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Abstract 
A biocompatible, photoresist derived, thin carbon substrate has been recently developed which 

promotes nerve proliferation and differentiation. A method which alters the substrate’s physical and 

electrochemical properties by doping photoresist with magnetite nanoparticles has been developed to 

enhance the existing substrate’s ability to foster cell growth. Rat pheochromocytoma cells were used for 

culture to test substrate-cell interactions. Varying the nanoparticle concentration on the surface 

produced increased surface roughness, electrical conductivity, cell concentration and average neurite 

length. 
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1 Introduction 
Brain and spinal cord injuries have some of the most fatal consequences to humans. They are directly 

related to the nervous system which has been previously shown to have limited abilities to heal and 

regenerate, even though the causes and mechanisms are poorly understood. However, 

neuroregenerative medicine, despite the many technical and practical challenges, is of particular 

importance in treatment strategies of such disorders that would prove beneficiary to patients. Nerve 

cells, being the main unit of the nervous system, require a detailed study of the cellular genetic and 

signaling pathway to be able to find the techniques to cure most neural diseases. 

However, cells are not directly accessible in vivo and therefore their properties cannot be measured by 

methods that require direct contact between probe and cell. A fairly recent technology called 

microelectromechanical systems (MEMS) has been used to design a substratum available to cellular 

adhesion, growth and development, giving the researchers the opportunity to artificially, in-vitro, create 

the specific microenvironment found within the body. MEMS have been especially developed in the last 

twenty years, serving initially different purposes such as in the fields of microfluidics, aerospace, 

wireless communications, data storage, optics, etc. More recently they have attracted biomedical and 

chemical scientific interest in the production of biosensors such as DNA detection1, blood glucose levels 

determination2, narcotic abuse testing applications3, etc. 

More specifically, our MEMS fabrication technique utilizes silicon wafers coated with a photoresistive 

material doped with nanoparticles. The technique replicates the photolithographic procedure followed 

by pyrolysis to create a carbon layer compatible for neuronal growth. The material can also be easily 

patterned depending on the experiment’s goals. This fabrication procedure is advantageous in the 

substrates capacity to be easily modified in terms of mechanical properties such as roughness, hardness, 

electrical conductivity, surface energy etc. simply by altering the type of nanoparticles and their 

concentration. Furthermore, being cost efficient, the material would also be commercially attractive. 

This project refines the broad application of MEMS with the nervous system to improve the material’s 

physical properties in a way that is most advantageous to cell growth and differentiation. Our material 

was tested for surface energy, roughness, and electrical conductivity. Magnetite was used as the base 

nanoparticle. Three different nanoparticle concentrations were tested for the properties just mentioned 

as well as in cellular assays. PC-12 cells, which were used for our experiments, represent a cell line that 

comes from the rat’s adrenal gland. The most optimal substrate that promotes cell proliferation and 

differentiation was therefore determined.  

  

                                                             
1
 (Schreier, 2005) 

2 (Xian Huang, 2009) 
3 (Pohanka, Jun, & Kuca, 2007) 
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2 Background 

2.1 The Nervous System 
The nervous system is one of the four body systems, that controls all metabolic processes by chemically 

and electrically transmitting signals, impulses from the brain to the different organs of the body. It is 

divided into the Central Nervous System (CNS) and the Peripheral Nervous System (PNS). The CNS 

consists of the brain and the spinal cord, while the PNS includes all the nerve extensions ending in all 

organs forming a web that spreads throughout the entire organism.  

2.1.1 The Central Nervous System 

The brain is the most complex organ in the human body. Although it works as a unified whole, 

neuroscientists have identified three interconnected layers that perform specific functions: the central 

core, the limbic system, and the cerebral cortex, which regulate the everyday life activities. 

The central core consists of five main regions that regulate processes such as breathing, pulse, arousal, 

movement, balance, sleep, and the early stage of processing sensory information. These regions include 

the thalamus, the pons, the cerebellum, the reticular formation, and the medulla. The thalamus 

interprets sensory information such as touch, hearing, vision etc, and then forwards the information to 

the appropriate region in the cerebral cortex where the information processing continues. The pons 

triggers dreaming and waking from sleep. The cerebellum coordinates the body movement, posture, 

and equilibrium. The reticular formation sends signals to the cerebral cortex to remain alert even during 

sleep. The medulla is the center for breathing, waking, sleeping, and heart beating.4 

The limbic system consists of three regions that mediate behaviors, emotional states, and memory 

processes. Furthermore, it regulates the body temperature, blood pressure, blood sugar levels etc. 

These three regions are the hippocampus which is important in emotions, learning, and memory, the 

amygdala which plays a role in aggression, eating, drinking, and sexual behaviors, and last the 

hypothalamus which monitors glucose blood levels, salt, blood pressure, and hormones.4 

The cerebral cortex directs the brain’s higher cognitive and emotional functions. It is divided into two 

symmetrical hemispheres containing each four lobes, the frontal, occipital, parietal, and temporal lobes. 

These areas oversee all conscious experiences including perception, emotion, thought, and planning, as 

well as many unconscious cognitive and emotional processes.4 

All these brain functions have been studied and determined through electroencephalography (EEG) 

which records the electrical activity based on which part of the brain fires signals. Although so much is 

known, groundbreaking research is being done to fully understand the effects of sleep in the organism, 

the causes of memory-impairing conditions such as Alzheimer’s, the understanding of the processing of 

visual information and how it is transferred to different lobes  in an effort to cure dyslexia etc. 

The spinal cord consists of nervous tissue whose function consists only in the transmission of neural 

signals between the brain and the rest of the body. Another small but very important task of the spinal 

                                                             
4 (Foundation, 2001) 
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cord is that of the neural circuits that control reflexes and central pattern generators.5 The inner region 

consists of grey matter which includes neural cell bodies, glia, and capillaries. In living tissue this color is 

grey-pinkish because of the capillary blood vessels and of the cell bodies. The peripheral region is 

surrounded by white matter composed of bundles of nerve cell extensions that connect the grey matter 

to the PNS as well as to the cell bodies in the grey matter itself by transmitting nerve impulses. 

2.1.2 The Peripheral Nervous System 

The PNS consists of two types of cells, the sensory (afferent) nerves that carry information from the 

organs or external stimuli to the CNS, and the motor (efferent) nerves that transmit messages from the 

CNS to the organs and limbs. The motor nervous system in itself is divided into the somatic and the 

autonomic nervous system. The somatic nervous system enables voluntary movement of skeletal 

muscles all over the body. It also reports their current state or position in order for us to know our 

capabilities at any given time. Reflexes are an exception. The internal organs are controlled by the 

autonomic nervous system. Some parts of this system can be consciously overridden such as conscious 

quick breathing; however, most parts cannot be controlled. It sends information to three types of 

tissues, the cardiac muscle found in the walls of the heart, the smooth muscle found in the blood 

vessels, bladder, uterus, gastrointestinal tract, respiratory tract, ciliary muscle and iris in the eye, and 

arrector pili of skin, or glandular tissue which synthesizes hormones. The autonomic nervous system is 

made of the sympathetic and the parasympathetic nervous systems. The sympathetic nervous system 

arouses internal organs when the body faces challenging external stimuli. In such a case it dilates the 

pupils, accelerates heartbeat, inhibits digestion, stimulates glucose release from the liver, stimulates the 

adrenal glands to release adrenaline and noradrenaline, and finally it relaxes the bladder. The 

parasympathetic nervous system generates the opposite effect. This happens in the situation where 

there are no external challenges, which we most frequently encounter. In such a case it contracts the 

pupils, decreases the heartbeat, stimulates digestion and the gallbladder, and contracts the bladder. 

Both systems work together to maintain homeostasis. 

2.1.3 The Neuron 

The smallest microscopic unit of the nervous system is the neuron. A neuron is a cell specialized in 

transmitting impulses, electrical and/or chemical, from the brain and spinal cord to the rest of the body 

and vice-versa. The neuron’s structure consists of the dendrites, the cell body (soma), the axon and the 

axon terminal. The dendrites receive the signal and convert it to electrical by creating a potential 

difference between the inside and the outside. Such a potential difference is generated by the different 

ionic charges and concentrations of K+, Na+, and Cl-. One neuron can have up to 2000 dendrites, allowing 

it to better receive and transmit information.6 The soma represents the main body of the cell with all the 

different organelles including the nucleus. It collects the stimulus coming from the dendrites as shown in 

Figure 1, and then it fires through the axon, the longest extension of the cell wall. In the axon terminal 

there are the synaptic end bulbs where the electrical signal causes the neurotransmitters, small vesicles 

found in the tip of the axon, to release a chemical called acetylcholine into the synaptic gap between the 

neuron and the other tissue which usually ends in another neuron or less frequently a muscle.  

                                                             
5 (Jean Hopkins, 2003) 
6 (Boston, 2007) 
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Figure 1: Structure of the neuron
7
 

Structurally, based on the number of dendrites extending from the cell body, neurons can be divided 

into unipolar, bipolar, and multipolar. A unipolar neuron contains one axon and no dendrites; a bipolar 

neuron contains one axon and one dendrite, and a multipolar that has one axon and multiple dendrites. 

For obvious reasons the majority of neurons in the CNS are multipolar. 

Based on their function neurons can be divided into three main groups, afferent, efferent and 

interneurons. The afferent neurons form the sensory nervous system, i.e. they carry information from 

the limb receptors and organs to the CNS. Structurally they differ in the fact that the dendrites are long 

and the axon is short contrary to efferent neurons. However, the signal flow is always from the dendrite 

to the cell body to the axon and finally to the axon terminal. These neurons form synapses with other 

afferent neurons as well as with interneurons, which are found in the CNS, and more specifically in the 

spinal cord. Interneurons serve as connectors between the afferent and the efferent neurons. In shape 

they are very similar to efferent but they differ in cell size. Interneurons are very small, with a much 

shorter axon, although relatively longer than the dendrites. In function they use a different kind of 

neurotransmitter which releases glycine or glutamate, as opposed to acetylcholine. Interneurons are 

always found in the CNS. Efferent neurons also known as motor or effector neurons transmit the signal 

from the CNS to the organs. Their soma is found in the CNS while their axons project into most organs. 

Efferent neurons form synapses only with muscles. 

2.1.4 Nerve Regeneration Dichotomy 

For several decades it was believed that neurogenesis, the regeneration of neurons, is impossible and 

that we are born with a finite amount of grey matter in our body. However, deeper studies have been 

performed over the years and such a statement has proved to not be completely correct. It is true that 

these neurons cannot perform mitosis, i.e. cell division; however, there is a layer of stem cells in the 

                                                             
7 (Nerve Regeneration) 
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hippocampus which produces a steady stream of neurons which with the help of the cerebrospinal fluid 

can migrate outwards to the cerebral cortex. This fact was initially noticed in adult monkeys in 19998,9, 

and later in 2003 in humans10. This is considered as the first scientific proof of the ability of the CNS to 

regenerate. On the other hand, because of their long structure axons are the most easily damaged part 

of the neuron. To date there is no convincing scientific explanation for the inability of the CNS axons to 

re-innervate although several tests have been performed. The neurons that form the PNS, on the other 

hand, allow regeneration because of a structural difference compared to the CNS neurons. These axons 

on top of the myelin sheath contain Schwann cells, which are rich in extracellular matrix constituents 

such as laminin, collagen, fibronectin, entactin, and heparin sulphate. 11 Later evidence showed that 

Schwann cells deprived of axonal contact produce nerve growth factor (NGF), a protein with neuro-

regenerative capabilities, encouraging therefore peripheral nerve regeneration. 12  An interesting 

experiment was performed by several groups of researchers over the course of the years, starting from 

1911, during which severed CNS neurons were placed in an environment in which PNS axons are able to 

regenerate. More specifically, segments of peripheral nerve were grafted into the CNS, and it was 

demonstrated that CNS axons are capable of extending considerable distances within the environment 

of a peripheral nerve, although when re-directed back into the CNS further axon elongation is arrested.13 

These experiments have given substantial evidence that, when provided with an appropriate 

environment, central axons will regenerate over significant distances and are able to form synaptic 

contact with target cells.13 

2.2 PC-12 Cell Culture 
For this project one type of cell was used, PC-12 cells, which consititute a cell line as opposed to what 

we are used of thinking as regular CNS or PNS primary neurons. A cell line differs from a cell strain in the 

fact that these cells have escaped the Hayflick limit, the point at which the cell is not any more capable 

of dividing due to the shortening of telomeres inside the cell at each division step. The cell line is usually 

an abnormal, mutated cell strain that is immortalized, i.e. that can divide infinitely as long as the 

appropriate growth media is supplied. On the other hand a primary neuron is the first in the motor 

pathway is then followed by secondary and tertiary neurons consecutively.  

PC-12 cells were first discovered in the mid-1970s by Greene and Tischler.14 They are a cell line 

established from rat adrenal pheochromocytoma. PC-12 cells have been shown to respond effectively to 

Nerve Growth Factor (NGF) by ceasing their proliferation process and by causing neuronal 

differentiation through the long extensions of the membrane. Clonal cell lines which express neuronal 

properties are useful models for studying the nervous system at the molecular level.14 After their 

discovery, several tests were performed on this particular molecule. However, the major focus has been 

on understanding the signaling pathway during PC-12 differentiation. Understanding such a process is 

                                                             
8 (Howard, 1999) 
9 (Olle Lindvall, 2003) 
10 (Ming Zhao, 2003) 
11 (Bunge, 1983) 
12

 (Johnson, 1988) 
13 (R.J.M. Franklin, 1990) 
14 (Lloyd A. Greene, 1976) 
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advantageous since the induction of a certain element of the pathway can promote different outcomes 

such as neuritogenesis, gene induction, and proliferation.15 In the long run, such a process would allow 

flexibility in experimenting with human nerve cells, by adopting the same pathway. 

