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Abstract. Post-quantum cryptography has become popular in recent
years due to advances in quantum computing. Current cryptographic
solutions are vulnerable to post-quantum attacks as they can solve com-
putationally hard problems. Many post-quantum cryptographic schemes
rely on lattice-based solutions. Polynomial multiplication is required for
these cryptographic primitives. However, those latticed-based schemes
are inefficient without hardware to accelerate the polynomial multiplica-
tion computations that are performed. We introduce a hardware imple-
mentation of the Number Theoretic Transform to speed up polynomial
multiplication. As a result, two methods are implemented. The first is a
64 point NTT module. The second is an iterative NTT module. We de-
veloped our design on the xc7vx690t-2ffg1761c Virtex 7 platform. We are
able to compute a forward NTT calculation in 5.315µs. A full polynomial
multiplication can be done in 20.310µs.

1 Introduction

Classical cryptographic algorithms protect data against malicious actors. Files
can be encrypted prior to transmission, then decrypted once received. These
encryption and decryption schemes can either rely on symmetric or asymmetric
keys. Symmetric key encryption means that both sides need to have the key.
On the other hand, asymmetric key encryption relies on computationally hard
functions to generate a public key easily while preventing someone who knows
that public key from gaining access to a user’s private key and as a result,
their data. Algorithms created for quantum computers can solve some previously
created computationally hard problems in a shorter time period which has led
to major research into post-quantum cryptography algorithms that are secure
against quantum computers.

Research into post-quantum algorithms have led to a number of different
types of algorithms being created. We chose to focus on lattice-based schemes,
most of which see significant speedups when using hardware accelerators. This is
due to the fact that many lattice-based cryptographic primitives use polynomial
multiplication as a basic operation. The Number Theoretic Transform (NTT)
is used for the polynomial multiplication within the algorithm. The NTT is
used to perform a transform, then multiply two polynomials then transform
back. Hardware accelerators, such as GPUs or FPGAs, can be used to perform



2 A. Hartshorn, et al.

polynomial multiplication faster because they can have multiple functional units
compute different parts of the Number Theoretic Transform in parallel.

2 Background

In this background section, first, we explain classical cryptography along with
public-key encryption to give a better understanding of the current schemes in
use. Then we describe quantum computing to introduce how it is used to attack
modern cryptographic schemes. We further explain this project by discussing
how post-quantum cryptography, specifically lattice-based encryption schemes
fight off these attacks. Finally, we give an overview of the Number Theory Trans-
form and how hardware can be used to accelerate its implementation.

2.1 Cryptography

A huge amount of data is at risk of being stolen by hackers. Cryptographic
schemes provide security to said data. For example, files are encrypted when
in transit and at rest, but are decrypted when in use. However, current cryp-
tographic solutions are still vulnerable. The security measures we have today
are not able to maintain security with future technology. The most popular
cryptographic algorithms that exist today are secure because they rely on com-
putationally hard problems that classical computers are unable to solve quickly.
Quantum computing algorithms, however, can solve these problems in a feasi-
ble amount of time. It has been realized that the strongest common encryption
could be decrypted and public-key cryptosystems will be beaten.

There are two main types of encryption. Symmetric encryption requires a
sender and a receiver to have identical keys to encrypt and decrypt data. Asym-
metric, or public-key encryption, uses a pair of keys: public keys that can be
distributed widely and private keys that are known only to the owner. These
keys are generated by one-way functions and only the private key needs to stay
private to maintain security.

The following functions explain public-key encryption where m is the mes-
sage, c is the cipher text, pk is the public-key, and sk is the private (secret)
key:

c = Enc(m, pk) (1)

d = Dec(c, sk) (2)

sig = sign(m, sk) (3)

verify = verify(sig, pk) (4)

With public-key encryption, a user can encrypt a message using the public key
as seen in Equation 1. The message can only be decrypted with the private key
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Fig. 1. Public-key Encryption and Decryption Scheme

as seen in Equation 2. Another possibility for the sender is creating a digital
signature on the message by combining a message with a private key, as seen
in Equation 3. Anyone with the sender’s corresponding public key can combine
the same message and the digital signature with it to verify if the signature was
valid. Equation 4 shows the verification function.

Popular cryptographic methods use trapdoor functions, mathematical con-
structs that are relatively easy to compute in one direction, to create extensive
keys. The keys are hard to compute in the opposite direction. Classical computers
take a very long time to brute force all possible permutations of the private keys.
Quantum computers, on the other hand, can easily break trapdoor functions.

2.2 Quantum Computing

Quantum computers are machines that use quantum mechanics. They leverage
the strange and unreasonable physical properties of matter at an atomic scale to
perform computations. Classical computers encode data in binary digits (bits)
that are represented as “1” or “0”. Quantum computers generate and manipu-
late quantum bits or qubits that can encode more than two states. Qubits are
typically subatomic particles such as electrons or photons that are isolated in a
controlled quantum state.

Superposition is an important qubit property. It is the ability to “be” in mul-
tiple states. Therefore, a quantum computer with several qubits in superposition
can represent an exponent of potential outcomes simultaneously.

Entanglement is another important qubit property. This allows the genera-
tion of pairs of qubits where two members of a pair exist in a single quantum
state. When the state of one of the qubits is changed, the state of the other one
changes instantaneously in a predictable way.
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The processing power of a quantum computer increases greatly with the
number of qubits. public-key algorithms like RSA and ECDSA will be obsolete
with further quantum computer development. Unique algorithms for quantum
computers reduce the time it takes to break these mathematically hard problems.

Grover’s algorithm allows quantum computers to search all possible permuta-
tions in a relatively short amount of time. According to this algorithm, quantum
computers can find with high probability the unique input to a black box func-
tion that produces a particular output value, using just O(

√
N) evaluations of

the function, where N is the size of the function’s domain. All 2n possible n-bit
keys can be searched in 2n/2 time, suggesting that the lengths of symmetric keys
be doubled to protect against these attacks. Using this, hackers could brute-
force search a 128-bit symmetric cryptographic key in about 264 iterations, or a
256-bit key in roughly 2128 iterations. Generally, this is all quantum computers
can do against the symmetric algorithms used for encryption today. public-key
cryptographic schemes are in more danger due to Shor’s algorithm.

Current popular security algorithms rely on one of three hard mathematical
problems: the integer factorization problem, the discrete logarithm problem, or
the elliptic-curve discrete logarithm problem. Shor’s algorithm running on a
quantum computer can solve all of these problems and can factor integers in
polynomial time (the time taken is polynomial in logN , the size of the integer
given as input). This algorithm solves the following problem: Given an integer
N, find its prime factors.

Shor’s algorithm consists of two parts. First, the factoring problem is trans-
lated into the problem of finding the period of a function. This may be im-
plemented on a classical computer. The second part of the algorithm uses the
quantum Fourier transform to find the period of a modular operation. This is
responsible for the quantum speedup. If the period of this function using the
factorable integer as a modulus is found, the prime factors are found quickly
with some additional calculations. Specifically, it takes quantum gates of order
O((logN)2(loglogN)(logloglogN)) using fast multiplication. This demonstrates
that the integer-factorization problem can be solved efficiently. Computation is
exponentially faster than the most efficient classical factoring algorithm (the
general number field sieve), which works in sub-exponential time.

