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Abstract:  
 
The identification of alternative splicing in the human genome elucidated the potential to several 

enduring genomic questions. Not only could this phenomenon explain why organism complexity 

was not at all correlated with the genome size, or explain how an organisms could be affected by 

experience and environment at the molecular level, but it was perhaps the most flexible and 

adaptive regulatory mechanism identified to date. While the pathogenic aberrations of this 

mechanism have generally been readily investigated and identified as potential therapeutic 

targets, its meditative or advantageous instances have largely not been considered. Initiated exon 

skipping has been shown to have therapeutic effects in Muscular Dystrophy animal models and 

even in vitro human muscle cells (Aartsma-Rus, Annemieke, et al, Human Molecular Genetics 

2003, McClorey, G., et al, Neuromuscular disorders, 2006). However, the consideration that this 

process may be occurring endogenously in human cells and contributing to other complex 

diseases has remained largely ignored. In this work, we have undertaken the first large-scale 

statistical examination of alternatively spliced variants between the tissues of diseased and 

normal patients. We hypothesize that there are endogenous alternative splicing events occurring 

in these tissues that purposefully mediate mutative damage and contribute to the differentiation 

between diseased and healthy phenotypes. By integrating data from several different sources and 

employing statistic and machine learning models, we have identified significant differences in 

gene characteristics between canonical and spliced variants correlated with changes in clinical 

outcomes. We conclude that this evidence supports our hypothesis that alternative splicing can 

be positively driven to mediate genetic damage. Expression of these genetically damaged and 

canonically spliced variants is clearly implicated in diseased tissue and poor clinical outcomes.   
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1. INTRODUCTION  

Since the conclusion of the human genome project it has become apparent that the initial 

perception of the genetic code as a simple blueprint for the resulting organism was woefully 

inadequate. The genome is a dynamic system, constantly being manipulated and reorganized by 

various regulatory mechanisms of all forms and etiologies. Of these mechanisms one of the most 

pervasive yet least well understood is alternative splicing. Initial estimates proposed that  40-

60% of genes within the human genome had alternative splice forms (Barmak et al, Nature 

2002). However more recent investigations using specific mRNA microarrays have reported that 

as many as 75% of human multi-exon genes exhibit alternative splicing (Johnson et al, Science 

2003). 

 Similarly, the effects of alternative splicing are numerous and varied; ranging from 

complete functional devastation, to only minor implications/functional changes, to acquisition of 

advantageous functionality (Stamm et al Gene, 2005). It has even been proposed that alternative 

splicing explains the incongruity between complexity of an organism and the size of its genome 

(Nilsen et al, Nature 2010). Despite the clear evidence of the implicit advantageous nature of 

alternative splicing, most in depth examinations of incidences of alternative splicing focus on its 

implications in disease. A study examining the range in effects of alternative splicing found that 

while less frequent than whole domain alterations, within protein alternative splicing events tend 

to occur significantly more often in functional domains, suggesting that alternative splicing is 

generally a positively reinforced mechanism (Kriventseva et al Trends in Genetics, 2003).  

The first experimental evidence of this phenomena was discovered by researchers at the 

University of Western Australia who were researching muscular dystrophy through a mdx mouse 

model.  They noticed the mdx mice they were using as a model for muscular dystrophy, a 
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disorder caused by a single nonsense mutation in exon 23 of the dystrophin gene resulting in a 

nonfunctional protein, still had some amount of functional dystrophin being produced. They 

theorized that exon 23 might occasionally be spliced out of transcriptions of the gene resulting in 

the functional proteins. They tested this theory by exposing myoblasts to oligonucleotides in 

order to induce this specific exon skipping splice and were able to obtain high concentrations of 

functional, although shorter, dystrophin coding sequences (Wilton et al, 1999). Since then their 

success in induced exon skipping in muscular dystrophy models has been replicated across other 

animal models and even in vitro human muscle cells (Aartsma-Rus, Annemieke, et al, Human 

Molecular Genetics 2003, McClorey, G., et al, Neuromuscular disorders, 2006). However, 

investigations into whether or not the same phenomenon is occurring in human subjects has been 

slow if not nonexistent, essentially ignoring a proven possible therapeutic method for several 

different types of diseases.  

In the following study we will detail a thorough statistical analysis of alternative splicing 

and mutation events in breast cancer which support the hypothesis that alternative splicing can be 

used as an advantageous mechanism for mediating mutative damage.  

 

2. METHODS  

2.1 Hypothesis and Process 

We hypothesize that positively driven alternative splicing is occurring within the human genome. 

Specifically, we will investigate the propensity of this mechanism to mediate pathogenic 

mutations. In order to examine this hypothesis, we will compare several characteristics; 

expression, mutation annotation, and clinical outcome, between canonical and corresponding 

spliced variants. If our hypothesis is true we would expect to find advantageous differences in 
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favor of the spliced variants and disadvantageous differences in the corresponding canonical 

variants.  

For the majority of the investigation we examined primary the canonical variants for 

disadvantageous and potentially pathogenic differences from their corresponding spliced. 

However, these examinations were corroborated with complementary examinations of the 

corresponding spliced variants whenever possible.  

 

2.2 Methodology Overview 

The data used throughout this study was obtained through open source genetic and medical data 

portals, namely The Cancer Genome Atlas (TCGA), Ensembl release 96, University of 

California Santa Clara Genome Browser (UCSC), and the Catalogue of Somatic Mutations in 

Cancer (COSMIC). Data was merged between all sources via TCGA barcode ID as well as gene 

name and Ensembl Transcript and UCSC Variant ID’s (Figure 1). In the following sections the 

methodology by which this large data pool was examined and narrowed down to the resulting 

subset of interest will be detailed. Intermediate data subsets and results were given distinct 

names for clarity (Table 1). 

 

 2.3 Variant Expression Data Extraction 

Normalized mRNA expression data for the Breast Invasive Carcinoma (BRCA) cohort was 

pulled from The Cancer Genome Atlas Firebrowse data portal. The expression data consisted of 

RSEM normalized transcripts per million (TPM) for approximately 73000 variants from 1212 

patient samples. Samples were identified by their unique TCGA barcode. Encoded within this 

barcode is a numerical division of tissue type and sample condition. All samples were obtained 
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from the breast tissue of a patient suffering from breast invasive carcinoma. However, there were 

3 different sample conditions; Primary Solid Tumor, Solid Tissue Normal, and Metastatic.  

Specifically, the dataset contained 1093 Primary Solid Tumor samples, 112 Solid Tissue Normal 

samples, and 7 Metastatic, samples. Due to the significantly imbalanced number of metastatic 

samples they were disregarded from for future analysis.  Further analysis continued with the 

Primary Solid Tumor and Solid Normal Tissue samples heretofore referred to as tumor samples 

and normal samples respectively.  

 

 
 
Figure 1. Pipeline of Experiment Methodology: The integration of each data source was 
performed in tandem with experimentation and resulting in reduction of the size of the data of 
consideration. Initially the data containing roughly 73000 variants. Following the integration of 
the mutation database this number was reduced to 1219. After a structural comparison and 
statistical examination of mutation frequency this number was reduced to 191 canonical and 
spliced variant pairs. Next a statistical examination of the expression level of these variants 
reduced this count to only 135 variant pairs with significant differences. Finally, the clinical data 
was integrated into the. Remaining 135 variants yielding only 71 variants of interest.  
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Table 1. Data Structures Resulting from the Integration of Original Data Sources: As the 
data sources were integrated and the subset of data of interest was reduced and evolved through 
the statistical processes various intermediate data structures were constructed. A general 
summary of the data structures as well as the names and abbreviations if applicable are provided 
below. As is the fundamental construction of each data structure. Data structures (DS) are 
referenced as S: string, DF: DataFrame, L: List.  

Term Composition DS Rows Columns 

Canonical Variant Variant identified by UCSC as the 
knownCanonical for the 
corresponding gene 

S N/A N/A 

Spliced Variant Variant of a gene that is not the 
corresponding variant. A single 
gene may have many spliced 
variants but within this 
investigation there is generally 
only 1 spliced variant per gene. 

S N/A N/A 

All Variants with 
Expression 

TPM levels for approximately 
73000 variants from obtained from 
either normal or tumor tissue 
samples from 1205 patients. 

