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ABSTRACT 
 
A common problem when running Web-based applications is how to scale-up the 

database. The solution to this problem usually involves having a smart Database 

Administrator determine how to spread the database tables out amongst computers that 

will work in parallel. Laying out database tables across multiple machines so they can act 

together as a single efficient database is hard. Automated methods are needed to help 

eliminate the time required for database administrators to create optimal configurations. 

There are four operators that we consider that can create a search space of possible 

database layouts: 1) denormalizing, 2) horizontally partitioning, 3) vertically partitioning, 

and 4) fully replicating. Textbooks offer general advice that is useful for dealing with 

extreme cases - for instance you should fully replicate a table if the level of insert to 

selects is close to zero. But even this seemingly obvious statement is not necessarily one 

that will lead to a speed up once you take into account that some nodes might be a bottle 

neck. There can be complex interactions between the 4 different operators which make it 

even more difficult to predict what the best thing to do is. 

Instead of using best practices to do database layout, we need a system that 

collects empirical data on when these 4 different operators are effective. We have 

implemented a state based search technique to try different operators, and then we used 

the empirically measured data to see if any speed up occurred. We recognized that the 

costs of creating the physical database layout are potentially large, but it is necessary 

since we want to know the "Ground Truth" about what is effective and under what 

conditions. After creating a dataset where these four different operators have been 

applied to make different databases, we can employ machine learning to induce rules to 
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help govern the physical design of the database across an arbitrary number of computer 

nodes. This learning process, in turn, would allow the database placement algorithm to 

get better over time as it trains over a set of examples. What this algorithm calls for is 

that it will try to learn 1) “What is a good database layout for a particular application 

given a query workload?” and 2) “Can this algorithm automatically improve itself in 

making recommendations by using machine learned rules to try to generalize when it 

makes sense to apply each of these operators?” 

There has been considerable research done in parallelizing databases where large 

amounts of data are shipped from one node to another to answer a single query. 

Sometimes the costs of shipping the data back and forth might be high, so in this work we 

assume that it might be more efficient to create a database layout where each query can 

be answered by a single node. To make this assumption requires that all the incoming 

query templates are known beforehand. This requirement can easily be satisfied in the 

case of a Web-based application due to the characteristic that users typically interact with 

the system through a web interface such as web forms. In this case, unseen queries are 

not necessarily answerable, without first possibly reconstructing the data on a single 

machine. Prior knowledge of these exact query templates allows us to select the best 

possible database table placements across multiple nodes. But in the case of trying to 

improve the efficiency of a Web-based application, a web site provider might feel that 

they are willing to suffer the inconvenience of not being able to answer an arbitrary 

query, if they are in turn provided with a system that runs more efficiently. 
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1. Introduction 
 

1.1.  Motivation 
 

Nowadays, Database Administrators have to be familiar with multiple available data 

stores to select the best fit for their Web-based applications. Upon a successful selection, 

scalability issues related to the database could be a possible bottleneck of the system. 

Especially, if the requests are distributed among multiple database servers that could lead 

to slow response time or a possible system crash. Scalability issues and their possible 

solutions should be automatically addressed without spending an enormous amount of 

time on investigating the database structure or investing into expensive hardware 

solutions. 

We propose a rule-based distributed database design framework that has a novel 

assumption: we can increase the total throughput of a Web-based application by 

automatically creating database configurations that are capable of answering each of the 

incoming query templates using a single node. For example, if Q1: ”SELECT * from T1” 

and Q2: “SELECT * from T1 WHERE id=12” are two different query templates and 

table T1 is partitioned based on key “id”, then we can answer Q1 template using a single 

node because it has the right partitioning key in the “WHERE” clause. We conceptualize 

the database layout problem as a state space search problem. A state is a given 

assignment of tables to computer servers. We begin with a database and collect, for use 

as a workload input, a sequence of queries that were executed during normal usage of the 

database. The operators in the search are to fully replicate, horizontally partition, 

vertically partition, and denormalize a table. We do a time intensive search over different 
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table layouts, and at each iteration, physically create the configurations, and evaluate the 

total throughput of the system. To make this search more practical, we want to learn 

reasonable rules to guide the search to eliminate many layout configurations that are not 

likely to succeed. There can be complex interactions between the four different operators 

which make it even more difficult to predict what the best way to do is. After collecting 

empirical data, we use the created configurations as input into a machine learning 

component, to predict when to use the different layout operators and to induce rules to 

help govern the physical design of the database across an arbitrary number of computer 

nodes.  