2.3 Substrate Fabrication 
The choice of our substrate was based on several factors. Many different materials have been 

considered for use in tissue engineering in the past decade, including carbon, glasses, polymers, and 

composite materials. For our study, we required a substrate that can be made in-house, can be made 

repeatedly, be biocompatible, and have tunable electromechanical properties. 

The use of carbon nanotubes as substrates for neuronal cell growth has been experimented with in the 

past decade, with focus put on the fabrication of the nanotubes and the various modifications that could 

be made to them. Once such study tested chemically functional nanotubes, investigating the cell 

morphology between different groups, as different groups will confer different properties to the surface 

of the carbon. The University of California team was able to manipulate the charge carried by the 

functional groups and could crudely control the outgrowth and branching pattern of the neurons that 

were cultured.16 A patent was filled in 2003 for ways to test the nanostructures as promoters of 

neuronal cell growth, with hope to lead to bimolecular implants for nerve regeneration.17 

While other materials can be used, we believe that carbon-based substrates have the most potential 

when it comes to modification, with parameters of hardness, roughness, thickness, surface energy, and 

electrical resistivity that can be modified and tuned with the fabrication process. Polymers, such as 

polyethylene-glycol (PEG) and polymethylmethacrylate (PMMA), while being easy to work with 

(translucent, injection moldable, cheap), have little ability to be modified with anything but different 

coatings. Polyurethanes, such as the non-toxic, biodegradable LDI-based urethanes studied by a 

University of Pittsburg group, have proven biocompatibility, but may only be able to find a niche in 

terms of tissue engineering, as thought the urethane is stable and can be sterilized, the properties are 

fairly fixed in terms of hardness, with little electrical potential as a it is a fairly good insulator.18  

The complexity of other material fabrication, such as zeolytes, the already-proven potential for carbon, 

and the many tunable parameters of a thin carbon film make a carbon surface the main focus of our 

research. 

2.4 Epoxies and Photolithography 
In order to fabricate a thin film, there needs to be the source of the carbon. While many options exist, 

an epoxy precursor was chosen as it is already used in the field of micro-electromechanical systems 

(MEMS) and can undergo pyrolysis, burning is an inert environment, to reduce the epoxy down to a 

99.5% pure carbon surface. 

                                                             
15 (D. Vaudry, 2002) 
16

 (Hui Hu, 2004) 
17 (Mattson, Dec 30, 2003) 
18 (Jian Ying Zhanga, June 2000) 
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Epoxies have a wide range of applications; the uses of epoxy monomers are seen in composite 

materials. In the realm of structural composites, epoxy monomers are used as a base for thermoset 

resin systems that are coupled with a structural fiber. In the case of aerospace, this technical fiber is 

commonly carbon fiber. The high cost of the coating, layup, and curing process, as well as the difficulty 

in automating the process has driven a search for alternative methods of creating epoxy-matrix 

composites. One method found of polymerizing an epoxy-fiber matrix is through cationic 

polymerization, achieved by bombarding the epoxy with a beam of electrons; locally, this will cure the 

sample at room temperature, as opposed to at elevated temperature and pressure over time. This 

alternative method requires, however, oxygen and water free environments, and, at the time of study, a 

large amount of energy to successfully polymerize the epoxy.19 

In the realm of epoxies, a subset exists under the name of “photoresitive epoxy”. These epoxies are UV 

active, and can be “etched” on a micron scale.  The epoxy is coated, via spin coating, onto a wafer 

substrate. These wafers can be made of silicon, glass, quartz, crystalline Ge, SiC, GaAs, GaP or InP. Once 

the photoresist is coated on the wafer, a small part or complex set of parts can be fabricated through 

various methods; the most common are UV photolithography, iso/aniso-tropic wet etching and dry 

etching. Wet etching typically uses either a strong alkaline base such as TMAH or KOH (anisotropic), or 

acids such as HF or H2SO4 (isotropic), whereas dry etching uses a gaseous substance to remove the 

epoxy through a chemical reaction. 20 

Epoxy-based MEMS have been used extensively in research with human cells. One example is, in 2008, a 

study was undertaken to test the elasticity of human oocytes. By fabricating two very thin epoxy beams, 

the cell could be fit between two orthogonal beams and pressed, with imaging equipment used to 

determine the displacement, and therefore the elasticity. The small epoxy parts were etched from a 

silicon wafer spin-coated with SU-8.21 Please consult section 2.5.1 for further C-MEMS applications. 

2.4.1 Pyrolysis 

Pyrolysis is a procedure of heating a sample to high temperatures in an inert environment. This process 

is used in many facets of organic materials workmanship, be it forming syngas from biomass fuels to the 

production of carbon fiber filaments. By heating a precursor material in such an environment, the 

substance does not react, therefore off-gassing hydrocarbons (typically methane, CH4) and leaving a 

carbon residue behind; this process is also known as carbonization. Epoxies, as detailed before, are a 

hydrocarbon that, when pyrolyzed, will leave a thin carbon residue. 

Pyrolysis of patterned photoresist was first undertaken in the semiconductor industry to create carbon 

microstructures as well as thin carbon films. A group at AT&T Laboratories in New Jersey was looking for 

an alternative way to fabricate microstructures; the common method was etching, which was time 

consuming and chemically hazardous. By patterning the photoreactive epoxy HPR-206 with UV and then 

pyrolyzing, the team found that “the preparation of patterned films from pyrolyzed photoresist 

eliminates several processing steps and demonstrates the potential of direct lithography of carbon for 

                                                             
19

 (James V. Crivello, 1997) 
20 (Chollet, 2009) 
21 (Bruno Wacogne, 2008) 
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integrated circuit manufacture”; with this alternative becoming not only suitable but favored, much 

attention was then focused on the production of microstructures derived from this procedure.22,23 

The ability to modify the properties of the microstructures through the pyrolysis procedure (maximum 

temperature, ramp temperature, etc) is a function of the crosslinking that is occurring in the epoxy. A 

polymer, epoxies will undergo a crosslinking reaction, with C-O bonds (found in the C-O-H form) turning 

into C=O bonds (in the form of C-O-C). This can be seen through X-ray photoelectron spectroscopy (XPS); 

there is a clear shift between C-O and C=O bonds with an increase in pyrolysis temperature. This 

crosslinking greatly increases the hardness and rigidity of the epoxy structure, as well as off-gasses 

hydrogen and carbon that are freed due to the increase in energy (C-C, O-H bonds break, typically off-

gassing H2 and CH4). This also lowers the ratio of oxygen to carbon in the film, creating a surface of 

increased carbon purity. 

The breaking of the C-C bonds is seen through the physical loss of thickness; the photoresist layer is far 

too amorphous to be utilized as a stable platform and the off-gassing of the oxygen and hydrogen leads 

to a thinner film. The pyrolysis procedure balances the need for a low oxygen-to-carbon ratio (the less 

oxygen, the purer the carbon surface) as well as suitable thickness.  The purity of the carbon has been 

correlated directly to the temperature of which the pyrolysis peaks. The upper limit of this, however, is 

seen with a diminishing return on the ratio of oxygen to carbon. The ratio of oxygen-to-carbon at 1000oC 

is found to be about 0.05, with little improvement thereafter. Coupled with the operating limitations of 

the quartz tube, furnace, and sled materials that hold the material, 1000oC is set as the peak 

temperature for the procedure. 24 

The other variable in the pyrolysis procedure is the gas used for rendering the environment inert. The 

procedure can be done with forming gas (a mixture of hydrogen and nitrogen, used in metallurgical heat 

treating processes), pure nitrogen, or under a vacuum. Trials run with forming gas found a surface 

reaction occurs between the hydrogen and carbon surface at temperatures above 800oC, which rules it 

out as a prospective material. A vacuum, while producing the purest of carbon surfaces, is by far the 

most delicate and exotic in terms of set up and use, as the amount of off-gassing that will occur is 

unknown.  Nitrogen is the only reasonable material, and is readily available at a low cost. 

It has been determined that, before the pyrolysis procedure, the surface in nearly uniform in terms of 

thickness and density. This uniformity decreases with the amount f photoresist applied; due to the 

interlaminar friction force of photoresist layers is lower than that between the bare silicon surface and 

the photoresist. However, the amount f photoresist needed to produce significant topographical 

changes is much more than will be used for these films. 

2.5 C-MEMS 
Carbon-based microelectromechanical systems (C-MEMS) are devices created in the same fashion as 

integrated circuitry. By repeating the sequences of fabrication (photolithography, etching, deposition), 
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silicon-based structure can be created on a very small scale. These systems typically have moving parts, 

as well as being electrically active, and have promise in a biological application. These C-MEMS can be 

easily replicated with features ranging from millimeters to micrometers, with photolithography able to 

produce features less than 100 nm in size; these techniques have produced MEMS devices and 

components such as valves, membranes, sensors, rotors, cantilevers and pumps. In order to make these 

systems biocompatible, they must be aseptically fabricated and hermetically sealed, as well as be made 

of biocompatible materials. The hope is to use the manufacturability and reproducibility from the 

microelectronics industry to replace other types of implantable systems, as well as to break new ground 

for implants to be used in: retinal correction, neural stimulation and microneedles all exploit the unique 

property set of MEMS (optical, electrical and magnetic sensitivity, small scale, quick functioning time) in 

a biological use. At current, they can be separated into the categories of implantable devices, inject able 

devices, or actuation systems. 

2.5.1 C-MEMS Systems and Applications 

One main implantable solution that requires biocompatible C-MEMS is that of a drug delivery system 

(DDS). Current polymer-based solutions are used, but are hindered by their lack of direct controllability; 

common DDSs are made of a polymer engineered to degrade at a certain rate under certain conditions 

(the characteristics of the site of interest) to release a certain, predefined dosage of a drug. MEMS, 

generally smaller, can be manufactured to respond to various stimuli, is it change in pH, temperature, 

concentrations of various solutes, or electromagnetic radiation. This, in conjunction with external digital 

controls and the quick response time of the MEMS system, makes and ideal platform for the distribution 

of potent drugs, be it hormones, growth factors, or other medicines that may harm the body if not 

targeted precisely enough. These C-MEMS can be fabricated to simply act as a reservoir for 

microparticles. This device can be used to diffuse the particles at a pre-determined rate (have a slow-

dissolving cap made of glucose or starch, or a gold membrane which can be electrochemically dissolved 

when an anodic voltage is put across it), to a more complex device that can hold various dosages of 

different drugs which will release the correct amount based on its physiological surroundings or 

remotely via electrical control. MEMS, due to their potential complexity and controllability, are an 

attractive solution, despite their relative infancy in development.25,26 

Injectable MEMS are researched to understand the feasibility of delivering other devices. One such 

system that has been developed is a C-MEMS carrier module that can deliver other C-MEM devices to 

the brain or places of tissue damage for electrical stimulation for tissue conditioning and regeneration, 

with the C-MEMS packaging using RFID tagging to be traced, identified and even controlled. 

Actuating C-MEMS devices are devices in which the MEMS device actively engages in a biological task 

for a long period of time. One example is a pacemaker; while nearly 40 years old, the pacemaker is a 

beacon of synthesis between medicine and engineering to create a device that is one of the few 

implantable devices hailed as truly biologically integrated, being controllable, reliable, have active 

sensing and biological feedback. C-MEMS have the ability to target a diagnosed problem and act upon it 
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independently, leaving other cardiovascular functions untouched, unlike larger systems. The use of small 

machines inside the body to move mechanically opens up vast possibilities for medicine to work on a 

patient from the inside out, decreasing the need for invasive surgery.27 

2.5.2 C-MEMS Biocompatibility 

The most important factor of biologically-designed C-MEMS is that of biocompatibility; what the C-

MEMS surface chemistry will do to the body, en-route to the area of need as well as at the site, and 

what the body with do the C-MEMS device. This realm of study is known as pharmacokinetics, and has 

been studied substantially due to the increased use of synthetic products in internal medicine, as well as 

the decreasing size of this technology. 

Due to the very small scale of the C-MEMS components, any attack or modification to a surface could 

change the physical properties of the device to not work; cantilever beams can be eaten away which 

could lead to overstressing a part, or a surface can be modified in such a way it can no longer interact 

with the environment is was meant for. This “bio-fouling” largely consists of the adsorption of peptides 

and proteins that cells require, which can lead to a device being inhibited by cells adhering to the 

surface. There is a fine line that needs to be tread between biocompatibility and functionality; solutions 

have been proposed (such as coating the C-MEMS with a surface immobilized polymer: the most widely 

known and used is PEG, known to inhibit bio-molecular adsorption, and have it be released when the 

site for action has been reached), but the more complex C-MEMS that have been engineered to have 

certain physical properties (roughness, hardness, patterning) can be debilitated by the slightest of bio-

fouling. 