DF Sample (TCGA 
barcode) 

TPM of Variant (Variant IDs) 

Canonical/ 
Spliced Pairs 

650 pairs of canonical and spliced 
variants of the same gene in 
which both exist in all variants 
with expression and therefore 
have expression data 

L N/A N/A 

Canonical Variant 
Expression 

TPM expression in 1205 samples 
for all canonical variants of 
canonical/spliced pairs 

DF Sample (TCGA 
barcode) 

Canonical Variant IDs 

Spliced Variant 
Expression 

TPM expression in 1205 samples 
for all spliced variants of 
canonical/spliced pairs 

DF Sample (TCGA 
barcode) 

Spliced Variant IDs 

Canonical Variant 
Mutations 

Mutation Annotation for every 
mutation which occurs in a 
canonical variant of the 
canonical/spliced pairs 

DF Mutation incidences in 
Canonical Variants 

Variant Mutation Occurs In, Mutation Loci, 
FATHMM Prediction of Mutation, 
Corresponding Variant from 
Canonical/Spliced Pairs, Exon start and 
stop Loci of corresponding variant 

Splice Variant 
Mutations 

Mutation Annotation for every 
mutation which occurs in a spliced 
variant of the canonical/spliced 
pairs 

DF Mutation incidence 
Spliced Variants 

Variant Mutation Occurs In, Mutation Loci, 
FATHMM Prediction of Mutation, 
Corresponding Variant from 
Canonical/Spliced Pairs, Exon start and 
stop Loci of corresponding variant 

Canonical Mutations 
Not Retained in 
Spliced (CMNR) 

Canonical Mutations that were not 
retained in their corresponding 
spliced variants 

DF Mutation incidences in 
Canonical Variants 
that do not fall within 
any exon of the 
corresponding spliced 
variant and are 
therefore not retained 

Variant Mutation Occurs In, Mutation Loci, 
FATHMM Prediction of Mutation, 
Corresponding Variant from 
Canonical/Spliced Pairs, Exon start and 
stop Loci of corresponding variant 

Spliced Mutations 
Not Retained in 
Canonical (SMNR) 

Spliced Mutations that were not 
retained in their corresponding 
canonical variants 

DF Mutation incidences in 
Spliced Variants that 
do not fall within any 
exon of the 
corresponding 
canonical variant and 
are therefore not 
retained 

Variant Mutation Occurs In, Mutation Loci, 
FATHMM Prediction of Mutation, 
Corresponding Variant from 
Canonical/Spliced Pairs, Exon start and 
stop Loci of corresponding variant 
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Canonical Variants 
with Mutations Not 
Retained in Spliced 
with Expression 
(CMNRE) 

Expression of canonical variants 
that contain mutations not 
retained in corresponding spliced 

DF Sample  
(TCGA barcode) 

TPM of CMNR variants (Variant IDs) 

Canonical Variants 
with Mutations Not 
Retained in Spliced 
with Significantly 
Increased 
Expression in Tumor 
Samples (CMNRTS) 

CMNR variants with significantly 
increased expression in tumor 
samples compared to normal  

DF Sample  
(TCGA barcode) 

TPM of CMNRTS variants (Variant IDs) 

Canonical Variants 
with Mutations Not 
Retained in Spliced 
with Significantly 
Reduced Survival 
(CMNRTSRS) 

CMNRTS variants for which 
expression greater than or equal 
to the third quartile of all samples 
for that variant is related to 
significantly reduced survival  

DF Sample  
(TCGA barcode) 

‘High’ or ‘Low’ depending on whether the 
TPM of the specific variant is greater than 
or equal to or less than the third quartile of 
expression for that variant overall.  

 
 
2.4 Identification of Canonical/Spliced Pairs 

All variants with expression were identified by their unique UCSC IDs. The UCSC genome 

browser conveniently contains a “KnownCanonicals” table, accessible through their publicly 

available Table Browser. This table was queried for the IDs of all the variants with expression 

yielding a two-dimensional table of the submitted variants, heretofore referred to as spliced 

variants, and their corresponding canonical variant for that gene. Rows in which the submitted 

variant was also the canonical variant were eliminated from the table. Additionally, each 

obtained canonical variant was also compared to a list of the original 73,000 variants in the 

expression data. If the canonical variant was not found in the list there was no expression data for 

this variant and all rows containing this canonical variant were removed. Following these 

reductions 650 canonical/spliced pairs remained in the table. These pairs included 1,291 

individual variants; 641 unique canonical variants and unique 650 corresponding spliced 

variants. The expression file was then reduced to include only expression levels from all samples 

for these 1,291 variants and then split by variant type creating the canonical variant expression 

and spliced variant expression tables. The canonical/spliced pairs were then converted to a 
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dictionary (canonical/spliced dictionary) as well as two distinct lists containing only the 

canonical variants or spliced variants respectively (canonical variants and spliced variants).  

 

2.5 Association of Annotated Mutations with Variants 

Annotated mutation data was obtained via the Catalogue of Somatic Mutations in Cancer 

(COSMIC) breast carcinoma dataset (Simon A. Forbes, et al Nucleic Acids Research 2017). The 

dataset contained 260,303 mutations between 19,203 genes and 26,402 variants. This dataset was 

then compared to the canonical variants and spliced variants lists. Only mutations associated 

with a variant contained in either of these lists was retained, resulting a dataframe of 8,236 

mutations each with various annotated features including mutation loci and Functional Analysis 

Through Hidden Markov Models (FATHMM) prediction.  Of the 641 canonical and 650 

corresponding spliced variants with expression data, 417 canonical variants also had annotated 

COSMIC mutations as did 314 of the corresponding spliced variants. The mutations were 

grouped by their corresponding variant type creating the canonical variant mutations and spliced 

variant mutations tables. 

For this investigation we were particularly interested in how mutations were retained or 

removed by splicing events. In order to assess whether or not mutations could exist in variants 

they were not annotated in, in this case the corresponding variant of the canonical/splice pair, the 

loci of all exon start and stops for each variant were obtained through the Ensembl Biomart, 

resulting in a structural data table consisting of each variant ID and all exon start and stop loci 

for that variant.  

Both of the canonical variant mutations and spliced variant mutations files were merged 

with the structural data for their corresponding variants. For each mutation it was determined 
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whether or not that mutation loci was within an exon of the corresponding variant. If the 

mutation existed in the corresponding variant it was designated as retained, and if it was not 

present in any exons the mutation was designated as not retained. For the purposes of this 

investigation the mutations that were not retained in the corresponding spliced variant were 

saved for further analysis in the canonical mutations not retained (CMNR) and spliced mutations 

not retained (SMNR) tables.  

 

2.6 Integration of Clinical Outcomes  

Like the expression data, the clinical data was also obtained through the TCGA Firebrowse 

portal (Broad Institute TCGA Genome Data Analysis Center, 2016) Each sample of the original 

TCGA mRNAseq dataset was assigned a unique TCGA barcode ID. This was the same barcode 

that was used to differentiate between the sample conditions in section 2.2. The ID was 

composed of seven parts, each indicating some aspect of the sample’s nature or processing. A 

four-digit unique identifier was used to designate the patient ID. This patient ID was extracted 

from all samples within the expression data and was matched to the patient ID of each patient 

within the clinical data file. All patients whose samples were in the expression data had 

corresponding canonical data.   

 The clinical data contained several features of interest. This investigation focused 

primarily on survival analysis and thusly isolated only a few columns from the clinical datafile 

including, days to death, days to last follow up, and survival status. There are other columns of 

interest within the data file that may be used in future examinations such as stage and days since 

diagnosis.  
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3. Results 

3.1 Comparative Examination of Mutations in Canonical and Spliced Variants 

Of the 417 canonical variants and 314 spliced variants of consideration there were 

proportionately more annotated mutations associated with canonical variants than spliced with 

4,972 and 3,264 mutations, respectively. Similarly, the proportion of canonical variant mutations 

retained in the corresponding spliced variants is significantly greater than the proportion of 

spliced variant mutations maintained in the corresponding canonical when examined through a 

one tailed Fisher’s exact test with an alpha of 0.05 (p = 0.0013).  

Of the mutations which were removed in the corresponding variant, canonical mutations 

removed in spliced variants had a significantly higher proportion of pathogenic mutations than 

the spliced mutations removed in canonical mutations, according to their FATHMM prediction 

when examined through a Fisher’s Exact test with an alpha of 0.05 (p= 0.0009) (Figure 2.A). 

Interestingly, the distribution of the various types of mutations was not significantly different 

between the canonical mutations removed in splice and spliced mutation removed in canonical 

(Figure 2.B,C) . However, upon further examination, the SMNR variants did have an increased 

proportion of frameshift insertions and deletions, also known as the loss-of-function mutations 

(Figure 2.D). This suggests that the main determining factor for a mutation to be removed from 

the canonical in the spliced version is the degree of damage. In order to investigate this 

hypothesis further, all proceeding analysis was done with regard to the CMNR subset of variants, 

which have been shown to contain significantly more pathogenic mutations. This subset contains 

218 different genes, however only 191 of these genes had expression data for both the canonical 

and alternative variant, heretofore referred to as the Canonical Mutation not Retained with 
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Expression data set (CMNRE). These genes range in family and function from the widely 

implicated BRCA1 gene to the generally innocuous homeobox gene POU2F1.  