 

1.2.  The System 
 

This research was carried out with our implemented framework [42], a middleware 

architecture that is based on shared-nothing commodity hardware where each node has its 

own CPU, disk, RAM, and file system. We focused on a Web-based application where 

the workload consists of a fixed number of query templates. This means the system is not 

presented with ad-hoc and unexpected queries. According to our best knowledge, none of 

the existing systems specialize for Web-based applications, utilizing machine learned 

rules and consider the database layout problem as a state space search problem with the 

assumption that all the incoming queries should be answered by a single node. By 

characterizing the problem as a state space search over database layout configurations, 

the system iteratively minimizes the total cost of the workload creating different database 

layouts and increasing the total system throughput.  
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TPC-W [43], the Industry Standard eBusiness transactional web benchmark’s tables 

and query templates were used to generate different databases and to measure the 

response time of the implemented system. Its workload simulates the activities of a retail 

store website.  

 

1.3.  Research Questions 
 

This dissertation attempts to answer the following questions: 

1. What is a good database layout for a particular Web-based application given a query 

workload?   

2. Can our layout algorithm automatically make recommendations by using machine 

learning technique to try to generalize when it makes sense to apply each of these 

operators? 

3. Can we learn rules that are effective at speeding up the whole system? 

• How can we parameterize these rules for cut-off values? 

• What are the possible sets of important features that we need to take into 

consideration to learn a general rule? 

By rules we mean like: 

• “when the number of update/delete/insert queries on a table are small compared 

to the number of retrieval queries (e.g selects), then one should fully replicate”; 

• “if there is a wide table but a lot of read queries focused on a small set of columns 
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of the table, then one should vertically partition”; 

• “when the table size is large, then one should horizontally partition” 

4. If these rules are effective in general, then does this system become more efficient with 

laying out databases over time?  

• Can we make the search for layout for a new system more efficient over time? If 

the rules we learned are good, then we could use the rules themselves to bias a 

search for layout for a new database. 

 

1.4.  Contributions 
 

This dissertation makes four main contributions to the field of database design in 

computer science. The first contribution is a layout algorithm that is capable of 

determining a possible data placement based on the query templates, constraints, and the 

optimization goal using four operators (full replication, horizontal partitioning, vertical 

partitioning, denormalization) and arbitrary number of database servers answering each 

query by a single node.  

The second contribution concerns designing and developing a shared-nothing data 

replication framework for Web-based applications with state based search and machine 

learning components to predict when to choose between horizontal partitioning, vertical 

partitioning, denormalization or full replication layout operators. We collected empirical 

data that reflect trade-off values of the best practices to help the state space search to 

focus on creating layout configurations that could boost the performance of the 
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application. These data are the key to know the “ground truth” about what is effective and 

under what conditions. After collecting empirical data, where these four different 

operators have been applied, we used the created configurations as input into a machine 

learning technique.  

The third contribution is the machine learned rules to help govern the physical 

design of the database across an arbitrary number of computer nodes. These rules, in turn, 

allow the database placement algorithm to get better over time as it trains over a set of 

examples.  

Our fourth contribution is a comparative analysis of the trade-off values to be able 

to assign confidence values to each operator and determine their precedence as a 

“molecular structure”.   

 

1.4.1. Main Assumptions 
 

This thesis makes three fundamental assumptions: 

1) We know ahead of time every query template that could come to the system 

We focused on a Web-based application where the workload consists of a fixed number 

of query templates. This means the system is not presented with ad-hoc and unexpected 

queries. A characteristic of a web application such as Amazon (www.amazon.com), is 

that we know all the incoming query templates beforehand as the users typically interact 

with the system through a web interface [1]. The application logic executes the same 

hard-wired queries over and over again for the same web form request. 