As the fabrication of the unit is mainly on a silicon wafer, research has been done to compare and 

contrast various silicon materials; single crystal silicon, polycrystalline silicon, silicon dioxide, silicon 

carbides and silicon nitrides. While SU-8 does leach nonvolatile residues in aqueous physiochemical 

solutions, most materials were found to be suitable when inside the body. 33 

2.6 Magnetite (Fe3O4) Nanoparticles  

2.6.1 Biological Applications 

From previous research, thin plain-carbon films manufactured by spin-coating S1813 epoxy on Si wafers 

are viable substrates for neuron growth.28 Most neurons are electro-active; their growth is affected by 

electrical stimuli; the variables that affect dendrite length, adhesion, and rate of differentiation are not 

limited to just physical and chemical characteristics, but include the electromagnetic properties. To 

investigate this, we have selected magnetite nanoparticles to use in the fabrication of the carbon film by 

doping the S1813 epoxy before spin coating.  

Magnetite nanoparticles are small particles (5-150 nm diameter) of Fe3O4, and have been the key focal 

point of research in fields such as micro-scale optics, electronics and biological systems. While 

speculated to be the oldest of all magnetic material, magnetite has been used most recently is 
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microscale devices, be it as a ferrofluid (magnetite nanoparticles suspended in an organic solution, often 

toluene) or as a coating. In biological fields especially, much research has been focused on controlling 

the size, shape, and dispersability of these particles, characterizing the nanoparticles’ ability to be used 

in certain biological situations.29,30 

Magnetite nanoparticles, due to their alluring properties, have been researched in various biological 

applications. The high surface energy and large specific surface area of magnetite nanoparticles have 

been used for cell immobilization; microbial cells, when immobilized, can be, and are frequently, used in 

bioconversions, biotransformation and biosynthesis processes as they can be more readily reused and 

often yield better results than untethered cells in the biological process. By exposing microbial cells to a 

solution of magnetite nanoparticles, the particles were adsorbed onto the cell surface, but no deeper 

due to the physical properties of the particles. Once coated, a magnetic field was created and was able 

to immobilize the cells, and has proven to be an alternative to other immobilization methods, which run 

into issue regarding equal dispersion and mass transfer. 

Magnetite nanoparticles have been utilized in medicine as an indicator and therapeutic solution for 

dealing with cancerous tumors in living creatures. The nanoparticles can be delivered to the malignant 

tumor through proprietary drug delivery systems. Once the nanoparticles accumulate in the cancerous 

cell tissue, it can be easily tagged and seen with conventional MRI techniques.31 As the particles are 

biocompatible, they are not rejected nor cause adverse affects in the body. Their size, surface energy 

and charge affect the distribution within the region they target, but, once latched into the cell 

membrane of rapidly-splitting cancer cells, they will remain embedded into the cell wall, traveling with 

the newly-formed cancer cells. 

More importantly, magnetic nanoparticles can be utilized in a cancer therapy  known as hyperthermia. 

The process utilizes the region-specific nature of the delivery, as well as the ability for the nanoparticles 

to embed themselves into the cell wall, and not into the cell itself, causing abnormal behavior. When 

exposed to AFM, the nanoparticles, under an alternating magnetic field, will essentially vibrate, which 

can cause the destruction of cancerous tissue by the mechanical vibration of the particles. As this 

vibration will cause friction between cells, it will subsequently heat that region inside the body; this can 

signal the host’s own immune system will target this area as well. This has been tested and 

demonstrated, and has been hailed as a solution that will greatly increase the quality of life for cancer 

patients during treatment.32,33 

As our surfaces are intended for biological use, be it a staging surface for transplant or a platform for a 

biosensor that needs to be magnetically active, there has been use of magnetite nanoparticles in tissue 

engineering. The use of magnetically active nanoparticles in conjunction with standard keratinocyte 

(epidermal cell) growth was seen to improve the quality and the rate of cell growth, especially when 
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subjected to a magnetic field. In addition, keratinocyte cells, once tagged with the particles, can be 

manipulated by magnets, stratifying them and forming a sheet when in the presence of a magnetic field, 

greatly improving the quality and ease of grafting of the cells.34 Other uses, like this one, exploit the 

ability of the nanoparticles to embed themselves within the cell wall and not interfere with normal cell 

behavior. 

2.6.2 Toxicity of Magnetite (Fe3O4) 

While the magnetic nanoparticles may act as a catalyst for complex carbon surfaces to emerge from the 

pyrolysis procedure, they are not spent, broken down, melted, or otherwise lost, as they remain in the 

thinner carbon surface that is then used as a substrate for neuron culture. While their location in the our 

film has not been explicitly determined, it is assumed that, due to the large concentration we are using, 

there will be magnetite nanoparticles exposed on the surface. While carbon is benign to neuron cells, 

the presence of Fe3O4 calls into question the toxicity of magnetite to the PC-12 cells we are trying to 

culture. 

Cytotoxicity, the quality of being toxic to cells, is a term given to various substances that adversely affect 

a cell.  Treating a cell with a cytotoxic compound (in the form of presence in the same culturing media, 

injection, absorption/uptake, etc) will lead to the death of the cell, or to abnormal cellular behavior. The 

most common form of cell death is necrosis, where the cellular membrane loses integrity (collapses, 

bursts, or disintegrates) which compromises the vitality of the cell. Apoptosis is a cellular death where 

the cell membrane remains intact, and the death, as opposed to necrosis, has little physical impact on 

the cell. A process of programmed cell death (PCD), a cell will die via apoptosis when a biological trigger 

is tripped, be it the introduction of a malicious substance or presence in a foreign environment, and a 

domino effect of cell morphologies (cell shrinkage, nuclear fragmentation, chromatin condensation  and 

ultimately DNA fragmentation) that lead to cell death occur. Apoptosis can occur when a cell is damaged 

beyond repair, is infected with a virus, or is in an unfavorable environment. 

Biocompatibility and toxicity of magnetic microspheres are determined by many factors, primarily the 

magnetically responsive components35, and the size of the particles, their matrix substance and the 

coatings used. 36 According to clinical trials, superparamagnetic iron oxide was tested to determine the 

pharmacokinetics (distribution, metabolism, bioavailability, excretion) and toxicity (acute and subacute 

toxicity, mutagenicity) of the particles, as they are to be used as a contrast for magnetic resonance 

imaging, MRI. The trials found that the iron oxide was fully biocompatible, with no toxic effects and little 

retention in the body, with concentration half-life’s less than four days. 37 

Other sources38 indicate that microspheres (a radius on the order of 1x10-6 m) that contained 30% 

magnetite by weight did have toxic effects on rats that were injected with a solution and let to incubate 

for 24 hours. In this case, the size and concentration of spheres were found to cause the abnormal 
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cellular growth, though the toxic effects were not due to iron being leached into the system. As 

magnetite, as well as other iron oxides are highly stable, the amount of ionic iron (Fe2+ or Fe3+) is highly 

unlikely, and will not interrupt or modify cell growth. From this, it does not appear that any iron will 

leach from our iron oxide nanoparticles into the system, disrupting cell growth.  

While the body can handle and adapt to prepared samples, we must look at the interaction between 

raw magnetite and neuron cells. A 2007 study of magnetic nanoparticles (MNP’s) by scholars at the 

University of California, San Diego, found that intracellular delivery of iron oxide, Fe2O3, had adverse 

affects on the ability for PC-12 cells to extend neurites in response to the presence of NGF.  Their 

research goals were to see the toxic effects of iron oxide, in vivo, as “little work has focused on 

quantifying the effects that Fe2O3 internalization has upon cell behavior and, in particular, the ability of 

cells to appropriately respond to biological cues”. The region-specific delivery of these nanoparticles is 

key to future drug delivery systems, as well as targeted use of magnetic hyperthermia and cell tracking 

through high-resolution MRI,39 but the toxic effects need to be analyzed with closer detail.  

This team determined that the increased concentration of Fe2O3 lead to a decreased number of neurites 

per cell (from a control of ~2.9 neurites per cell to ~0.9 neurites per cell in a 15 mM solution) as well as a 

decreased intercellular contact points per cell (where the PC12 cells connect to each other), from about 

1 per cell in the control to a diminished 0.1 points of contact in the 15 mM concentration. The cells that 

were exposed to MNP failed to develop the same growth over the same period of time, at a standard 

density, that the control cells were able to. This retardation in growth is also coupled with cytoskeletal 

abnormalities, as well as less overall branching of neurites, which is crucial to the formation of 

neuromuscular connections as well as rate of regeneration, two key factors in using a nanoparticles-

doped surface as a site for reparative neuron cell staging.40 Despite these results, two things greatly 

differ from our experimentation. First, this test was done with free-floating nanoparticles in solution, 

whereas ours are fixed to the surface. Second, while Fe2O3 and Fe3O4 are both iron oxides, they vary in 

both physical and chemical properties. 

A small team out of the University of Glasgow underwent research to further understand the influence 

of particles used in current medical practices (magnetic hyperthermia, imaging, cell tracking, etc) have 

on cells in culture. The world of medicine uses particles whose hydrodynamic size range from 10 nm to 

500 nm, and have a variety of coatings, namely dextran, with others such as starch, albumin, silicone 

and polyethylene glycol (PEG). Our particles are not coated, as they are free floating in a toluene 

suspension and will not need to survive a journey to the targeted area inside the body. In this study, 

8nm nominal diameter (between 7-15 nm) magnetite nanoparticles were used to create four different 

trials: untreated cells, staurosporin-treated cells, cells incubated with dextran-covered nanoparticles and 

cells incubated with plain, uncoated nanoparticles, very similar to the Fe3O4 that we are using. From the 

assays performed, a few useful tidbits were gleaned. First, the cells cultured with uncoated, plain 

nanoparticles had approximately 10% of the cells die due to apoptosis, whereas the control saw no 

apoptotic death, though the dextran coated saw roughly 20% and the staurosporin roughly 85% of the 
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cells perish in the same manner. Cell death can happen in many ways, the typical causes being necrosis 

(physical cell damage) or apoptosis, a “programmed death” that the cell decides to undergo for various 

reasons. While this shows that bare nanoparticles may indeed be toxic, it still depends on the fact that 

the cells are mobile in the media while incubating, which is not valid in our experimentation, as they are 

fixed to the surface. 41Further reading on toxicity due to particle uptake can be found elsewhere, and is 

out of the scope of this paper’s topic42 

2.7 Surface characterization 
The physical, chemical, and electromagnetic properties of a surface will affect various aspects of cell 

culturing. The materials fabricated within this project will to be analyzed in order to seek correlations 

between these properties and cell growth, adhesion, and survival on the surface we culture them on. Of 

the measurable characteristics, we will be assessing surface energy, roughness (via AFM), 

electrochemical properties (through cyclic Voltammetery), and topological surface characteristics (via 

SEM). Other characterizations, such as hardness and electrical resistivity, are quite telling of the 

properties, but are unable to be measured for this project due to lack of available equipment. These 

procedures can be found appended to this report. 

2.7.1 Surface Energy 

The energy of a surface is a characteristic which may correlate to neuron-surface interactions we are 

studying. The test is done by placing a droplet of various substances on the surface and investigating the 

angle at which the droplet maintains with the surface. A flatter contact angle indicates a higher surface 

energy, as the droplet’s shape is determined by the ratio between the fluid’s surface tension at the 

fluid(variable)-gas(air) interface and the force of the interaction between the fluid (variable) and the 

surface (carbon film).   

To analyze, the flatter the droplet is, the stronger the surface energy is. If there is little surface energy, 

(little affinity between the surface and the droplet), the droplet will have a high contact angle, as the 

surface tension will contract the fluid; if there is no affinity, the fluid will be a sphere. With a very high 

surface energy (large affinity between the surface and the fluid, a wet table situation), the surface pulls 

the fluid, and the surface tension of the fluid cannot contract the fluid into a more spherical shape. 

To determine the qualitative angle into a quantitative energy is that of Young’s equation. It is used to 

describe the balance of energies controlling the contact angle of the liquid drop on such a surface 

(equation 1). Furthur work done by Dupre indicated that thermodynamic work could be used to describe 

the energy involved with adhesion, in which is the reversible work done is correlated to the separation 

of unit area of solid/liquid interface. Combining these two, the Young-Dupre equation was formed as 

shown in equation 3.  

= +  

Equation 1: Young's Equation 
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= + −  

Equation 2: Dupre Equation 

=(1+ ) 

Equation 3: Young-Dupre Equation 

 

Dispersion (gamma d), polar (gamma p) and hydrogen bond (gamma h) are the three different 

intermolecular forces that contribute to the calculation of total surface energy. Normally, the polar and 

hydrogen bond forces are encompassed in a single term (gamma p). Therefore, in order to derive the 

total surface energy, two liquids are needed and the sum of the two different intermolecular force 

terms will allow us to derive the total surface energy of the substrate. 

2.7.2 Roughness 

The roughness of a surface on this scale can be measured using atomic force microscopy (AFM). By 

measuring the resistance a single-beam cantilever that is pushed across the surface, the variations in 

height can be measured, and correlated to an overall roughness. If contact needs to be avoided, a non-

contact optical profiler can be utilized to gain the roughness data.  

Atomic Force Microscopy (AFM) is a non-optical method of microscopy, with the first atomic force 

microscope built in 1986 by IBM Research in Zurich; it was built off of the scanning tunneling 

microscope, developed in the early 1980’s at the same facility, which won the creators, Gerd Binning 

and Heinrich Roher a Nobel Prize in Physics. The AFM was designed to overcome the constraint that the 

STM had; the samples themselves needed to be conductive. The AFM was designed to use the changes 

in atomic forces between a measurement apparatus and the surface to gain quantitative data. The AFM 

found in the Gateway Park facility at WPI is deployed by Asylum Research, and utilizes a MFP-3D-BIO 

AFM hooked up to a computer for image relay and interpretation.  