Given the evident threat, new cryptographic algorithms are being developed
that can resist quantum computing. These methods are known as post-quantum
cryptography and are focused on the following six approaches:

– Lattice-based cryptography
– Multivariate cryptography
– Hash-based cryptography
– Code-based cryptography
– Super-singular elliptic curve isogeny cryptography
– Symmetric key quantum resistance

Schemes have been submitted in the competition initiated by the US Na-
tional Institute of Standardization and Technology (NIST). NIST launched a
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standardization process in 2016 to develop standards for post-quantum encryp-
tion for protecting electronic information and government use in light of the
potential threat to current cryptography by quantum computers.

2.3 Lattice-based Cryptography

For this project, we focused on lattice-based cryptography. This is considered
the most promising and well-studied method. Among the 26 selected Round-2
candidates for the NIST competition in 2019, 11 are based on lattices (eight
for public-key encryption and three for digital signature) with most of these
primitives focusing on polynomial operations, specifically multiplication. In ad-
dition to security, we also focused on performance since it is also a criteria for
standardization.

Lattice cryptography hides data inside mathematically complex problems
and geometric structures known as lattices. Cryptographers find the difficulty of
these math problems useful because they can apply this intractability to protect
information. One of these problems known as the Ring Learning with Errors
Problem (R-LWE) is the basis for cryptographic schemes that include polynomial
multiplication over a finite field as one of their fundamental operations. It is
believed to be sufficiently hard, even for attackers with a large scale quantum
computer, thus showing promise for post-quantum cryptography.

Lattice-based cryptography is also the basis of the Fully Homomorphic En-
cryption (FHE) scheme. FHE can perform calculations on a file without ever
seeing sensitive data or exposing it to malicious actors. For example, a consumer
credit reporting agency could analyze and produce credit scores without ever
decrypting personal data. Alternatively, primary care physicians could share pa-
tient medical records in a way that enables each party to access pertinent data
without revealing the identity of the patient.

Lattice-based cryptography provides fast, quantum-safe, fundamental prim-
itives and allows for constructions of primitives that were previously thought
impossible. This combination has established lattice-based cryptography as a
fascinating research field with near future standardization potential.

2.4 Number Theory Transform

A versatile and efficient polynomial multiplier would be of great help to facili-
tate researchers’ hardware designs of post-quantum algorithms. This is because
the most computationally intensive operation in these cryptosystems is polyno-
mial multiplication. The Number Theory Transform (NTT) is a powerful tool
that enables this operation to be computed in quasi-polynomial complexity and
improve the performance of the system. It is one of the core components in
implementations of lattice-based cryptosystems because it provides efficient al-
gorithms for cyclic and negacyclic convolutions, which help lower the runtime
for polynomial multiplication. Ideal lattice-based schemes are usually defined in
R = Zq[x]/ < xn + 1 > with modulus xn + 1 where n is a power of two and
one can make use of the negacyclic convolution property of the NTT that allows
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carrying out a polynomial multiplication in Zq[x]/ < xn + 1 > using length-n
transforms and no zero padding.

The NTT is a specialized version of the Discrete Fourier Transform(DFT)
which avoids round-off errors for exact convolutions of integer sequences. The
coefficient ring is taken to be a finite field containing the right roots of unity. It
is computed with Fast Fourier Transform(FFT) algorithms that work over this
specific finite field. The notation for the NTT is the following: with n being a
power of 2 and q a prime with q ≡ 1(mod 2n), let a = (a[0], ..., a[n−1]) ∈ Zn

q , and
let ω be a primitive n-th root of unity in Zq, meaning that ωn ≡ 1(mod q) . The
forward transformation ã = NTT (a) is defined as ã[i] =

∑n−1
j=0 a[j]ω

ij(mod q)
for i = 0, 1, ..., n− 1.

Some previous optimizations of the NTT-based polynomial multiplication
explain how to merge multiplications by the powers of ω with the powers of
ψ and ψ−1 inside the NTT. This improves the performance of the system by
precomputing and storing in memory the values related to these parameters.
Expensive reordering or a bit-reversal step before or after NTT computation is
necessary because of the restrictive nature of certain algorithms to only accept
inputs in standard ordering and producing results in but-reversed ordering.

The forward NTT algorithm that computes the transformation based on the
Cooley-Tukey butterfly that absorbs the powers of ψ in bit-reversed ordering [7]
as seen in Algorithm 1. This function receives the inputs in standard ordering
and gives a result in bit-reversed ordering. Later on in the paper, we use ω in
place of ψ.

Algorithm 1: NTT Algorithm based on Cooley-Tukey butterfly
input : A vector a = (a[0], a[1], ..., a[n− 1]) ∈ Zn

q in standard
ordering, where q is a prime such that q ≡ 1 mod 2n and n is
a power of two, and a pre-computed table ψ ∈ Zn

q storing
power of ψ in bit-reversed order

output: a← NTT (a) in bit-reversed ordering

1 t = n;
2 for (m = 1;m < n;m = 2m) do
3 t = t/2;
4 for (i = 0; i < m; i++) do
5 j1 = 2 · i · t;
6 j2 = j1 + t− 1;
7 S = ψrev[m+ i];
8 for (j = j1; j <= j2; j ++) do
9 U = a[j];

10 V = a[j + t] · S;
11 a[j] = U + V mod q;
12 a[j + t] = U − V mod q;

13 return a
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The cyclic convolution of two integer sequences coming from a finite field of
length n can be computed by applying the algorithm to both sequences, then
multiplying the resulting NTT sequences of length ncoefficient-wise and trans-
forming the result back via an inverse NTT. Because of this cyclic convolution
produced, computing c = a · b mod (Xn + 1) with two polynomials a and b
would require applying the NTT of length 2n and thus n zeros to be appended
to each input. This effectively doubles the length of the inputs and requires the
computation of an explicit reduction modulo Xn + 1.

The polynomial product of two n-1 degree polynomials a and b has degree
2n-1, so it requires evaluations in at least 2n distinct points to be uniquely
identified. To do this, we use the 2nth primitive roots of unity, meaning that
a polynomial with a coefficient vector of at least length 2n is needed for our
NTT algorithm. Following this, we pad the coefficient vectors of polynomials a
and b to at least length 2n using zeros. For more precision since it is required
that n is a power of 2, the coefficient vectors are padded to length 2k, where k
is the lowest integer such that 2k ≥ 2n. The NTT algorithm is then applied to
get evaluations of the polynomials a and b at the same 2n distinct inputs. If we
then multiply the 2n evaluations of a with the respective 2n evaluations of b, we
calculate 2n products in total that together represent the polynomial product
of the two original polynomials. The INTT of this product is then computed to
transform the vector of polynomial evaluations into the vector of its coefficients.

