activity in the cache set will increase the probing

time, whereas low levels will keep it low. Each probing time constitutes a measure-

ment sample of the cache set. In our experiments, we measure nT samples per cache

set. The overall activity profile of the last-level cache, in short LLC profile, consists

of the samples of all cache sets. Before these samples are classified by the machine

learning algorithms, they are post-processed and converted to feature vectors. The

following list outlines the post-processing steps.

1. Elimination of timing outliers with a threshold τO. All outliers are replaced

with the sample median. In our experiments, τO is set to 5µs .

2. Conversion of timing samples to binary representation. A threshold τH decides

whether a sample value is low or high. In our experiments, τH is set to 750 ns.

3. Sample compression by grouping high samples. Bursts of consecutive high

samples are reduced to a single high value.

The removal of outliers reduces noise in the measurements. The binary represen-

tation simplifies interfacing with the machine learning algorithms and distills cache

activity to two categories: high and low. Sample compression reduces data complex-

ity while keeping the essential information of whether there was high or low activity.

It also alleviates the effect of random replacement policies, as it compensates self-

eviction during the probe step. From the post-processed measurement samples we

derive three different feature vectors that are outlined in the following paragraphs.

Unordered Feature Vector. This feature vector is called unordered, because the

exact mapping of eviction sets to cache sets is unknown, as explained in Section 8.2.2.

123

This means that it is unclear which region of the cache a given sample stems from.

However, it is possible to determine which region of the memory page a sample

belongs to, because the addresses in a given eviction set share a common page

offset. We leverage this observation to further compress the feature vector and

reduce training complexity. In particular, we sum up the high samples of all cache

sets that belong to the same page offset. With 4 KiB pages and 64-byte cache lines

there are 64 distinct page offsets. Thus, the final feature vector contains 64 values.

FFT Feature Vector. For this feature vector, the post-processed measurement

samples are converted with a fast Fourier transformation (FFT). The purpose of the

FFT is to further reduce measurement noise, which has been pointed out by previous

work [66, 127]. The FFT turns the nT time-domain samples per cache set into nT

2

frequency components (excluding the DC component). The employed sampling rate

nS is derived by dividing 1 second by the duration of one Prime+Probe cycle. We

reduce the complexity of the nT

2
frequency components by compressing them to nF

final components with a sliding window. These final components are again summed

up over all cache sets that belong to the same page offset. Thus, the final feature

vector contains nF · 64 values.

8.3 Experiment Setup and Results

In total, we conduct three experiments in which our malicious app detects running

applications, visited websites, and streamed videos. The attack targets are given

in Appendix A.2. For each machine learning algorithm, we build a multi-class

classifier. 90% of the measured LLC profiles are thereby selected randomly for the

training phase, while the rest of the data is chosen to evaluate the efficiency of the

trained classifier. This 10% holdout approach yields the classification rates that

124

are presented in this section. The rates are thereby based on the most likely label.

Throughout the experiments, we observed that 10-fold cross-validation results are

consistent with a 10% holdout approach. We also evaluated our classifiers against

unknown inputs accounting for activity the models have not been trained with. In

total, we collected more than 800 GB of cache profiling data to evaluate our inference

attack.

8.3.1 Target Device

We use a Google Nexus 5X with Android v8.0.0 for our experiments. It features

four ARM Cortex-A53 and two ARM Cortex-A57 processor cores. The malicious

code runs on one of the A57 cores and profiles the LLC in the background. The

LLC on the A57 core cluster contains 1024 cache sets. The target applications are

launched and transition automatically to the A57 processor cluster. This is because

the scheduler assigns resource-hungry processes (e.g. browser or multimedia applica-

tions) to the A57 cores to leverage their high performance. During all experiments,

the system was connected to the campus wireless network and background processes

from the Android OS and other apps were running. The timing source in our mali-

cious app is the POSIX clock gettime system call, which is available on all Android

versions as part of the Bionic standard C library [21]. For website inference, we run

Google Chrome and for video inference, we run the Netflix and YouTube apps.2

8.3.2 ML/DL Configuration

The following paragraphs discuss the parameter selection of the machine learning

algorithms and provide further details about their usage. SVM and SAE classifi-

cation is implemented with the help of LibSVM [34], whereas CNN classification is

2Chrome v64.0.3282.137, Netflix v6.16.0, YouTube v13.36.50 .

125

done using custom Keras [37] scripts together with the Tensorflow [15] GPU back-

end. The CNN is trained on a workstation with two Nvidia 1080Ti (Pascal) GPUs,

a 20-core Intel i7-7900X CPU, and 64 GB of RAM.

SVM. The ordered and unordered feature vectors are classified with a linear SVM,

while a non-linear SVM is used for the FFT feature vector. This is because the FFT

is computed with non-linear functions (cos, sin) and the labels are linearly increas-

ing for the classes. This choice is verified in preliminary experiments. Similarly,

we determine that the linear kernel type outperforms radial basis and polynomial

options for the unordered and FFT feature vectors.

SAE. The SAE is constructed with two hidden layers of 250 and 50 neurons, re-

spectively. The maximum number of epochs is set to 400, since no improvements

can be observed afterwards. We decrease the effect of over-fitting by setting the L2

weight regularization parameter to 0.01. The output layer is a softmax layer.

CNN. The CNN consists of two 1-D convolution layers that are followed by max-

pooling, dropout, as well as flatten and dense layers. The selection of the layer

parameters is done with the help of preliminary experiments. Table A.5 in Ap-

pendix A.2.2 shows the parameter space that we explored. Eventually, we selected

the parameters that yielded the lowest validation loss (highlighted in bold). The

size of the first 1-D convolution layer is varied from 8 to 1024. The lowest validation

loss is obtained with a size of 512. Similarly, the size of the second convolution layer

is varied between 32 and 256, and eventually fixed to 256. A third convolution layer

does not improve classification. The activation function in the convolution layers is

set to rectified linear unit (ReLU). The size of the subsequent maxpooling layer is

varied from 2 to 8. The default size of 2 yields the best results. The dropout of the

following dropout layer is varied between 0.1 and 0.5, and finally set to 0.2. A higher

126

100 200 300 400 500 600
70

75

80

85

90

95

100

A
cc

ur
ac

y
(%

)
CNN
SVM
SAE

(a) Ordered.

100 200 300 400 500 600
70

75

80

85

90

95

100

A
cc

ur
ac

y
(%

)

CNN SVM SAE

(b) Unordered.

100 200 300 400 500 600
Number of LLC Profiles

70

75

80

85

90

95

100

A
cc

ur
ac

y
(%

)

CNN
SVM
SAE

(c) FFT.

Figure 8.4: Classification results for application inference over an increasing number
of LLC profiles for (a) ordered, (b) unordered, and (c) FFT feature vectors.

dropout, as for example used in computer vision, adversely affects the classification.

Next, the kernel size is adjusted and, out of the values between 3 and 27, a size of 9

achieves the lowest validation loss. A flatten layer shapes the data in our network,

before a dense layer with size 200 and tanh activation function is appended. Finally,

we employ a set of standard choices: the kernel initializers are chosen uniformly at

random, an Adam optimizer is used to speed up the training phase, and the batch

size is set to 50, as its effect on the classification rate is negligible.

127

8.3.3 Evaluation Results

The following sections present the evaluation results for application, website, and

video inference.

8.3.3.1 Application Inference

For this attack, we target 100 random mobile applications from the Google Play

Store, including dating, political, and spy apps. The full list is given in Table A.2

in Appendix A.2. The first 70 apps are used to train and evaluate the machine

learning models, while the remaining 30 apps are treated as being unknown. Each

app is started and profiled for 1.5 seconds as described in Section 8.2. Within this

time frame, we collect nT = 1, 500 measurement samples per cache set. For the FFT

computation, the sampling rate nS = 1.9MHz and the number of bins nF = 15.

A comparison of the machine learning techniques and feature vectors is given in

Figure 8.4. It contains three sub-plots that each show the classification results of

SVM, SAE, and CNN over an increasing number of recorded LLC profiles. Recall

that 90% of the recorded profiles are used for training, whereas the rest is used

to obtain the classification rates shown in the plots. The stated numbers of LLC

profiles only reflect the measurement effort for the training phase, which is done

offline on a training device. In the attack phase on the target device, recording a

single LLC profile is sufficient to conduct a successful inference attack. The same

holds for the results shown in figures 8.8 and 8.9. Plot 8.4(a) illustrates the results

of the comparison attack, which is based on the ordered feature vector. The ordered

profiling allows all three classifiers to distinguish applications with high confidence.

CNN even achieves a classification rate of 97%. Plot 8.4(b) shows that classification

rates drop, if the LLC profiles are based on the unordered feature vector. SAE

even falls down to 80%, while CNN remains above 95%. The CNN we designed is

128

0 0.2 0.4 0.6 0.8
False Positive Rate

0.2

0.4

0.6

0.8

1

T
ru

e
P

os
iti

ve
 R

at
e

CNN, AUC=0.998
SVM, AUC=0.975
SAE, AUC=0.986

Figure 8.5: Average receiver operating characteristic (ROC) curves for SVM, SAE,
CNN during application inference.

0 0.2 0.4 0.6 0.8

False Positive Rate

0.2

0.4

0.6

0.8

1

T
ru

e
 P

o
s
it
iv

e
 R

a
te

CNN, AUC=0.98

SVM, AUC=0.89

SAE, AUC=0.94

Figure 8.6: Average receiver operating characteristic (ROC) curves for SVM, SAE,
CNN during website inference.

therefore least affected by the unknown mapping between eviction and cache sets.

As shown in Plot 8.4(c), the classification rates improve again, if the FFT feature

vector is used. In particular, CNN and SAE benefit from this transformation, while

SVM cannot fully leverage the information in the frequency spectrum. Our CNN

reaches a classification rate of 97.8% and is thereby able to fully close the gap to

the comparison attack.

A further performance metric for the three machine learning techniques is shown

in Figure 8.5. It displays the receiver operating characteristic (ROC) curves for the

FFT feature vector. For multi-class classification, ROC curves are computed for

each class against all remaining classes (1 × N-1). The final ROC curve is then the

average over all computed ROC curves. Figure 8.5 also provides the area under the

129

curve (AUC) values in the plot legend. The higher the AUC, the less the machine

learning technique suffers from false positives. While all three classifiers produce low

false positive rates, CNN outperforms SVM and SAE. Based on the results of the

application detection, we conclude that the CNN is the most suitable classifier for

our inference attack. For website and video inference, we will therefore only present

the results of the CNN.

Unknown Applications. The inherent nature of supervised learning is to recog-

nize events that are similar to those used in the training phase. In practice, however,

events may occur that the model has never been trained with. This also applies to

our inference attack. Naturally, we cannot train our models with all existing ap-

plications on the app store. In fact, we want to focus only on apps that are of

interest. Hence, we need a way to recognize and filter apps we have not trained yet.

We achieve this by monitoring the probability estimates obtained from the softmax

layer. Recall that we train only 70 apps out of the 100 that are given in Table A.2.

When we classify all 100 apps on our target device, we obtain the probability es-

timates shown in Figure 8.7. All known apps yield a high probability estimate

close to 1, whereas unknown apps yield estimates that are significantly lower. We

thus label each classification that yields a probability estimate below a threshold

to be unknown. This threshold can be tuned according to attack requirements. A

low value ensures that no application is missed during the attack. However, this

leads to the detection of apps that have not been executed (false positives). A high

threshold increases the confidence that all detected apps have actually been running.

However, this comes at the cost of misclassifying known apps to be unknown (false

negatives). As a general rule, we recommend to set the threshold at the intersection

of the probability distributions obtained from the softmax layer. In our experiments,

we chose a threshold of 0.84, which is illustrated as a dashed line in Figure 8.7. With

130

0.2 0.4 0.6 0.8 1
Probability Estimate

0

0.5

1

D
is

tr
ib

ut
io

n

 unknown
 known

Figure 8.7: Probability estimates from the CNN softmax layer while classifying
known and unknown apps.

100 200 300 400 500 600 700 800
Number of LLC Profiles

20

40

60

80

100

A
cc

ur
ac

y
(%

)

Ordered
Unordered
FFT

Figure 8.8: Website classification with our CNN for ordered (solid), unordered (dot-
ted), and FFT (dashed) feature vectors.

this approach, our inference attack works reliably even in the presence of unknown

applications on the target device.

8.3.3.2 Website Inference

The results in the previous section illustrate that our malicious app can reliably

detect running applications with high confidence. Once a browser is detected, the

app tries to infer websites that are currently viewed. For this attack, we target 100

different websites that are visited in Google Chrome. The list of websites is given

in Table A.1 in Appendix A.2. To emphasize that browsing histories are sensitive

information, the list includes news, social media, political, and dating websites. For

each website, we profile the LLC for 1.5 seconds and again obtain nT = 1, 500

131

100 200 300 400 500 600 700 800 900
Number of LLC Profiles

20

40

60

80

100

A
cc

ur
ac

y
(%

)

Ordered
Unordered
FFT

Figure 8.9: Video classification with our CNN for ordered (solid), unordered (dot-
ted), and FFT (dashed) feature vectors.

samples per cache set. The features vectors are constructed in the same way as for

application detection. Figure 8.8 shows the CNN classification results for all three

feature vectors over an increasing number of LLC profiles. Similar to application

inference, the FFT results match and slightly overshoot the results of the comparison

attack. With a classification rate of 86%, the CNN is able to infer viewed websites

with satisfactory confidence. The classification rate is lower compared to application

inference, because loading and rendering websites leaves a weaker footprint in the

last-level cache than opening apps. The ROC curves for the FFT feature vector are

shown in Figure 8.6. The AUC values in the plot legend again illustrate that our

CNN yields the lowest number of false positives. The CNN classifier and the FFT

feature vector are therefore the best choices for website inference.

Unknown Websites. As previously, we train the CNN with only 70 websites and

subsequently classify all 100 websites from Table A.1. The probability estimates of

the softmax layer are similar to the application inference and are thus not shown

for the sake of brevity.

132

8.3.3.3 Video Inference

Similar to website inference, our malicious app also tries to detect videos that are

being streamed in the Netflix and YouTube applications. We therefore target a

total of 20 videos, which are given in Table A.4 in Appendix A.2. In contrast to

previous evaluations, we increase the profiling phase to 6 seconds. This is because

the LLC footprint of videos is significantly less distinct compared to applications

and websites. Within the extended profiling phase, we collect nT = 6, 000 samples

per cache set. For the FFT computation, the number of bins, nF , is increased to

60. Due to the high number of feature values, the size of the first convolution layer

in our CNN is increased to 1024. The rest of the feature vectors are constructed in

the same way as for application and website inference.

Figure 8.9 shows the CNN classification results for all three feature vectors over an

increasing number of LLC profiles. The FFT results again match the comparison

attack, but eventually fall behind by 10%. With a classification rate of 80%, our

inference attack is able to infer streaming videos with moderate success. We believe

that the LLC profiles do not contain enough information to distinguish multiple

videos, as video processing is a rather homogeneous task. In addition, parts of

the video decoding are typically outsourced to the GPU, which further reduces the

cache footprint. Regarding the ROC curves, which are shown in Figure 8.10, the

CNN again outperforms SVM and SAE. Due to the reduced success rate for video

classification, we skipped the evaluation of unknown videos. Yet, we expect it to

follow the same trend as for application and website inference.

133

0 0.2 0.4 0.6 0.8
False Positive Rate

0.2

0.4

0.6

0.8

1

T
ru

e
P

os
iti

ve
 R

at
e

CNN, AUC=0.9876
SVM, AUC=0.9748
SAE, AUC=0.9371

Figure 8.10: Average receiver operating characteristic (ROC) curves for SVM, SAE,
CNN during video inference.

8.4 Discussion

The previous section shows that modern machine learning techniques enable suc-

cessful inference attacks even when simple cache profiling methods are employed.