The AFM is centered around the cantilever; as small, curved pieces of silicon or silicon nitride that has a 

small probe at the end, generally conical that is about 100 μm in width and 30 μm long. Various probes 

can be acquired and used, based on the application or sensitivity/characteristics of the material being 

analyzed.  The AFM can be used for a wide variety of measurements; bonding and Van der Waals forces, 

electrostatic forces, capillary forces, roughness, and mechanical contact forces.  In order to measure the 

displacement of the probe as it scans the surfaces, a laser is pointed at the cantilever, which naturally 

reflects off of the silicon and is captured by a photodetector. In essence, the cantilever will bend when 

subjected to the forces the surface applies to it, and this displacement will change the angle of the 

laser’s reflection, thus generating an image with the height known over a specific location, x,y, on the 

surface. Scanned back and forth at varying speeds, with data sampled at various rates (measured in Hz), 

a surface image can be produced. 
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Figure 2: A basic diagram of the main components of the AFM during the scanning of a sample material. 

An AFM can be used in two typical “modes”: static (contact) modes and dynamic (non-contact) modes. 

The contact mode, as the name implies, has the tip come into physical contact with the material. 

However, this is not done at a standard height; this could cause the tip to, while scanning the surface, 

catch on the material (if it is not perfectly flat, which is very rarely the case) and snap the probe. 

Additionally, if the probe is brought too close to the surface, the attractive forces between the probe 

and the material will be strong enough for the tip to “snap in” and make contact. The sample, mounted 

on a small piezoelectric tube, can be raised and lowered in real-time with the motion of the cantilever; 

this allows for the probe to put constant force onto the material, and, couple with a very stiff cantilever, 

the resultant forces can be measured and then turned into the data one is looking to acquire. 

A development in AFM microscopy has been the use of “tapping” mode, in which there is no contact 

with the AFM probe and the surface itself. The cantilever is oscillated at its resonance frequency with a 

small piezoelectric element; this causes the probe to oscillate with an amplitude of 100 to 200 nm. 

When the probe comes close to the surface, the amplitude of the oscillation will decrease, as the 

material has atomic forces that repel the probe from coming any closer to the material. The images 

extracted from this type of analysis are made by mapping the force the probe experiences due to the 

surface.43 

The AFM was utilized for this project to determine the roughness of our samples. This factor is not only 

important to see if there are differences between the samples made with varying concentrations of the 

magnetite nanoparticles, but also due to the fact that is has been proven that neuronal cells are 

influenced  by roughness. A 2002 study cultured nigral cells (collected from the subthalmus of prenatal 
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Wister rats) on silicon wafers which they had etched in grid-like patterns. The channels, etched out, 

varied in roughness, with the surfaces having less than a RMS roughness of 10 nm. From the results, the 

cells adhered and survived best on surfaces with an RMS roughness between 20 and 50 nm, with cell 

adhesion on surfaces below 10 nm and above 70 nm negatively affected by the roughness.44  

SU-8 photoresist, widely used for the fabrication of high-aspect ratio microstructures (where one length 

dimension is an order of magnitude, or more, than the other; in this case, the fabrication of long, thin 

structures are desired), has undergone experimentation to see how surface roughness changes with 

different lithographic techniques. An AFM is utilized to calculate the roughness of not only the surface, 

but the sidewall of 500 μm-tall structures, as this is vital to integration with the rest of the C-MEMS 

application.  

If surface roughness is proven to be a vital characteristic in the growth of neurons (neurons being 

attracted to grow in topographical wells as opposed to the peaks and valleys of surface energy), a 

rougher medium can be used to coat. The use of spray coating in the fabrication of C-MEMS and 

packaging has been developed to fabricate platforms that require non-planar surfaces; senor and 

actuator devices, used for measuring pressure and acceleration as well as micro-lens and mirror 

apparatuses, require a platform with severe topography in which spin coating will not be practical. Using 

S1813, French scientists utilized spray coating equipment to fabricate C-MEMS systems with non-planar 

elements with success. 

2.7.3 Cyclic Voltammetry 

A material’s surface needs to be characterized to ensure the surface properties, both chemical and 

physical, are as desired. For our work, the characterization is used to correlate cell morphology and 

growth patterns with the material’s properties. Cyclic Voltammetery (CV) is used to characterize the 

surface by electrochemically surveying the surface’s response to various electric potentials, and the 

change between them, in a standardized environment (ion solution). The voltage is applied to the 

surface, and the meter uses the changes in current, brought about by a varying electrical potential 

profile, to find when the reduction and oxidation occur in an electrochemical cell. The CV is a 

potentiostat using a three-electrode setting. The working electrode is set to a constant electric potential 

while the current in the counter electrode changes with respect to a reference electrode at a known 

potential. A very common reference electrode is Ag/AgCl with an Eo = 0.222V. The working electrode 

and the counter electrode create a potential difference, i.e. voltage. If they are connected through a 

conductive surface, the surface can be considered as conductive. The potential in the counter electrode 

ranges usually from -0.3 V to 0.7 V.  When electric current passes through, a redox reaction occurs on 

the surface, which is induced by the solution in which the electrodes are soaked. Generally this solution 

is a K3[Fe(CN)6] During the redox reaction a reduction potential can be detected through a Gaussian 

distribution whose peak is usually seen at 0.22 V The oxidation potential is detected at its maximum at 

0.18 V. Steep peaks correlate with greater current requirement, i.e. better surface conductivity. 
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2.7.4 Surface Imaging (SEM) 

The uses of optical characterization of materials is the most basic, but, as technology has advanced, the 

detail at which we can analyze a surface has increased exponentially. At current, scanning electron 

microscopy is one of the most powerful microscopy techniques available today. Originally developed in 

the 1950’s, the SEM is used to study the surface of solid objects by bombarding them with a beam of 

electrons. When the beam hits, the electrons will be scattered, and can be seen as X-rays, Auger 

electrons, primary and secondary backscattered electrons, as well an induced specimen current and 

cathode-luminescence: this information is amassed and processed into an image.  

 

Figure 3: A simple diagram on the basic SEM inner workings
45

 

From this, images with magnifications up to 500,000 times showing details less than 1 nm in size can be 

acquired. Samples must be prepared in a very certain way, to encourage the correct dispersion of 

electrons, and must be electrically conductive.46  
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3 Materials 

3.1 Cell Culture Chemicals 
The two cell types require particular growth media for their maintenance and differentiation. Below is a 

brief explanation of most of the chemicals that have been used during the cell culture procedure and 

their purpose. 

3.1.1 Phosphate Buffered Saline (PBS) 

PBS is a buffer solution that maintains a constant physiological pH of 7. It is prepared in the laboratory in 

such a way that it forms an isotonic solution in which ion concentrations match to those inside the cells. 

PBS is prepared at a 10X stock concentration and diluted 10 times to bring it down to 1X. It is an 

essential solution for cell culture. Its most common role is to rinse petri dishes coated with cells. 

3.1.2 DMEM 

Dulbecco Modified Eagle’s Medium is a type of growth medium patented by Invitrogen Inc. which is an 

essential product used in cell culture. It finds usage in most type of cells such as those of humans, 

monkeys, hamsters, rats, mice, chicken etc. The medium contains several aminoacids, salts, such as 

calcium chloride, sodium chloride, potassium chloride, magnesium sulphate, sodium phosphate etc., 

glucose, vitamins such as folic acid, nicotinamide, riboflavin, and B-12, iron, and most importantly what 

gives it the color is phenol sulphophthalein (PSP, also known as phenol red) which serves as a pH 

indicator. The red color corresponds to a physiologic pH, which includes values close to 8. The yellow 

color relates to the acidic environment of 6.6 or lower. The pink, fuchsia colors correspond to basic 

environments of 8.1 and higher.47 Based on the cell type this media is grouped into Low Glucose DMEM 

and High Glucose DMEM. The choice of glucose is based on the type of cell used and on previous 

protocols. 

3.1.3 Trypsin 

Trypsin is an enzyme which participates in the cleavage of proteins through a hydrolysis reaction. 

Despite its preference for arginine (Arg, R) and lysine (Lys, L)48 it cleaves peptide bonds between other 

aminoacids as well but not as efficiently and quickly. Trypsin is used in the laboratory to detach cells 

from surfaces. During cell culture the petri dishes used are made of a polystyrene polymer which is 

coated with some lysine-based chemical. The arginine groups on the cell’s membrane have high affinity 

for lysine, allowing them to adhere within only few hours. However, for our experiments non-coated 

petri dishes were used to favor adhesion only with the carbon surfaces. 

3.1.4 Nerve Growth Factor 

The nerve growth factor (NGF) is a tertiary protein found in the target tissue of a signaling pathway in 

most neurons. These cells release NGF, which then binds to a receptor on the cell surface, TrkA, for 

which it has high affinity.  Through the synaptic cleft it is transported into the axon of the motor neuron. 

As of today NGF is the only known neurotrophic factor that can be retrograde-transported from the 

axon to the soma. It is known to be necessary to promote neuronal differentiation as well as to mediate 
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survival and maintenance of the differentiated state of sympathetic and sensory neurons.49 NGF was 

applied to PC-12 cells only since they represent a good model of undifferentiated neurons. 

3.1.5 Poly-D-lysine 

Poly-D-lysine is a protein whose monomer is the aminoacid lysine. It is a charged protein; therefore it is 

usually purchased as poly-d-lysine hydrobromide. HBr is used to neutralize the positively charged 

polypeptide and to solubilize it in water. Its common cell culture purpose is to coat glass surfaces so that 

charged cell membrane proteins can bind to the surface. This is a very common laboratory practice for 

cell adhesion experiments. Poly-d-lysine coated surfaces will be used as control throughout all the 

experiments. 

3.1.6 DiI dye 

DiI is one of the several lipophilic dyes available in biological applications, which is capable of 

penetrating through the cells’ membranes allowing them to be visualized under the microscope. DiI 

traces the morphology of cells permitting a clear identification of their neurites. This dye is produced by 

Invitrogen and its IUPAC name is 1,1’,di-octadecyl-3,3,3’,3’-tetramethylindiocarbocyanine perchlorate. 

Being fluorescent, DiI is excited at a wavelength of 543nm in the green light region and emits at a higher 

wavelength of 560nm, which falls under the red light region. It fluoresces red in an RITC filter setting. 

The dye is usually diluted in ethanol because of its solubility and stability with this solvent, and especially 

because ethanol plays a very important role in the reaction occurring when the dye penetrates the cell 

membrane. 

3.1.7 Mowiol Mounting Medium 

Mowiol is a very viscous fluid used in laboratories when preparing cells for imaging under the 

microscope. The mounting medium is usually used to attach a cover slip to the cell surface of interest, 

preventing the cells from degrading and allowing the cover slip to fully adhere to the surface. It is usually 

left overnight and the day after, the samples are available for microscope testing. 

3.2 Cell Culture Media 
All cells behave differently based on the chemicals’ type and their concentrations. Over the course of 

centuries optimal growth media have been developed, which are well-known and used during 

laboratory experiments with each type of cell available for purchase. The following list gives a brief 

display of the compounds used in the preparation of PC-12 cells along with their respective 

concentrations. 

PC-12 Cell Culture Medium 

 High glucose DMEM 

 10% (v/v) Horse Serum, a type of growth factor (protein) for PC-12 

 5% (v/v) Fetal Bovine Serum, a type of growth factor (protein) for PC-12 

 1X Penicillin/Streptomycin, an antibiotics’ mixture to prevent bacterial growth due to occasional 

non-sterile practices. 
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3.3 Material Fabrication Chemicals 

3.3.1 S1813 Photoresist 

For our substrate fabrication, we are using epoxy as a carbon precursor. There are a wide variety of 

epoxies; however, we are using a widely-known epoxy used in the manufacture of microelectronics, 

Shipley S-1813. The material, a very viscous polymer, is light sensitive, and is used in photolithography in 

industry. There are various characteristics photoresists have and are classified by: tone, developing light 

wavelength, chemical constituents all play into the various applications they can be used in. 

The “tone” of a photoresist reflects how the material responds to UV radiation. A positive photoresist, 

when coated with a photoresist developer, will degrade under UV light. A negative photoresist, in 

contrast, will be insoluble to the photoresist developer. This is important with direct applications to 

photolithography: however, other physical processing properties are depended on the type of 

photoresist used. For example, positive photoresist will prove less able to adhere to silicon, whereas a 

negative photoresist has excellent adhesion. Negative photoresist is less expensive than positive resist, 

with each having different developer bases (positive using aqueous solutions, negatives using organic 

solutions). Additionally, the epoxies are typically based of PMMA, PMGI, phenolic formaydehyde 

(Novolac systems) or SU-8; each gives the material the chemical backbone, and make up the polymer 

backbone of the material. SU-8 is well know for its resilience to being stripped from the silicon base, 

despite the presence of a harsh acid and temperature environment. 