2.5 FPGA Acceleration

In cryptographic algorithms, the most computationally rigorous parts are rel-
atively simple operations that have to be performed in iterations and can be
parallelized for high performance. Because of this simplicity, these algorithms,
specifically lattice-based, can use available hardware resources from Field Pro-
grammable Gate Arrays (FPGAs) with high efficiency to perform these tasks. In
general, implementations of specialized hardware architectures for specific op-
erations give a significant advantage over software implementations because of
all the repetitive computations needed in software running on a general-purpose
central processing unit (CPU).

Hardware acceleration has many advantages such as reduced power consump-
tion, lower latency, increased parallelism, higher throughput and better utiliza-
tion of area and functional components available on an integrated circuit. By
offloading critical functions to an FPGA, system performance of a cryptographic
algorithm can be accelerated. The programmable logic cell structure and large
built-in memory of FPGAs allow for the implementation of bit-wise and memory-
intensive operations. Also, with its reconfigurability at run time, the FPGA can
be reused for different algorithms based on system specifications and specific
applications. FPGAs offer the availability of more fixed parameters for better
efficiency of cryptographic systems. Since FPGAs consist of an array of config-
urable logic blocks (CLBs) surrounded by input/output blocks that provide an
interlace between the configurable logic block and package pins, the architecture
is suitable for the implementation of deeply pipelined designs.
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NTT arithmetic includes a large amount of modular addition, subtraction,
and multiplication operations. The iterative NTT algorithm for a hardware im-
plementation presented in this project is built with a high degree of parallelism
so that arithmetic processing, memory fetches and writes occur at the same time,
speeding up throughput and reducing processing latency. All the operations are
divided into smaller ones that each perform one task in a clock cycle and pass
the result to the next stage and retrieve the result of the previous stage. This
pipelining allows for processing of data at a high speed. With this, our gen-
eralized NTT implementation can be scaled to fit different specifications and
systems.

3 Methodology

We approached the hardware-based polynomial multiplication problem for post-
quantum computing with a combination of two solutions.

The first solution is a special 64-point NTT that skips some of the initial
stages of a standard iterative NTT algorithm by utilizing special numbers and
shifts. NTT is simply a sped up and modified Discrete Fourier Transform (DFT)
that uses integers instead of floats. This method should be faster than the iter-
ative NTT algorithm on hardware.

The second solution is an iterative NTT algorithm designed for hardware
implementation. This module is scalable depending on the desired performance
and resource allocation. The faster 64-point NTT is initially used and switches
to the standard iterative NTT. Figure 2 shows the overall block diagram. For
both these parts, a fast modulus reduction was implemented as well.

Fig. 2. Overall NTT Diagram

We created two fast modulus blocks that compute z (mod p) where z is
either an arbitrary 128-bit number or an arbitrary 256-bit number. Since we are
using an NTT algorithm with 64-bit inputs, modulo operations occur on 64-bit
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by 64-bit multiplications. Additionally, for the 64-point NTT, we must perform
modulo operations on up to 254-bit numbers.

3.1 Fast Modulus Reduction

128-bit Number Reduction First, we implemented the 128-bit fast modulus
based on Emmart et. al [6]. Since we are also using a 64-bit input polynomials,
we have a fairly large range of primes to choose. There are special primes, known
as Solinas Primes, that we are able to use that allow us to compute the modulus
in. We use p = 0xFFFFFFFF00000001 as our prime, as Emmart et. al. use.
Following Emmart et. al, they utilize two identities of p, 296 (mod p) = −1 and
264 (mod p) = 232− 1. In the following equation, where a, b, c, and d are 32-bit
numbers, the modulus can then be calculated as follows:

z ≡ (296 (mod p))a+ (264 (mod p))b+ 232c+ d

≡ (−1)a+ (232 − 1)b+ (232)c+ d

≡ (232)(b+ c)− a− b+ d

(5)

Equation 5 above allows the 128-bit input to be split up into four 32-bit numbers.
The following operations are then easily able to be computed on an FPGA
with only addition, subtraction, and shift operations. Once z is calculated, an
additional check needs to occur to check if the result is within (mod p). We
checked for worst case scenarios of values for a, b, c, and d and determined that
in the worst case, p < z < 2p. This results in subtracting p if z is greater than p,
otherwise return z. Figure 3 shows the pipeline stages required to perform the
shifts and the subtractions.

Fig. 3. 128-bit Fast Modulus Pipeline Stages
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256-bit Number Reduction We utilize this same concept and expand it to
support a 254-bit fast modulus reduction. Using the same prime p and the same
identities, we were able quickly calculate z (mod p) for a 256-bit input. The
following is our equation where a, b, c, d, e, f , g, and h are 32-bit unsigned
numbers.

z ≡ (232)a+ b+ (−232 + 1)c+ d(−232) + (−1)e+ (232 − 1)f + (232)g + h

≡ 232(a− c− d+ f + g) + b+ c− e− f + h

≡ 232((a+ f + g)− (c+ d)) + (b+ c+ h)− (e+ f)

(6)

Unlike the 128-bit fast modulus reduction, there are many more scenarios for
z values that we need to account for. We found 6 different cases for z, such
that −3p < z < 2p. In equation 6, we create groupings of additions to prevent
underflow. Since we are using unsigned datatypes, we need to be careful when
performing subtractions to ensure we never go below zero. Using the groupings,
we can easily check for various cases when we must add p or 2p to prevent
underflow. For the last step, we subtract p or 2p as necessary. Even with more
additions, shifts, subtractions, and comparison, we are able to pipeline the 256-
bit fast modulus in three stages. Figure 4 shows the pipeline stages.

Fig. 4. 256-bit Fast Modulus Pipeline Stages
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3.2 64-point Number Theoretic Transform

The 64-point NTT we implemented has a few specific properties that allow it
to work. The first is the use of 64-bit input numbers which allows use to utilize
bit shifting since 8 is a 64th root of unity. The second requirement is that the
number of shifts follow a set pattern which allows us to pre-calculate the shifts
and store them ahead of time in BRAM blocks. The input to the NTT is 64
64-bit numbers. The corresponding output is another set of 64 64-bit numbers.

Normally when calculating the 64-point NTT, many multiplication opera-
tions are needed which are extremely slow on FPGA hardware. Essentially, a
matrix of 64 by 64 multiplication operations is needed for the calculations. As
mentioned before, using 64-bit input values allows us to shift instead of multiply
which greatly improves the speed performance. These shift values are known as
omegas.

The first step of the NTT involves computing rows of shifts. Each row is cal-
culated by taking the summation of input numbers shifted by 64 corresponding
omegas. After the summation, a modulus needs to be taken. In order to calcu-
late ω, the indexes of the input and output are needed. The following equation
calculates the correct shifts:

ωi,j = (i× j) (mod p) (7)

We use Equation 7 to precalculate omega and load those values into BRAM
blocks. A Python script was used to calculate the 64 by 64 omega values.