 

3.2 Statistical Examination of Expression Levels 

3.2.1 Statistical Examination of Expression Levels of Genes 

The expression levels for each of the CMNRE variants and their corresponding spliced variants 

was extracted from the original variant expression file. The CMNRE variants were first 

expressed on the gene level. For each gene within the subset there were 2 comparison conditions 

to examine, the expression of the canonical variant versus the spliced variant and the expression 

level in tumor vs. normal samples. In order to examine these differential expressions efficiently a 

two-way ANOVA was performed for each gene, with the variant type as the between group 

factor and sample type as the within group factor. 184 of the 191 genes examined reported 

having significant difference through the ANOVA. 

 

Table 2. Difference in Proportion of Pathogenic Variants within CMNR and SMNR 
Subsets: CMNR variants have not only a larger number of mutations than the corresponding 
spliced dataset but of these mutations there is a significant difference in the proportion of 
pathogenic mutations between these subsets when examined by a Fisher’s exact test.  
 

  
  

Pathogenic (FATHMM 
Prediction) 

Neutral (FATHMM 
Prediction) 

Canonical Mutations not in 
Spliced Variant (CMNR) 

391 328 

Spliced Mutations not in 
Canonical Variant (SMNR) 

174 222 

p = 0.009 
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Figure 2. Stratification of mutation retention between variant types and the composition of 
mutations for each variant. A) The number of total mutations associated with each Variant 
type is shown first followed by proportion of these mutation which are not retained in the 
corresponding variant and therefore associated with the CMNR and SMNR datasets. Lastly the 
proportion of the mutations not retained in the corresponding variant which are pathogenic 
according to their FATHMM prediction. B) The frequency of each mutation type among the 
CMNR mutations. C) The frequency off each mutation type among the SMNR mutations. D) 
The amount of loss of function mutations, that is mutations which result in a nonfunctional 
protein contained in the CMNR and SMNR datasets.  
 

To accurately determine which group of factors was responsible for the significant 

difference two Tukey HSDs were also performed. When applied to the between group variables, 

canonical variant expression compared to spliced variant expression, of the 191 genes 178 were 

found to have significantly different expression (alpha = 0.05). Additionally, when examining 

the within group variables, tumor sample vs normal sample, 123 genes had significantly different 
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expression between the two groups (alpha =0.05). Finally, 116 genes had a significant difference 

between both factors (alpha= 0.05).  

This finding is particularly interesting as it suggests that just as the CMNRE subset 

contained significantly different amount of pathogenic mutations than their spliced 

correspondents, they also have significantly different expression levels between tumor and 

normal samples. This suggests that there is an intrinsic relationship between the presence of 

either variant and the health of the tissue and prognosis of the patient.  

 

3.2.2 Statistical Examination of Expression Levels of Variants  

In order to further elucidate the nature of the relationship between expression of the CMNRE 

variants, which have already been found to have evidence of damaging characteristics, a one 

tailed t-test was performed on the expression level of the canonical variants. Of the 191 

canonical variants within the subset of interest, 135 had significantly greater expression in tumor 

samples than in normal samples (alpha = 0.05) (Figure 3). The majority of CMNRE variants had 

significantly higher TPM levels in tumor samples, which suggests that there is something 

inherently reparative in the way their corresponding spliced variants are being transcribed.  

In order to validate these findings, the opposite one-tailed T test was run on the 

expression levels of the corresponding spliced variants of the CMNRE subset. Of the 191 spliced 

variants, 133 had significantly decreased expression levels in tumor versus normal samples 

(alpha = 0.05). Additionally, of the 191 CMNRE canonical/spliced variant pairs examined, 105 

had significantly increased canonical expression and significantly reduced spliced expression in 

tumors. These results reinforce the previous findings, suggesting that there is a strong 

relationship between expression of CMNRE spliced isoforms and health.  This indicates that the 
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endogenous signaling responsible for the revision of the canonical variant into the corresponding 

spliced variant is a form of mediating or repairing the pathogenic mutative damage identified 

previously. In order to investigate this assertion in more detail, the subset of 135 CMNRE genes 

that were found to have significantly increased expression in tumor samples was isolated for 

further analysis and will heretofore be referred to as the Canonical Mutation Not Retained Tumor 

Significant (CMNRTS) subset and table.  

 
Figure 3. Comparison in Expression of CMNRE variants in Tumor and Normal Samples: 
Of the 191 CMNRE variants 135 had significantly reduced increased expression in tumor 
samples compared to normal samples when examined via a one tailed T-test (alpha = 0.05). 
These finding further suggest that splicing mechanisms are positively selecting for healthier 
variants. The 135 CMNRE variants with significantly increased expression are referred to as the 
CMNRTS variants.  
 
3.3 Survival Examination of individuals with these Expression Characteristics:  

To examine the clinical manifestations of these statistical findings, the canonical variants 

composing the subset of consideration were then evaluated in terms of survival analysis for 

patients with higher expression levels of these variants versus those with lower expression levels. 

The upper third quartile of expression level TPM for each CMNRTS variant was identified. 
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Patient data was merged into the database using the unique TCGA barcode identifier given to 

each sample. The expression level of each variant for each patient was then compared to the 

variant’s upper quartile. Patients with expression levels greater than or equal to this amount were 

classified as having high expression, while patients with expression levels below this amount 

were classified as having low expression. The right censored survival for each patient was 

determined using the number of days from when the sample was taken to either the patient’s 

death or to the patient’s last follow up appointment if they are still alive. The survival was 

examined using a Kaplan-Meier estimate. From these charts it is qualitatively clear that for a 

considerable portion of the variants patients with higher expression had reduced longevity. In 

order to examine this difference quantitatively, a log rank test was performed comparing patients 

with high and low expression for each variant. Of the 135 variants examined, 71 had 

significantly different survival rates between patients with high and low expression.  

In addition to examining the effect on survival of the expression level of each CMNRTS 

variants independently an investigation into the sum effect of the expression of all variants was 

conducted. In order to examine the overall effect, the samples were divided depending on 

whether the majority of the CMNRTS variants for the sample were high or low. The samples 

with majority high CMNRTS expression were classified as high overall whereas the samples 

with minority high CMNRTS expression were classified as low overall. A survival analysis was 

then conducted comparing these two groups. The overall high expression group had noticeably 

reduced survival which was then determined to be significant through a log rank test  

(p = 1.4E-10, Figure 4.A).  

Motivated by these findings we also sought to examine what proportion of high 

expression variants was needed to have a significant effect on survive. We iteratively calculated 
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the significance of the reduction in survival for increasing number of high variants. Beginning 

with 0 high variants we iteratively increased that amount to 90, an amount slightly above the 

majority measure used previously.  

 
Figure 4. Survival analysis of patients with regard to expression level of CMNRTS 
variants. A) Survival of patients for whom the majority of the CMNRTS variants was high 
compared to those for whom it was not. Individuals with overall high expression of CMNRTS 
variants had significantly reduced survival compared to individuals with non-majority high 
expression. B) The significance in reduced survival by number of CMNRTS variants with high 
expression. There is a clear trend in that the more CMNRTS variants with high expression the 
more significant the reduction in survival. C) Survival curves corresponding to the variants with 
the maximum, median and minimum p value for reduction in survival. As the majority of 
variants did have a significant reduction even the curve corresponding to the median p values has 
visible qualitative separation between the two populations.  
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We found that there was noticeable increase in significance of reduced survival at 30 variants. 

This suggests that although high expression of 71 variants were correlated with reduced survival, 

high expression of less than half of was enough to dramatically affect clinical outcomes. 

 

3.4 Support Vector Machine Classification of Sample Condition 

The general inference obtained from the statistical analysis done so far is that there is a 

constitutional difference in the transcriptome of cancerous and normal tissues. In order to 

examine this inference more directly, a support vector machine (SVM) machine learning 

algorithm was employed. SVM algorithms are designed to identify a linear separator between 

two classes of data points in the multidimensional space. This is done by considering only a few 

points closest to the class boundary and maximizing the distance of the support vectors for both 

classes. Support vectors refer to vectors originating on these points and terminating at the 

boundary. SVMs can be altered to identify nonlinear boundaries as well however for this 

investigation is was determined that a straight forward linear boundary was most accurate. 