Due to the lack of stability of SU-8 after pyrolysis50, S-1813 was assessed. Though being positive, it 

proved, with the addition of the HMDS primer, to be very stable before and after the pyrolysis 

procedure, and accepted the nanoparticles solution without trouble. From the Shipley 1800-series 

photoresists, we can see that is does not need to be spun excessively fast to generate the thick coat 

needed, and is on-hand in our clean room. As it is a proprietary resin system, the chemical formula is not 

published, but it is made up of 71-76% propylene glycol monomethyl ether acetate, 10-20% mixed 

cresol novolac resin, 0.1-1% fluoroaliphatic polymer esters, and between 1-10% diazo photoactive 

compounds. 51 

 

Figure 4: Structure of Propylene glycol monomethyl ether acetate, C6H12O3 

In the fabrication of C-MEMS, the carbon surface is patterned by standard photolithographic techniques. 

The non-patterned material is stripped away, leaving the desired part exposed. This stripping of SU-8 is 
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commonly done by using hot NMP (1-methyl-2-pyrrolidinone), a polymer, or an oxygen-plasma. 

However, non-patterned surfaces to be used as a structural component, like the substrates we are 

investigating, will need to be separated from the silicon base in order to be used. Many materials have 

been described as workable as a sacrificial base layer. Electroplating the wafer base with a copper layer 

5-10 microns thick has proven to be a practical material, though the rough copper surface is reflected in 

the surface of the carbon substrate. Other metals have been explored, including a thin film of 5/50/50 

nm Cr/Au/Cr which has been used as a sacrificial layer to release 200 μm × 50 μm × 1.5 μm SU-8 

cantilever beams. Other types of photoresists can release SU-8 structures smaller than 0.01 mm2, and 

toluene-dissolved polystyrene has proven to be a material with laboratory-confirmed tests of its ability 

to release the SU-8 photoresist. 52 

 
Figure 5: A graphical representation of SU-8 processing using photolithography 

3.3.2 HMDS Primer 

Hexamethyldisilazane (HMDS) is a compound with a molecular formula ((CH3)3Si)2NH. At room 

temperature it is a colorless liquid which has the ability to slowly hydrolyze in humid air. For this reason 

HMDS is handled using air-free techniques. Its main use is in dehydrated techniques in which perfect 

dryness is crucial, such as Scanning Electron Microscopy (SEM), Chromatography (GC, HPLC), 

Spectroscopy (NMR, IR, MS), photolithography, etc. 

SEM requires the sample under analysis to be perfectly dry in order to correctly determine the surface 

structure. However, the drying of the material sometimes causes stress and deformation of the sample. 

HMDS can be used in this case in order to react with the water molecules and the oxygen in the air to 

produce three gases; ammonia, silicon dioxide, and hydrogen. 

In GC and HPLC HMDS is used for deactivating and coating chromatographic supports. This silane can 

react with the surface making it inert, eliminating chances for polymers or other substances required for 
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separation to elute from the column. On the other hand it eliminates surface moisture by making the 

surfaces lose their surface energy by becoming hydrophobic. 

In photolithography, HMDS reacts with the hydroxyl groups formed during the inevitable oxidation of 

the silicon wafers. After the reaction terminates the chemical group remaining on the surface is methyl, 

which turns the surface hydrophobic. This is the preferred environment a negative photoresist requires. 

Below is a picture of the reaction process of an oxidized silicon wafer with HMDS. 

 

Figure 6: Reaction of the HMDS primer with the silicon surface 
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4 Methodology 

4.1 Substrate Fabrication 

4.1.1 Synthesis of Iron Oxide Nanoparticles 

The magnetic nanoparticles (MNPs) were created by combining a mixture of FeO(OH), oleic acid and 1-

octadecene was refluxed at 320 ºC for 1 h under nitrogen atmosphere. During this process, the solution 

changed its color from turbid black to black. The resulting MNPs were precipitated with acetone and 

collected by centrifuge at 4000g. After that, Fe3O4 MNPs were further purified by repeated extraction of 

the precipitate with CHCl3/acetone (1:10) until a powder of Fe3O4 MNPs was obtained. The powder of 

Fe3O4 MNPs was stored at room temperature for further application. To create a solution, the 

nanoparticles were dissolved into toluene creating a black ferrofluid, responding to magnetic fields. The 

concentration of nanoparticles we used was very high, at 47.75 mg/mL, with the nanoparticles having a 

diameter ranging from 1.4 nm-10 nm. 

4.1.2 Photoresist with Doped Nanoparticles Preparation 

The nanoparticles, mixed in with the toluene, needed to be mixed into our SU1813 epoxy precursor in 

order to, ultimately, attain an uniform distribution of the MNPs in the surface. In order to give a decent 

spacing between concentrations, the trials were decided to be made up of four substrates. First, we 

would fabricate an  unmodified S1813 photoresist, giving us a plain carbon surface which to compare 

with previous work; these samples are known as PC samples or #1 samples; no MNPs are added to the 8 

mL of photoresist used per wafer in the spin coating procedure. In order to test the influence of the 

magnetite MNPs on the characteristics of the surface, three surfaces would be created with varying 

amounts of the MNPs. The lowest concentration mixes 200 μL of MNP solution into the 8 mL 

photoresist; the medium concentration uses 500 μL of MNP solution, and the highest concentration 

using 800 μL of solution. These are referred to as Fe3O4 0.2,  Fe3O4 0.5 and Fe3O4 0.8, respectively, 

further truncated to sample types #2, #3, and #4, used for times where writing surfaces, i.e the bottom 

of 22x22 mm wafers and 25mm diameter petri dishes, were too small for legible clarification. 

As the large store of MNPs are housed in Gateway park, 2 mL of nanoparticles solution were transported 

to the clean room in the basement of Higgins Labs, as well as 5 mL HMDS primer and four (4) mixing 

vials; these are used as a vessel to mix and store the 8 mL photoresist (housed in the clean room)  with 

the nanoparticles before the spin coating procedure. 

4.1.3 Spin Coating 

The spin coating procedure is the process of which we take the liquid epoxy photoresist, doped with 

MNPs, and transfer it onto a 4 inch diameter silicon wafer, creating a very thin film of epoxy on said 

silicon wafer; the coating, approximately 10 μm in thickness, is then let sit for 48 hours (to dry) in a UV-

protected area (to discourage decomposition) to be then further refined during pyrolysis. Due to the 

sensitive nature of surface impurities on thin films, all fabrication is done in WPI’s level 10,00 clean 

room, found in the basement of Higgins Labs, adjacent to the Fluids laboratory. In order to appropriately 

use the clean room, direct supervision from Peter Hefti, a research fellow in the Mechanical Engineering 
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department was required, and proper clean-room setup was needed. This setup can be found in 

Appendix C. 

The spin coating process begins with removing the silicon wafer from the storage container (wrapped in 

aluminum foil to prevent UV degradation) and rinsing the wafer in an acetone bath for two minutes. 

After being rinsed in acetone, the wafer is sonicated in methanol for an additional two minutes. These 

two processes are conducted to ensure the remove of all contaminates on the wafer surface. Following 

the sonication, the wafer is blown dry with nitrogen gas and placed in a flowing water bath for another 

two minutes.  

After being cleaned in the water bath, the wafer is first blown dry with the nitrogen gas as after the 
acetone and methanol treatments. Additionally, the wafer is dried in the 110°C oven for one minute to 
complete remove all fluids from the wafer surface. The goal of the cleaning process is to ensure a 
smooth, contaminate-free surface for photoresist attachment. After removing the wafer from the oven,  
it is placed on a cooling rack to ensure the HMDS primer, the first coat, does not begin to be heated 

during the spin-coating; the HMDS is volatile, and any heat before or after its application will 

compromise the surface-photoresist adherence during the pyrolysis.  

The silicon substrate, now cleaned, can be loaded into the spin coater. The bar must be lifted (by using 

the top actuating lever) to allow for space to load the wafer. By taking the wafer in tweezers, one loads 

the wafer into the center of the disc, ensuring that it is centered by lining up the curved edge of the 

wafer to the etched angle bracket. Once loaded, the second (lower) valve can be opened, creating 

vacuum between the disc and the wafer. The spin coater is set to spin at 3000 RPM for the duration of 

90 seconds; once loaded, one must engage the drive an check the wafer to see if it is centered: the 

wafer will look unbalanced if not set correctly.  

Once the wafer is set correctly on the disc, 1 mL of HMDS primer is added to the center of the wafer as 

quick as practical. Once done, the spin coater is engaged and spins for the set 90 seconds. From here, 

the first of four layers of photoresist is added. 8 mL of the photoresist are taken and transferred to one 

of the clearly labeled mixing aliquots brought over from Gateway. Then, the appropriate volume of 

nanoparticles are added and mixed. Once mixed, 2 mL are extracted from the mixing aliquot via two 

1mL glass pipettes. The aliquot-to-surface transfer should take the least amount of time possible, to 

prevent any drying/stagnation of the liquid; such immobilization could lead to an uneven coating on the 

surface.  

After the 90 seconds of spinning, the wafer is then transferred with tweezers to the oven, set at 110C 

for 90 seconds. From here, it is extracted, let to cool on the cooling rack, and loaded again, reciving the 

second of four layers. This is repeated until the 4th layer is cooled; once done, a small identifier is etched, 

using the tweezers, to indicated which sample it is, be it PC (#1), or one of the nanoparticles doped 

samples (#2-4)  
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4.1.4 Pyrolysis 

The pyrolysis procedure is carried out to reduce the thickness of the material down to two microns, 

while removing hydrogen and oxygen to create a more pure carbon material. After the prerequisite 48 

hours of ageing, the wafers can be prepared for the pyrolysis procedure. 

As we make four wafers each spin-coating session (one for each concentration), we will look to pyrolyze 

three of each, making twelve total samples. Each sample is to be 22x22 mm; to cut them to small 

squares, the wafer is taken and put epoxy-side down onto a clean cloth. The wafer is then scored with a 

diamond-tipped pen, using an aluminum cutting angle that is 22mm wide. To ensure straight cuts, the 

aluminum angle is aligned with the flat cut of the wafer (each wafer is “keyed” with a bit of one edge cut 

off) in one direction only. After scoring, the wafer is taken and placed over the edge of the table, 

aligning a scoring mark with the edge. Using a small bit of force, the wafer can be broken along the 

scored edge, and will result in long 22mm wide strips of material. From here, these can be further cut 

widthwise to get a 22x22mm square. Each square is then identified with a 1, 2, 3 or 4 with a permanent 

marker on the bottom of the wafer (silicon side). 

Once cut, the pieces must be loaded onto trays. The trays have been cut from silicon or silicon dioxide 

wafers which had shown surface defects. The samples are loaded with the photoresisitve side facing up, 

with the bare, reflective side of the tray facing down. Three trays are used, with four sample per tray, 

and loaded in one by one into the quartz tube. The quartz tube has two ends, one with a small, L-shaped 

vent and the other with a flanged opening. The flanged opening, on the side of the tube that is clear (not 

darkened by carbon deposits from previous runs) can be unscrewed and removed in order to load trays. 

In order to rach, a metal wire has been fabricated, ith an L-shaped end, to push, ramrod-esque, down 

the tube. The heating elements in the furnace are most consistent in the center of the tube, and should 

be placed accordingly. 

Once loaded, the gasket is screwed back on, and the quartz tube is loaded into the furnace bed. Once 

aligned, the tube that leads to the nitrogen (through a rotameter), the blue valve, can be connected. 

Hooked up, the nitrogen can then be turned on from the canister; when it is opened fully, the pressure 

regulator can then be opened up to the second hash mark, correlating to 10 psi. Then, the hood valve 

can be opened, and a flow should be registered by the rotameter (on the inside of the hood). This 

should be set to 100 SCCM to ensure excess nitrogen flow. The nitrogen should flow for 10 minutes 

before any heat is applied. 

After ten minutes of nitrogen flow to ensure an inert environment, one can switch on the 40 amp fuse 

on the front of the Blue M furnace control. For this procedure, the maximum temperature is set to 

1000°C. For the two step heat procedure, the initial heat rate must be set to 2°C/minute. This is done by 

holding down the blue button for 5 seconds until the options display appears and then pressing the blue 

button to cycle through the options until LoC (level of control) is displayed. Using the arrow keys, set LoC 

to -1 and then press the blue button repeatedly to cycle through the options until UPr (up rate) is 

reached. The arrow keys are used to adjust the heat rate to the desired value. For the initial heat rate, 

UPr will be set to 2. The blue button is then held down to return to the main menu. Once the furnace 
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reaches 300°C (displayed in the red letters on the display,), UPr is then changed to 10, and the furnace is 

left to reach 1000°C. 

Once the furnace reaches 1000°C, the controller is turned off by flipping the switch used previously to 

turn it on and is left to cool for several hours with the gas still flowing. Once the furnace has reached 

room temperature (which may be confirmed by turning the furnace on for a brief period and observing 

the temperature reading), the tube may be removed from the furnace and the samples removed. 

4.1.5 Poly-D-lysine coating 

The control for the experiments using PC-12 consisted of poly-D-lysine coated cover slips. Several cover 

slips were precleaned in a 50:50 HCl solution in ethanol for several hours. Afterwards they were boiled 

in a furnace for 30 min in order to kill the remaining bacteria. The cover slips were rinsed in dH2O and 

stored in dH2O under the chemical hood until further use. A solution of poly-D-lysine in water was 

initially prepared at a concentration of 10µl/ml. In a 10 cm diameter dish we placed about 12 cover slips. 

300µl of the diluted poly-D-lysine solution were placed on each cover slip and they were let to dry under 

the hood for about 3-4 hours. Then they were again rinsed with dH2O to remove the unreacted 

products. A detailed sketch of the reaction mechanism for the poly-D-lysine coating is shown below. 