Below is the calculations of the 64 output numbers, y, for the input numbers
x and the ω values where i and j are the indexes of x and y respectively:

y(0) = x(0)� ω0,0 + x(1)� ω0,1+ · · ·+ x(62)� ω0,62 + x(63)� ω0,63

y(1) = x(0)� ω1,0 + x(1)� ω1,1+ · · ·+ x(62)� ω1,62 + x(63)� ω1,63

...
y(62) = x(0)� ω62,0 + x(1)� ω62,1+ · · ·+ x(62)� ω62,62 + x(63)� ω62,63

y(63) = x(0)� ω63,0 + x(1)� ω63,1+ · · ·+ x(62)� ω63,62 + x(63)� ω63,63

(8)

For the hardware implementation, we decided to put more importance on
the speed up of the calculations over the space requirements. We continued by
treating each output as one row of calculations. We were able to easily pipeline
each row in hardware in a Row Calculation block. The Row Calc. blocks consisted
of shifts and modulus reductions. Figure 5 shows the detailed pipeline for the
entire NTT calculation while Figure 6 shows the Block Diagram of the process.
By creating 64 rows of calculations, we thus also created the need for 64 BRAM
blocks to store our ω values. Each BRAM block is routed to the corresponding
Row Calc. block as well as all 64 input numbers. Below is a block diagram of
the 64-point NTT module.
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Fig. 5. Pipeline for 64-point NTT using Mod First Method

Fig. 6. Row Calculation Block Diagram

Differing Order of Operations There are two methods that we can use to
compute the 64-point NTT. The first is to shift by w, perform a 256-bit fast
modulus, then add the previous result. A final 128-bit fast modulus reduction
is performed at the very end in case there is overflow. We call this first method
the Mod First Method. The second is to shift by w, add the previous result,
then perform a single 256-bit fast modulus at the very end. The second method
requires a 256-bit fast modulus because the additions can cause the number to
reach a maximum of 254-bits. We call this method the Add First Method. Figure
5, shows the first method of operations. Variations between the two methods are
slight, but there are a few clock cycles of difference that are described in more
detail in Section 4.2.

3.3 Iterative NTT

The top level implementation of the iterative NTT module is shown in Figure 8.
Note that the control signals between the modules are not shown. Instead, the
datapath is shown through the different modules. Each of the modules are fully
pipelined. Additionally, the algorithms used in these modules are intended to be
scalable. The scaling parameters are the input vector size (n), and the number
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Fig. 7. 64-point NTT Input Block Diagram

of BRAMs / functional units (b). This section discusses the function of each of
the blocks in the top level module. The blocks are:

• Index Calculator
• BRAM Router
• Write Back Controller
• ALU Router
• BRAM controller
• ALU Cores
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Fig. 8. Iterative NTT top level modules

Index Calculator The index calculator algorithm dynamically calculates the
NTT index pairs to maximize utilization of a variable number of functional units.
The two user defined parameters are BRAMs (b) and vector length(n). A rule
set was developed to satisfy the index pairs based on these parameters. To realize
the rule set, the index pairs were written out considering varying b. A Python
implementation of the algorithm was developed first. A pseudocode model is
included below. Also, pages from the spreadsheet are used to help explain the
algorithm.

In software, NTT is easily modeled as a recursive function. For a hardware
implementation, an iterative version was written. The iterative version also had
to be modified to accommodate hardware limitations. Specifically, since 2 values
can be read/written in a BRAM in a single cycle, the algorithm had to be
adapted to calculate 2 values per BRAM per cycle. Algorithm 2 shown below
achieves this.
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Algorithm 2: Iterative NTT Index Calculation Algorithm
input : vector length n, bram number b
output: index pairs in the form of (x_pos, y_pos)
cc : clock cycles per stage, number of cycles for this power of 2
brams : how many groups of BRAMs need to be accessed for the cc

1 for i← 0 to ` = log2(n) do
2 power_of_two = 2(i+1);
3 cc = n/(2 ∗ b);
4 ∆y = power_of_two � 1;

5 if b = n/2 then
6 groups = 1;
7 else if ∆y >= n/b then
8 groups = 2;
9 else

10 groups = 1;

11 if power_of_two� 2 >= n/(2b) or power_of_two = 2 then
12 ∆x = 2;
13 else
14 ∆x = 1;

15 if b = n/2 then
16 ∆g = 1

17 else if ∆y = n/b then
18 ∆g = 2×∆y
19 else
20 ∆g = n/b

21 for cycle← 0 to cc do
22 if cycle (mod ∆y) = 0 and ∆y 6= 2 and cycle 6= 0 then
23 ∆x′ = ∆x′ +∆y;

24 brams = b/groups;
25 for index_pair ← 0 to brams do
26 if ∆g (mod ∆y) = 0 and index_pair 6= 0 and

∆g < power_of_two then
27 ∆g′ = ∆g′ +∆y;

28 x_pos = ∆g × index_pair + cycles×∆x+∆g′ +∆x′;
29 y_pos = x_pos+∆y;

An example of index calculation is shown in table 1. In this example, 2
BRAMs are used to store a 32 length vector. A cell contains an x and y coordinate
pair. The color of the cell indicates the clock cycle the pair is calculated in. Each
column denotes the next power_of_two (line 2). Notice the occasional non
linear change in the x positions (columns 2 & 3).
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Table 1. Index Calculation Table

Algorithm Remarks In line 4, the change in the y index from the x is simple.
It is the current power_of_two shifted right by 1.

Next consider the logic starting at line 5. A variable, groups, is set to indicate
that the pairs are grouped together in a single clock cycle as opposed to indexes
that contain a jump.

The difference in x coordinates from each clock cycles is defined as ∆x. This
depends on the groups variable whether the jump is 2 or 1. The change in the
x coordinate is not constant. To handle the occasional non constant change in
x, the variable ∆x′ (line 22) is used. The offset is incremented whenever the
current clock cycle equals ∆y.

Similar to ∆x, ∆g is used to denote the jump in pairs in the same clock cycle.
This is calculated in line 15. There is also a non constant change in ∆g. ∆g′ is
used to compensate for the non constant ∆g. It is shown in line 26.

Router Modules The BRAM router, write back controller, and ALU router
have similar functions. They are responsible for separating the index / ALU
pairs into BRAM pairs. The values are multiplexed to their appropriate port
because of the BRAM port tag in the datagram. The write back controller also
issues a signal to stall the pipeline for a cycle to write back into the BRAMs. The
ALU router acts like the BRAM router except for the datagram tag. Recall the
datagram contains a separate tag to send the pair to an ALU. Figure 9 shows
how values can be routed using a butterfly circuit. Although different BRAMs’
values are needed, they can still be fully utilized and routed to an ALU. The
ALU performs the addition / subtraction and uses a similar process to store
back into the BRAM.
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Fig. 9. Example of routing from BRAM to ALU units

BRAM Controller Users can specify the number of BRAMs to include in the
module. The BRAM number must be a power of two. The default Xilinx dual
port BRAM module was slightly modified to include our NTT parameters. The
address and data port widths are automatically calculated based on the vector
size and number of BRAMs. The BRAM modules are wrapped in a BRAM top
module that contains the bus assignments.