The initial dataset contained 1093 data instances from tumor samples and only 112 from 

normal samples. When using SVM and many other machine learning algorithms this degree of 

imbalance can often result in a propensity of type 1 errors. In order to eliminate this bias the data 

was balanced using SMOTE resampling. This technique creates additional data instances of the 

minority class by finding feature values, in this case variant expression levels, in between the 

values of data instances of the same class. By applying this technique to the dataset a balanced 

dataset of 1093 tumor and 1093 normal data instances. Using this balanced data set the algorithm 

was trained on 400 data instances at a time and tested on 100, this process was repeated five 

times, each time with a randomly selected subset for both training and testing, a process known 
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as five fold cross validation. The average accuracy for this algorithm was 0.9679 (Figure 4.B). 

Additionally when the dataset was projected down to two dimensions there was a viable visible 

linear boundary between the tumor and normal points (Figure 4.A). These results reaffirm that 

there is constitutive difference in expression of the CMNR variants in tumor and normal 

samples.  

 

3.5 Correlation Between Derived Features 

Combining the results from the previously described statistical tests, a data subset 

containing 135 different genes with mutation, expression level, and survival characteristics was 

obtained. In order to better understand the relationship between all these derived characteristics 

(number of mutations, number of pathogenic mutations, statistical significance of increased 

canonical variant expression in tumor samples, statistical significance of decreases spliced 

variant expression in normal samples, and statistical significance of reduced survival) the 

correlation between all characteristics was examined through a facet plot. In order to better 

interpret the relationships between the p-value based features and the numerical features, the p-

values were transformed by the absolute value of the log. It follows that a higher value is 

indicative of a lower p-value and therefore a more significant result. 



 23 

 
Figure 5. SVM Classification of CMNRTS variants: A) Using principal component analysis 
(PCA) the expression of all 71 variants was projected down to 2 dimensions. In this two 
dimensional plane there is a noticeable separation between the tumor and normal tissue classes. 
B) The overall accuracy of the SVM was about 96.79% and as can be seen by the confusion 
matrix there is no bias towards type 1 errors, illustrating the effectiveness of the SMOTE 
resampling towards generating reliable results.  
 

The most correlated features were the total number of mutations in the canonical variant 

and not in the spliced variant and the number of pathological mutations in the canonical variant 

and not in the spliced variant. This is to be expected as the number of pathological mutations is 

essentially a subset of the number of total mutations and, as was shown previously, a large 

portion of the total mutations of this type are also pathogenic.  
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Figure 6. Correlation between all derived features: For each of the 135 CMNRTS variants the 
number of total mutations, number of pathogenic mutations, number of neutral mutations, p 
value for increased expression in tumor samples compared to normal, p value for reduced 
expression of the corresponding spliced variant in tumor compared to normal and p value of 
reduced survival were compared. The diagonal portrays a histogram for each feature while the 
upper and lower triangles show the pairwise correlation between all features. Discounting the 
features that have implicit relationships such as number of total mutations and number of 
pathogenic mutations, the highest correlation between features was the p value of increased 
expression in tumor samples compared to normal and the p value of reduced survival.  
 

 

 



 25 

The next most correlated features, and perhaps the most interesting were the level of 

significance of reduced survival and the level of significance of increased canonical expression 

in tumors (r = 0.47). This is particularly interesting because it provides further evidence to 

support our hypothesis that having these affected canonical isoforms instead of the spliced 

alternatives is linked to a less desirable clinical prognosis. Overall there was at least a slight 

positive correlation among all features (Figure 6). 

 

4. DISCUSSION 

4.1 Overview of Results  

We completed the first large scale statistical investigation into the occurrence of mediative 

alternative splicing in the human genome. Specifically, we provide evidence for the contribution 

of this mechanism to preventing complex diseases such as breast cancer. There is a clear 

endogenous system at work which repairs or negates the effect of potentially disease contributing 

mutations by excluding these mutations from transcription, preserving functionality of the 

protein. Therefore, contrary to common conception it appears a considerable contributor to the 

expression of disease phenotypes is not aberrant splicing mechanisms but rather the absence of 

splicing mechanisms. The identification of this phenomena may have been stunted by its inherent 

advantageous aspects in that the result of this process is a healthy or normal phenotype.  

Perhaps the most intriguing consequence of these findings are the implications for the 

degree of dexterity and influence alternative splicing has on gene regulations. Alternative 

splicing can occur on a tissue specific and even cell specific basis, meaning that these 

mechanisms may be dynamically mediating mutations differently across tissues, potentially 

preventing the occurrence of various diseases at once.  This degree of control over the genome 
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would surpass any existing considerations of the implications of these mechanisms and 

potentially irrevocably alter the way researchers view the relationship between mutations, 

genetics, and complex diseases.  

This investigation provided considerable evidence to support our hypothesis that as with 

the mdx mice, endogenous mediative alternative splicing is occurring and is present in human 

genomes and can be complicit in preventing disease phenotypes. This is novel research and 

brings with it novel methodologies to two of the most critical components of biomedical 

development, namely therapeutic development and diagnostics.  

 

4.2 Therapeutic Implications 

Generally, investigations into diseases involving alternative splicing focus on mediating 

or repairing aberrant splicing mechanisms. Similarly investigations into diseases that involve 

SNP or point mutations are generally focused on repairing the mutated gene or 

substituting/compensating for a nonfunctional protein. The results of this investigation suggest 

there may be another option, instead of affecting the gene as a whole or replacing the splicing 

mechanism we can work within the endogenous alternative splicing machinery. As evidenced by 

this investigation there is already naturally occurring alternative splicing processes to explicitly 

splice out would be harmful mutations and still yield functional proteins. This suggests that a 

critical determinant for disease phenotype may not be simply the presence of these mutations but 

the degree to which they are transcribed. Therefore, there is a clear opportunity to intervene 

therapeutically by simply promoting for or upregulating whatever natural process results in the 

healthy spliced variant compared to the diseased canonical. Previous investigations into 

exploiting alternative splicing mechanisms have sought to accomplish similar results but relied 
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on manually instituting the desired splice by introducing agents such as oligonucleotides 

(McClorey et al, Gene Therapy 2006) and generally been focused on diseases for which there is 

a clear point mutation cause such as muscular dystrophy. Contrarily the approach we are 

recommending from the results of this study would negate the need for this introduction and 

rather simply utilize the existing splicing mechanisms we have shown are already occurring in 

the tissues.  

Within this study alone, 71 genes were identified as possible therapeutic targets for breast 

cancer having significantly increased incidence of pathogenic mutations, expression levels in 

tumor samples, and reduced survival (Figure 7.B). Of these genes only 18 currently have any sort 

of drug interaction, either as a direct target or accessory according to the Drug Gene Interaction 

Database. Perhaps even more surprising is that of the remaining 53 genes none of them are 

commonly associated with breast cancer or any cancer in general. A DAVID functional 

clustering of the genes revealed significant enrichment in 11 functional clusters; SH3 domain, 

LIM domain, Zinc Metal Binding, Calcium, domain:PH, cell-cell adhesion, zinc-finger, 

transcription regulation, ATP Binding, secreted signals, and Transmembrane proteins (Figure 

7.A). While the relationship to some of these functional clusters and cancer is understandable, 

such as cell to cell adhesion and secreted signals, some of the others are not so obvious such as 

the zinc binding and SH3 and LIM domains. 
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Figure 7. Gene clusters within CMNRTSRD subset which are not currently 
associated with any drug interaction: A) The 53 CMNRTSRD variants which do not 
have a drug interaction can be effectively grouped into 11 clusters by functional gene 
annotation. Of these clusters the largest are membrane and metal binding, two functions 
not generally associated with cancer development. Known functions affected by cancer 
are contained by smaller clusters. B) The evolution of the specification of variants for by 
each characteristic as well as the clustering of the original 191 CMNR variants. Of these 
191 original variants 119 remained unclustered however all CMNRTSRD variants were 
part of a CMNR clustering.  
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The implications of the findings of this study for therapeutic development are 

considerable. If we can apply these findings to human diseases it would provide an effective and 

simpler alternative to large scale gene therapy and provide hope to thousands of individuals 

suffering from all types of illness. However, to maximize the impact of these findings similar 

statistical investigations should be conducted on other cancer cohorts. It would be worthwhile to 

examine the composition of gene types of this investigation on other cancer types as the genes 

identified here have for the most part not been implicated in the disease yet it would be 

interesting to see if the same sleuth genes are identified across cancer types or if an entirely 

different previously unknown subset emerges. Finally, while cancer was chosen as the disease of 

interest for this initial investigation due to the exhaustive publicly available datasets it is 

important to remember these findings could as efficiently be applied to any disease with a 

genetic component. 