 

Figure 7: Mechanism of poly-D-lysine hydrobromide reaction with glass surface 

4.2 Cell Preparation 
As previously mentioned our group worked with the rat neuronal cell line known as PC-12. The 

technique that was utilized for its culture is explained in detail below. The purpose of these experiments 

was to test iron oxide doped carbon wafers at different concentrations vs. plain carbon coated wafers 

on PC-12 cells. Poly-D-lysine coated glass cover slips were set as the control. The two substrates were 

also tested whether they induce neuronal differentiation. Two sets of experiments were performed, one 

of which included NGF. The detailed experimental procedure is explained below. 
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4.2.1 PC-12 Culture on Substrates (without NGF addition) 

Four types of carbon substrates were tested for cellular adhesion, proliferation, and differentiation. 

Three magnetite doped carbon substrates at 4.8 mg/ml, 3.0 mg/ml, and 1.2 mg/ml of nanoparticle 

solution were prepared along with one plain carbon substrate and one poly-D-lysine coated cover slip 

for PC-12 experimentation. The procedure was performed in triplicate. 

The substrates were initially let to sterilize under UV light in the hood for 2 hours after being put into 35 

mm diameter suspension cell culture dishes and labeled respectively. The suspension cell culture dishes 

are made of non-treated polystyrene material which prevents the cells from adhering to the surface but 

to our material. During this process the caps were made sure to be removed from the dishes in order for 

the sterilization to be more efficient. The samples were then rinsed 3 times with PBS to remove any 

debris. When determining the cell seeding concentration it was made sure that the number of cells per 

unit area was constant for all surfaces, given that the cells deposit on the bottom of the plate. This 

number was taken from the datasheet catalog for the transfection procedure using Lipofectamine 2000 

from Invitrogen’s website.53 Our calculations were based on a cell number of 5*105 cells/dish for a 35 

mm diameter plate and a 2 ml volume per dish. The area of each 35 mm diameter dish is about 10 cm2. 

Therefore our goal was to obtain 5*104 cells/cm2. The area of interest for our wafer is about 5 cm2 (2.2 

cm x 2.2 cm). Hence, the number of cells was calculated to be 25*104 cells/wafer. 

Calculations and measurements of cell seeding concentration: 

The confluent 10 cm diameter dish used for our experiment was undergone a set of procedures to 

detach the cells, in order to transfer them to the wafers. Using sterile techniques the old growth 

medium was aspirated out and the dish was slowly rinsed once with PBS. 5 ml of new growth medium 

was added to the dish which was continuously pipetted up and down within the dish for about 30 min so 

that only a few cells would remain attached. The volume was stabilized to 10 ml by adding extra fresh 

growth medium. The cell number per unit volume was determined using the microscope. We counted 

the amount of cells in the confluent dish twice. The results were 127*104 cells/ml and 115*104 cells/ml. 

Taking the average we used 121*104 cells/ml of concentrated stock cell solution. To obtain 25*104 

cells/wafer, then we were required to use 0.223 ml of stock cell solution. To completely cover the 

wafers, a total volume of 3 ml was required. This was done by adding an extra 2.777 ml of growth 

medium. A slightly different calculation was required for the poly-D-lysine cover slips since their surface 

area was about 1.5 times as small compared to the carbon wafers. A different confluent dish was used 

for them, hence a different stock cell concentration. The detailed calculation is shown in section 4.2.3. 

The main assumption for all these calculations is that no cells died or were lost throughout the 

experiment. To prove this assumption another experiment was performed, which is discussed in section 

4.2.3. After the calculated amounts were added, the dishes were incubated at 37 C overnight. Two days 

later, the samples were prepared for imaging. 

Staining for microscope scoring: 
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Two days later the cells were ready to be fixed. Fixation refers to the treatment of the material so that 

all the cell processes come to a halt without destroying the cellular structure. The growth media in all 

the plates was aspirated out and enough paraformaldehyde solution (4% in water) was added to cover 

the substrates. During this procedure it was made sure that it was worked with one plate at a time so 

that the samples do not dry out. The purpose of paraformaldehyde is to fix the cells, i.e. to stop the 

cell’s life cycle so that no more cell growth/differentiation will occur. The samples were soaked in 

paraformaldehyde for 5 min. In the meantime the DiI solution was prepared by diluting the 

concentrated dye (1 mg/ml) 1000X in pure ethanol 200 proof. A total volume of 2 ml was prepared 

which was transferred equally into two separate 1.5 ml microfuge tubes. The aliquots remained 

wrapped in aluminum foil at all times and in an ice bucket to prevent light and heat from degrading the 

protein. After 5 min the paraformaldehyde was removed and the substrates were rinsed 3 times with 

PBS. Each sample consecutively followed a set of procedures for staining purposes. The substrates were 

dried by making sure the cells were not disturbed. Then the DiI solution was applied by adding 20µl 

drops for about 1 min. To remove the excess dye the samples were rinsed once with PBS. They were 

once again dried out and 60µl of Mowiol mounting medium was added to the substrates after they were 

placed on a paper towel. The pre-labeled microscope slides were slowly put on top of the respective 

substrates making sure that no air bubbles were trapped between the two surfaces. The samples were 

then let to dry overnight. The following day a set of pictures were taken using a 40X lens magnification. 

The data were then analyzed by measuring all the neurites’ lengths in each picture. 

4.2.2 PC-12 Culture on Substrates (with NGF) 

This procedure is very similar to the non-NGF experiment with the only exception that one day after the 

cells are seeded, NGF is applied. More specifically, the substrates were sterilized under UV light in the 

hood for 2 hours after being placed in 35 mm diameter suspension cell culture dishes and labeled 

respectively. After sterilization the samples were rinsed 3 times with PBS. The confluent PC-12 dish was 

pipetted continuously and vigorously to detach as many cells from the surface as possible. Their 

concentration was determined using a Neubauer slide. The number of cells per unit area was kept 

constant at 5*104 cells/cm2. Since our wafers were approximately 5 cm2, the total number of cells was 

calculated to be 25*104 cells/wafer. A more detailed process has been shown in the calculations and 

measurements of cell seeding concentration for the non-NGF PC-12 culture section. To determine the 

cell number per unit volume, the counting chamber was used. The calculations are the same as those in 

section 4.2.1.3 since the same batch of cells was used. After the cells were added respectively onto each 

sample, they were let to seed overnight. 24 hours later a 0.1 mg/ml NGF solution was diluted 1000X 

with growth media in the following fashion. Having a total of 15 dishes (5 types repeated 3 times) 

containing 3 ml of growth media each, required a total of 45 ml PC-12 growth media. In a 50 ml 

centrifuge tube added 45 ml growth media and 45 µl NGF solution, diluting it therefore by 1000X. The 

tube was shaken vigorously to obtain perfect mixing while avoiding bubble formation and protein 

degradation. The old growth media onto each sample was aspirated out and 3 ml of the prepared NGF 

growth media solution was added onto each dish. The cells were left overnight to react and the 

following day they were prepared for imaging. To avoid being repetitive, the procedure that follows 

corresponds to “Staining for microscope scoring” in section 4.2.1. 
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4.2.3 Cellular Adhesion Test 

When the media is removed from the material, being it for preparation for fixation, being it for 

preparation for NGF addition, it was impossible to know if all cells that were seeded were not aspirated 

out but attached to the substrates 100%. The reasoning behind this experiment came from the fact that 

the cells might not have had enough propensity to adhere, causing some of them to die and float in the 

medium or precipitate on the sides of the plates. To make sure that the results obtained from the 

experiments would be comparable for all types of substrates, we measured the cell concentration one 

day after they were seeded. Within one day the cells should adhere and little to no proliferation should 

occur. Five plates containing 1.2 mg/ml Fe3O4, 3.0 mg/ml Fe3O4, 4.8 mg/ml Fe3O4, plain carbon, and 

poly-D-lysine cover slips were prepared for testing. On day 0, we counted the amount of cells in the 

confluent dish twice. The results were 129*104 cells/ml and 148*104 cells/ml. Taking the average we 

used 138.5*104 cells/ml of concentrated stock cell solution. The final seeding concentration for the 

carbon-based substrates was 9*104 cells/ml. Therefore the amount of stock cell solution used was 0.180 

ml along with 2.820 ml medium to obtain a final volume of 3 ml. Since the the poly-D-lysine cover slips 

were 1.5 times as less in surface area, their concentration needed to be 6*104 cells/ml. To obtain 6*104 

cells/ml a volume of the stock cell solution of 0.09 ml was required and 1.909 ml PC-12 medium for a 

final volume of 2 ml. The cells were let to adhere overnight. On day 1, the media was aspirated out and 

the cells were treated with 0.5 ml trypsin solution. They were let to sit in trypsin solution for 10 min to 

allow cells to detach. Then the trypsin-cell solution was mixed vigorously for another 3 min using a 

pipette. Another 0.5 ml medium was added. The solution was mixed and its concentration was 

measured using a Neubauer slide, a counting chamber which allows for a fairly accurate cell counting. 

4.3 Film Characterization 

4.3.1 Roughness: AFM 

The AFM was operated by graduate student Sena Ada, who is certified to use the equipment. The 

samples we wanted to have tested were selected, looking for the most optimal surface finishes; since 

we would only be able to scan one image, the best was to be chosen. Once selected, the sample was to 

be mounted onto a glass slide with a small piece of double sided tape. Mounted, the sample was loaded 

into the AFM, which was already prepared with an Olympus AC160TS probe (made from Si, it has a 

thickness of 4.6 μm while being 50μm wide and 160μm long a tetrahedral tip of 11 μm in length and a 

tip radius of <10 nm, a factory determined spring constant of 42 N/m, measured and calibrated to 45.94 

N/m in the WPI AFM). 54 
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Figure 8: A manufacturer's diagram of the probe's geometry 

As the sample was loaded, the cantilever was positioned over the sample and the laser, used for 

displacement measurement, was aligned accordingly. This was verified on-screen, as we could see the 

tip of the cantilever as well as the sample. From here, Sena loaded a pre-written parameter profile for 

the AFM, loaded in the proper spring constant and image size (20μm x 20μm), and started to scan the 

material. In order for the AFM to produce good results, we had to set the drive frequency (as the 

tapping mode requires the tip to oscillate at its resonance frequency, and find a suitable scan rate. The 

frequency was set to 321 kHz, and the scan took place at 4 Hz. While these settings were suitable, the 

controlling parameters needed to be fine-tuned in order to get clear, interpretable data. As the 

apparatus has a slew of controllers, the motion of the AFM probe is adjusted through a PID controller; 

once the AFM traces in one direction, it re-traces the same line, in order to get redundant data to check. 

If the magnitude of the constants for the proportional, integral or differential feedback equations are 

incorrect, it will manifest as the re-trace curve being mismatched to the original trace, and will result in 

a blurry, difficult-to-interpret image. Once the integral constant was tuned, each image was scanned, 

and resulted in two types of images; a height-based image and an amplitude-based image. 

Height imaging is the most common way to collect the data. From the height images, section and 

roughness analysis can be done; these give quantitative results. As the tip moves across the surface, the 

probe is either retracted or extended (based on the topography of the surface) to maintain constant 

oscillation amplitude. The distance that the piezoelectric tube, which the sample sits upon, travels in the 

z direction is height; it is moved to maintain the oscillation amplitude. The data for height images are 

obtained based on this information, which are then analyzed and used to obtain physical data, such as 

roughness. 

In amplitude imaging, the change in amplitude relative to the amplitude set point is collected. The 

topographical image (height image) gives the most quantitative data of the sample but it is low 

resolution compared to the amplitude image. Amplitude images are, in comparison, very high 
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resolution, where nanometer size structures can be seen easily. This mode of imaging is preferred to 

observe the fine details on the surface of the sample, but only as qualitative information.55 

4.3.2 SEM Imaging 

The observations of the morphology of samples were performed using a JSM-7000F (JEOL) scanning 

electron microscopy (SEM). There is no need for any special process to prepare the sample; just placing 

the samples into the SEM sample chamber, choosing the magnification, focusing the image, and then 

taking the pictures. The SEM found in the Mechanical Engineering department is to be be used on a 

scheduled basis by a trained and qualified operator. 

4.3.3 Cyclic Voltammetry 

The potentiostat was turned on. Each substrate was cut at 1x1 cm squares and placed in the 

electrochemical cell. The two parts of the cell were screwed together preventing the substrate from 

moving. 1 ml K3[Fe(CN)6] solution was added on the substrate and the three electrodes were placed in 

their respective positions, staying soaked in the iron cyanide solution in contact with the substrate. The 

software available for the CV allowed the measurements of current vs. electric potential to occur. An 

electric potential span between -0.3V and 0.7V is measured. When the potential changes from 0.7V to -

0.3V the surface is reduced and the peak occurs at around 0.18V. The oxidation graph shows a 

maximum while the reduction graph shows a minimum. 

4.3.4 Surface Energy 

Surface energy was measured using the goniometer. The sample was placed on an elevated stand with a 

camera facing the side of the surface. A small pump was used to transfer water from a beaker to a 

graduated dispenser which was programmed to hold the amount we specified in the computer 

software. The total amount we used was 500µl. The tube that passed through the pump sucked on one 

side water from a small beaker and placed it into the dispenser. The other side of the tube connected 

the dispenser to a 20µl pipette tip placed about 1 inch above the stand. In the software we specified the 

water ejection volume to be 2µl. Hence a 2µl water droplet would be slowly placed on the surface of 

interest. The camera would output the view into the computer which would in turn track the contrast  

between the background and the water droplet on the surface and by drawing tangents would measure 

two contact angles for each side of the drop and average them. About 6 drops, i.e. 6 measurements 

were obtained for each sample. Based on the contact angle results a qualitative conclusion can be 

obtained about the surface energy of each sample. 