ALU Cores The final module used is the ALU core. The number of ALU cores
matches the number of BRAMs. The ALU cores are wrapped in an ALU top
level module to assign the busses. The figure below shows the pipeline stages for
the ALU core. The pipeline fills in six clock cycles. Note that the wb values in
the multiplication stage are stored in a ROM and are not dynamically computed.
This is because in our implementation we consider a fixed omega value. Moreover,
we store the omega values in ROM. They are pre-calculated prior to execution.
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Fig. 10. ALU core pipeline

4 Results

In this section, we discuss timing and utilization of each element of our design.
Our experiments for timing and overall usage were performed on a Xilinx Virtex-
7 FPGA. Our device consisted of 693,120 logic cells and 3600 DSP slices. It has
433,200 LUTs, 865,400 FFs, and 1470 BRAMs available for use and has a system
clock which runs at 200 MHz. The device also has a PCIe connector allowing it
to be used for high performance applications such as hardware acceleration.

4.1 Fast Modulus

The metrics we focused on to assess our two fast modulus reductions were clock
cycles to completion, timing, and hardware utilization. Each of these metrics tell
a difference story, and each metric needs to be taken into account when used
in our final larger design. The primary goal for each design is to beat timing,
which is a 5ns clock period based on the 200 MHz clock speed of our FPGA.
We are then most concerned about utilization and how much space the designs
require. For the fast modulus especially, space is a big concern because we need
to instantiate multiple copies of each block.

Table 2. Performance of 128-bit Fast Modulus vs 256-bit Fast Modulus

Modulus Size Timing Frequency LuT Util. FF Util.
(bit) (clk cycles) (MHz)

128 2 307.7 192 (0.04%) 129 (0.01%)
256 3 229.7 467 (0.11%) 266 (0.03%)
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Our final results can be seen in Table 2. For both 128-bit fast modulus and
256-bit fast modulus, we went through many iterations to decrease the clock
cycle count and to meet timing requirements. We were able to meet the 200MHz
frequency with both designs, though 256-bit fast modulus does take longer to
complete and require more resources. The 128-bit Modulus Reduction copmletes
in 6.500ns while the 256-bit Modulus Reduction completes in 13.059ns. We ex-
pected to see these results because 256-bit fast modulus is working with much
more data and much larger numbers. The hardware utilization for each module
is also very low which is very beneficial to us.

4.2 64-point NTT

We focus on the same metrics for 64-point NTT as we do for the fast modulus
reductions. In this section, the performances of our two 64-point NTT method
as described at the bottom of Section 3.2 is discussed. Again, the primary goal is
to meet timing, and only considering hardware utilization afterwards. In Table
3, we reference the two methods based on their declaration in Section 3.2.

Table 3. Performance of 64-point NTT

Vector Size Method Timing Frequency LuT Util. FF Util.
(bit) (clk cycles) (MHz)

64
Mod First 72 204.6 73,487 (16.95%) 54,695 (6.31%)
Add First 69 185.8 74,354 (17.15%) 55,205 (6.37%)

1024
Mod First 1152 204.6 73,487 (16.95%) 54,695 (6.31%)
Add First 1104 185.8 74,354 (17.15%) 55,205 (6.37%)

The results of the two methods are very similar, as seen in Table 3. Unfor-
tunately, only the 128-bit fast modulus method meets timings even though it
takes 3 more clock cycles to complete. The Mod First method takes a total of
352.8ns to complete, whereas the Add First method takes 372.6ns to complete.
Both methods have similar hardware utilization numbers which was surprising
to us.

The Mod First method uses 64 256-bit fast modulus blocks and a single 128-
bit fast modulus block. The Add First method only requires a single 256-bit fast
modulus block. Based on the results of our standalone fast modulus reduction,
we can see that the 256-bit method is much more complex. With slightly more
LuT and FF utilization, but much less fast modulus blocks, the utilization of
the Add First method happen primarily in the routing of many 256-bit numbers.
The Mod First method has a much better time routing 64-bit numbers and thus
is able to meet our timing requirements.



20 A. Hartshorn, et al.

Since we only designed a 64-point NTT module, in order to do a 1024-bit
NTT, we need to run the 64-point NTT 16 times. We are reading from BRAMs
and writing to BRAMs which means that there doesn’t need to be new routing
hardware. As a result, the hardware utilization remains the same. For timing, we
simply multiply the number of clock cycles by 16 in order to estimate completion
timing. The Mod First method would complete in 5629.8ns while the Add First
method would complete in 5941.7ns. It is clear that as the NTT vector size
increases, the Mod First method performs better.

4.3 Iterative NTT

Table 4 shows the iterative NTT results for the Full NTT. This means the
full power of 2 iteration is done. As a disclaimer, the module still needs some
tinkering. However, we do not believe these results to change significantly. We
vary the size of n and b and observed how the unit performs. When n is increased,
the cycle count increases linearly. When b is increased, the resource usage is
increased and the cycle count is decreased. It becomes increasingly difficult to
route the design as the functional units increase. This causes the core clock speed
to decrease. The area of the design is relatively small compared to the FPGA.

We tested two different combinations of functional units. A functional unit
contains an ALU and BRAM. 4 units or less hits our target frequency of 200MHz.
The resource usage stays the same for varying vector length sizes. This is because
the BRAM utilization is increased but the combinational logic stays the same.
The 8 unit test yielded a max frequency of around 179 MHz. We assume the
clock speed linearly decreases with additional functional units.

4.4 Summation and Estimation

In this section, we estimate the results of the combined 64-point NTT and It-
erative NTT. When combining the 64-point NTT and the Iterative NTT, we
use the 64-point NTT in place of power of two iterations 2 through 64 in the
Iterative NTT. This means we can skip the first six iterations of the Iterative
NTT just by performing 64-point NTT. The Iterative NTT takes over after the
64-point NTT completes, starting with power of two equals 128.

We calculated the estimated performance of a shortened Iterative NTT in
Table 5. In order to compute a 1024 vector length NTT using a single 64-point,
we need to perform the 64-point NTT 16 times. By increasing the number of 64-
point blocks to 4, we can decrease the number of 64-NTT operations to 4 times.
The 128-1024 Iterative NTT is estimated by taking a proportional number of
iterations for the number of clock cycles. For example, 128-1024 NTT is four
power of 2 iterations (i.e. 128, 256, 512, 1024) while the full 1024 Iterative NTT
is 10 power of 2 iterations. Thus we estimated the number of clock cycles of
128-1024 Iterative NTT as needing 4/10ths of the number of clock cycles.

In Table 5, we use the results of Iterative NTT using 4 BRAMs. To estimate
the combined timing, we simply add the 64-point NTT results with the 128-
1024 Iterative NTT results. We estimate two versions of the combined NTT,
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Table 4. Performance of Iterative NTT for a Full NTT

Vector Length BRAMs Timing Frequency LuT Util. FF Util. DSP Util.
(n) (b) (clk cycles) (MHz)

32 4 80 200 4670 (1.60%) 4315 (0.71%) 64 (2.29%)
64 " 136 " " " "
128 " 256 " " " "
256 " 496 " " " "
512 " 976 " " " "
1024 " 1936 " " " "

1024 8 1294 179 9233 (3.04%) 8585 (1.41%) 128 (4.57%)
1024 16 654 160* 18351 (6.04%) 17125 (2.82%) 256 (9.14%)
1024 32 334 140* 36587 (12.1%) 34205 (5.63%) 512 (18.3%)
1024 64 174 120* 73059 (24.1%) 68365 (11.3%) 1024 (36.6%)

*Assume linear decrease in clock speed.

one using a single 64-point NTT and one using 4 64-point NTT blocks. As you
can see, the results of the combined NTT using 4 64-point blocks is almost 50%
faster in terms of the number of clock cycles. On the other hand, using just a
single NTT does not make a significant difference in terms of performance. Only
a few clock cycles are saved. The 1024 Iterative NTT takes 9680ns to complete
while the combined NTT takes 5315ns to complete. Unfortunately, the cost of
the speed up is a signficant increase to the hardware utilization. The speed up of
using 4 64-point NTTs increases LuT utilization and FF utilization by over 30
times. Using a single 64-point becomes horribly inefficient because the increase
in hardware utilization only saves a few clock cycles.