 

4.3 Diagnostic Implications  

In addition to the considerable implications of this study for therapeutic development 

there are also equally impactful implications for diagnostics. From this study it is clear that a 

machine learning based approach to sorting samples could contribute to faster and more accurate 

diagnoses. Samples could be accurately classified as tumor or normal by expression of less than 

0.01% the number of variants of a full mRNA sequencing. By testing a tissue sample for 

expression levels of just the handful of variants identified here the sample can be automatically 

sorted and classified. As this approach is expanded to include different types of cancers it is also 

foreseeable this algorithm can be expanded to classify the tissue not only as tumor or normal but 

the that the expression of just a few variants may reveal the stage and type of cancer, currently 
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largely still determined by hand through standard histological procedures. Furthermore, there is 

the possibility this technique could be expanded beyond tissue specificity to cellular specificity 

given the increasing feasibility of single cell RNAseq methods. By combining machine learning 

with the findings of this investigation diagnostic methods can improve efficiency and accuracy 

on less information meaning faster answers or patients and potentially earlier detection.  
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Supplementary Materials:  
Supplementary Table S1. Gene information for all genes with canonical variants in the 
CMNR subset: Ensembl ID’s, functions and names for each gene is supplied in addition to a 
Boolean array for each derived subset in the investigation. A value of 1 indicates the gene was 
present in the given subset, a value of 0 indicates it was not.  
  

Gene 
stable ID Gene description 

Gene 
name 

CMN
R 

CMN
RTS 

CMN
RTSR
D 

Drug 
Interacti
on  

ENSG000
00275931 glycoprotein VI platelet [Source:NCBI gene;Acc:51206] GP6 1 0 0 0 
ENSG000
00117335 CD46 molecule [Source:HGNC Symbol;Acc:HGNC:6953] CD46 1 1 0 0 
ENSG000
00143344 

ral guanine nucleotide dissociation stimulator like 1 
[Source:HGNC Symbol;Acc:HGNC:30281] RGL1 1 0 0 0 

ENSG000
00282608 adenosine A3 receptor [Source:HGNC Symbol;Acc:HGNC:268] 

ADOR
A3 1 1 1 1 

ENSG000
00170190 

solute carrier family 16 member 5 [Source:HGNC 
Symbol;Acc:HGNC:10926] 

SLC16
A5 1 0 0 0 

ENSG000
00144354 

cell division cycle associated 7 [Source:HGNC 
Symbol;Acc:HGNC:14628] 

CDCA
7 1 1 0 0 

ENSG000
00119865 

cannabinoid receptor interacting protein 1 [Source:HGNC 
Symbol;Acc:HGNC:24546] 

CNRIP
1 1 1 1 0 

ENSG000
00117625 REST corepressor 3 [Source:HGNC Symbol;Acc:HGNC:25594] 

RCOR
3 1 1 0 0 

ENSG000
00132694 

Rho guanine nucleotide exchange factor 11 [Source:HGNC 
Symbol;Acc:HGNC:14580] 

ARHG
EF11 1 1 0 0 

ENSG000
00148908 

regulator of G protein signaling 10 [Source:HGNC 
Symbol;Acc:HGNC:9992] 

RGS1
0 1 1 0 0 

ENSG000
00100600 legumain [Source:HGNC Symbol;Acc:HGNC:9472] LGMN 1 1 1 0 
ENSG000
00109572 

chloride voltage-gated channel 3 [Source:HGNC 
Symbol;Acc:HGNC:2021] 

CLCN
3 1 1 0 0 

ENSG000
00232541 

collagen type XI alpha 2 chain [Source:HGNC 
Symbol;Acc:HGNC:2187] 

COL1
1A2 1 0 0 0 

ENSG000
00118096 

intraflagellar transport 46 [Source:HGNC 
Symbol;Acc:HGNC:26146] IFT46 1 1 1 0 

ENSG000
00154358 

obscurin, cytoskeletal calmodulin and titin-interacting RhoGEF 
[Source:HGNC Symbol;Acc:HGNC:15719] 

OBSC
N 1 1 1 0 

ENSG000
00213901 

solute carrier family 23 member 3 [Source:HGNC 
Symbol;Acc:HGNC:20601] 

SLC23
A3 1 0 0 0 

ENSG000
00143190 

POU class 2 homeobox 1 [Source:HGNC 
Symbol;Acc:HGNC:9212] 

POU2
F1 1 1 0 0 

ENSG000
00125686 

mediator complex subunit 1 [Source:HGNC 
Symbol;Acc:HGNC:9234] MED1 1 0 0 0 

ENSG000
00070495 

jumonji domain containing 6, arginine demethylase and lysine 
hydroxylase [Source:HGNC Symbol;Acc:HGNC:19355] 

JMJD
6 1 1 1 1 

ENSG000
00213923 casein kinase 1 epsilon [Source:HGNC Symbol;Acc:HGNC:2453] 

CSNK
1E 1 1 0 0 

ENSG000
00062598 

engulfment and cell motility 2 [Source:HGNC 
Symbol;Acc:HGNC:17233] 

ELMO
2 1 1 1 0 

ENSG000
00136237 

Rap guanine nucleotide exchange factor 5 [Source:HGNC 
Symbol;Acc:HGNC:16862] 

RAPG
EF5 1 1 1 0 

ENSG000
00230230 

tripartite motif containing 26 [Source:HGNC 
Symbol;Acc:HGNC:12962] 

TRIM
26 1 1 0 0 
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ENSG000
00107959 

pitrilysin metallopeptidase 1 [Source:HGNC 
Symbol;Acc:HGNC:17663] 

PITR
M1 1 1 0 0 

ENSG000
00144554 

FA complementation group D2 [Source:HGNC 
Symbol;Acc:HGNC:3585] 

FANC
D2 1 1 0 0 

ENSG000
00124782 

ras responsive element binding protein 1 [Source:HGNC 
Symbol;Acc:HGNC:10449] 

RREB
1 1 1 1 0 

ENSG000
00175764 

tubulin tyrosine ligase like 11 [Source:HGNC 
Symbol;Acc:HGNC:18113] 

TTLL1
1 1 1 1 0 

ENSG000
00106852 LIM homeobox 6 [Source:HGNC Symbol;Acc:HGNC:21735] LHX6 1 1 1 0 
ENSG000
00234487 

major histocompatibility complex, class I, F [Source:HGNC 
Symbol;Acc:HGNC:4963] HLA-F 1 0 0 0 

ENSG000
00173889 

polyhomeotic homolog 3 [Source:HGNC 
Symbol;Acc:HGNC:15682] PHC3 1 1 1 0 

ENSG000
00156453 protocadherin 1 [Source:HGNC Symbol;Acc:HGNC:8655] 

PCDH
1 1 1 0 0 

ENSG000
00076928 

Rho guanine nucleotide exchange factor 1 [Source:HGNC 
Symbol;Acc:HGNC:681] 

ARHG
EF1 1 1 0 0 

ENSG000
00149311 

ATM serine/threonine kinase [Source:HGNC 
Symbol;Acc:HGNC:795] ATM 1 1 1 1 

ENSG000
00184058 T-box 1 [Source:HGNC Symbol;Acc:HGNC:11592] TBX1 1 1 0 0 
ENSG000
00204138 

phosphatase and actin regulator 4 [Source:HGNC 
Symbol;Acc:HGNC:25793] 

PHAC
TR4 1 1 1 0 

ENSG000
00166402 

tubby bipartite transcription factor [Source:HGNC 
Symbol;Acc:HGNC:12406] TUB 1 1 0 0 

ENSG000
00040341 

staufen double-stranded RNA binding protein 2 [Source:HGNC 
Symbol;Acc:HGNC:11371] 

STAU
2 1 0 0 0 

ENSG000
00123143 protein kinase N1 [Source:HGNC Symbol;Acc:HGNC:9405] PKN1 1 1 0 0 
ENSG000
00171262 

family with sequence similarity 98 member B [Source:HGNC 
Symbol;Acc:HGNC:26773] 

FAM9
8B 1 1 1 0 

ENSG000
00163630 synaptoporin [Source:HGNC Symbol;Acc:HGNC:16507] 

SYNP
R 1 0 0 0 

ENSG000
00064607 

SURP and G-patch domain containing 2 [Source:HGNC 
Symbol;Acc:HGNC:18641] 