Throughout our experiments, frequency-domain transforms of LLC profiles yield

high success rates when being classified by a CNN. The FFT thereby reduces the

noise in the measurements, while the CNN distills consistent features despite the

lacking order with which the cache sets are profiled. The resulting classification

closely matches the comparison attack that is based on precisely ordered LLC pro-

files obtained with the help of additional attack steps. Clearly, an adversary can

omit these steps when using our inference attack. The limit of our attack becomes

apparent when the LLC activity is less distinct or faints. While applications and

websites can reliably be inferred, the accuracy drops for video classification. This

could be improved by increasing the profiling time or including other side-channels

such as GPU activity. Nevertheless, the results clearly indicate that a carefully

crafted and well-trained CNN enables inference attacks that are robust, easy to

implement, and therefore practical.

Attack in Numbers. The pre-trained CNN model is approximately 24 MiB large.

Together with the attack code, this yields a total app size of 25 MiB. The other ML

134

models are significantly smaller. If the number of target classes increases, the size

of the models grows linearly. When the app is launched, it first creates the eviction

sets required for LLC profiling. As stated in Section 8.2.2, this takes 20 seconds

on average. Recording one LLC profile takes at most 6 seconds. The subsequent

classification is also a matter of seconds. The work by Ignatov et al. [79] is a useful

reference to assess the performance of CNN classification on Android phones. On

the Nexus 5X, all CNN classification benchmarks finish in under 13 seconds, yielding

a total attack time of well under a minute.

Attack Portability. Our inference attack is not limited to the device and scenario

presented in this work. The attack components are flexible and can be ported

easily. The eviction set algorithms presented in Section 8.2.2 are generic and can

be adapted to other environments with appropriate choices of r and τjump. The

algorithms are robust against changes in cache size, number of sets, associativity,

and replacement policy. They will therefore find eviction sets not only on ARM-

based mobile devices but also on x86 systems. With the unordered and FFT feature

vectors introduced in Section 8.2.3, the exact mapping of eviction sets to cache sets

is not required for an attack. This has multiple advantages. First, the attack does

not require physical addresses and can be launched entirely from user space. Second,

it is agnostic to the page size of the system and works with pages from less than

4 KiB to multiple MiB. Third, the attack can be launched without additional and

complex attack steps (e.g. [62]) that would increase the attack effort and lower the

practicality. The designed convolutional neural network is a suitable fit for the

resulting cache observations. It allows to distill the cache footprint of virtually any

activity occurring on the target system. Future research may study detecting exact

versions of applications or input events such as swipes, touches, or the like. The

CNN presented in this work is a good starting point for any new attack scenario.

135

Since a fine-tuning of the parameters may be necessary, Table A.5 can be consulted

for sensible parameter ranges. In summary, our inference attack is versatile and

constitutes a threat not only to mobile applications, but also to virtual machines

and containers on servers and any desktop software. We consider the exploration of

other attack scenarios as future work.

Countermeasures. The inference attack proposed in this work has two funda-

mental requirements. First, it relies on the mutual eviction of cache lines from the

last-level cache. This eviction can be impaired by cache flushing [54], cache parti-

tioning [110], scheduling [157] and line replacement policies [93]. However, most of

these approaches require changes to the processor hardware or introduce substantial

performance overhead. The second requirement is to time memory accesses. While

disabling access to timers or overlaying them with noise [77] complicates attacks,

these strategies seem far from sustainable, as timing sources can be crafted arti-

ficially even in restrictive execution environments [139, 51]. Another approach is

to craft adversarial examples against DL based classification models [56]. Inci et

al. [80] recently showed that CNN-based side-channel attacks can be prevented by

adding specially crafted noise to performance counters. This approach could also

be adopted by applications running on mobile devices. A general defense strategy

is the detection of ongoing attacks, e.g., by monitoring the memory access behavior

of programs [179]. However, most detection approaches are probabilistic and, thus,

suffer from false positives and false negatives. The generic nature of our inference

attack renders it extremely difficult to defend against, especially without dedicated

support from the processor hardware.

136

8.5 Outcome

Inference attacks undermine our privacy by revealing our most secret interests, pref-

erences, and attitudes. Unfortunately, modern processors, which constitute the core

of our digital infrastructure, are particularly vulnerable to these attacks. Footprints

in the processor cache allow the inference of running applications, visited websites,

and streaming videos. Above all, the advances in machine learning, especially the

concepts behind deep learning, significantly lower the bar of successfully imple-

menting inference attacks. Our work demonstrates that it is possible to execute an

inference attack without privileges, permissions, or access to special programming

interfaces and peripherals. The simple nature of the attack code makes a comprehen-

sive defense extremely difficult. This simplicity is paired with the careful application

of deep learning. Interferences such as measurement noise, misalignment, or unfa-

vorable processor features are thereby conveniently compensated. The comparison

with concurrent work furthermore indicates that inference attacks of this kind are

ubiquitous and succeed across runtime environments and processing hardware. For

applications that value the privacy of their users, protection against inference at-

tacks is therefore of utmost importance. A comprehensive solution, however, seems

to require a closer collaboration between hardware manufacturers, operating system

designers, and application developers.

137

Chapter 9

FortuneTeller: Machine Learning

based Defense Mechanism

9.1 Motivation

In the past decade, we have witnessed the evolution of microarchitectural side-

channel attacks [172, 60], from being considered as a nuisance and largely dismissed

by chip manufacturers to becoming front-page news. The severity of the threat was

demonstrated by the Spectre [97] and Meltdown [109] attacks, which allow a user

with minimal access right to easily read arbitrary locations in the memory by ex-

ploiting the transient effect of illegal instruction sequences. This was followed by a

plethora of attacks [154, 153, 138] either extending the scope of the microarchitec-

tural flaws or identifying new leakage sources. It is noteworthy that these critical

vulnerabilities managed to stay hidden for decades. Only after years of experimen-

tation, researchers managed to gain sufficient insight into, for the most part, the

unpublished aspects of these platforms. This leads to the point that they could for-

mulate fairly simple but very subtle attacks to recover internal secrets. Therefore,

138

the natural question becomes: how can we discover dormant vulnerabilities and

protect against such subtle attacks? A fundamental approach is to eliminate the

leakage by using formal analysis. However, given the tremendous level of complexity

of modern computing platforms and lack of public documentation, formal analysis

of the hardware seems impractical in the near future. What remains is the modus

operandi: leaks are patched as they are discovered by researchers through

inspection and statistical analysis.

Countermeasures for microarchitectural side-channel attacks focus on the operat-

ing system (OS) hardening [110, 59], software synthesis [32] and analysis [166, 167],

and static [87] or dynamic [177, 35, 30] detection of attacks. Static analysis is per-

formed by evaluating the untrusted software against known malicious code patterns

without running it on a target platform [87]. Alternatively, dynamic analysis aims

to detect malicious behaviors in the system by analyzing the runtime footprint of the

running processes [35]. Existing works on dynamic detection of microarchitectural

attacks are based on collecting footprints from the hardware performance counters

(HPCs) and limited modeling of malicious behaviors [35, 123, 177, 30]. A crucial

challenge for both detection techniques is the shortage of knowledge about new at-

tack vectors. Therefore, modeling malicious behaviors for undiscovered attacks and

accurately distinguishing them from benign activities are open problems. Moreover,

microarchitectural attacks are in infancy and supervised learning models, which are

used as attack classifier [123], are not reliable to detect known attacks due to the in-

sufficient amount and imprecise labeling of the data. Hence, unsupervised methods

are more promising to adapt the detection models to real-world scenarios.

Anomaly-based attack detection, which has been also studied in other security

applications [142, 45], aims to address the aforementioned challenge by only model-

ing the benign behaviors and detecting outliers. While there have been several efforts

139

on anomaly-based detection of cache attacks [30, 35], modern microarchitectures

have a diverse set of components that suffers from side-channel attacks [174, 60, 122].

Thus, detection techniques will not be practical and usable, if they do not cover

a broad range of both known and unseen attacks. This requires more advanced

learning algorithms to comprehensively model the entire behavior of the microar-

chitecture. On the other hand, statistical methods for anomaly detection are not

sufficient to analyze millions of events that are collected from a very complex sys-

tem like the modern microarchitecture. A major limitation of the classical statistical

learning methods is that they use a hand-picked set of features, which wastes the

valuable information to characterize the benign execution patterns. As a result,

these techniques fail at building a generic model for real-world systems.

The latest advancements in Deep Learning, especially in Recurrent Neural Net-

works (RNNs), show that time-dependent tasks such as language modeling [147],

speech recognition [136] can be learned and upcoming sequences are predicted more

efficiently by training millions of data samples. Similarly, computer programs are

translated to instructions where the corresponding microarchitectural events have

time-dependent behaviors. Modeling the sequential flow of these events for benign

applications is extremely difficult by using logic and formal reasoning due to the

complexity of the modern microarchitecture features. We claim that these time-

dependent behaviors can be modeled on a large scale by observing a sufficient num-

ber of benign execution flows since the long-term dependencies in the time domain

can be learned with a high accuracy by training Long-short term memory (LSTM)

and Gated Recurrent Unit (GRU) networks. Besides, a challenging task of detect-

ing the correlations in benign applications are done automatically by LSTM/GRU

networks in the training phase without any expert input.

Our Contribution: We propose FortuneTeller which is the first generic detec-

140

tion model/technique for microarchitectural attacks. FortuneTeller learns the be-

nign behavior of hardware/software systems by observing microarchitectural events,

and detects any outlier that does not conform to the trained model as malicious be-

havior. FortuneTeller is also able to detect unseen microarchitectural attacks since

the tool only requires training over benign execution patterns.

In summary, we propose FortuneTeller which:

� captures the system-wide low-level microarchitectural traces and learn noisy

time-dependent sequences through advanced RNN algorithms by training a

more advanced and generic model.

� can detect malicious behavior dynamically in an unsupervised manner includ-

ing stealthy cache attacks (Flush+Flush), transient execution attacks (Melt-

down, Spectre, Zombieload) and Rowhammer.

� performs better by comparing it to the state-of-the-art detection techniques.

9.1.1 Methodology

Our conceptual design for FortuneTeller consists of offline and online phases as

shown in Figure 9.1: In the offline phase, FortuneTeller collects time sequence

data from diverse set of benign applications by monitoring security sensors in the

system. The collected dataset is used as the training data and it is fed into the RNN

algorithm with a sliding window technique. The weights of the trained model are

optimized by the algorithm itself since each data sample is also used as the validation.

When there is no further improvement in the validation error, the training process

stops. Once the RNN model is trained, it is ready to be used in a real-time system.

In the online phase, the real-time sequences are captured from the same security

sensors and given as input to RNN model. The prediction of the next measurement

141

Train RNN Model

Cell 1 Cell 2 Cell 3 Cell n

Window

Benign
Workload

Select
Sensors

Collect
Traces

Trained
Model

Runtime
Workload

Collect
Traces

Outliers

Offline
Phase

Online
Phase

Figure 9.1: FortuneTeller implementation

for each sensor is made by the pre-trained RNN model, dynamically. If the mean

squared error (MSE) between the predicted values and real-time measurements is

consistently higher than the previously determined threshold, the anomaly flag is set.

The online phase is the actual evaluation of FortuneTeller in a real-world system.

Two separate detection models are trained with LSTM and GRU networks

since they are known for their extraordinary capabilities in learning the long time

sequences. Our purpose is to train an RNN-based detection model, which can

predict the microarchitectural events of benign executions in the next time steps

with minimal error. In our detection scenario, we consider a time series X =

{x(1), x(2), . . . , x(n)}, where each measurement x(t) ∈ Rm is an m-dimensional vector

{x(t)1 ,x
(t)
2 , . . . ,x

(t)
m } and each element corresponds to a sensor value at time t. As all

temporal relations can not be discovered from millions of samples, a sliding window

with a size of W is used to partition the data into small chunks. Thereby, the input

to RNN algorithm at time step t is {x(t−W+1)
1 ,x

(t−W+2)
2 , . . . ,x

(t)
m }, where the output

is y(t) = x(t+1). Note that, even though there is a fixed length sliding window in the

problem formulation, the overall input size is not fixed. Finally, the trained model

is saved to be used in real-world system.

142

To evaluate the performance of the RNN model, a new dataset is collected from

both benign applications and attack executions. This dataset is used as a test

dataset which is fed into the model to calculate the prediction error in the next time

steps. The error at time step t+1 is e(t+1) which is equal to 1/m
∑m

i=1(y
t+1
i −xt+1

i)2.

The model predicts the value of the next measurement and then, the error for each

counter is summed up and normalized.

To detect the anomalies in the system, a decision window D and an anomaly

threshold τA are used. If all the predictions in D are higher than τA, the anomaly

flag FA is set in the system in Equation 9.1.

FA =


1, ∀e(t+1) ∈ D ≥ τA

0, otherwise

(9.1)

The choice of D directly determines the anomaly detection time. If D is chosen

as a small value, the attacks with a very small footprint can be caught. On the other

hand, the false alarm risk increases in parallel, which is controlled by adjusting τA.

This trade-off is discussed further in section 9.2.

9.1.2 Implementation

9.1.2.1 Profiled Benchmarks and Attacks

The main purpose of FortuneTeller is to train a generic model by profiling a diverse

set of benign applications. Therefore, selecting benign applications is of utmost

importance. The benign application dataset is collected from benchmark tests in

Phoronix benchmark suite [10] since the suite includes different types of applica-

tions such as cryptographic implementations, floating-point, and compression tests,

web-server workloads, etc. The complete list is given in Appendix, Table A.7. It

143

is important to note that some benchmark tests have multiple sub-tests and all the

sub-tests are included in both training and test phases. In addition to CPU bench-

marks, we evaluate our detection models against system, disk and memory test

benchmarks. To increase the diversity, the daily applications such as web brows-

ing, video rendering, Apache server, MySQL database and Office applications with

several parameters are profiled for real-world examples.

The benign applications are divided into training and test applications. The first

67 tests in Table A.7 are monitored to collect training dataset while the remaining

applications are profiled to obtain test dataset which is used to compute the Sensitiv-

ity, Specificity and F-score of the RNN models. In our work, false positives represent

the number of times a benign application is classified as an attack/anomaly by the

model in one minute.

For the attack executions, we include cache attacks such as F+F, F+R, and

P+P attacks. Different from previous works, these attacks are applied on arbitrary

memory blocks to avoid any assumption on the target implementation. Addition-

ally, Spectre (v1 and v2) and Meltdown are implemented to read secrets such as

passwords in a pre-determined memory location. Also, two types of Rowhammer

attacks namely, one-sided and double-sided, are applied to have bit flips. To test

the efficiency of FortuneTeller we implemented a recent microarchitectural attack,

ZombieLoad, to steal data across processes. For this purpose, a victim thread leaks

pre-determined ASCII characters and the attacker reads the line-fill buffer to re-

cover the secret. If the alarm flag is set during the execution of the attack, it is true

positive (TP). On the other hand, the undetected attack execution is represented

by false negative (FN).

144

9.1.2.2 Performance Counter Selection

In our detection model, we leverage HPCs as security sensors. Although the number

of available counters in a processor is greater than 100, it is not feasible to monitor all

counters concurrently. In an ideal system, we should be able to collect data from a

diverse set of events to be able to train a generic model. However, due to the limited

number of concurrently monitored events, we choose the most optimum subset of

counters that give us information about common attacks. In our experiments, we

leverage Intel PCM tool [84] to capture the system-wide traces. This tool is generic

to all Intel processors so that it can be used in any Intel processor regardless of its

family/version. The set of counters in our experiments is chosen from core counters.

The main reason to choose core counters is the high variety of the available counters

such as branches, cache, TLB, etc. In total, 36 counters were tested in the selection

phase, which is listed in Appendix, Table A.6.

In the data collection step, a subset of the counters is profiled concurrently, which

is limited to three or four in Intel processors. For each subset, a separate training

dataset from 30 different Phoronix benchmark tests [10] (1-30 in the Table A.7) is

collected until all 36 counters are covered. We also collect a test dataset from 20

benchmark tests (31-50 in the Table A.7) and 6 microarchitectural attacks (Attacks:

1-6 in the Table A.7). The Zombieload attack is not included in the performance

counter selection phase since it was not released at that time. The sampling rate is

chosen as 10 ms to cause minimal overhead in the system.