We also estimated the performance gains of the combined NTT against the
Iterative NTT for different BRAM usage. In Table 6, we see that the combined
NTT using a single 64-point block is only faster than the standard Iterative
NTT using 4 BRAMs. Using 4 64-point NTTs is faster up to 16 BRAMs. At 32
BRAMs, the Iterative NTT is more efficient. This means that the Iterative NTT
actually scales wells in terms of BRAM usage. At 16 BRAMs, the combined
NTT using 4 64-point blocks is just over 500ns faster in terms of execution time.
Where as at 64 BRAMs, the iterative NTT is twice as fast.

The hardware utilization is heavily sacrificed for the increase in speed since
the 64-point NTT requires a lot of resources. For a low BRAM iterative NTT
module, speed can be gained by using more 64-point NTT blocks. However, as
the number of BRAMs increases, the number of 64-point NTT modules also de-
creases as the hardware limit becomes an issue. Note that utilizing more BRAMs
is more efficient even in terms of speed. Using 64 BRAMs in the iterative NTT
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Table 5. Performace of Combined NTT using Iterative NTT with 4 BRAMs

Vector Length NTT Method Timing Frequency LuT Util. FF Util.
(n) (clk cycles) (MHz)

64 1 64-point 1152 204.6 73,487 (16.95%) 54,695 (6.31%)
64 4 64-point 288 204.6 293948 (67.80%) 218780 (25.24%)
128 - 1024 Iterative NTT 775 200 4670 (1.60%) 4315 (0.71%)

1024 Iterative NTT 1936 200 4670 (1.60%) 4315 (0.71%)
1024 Combined w/ 1 64-point 1927 200 78157 (18.55%) 59010 (7.02%)
1024 Combined w/ 4 64-point 1063 200 298618 (69.40%) 277790 (32.26%)

Table 6. Performace of Combined 1024-bit NTT based on Number of BRAMs

BRAMs Timing Frequency Execution Time LuT Util. FF Util.
(bit) (clk cycles) (MHz) (ns)

4
1936 200 9680.0 4670 (1.60%) 4315 (0.71%)
1927 200 9635.0 78157 (18.55%) 59010 (7.02%)
1063 200 5315.0 298618 (69.40%) 223095 (25.95%)

8
1294 179 7233.5 9233 (3.04%) 8585 (1.41%)
1670 179 9335.3 82720 (19.99%) 63280 (10.88%)
806 179 4505.5 303181 (70.84%) 227365 (26.65%)

16
654 160* 4087.5 18351 (6.04%) 17125 (2.82%)
1414 160* 8837.5 91838 (22.99%) 71820 (15.45%)
550 160* 3437.5 312299 (73.84%) 235905 (28.06%)

32
334 140* 2384.8 36587 (12.1%) 34205 (5.63%)
1286 140* 9182.0 110074 (29.05%) 88900 (24.61%)
422 140* 3013.1 330535 (79.90%) 252985 (30.87%)

64
174 120* 1449.4 73059 (24.1%) 68365 (11.3%)
1222 120* 10179.3 146546 (41.05%) 127754 (42.91%)
358 120* 2982.1 367007 (91.90%) 287145 (36.54%)

*Assume linear decrease in clock speed

The first row of each section is the Iterative NTT performance. The second row of each
section is the combined NTT performance using 1 64-point NTT. The third row of
each section is the combined NTT performance using 4 64-point NTTs.
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is more than 5 times faster than using 4 BRAMs with 4 64-point NTT blocks.
These results are assuming that the hardware routing can be done. The number
of DSP slices available allow the iterative NTT to scale well.

Full NTT Multiplication For a complete NTT operation, two forward NTT
operations are needed. The result of those two forward NTT operations are mul-
tiplied together and then a single inverse NTT is performed. The total number
of clock cycles required is computed by the addition of two forward NTT oper-
ations with an inverse NTT operation. It is important to note that the forward
NTT operations can use a combined NTT while the inverse NTT operation must
be a standard iterative NTT in terms of clock cycles. In Table 7, we estimate
the execution time of the full NTT Multiplication. Again, the results prove that
the iterative NTT scales much better than using multiple 64-point NTTs.

Table 7. Timing for Full NTT Multiplication

BRAMs # 64-point Timing Frequency Execution Time
(bit) (clk cycles) (MHz) (µs)

4
0 5808 200 29.04
1 5790 200 28.95
4 4062 200 20.31

8
0 3882 179 19.41
1 4634 179 25.90
4 2906 179 16.24

The first row of each section uses only Iterative NTT performance. The second row of
each section is the combined NTT performance using 1 64-point NTT. The third row
of each section is the combined NTT performance using 4 64-point NTTs.

We have not added any comparisons to previous works because we were not
able to find any fair comparisons. Some of the previous research that we read
had results based on GPU or software performance. Additionally, the hardware
that previous research has been on is dated at the time of our findings. For those
hardware research results that we did see, the design choices were different from
the ones we choose. Some research had a heavy focus on hardware utilization
reduction rather than performance increase, while other research drastically in-
creased hardware utilization for performance gains. Furthermore, differences in
vector size and bit size of the NTT can change results heavily.
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5 Future Work and Conclusion

This project was a good start to creating a scalable NTT module. There is room
for improvement in our design. For example, we can save clock cycles in the 64
point by adjusting the way it is integrated with the iterative module. Also, the
iterative module still exhibits errors in some computations. We would have to
hunt for these edge cases and see what causes the module to produce inaccurate
results.