 

 

 

  

                                                             
55 (Ada, 2010) 
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5 Results and Discussion 
The analysis of the different concentrations of magnetite nanoparticles based carbon substrates 

consisted of two different types of tests. In the cellular level it was determined whether the increase in 

nanoparticles concentration causes any change in nerve proliferation and differentiation. In the material 

characterization level the experiments tested for trends in surface energy, roughness, and electrical 

conductivity. 

5.1 Cell Assay Tests 
To quantify the differences between the samples in the cellular level a cellular adhesion assay was 

performed one day after the cells seeded onto the materials. 

5.1.1 Cell Adhesion Test 

The total number of cells was determined for the five types of substrates and the results are plotted in 

Figure 9, as shown. 

 

Figure 9: Average number of cells adhered on day 1 compared to the seeding number of cells on day 0 (PL stands for the 
poly-D-lysine coated cover slips, PC stands for plain carbon) 

The seeding concentration as explained in the methodology was 5*104 cells/cm2. This number was 

converted to a total number of cells based on a 1 ml volume. Since the poly-D-lysine coated cover slips 

had a smaller surface area, the seeding number of cells was 12*104 as opposed to 18*104 cells for the 

carbon based substrates. Two observations can be made based on the graph. When compared to poly-

D-lysine coated cover slips, PC-12 cells have a noticeably greater affinity for the carbon-based 

substrates. The lower average number of cells on day 1 for poly-D-lysine is due to the fact that one day 

is not enough for all the cells to adhere. Therefore some cells were aspirated out before treatment with 

trypsin, and hence before the cell counting process. The second observation regards the comparison of 
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all the three magnetite doped carbon substrates. As it can be seen from the graph, there is a trend of 

increased cell proliferation as the concentration of magnetite nanoparticles increases. The plain carbon 

coated substrates, unpredictably, have a greater cell proliferation effect compared to the 1.2 mg/ml 

magnetite based wafer. PC-12 cells have at least 4 times greater affinity than the carbon based 

substrates. The magnetite doped substrate at a concentration of 4.8 mg/ml nanoparticle solution shows 

about 15% greater affinity than plain carbon in terms of cell growth.  

5.1.2 PC-12 Culture on Substrates (no NGF added) 

In addition to their proliferation affinity, the samples were also tested for their ability to promote 

differentiation. About 200 cells per type were chosen randomly and the average neurite length was 

measured. The results are shown in Figure 10. 

 

Figure 10: The average length of neurites for all the different substrates (no NGF added). PL refers to poly-D-lysine. PC refers 
to plain carbon. 

Based on the graph it can be concluded that the carbon based substrates represent a significant 

improvement compared to the common poly-D-lysine cell culture experiments in terms of neuronal 

differentiation. There also seems to be a direct relationship between the concentrations of magnetite 

nanoparticles to neurite length. Larger concentrations of nanoparticle solutions demonstrate particular 

interest for further experimentation. Figure 10 gives a representation of the cells attached to each of 

the substrates. The results about the neurite length can be certainly noticed in the representative 

picture. The neurite length is larger for the carbon substrate with 4.8 mg/ml magnetite concentration 

solution. 
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Figure 11: Neurite length pics selected for each of the different substrate concentrations. 

5.1.3 PC-12 Culture on Substrates (NGF added) 

The analysis of neurite length for the NGF cultured PC-12 cells was particularly challenging because, due 

to their reaction with NGF, most neurites were quite long and often intertwined with the neurites of 

neighboring cells. Hence it was difficult to tell the difference. There was also a great variety of lengths, 

starting from the very small ones to the extremely large ones. Averaging all the numbers generated the 

results in Figure 14. 
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Figure 12: The average length of neurites for all the different substrates during the differentiated case (NGF added). PL refers 
to poly-D-lysine. PC refers to plain carbon. 

Although on average it seems that the sample at 1.2 mg/ml magnetite solution concentration generated 

the longest length, we are hardly able to draw any strong conclusions regarding the difference in cell 

behavior due to the large inaccuracy, particularly because of the challenge previously mentioned. Our 

main conclusion in this case is that NGF sees no difference when reacting with the carbon-based 

samples as opposed to the poly-D-lysine cover slip. Hence, our sample does not interfere with NGF’s 

activity. 
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Figure 13: Neurite length pictures selected for each of the different substrate concentrations 

5.2 Material Characterization 
The characterization of the material is highly important because it might give insight into the effects of 

the physical and chemical properties on cells and their life cycle. For our project we aimed at surface 

energy, roughness, and electrical conductivity. To test these characteristics, three equipment were used 

respectively, the goniometer, the atomic force microscope, and the cyclic voltammeter. 

5.2.1 Surface Energy 

The contact angle was tested with water considering that human cells float in a sea of water and the 

growth media used are water based. A lower surface energy corresponds to a more round droplet 

because the water-air energy dominates as opposed to the water-surface energy. A more round droplet 

is characterized by a larger contact angle. The results of the experiment are shown in Figure 14. 



38 
 

 

Figure 14: The contact angle between a water droplet and the respective carbon substrate (PC represents plain carbon) 

Although no difference is noticed between the three concentrations of iron oxide in the contact angle, it 

is evident that the contact angle for the plain carbon surface compared to the nanoparticle-based 

surfaces is greater. In terms of surface energy, the iron oxide-nanoparticle substrates contain more 

surface energy than the plain carbon. There is a subtle decrease in 4.8 mg/ml Fe3O4 compared to 1.2 

and 3.0 mg/ml which could be more noticeable at higher concentrations. However, comparing to the 

results from the cell culture assays, there is no obvious relationship between surface energy and cell 

growth/differentiation. 

5.2.2 Roughness 

The roughness of the surface was determined using the atomic force microscope located in the ground 

floor of Gateway Park. Figure 15 shows the elevation as a function of position x and y for all four carbon 

surfaces. 
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The area set for analysis was 20µm x 20µm. The program that operated the AFM generated the root 

Figure 15: AFM pictures for all the carbon substrates 
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mean squared values (RMS) which determined the roughness of each sample. The results are plotted 

graphically in Figure 16 as a better means of comparison. 

 

Figure 16: RMS values of the surface elevation for all carbon-based substrates obtained using the AFM. The RMS value 
represents the roughness of the material. 

The increase in concentration shows an obvious increase in surface roughness. In terms of results, we 

can clearly see a trend between the adhesion of the cells and the roughness of the surface. While this 

has been proven in previous experimentation, the next step would be to try larger, more widespread 

variation of nanoparticles concentration in order to see how the relationship works: if we are able to 

find an empirical equation (i.e, the number of cells that adhere and the roughness are related linearly 

until a certain point, as other sources suggest), we can find this optimal roughness, calculate what 

concentration of nanoparticles could achive this, and fabricate using this number. From here, we can see 

what, exactly, the neurons do. 

5.2.3 Cyclic Voltammetry 

The property of electrical conductivity can be analyzed using the current vs. electric potential graphs. 

The higher peaks are an indication of the higher conductivity of a material. Based on this factor, after 

looking at the results in Figure 17, greater concentrations of magnetite allow for greater surface 

conductivity. 
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Figure 17: CV results for the four different carbon based substrates 

The first observation that can be made from figure 16 is that all carbon samples are conductive. A non 

conductive material would show a straight horizontal line with 0 ordinate. The plain carbon sample 

generated an unusual shape as it has been extracted in figure 17. Hardly any peak is observed, they are 

not at the optimal potentials of 0.18 and 0.22 V. 

 

Figure 18: CV results for plain carbon alone 
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The 1.2 mg/ml magnetite concentration sample generated two peaks, one at 0.07 V and the other at 

0.43 V. The material is conductive but since the peaks are not as sharp compared to the other results, it 

is not greatly conductive. The result is extracted in figure 18. 

 

Figure 19: Results for the 1.2 mg/ml magnetite sample only 

The 3.0 mg/ml magnetite concentration sample generated two obvious peaks, one at 0.03 V and the 

other at 0.37 V. Compared to 1.2 mg/ml and plain carbon, the peaks are much closer to the desired 

potential peaks of 0.18 V and 0.22 V. As it is shown in figure 19, they are also much sharper and at a 

greater current span. 

 

Figure 20: CV Results for the 3.0 mg/ml magnetite sample only 
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The 4.8 mg/ml magnetite sample generated two peaks, one at 0.11 V and the other at 0.35 V as shown 

in Figure 20. This sample generated the best results in terms of sharpness or current span and the 

reduction and oxidation peaks are much closer together than the previous three samples. 

 

Figure 21: CV Results for 4.8 mg/ml magnetite sample only 

5.2.4 SEM Imaging 

SEM Imaging provides a qualitative rather than quantitative analysis of the material properties. This 

analysis is in itself very accurate due to the microscope’s large precision. We are able to get a good idea 

of the physio-chemical properties of the material through the other tests that are run; however, much 

of the neuron-material interaction is physical, and having the proper images can lead us to 

understanding the particulars of the physical contact made between the two species. From the previous 

testing, we understand that the cells tend to propagate and adhere better to the Fe3O4 samples; we also 

know that the surface gets rougher as the concentration of magnetite increases. With this in mind, the 

samples are imaged, the results in Figure 22. 
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Figure 22: SEM pictures for plain carbon (top left), 1.2 mg/ml magnetite (top right), 3.0 mg/ml magnetite (bottom left), 4.8 
mg/ml magnetite (bottom right) 

 
The images obtained clearly show an increase in surface phenomena with an increase in concentration 

of magnetite. While this has already been discovered with the amplitude images found during the AFM 

analysis, it is the level of detail that we get with the SEM that sheds light on what these phenomena are. 

The first step is to differentiate between the plain carbon samples from the magnetite doped one, in 

terms of surface phenomena. From the images, we see lighter spots, seeming made up of small dots, on 

numbers two, three and four. Additionally, we have the darker, corrosion-like spots, and their density 

increases with the concentration of magnetite. These two phenomena are seen on the magnetite doped 

samples, exclusively. 

 
First, the lighter particles seem to be either on the surface (as seen on the bottom right corner of the #2 

sample; the outline of the white can be more clearly seen) or underneath the surface (as seen in the top 

left corner of sample #3). This alludes to the phenomena being particulate, which gives the sense that 

these are clumps of nanoparticles that are on or underneath the surface. However, these could also be 

something entirely different; this explanation uses the darker phenomena, which requires a closer view. 
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Using a close‐up view at 25,000X magnification of the corrosion‐like phenomena, shown in Figure 23, we 

can see bits of the lighter phenomena in the upper right hand corner. 

 

 

Figure 23: 25,000X magnification of one of the surfaces showing the corrosion‐like phenomenon 

In terms of the darker phenomena, it is difficult to tell weather this is a depression into the material or, 

rather, something that is raised off of the surface. From the AFM roughness data, we were lead to 

believe that these were extruded from the surface. One explanation can explain both; the darker 

appearance (a recession in the material) and the extruded phenomena (out of the surface). 

Take the lighter phenomena we had seen; we have claimed it is slightly underneath the surface. 

Consider that the lighter spots are bubble; thee surface appears lighter as there is something 

underneath or the surface has been deformed outwardly due to some internal pressure. The darker 

phenomena look like recessions, almost etched or corroded away. It is possible that the darker spots are 

where a bubble had formed and, instead of staying underneath the surface, it had popped. Because the 

surface had been stretched out, it appears to be higher than the rest of the surface, whereas the inside 

is slightly lower than the rest of the surface. The idea that the dark phenomena is the inner part of the 
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surface in interesting, especially given the web of material that we see. The origin of the bubble is 

unknown, but consider the process of pyrolysis: we are taking carbon, doped with magnetite, and 

heating it to 1000°C. The magnetite has a higher heat capacity than the carbon, and will ultimately be 

hot longer. If the nanoparticles retain heat after the carbon cools, perhaps some epoxy around this hot 

mass of nanoparticles is still burning off, but trapped underneath the surface. Thus, while cooling, 

bubble form underneath the surface. The more nanoparticles, the more sites for this, therefore  the 

more phenomena. If the pressure is too high in the bubble, they burst. This explanation does correlate 

with what we see with the SEM data. 

The internal surface does not look like that of the surface for plain carbon, as it is flat and plain, but is 

rather twisted. We believe that these are the genesis of carbon nanotubes. Nanotubes are commonly 

formed by the activation of carbon over precious metals, alloys, and even iron oxides. The particles act 

as a catalyst for their formation. A picture of these nanotubes, taken from a UCLA report, shows the 

nanotubes formation. 

 

Figure 24: Carbon nanotubes fabricated over a precious metal catalyst. 

While this cannot be determined by analytical tools we had available during the scope ofthis project, it 

would be interesting to test and see nanotubes could be produced in such a fashion, or if we are simply 

seeing the inner carbon being less compacted and still retaining a folded, epoxy shape. Either way, the 

exact surface phenomenon is unknown, but does open up interesting possibilities that can, and should, 

be further analyzed. 
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6 Conclusions and Recommendations 
The experimentation done over the duration of this project has yielded significant data, enabling us to 

conclude that our engineered material promotes the proliferation of PC-12 cells, as well as showing 

physical and chemical properties that correlate with the concentration of the magnetite nanoparticles. 