For every subset of counters one LSTM model is trained, where four-dimensional

data is given as an input to the LSTM model and then, the final counters are selected

based on their F-score given in Appendix, Table A.6. Branch-related counters have

a higher correlation for Meltdown and Spectre attacks. However, the F-score is also

around 0.3 as real-world applications also use the branches heavily. It is important

145

to note that since speculative branches are commonly integrated into the benign

applications, branch counters are not useful to detect speculative execution attacks

in the wild. Thanks to our LSTM based counter selection technique, finding the

most valuable counters is fully automated and the false alarm rate is decreased

significantly.

The first selected counter is L1 Inst Miss which is successful to detect Rowham-

mer, Spectre and Meltdown attacks with F-score of 0.8023. As a second counter,

L1 Inst Hit is chosen, since Flush+Flush and Flush+Reload attacks are detected

with a high accuracy and the F-score is 0.8137. The reason behind the high F-score

is that the flush instruction is heavily used in those attacks and the instruction

cache usage also increases in parallel. Interestingly, Flush+Flush attack is known as

a stealthy microarchitectural attack however, it is possible to detect it by monitoring

instruction cache hit counter. The last selected counter is LLC Miss, which allows

to detect Rowhammer and Prime+Probe attacks with high accuracy. These attacks

cause frequent cache evictions in the LLC, which increases the number of anomalies

in the LLC Miss counter. Even though it is allowed to monitor up to 4 counters

on the Intel server systems like Xeon, we selected 3 counters to profile for anomaly

detection. The reason behind this is that in the desktop processors (Intel Core i5,

i7) the programmable counters are limited to 3. The individual counter experiments

show that the individual counters are not efficient to detect all the microarchitec-

tural attacks. Therefore, there is a need for the integration of the aforementioned 3

counters to detect all the attacks with a high confidence rate.

146

9.2 Evaluation

In this section, we explain the experiments which are conducted to evaluate For-

tuneTeller. The experiments aim to answer the following research questions: 1) How

does FortuneTeller perform in predicting the next performance counter values for

benign applications with the increasing number of measurements (Subsection 9.2.2)?

What is the lowest possible FPR for server (Subsection 9.2.3) and laptop environ-

ments (Subsection 9.2.4)? 3) How does the size of the sliding window affect the

performance of FortuneTeller (Subsection 9.2.5)? 4) How realistic is real-time pro-

tection with FortuneTeller (Subsection 9.2.6)? 5) How much performance overhead

is caused by FortuneTeller (Subsection 9.2.7)?

9.2.1 Experiment Setup

FortuneTeller is tested on two separate systems. The first system runs on an Intel

Xeon E5-2640v3, which is a common processor used on server machines. It has 8

cores with 2.6 GHz base frequency and 20 MB LLC. The second device is used to

illustrate a typical laptop/desktop machine, which is based on Intel(R) Core(TM)

i7-8650U CPU with 1.90 GHz frequency. It has 8MB LLC and 2 cores in total.

Two types of RNN models, LSTM and GRU, are used to train FortuneTeller.

The sliding window size, batch size and number of hidden LSTM/GRU layers are

kept the same in the training phase. Training of RNN models is done using custom

Keras scripts together with the Tensorflow and GPU backend. The models are

trained on a workstation with two Nvidia 1080Ti (Pascal) GPUs, a 20-core Intel

i7-7900X CPU, and 64 GB of RAM.

147

9.2.2 RNN Model Training

The first step in building FortuneTeller is to learn the pattern of the benign ap-

plications. This is not an easy task since the chosen benchmarks and real-world

applications have complex fingerprint in the microarchitectural level due to the sys-

tem noise. Moreover, the fingerprint at each run is not identical and the execution

of the application takes at least several seconds, which makes the learning the long-

term correlations challenging. To model the patterns of benign executions, we use

one LSTM block which consist of 100 cells. The model has a loss function as MSE

and adam optimizer is used to update the weights with a batch size of 1.

10 random benchmarks are chosen, and a separate RNN model for each of them

is trained. The validation error obtained as a result of training is the critical metric

to determine the capacity of the RNN algorithms as it indicates how well For-

tuneTeller guesses the next counter value. The initial RNN model is trained with

only 1 measurement and the number of measurements is increased gradually up to

44. It is observed that there is no further improvement in the validation error after

36 measurements for both LSTM and GRU networks in Figure 9.2. Note that, the

training data is scaled to [0 1] and the validation error is the average error of the 3

counters.

The prediction trend of ICache.Hit counter is obtained by training the LSTM

model as shown in Figure 9.3. The solid line represents the actual counter value

while two other lines show the prediction values. When LSTM model is trained with

one measurement, the predictions are not close to actual value. It means the model

could not optimize the network weights to learn the pattern. On the other hand,

once the number of measurements is increased to 36, the predictions become more

consistent. Increasing the number of measurements would increase the efficiency of

the model slightly but it also directly affects the training time of the model. If the

148

0 5 10 15 20 25 30 35 40 45

Number of Measurements

0.005

0.01

0.015

M
S

E

LSTM

GRU

Figure 9.2: Validation error with increasing number of measurements for Gnupg
benchmark

3580 3585 3590 3595 3600 3605 3610 3615 3620

Time Sample

0

2

4

6

C
o

u
n

te
r

V
a

lu
e

10
6

Actual

1 meas.

36 meas.

Figure 9.3: Prediction error in Gnupg for LSTM algorithm

dataset is unnecessarily huge, the training time increases linearly. Therefore, it is

decided to collect 36 measurements from each application in the training phase of

FortuneTeller to achieve the best outcome from RNN algorithms in the real systems.

With accurate modeling of the benign behavior, the number of false alarms is re-

duced significantly. This is the main advantage of FortuneTeller, since the previous

detection mechanisms apply a simple threshold technique to detect the anomalies

when a counter value exceeds the threshold. In contrast, FortuneTeller can predict

sudden increases in the counter values and thus, correct classification is performed

more efficiently than before.

149

9.2.3 Server Experiments

The first set of experiments is conducted in the server machine. Three core counters,

ICache.Miss, ICache.Hit and LLC.Miss are monitored concurrently in the data

collection phase. The training dataset is collected with a sampling rate of 10 ms

from 3 core counters during the execution of benign applications. The dataset has

4 million samples in total, collected from 67 randomly selected benchmark tests as

listed in Appendix, Table A.7. Firstly, the LSTM model is trained with the collected

dataset where the input size is 3 × 4, 000, 000. The sliding window size is selected

as W = 100, which means the total number of LSTM units is 100. A full analysis

of the effect of different window sizes is given in Subsection 9.2.5. The training is

stopped after 10 epochs since the validation error does not improve further. The

validation error decreases to 0.0015. The training time for 4,000,000 samples takes

approximately 2 days.

After the LSTM model is trained, a new dataset for the test phase is collected

from counters by profiling remaining 106 benign benchmark tests (not included in

training phase), 100 random websites rendering in Google Chrome, MySQL, Apache,

Office applications and microarchitectural attacks. The number of samples obtained

from each application changes between 1000-20000. Each application is monitored

50 times, and then, the test data is fed into the LSTM model to predict the counter

values at the next time steps. Moreover, to make the test phase more realistic, the

number of applications running concurrently is increased up to 5. The applications

are chosen randomly from the test list in Appendix Table A.7, and started at the

same time. 100 measurements are collected from concurrently running applications.

In total, 20 million samples are collected for the test phase.

The threshold τA and decision window D are chosen to obtain a low value for

FPR while increasing the TPR in parallel. For the lower τA values, the sensi-

150

tivity increases but the number of false alarms increase in parallel. Therefore,

we decided to increase τA until we achieve an acceptable FPR. Once τA reaches

2.6× 106, FortuneTeller has 0.90 sensitivity and the corresponding decision window

is D = 30 samples. Additionally, the FPR stays around 0.05% (specificity = 0.9995)

per minute which means every 2,000 minutes (33 hours) there is a chance of false

alarm. Since it is more important to keep the false alarm rate lower for real-world

deployment, the parameters are chosen accordingly. With the decreasing τA values,

the number of true positives begins increasing in parallel with the false alarm rate.

Therefore, the decision window and threshold values can be chosen based on the

desired sensitivity of the detector.

The results indicate that P+P attack is the most difficult attack to be detected

by the LSTM model in the server. This result is expected since P+P attack mostly

focuses on specific cache sets and the cache miss ratio is smaller than other types

of attacks. Besides, the instruction cache is not heavily used by P+P attack, which

makes the detection more difficult for FortuneTeller due to the lack of strong fin-

gerprint. On the other hand, the highest TPR is obtained for Flush+Reload and

Rowhammer attacks with 100% and 0% FNR. As these attacks increase the number

of data cache misses and instruction hits through the extensive use of clflush instruc-

tion, the fluctuation in the counter values is higher than for the other types of attacks

and benign applications. The accuracy of predicting the next values decreases when

the variance is high in the counters, thus, the prediction error increases in parallel.

Since the higher prediction rate is a strong indicator of the attack executions in the

system, FortuneTeller detects them with a high accuracy. Note that, ZombieLoad

is also detectable by the FortuneTeller, even though it was not included in the per-

formance counter selection phase. This shows that FortuneTeller can even detect

previously unknown microarchitectural attacks with the current trained models.

151

0 0.2 0.4 0.6 0.8 1

1-Specificity

0

0.2

0.4

0.6

0.8

1

S
e

n
s
it
iv

it
y

LSTM

GRU

0 0.2 0.4 0.6 0.8 1

1-Specificity

0

0.2

0.4

0.6

0.8

1

S
e

n
s
it
iv

it
y

LSTM

GRU

(a) Server (b) Laptop

Figure 9.4: ROC curve for LSTM and GRU models in server and laptop environ-
ments

The ROC curves in Figure 9.4a demonstrate that LSTM networks are better

than GRU networks to detect the anomalies. The counter values are predicted with

a higher error rate in GRU networks, which makes anomaly detection harder. Some

benign applications are always detected as an anomaly by GRU, thus, the FPR is

always high for different threshold values. The AUC (Area Under the Curve) for

LSTM model is very close to perfect classifier with a value of 0.9929. On the other

hand, AUC for GRU model is 0.9395, which is significantly worse than the LSTM

model. There are several reasons behind the poor performance of GRU networks.

The first reason is that GRU networks are not successful to learn the patterns of

Apache server applications since there is a high fluctuation in the counter values.

Also, when the number of concurrently running applications increases, the false

alarms increase drastically. Nevertheless, LSTM networks are good at predicting

the combination of patterns in the system. Therefore, the FPR is very low for the

LSTM model.

152

9.2.4 Laptop Environment

The experiments are repeated for the laptop environment to evaluate the usage of

FortuneTeller. LSTM and GRU models are trained with 4 million samples, which

are collected from benign applications. Since laptops are mostly used for daily work,

the counter values are relatively smaller than in the server scenario. However, the

applications stress the system more than the server scenario due to the few (four)

physical cores.

When we analyze the relation between D and τA, we observe the same situation

as in the server scenario. The lower τA values are not sufficient to distinguish the

anomalies from benign executions. Therefore, we need to choose the optimal τA

value slightly higher than in the server scenario, with a value of 3.8 × 106. The

corresponding D value is 60, which means that the anomalies are detected in 600

ms. The sensitivity improves up to 95% while specificity stays around 99.98. The

decision window is 300 ms longer than the server scenario however, the performance

of FortuneTeller is better in the laptop scenario. In Figure 9.4b, the ROC curves

of LSTM and GRU models are compared. The AUC value of the LSTM model

is considerably higher than the GRU model with a value of 0.9970. However, the

AUC value for GRU is 0.8985. This shows that LSTM outperforms GRU model to

predict the counter values of benign applications. Hence, FNR and FPR are lower

for LSTM models.

Among the attack executions, the Rowhammer attack can be detected with 100%

success rate since the resulting prediction error of the RNNs is very high. The other

attacks have similar prediction errors, hence, FortuneTeller can detect the attacks

with the same success rate. Since the computational power of laptop devices is

low, the concurrently running applications have more noise on the counter values.

Therefore, the prediction of the counter values is more difficult for RNN algorithms.

153

Table 9.1: The False Alarm Rate in percentage per second for applications

Server (%) Laptop (%)
LSTM GRU LSTM GRU

Benchmarks 0.18 0.24 0.06 0.08
Websites 0.05 0.06 0.02 0.15
Videos 0.00 0.00 0.00 0.06
MySQL 0.00 0.00 0.00 0.00
Apache 0.00 0.13 0.00 0.11
Office 0.00 0.00 0.00 0.00

2 Apps 0.00 0.00 0.00 0.08
3 Apps 0.03 0.10 0.00 0.09
4 Apps 0.08 0.22 0.04 0.12
5 Apps 0.13 0.36 0.06 0.15

While LSTM networks have small FPR for 4 and 5 applications running at the same

time, GRU networks are not efficient to classify them as benign applications.

The overall results show that LSTM works better than GRU networks for both

laptop and server scenarios, as shown in Table 9.1. The first and second values rep-

resent the LSTM and GRU false alarm rates per minute in percentages, respectively.

In the server scenario, videos, MySQL and Office applications never give false posi-

tives. Websites running in Google Chrome trigger few false alarms. Therefore, the

FPR is around 0.02% per minute for LSTM network in the server scenario overall.

The main disadvantage of GRU networks is the poor performance in the prediction

when the number of applications increases. The FPR and FNR are approximately

0.12%. This shows that the number of false alarms is 6 times more for GRU based

FortuneTeller.

9.2.5 Optimizing the Sliding Window Size

We analyze the effect of the sliding window size on anomaly detection with 10 ms

sampling rate in the server environment. 12 different window sizes are used to train

LSTM and GRU models. The window size starts from 25 and is increased by 25 at

154

50 100 150 200 250 300

Window Size

2

2.5

3

3.5

M
S

E

10
-3

LSTM

GRU

Figure 9.5: The validation error for different sizes of the sliding window

each step until reaching 300.

The changes in the validation error for both LSTM and GRU networks are de-

picted in Figure 9.5. The overall GRU training error is higher than the LSTM

network for each window size. Both models reach the lowest error when the sliding

window size is 100. Even though LSTM and GRU are designed to learn long se-

quences, it is recommended to choose the window size between 50-150. The increase

in error for larger window sizes shows that the statistical dependency of performance

counter values weakens when the trained sequence is longer. Therefore, independent

values in the large window sections cause a raise in the validation error. In other

words, the ability of the trained model on guessing the next counter values gets

worse. Therefore, we recommend to use a window size of 100, as all the models in

the previous experiments are trained with this parameter. It is also important to

note that the training time increases proportionally to the size of the window, which

increases the training time unnecessarily window sizes greater than 100.

9.2.6 Prediction Time in Testing Phase

The dynamic anomaly detection is heavily affected by the time it takes to predict

the next counter values. Thus, the sampling interval needs to be longer than the

155

computation time of the next predicted value. In our experiments, we observed

that the prediction time is proportional to the size of the model. Since GRU has

fewer cells in the architecture, the prediction from GRU model is received faster.

The LSTM outputs the prediction values within 5 ms while GRU needs 4 ms. Even

though GRU is 20% faster than LSTM in the prediction phase, due to the high FPR

of GRU networks, FortuneTeller is trained with LSTM networks. Additionally, to

decrease the performance overhead of the prediction process, the prediction is made

every 10 ms.

9.2.7 Performance Overhead

The performance overhead of FortuneTeller is less than a typical prevention over-

head [112]. In the server environment, the overhead value is obtained with a sam-

pling rate of 10 ms for data collection and the predictions from the LSTM model are

received in parallel from GPU cores. We achieved a 1.8% overhead in average while

CPU and GPU have 1% and 3% overhead, respectively. The overhead of individual

benchmark tests fluctuates between 0.1% and 10% for benign applications. If the

GPU cores are disabled, the CPU has 3.5% overhead in total for data collection

and prediction.In the laptop scenario, the number of cores is lower than the server

scenario and there is no dedicated GPU core to make the predictions. When the

sampling and prediction interval are 10 ms, the overhead is 2.4%, which is applicable

in real-time setup. This overhead is also lower than in the server scenario, if there

is no GPU.