In post-quantum cryptography, the NTT is a commonly used yet expensive
operation. NTT operations are used over 600 times in each post-quantum al-
gorithm in the NIST competition[2][3]. FPGAs can be used to implement the
operation and provide speedups to execution time. We exploited parallelization
of the NTT to create a hardware accelerator. A dedicated 64 point module was
combined with a generic iterative module. The unit is capable of a complete
polynomial multiplication on the order of 20,000 nanoseconds. Our project was
focused on a generic model that can be scaled according to desired specifications.
This allows the NTT to be implemented in a variety of applications from simple
microcontrollers to high end servers.
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Appendix A 128-Fast Modulus Verilog Code

// compute (2^32)(b+c)-a-b+d mod p
// pipeline into two stages
// checks for overflow
module fast_mod(

input [31:0] a,
input [31:0] b,
input [31:0] c,
input [31:0] d,
input clk,
output reg [63:0] z
);

parameter p = 64’hffffffff00000001;

reg [64:0] ztemp1 = 0;

always @ (posedge clk) begin
//first stage

ztemp1 <= {(b+c), 32’b0} + d - a - b;

//second stage (checking for overflow)
if((ztemp1) > p)

z <= ztemp1 - p;
else

z <= ztemp1;
end

endmodule

Appendix B 256-Fast Modulus Verilog Code

module fast_mod_256(
input [31:0] a,
input [31:0] b,
input [31:0] c,
input [31:0] d,
input [31:0] e,
input [31:0] f,
input [31:0] g,
input [31:0] h,
input clk,
output reg [63:0] z
);
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parameter p = 64’hffffffff00000001;

reg [34:0] afg = 35’b0;
reg [34:0] bch = 35’b0;
reg [34:0] cd = 35’b0;
reg [34:0] ef = 35’b0;
reg [65:0] ztemp = 66’b0;
reg [65:0] ztemp2 = 66’b0;
reg [34:0] bch2 = 35’b0;
reg [34:0] ef2 = 35’b0;

always @ (posedge clk) begin
afg <= (a+f+g);
bch <= (b+c+h);
cd <= (c+d);
ef <= (e+f);

if({cd, 32’b0} > {afg, 32’b0})
ztemp <= p + p + {afg - cd, 32’b0} + bch - ef;

else if(cd > afg)
ztemp <= p + {afg - cd, 32’b0}+ bch - ef;

else
ztemp <= {afg - cd, 32’b0} + bch - ef;

if(ztemp > (p+p))
z <= ztemp - p - p;

else if(ztemp > p)
z <= ztemp - p;

else
z <= ztemp;

end
endmodule

Appendix C Row Calculation Verilog Code

module rowcalc(
input clk,
input [63:0] a,
input [7:0] w,
output [63:0] out
);

wire [63:0] aw;
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reg [63:0] temp = 0;
reg [63:0] temp2 = 0;
reg [127:0] result = 0;
reg [255:0] b;
reg done;
reg [8:0] count = 0;

always @ (posedge clk) begin
b <= a << w;

end

fast_mod_256 m1 (.a(b[255:224]), .b(b[223:192]), .c(b[191:160]),
.d(b[159:128]), .e(b[127:96]), .f(b[95:64]),
.g(b[63:32]), .h(b[31:0]), .clk(clk), .z(aw));

always@ (posedge clk) begin
if (count == 71)

count <= 0;
else

count <= count + 1’b1;
end

always@ (posedge clk) begin
if (count < 7)

result <= aw;
else

result <= result + aw;
end

fast_mod m2 (.a(result[127:96]), .b(result[95:64]), .c(result[63:32]),
.d(result[31:0]), .clk(clk), .z(out));

endmodule

Appendix D Index Calculation Python Code

if __name__ == "__main__":
#Constants
BRAMS = 2
VECTOR_LEN = 32
trans_size_array = [2, 4, 8, 16, 32]

cycles = int(VECTOR_LEN / (2*BRAMS))

#Variables
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groups = 0
pairs_per_cycle = 0
delta_x = 0
delta_y = 0
delta_g = 0
delta_g_bonus_offset = 0
delta_x_bonus_offset = 0
x_pos = 0
y_pos = 0

for trans_size in trans_size_array:
print("----- Next trans_size: " + str(trans_size) + " -----")

# Assign groups variable. Groups are defined as the
# number of adjacent pairs
if(BRAMS == VECTOR_LEN / 2):

groups = 1
elif((trans_size >> 1) >= VECTOR_LEN / BRAMS):

groups = 2
else:

groups = 1

# Assign the delta_x variable. Delta_x is defined as the change
# between pairs in different cycles
if((trans_size >> 2) >= VECTOR_LEN / (2*BRAMS) or trans_size == 2):

delta_x = 2
else:

delta_x = 1

# Assign the delta_y variable. Delta_y is equal to trans_size >> 1.
# Included for readability
delta_y = trans_size >> 1

# Assign the delta_g variable. Delta_g is defined as the change
# between pairs in the same cycle
if(BRAMS == VECTOR_LEN / 2):

delta_g = 1
elif((trans_size >> 1) == VECTOR_LEN / BRAMS):

delta_g = 2*(trans_size >> 1)
else:

delta_g = VECTOR_LEN / BRAMS

delta_x_bonus_offset = 0
pairs_per_cycle = int(BRAMS / groups)



Number Theoretic Transform (NTT) FPGA Accelerator 31

# Begin calculating index pairs
# i is the current cycle
# j is the current BRAM
for i in range(0, cycles):

print("----- Next clock cycle -----")
delta_g_bonus_offset = 0

# Handle the occasional non linear change of delta_x
if(i % (trans_size >> 1) == 0 and trans_size != 2 and i != 0):

delta_x_bonus_offset = delta_x_bonus_offset + (trans_size >> 1)

for j in range(0, pairs_per_cycle):
# Handle the occasional non linear change of delta_g
if( delta_g*j%(trans_size >> 1) == 0 and \

j != 0 and delta_g < trans_size):
delta_g_bonus_offset = delta_g_bonus_offset + (trans_size >> 1)

x_pos = int(delta_g * j + i * delta_x + \
delta_g_bonus_offset + delta_x_bonus_offset)

y_pos = int(x_pos + delta_y)

if(groups == 1):
print("(" + str(x_pos) + ", " + str(y_pos) + ")")

elif(groups == 2):
print("(" + str(x_pos) + ", " + str(y_pos) + ")")
print("(" + str(x_pos + 1) + ", " + str(y_pos + 1) + ")")

Appendix E Index Calculator Verilog Code with 4
Functional Units

‘timescale 1ns / 1ps

module index_calc_datapath(
input clk,
input [2:0] current_state,
input [9:0] trans_size,
output reg [6:0] i,
output reg [1:0] j,
output [9:0] x_pos1,
output [9:0] y_pos1,
output [9:0] x_pos2,
output [9:0] y_pos2,
output [9:0] x_pos3,
output [9:0] y_pos3,
output [9:0] x_pos4,
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output [9:0] y_pos4,
output reg result_active,
output reg groups
);
parameter BRAMS = ’d4;
parameter VECTOR_LEN = ’d1024;
parameter IDLE = 2’b000,

VAR_ASSIGN = 2’b001,
i_LOOP = 2’b010,
j_LOOP = 2’b011,
ADD_I = 3’b100;

reg [1:0] delta_x;
reg [9:0] delta_y;
reg [9:0] delta_g;
reg [10:0] delta_g_bonus_offset;
reg [10:0] delta_x_bonus_offset;
reg [9:0] pos_reg;
reg [6:0] i_counter;
reg [1:0] j_counter;

wire [9:0] x_pos2_bus;
wire [9:0] y_pos2_bus;
wire [9:0] x_pos4_bus;
wire [9:0] y_pos4_bus;
wire [1:0] j3_bus;

index_calculator CALC1(
.delta_g(delta_g),
.j(0),
.i(i),
.delta_x(delta_x),
.delta_y(delta_y),
.delta_g_bonus_offset(delta_g_bonus_offset),
.delta_x_bonus_offset(delta_x_bonus_offset),
.x_pos(x_pos1),
.y_pos(y_pos1)