SUGP
2 1 1 1 0 

ENSG000
00170365 

SMAD family member 1 [Source:HGNC 
Symbol;Acc:HGNC:6767] 

SMAD
1 1 1 0 0 

ENSG000
00078699 

CBFA2/RUNX1 translocation partner 2 [Source:HGNC 
Symbol;Acc:HGNC:1536] 

CBFA
2T2 1 1 1 0 

ENSG000
00084070 small ArfGAP2 [Source:HGNC Symbol;Acc:HGNC:25082] 

SMAP
2 1 1 1 0 

ENSG000
00112137 

phosphatase and actin regulator 1 [Source:HGNC 
Symbol;Acc:HGNC:20990] 

PHAC
TR1 1 0 0 0 

ENSG000
00070808 

calcium/calmodulin dependent protein kinase II alpha 
[Source:HGNC Symbol;Acc:HGNC:1460] 

CAMK
2A 1 1 0 0 

ENSG000
00015592 stathmin 4 [Source:HGNC Symbol;Acc:HGNC:16078] 

STMN
4 1 1 1 1 

ENSG000
00151612 

zinc finger protein 827 [Source:HGNC 
Symbol;Acc:HGNC:27193] 

ZNF82
7 1 1 0 0 

ENSG000
00109654 

tripartite motif containing 2 [Source:HGNC 
Symbol;Acc:HGNC:15974] 

TRIM
2 1 1 1 0 

ENSG000
00118762 

polycystin 2, transient receptor potential cation channel 
[Source:HGNC Symbol;Acc:HGNC:9009] PKD2 1 1 1 0 

ENSG000
00112294 

aldehyde dehydrogenase 5 family member A1 [Source:HGNC 
Symbol;Acc:HGNC:408] 

ALDH
5A1 1 1 0 0 
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ENSG000
00134873 claudin 10 [Source:HGNC Symbol;Acc:HGNC:2033] 

CLDN
10 1 0 0 0 

ENSG000
00120519 

solute carrier family 10 member 7 [Source:HGNC 
Symbol;Acc:HGNC:23088] 

SLC10
A7 1 0 0 0 

ENSG000
00173327 

mitogen-activated protein kinase kinase kinase 11 
[Source:HGNC Symbol;Acc:HGNC:6850] 

MAP3
K11 1 1 0 0 

ENSG000
00135336 

origin recognition complex subunit 3 [Source:HGNC 
Symbol;Acc:HGNC:8489] ORC3 1 0 0 0 

ENSG000
00171444 

MCC, WNT signaling pathway regulator [Source:HGNC 
Symbol;Acc:HGNC:6935] MCC 1 1 1 0 

ENSG000
00162929 KIAA1841 [Source:HGNC Symbol;Acc:HGNC:29387] 

KIAA1
841 1 1 0 0 

ENSG000
00012048 

BRCA1, DNA repair associated [Source:HGNC 
Symbol;Acc:HGNC:1100] 

BRCA
1 1 0 0 0 

ENSG000
00166333 integrin linked kinase [Source:HGNC Symbol;Acc:HGNC:6040] ILK 1 0 0 0 
ENSG000
00166340 tripeptidyl peptidase 1 [Source:HGNC Symbol;Acc:HGNC:2073] TPP1 1 0 0 0 
ENSG000
00102271 

kelch like family member 4 [Source:HGNC 
Symbol;Acc:HGNC:6355] KLHL4 1 1 1 0 

ENSG000
00166887 

VPS39, HOPS complex subunit [Source:HGNC 
Symbol;Acc:HGNC:20593] VPS39 1 1 1 0 

ENSG000
00067606 protein kinase C zeta [Source:HGNC Symbol;Acc:HGNC:9412] PRKCZ 1 1 0 0 
ENSG000
00168646 axin 2 [Source:HGNC Symbol;Acc:HGNC:904] AXIN2 1 0 0 0 
ENSG000
00276785 serine protease 58 [Source:HGNC Symbol;Acc:HGNC:39125] 

PRSS5
8 1 0 0 0 

ENSG000
00171234 

UDP glucuronosyltransferase family 2 member B7 
[Source:HGNC Symbol;Acc:HGNC:12554] 

UGT2
B7 1 0 0 0 

ENSG000
00198794 

secretory carrier membrane protein 5 [Source:HGNC 
Symbol;Acc:HGNC:30386] 

SCAM
P5 1 1 0 0 

ENSG000
00172977 

lysine acetyltransferase 5 [Source:HGNC 
Symbol;Acc:HGNC:5275] KAT5 1 0 0 0 

ENSG000
00106336 F-box protein 24 [Source:HGNC Symbol;Acc:HGNC:13595] 

FBXO
24 1 0 0 0 

ENSG000
00131730 

creatine kinase, mitochondrial 2 [Source:HGNC 
Symbol;Acc:HGNC:1996] 

CKMT
2 1 1 1 1 

ENSG000
00198848 carboxylesterase 1 [Source:HGNC Symbol;Acc:HGNC:1863] CES1 1 1 1 1 
ENSG000
00173581 

coiled-coil domain containing 106 [Source:HGNC 
Symbol;Acc:HGNC:30181] 

CCDC
106 1 1 0 0 

ENSG000
00040487 

PQ loop repeat containing 2 [Source:HGNC 
Symbol;Acc:HGNC:26001] 

PQLC
2 1 1 0 0 

ENSG000
00115970 

THADA, armadillo repeat containing [Source:HGNC 
Symbol;Acc:HGNC:19217] 

THAD
A 1 1 1 0 

ENSG000
00163995 

actin binding LIM protein family member 2 [Source:HGNC 
Symbol;Acc:HGNC:19195] 

ABLI
M2 1 1 1 0 

ENSG000
00197694 

spectrin alpha, non-erythrocytic 1 [Source:HGNC 
Symbol;Acc:HGNC:11273] 

SPTA
N1 1 1 1 0 

ENSG000
00051009 

family with sequence similarity 160 member A2 [Source:HGNC 
Symbol;Acc:HGNC:25378] 

FAM1
60A2 1 1 0 0 

ENSG000
00009694 

teneurin transmembrane protein 1 [Source:HGNC 
Symbol;Acc:HGNC:8117] 

TENM
1 1 0 0 0 

ENSG000
00103064 

solute carrier family 7 member 6 [Source:HGNC 
Symbol;Acc:HGNC:11064] 

SLC7A
6 1 0 0 0 
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ENSG000
00274287 

scribbled planar cell polarity protein [Source:HGNC 
Symbol;Acc:HGNC:30377] SCRIB 1 1 0 0 

ENSG000
00125046 

ssu-2 homolog (C. elegans) [Source:HGNC 
Symbol;Acc:HGNC:24809] 

SSUH
2 1 0 0 0 

ENSG000
00142875 

protein kinase cAMP-activated catalytic subunit beta 
[Source:HGNC Symbol;Acc:HGNC:9381] 

PRKA
CB 1 0 0 0 

ENSG000
00006282 

spermatogenesis associated 20 [Source:HGNC 
Symbol;Acc:HGNC:26125] 

SPAT
A20 1 1 0 0 

ENSG000
00188917 

tRNA methyltransferase 2 homolog B [Source:HGNC 
Symbol;Acc:HGNC:25748] 

TRMT
2B 1 0 0 0 

ENSG000
00134245 

Wnt family member 2B [Source:HGNC 
Symbol;Acc:HGNC:12781] 

WNT2
B 1 0 0 0 

ENSG000
00151164 

RAD9 checkpoint clamp component B [Source:HGNC 
Symbol;Acc:HGNC:21700] 

RAD9
B 1 0 0 0 

ENSG000
00000971 complement factor H [Source:HGNC Symbol;Acc:HGNC:4883] CFH 1 1 1 0 
ENSG000
00174373 

Ral GTPase activating protein catalytic alpha subunit 1 
[Source:HGNC Symbol;Acc:HGNC:17770] 

RALG
APA1 1 1 0 0 

ENSG000
00177398 uromodulin like 1 [Source:HGNC Symbol;Acc:HGNC:12560] 

UMO
DL1 1 1 0 0 

ENSG000
00101040 

zinc finger MYND-type containing 8 [Source:HGNC 
Symbol;Acc:HGNC:9397] 

ZMYN
D8 1 1 1 0 

ENSG000
00168488 ataxin 2 like [Source:HGNC Symbol;Acc:HGNC:31326] 

ATXN
2L 1 1 0 0 

ENSG000
00054654 

spectrin repeat containing nuclear envelope protein 2 
[Source:HGNC Symbol;Acc:HGNC:17084] SYNE2 1 1 1 0 