156

9.3 Comparison of FortuneTeller with Prior De-

tection Methods

Several studies have focused on microarchitectural attack detection. While some

works [30, 35, 177] use unsupervised techniques, Mushtaq et al. [123] benefits from

supervised ML methods. All proposed methods claim that the false positive rate is

very low in real-world scenarios. However, all these detection techniques are only

applied for cryptographic implementations (AES, RSA, ECDSA, etc.) and specific

cache attacks (F+R, F+F, P+P). In addition, they are focused on process-specific

counters to detect the attacks however, the number of processes in a system is high.

The performance of proposed techniques in real-world scenarios (noisy environment,

multiple concurrent processes) against transient execution attacks (Meltdown, Spec-

tre, Zombieload, etc.) and Rowhammer is questionable. In order to evaluate 4 pro-

posed methods and FortuneTeller, we collected 6 million samples (4 million benign

executions, 2 million attack executions) with 1ms sampling rate from 10 benign

processes and 7 microarchitectural attacks by using system-wide counters. Note

that each benign and attack execution is monitored 100 times in the server environ-

ment. The benign processes are chosen from a diverse set of applications such as

Apache, MySQL, browser and cryptographic implementations. The attacks cover

cache-based, transient execution and Rowhammer attacks given in Appendix, Ta-

ble A.7. The detection algorithms from previous works are rewritten in the Matlab

environment and tested with the collected data.

CPD from Briongos et al. [30] The first approach is Change Point Detection

(CPD) which was implemented by Briongos et al. [30] to detect the anomalies.

CPD has the capability of self-learning by observing the number of cache misses.

The method has an assumption of no cache miss at the beginning of the learning

157

process which yields to high number of false positives initially. Even though we

increase the initial value of cache misses under attack (µa), we still observe several

false positives at the beginning. It is also unlikely to monitor each PID in the system

since there are hundreds of processes running at the same time.

For the evaluation of CPD method, we use the initial value of µa = 100 and

β = 0.65. When the CPD method is applied to our dataset, we observe that the

FPR is 3% and FNR is 10% which gives an F-score of 0.9372. However, with

the increasing number of concurrent processes, the false positive rate increases in

parallel. While this score shows that the CPD method is efficient for low system

load, it gives more false positives with the increasing workload. The estimated

detection time is around 300 ms for attack executions. The detection performance

for Rowhammer and P+P attacks is poor since the number of cache misses is not

high compared to benign processes. Therefore, these two attack types increase the

FNR overall.

CloudRadar from Zhang et al. [177] CloudRadar [177] benefits from Dynamic

Time Warping (DTW) to detect the cryptographic implementations and then, the

LLC hit and miss counters are monitored to detect the attacks. In the first step,

DTW is used to compare the test data and the signature of cryptographic implemen-

tations obtained from branch instructions. Secondly, when the distance between test

and target execution is very small, the LLC hit and LLC miss counters are mon-

itored. If there is a sudden jump in these two counters, the anomaly flag is set.

Again, this approach requires the PID of the monitored process.

In our dataset, CloudRadar can detect the applications with 100% success rate

in a noiseless environment. However, when there are concurrent processes running

in the system, DTW distance gets higher since branch instruction counter becomes

more noisy. In anomaly detection step, if another concurrent load starts running

158

at the same time, the cache miss and hit counters start increasing, which results in

significant increases of the FPR. Since there is only a simple threshold approach to

detect the attacks and the proposed decision window (5 ms) is too small, the FPR

rises. In these circumstances, the approach achieves 10% FPR. The attack detection

is also not great since it is not possible to detect F+F attack with cache miss and

hit counters. Thus, the FNR increases in parallel which yields to 20% FNR. Overall,

the detection technique has 0.8572 F-score.

PDF from Chiappetta et al. [35] In the third study, we evaluate the perfor-

mance of normal distribution and probability density function, which is proposed

by Chiappetta et al. [35]. In this technique, five counters (total instructions, CPU

cycles, L2 hits, L3 miss and L3 hits) are monitored to detect anomalies in cryp-

tographic implementations. It is an unsupervised approach by learning the normal

distribution of the attack execution (F+R) with its mean and variance in the system.

After the normal distribution is calculated, the probability density function (pdf)

of both attack and benign executions is calculated for each counter sample. Then,

an optimal threshold (ε) is chosen to separate the benign and attack processes. In

our dataset, the results indicated that total instructions and L2 hits decrease the

detection rate. The main drawback is that there is not any sophisticated learn-

ing process. Therefore, when there is a benign application with high variance and

mean, it is more likely to be classified as an anomaly. Especially, Apache server

benchmark and videos running in browsers give higher FPR. Moreover, P+P, F+F,

and Rowhammer attacks are not detected with a high accuracy, which yields to the

F-score of 0.7278 overall.

OC-SVM from Mushtaq et al. [123] The last method to compare is One-

Class Support Vector Machine (OC-SVM), which is used by Mushtaq et al. [123]

to detect the anomalies on cryptographic implementations. Their scope is limited

159

to F+F and F+R attacks. The number of counters tested in [123] is higher than

three, which makes it impossible to monitor all of them concurrently. Therefore,

we chose three counters (L1 miss, L3 hit and L3 total cache access), which give the

highest F-score. Even though OC-SVM was used in a supervised way in [123], we

used it in an unsupervised manner to maintain the consistency in the comparison.

In the training phase, the model is trained with the 50% of the benign execution

data. Then, the attack and benign dataset are tested with the trained model. The

obtained confidence scores are used to find the optimal decision boundary to separate

the benign and attack executions. The optimal decision boundary shows that the

FPR and FNR are 0.2750 and 0.2778, respectively. The main problem is that OC-

SVM is not sufficient to learn the diverse benign applications, which increases the

FPR drastically. Moreover, Rowhammer and F+F attacks are not detected, which

is the reason for higher FNR. Therefore, the F-score remains at 0.7240.

FortuneTeller Finally, we apply FortuneTeller to detect the anomalies in the

system. Since the diversity of the benign executions is smaller in the comparison

dataset, it is easier to learn the patterns. It is also important to note that 50 mea-

surements from each benign application is enough to reach the minimum prediction

error. Once the LSTM model is trained with the benign applications, the attack

executions and remaining benign application data are tested. The FPR and FNR

remains at 0.2% and 0.4%, respectively. The F-score is 0.997 for the FortuneTeller.

Table 9.2: Comparison of previous methods

Technique F-score
Briongos et al. [30] CPD 0.9372
Zhang et al. [177] DTW 0.8572

Chiappetta et al. [35] Normal Dist. 0.7278
Mushtaq et al. [123] OC-SVM 0.7240

Our work LSTM/GRU 0.9970

160

The comparison results are summarized in Table 9.2. The lack of appropriate

learning is significant in the wild. It is also obvious that even simple learning algo-

rithm such as CPD can help to outperform other detection techniques. We also show

that the detection accuracy increases by learning the sequential patterns of benign

applications with the system-wide profiling. Therefore, it is significantly important

to extract the fine-grained information from the hardware counters to achieve low

FPR and FNR. The common deficiencies of previous works are: (1) only crypto-

graphic implementations are considered, (2) latest attacks such as Rowhammer,

Spectre, Meltdown and Zombieload are not considered, (3) no advanced learning

technique, (4) the workload is not realistic.

9.4 Discussion

Bypassing FortuneTeller A common way of bypassing FortuneTeller is that in-

troducing delays between the attack steps to keep the counter values below the

anomaly threshold. To test the robustness of FortuneTeller, we inserted different

amounts of idle time frames (1µs-1ms) between attack steps in F+F, P+P, and

F+R. We observed that the prediction errors of GRU and LSTM networks increase

in parallel with the amount of sleep due to the high fluctuation. This shows that

introducing delays between attack steps is not an efficient way to circumvent For-

tuneTeller. The reason behind this is the fluctuation in the time series data is

not predicted well in the prediction phase. Therefore, we concluded that putting

a different amount of sleep between the attack steps is not enough to fool For-

tuneTeller. On the other hand, crafting adversarial examples is an efficient way to

bypass Deep Learning-based detection methods. For instance, Rosenberg et al [135]

shows that LSTM/GRU based malware detection techniques can be bypassed by

161

carefully inserting additional API calls in between. Therefore, crafting adversarial

code snippets to change the performance counters in the attack code may fool For-

tuneTeller. The main difficulty in this approach is that it is not possible to decrease

the counter values by executing more instructions between attack steps. Therefore,

applying adversarial examples on hardware counter values is not trivial.

Training Algorithm FortuneTeller investigates both available long-term depen-

dency learning techniques. We observed that GRU performs worse than LSTM

networks to predict the counter values in the next time steps. This is because of the

lack of internal memory state, which keeps the relevant information from previous

cells. This result is also supported by the high FPR and FNR of GRU networks.

Since the prediction error increases for attack executions more than benign applica-

tions, the detection accuracy decreases. Therefore, we recommend to train LSTM

networks for microarchitectural attack detection techniques.

Dynamic Detection The current implementation requires to have a GPU to train

FortuneTeller, as GPU based training 40 times faster than CPU based training. The

training is mostly done in an offline phase and it does not affect the dynamic detec-

tion. In contrast, dynamic detection heavily depends on the matrix multiplication,

since the trained model is loaded as a matrix in the system and the same matrix

is multiplied with the current counter values. Hence, the required time to predict

the next counter values is low. Besides, we observed that the performance overhead

is negligible for the matrix multiplication in the CPU systems. Therefore, For-

tuneTeller can be implemented in server/cloud/laptop environments, even if there

is no GPU integrated in the system.

Performance Counter Data Collection Recently, Das et al. [39] showed that

performance counters would yield misleading values on various counters. Therefore,

162

we consider the suggestions proposed in their paper in our study. For instance,

we measure the counter values for all the processes in the system so that there is

no need for per-process filtering. Additionally, Intel PCM tool [84] uses interrupt-

based counters hence, the context switches and page faults have no effect on our

experiments for system-wide profiling.

9.5 Outcome

This study presented FortuneTeller, which exploits the power of neural networks to

overcome the limitations of the prior works, and further proposes a novel generic

model to classify microarchitectural events. FortuneTeller is able to dynamically de-

tect microarchitectural anomalies in the system through learning benign workload.

In our study, we adopted two state-of-the-art RNN models: GRU and LSTM. We

concluded that LSTM is more preferable compared to GRU for our use case. Fur-

ther, the number of measurements has significant effect on the validation error in the

training phase, which makes it crucial to choose the optimal values to have better

prediction results. FortuneTeller is applicable to both server and laptop environ-

ments with a high accuracy. To evaluate the performance of FortuneTeller, we used

both benchmarks and real-world applications and achieved 0.05% and 0.02% FPRs

in one minute for server and laptop environments, respectively. FortuneTeller is

also tested against previous works in the realistic scenarios and it is concluded that

FortuneTeller outperforms other detection mechanisms in the wild.

163

Chapter 10

Conclusion

Microarchitectural attacks threaten the security and privacy of cloud, computer,

and mobile phone users. This threat becomes more dangerous when automated

information extraction techniques such as Machine Learning are applied to side-

channel traces.

In this dissertation, we show that cross-VM leakage exists in public clouds and

can be exploited as an attack vector to steal cryptographic keys. Furthermore, the

privacy of cloud service clients can be violated from co-located VMs by implementing

cache-based attacks. These results show that necessary steps should be taken by

chip vendors to secure the entire cache architecture in multi-core systems.

We also demonstrated that performance counter profiling attacks are applicable

in modern personal computers. Any malicious application in the system can monitor

counters to detect the visited websites in privacy protected browsers. Moreover, the

detection rate is improved by analyzing the measurements with Machine Learning

techniques.

The privacy violations on mobile phones are also investigated by applying cache

attacks. While we showed that applications, websites, and videos can be identified

164

by collecting cache traces in mobile phones, Deep Learning techniques achieve higher

detection rates compared to traditional Machine Learning algorithms.

Finally, we introduce a Recurrent Neural Network based method to detect the

ongoing microarchitectural attacks in the system. This work is the first one to

show that single Machine Learning model can be trained to detect multiple attacks

which is also more prune to system noise. It has been shown that our technique

outperforms other detection tools in a number of real-life applications.

165

Bibliography

[1] Amazon EC2 Instances. http://aws.amazon.com/ec2/instance-types/.

[2] AWS IP Address Ranges. https://ip-ranges.amazonaws.com/ip-ranges.
json.

[3] Fix Flush and Reload in RSA. https://lists.gnupg.org/pipermail/

gnupg-announce/2013q3/000329.html.

[4] Global Cloud Index Projects Cloud Traffic to Represent 95 Percent
of Total Data Center Traffic by 2021. https://newsroom.cisco.com/

press-release-content?type=webcontent&articleId=1908858. Accessed:
2017-5-25.

[5] Google Compute Engine Instance Types. https://cloud.google.com/

compute/docs/machine-types.

[6] Intel Xeon 2670-v2. http://ark.intel.com/es/products/75275/

Intel-Xeon-Processor-E5-2670-v2-25M-Cache-2_50-GHz.

[7] Leak site directory. http://www.leakdirectory.org/index.php/Leak_

Site_Directory.

[8] More buying, less building in The Age of
Consumption. https://451research.com/blog/

1933-more-buying-less-building-in-the-age-of-consumption. Ac-
cessed: 2017-5-24.

[9] OpenSSL fix flush and reload ECDSA nonces. https:

//git.openssl.org/gitweb/?p=openssl.git;a=commitdiff;h=

2198be3483259de374f91e57d247d0fc667aef29.

[10] Phoronix Test Suite Tests. https://openbenchmarking.org/tests/pts.

[11] Transparent Page Sharing: additional management capabilities
and new default settings. http://blogs.vmware.com/security/

vmware-security-response-center/page/2.

166

http://aws.amazon.com/ec2/instance-types/
https://ip-ranges.amazonaws.com/ip-ranges.json
https://ip-ranges.amazonaws.com/ip-ranges.json
https://lists.gnupg.org/pipermail/gnupg-announce/2013q3/000329.html
https://lists.gnupg.org/pipermail/gnupg-announce/2013q3/000329.html
https://newsroom.cisco.com/press-release-content?type=webcontent&articleId=1908858
https://newsroom.cisco.com/press-release-content?type=webcontent&articleId=1908858
https://cloud.google.com/compute/docs/machine-types
https://cloud.google.com/compute/docs/machine-types
http://ark.intel.com/es/products/75275/Intel-Xeon-Processor-E5-2670-v2-25M-Cache-2_50-GHz
http://ark.intel.com/es/products/75275/Intel-Xeon-Processor-E5-2670-v2-25M-Cache-2_50-GHz
http://www.leakdirectory.org/index.php/Leak_Site_Directory
http://www.leakdirectory.org/index.php/Leak_Site_Directory
https://451research.com/blog/1933-more-buying-less-building-in-the-age-of-consumption
https://451research.com/blog/1933-more-buying-less-building-in-the-age-of-consumption
https://git.openssl.org/gitweb/?p=openssl.git;a=commitdiff;h=2198be3483259de374f91e57d247d0fc667aef29
https://git.openssl.org/gitweb/?p=openssl.git;a=commitdiff;h=2198be3483259de374f91e57d247d0fc667aef29
https://git.openssl.org/gitweb/?p=openssl.git;a=commitdiff;h=2198be3483259de374f91e57d247d0fc667aef29
https://openbenchmarking.org/tests/pts
http://blogs.vmware.com/security/vmware-security-response-center/page/2
http://blogs.vmware.com/security/vmware-security-response-center/page/2

[12] Worldwide Public Cloud Services Spending Forecast to Reach $210 Bil-
lion This Year, According to IDC. https://www.idc.com/getdoc.jsp?

containerId=prUS44891519. Accessed: 2017-5-25.

[13] Kernel Samepage Merging. http://kernelnewbies.org/Linux_2_6_32#

head-d3f32e41df508090810388a57efce73f52660ccb/, April 2014.