);

index_calculator CALC2(
.delta_g(delta_g),
.j(1),
.i(i),
.delta_x(delta_x),
.delta_y(delta_y),
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.delta_g_bonus_offset(delta_g_bonus_offset),

.delta_x_bonus_offset(delta_x_bonus_offset),

.x_pos(x_pos2_bus),

.y_pos(y_pos2_bus)
);

index_calculator CALC3(
.delta_g(delta_g),
.j(j3_bus),
.i(i),
.delta_x(delta_x),
.delta_y(delta_y),
.delta_g_bonus_offset(delta_g_bonus_offset),
.delta_x_bonus_offset(delta_x_bonus_offset),
.x_pos(x_pos3),
.y_pos(y_pos3)

);

index_calculator CALC4(
.delta_g(delta_g),
.j(3),
.i(i),
.delta_x(delta_x),
.delta_y(delta_y),
.delta_g_bonus_offset(delta_g_bonus_offset),
.delta_x_bonus_offset(delta_x_bonus_offset),
.x_pos(x_pos4_bus),
.y_pos(y_pos4_bus)

);

always @(posedge clk) begin
if(current_state == IDLE) begin

groups <= 0;
pairs_per_cycle <= 0;
delta_x <= 0;
delta_y <= 0;
delta_g <= 0;
delta_g_bonus_offset <= 0;
delta_x_bonus_offset <= 0;
i <= 0;
j <= 0;
i_counter <= 0;
j_counter <= 0;
result_active <= 1’b0;

end
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else if(current_state == VAR_ASSIGN) begin
// set groups variable
if(BRAMS == VECTOR_LEN >> 1) begin

groups <= 0;
end
else if((trans_size >> 1) >= (VECTOR_LEN / BRAMS)) begin

groups <= 1;
end
else begin

groups <= 0;
end
// set delta_x variable
if(((trans_size >> 2) >= VECTOR_LEN / (BRAMS << 1)) ||

trans_size == 2) begin
delta_x <= 2;

end
else begin

delta_x <= 1;
end
// set delta_y variable
delta_y <= trans_size >> 1;
// set the delta_g variable
if(BRAMS == VECTOR_LEN >> 1) begin

delta_g <= 1;
end
else if((trans_size >> 1) == VECTOR_LEN / BRAMS) begin

delta_g <= trans_size;
end
else begin

delta_g <= VECTOR_LEN / BRAMS;
end
// set the delta_x_bonus_offset
delta_x_bonus_offset <= 0;
// set the pairs per cycle
pairs_per_cycle <= BRAMS / groups;

end
else if(current_state == i_LOOP) begin

result_active <= 1’b0;
delta_g_bonus_offset <= 0;
//calculate the delta_x value
if(i_counter == (trans_size >> 1) && i != 0 && trans_size != 2) begin

delta_x_bonus_offset = delta_x_bonus_offset + (trans_size >> 1);
i_counter <= 0;

end
end
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else if(current_state == j_LOOP) begin
//calculate the delta_g value without using modulus
if(j != 0 && delta_g < trans_size) begin

delta_g_bonus_offset <= delta_g_bonus_offset + (trans_size >> 1);
end
result_active <= 1’b1;

end
else if(current_state == ADD_I) begin

i <= i + 1;
i_counter <= i_counter + 1;
result_active <= 1’b0;

end
end

assign x_pos2 = (!groups) ? x_pos2_bus : x_pos1 + 1;
assign y_pos2 = (!groups) ? y_pos2_bus : y_pos1 + 1;
assign x_pos4 = (!groups) ? x_pos4_bus : x_pos3 + 1;
assign y_pos4 = (!groups) ? y_pos4_bus : y_pos3 + 1;
assign j3_bus = (!groups) ? 2 : 1;

endmodule

Appendix F ALU Core Verilog Code

module alu_core(
input clk,
input [63:0] wb,
input [73:0] op1,
input [73:0] op2,
output [73:0] add_pair,
output [73:0] sub_pair
);

reg [127:0] add_pair_to_mod;
reg [127:0] sub_pair_to_mod;
reg [127:0] mul_reg;
// Buffer the operand for 3cc
reg [73:0] op1_reg_cc1;
reg [73:0] op1_reg_cc2;
reg [73:0] op1_reg_cc3;
// Buffer the ram positions for 5cc
reg [9:0] op2_ram_pos_cc1;
reg [9:0] op2_ram_pos_cc2;
reg [9:0] op1_ram_pos_cc3;
reg [9:0] op2_ram_pos_cc3;
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reg [9:0] op1_ram_pos_cc4;
reg [9:0] op2_ram_pos_cc4;
reg [9:0] op1_ram_pos_cc5;
reg [9:0] op2_ram_pos_cc5;
wire [127:0] mul_result;

// 2 cc to complete
fast_mod ADD_MOD (

.a(add_pair_to_mod[127:96]),

.b(add_pair_to_mod[95:64]),

.c(add_pair_to_mod[63:32]),

.d(add_pair_to_mod[31:0]),

.clk(clk),

.z(add_pair[63:0])
);
// 2 cc to complete (in parallel with other mod)
fast_mod SUB_MOD (

.a(sub_pair_to_mod[127:96]),

.b(sub_pair_to_mod[95:64]),

.c(sub_pair_to_mod[63:32]),

.d(sub_pair_to_mod[31:0]),

.clk(clk),

.z(sub_pair[63:0])
);

// 3 cc to complete
mul_64bit M1(

.a(op2[63:0]),

.b(wb),

.clk(clk),

.result(mul_result)
);

always @(posedge clk) begin
// MUL cc1
op1_reg_cc1 <= op1;
op2_ram_pos_cc1 <= op2[73:64];
// MUL cc2
op1_reg_cc2 <= op1_reg_cc1;
op2_ram_pos_cc2 <= op2_ram_pos_cc1;
// MUL cc3
op1_reg_cc3 <= op1_reg_cc2;
op2_ram_pos_cc3 <= op2_ram_pos_cc2;
// MUL FINISHED do Addition (1cc)
add_pair_to_mod <= op1_reg_cc3[63:0]+mul_result;



Number Theoretic Transform (NTT) FPGA Accelerator 37

sub_pair_to_mod <= op1_reg_cc3[63:0]-mul_result;
op1_ram_pos_cc3 <= op1_reg_cc3[73:64];
op2_ram_pos_cc4 <= op2_ram_pos_cc3;
// MOD cc1
op1_ram_pos_cc4 <= op1_ram_pos_cc3;
op2_ram_pos_cc4 <= op2_ram_pos_cc3;
// MOD cc2
op1_ram_pos_cc5 <= op1_ram_pos_cc4;
op2_ram_pos_cc5 <= op2_ram_pos_cc4;
// MOD finished

end

assign add_pair[73:64] = op1_ram_pos_cc5;
assign sub_pair[73:64] = op2_ram_pos_cc5;

endmodule