ENSG000
00069431 

ATP binding cassette subfamily C member 9 [Source:HGNC 
Symbol;Acc:HGNC:60] 

ABCC
9 1 1 1 1 

ENSG000
00154025 

solute carrier family 5 member 10 [Source:HGNC 
Symbol;Acc:HGNC:23155] 

SLC5A
10 1 1 0 0 

ENSG000
00125144 metallothionein 1G [Source:HGNC Symbol;Acc:HGNC:7399] MT1G 1 1 0 0 
ENSG000
00164465 

discoidin, CUB and LCCL domain containing 1 [Source:HGNC 
Symbol;Acc:HGNC:21479] 

DCBL
D1 1 1 1 0 

ENSG000
00011332 double PHD fingers 1 [Source:HGNC Symbol;Acc:HGNC:20225] DPF1 1 1 1 0 
ENSG000
00114487 

MORC family CW-type zinc finger 1 [Source:HGNC 
Symbol;Acc:HGNC:7198] 

MORC
1 1 0 0 0 

ENSG000
00157388 

calcium voltage-gated channel subunit alpha1 D [Source:HGNC 
Symbol;Acc:HGNC:1391] 

CACN
A1D 1 1 0 0 

ENSG000
00182944 

EWS RNA binding protein 1 [Source:HGNC 
Symbol;Acc:HGNC:3508] 

EWSR
1 1 0 0 0 

ENSG000
00163520 fibulin 2 [Source:HGNC Symbol;Acc:HGNC:3601] FBLN2 1 1 1 0 
ENSG000
00115947 

origin recognition complex subunit 4 [Source:HGNC 
Symbol;Acc:HGNC:8490] ORC4 1 1 0 0 

ENSG000
00077097 

DNA topoisomerase II beta [Source:HGNC 
Symbol;Acc:HGNC:11990] 

TOP2
B 1 1 1 1 

ENSG000
00070047 

PHD and ring finger domains 1 [Source:HGNC 
Symbol;Acc:HGNC:24351] 

PHRF
1 1 0 0 0 

ENSG000
00111271 

acyl-CoA dehydrogenase family member 10 [Source:HGNC 
Symbol;Acc:HGNC:21597] 

ACAD
10 1 0 0 0 

ENSG000
00074317 synuclein beta [Source:HGNC Symbol;Acc:HGNC:11140] SNCB 1 0 0 0 
ENSG000
00132824 serine incorporator 3 [Source:HGNC Symbol;Acc:HGNC:11699] 

SERIN
C3 1 1 0 0 
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ENSG000
00070915 

solute carrier family 12 member 3 [Source:HGNC 
Symbol;Acc:HGNC:10912] 

SLC12
A3 1 0 0 0 

ENSG000
00109956 

beta-1,3-glucuronyltransferase 1 [Source:HGNC 
Symbol;Acc:HGNC:921] 

B3GA
T1 1 1 1 1 

ENSG000
00150556 

LY6/PLAUR domain containing 6B [Source:HGNC 
Symbol;Acc:HGNC:27018] 

LYPD6
B 1 1 0 0 

ENSG000
00104537 annexin A13 [Source:HGNC Symbol;Acc:HGNC:536] 

ANXA
13 1 1 0 0 

ENSG000
00171723 gephyrin [Source:HGNC Symbol;Acc:HGNC:15465] GPHN 1 1 1 1 
ENSG000
00106462 

enhancer of zeste 2 polycomb repressive complex 2 subunit 
[Source:HGNC Symbol;Acc:HGNC:3527] EZH2 1 1 1 1 

ENSG000
00150676 

coiled-coil domain containing 83 [Source:HGNC 
Symbol;Acc:HGNC:28535] 

CCDC
83 1 0 0 0 

ENSG000
00164597 

component of oligomeric golgi complex 5 [Source:HGNC 
Symbol;Acc:HGNC:14857] COG5 1 0 0 0 

ENSG000
00065809 

family with sequence similarity 107 member B [Source:HGNC 
Symbol;Acc:HGNC:23726] 

FAM1
07B 1 0 0 0 

ENSG000
00120251 

glutamate ionotropic receptor AMPA type subunit 2 
[Source:HGNC Symbol;Acc:HGNC:4572] GRIA2 1 0 0 0 

ENSG000
00115919 kynureninase [Source:HGNC Symbol;Acc:HGNC:6469] KYNU 1 0 0 0 
ENSG000
00125991 ERGIC and golgi 3 [Source:HGNC Symbol;Acc:HGNC:15927] 

ERGIC
3 1 1 0 0 

ENSG000
00128487 

sperm antigen with calponin homology and coiled-coil domains 
1 [Source:HGNC Symbol;Acc:HGNC:30615] 

SPECC
1 1 0 0 0 

ENSG000
00172116 CD8b molecule [Source:HGNC Symbol;Acc:HGNC:1707] CD8B 1 1 0 0 
ENSG000
00146090 

RasGEF domain family member 1C [Source:HGNC 
Symbol;Acc:HGNC:27400] 

RASG
EF1C 1 1 1 0 

ENSG000
00152952 

procollagen-lysine,2-oxoglutarate 5-dioxygenase 2 
[Source:HGNC Symbol;Acc:HGNC:9082] 

PLOD
2 1 1 1 1 

ENSG000
00163017 

actin, gamma 2, smooth muscle, enteric [Source:HGNC 
Symbol;Acc:HGNC:145] 

ACTG
2 1 1 1 0 

ENSG000
00100714 

methylenetetrahydrofolate dehydrogenase, cyclohydrolase 
and formyltetrahydrofolate synthetase 1 [Source:HGNC 
Symbol;Acc:HGNC:7432] 

MTHF
D1 1 1 1 1 

ENSG000
00135597 

RALBP1 associated Eps domain containing 1 [Source:HGNC 
Symbol;Acc:HGNC:15578] REPS1 1 0 0 0 

ENSG000
00083312 transportin 1 [Source:HGNC Symbol;Acc:HGNC:6401] 

TNPO
1 1 1 0 0 

ENSG000
00132746 

aldehyde dehydrogenase 3 family member B2 [Source:HGNC 
Symbol;Acc:HGNC:411] 

ALDH
3B2 1 0 0 0 

ENSG000
00198963 

RAR related orphan receptor B [Source:HGNC 
Symbol;Acc:HGNC:10259] RORB 1 1 1 1 

ENSG000
00050628 

prostaglandin E receptor 3 [Source:HGNC 
Symbol;Acc:HGNC:9595] 

PTGE
R3 1 1 1 1 

ENSG000
00165752 

serine/threonine kinase 32C [Source:HGNC 
Symbol;Acc:HGNC:21332] 

STK32
C 1 1 0 0 

ENSG000
00134955 

solute carrier family 37 member 2 [Source:HGNC 
Symbol;Acc:HGNC:20644] 

SLC37
A2 1 1 0 0 

ENSG000
00107186 

multiple PDZ domain crumbs cell polarity complex component 
[Source:HGNC Symbol;Acc:HGNC:7208] MPDZ 1 1 0 0 

ENSG000
00138617 

poly(ADP-ribose) polymerase family member 16 [Source:HGNC 
Symbol;Acc:HGNC:26040] 

PARP
16 1 0 0 0 

ENSG000
00097007 

ABL proto-oncogene 1, non-receptor tyrosine kinase 
[Source:HGNC Symbol;Acc:HGNC:76] ABL1 1 1 1 1 
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ENSG000
00070601 

FERM and PDZ domain containing 1 [Source:HGNC 
Symbol;Acc:HGNC:29159] 

FRMP
D1 1 1 1 0 

ENSG000
00155066 prominin 2 [Source:HGNC Symbol;Acc:HGNC:20685] 

PROM
2 1 1 0 0 

ENSG000
00084774 

carbamoyl-phosphate synthetase 2, aspartate 
transcarbamylase, and dihydroorotase [Source:HGNC 
Symbol;Acc:HGNC:1424] CAD 1 1 0 0 

ENSG000
00196268 

zinc finger protein 493 [Source:HGNC 
Symbol;Acc:HGNC:23708] 

ZNF49
3 1 1 1 0 

ENSG000
00156858 proline rich 14 [Source:HGNC Symbol;Acc:HGNC:28458] 

PRR1
4 1 1 0 0 

ENSG000
00178233 

transmembrane protein 151B [Source:HGNC 
Symbol;Acc:HGNC:21315] 

TME
M151
B 1 0 0 0 

ENSG000
00080224 EPH receptor A6 [Source:HGNC Symbol;Acc:HGNC:19296] 