[14] Study Says Self-Driving Cars Are Safer Than Human-Driven Vehicles: Should
You Believe It? http://bit.ly/1mTiDWk, Jan 2016. Tech Times.

[15] Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J.,
Devin, M., Ghemawat, S., Irving, G., Isard, M., Kudlur, M., Lev-
enberg, J., Monga, R., Moore, S., Murray, D. G., Steiner, B.,
Tucker, P., Vasudevan, V., Warden, P., Wicke, M., Yu, Y., and
Zheng, X. Tensorflow: A system for large-scale machine learning. In
12th USENIX Symposium on Operating Systems Design and Implementation
(OSDI 16) (Savannah, GA, 2016), USENIX Association, pp. 265–283.

[16] Acıiçmez, O. Yet another microarchitectural attack: Exploiting i-cache. In
Proceedings of the 2007 ACM Workshop on Computer Security Architecture
(2007), CSAW ’07, ACM, pp. 11–18.

[17] Aciiçmez, O., Brumley, B. B., and Grabher, P. New results on in-
struction cache attacks. In Proceedings of the 12th International Conference
on Cryptographic Hardware and Embedded Systems (Berlin, Heidelberg, 2010),
CHES’10, Springer, pp. 110–124.

[18] Aldaya, A. C., Brumley, B. B., ul Hassan, S., Garćıa, C. P., and
Tuveri, N. Port contention for fun and profit. In 2019 IEEE Symposium on
Security and Privacy (SP) (2019), IEEE, pp. 870–887.

[19] Alexa Internet Inc. The top 500 sites on the web, 2018. http://www.

alexa.com/topsites. Last accessed 2018-01-01.

[20] Alphago. https://deepmind.com/research/alphago/.

[21] Android Open Source Project. Bionic Initial Contribution, 2008.
https://android.googlesource.com/platform/bionic/+/a27d2baa. Last
accessed 2019-01-21.

[22] Bahador, M. B., Abadi, M., and Tajoddin, A. Hpcmalhunter: Behav-
ioral malware detection using hardware performance counters and singular
value decomposition. In Computer and Knowledge Engineering (ICCKE),
2014 4th International eConference on (2014), IEEE, pp. 703–708.

167

https://www.idc.com/getdoc.jsp?containerId=prUS44891519
https://www.idc.com/getdoc.jsp?containerId=prUS44891519
http://kernelnewbies.org/Linux_2_6_32#head-d3f32e41df508090810388a57efce73f52660ccb/
http://kernelnewbies.org/Linux_2_6_32#head-d3f32e41df508090810388a57efce73f52660ccb/
http://bit.ly/1mTiDWk
http://www.alexa.com/topsites
http://www.alexa.com/topsites
https://deepmind.com/research/alphago/
https://android.googlesource.com/platform/bionic/+/a27d2baa

[23] Bates, A., Mood, B., Pletcher, J., Pruse, H., Valafar, M., and
Butler, K. Detecting co-residency with active traffic analysis techniques. In
Proceedings of the 2012 ACM Workshop on Cloud computing security work-
shop (2012), pp. 1–12.

[24] Beltramelli, T., and Risi, S. Deep-spying: Spying using smartwatch and
deep learning. CoRR abs/1512.05616 (2015).

[25] Benger, N., van de Pol, J., Smart, N., and Yarom, Y. “ooh aah...
just a little bit”: A small amount of side channel can go a long way. In
Cryptographic Hardware and Embedded Systems – CHES 2014: 16th Interna-
tional Workshop, Busan, South Korea, September 23-26, 2014. Proceedings,
L. Batina and M. Robshaw, Eds., vol. 8731 of Lecture Notes in Computer
Science. Springer Berlin Heidelberg, 2014, pp. 75–92.

[26] Benger, N., van de Pol, J., Smart, N. P., and Yarom, Y. “ooh aah...
just a little bit” : A small amount of side channel can go a long way. In Cryp-
tographic Hardware and Embedded Systems – CHES 2014 (Berlin, Heidelberg,
2014), Springer, pp. 75–92.

[27] Bernstein, D. J., Chang, Y.-A., Cheng, C.-M., Chou, L.-P.,
Heninger, N., Lange, T., and Van Someren, N. Factoring rsa keys from
certified smart cards: Coppersmith in the wild. In Advances in Cryptology-
ASIACRYPT 2013. Springer, 2013, pp. 341–360.

[28] Bhattacharyya, A., Sandulescu, A., Neugschwandtner, M.,
Sorniotti, A., Falsafi, B., Payer, M., and Kurmus, A. Smotherspec-
tre: exploiting speculative execution through port contention. In Proceedings
of the 2019 ACM SIGSAC Conference on Computer and Communications
Security (2019), pp. 785–800.

[29] Bosman, E., Razavi, K., Bos, H., and Giuffrida, C. Dedup est
machina: Memory deduplication as an advanced exploitation vector. In 2016
IEEE symposium on security and privacy (SP) (2016), IEEE, pp. 987–1004.

[30] Briongos, S., Irazoqui, G., Malagón, P., and Eisenbarth, T.
Cacheshield: Detecting cache attacks through self-observation. In Proceed-
ings of the Eighth ACM Conference on Data and Application Security and
Privacy (New York, NY, USA, 2018), CODASPY ’18, ACM, pp. 224–235.

[31] Brumley, B. B., and Hakala, R. M. Cache-timing template attacks.
In Advances in Cryptology – ASIACRYPT 2009 (Berlin, Heidelberg, 2009),
M. Matsui, Ed., Springer Berlin Heidelberg, pp. 667–684.

168

[32] Cauligi, S., Soeller, G., Brown, F., Johannesmeyer, B., Huang,
Y., Jhala, R., and Stefan, D. Fact: A flexible, constant-time program-
ming language. In IEEE Cybersecurity Development, SecDev 2017, Cam-
bridge, MA, USA, September 24-26, 2017 (2017), pp. 69–76.

[33] Chandrashekar, G., and Sahin, F. A survey on feature selection meth-
ods. Computers & Electrical Engineering 40, 1 (2014), 16–28.

[34] Chang, C.-C., and Lin, C.-J. Libsvm: a library for support vector ma-
chines. ACM transactions on intelligent systems and technology (TIST) 2, 3
(2011), 27.

[35] Chiappetta, M., Savas, E., and Yilmaz, C. Real time detection of cache-
based side-channel attacks using hardware performance counters. Applied Soft
Computing 49 (2016), 1162–1174.

[36] Chiu, C.-C., Sainath, T. N., Wu, Y., Prabhavalkar, R., Nguyen,
P., Chen, Z., Kannan, A., Weiss, R. J., Rao, K., Gonina, E., et al.
State-of-the-art speech recognition with sequence-to-sequence models. In 2018
IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP) (2018), IEEE, pp. 4774–4778.

[37] Chollet, F., et al. Keras, 2015.

[38] Craig Labovitz. How Big is Amazons Cloud? http://www.deepfield.

com/2012/04/how-big-is-amazons-cloud/, 2012.

[39] Das, S., Werner, J., Antonakakis, M., Polychronakis, M., and
Monrose, F. Sok: The challenges, pitfalls, and perils of using hardware
performance counters for security. In SoK: The Challenges, Pitfalls, and Perils
of Using Hardware Performance Counters for Security (2019), IEEE, p. 0.

[40] Demme, J., Maycock, M., Schmitz, J., Tang, A., Waksman, A.,
Sethumadhavan, S., and Stolfo, S. On the feasibility of online malware
detection with performance counters. In ACM SIGARCH Computer Archi-
tecture News (2013), vol. 41, ACM, pp. 559–570.

[41] Dhem, J.-F., Koeune, F., Leroux, P.-A., Mestré, P., Quisquater,
J.-J., and Willems, J.-L. A Practical Implementation of the Timing
Attack. In Smart Card Research and Applications, J.-J. Quisquater and
B. Schneier, Eds., vol. 1820 of Lecture Notes in Computer Science. Springer
Berlin Heidelberg, 2000, pp. 167–182.

[42] Diao, W., Liu, X., Li, Z., and Zhang, K. No pardon for the interruption:
New inference attacks on android through interrupt timing analysis. In Secu-
rity and Privacy (SP), 2016 IEEE Symposium on (2016), IEEE, pp. 414–432.

169

http://www.deepfield.com/2012/04/how-big-is-amazons-cloud/
http://www.deepfield.com/2012/04/how-big-is-amazons-cloud/

[43] Evtyushkin, D., Ponomarev, D., and Abu-Ghazaleh, N. Jump
over aslr: Attacking branch predictors to bypass aslr. In The 49th Annual
IEEE/ACM International Symposium on Microarchitecture (Piscataway, NJ,
USA, 2016), MICRO-49, IEEE Press, pp. 40:1–40:13.

[44] Evtyushkin, D., Riley, R., Abu-Ghazaleh, N. C., ECE, and Pono-
marev, D. Branchscope: A new side-channel attack on directional branch
predictor. In Proceedings of the Twenty-Third International Conference on Ar-
chitectural Support for Programming Languages and Operating Systems (New
York, NY, USA, 2018), ASPLOS ’18, ACM, pp. 693–707.

[45] Feizollah, A., Anuar, N. B., Salleh, R., Amalina, F., Shamshir-
band, S., et al. A study of machine learning classifiers for anomaly-based
mobile botnet detection. Malaysian Journal of Computer Science 26, 4 (2013),
251–265.

[46] Felten, E. W., and Schneider, M. A. Timing attacks on web privacy.
In Proceedings of the 7th ACM Conference on Computer and Communications
Security (New York, NY, USA, 2000), CCS ’00, ACM, pp. 25–32.

[47] Forbes. 83% Of Enterprise Workloads Will Be In The Cloud By 2020.

[48] Frigo, P., Vannacci, E., Hassan, H., van der Veen, V., Mutlu, O.,
Giuffrida, C., Bos, H., and Razavi, K. Trrespass: Exploiting the many
sides of target row refresh. arXiv preprint arXiv:2004.01807 (2020).

[49] Gaudin, S. Public cloud market ready for ’hypergrowth’
period. Computerworld Article, April 2014. http://

www.computerworld.com/article/2488572/cloud-computing/

public-cloud-market-ready-for--hypergrowth--period.html.

[50] Genkin, D., Pachmanov, L., Pipman, I., and Tromer, E. Stealing
keys from pcs using a radio: Cheap electromagnetic attacks on windowed
exponentiation. In International Workshop on Cryptographic Hardware and
Embedded Systems (Berlin, Heidelberg, 2015), Springer, Springer, pp. 207–
228.

[51] Genkin, D., Pachmanov, L., Tromer, E., and Yarom, Y. Drive-by
key-extraction cache attacks from portable code. Cryptology ePrint Archive,
Report 2018/119, 2018. https://eprint.iacr.org/2018/119.

[52] Genkin, D., Shamir, A., and Tromer, E. Rsa key extraction via low-
bandwidth acoustic cryptanalysis. In International Cryptology Conference
(Berlin, Heidelberg, 2014), Springer, Springer, pp. 444–461.

170

http://www.computerworld.com/article/2488572/cloud-computing/public-cloud-market-ready-for--hypergrowth--period.html
http://www.computerworld.com/article/2488572/cloud-computing/public-cloud-market-ready-for--hypergrowth--period.html
http://www.computerworld.com/article/2488572/cloud-computing/public-cloud-market-ready-for--hypergrowth--period.html
https://eprint.iacr.org/2018/119

[53] Ghose, T. All in: Artificial intelligence beats the
world’s best poker players. https://www.livescience.com/

57717-artificial-intelligence-wins-texas-hold-em.html, Feb 2017.

[54] Godfrey, M. M., and Zulkernine, M. A server-side solution to cache-
based the cloud. In 2013 IEEE Sixth International Conference on Cloud Com-
puting, Santa Clara, CA, USA, June 28 - July 3, 2013 (2013), pp. 163–170.

[55] Goodfellow, I., Bengio, Y., and Courville, A. Deep learning. 2016.

[56] Goodfellow, I. J., Shlens, J., and Szegedy, C. Explaining and har-
nessing adversarial examples. arXiv preprint arXiv:1412.6572 (2014).

[57] Gras, B., Razavi, K., Bos, H., and Giuffrida, C. Translation leak-
aside buffer: Defeating cache side-channel protections with {TLB} attacks.
In 27th {USENIX} Security Symposium ({USENIX} Security 18) (2018),
pp. 955–972.

[58] Gruss, D., Bidner, D., and Mangard, S. Practical memory deduplica-
tion attacks in sandboxed javascript. In European Symposium on Research in
Computer Security (2015), Springer, pp. 108–122.

[59] Gruss, D., Lipp, M., Schwarz, M., Fellner, R., Maurice, C., and
Mangard, S. Kaslr is dead: long live kaslr. In International Symposium on
Engineering Secure Software and Systems (2017), Springer, pp. 161–176.

[60] Gruss, D., Maurice, C., Fogh, A., Lipp, M., and Mangard, S.
Prefetch side-channel attacks: Bypassing smap and kernel aslr. In Proceedings
of the 2016 ACM SIGSAC Conference on Computer and Communications
Security (New York, NY, USA, 2016), CCS ’16, ACM, pp. 368–379.

[61] Gruss, D., Maurice, C., and Mangard, S. Rowhammer.js: A remote
software-induced fault attack in javascript. In Detection of Intrusions and
Malware, and Vulnerability Assessment (2016), Springer, pp. 300–321.

[62] Gruss, D., Maurice, C., and Mangard, S. Rowhammer.js: A remote
software-induced fault attack in javascript. In 13th Conference on Detection
of Intrusions and Malware & Vulnerability Assessment (DIMVA) (2016).

[63] Gruss, D., Spreitzer, R., and Mangard, S. Cache template attacks:
Automating attacks on inclusive last-level caches. In 24th USENIX Security
Symposium (USENIX Security 15) (Washington, D.C., Aug 2015), USENIX
Association, pp. 897–912.

[64] Gruss, D., Spreitzer, R., and Mangard, S. Cache template attacks:
Automating attacks on inclusive last-level caches. In 24th USENIX Security

171

https://www.livescience.com/57717-artificial-intelligence-wins-texas-hold-em.html
https://www.livescience.com/57717-artificial-intelligence-wins-texas-hold-em.html

Symposium (USENIX Security 15) (Washington, D.C., 2015), USENIX Asso-
ciation, pp. 897–912.

[65] Gullasch, D., Bangerter, E., and Krenn, S. Cache games – bringing
access-based cache attacks on AES to practice. In Proceedings of the 2011
IEEE Symposium on Security and Privacy (Oakland, CA, USA, 2011), SP
’11, IEEE Computer Society, pp. 490–505.

[66] Gulmezoglu, B., Eisenbarth, T., and Sunar, B. Cache-based applica-
tion detection in the cloud using machine learning. In Proceedings of the 2017
ACM on Asia Conference on Computer and Communications Security (New
York, NY, USA, 2017), ASIA CCS ’17, ACM, pp. 288–300.

[67] Gülmezoğlu, B., Inci, M. S., Irazoqui, G., Eisenbarth, T., and
Sunar, B. A faster and more realistic flush+ reload attack on aes. In Inter-
national Workshop on Constructive Side-Channel Analysis and Secure Design
(2015), Springer, pp. 111–126.

[68] Gulmezoglu, B., Inci, M. S., Irazoqui, G., Eisenbarth, T., and
Sunar, B. Cross-vm cache attacks on aes. IEEE Transactions on Multi-
Scale Computing Systems 2, 3 (2016), 211–222.

[69] Gulmezoglu, B., Moghimi, A., Eisenbarth, T., and Sunar, B. For-
tuneteller: Predicting microarchitectural attacks via unsupervised deep learn-
ing. arXiv preprint arXiv:1907.03651 (2019).

[70] Gülmezoglu, B., Zankl, A., Eisenbarth, T., and Sunar, B. PerfWeb:
How to Violate Web Privacy with Hardware Performance Events. In Com-
puter Security - ESORICS 2017 - 22nd European Symposium on Research in
Computer Security, Oslo, Norway, September 11-15, 2017, Proceedings, Part
II (2017), pp. 80–97.