The results of the material testing that the substrates underwent largely correlated with the amount of 

nanoparticles that we had doped the surface with.  

The cyclic voltammetry testing is a good and clear indication of the electrical conductivity of the 

material. The higher and closer to the origin the peaks occur at, the more conductive the surface is. 

There is a clear trend, with the resulting shape, that indicates the superior conductivity of the 

magnetite-doped surface; while an insulating material would show a completely flat line, the plain 

carbon, the least conductive of the materials, is the closest to being flat, with the peaks of the doped 

materials becoming larger as concentration increased. This is strong, supporting evidence that the 

concentration of the MNPs are accurate, as the electricity is able to flow between the magnetite, a 

better conductor then the carbon, thus reducing the resistance given by the material. This shows that, 

even after pyrolysis, the magnetite is present in the material in concentrations reflective of the amount 

seeded during spin coating. This shows that either the magnetite is lost at a constant rate during 

pyrolysis, or that the magnetite is retained as the epoxy is pyrolyzed, with little to none being lost. Either 

way, this observation validates the pyrolysis procedure as a repeatable, controlled step in our 

fabrication process. 

The surface energy measurements offer both a quantitative and qualitative representation of the 

surfaces in terms of their respective energies. The lower contact angle for all of the doped samples leads 

us to believe that, while the surface energy is increased by the presence of the nanoparticles, the 

concentrations that we tested were either too closely spaced to show a significant difference, or we are 

approaching the asymptote at which the surface energy can be increased by magnetite as a surface 

additive.  

The RMS roughness analysis showed a clear increase in the surface roughness of the substrates with an 

increased concentration of magnetic nanoparticles. While the AFM images did show an increase in the 

number of surface phenomena, it was the height of the differences that weighed most heavily on the 

roughness analysis. The increased number of nanoparticles on a surface leads to and increased height 

that the surface phenomena achieve; as the surface phenomena seems to be created as a result of 

carbon being activated over the MNPs during pyrolysis, the higher concentrations not only increase the 

number, but also the magnitude, heavily suggesting the dependence of the phenomena on the MNPs. 

The SEM images, while being qualitative, show a definite increase in the surface phenomena. Coupled 

with the AFM images, we can project that the height of these phenomena are also larger. Research has 

been done dealing with the catalysis of carbon nanotubes over precious metals, as well as other metallic 

compounds, one of which being iron oxide, including magnetite. While not the best catalyst, it is still 

able to produce nanotubes. While the sub-structure inside the phenomena is unknown, they do appear 

to be carbon, constructed in a web-like fashion which could be a precursor to these nanotubes. 
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However, more detailed SEM images, as well as isolation and characterization of these structures must 

be carried out to confirm exactly what this substructure is, and its composition, with any certainty. 

The neuronal cell testing done has led for us to conclude that the amount of MNPs affects the rate of 

cell proliferation. The cell adhesion test and non-NGF trials show that the doped surfaces perform better 

than the laboratory-standard poly-D-lysine coated glass. While the protein has been formulated for cell 

adhesion, the properties of our substrate appear to be beneficial to cell adhesion and proliferation. 

However, the advantages of this material seem to be negated once the system is introduced to NGF; 

once added, the cells show no difference between the doped and non-doped surfaces. 

While the scope of this project has been large, the next steps that can be taken would further validate 

the data found within this project, but also explore the potential of this substrate as a true base for 

neuron culture. First, the concentrations of the magnetite nanoparticles should be used on a larger scale 

to see the long-range, edge-of-the-envelope scenarios, and the implications on the physical and 

chemical properties. Testing small amounts could lead to a threshold value of how many MNPs need to 

be added before changes in roughness, electrical conductivity and surface energy can be seen, and, on 

the other side of the spectrum, how many MNPs are needed to reach the limit of our measurable 

parameters. As we have identified these variables, such as roughness, as important factors, we advise 

the testing of other materials, such as plastics or mineral-doped zeolytes, for cell culture, to see if a 

material characteristic is constant over a wide range of materials; from these observations, the carbon 

surface can be tuned to the most beneficial found value through the fabrication process. Once an ideal 

material has been found and can be created, taking advantage of the UV-active property of the epoxy 

and using photolithography to create a pattern could potentially lead to neuronal guidance, having the 

neurons grow into a pre-planned network that could ultimately be utilized for a biomedical application. 

In terms of cells, additional types of neuron cells should be tested. While PC-12 cells are a good 

reflection of a human neuron may do, we must look to see if other cells will act the same way. The first 

step would be the utilization of dorsal root ganglia (DRG) cells. Being part of the peripheral nervous 

system, they are primary neurons that transmit information directly from the CNS, usually the spinal 

cord. DRG cells are found in all mammals, however, in the lab at UMass Medical School, they are 

extracted through the dissection of a chick’s embryo. The next steps up in terms of complexity are stem 

cells, commonly those coming from the bone marrow. These undifferentiated human cells can be 

instructed to differentiate into CNS neurons as long as the necessary growth factors are provided. This 

material, based on the ability to guide cells, could prove the key to creating a controlled network of 

human nerve cells that could be used for nervous system repair, as well as a staging area for the cells to 

grow while in the body. 

One of the most exciting current research topics consists in discovering the mechanism, the pathway 

that a neurite follows when extending and what changes when it then differentiates into an axon with 

no further growing capabilities. Such a discovery would lead to novel approaches to neuroregenerative 

medicine. This is one of the main factors behind the motivation for the design of the available substrate 

for nerve cell growth.  
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8 Appendix 

8.1 Supplemental Thoughts on Experimentation 

8.1.1 Pyrolysis Furnace 

Controller for the furnace used for the pyrolysis, while tuned for a heating rate of 2°C, will not follow the 

heating slope exactly. The furnace will be activated when the set point temperature (the green numbers 

on the thermocouple controller labeled SP) is five degrees higher than the actual measured temperature 

(the large, red numbers on the thermocouple controller), and the activation will be noted by a small red 

dot appearing next to the “out” indicator on the bottom left corner of the thermocouple controller. It 

will then stop actively heating the tube when the measured (red number) temperature is five degrees 

above the set point (green number) temperature. However, the temperature will overshoot the set 

point by almost 40 degrees each time; the impulse of heat that the tube takes over the short period of 

time is enough to heat the entire tube well above the set point, and is well-insulated enough that the 

temperature does not drop any significant amount. While not an ideal temperature ramp, it is 

consistent with all previous experimentation done with the furnace.  

8.1.2 Oxidation of the Magnetite of the carbon surface 

During the pyrolysis procedure, the quartz chamber utilized to heat the substrates is flooded with 

nitrogen gas. The gas, compressed in a standard cylinder, is passed through a regulator and then 

controlled with a rotameter inside the hood, graduated every five standard cubic centimeters per 

minute (SCCM), ranging from zero to one hundred. The nitrogen is, as stated before, used to create an 

inert environment for the individual substrates to be heated in. The procedure calls for excess nitrogen, 

which has been established at 100 SCCM. If the flowrate is raised above 100 SCCM, one can hear the 

nitrogen escaping out of the outlet of the tube. This ensures that there is, indeed, only nitrogen in the 

vessel. 

 

There were two runs where the flowrate of nitrogen to the quartz vessel was not maintained to be at or 

above 100 SCCM; one due to a leak in the regulator setup (resulting in the depletion of all nitrogen in 

the tank) and one run where the nitrogen flowrate was set to 30 SCCM after it had reached the 1000 C 

mark and the heating element was turned off for cooling. Both of these runs were carried out ceteris 

paribus with all other runs, including the location and order of the sleds. Both of these runs produced 

samples with a light red powder coating the surface. Upon wiping away the powder, either a dull matte 

finish was found on the carbon or it revealed the bare silicone wafer, neither of which were suitable for 

cellular evaluation.  These are pictured below, in Figure 25. 
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Figure 25: A selected representation of the samples during the low-nitrogen run. From left to right: Plain Carbon, FeO 0.2, 

FeO 0.5 and FeO 0.8. 

 
Figure 26: Pictures of substrates with greater detail. Clockwise from top left: FeO 0.2, FeO 0.5 shows a very thin layer over 

the whole surface, Fe 0.8 with a thin layer that follows the pattern from spin coating, and an FeO 0.5 sample with the 
powder wiped off of one side: notice the ease of release with the fingerprint markings on the right side. 

 
While the characterization of the red-orange powder is not under the scope of this project’s analysis, 

one would believe that it is the product of the oxidation of the Fe3O4 magnetite nanoparticles to the 

gamma phase of ferric oxide, γ-Fe2O3, also known as iron (III) oxide and more commonly red iron 

oxide56; the oxidation of magnetite to gamma-ferric oxide has been seen and documented in the field of 

metallurgy as early as 1968.57 Gamma ferric oxide is commonly seen in a red-orange powder and is 

known to oxidize from magnetite (and other forms of Fe3O4) at high temperatures with the presence of 

oxygen. During normal pyrolysis procedures, the nitrogen flowrate is maintained, ruling out the 

                                                             
56 (Cornell, 1996) 
57

 (Gallagher, 1968) 
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possibility of a substantial amount of oxygen being present.58 However, the reduced flowrate leads us to 

believe that oxygen was not kept out of the quartz vessel during the cool down of the quartz tube. 

When we look at the samples themselves, as seen in the pictures, no red powder is found on the plain 

carbon substrates, and there appears to be more red powder on the substrates with higher 

concentrations of magnetite nanoparticles, though a quantitative analysis was not performed. 

 

It is believed that the lack of nitrogen decreased the pressure on the nitrogen side of the tube, as there 

was little to no flow of nitrogen to the vessel. There is, however, the outlet vent, which is under a hood 

ventilated at a rate of 181 fpm. Due to the decreased pressure on the nitrogen side, the air from the 

hood could flow into the vessel, introducing oxygen to the substrates. While the magnetite 

nanoparticles will modify the carbon surface during the pyrolysis, acting as a catalyst to change the 

surface morphology into complex carbon fibers, they could exist on the surface, especially as the 

mechanism of where and how the nanoparticles travel during the pyrolysis procedure is largely 

unknown, and therefore exist on the surface and interact with the oxygen. With the presence of oxygen 

(from the decreased pressure on the nitrogen side) and the elevated temperatures of the normal 

pyrolysis procedure, the red powder is believed to be γ-Fe2O3.  

8.1.3 Imaging Procedure 

The imaging process can be undertaken 24 hours after the substrates have been prepared for imaging. 

This time is required for the mounting media to set and be unobtrusive to the images. The microscope is 

a Nikon Eclipse E600, fitted with an RT Color SPOT camera, hooked up to a Windows 98 PC via dual serial 

port connections. The software used, SPOT, can be found on the desktop, and can be opened up first. 

To ensure the longevity of the bulb for the microscope, one must check to see if it has seen on recently; 

it requires a 20 minute cool-down period. The black heat sink higher up (farthest away from the desk) on 

the backside of the microscope should be felt for heat. If it is still dissipating heat, wait until it is nearly 

room temperature; also, look for any notes around the keyboard or microscope controls that tell the last 

time it was used. 

Once cool, two switches must be flipped; one on the SPOT power supply (for the camera) as well as the 

bulb power supply, labeled MERCURY-100W. These should be flipped and left on ten minutes prior to 

the taking of pictures. Again, this is for the longevity of the bulb used. 

For our purposes, the microscope is used in a "clean" configuration; the darkening filters (found behind 

and to the left of the binoculars; black, rectangular plastic pieces labeled N4. N8 and N16) should be 

pulled out, as well as the filters on the right side of the microscope, located behind the positioning 

control stick. There are three chrome cylinders; they should not be pushed in. If they are, depressing the 

black lever directly above the engaged cylinder will release it. Once the microscope is ready, we can load 

a sample and begin the photography process. To load the sample, simply take the slide and place it in 

the slide holder.  

                                                             
58 (Feitknecht, 1970) 
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The substrates, opaque, cannot be seen through normal microscopy, so we will use fluorescent light in 

order to capture the correct images. The DiI dye is florescent, and will show in the presence of green 

light. To filer this light, there is a slider directly below the binoculars on the front plate: it can slide 

between settings 1-4. The green light is setting three, with the other spectrums available. 

Once the filter is selected for the correct light color, the cells can be viewed through any of the 10X, 20X, 

or 40X lens. After the lens is positioned, use the position control stick to travel longitudinally and 

latitudinal across the sample. Once the lens is over the substrate, we can open the shutter, the small 

circular control on the front panel. The shutter should be left closed at all times, unless tracing and 

finding a good area or taking the photograph. Once open, you will see the green light on the surface of 

the substrate. From here, ensure the horizontal pull bar next to the binoculars is pushed in, allowing all 

of the light to go to the binoculars. Lastly, one must focus the microscope on the cells. This can be done 

with the rough and fine knobs on the side of the microscope. 

Once the cells to be imaged are aligned in the center of the sight, the shutter can be closed, the 

horizontal pull bar is pulled all the way out, to let light go to the camera and the shutter reopened. By 

striking F9 in SPOT, or going to Image -> Obtain Image, the picture will command the camera as 

determined in the exposure profile. The exposure profile can be tweaked and modified; this can be 

found through the menus. However, we have found that the ZZ-red and WPI templates were both 

adequate for capturing good data. 