EPHA
6 1 0 0 0 

ENSG000
00103067 

epithelial splicing regulatory protein 2 [Source:HGNC 
Symbol;Acc:HGNC:26152] ESRP2 1 1 0 0 

ENSG000
00178996 sorting nexin 18 [Source:HGNC Symbol;Acc:HGNC:19245] 

SNX1
8 1 1 1 0 

ENSG000
00166840 

glycine-N-acyltransferase like 1 [Source:HGNC 
Symbol;Acc:HGNC:30519] 

GLYAT
L1 1 1 0 0 

ENSG000
00136854 

syntaxin binding protein 1 [Source:HGNC 
Symbol;Acc:HGNC:11444] 

STXBP
1 1 1 1 0 

ENSG000
00198546 

zinc finger protein 511 [Source:HGNC 
Symbol;Acc:HGNC:28445] 

ZNF51
1 1 1 0 0 

ENSG000
00163606 CD200 receptor 1 [Source:HGNC Symbol;Acc:HGNC:24235] 

CD20
0R1 1 1 1 0 

ENSG000
00003400 caspase 10 [Source:HGNC Symbol;Acc:HGNC:1500] 

CASP1
0 1 1 1 1 

ENSG000
00164867 nitric oxide synthase 3 [Source:HGNC Symbol;Acc:HGNC:7876] NOS3 1 1 1 1 
ENSG000
00197181 

piwi like RNA-mediated gene silencing 2 [Source:HGNC 
Symbol;Acc:HGNC:17644] 

PIWIL
2 1 1 1 0 

ENSG000
00138378 

signal transducer and activator of transcription 4 [Source:HGNC 
Symbol;Acc:HGNC:11365] STAT4 1 0 0 0 

ENSG000
00126878 

allograft inflammatory factor 1 like [Source:HGNC 
Symbol;Acc:HGNC:28904] AIF1L 1 1 1 0 

ENSG000
00197150 

ATP binding cassette subfamily B member 8 [Source:HGNC 
Symbol;Acc:HGNC:49] 

ABCB
8 1 1 0 0 

ENSG000
00075391 

RAS protein activator like 2 [Source:HGNC 
Symbol;Acc:HGNC:9874] 

RASAL
2 1 1 1 0 

ENSG000
00133135 

ring finger protein 128, E3 ubiquitin protein ligase 
[Source:HGNC Symbol;Acc:HGNC:21153] 

RNF1
28 1 1 1 0 

ENSG000
00067066 SP100 nuclear antigen [Source:HGNC Symbol;Acc:HGNC:11206] SP100 1 0 0 0 
ENSG000
00136960 

ectonucleotide pyrophosphatase/phosphodiesterase 2 
[Source:HGNC Symbol;Acc:HGNC:3357] 

ENPP
2 1 1 1 0 

ENSG000
00172403 synaptopodin 2 [Source:HGNC Symbol;Acc:HGNC:17732] 

SYNP
O2 1 1 1 0 

ENSG000
00135637 

coiled-coil domain containing 142 [Source:HGNC 
Symbol;Acc:HGNC:25889] 

CCDC
142 1 1 0 0 

ENSG000
00073060 

scavenger receptor class B member 1 [Source:HGNC 
Symbol;Acc:HGNC:1664] 

SCAR
B1 1 1 0 0 

ENSG000
00183060 

LysM domain containing 4 [Source:HGNC 
Symbol;Acc:HGNC:26571] 

LYSM
D4 1 1 0 0 
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ENSG000
00137713 

protein phosphatase 2 scaffold subunit Abeta [Source:HGNC 
Symbol;Acc:HGNC:9303] 

PPP2R
1B 1 1 1 0 

ENSG000
00139910 

NOVA alternative splicing regulator 1 [Source:HGNC 
Symbol;Acc:HGNC:7886] 

NOVA
1 1 1 1 0 

ENSG000
00160752 

farnesyl diphosphate synthase [Source:HGNC 
Symbol;Acc:HGNC:3631] FDPS 1 1 0 0 

ENSG000
00071991 cadherin 19 [Source:HGNC Symbol;Acc:HGNC:1758] 

CDH1
9 1 0 0 0 

ENSG000
00173210 

actin binding LIM protein family member 3 [Source:HGNC 
Symbol;Acc:HGNC:29132] 

ABLI
M3 1 1 1 0 

ENSG000
00078674 

pericentriolar material 1 [Source:HGNC 
Symbol;Acc:HGNC:8727] PCM1 1 1 1 0 

ENSG000
00205111 

cyclin dependent kinase like 4 [Source:HGNC 
Symbol;Acc:HGNC:19287] CDKL4 1 0 0 0 

ENSG000
00005007 

UPF1, RNA helicase and ATPase [Source:HGNC 
Symbol;Acc:HGNC:9962] UPF1 1 1 0 0 

ENSG000
00166734 cancer susceptibility 4 [Source:HGNC Symbol;Acc:HGNC:24892] 

CASC
4 1 1 1 0 

ENSG000
00164506 

syntaxin binding protein 5 [Source:HGNC 
Symbol;Acc:HGNC:19665] 

STXBP
5 1 0 0 0 

ENSG000
00163629 

protein tyrosine phosphatase, non-receptor type 13 
[Source:HGNC Symbol;Acc:HGNC:9646] 

PTPN
13 1 1 1 0 

ENSG000
00166130 

IKBKB interacting protein [Source:HGNC 
Symbol;Acc:HGNC:26430] IKBIP 1 0 0 0 

ENSG000
00152430 

boule homolog, RNA binding protein [Source:HGNC 
Symbol;Acc:HGNC:14273] BOLL 1 1 0 0 

ENSG000
00061676 

NCK associated protein 1 [Source:HGNC 
Symbol;Acc:HGNC:7666] 

NCKA
P1 1 1 0 0 

ENSG000
00183780 

solute carrier family 35 member F3 [Source:HGNC 
Symbol;Acc:HGNC:23616] 

SLC35
F3 1 1 0 0 

ENSG000
00187848 

purinergic receptor P2X 2 [Source:HGNC 
Symbol;Acc:HGNC:15459] P2RX2 1 0 0 0 

ENSG000
00118733 olfactomedin 3 [Source:HGNC Symbol;Acc:HGNC:17990] 

OLFM
3 1 0 0 0 

ENSG000
00138182 

kinesin family member 20B [Source:HGNC 
Symbol;Acc:HGNC:7212] 

KIF20
B 1 1 1 0 

ENSG000
00164675 

IQ motif and ubiquitin domain containing [Source:HGNC 
Symbol;Acc:HGNC:21995] IQUB 1 0 0 0 

ENSG000
00124181 

phospholipase C gamma 1 [Source:HGNC 
Symbol;Acc:HGNC:9065] PLCG1 1 1 1 0 

ENSG000
00204120 

GRB10 interacting GYF protein 2 [Source:HGNC 
Symbol;Acc:HGNC:11960] 

GIGYF
2 1 1 1 0 

ENSG000
00188452 ceramide kinase like [Source:HGNC Symbol;Acc:HGNC:21699] CERKL 1 1 0 0 
ENSG000
00120802 thymopoietin [Source:HGNC Symbol;Acc:HGNC:11875] TMPO 1 1 1 0 
ENSG000
00075711 

discs large MAGUK scaffold protein 1 [Source:HGNC 
Symbol;Acc:HGNC:2900] DLG1 1 1 1 0 

ENSG000
00110075 

protein phosphatase 6 regulatory subunit 3 [Source:HGNC 
Symbol;Acc:HGNC:1173] 

PPP6R
3 1 0 0 0 

ENSG000
00196188 cathepsin E [Source:HGNC Symbol;Acc:HGNC:2530] CTSE 1 0 0 0 
ENSG000
00122966 

citron rho-interacting serine/threonine kinase [Source:HGNC 
Symbol;Acc:HGNC:1985] CIT 1 1 0 0 

ENSG000
00175182 

family with sequence similarity 131 member A [Source:HGNC 
Symbol;Acc:HGNC:28308] 

FAM1
31A 1 1 0 0 
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ENSG000
00133612 

ArfGAP with GTPase domain, ankyrin repeat and PH domain 3 
[Source:HGNC Symbol;Acc:HGNC:16923] 

AGAP
3 1 1 0 0 

 
 

 
Supplementary Figure S1. Entity Relationship Diagram (ERD): Description of how data 
sources were merged in this investigation and the identical keys used to integrate them. There 
were 4 initial data sources each with its own form of unique ID we were able to use some 
accessory tables to create essentially one centrally used ID for each variant, the Ensembl 
Transcript ID and one centrally used ID for each sample, the TCGA barcode unique identifier.  
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