[71] Gulmezoglu, B., Zankl, A., Tol, C., Islam, S., Eisenbarth, T.,
and Sunar, B. Undermining user privacy on mobile devices using ai. arXiv
preprint arXiv:1811.11218 (2018).

[72] Heninger, N., Durumeric, Z., Wustrow, E., and Halderman, J. A.
Mining Your Ps and Qs: Detection of Widespread Weak Keys in Network De-
vices. In Presented as part of the 21st USENIX Security Symposium (USENIX
Security 12) (Bellevue, WA, 2012), USENIX, pp. 205–220.

[73] Herath, N., and Fogh, A. These are not your grand daddys cpu perfor-
mance counters–cpu hardware performance counters for security. Black Hat
Briefings (2015).

[74] Horn, J. speculative execution, variant 4: speculative store bypass, 2018.

172

[75] Hornby, T. Side-channel attacks on everyday applica-
tions: Distinguishing inputs with flush+reload. Black Hat
USA, 2016. https://www.blackhat.com/docs/us-16/materials/

us-16-Hornby-Side-Channel-Attacks-On-Everyday-Applications-wp.

pdf.

[76] Hospodar, G., Gierlichs, B., De Mulder, E., Verbauwhede, I.,
and Vandewalle, J. Machine learning in side-channel analysis: a first
study. Journal of Cryptographic Engineering 1, 4 (2011), 293–302.

[77] Hu, W. Reducing timing channels with fuzzy time. In IEEE Symposium on
Security and Privacy (1991), pp. 8–20.

[78] Hund, R., Willems, C., and Holz, T. Practical timing side channel
attacks against kernel space aslr. In 2013 IEEE Symposium on Security and
Privacy (2013), IEEE, pp. 191–205.

[79] Ignatov, A., Timofte, R., Chou, W., Wang, K., Wu, M., Hartley,
T., and Gool, L. V. AI benchmark: Running deep neural networks on
android smartphones. CoRR abs/1810.01109 (2018).

[80] Inci, M. S., Eisenbarth, T., and Sunar, B. Deepcloak: Adver-
sarial crafting as a defensive measure to cloak processes. arXiv preprint
arXiv:1808.01352 (2018).

[81] Inci, M. S., Gülmezoglu, B., Apecechea, G. I., Eisenbarth, T., and
Sunar, B. Seriously, get off my cloud! cross-vm rsa key recovery in a public
cloud. IACR Cryptology ePrint Archive 2015, 1-15 (2015).

[82] Inci, M. S., Gulmezoglu, B., Eisenbarth, T., and Sunar, B. Co-
location detection on the cloud. In International Workshop on Constructive
Side-Channel Analysis and Secure Design (2016), Springer, pp. 19–34.

[83] İnci, M. S., Gulmezoglu, B., Irazoqui, G., Eisenbarth, T., and
Sunar, B. Cache attacks enable bulk key recovery on the cloud. In Crypto-
graphic Hardware and Embedded Systems (Berlin, Heidelberg, 2016), pp. 368–
388.

[84] Intel. Intel pcm, 2019. https://github.com/opcm/pcm. Last accessed 2019-
02-15.

[85] Irazoqui, G., Eisenbarth, T., and Sunar, B. S$a: A shared cache
attack that works across cores and defies vm sandboxing – and its application
to aes. In Proceedings of the 2015 IEEE Symposium on Security and Privacy
(Washington, DC, USA, 2015), SP ’15, IEEE Computer Society, pp. 591–604.

173

https://www.blackhat.com/docs/us-16/materials/us-16-Hornby-Side-Channel-Attacks-On-Everyday-Applications-wp.pdf
https://www.blackhat.com/docs/us-16/materials/us-16-Hornby-Side-Channel-Attacks-On-Everyday-Applications-wp.pdf
https://www.blackhat.com/docs/us-16/materials/us-16-Hornby-Side-Channel-Attacks-On-Everyday-Applications-wp.pdf
https://github.com/opcm/pcm

[86] Irazoqui, G., Eisenbarth, T., and Sunar, B. S$a: A shared cache
attack that works across cores and defies vm sandboxing and its application
to aes. In Proceedings of the 2015 IEEE Symposium on Security and Privacy
(San Jose, CA, USA, 2015), SP ’15, IEEE Computer Society, pp. 591–604.

[87] Irazoqui, G., Eisenbarth, T., and Sunar, B. Mascat: Stopping mi-
croarchitectural attacks before execution. IACR Cryptology ePrint Archive
2016 (2016), 1196.

[88] Irazoqui, G., Inci, M. S., Eisenbarth, T., and Sunar, B. Fine grain
cross-vm attacks on xen and vmware are possible! Cryptology ePrint Archive,
Report 2014/248, 2014. http://eprint.iacr.org/.

[89] Irazoqui, G., Inci, M. S., Eisenbarth, T., and Sunar, B. Wait a
minute! a fast, cross-vm attack on aes. In Research in Attacks, Intrusions and
Defenses (2014), Springer, pp. 299–319.

[90] Irazoqui, G., IncI, M. S., Eisenbarth, T., and Sunar, B. Know thy
neighbor: Crypto library detection in cloud. Proceedings on Privacy Enhanc-
ing Technologies 2015, 1 (2015), 25–40.

[91] Islam, S., Moghimi, A., Bruhns, I., Krebbel, M., Gulmezoglu, B.,
Eisenbarth, T., and Sunar, B. {SPOILER}: Speculative load hazards
boost rowhammer and cache attacks. In 28th {USENIX} Security Symposium
({USENIX} Security 19) (2019), pp. 621–637.

[92] Jackson, C., Bortz, A., Boneh, D., and Mitchell, J. C. Protecting
browser state from web privacy attacks. In Proceedings of the 15th Interna-
tional Conference on World Wide Web (New York, NY, USA, 2006), WWW
’06, ACM, pp. 737–744.

[93] Jaleel, A., Theobald, K. B., Jr., S. C. S., and Emer, J. S. High
performance cache replacement using re-reference interval prediction (RRIP).
In Proceedings of ISCA 2010, June 19-23, 2010, Saint-Malo, France (2010),
pp. 60–71.

[94] Jana, S., and Shmatikov, V. Memento: Learning secrets from process
footprints. In 2012 IEEE Symposium on Security and Privacy (May 2012),
pp. 143–157.

[95] Jones, M. T. Anatomy of linux kernel shared memory. http://www.

ibm.com/developerworks/linux/library/l-kernel-shared-memory/

l-kernel-shared-memory-pdf.pdf/, April 2010.

174

http://eprint.iacr.org/
http://www.ibm.com/developerworks/linux/library/l-kernel-shared-memory/l-kernel-shared-memory-pdf.pdf/
http://www.ibm.com/developerworks/linux/library/l-kernel-shared-memory/l-kernel-shared-memory-pdf.pdf/
http://www.ibm.com/developerworks/linux/library/l-kernel-shared-memory/l-kernel-shared-memory-pdf.pdf/

[96] Kim, H., Lee, S., and Kim, J. Inferring browser activity and status through
remote monitoring of storage usage. In Proceedings of the 32Nd Annual Con-
ference on Computer Security Applications (New York, NY, USA, 2016), AC-
SAC ’16, ACM, pp. 410–421.

[97] Kocher, P., Genkin, D., Gruss, D., Haas, W., Hamburg, M., Lipp,
M., Mangard, S., Prescher, T., Schwarz, M., and Yarom, Y. Spec-
tre attacks: Exploiting speculative execution. ArXiv e-prints (Jan. 2018).

[98] Kocher, P., Jaffe, J., and Jun, B. Differential power analysis. In
Advances in cryptologyCRYPTO99 (1999), Springer, pp. 789–789.

[99] Kocher, P. C. Timing attacks on implementations of diffie-hellman, rsa,
dss, and other systems. In Advances in Cryptology — CRYPTO ’96 (Berlin,
Heidelberg, 1996), Springer, pp. 104–113.

[100] Koruyeh, E. M., Khasawneh, K. N., Song, C., and Abu-Ghazaleh,
N. Spectre returns! speculation attacks using the return stack buffer. In 12th
USENIX Workshop on Offensive Technologies (WOOT 18) (Baltimore, MD,
Aug. 2018), USENIX Association.

[101] Lee, S., Kim, Y., Kim, J., and Kim, J. Stealing webpages rendered on
your browser by exploiting gpu vulnerabilities. In 2014 IEEE Symposium on
Security and Privacy (SP) (2014), IEEE, pp. 19–33.

[102] Lerman, L., Bontempi, G., and Markowitch, O. Side channel at-
tack: an approach based on machine learning. Center for Advanced Security
Research Darmstadt (2011), 29–41.

[103] Liang, B., You, W., Liu, L., Shi, W., and Heiderich, M. Scriptless
timing attacks on web browser privacy. In 2014 44th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks (June 2014),
pp. 112–123.

[104] Libgcrypt. The Libgcrypt reference manual. http://www.gnupg.org/

documentation/manuals/gcrypt/.

[105] Linux Kernel Developers. perf: Linux profiling with performance coun-
ters, 2015. https://perf.wiki.kernel.org/index.php/Main_Page.

[106] Linux Programmer’s Manual. perf event open - set up performance
monitoring. http://man7.org/linux/man-pages/man2/perf_event_open.

2.html, 2016. Accessed: 2017-06-29.

[107] Lipp, M., Gruss, D., Spreitzer, R., Maurice, C., and Mangard,
S. Armageddon: Cache attacks on mobile devices. In 25th USENIX Security
Symposium (USENIX Security 16) (Austin, TX, 2016), pp. 549–564.

175

http://www.gnupg.org/documentation/manuals/gcrypt/
http://www.gnupg.org/documentation/manuals/gcrypt/
https://perf.wiki.kernel.org/index.php/Main_Page
http://man7.org/linux/man-pages/man2/perf_event_open.2.html
http://man7.org/linux/man-pages/man2/perf_event_open.2.html

[108] Lipp, M., Gruss, D., Spreitzer, R., Maurice, C., and Mangard,
S. Armageddon: Cache attacks on mobile devices. In 25th USENIX Security
Symposium (USENIX Security 16) (Austin, TX, Aug 2016), USENIX Associ-
ation, pp. 549–564.

[109] Lipp, M., Schwarz, M., Gruss, D., Prescher, T., Haas, W., Fogh,
A., Horn, J., Mangard, S., Kocher, P., Genkin, D., Yarom, Y.,
and Hamburg, M. Meltdown: Reading kernel memory from user space. In
27th USENIX Security Symposium (Baltimore, MD, 2018).

[110] Liu, F., Ge, Q., Yarom, Y., Mckeen, F., Rozas, C., Heiser, G., and
Lee, R. B. Catalyst: Defeating last-level cache side channel attacks in cloud
computing. In 2016 IEEE International Symposium on High Performance
Computer Architecture (HPCA) (March 2016), pp. 406–418.

[111] Liu, F., Yarom, Y., Ge, Q., Heiser, G., and Lee, R. B. Last-level cache
side-channel attacks are practical. In Proceedings of the 2015 IEEE Symposium
on Security and Privacy (San Jose, CA, USA, 2015), SP ’15, IEEE Computer
Society, pp. 605–622.

[112] LLVM. Speculative load hardening, 2019. https://llvm.org/docs/

SpeculativeLoadHardening.html. Last accessed 2020-04-07.

[113] Maghrebi, H., Portigliatti, T., and Prouff, E. Breaking crypto-
graphic implementations using deep learning techniques. In Security, Privacy,
and Applied Cryptography Engineering (Cham, 2016), C. Carlet, M. A. Hasan,
and V. Saraswat, Eds., Springer International Publishing, pp. 3–26.

[114] Maisuradze, G., and Rossow, C. ret2spec. Proceedings of the 2018 ACM
SIGSAC Conference on Computer and Communications Security (Jan 2018).

[115] Malone, C., Zahran, M., and Karri, R. Are hardware performance
counters a cost effective way for integrity checking of programs. In Proceed-
ings of the sixth ACM workshop on Scalable trusted computing (2011), ACM,
pp. 71–76.

[116] Mambretti, A., Sandulescu, A., Sorniotti, A., Robertson, W.,
Kirda, E., and Kurmus, A. Bypassing memory safety mechanisms through
speculative control flow hijacks. arXiv preprint arXiv:2003.05503 (2020).

[117] Mangard, S., Oswald, E., and Popp, T. Power Analysis Attacks:
Revealing the Secrets of Smart Cards (Advances in Information Security).
Springer, Berlin, Heidelberg, 2007.

[118] Martinasek, Z., Hajny, J., and Malina, L. Optimization of power anal-
ysis using neural network. In Smart Card Research and Advanced Applications

176

https://llvm.org/docs/SpeculativeLoadHardening.html
https://llvm.org/docs/SpeculativeLoadHardening.html

(Cham, 2014), A. Francillon and P. Rohatgi, Eds., Springer International Pub-
lishing, pp. 94–107.

[119] Martinasek, Z., and Zeman, V. Innovative method of the power analysis.
Radioengineering 22, 2 (2013), 586–594.

[120] Microsoft. Performance counters (windows), 2017. https:

//msdn.microsoft.com/de-de/library/windows/desktop/aa373083(v=

vs.85).aspx.

[121] Minkin, M., Moghimi, D., Lipp, M., Schwarz, M., Van Bulck, J.,
Genkin, D., Gruss, D., Piessens, F., Sunar, B., and Yarom, Y. Fall-
out: Reading kernel writes from user space. arXiv preprint arXiv:1905.12701
(2019).

[122] Moghimi, A., Eisenbarth, T., and Sunar, B. Memjam: A false depen-
dency attack against constant-time crypto implementations in SGX. In Topics
in Cryptology - CT-RSA 2018 - The Cryptographers’ Track at the RSA Con-
ference 2018, San Francisco, CA, USA, April 16-20, 2018, Proceedings (2018),
pp. 21–44.

[123] Mushtaq, M., Akram, A., Bhatti, M. K., Chaudhry, M., Lapotre,
V., and Gogniat, G. Nights-watch: a cache-based side-channel intrusion
detector using hardware performance counters. In Proceedings of the 7th In-
ternational Workshop on Hardware and Architectural Support for Security and
Privacy (2018), ACM, p. 1.

[124] Naghibijouybari, H., Neupane, A., Qian, Z., and Abu-Ghazaleh,
N. Rendered insecure: Gpu side channel attacks are practical. In Proceedings
of the 2018 ACM SIGSAC Conference on Computer and Communications
Security (2018), ACM, pp. 2139–2153.

[125] Nilsson, N. J. Learning machines.

[126] Oren, Y., Kemerlis, V. P., Sethumadhavan, S., and Keromytis,
A. D. The spy in the sandbox: Practical cache attacks in javascript and
their implications. In Proceedings of the 22Nd ACM SIGSAC Conference on
Computer and Communications Security (New York, NY, USA), CCS ’15,
pp. 1406–1418.

[127] Oren, Y., Kemerlis, V. P., Sethumadhavan, S., and Keromytis,
A. D. The spy in the sandbox: Practical cache attacks in javascript and
their implications. In Proceedings of the 22Nd ACM SIGSAC Conference
on Computer and Communications Security (NY, USA, 2015), CCS, ACM,
pp. 1406–1418.

177

https://msdn.microsoft.com/de-de/library/windows/desktop/aa373083(v=vs.85).aspx
https://msdn.microsoft.com/de-de/library/windows/desktop/aa373083(v=vs.85).aspx
https://msdn.microsoft.com/de-de/library/windows/desktop/aa373083(v=vs.85).aspx

[128] Osvik, D. A., Shamir, A., and Tromer, E. Cache attacks and counter-
measures: The case of aes. In Topics in Cryptology – CT-RSA 2006 (Berlin,
Heidelberg, 2006), Springer, pp. 1–20.

[129] Pan, Y., Shen, P., and Shen, L. Speech emotion recognition using support
vector machine. International Journal of Smart Home 6, 2 (2012), 101–108.

[130] Panchenko, A., Lanze, F., Pennekamp, J., Engel, T., Zinnen, A.,
Henze, M., and Wehrle, K. Website fingerprinting at internet scale. In
NDSS (2016).

[131] Peng, L. Detecting diabetic eye disease with machine
learning. https://blog.google/topics/machine-learning/

detecting-diabetic-eye-disease-machine-learning/, Nov 2016.

[132] Percival, C. Cache missing for fun and profit, 2005.

[133] Razavi, K., Gras, B., Bosman, E., Preneel, B., Giuffrida, C., and
Bos, H. Flip feng shui: Hammering a needle in the software stack. In USENIX
Security symposium (2016), pp. 1–18.

[134] Ristenpart, T., Tromer, E., Shacham, H., and Savage, S. Hey, you,
get off of my cloud: Exploring information leakage in third-party compute
clouds. In Proceedings of the 16th ACM Conference on Computer and Com-
munications Security (New York, NY, USA, 2009), CCS ’09, ACM, pp. 199–
212.

[135] Rosenberg, I., Shabtai, A., Rokach, L., and Elovici, Y. Generic
black-box end-to-end attack against rnns and other api calls based malware
classifiers. arXiv preprint arXiv:1707.05970 (2017).

[136] Sak, H., Senior, A., and Beaufays, F. Long short-term memory based
recurrent neural network architectures for large vocabulary speech recognition.
arXiv preprint arXiv:1402.1128 (2014).

[137] Schuster, R., Shmatikov, V., and Tromer, E. Beauty and the burst:
Remote identification of encrypted video streams. In 26th USENIX Security
Symposium (USENIX Security 17) (Vancouver, BC, 2017), USENIX Associ-
ation, pp. 1357–1374.

[138] Schwarz, M., Lipp, M., Moghimi, D., Van Bulck, J., Stecklina, J.,
Prescher, T., and Gruss, D. Zombieload: Cross-privilege-boundary data
sampling. arXiv preprint arXiv:1905.05726 (2019).

[139] Schwarz, M., Maurice, C., Gruss, D., and Mangard, S. Fantastic
timers and where to find them: High-resolution microarchitectural attacks

178

https://blog.google/topics/machine-learning/detecting-diabetic-eye-disease-machine-learning/
https://blog.google/topics/machine-learning/detecting-diabetic-eye-disease-machine-learning/

in javascript. In Financial Cryptography and Data Security (Cham, 2017),
A. Kiayias, Ed., Springer International Publishing, pp. 247–267.

[140] Schwarz, M., Schwarzl, M., Lipp, M., Masters, J., and Gruss, D.
Netspectre: Read arbitrary memory over network. In European Symposium
on Research in Computer Security (2019), Springer, pp. 279–299.

[141] Seaborn, M., and Dullien, T. Exploiting the dram rowhammer bug to
gain kernel privileges. Black Hat 15 (2015).

[142] Shabtai, A., Kanonov, U., Elovici, Y., Glezer, C., and Weiss, Y.
andromaly: a behavioral malware detection framework for android devices.
Journal of Intelligent Information Systems 38, 1 (2012), 161–190.

[143] Shusterman, A., Kang, L., Haskal, Y., Meltser, Y., Mittal, P.,
Oren, Y., and Yarom, Y. Robust website fingerprinting through the cache
occupancy channel. CoRR abs/1811.07153 (2018).

[144] Spreitzer, R., Kirchengast, F., Gruss, D., and Mangard, S.
Procharvester: Fully automated analysis of procfs side-channel leaks on an-
droid. In Proceedings of the 2018 on Asia Conference on Computer and Com-
munications Security (2018), ACM, pp. 749–763.

[145] Spreitzer, R., Palfinger, G., and Mangard, S. Scandroid: Auto-
mated side-channel analysis of android apis. In Proceedings of the 11th ACM
Conference on Security & Privacy in Wireless and Mobile Networks (2018),
ACM, pp. 224–235.

[146] Steven Levy. The brain is here and it is already in-
side your phone, 2014. https://www.wired.com/2016/08/

an-exclusive-look-at-how-ai-and-machine-learning-work-at-apple/.
Last accessed 2019-02-02.

[147] Sundermeyer, M., Schlüter, R., and Ney, H. Lstm neural networks
for language modeling. In Thirteenth annual conference of the international
speech communication association (2012).

[148] Suzaki, K., Iijima, K., Toshiki, Y., and Artho, C. Implementation
of a memory disclosure attack on memory deduplication of virtual machines.
IEICE TRANSACTIONS on Fundamentals of Electronics, Communications
and Computer Sciences 96, 1 (2013), 215–224.

[149] Suzaki, K., Iijima, K., Yagi, T., and Artho, C. Memory deduplication
as a threat to the guest OS. In Proceedings of the Fourth European Workshop
on System Security (2011), ACM, p. 1.

179

https://www.wired.com/2016/08/an-exclusive-look-at-how-ai-and-machine-learning-work-at-apple/
https://www.wired.com/2016/08/an-exclusive-look-at-how-ai-and-machine-learning-work-at-apple/

[150] Tang, A., Sethumadhavan, S., and Stolfo, S. Unsupervised anomaly-
based malware detection using hardware features. In Research in Attacks,
Intrusions and Defenses. 2014, pp. 109–129.

[151] The Verge. Google announces over 2 billion monthly active de-
vices on android, 2018. https://www.theverge.com/2017/5/17/15654454/

android-reaches-2-billion-monthly-active-users. Last accessed 2017-
02-01.

[152] Tromer, E., Osvik, D. A., and Shamir, A. Efficient cache attacks on
AES, and countermeasures. Journal of Cryptology (2010).

[153] Van Bulck, J., Minkin, M., Weisse, O., Genkin, D., Kasikci, B.,
Piessens, F., Silberstein, M., Wenisch, T. F., Yarom, Y., and
Strackx, R. Foreshadow: Extracting the keys to the intel {SGX} kingdom
with transient out-of-order execution. In 27th {USENIX} Security Symposium
(2018), pp. 991–1008.

[154] Van Bulck, J., Moghimi, D., Schwarz, M., Lipp, M., Minkin, M.,
Genkin, D., Yarom, Y., Sunar, B., Gruss, D., and Piessens, F. Lvi:
Hijacking transient execution through microarchitectural load value injection.
In 41th IEEE Symposium on Security and Privacy (S&P20) (2020), pp. 1399–
1417.

[155] van der Veen, V., Fratantonio, Y., Lindorfer, M., Gruss, D.,
Maurice, C., Vigna, G., Bos, H., Razavi, K., and Giuffrida, C.
Drammer: Deterministic rowhammer attacks on mobile platforms. In Proceed-
ings of the 2016 ACM SIGSAC Conference on Computer and Communications
Security (New York, NY, USA, 2016), CCS ’16, ACM, pp. 1675–1689.

[156] van Schaik, S., Milburn, A., sterlund, S., Frigo, P., Maisuradze,
G., Razavi, K., Bos, H., and Giuffrida, C. RIDL: Rogue in-flight data
load. In S&P (May 2019).

[157] Varadarajan, V., Ristenpart, T., and Swift, M. Scheduler-based
defenses against cross-vm side-channels. In Proceedings of the 23rd USENIX
Security Symposium, San Diego, CA, USA, August 20-22, 2014 (San Diego,
CA, 2014), K. Fu and J. Jung, Eds., USENIX Association, pp. 687–702.

[158] Varadarajan, V., Zhang, Y., Ristenpart, T., and Swift, M. A
Placement Vulnerability Study in Multi-Tenant Public Clouds. In 24th
USENIX Security Symposium (USENIX Security 15) (Washington, D.C.),
USENIX Association, pp. 913–928.

[159] Vila, P., and Kopf, B. Loophole: Timing attacks on shared event loops in
chrome. In 26th USENIX Security Symposium (USENIX Security 17) (Van-
couver, BC, 2017), USENIX Association, pp. 849–864.

180

https://www.theverge.com/2017/5/17/15654454/android-reaches-2-billion-monthly-active-users
https://www.theverge.com/2017/5/17/15654454/android-reaches-2-billion-monthly-active-users

[160] Vila, P., Köpf, B., and Morales, J. F. Theory and practice of finding
eviction sets. CoRR abs/1810.01497 (2018).

[161] VMWare. Understanding Memory Resource Management in VMware
vSphere 5.0. http://www.vmware.com/files/pdf/mem_mgmt_perf_

vsphere5.pdf.

[162] Waldspurger, C. A. Memory resource management in VMware ESX server.
ACM SIGOPS Operating Systems Review 36, SI (2002), 181–194.

[163] Wang, X., and Karri, R. Numchecker: Detecting kernel control-flow mod-
ifying rootkits by using hardware performance counters. In Design Automation
Conference (DAC), 2013 50th ACM/EDAC/IEEE (2013), IEEE, pp. 1–7.

[164] Wang, X., Konstantinou, C., Maniatakos, M., and Karri, R. Con-
firm: Detecting firmware modifications in embedded systems using hardware
performance counters. In Proceedings of the IEEE/ACM International Con-
ference on Computer-Aided Design (2015), IEEE Press, pp. 544–551.

[165] Weinberg, Z., Chen, E. Y., Jayaraman, P. R., and Jackson, C. I
still know what you visited last summer: Leaking browsing history via user
interaction and side channel attacks. In 2011 IEEE Symposium on Security
and Privacy (May 2011), pp. 147–161.

[166] Weiser, S., Zankl, A., Spreitzer, R., Miller, K., Mangard, S., and
Sigl, G. Data–differential address trace analysis: finding address-based side-
channels in binaries. In 27th USENIX Security Symposium (USENIX Security
18). USENIX Association, Baltimore, MD (2018), pp. 603–620.

[167] Wichelmann, J., Moghimi, A., Eisenbarth, T., and Sunar, B. Mi-
crowalk: A framework for finding side channels in binaries. In Proceedings
of the 34th Annual Computer Security Applications Conference (2018), ACM,
pp. 161–173.

[168] Xia, Y., Liu, Y., Chen, H., and Zang, B. Cfimon: Detecting violation of
control flow integrity using performance counters. In Dependable Systems and
Networks (DSN), 2012 42nd Annual IEEE/IFIP International Conference on
(2012), IEEE, pp. 1–12.

[169] Xiao, Y., Zhang, X., Zhang, Y., and Teodorescu, R. One bit flips,
one cloud flops: Cross-vm row hammer attacks and privilege escalation. In
USENIX Security Symposium (2016), pp. 19–35.

[170] Xu, Z., Wang, H., and Wu, Z. A measurement study on co-residence
threat inside the cloud. In 24th USENIX Security (2015), pp. 929–944.

181

http://www.vmware.com/files/pdf/mem_mgmt_perf_vsphere5.pdf
http://www.vmware.com/files/pdf/mem_mgmt_perf_vsphere5.pdf

[171] Yarom, Y., and Benger, N. Recovering openssl ecdsa nonces using the
flush+reload cache side-channel attack. IACR Cryptology ePrint Archive 2014
(2014), 140.

[172] Yarom, Y., and Falkner, K. Flush+reload: A high resolution, low noise,
l3 cache side-channel attack. In 23rd Security Symposium (USENIX Security
14) (San Diego, CA, 2014), pp. 719–732.

[173] Yarom, Y., and Falkner, K. Flush+reload: A high resolution, low noise,
l3 cache side-channel attack. In 23rd USENIX Security Symposium (USENIX
Security 14) (San Diego, CA, 2014), USENIX Association, pp. 719–732.

[174] Yarom, Y., Genkin, D., and Heninger, N. CacheBleed: a timing attack
on OpenSSL constant-time RSA. Journal of Cryptographic Engineering 7, 2
(2017), 99–112.

[175] Yuan, L., Xing, W., Chen, H., and Zang, B. Security breaches as
pmu deviation: detecting and identifying security attacks using performance
counters. In Proceedings of the Second Asia-Pacific Workshop on Systems
(2011), ACM, p. 6.

[176] Zankl, A., Seuschek, H., Irazoqui, G., and Gulmezoglu, B. side-
channel attacks in the internet of things: threats and challenges. In Solutions
for Cyber-Physical Systems Ubiquity. IGI Global, 2018, pp. 325–357.

[177] Zhang, T., Zhang, Y., and Lee, R. B. Cloudradar: A real-time side-
channel attack detection system in clouds. F. Monrose, M. Dacier, G. Blanc,
and J. Garcia-Alfaro, Eds., pp. 118–140.

[178] Zhang, X., Wang, X., Bai, X., Zhang, Y., and Wang, X. Os-level side
channels without procfs: Exploring cross-app information leakage on ios. In
Proceedings of the 25th Network and Distributed System Security Symposium
(NDSS 2018). Internet Society (2018).

[179] Zhang, X., Xiao, Y., and Zhang, Y. Return-oriented flush-reload side
channels on arm and their implications for android devices. In Proceedings
of the 2016 ACM SIGSAC Conference on Computer and Communications
Security (New York, NY, USA, 2016), CCS ’16, ACM, pp. 858–870.

[180] Zhang, Y., Juels, A., Oprea, A., and Reiter, M. K. Homealone:
Co-residency detection in the cloud via side-channel analysis. In 2011 IEEE
Symposium on Security and Privacy (May 2011), pp. 313–328.

[181] Zhang, Y., Juels, A., Reiter, M. K., and Ristenpart, T. Cross-VM
side channels and their use to extract private keys. In Proceedings of the 2012
ACM conference on Computer and communications security (New York, NY,
USA, 2012), ACM, ACM, pp. 305–316.

182

[182] Zhang, Y., Juels, A., Reiter, M. K., and Ristenpart, T. Cross-VM
Side Channels and Their Use to Extract Private Keys. In Proceedings of the
2012 ACM Conference on Computer and Communications Security (2012),
pp. 305–316.

[183] Zhang, Y., Juels, A., Reiter, M. K., and Ristenpart, T. Cross-
tenant side-channel attacks in paas clouds. In Proceedings of the 2014 ACM
SIGSAC Conference on Computer and Communications Security (New York,
NY, USA, 2014), CCS ’14, ACM, pp. 990–1003.

[184] Zhang, Y., Juels, A., Reiter, M. K., and Ristenpart, T. Cross-
tenant side-channel attacks in paas clouds. In Proceedings of the 2014 ACM
SIGSAC Conference on Computer and Communications Security (New York,
NY, USA, 2014), CCS ’14, ACM, pp. 990–1003.

[185] Zheng, Y., Liu, Q., Chen, E., Ge, Y., and Zhao, J. L. Time se-
ries classification using multi-channels deep convolutional neural networks. In
Web-Age Information Management (Cham, 2014), F. Li, G. Li, S.-w. Hwang,
B. Yao, and Z. Zhang, Eds., Springer International Publishing, pp. 298–310.

183

Appendix A

A.1 List of the Websites

Table A.1: List of websites profiled PerfWeb.

Website Number in the Figures

1) Netflix.com 21) Office.com
2) Amazon.com 22) Microsoftonline.com
3) Facebook.com 23) Chase.com
4) Google.com 24) Nytimes.com
5) Yahoo.com 25) Blogspot.com
6) Youtube.com 26) Paypal.com
7) Wikipedia.org 27) Imdb.com
8) Reddit.com 28) Wordpress.com
9) Twitter.com 29) Espn.com
10) Ebay.com 30) Wikia.com
11) Linkedin.com 31) Wikileaks.org
12) Diply.com 32) Aljazeera.com/investigations
13) Instagram.com 33) Balkanleaks.eu
14) Live.com 34) Unileaks.org
15) Bing.com 35) Globaleaks.com
16) Imgur.com 36) Liveleak.com
17) Ntd.tv 37) Globalwitness.org
18) Cnn.com 38) Wikispooks.com
19) Pinterest.com 39) Officeleaks.com
20) Tumblr.com 40) Publeaks.nl

184

A.2 Additional Tables and Figures for Mobile Phones

Attack

This section provides complementary information regarding our experiments. It lists
the profiled applications, websites, and videos, and gives the parameters that were
explored while constructing our convolutional neural network.

A.2.1 Profiled Applications, Websites, Videos

Table A.4 lists the videos that are profiled in our experiments. YouTube videos are
chosen from the list of most watched videos on YouTube. Trailers and recaps viewed
in the Netflix app are from the series The House of Cards. Tables A.2 and A.3 list
the profiled applications and websites. The selection of websites is taken from the
Alexa ranking [19].

185

Table A.2: List of profiled applications.

Applications

1) Spotify 35) Reddit 69) OurTime
2) Snapchat 36) Imdb 70) HowAboutWe
3) Instagram 37) Creditkarma 71) Tiktok
4) Facebook 38) Alexa 72) Canva
5) YouTube 39) Yahoo 73) Autolist
6) Chrome 40) Starz 74) Sephora
7) Netflix 41) Zedge 75) Indeed
8) Uber 42) Textnow 76) Marvel
9) Twitter 43) Soundcloud 77) Hinge
10) Bitmoji 44) Booking 78) Daylio
11) Google Drive 45) Duolingo 79) Roku
12) Pandora 46) Tinder 80) Investing
13) NY Times 47) Joom 81) Ifood
14) Pinterest 48) Xbox 82) Fitbit
15) Lyft 49) Shazam 83) Goodrx
16) InBrowser 50) Chase 84) Fastnews
17) Firefox Focus 51) Huffington 85) Touchnote
18) Orfox 52) Breitbart 86) Nike
19) Musical Focus 53) Earspy 87) Sony
20) Wish 54) Ispy 88) Kayak
21) Hulu 55) Spycamera 89) Expedia
22) Workout 56) Mspy 90) Sketch
23) Waze 57) Secretagent 91) PlutoTV
24) Walmart 58) Politico 92) Grubhub
25) Wholefoods 59) TheHill 93) McDonald’s
26) Dairy Queen 60) Dailykos 94) Target
27) Discord 61) Infowars 95) Trivia
28) Venmo 62) Match 96) Starbucks
29) Groupon 63) PlentyofFish 97) Horoscope
30) Twitch 64) Zoosk 98) Beetles
31) Yelp 65) eHarmony 99) Glasdoor
32) Letgo 66) Okcupid 100)Tickermaster
33) Iheart 67) Badoo
34) eBay 68) Christian Mingle

186

Table A.3: List of profiled websites.

Websites

1) Google 18) Craigslist 35) Hulu 52) Breitbart 69) BlackPeopleMeet 86) Nginx
2) Facebook 19) Paypal 36) Quora 53) Drudgereport 70) HowAboutWe 87) Springer
3) Wikipedia 20) Apple 37) Salesforce 54) Politico 71) Oracle 88) Apache
4) Amazon 21) Bing 38) Wells 55) The Hill 72) Reuters 89) Flickr
5) Reddit 22) Chase 39) Bank of America 56) Slate 73) BBC 90) Grawatar
6) Yahoo 23) Zillow 40) Stackoverflow 57) Dailykos 74) Nasa 91) Sourceforge
7) Twitter 24) Walmart 41) Guardian 58) Infowars 75) Eventbrite 92) Archive
8) eBay 25) Yelp 42) Forbes 59) Salon 76) Dailymotion 93) Go
9) Netflix 26) Github 43) Dropbox 60) TheBlaze 77) Blogger 94) Wix
10) Linkedin 27) NY Times 44) Mozilla 61) Match 78) Nature 95) Myspace
11) Office 28) Pinterest 45) Soundcloud 62) Plenty of Fish 79) Digg 96) Mysql
12) Cnn 29) Imdb 46) Weebly 63) Zoosk 80) Wiley 97) Time
13) Espn 30) Microsoft 47) Vimeo 64) Okcupid 81) Wired 98) Cnbc
14) Wikia 31) Msn 48) Adobe 65) eHarmony 82) Ted 99) Skype
15) Twitch 32) Fox News 49) Wordpress 66) Badoo 83) Feedburner 100) Alibaba
16) Live 33) Blogspot 50) Tumblr 67) Christian Mingle 84) Oath
17) Instagram 34) Dailymail 51) Huffington 68) OurTime 85) Ietf

Table A.4: List of profiled videos.

Youtube (left) and Netflix (right) Videos

1) Despacito 1) Season 1 Trailer
2) See You Again 2) Season 2 Trailer
3) Shape of You 3) Season 3 Trailer
4) Gangnam Style 4) Season 4 Trailer
5) Uptown Funk 5) Season 5 Trailer
6) Sorry 6) Season 1 Recap
7) Sugar 7) Season 2 Recap
8) Shake it Off 8) Season 3 Recap
9) Roar 9) Season 4 Recap
10) Bailando 10) Season 1 Trailer (Extended)

A.2.2 CNN Parameter Selection

Table A.5 documents the CNN parameter exploration that was conducted prior to
our experiments. The final parameters are highlighted in bold.

A.3 Appendix for FortuneTeller

A.3.1 Tables for Performance Counters and Benchmarks

187

Table A.5: CNN parameter exploration. Final selection highlighted in bold.
Convolution

Max
Dropout

Kernel
Dense

Training Training Validation Validation
Pooling Size Loss Accuracy (%) Loss Accuracy (%)

1024 2 0.1 3 50 0.2568 93.54 0.7092 83.04
512 2 0.1 3 50 0.2085 94.23 0.6876 84.03
256 2 0.1 3 50 0.2554 95.01 0.7127 82.75
128 2 0.1 3 50 0.2666 93.56 0.7307 82.78
64 2 0.1 3 50 0.2790 92.31 0.7342 82.68
32 2 0.1 3 50 0.5443 83.23 0.8038 80.56
16 2 0.1 3 50 0.3821 89.04 0.6910 82.38
8 2 0.1 3 50 0.4513 86.94 0.7057 82.29

512-256 2 0.1 3 50 0.2581 92.17 0.6436 84.40
512-128 2 0.1 3 50 0.3725 89.09 0.6510 84.18
512-64 2 0.1 3 50 0.6743 81.12 0.7638 80.93
512-32 2 0.1 3 50 0.4495 87.25 0.7355 81.46

512-256-128 2 0.1 3 50 0.2564 91.24 0.6440 84.55
512-256-64 2 0.1 3 50 0.3345 90.15 0.6609 84.09
512-256-32 2 0.1 3 50 0.3259 90.75 0.6984 81.25

512-256 2 0.1 3 50 0.2581 92.17 0.6436 84.40
512-256 4 0.1 3 50 0.4823 86.48 0.7467 82.45
512-256 8 0.1 3 50 0.5642 84.24 0.7160 81.54
512-256 2 0.2 3 50 0.2581 92.17 0.6436 84.80
512-256 2 0.3 3 50 0.2756 91.24 0.6783 83.34
512-256 2 0.4 3 50 0.2894 90.57 0.6928 82.86
512-256 2 0.5 3 50 0.3184 88.37 0.7293 81.43
512-256 2 0.2 6 50 0.4068 87.65 0.6583 83.45
512-256 2 0.2 9 50 0.3686 89.48 0.6314 85.21
512-256 2 0.2 18 50 0.3079 91.00 0.6794 84.82
512-256 2 0.2 27 50 0.3283 90.06 0.6915 83.87
512-256 2 0.2 9 100 0.3387 90.03 0.6836 83.07
512-256 2 0.2 9 150 0.3208 90.39 0.6456 83.57
512-256 2 0.2 9 200 0.3104 91.25 0.6218 85.76
512-256 2 0.2 9 250 0.3487 89.74 0.6424 83.38
512-256 2 0.2 9 300 0.3562 88.96 0.6592 82.51
512-256 2 0.2 9 350 0.3859 86.52 0.6834 82.15

188

Table A.6: Counter Selection for core counters

Counter F-score
LLC Miss 0.8522

ICACHE.Hit 0.8154
ICACHE.Miss 0.8023

L1D.Replacement 0.7523
L1D Pend Miss.Pending 0.6818

L1D Pend Miss.Request FB Full 0.6698
L2 Rqsts Lat Cache.Miss 0.6244

LLC Reference 0.6167
Dtlb Load Misses.Miss Causes A Walk 0.5657

Dtlb Load Misses.Walk Completed 0.5327
Dtlb Load Misses.Walk Completed 4K 0.5226

BR Inst Retired.Cond. 0.4623
BR Misp Retired.All Branch 0.4615
BR Inst Retired.Far Branch 0.4608
BR Misp Exec.Taken Cond. 0.4510

BR Misp Exec.Taken Indirect Jmp Non Call Ret 0.4455
BR Inst Retired.Not Taken 0.4412
BR Misp Retired.Cond. 0.3786

UOPS Issued Any 0.3663
BR Misp Exec.Nontaken Cond. 0.3648

Dtlb Load Misses.Walk STLB Hit 4K 0.3627
BR Inst Exec.Taken Direct Near Call 0.3618
BR Inst Exec.Taken Indirect Near Call 0.3592
BR Misp Exec.Taken Indirect Near Call 0.3553

BR Misp Exec.Taken Ret Near 0.3491
BR Inst Exec.Taken Direct Jmp 0.3455

BR Inst Exec.Taken Cond. 0.3390
IDQ.Mite UOPS 0.3383

BR Inst Exec.All Direct Jmp 0.3238
BR Inst Exec.Taken Indirect Jmp Non Call Ret 0.3137

BR Inst Exec.Taken Indirect Near Return 0.2944
BR Misp Retired.Near Taken 0.2871
BR Inst Exec.Nontaken Cond. 0.2703
BR Misp Exec.All Branches 0.2700

BR Inst Exec.All Cond. 0.2634
BR Misp Retired.All Branches Pebs 0.2111

189

Table A.7: Benchmark tests used in the experiments

Processor Tests System Tests Disk Tests Memory Tests Real-World Attacks
1) Aobench 41) Minion 1 81) Graphics 1 120) Apache 153) Aio-stress 165) Mbw 174) Websites 1) Flush+Flush
2) Botan 1 42) Minion 2 82) Graphics 2 121) Battery 154) Blogbench 1 166) Ram 1 175) Videos 2) Flush+Reload
3) Botan 2 43) Minion 3 83) Graphics 3 122) Compress 155) Blogbench 2 167) Ram 2 176) MySQL 3) Prime+Probe
4) Botan 3 44) Perl 1 84) Graphics 4 123) Git 156) Compile 168) Ram 3 177) Apache 4) Meltdown
5) Botan 4 45) Perl 2 85) Graphics 5 124) Hint 157) Dbench 169) Ram 4 178) Office 5) Spectre
6) Botan 5 46) Radiance 1 86) Graphics 6 125) Nginx 158) Fio 1 170) Ram 5 6) Rowhammer
7) Bullet 1 47) Radiance 2 87) Graphics 7 126) Optcarrot 159) Fio 2 171) Stream 7) Zombieload
8) Bullet 2 48) Scimark 1 88) Hpcg 127) Php 1 160) Iozone 172) T-test
9) Bullet 3 49) Scimark 2 89) Luajit 1 128) Php 2 161) Postmark 173) Tinymem
10) Bullet 4 50) Scimark 3 90) Luajit 2 129) Pybench 162) Sqlite
11) Bullet 5 51) Scimark 4 91) Luajit 3 130) Schbench 163) Tiobench
12) Bullet 6 52) Scimark 5 92) Luajit 4 131) Stress-ng 1 164) Unpack
13) Bullet 7 53) Scimark 6 93) Luajit 5 132) Stress-ng 2
14) Cache 1 54) Swet 94) Luajit 6 133) Stress-ng 3
15) Cache 2 55) Hackbench 95) Mencoder 134) Stress-ng 4
16) Cache 3 56) M-queens 96) Multichase 1 135) Stress-ng 5
17) Gzip 57) Mrbayes 97) Multichase 2 136) Stress-ng 6
18) Dcraw 58) Npb 1 98) Multichase 3 137) Stress-ng 7
19) Encode 59) Npb 2 99) Multichase 4 138) Stress-ng 8
20) Ffmpeg 60) Npb 3 100) Multichase 5 139) Stress-ng 9
21) Fhourstones 61) Npb 4 101) Polybench-c 140) Stress-ng 10
22) Glibc 1 62) Npb 5 102) Sample 141) Stress-ng 11
23) Glibc 2 63) Npb 6 103) Sudokut 142) Stress-ng 12
24) Glibc 3 64) Npb 7 104) C-ray 143) Stress-ng 13
25) Glibc 4 65) Povray 105) Cloverleaf 144) Stress-ng 14
26) Glibc 5 66) Smallpt 106) Dacapo 1 145) Stress-ng 15
27) Glibc 6 67) Tachyon 107) Dacapo 2 146) Stress-ng 16
28) Glibc 7 68) Bork 108) Dacapo 3 147) Sunflow
29) Glibc 8 69) Build Apache 109) Dacapo 4 148) Sysbench 1
30) Gnupg 70) Byte 1 110) Dacapobench 5 149) Sysbench 2
31) Java 1 71) Byte 2 111) John 1 150) Tensorflow
32) Java 2 72) Byte 3 112) John 2 151) Tjbench
33) Java 3 73) Byte 4 113) John 3 152) Xsbench
34) Java 4 74) Clomp 114) Mafft
35) Java 5 75) Crafty 115) N-queens
36) Java 6 76) Dolfyn 116) Openssl
37) Lzbenc 1 77) Espeak 117) Primesieve
38) Lzbench 2 78) Fftw 118) Stockfish
39) Lzbench 3 79) Gcrypt 119) Ttsiod
40) Lzbench 4 80) Gmpbench

190

	Introduction
	Cryptography
	Cloud Security
	Microarchitectural Attacks
	Machine Learning and Deep Learning
	Problem Statement
	Thesis
	Contributions
	The publications resulted in this dissertation

	Background
	Computer Architecture
	Memory Hierarchy
	CPU Cache
	Cache Attacks

	Hardware Performance Events (HPEs)
	Profiling with Perf

	Machine Learning Techniques

	Related Work
	Co-location Detection
	Microarchitectural Attacks
	Other Microarchitectural Attacks
	Website Fingerprinting
	Machine Learning and Side-Channel Attacks
	Defense Mechanisms against Attacks

	Co-location Detection
	Motivation
	Software Profiling on LLC
	Results
	Outcome

	Microarchitectural Attacks in the Cloud
	Faster Flush+Reload Attack
	Motivation
	A single cache line attack on AES
	Distinguishers for the AES Attack
	Attack Scenarios
	Experiment Setup
	Results
	Outcome

	Prime+Probe Attack on Amazon Cloud
	Motivation
	Cross-VM RSA Key Recovery
	Leakage Analysis Method
	Outcome

	Machine Learning based Application Detection in the Cloud
	Motivation
	Methodology
	Extracting Feature Vectors from Applications on Cache
	Extracting feature vectors from L1 cache
	Extracting feature vectors from LLC
	Targeted co-location by ping detection on the cloud

	Application Detection Results
	Experiment Setup
	Application Detection in Native Environment
	Application Detection on EC2 Cloud
	Ping detection on EC2

	Conclusion

	Machine Learning based Website Detection
	Motivation
	Browser Profiling Scenarios
	Website Profiling Results
	Discussion
	Outcome

	Machine Learning based Side-Channel Attacks on Mobile Platforms
	Motivation
	Inference Attack
	Attack Outline
	Finding Eviction Sets
	Post-processing and Feature Vectors

	Experiment Setup and Results
	Target Device
	ML/DL Configuration
	Evaluation Results

	Discussion
	Outcome

	FortuneTeller: Machine Learning based Defense Mechanism
	Motivation
	Methodology
	Implementation

	Evaluation
	Experiment Setup
	RNN Model Training
	Server Experiments
	Laptop Environment
	Optimizing the Sliding Window Size
	Prediction Time in Testing Phase
	Performance Overhead

	Comparison of FortuneTeller with Prior Detection Methods
	Discussion
	Outcome

	Conclusion
	
	List of the Websites
	Additional Tables and Figures for Mobile Phones Attack
	Profiled Applications, Websites, Videos
	CNN Parameter Selection

	Appendix for FortuneTeller
	Tables for Performance Counters and Benchmarks