2) We demand that each query will be answered by a single database node 
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The techniques described in this dissertation assume that the data is distributed on 

different database servers in such a manner that the requested information is answered by 

one database server. There is significant work that has studied scenarios without this 

constraint. Distributed databases and distributed query processing [49] have long studied 

how to process queries over data distributed across multiple nodes. However the 

constraint that any select query is answered by one database server is applicable to 

several applications, especially web applications where all the query templates are known 

beforehand (assumption 1). This constraint also greatly simplifies query processing and 

optimization, as no data needs to be exchanged between nodes. Therefore such a system 

has to only determine which database server needs to execute a query, and then the 

optimization and execution of the query proceeds on that server as if it were a non-

distributed database. 

3) Initial Data Distribution Policy: Tables will be fully replicated across all nodes 

As the start condition we fully replicate all tables across all database nodes and measure 

the response time of the system using the given workload. We compare all further 

measurements and layouts to this start distribution policy. This step is necessary to 

guarantee that we will always fulfill the second assumption by utilizing the benefits of the 

distributed infrastructure and by preventing the system from partitioning all tables under 

a single node.   
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Figure 1: The join-graph and the partitions 

 

An SQL join clause queries data from two or more tables, based upon the relationship 

between columns in the involved tables e.g. “SELECT * from user_details INNER JOIN 

class_assignments ON user_details.user_id = class_assignments.id WHERE 

class_assignments.id = X”. For example, the edge between user_details and 

class_assignments indicates the join relationship between the two tables  (see Figure 1). 

The join-graph is capable of identifying a group of tables as individual join partitions. 

Figure 1 shows one join-graph partition where class_assignment, problem_logs, 

sequences, and user_details are involved in joins. Each node of the graph is a table and 

each edge is a join relationship. Most of the applications have more than one join-graph 

partitions but there is no guarantee for that. If the application is highly coupled (has only 

one big partition), then the likelihood that one can find a single component, further 

partition that into smaller ones, and distribute the data across multiple nodes is small. 

According to our case-studies, most of the Web-based applications have one big partition 

and a couple of small individual ones. Appendix A shows our case-study results.  
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1.4.2. Minimizing the Response Time of a Web-based Application  
 

There are thousands of web applications (Amazon, eBay, etc.), and these systems need to 

figure out how to scale-up their performance. Distributing load across multiple 

application servers is fairly straightforward but distributing load (read, update, delete, and 

insert queries) across multiple database servers is more complex. Data partitioning is a 

time-consuming heavily used method for minimizing the response time of a Web-based 

application. Database Administrators (DBA) have to spend enormous time and energy to 

analyze data and come up with the right solutions to support more clients with adequate 

service response time. DBAs want to know how to adapt their systems to scale-up and 

achieve the best results. Researchers of cloud computing also want to understand how 

users interact with a Web-based system and how to generate database intensive input 

information. One of the applicable solutions is to build an expensive storage network that 

is capable of scaling up the backend. Unfortunately, this network does not guarantee that 

the backend of our Web-based application can be scaled-up to an expected limit. 

Moreover, the hardware cost of this setting can be high. It would be nice to know the 

application’s scaling possibilities beforehand and do the hardware investment thereafter. 

The second applicable but possible painful solutions is to abandon the relational models 

and port the SQL-based systems to a NoSQL database service and use one of the hybrid 

solutions [44][45][46][47].  This solution could lead to improvement but to be able to 

proceed DBAs have to have deep knowledge about data and information architecture of 

their system. Also, most of the NoSQL services do not support specific SQL keywords 

(e.g. join) or indexing strategies, and therefore the application code must be changed as 

well. 
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Choosing a good physical database design, using different operators, is an 

essential task for almost any automatic physical database design tools. Robust physical 

database design can have a great impact on the system performance.  Our solution gives a 

simple tool to the developers of Web-based technologies with relational databases. It can 

be easily built using low-cost existing resources to realize database-scaling possibilities 

without the necessary application porting or expensive storage area networks. Automatic 

physical database design tools mostly rely on “what-if” [9] that estimates the execution 

time of the queries and recommends adjustment of the layouts involving one of the 

partitioning operators based on that. Researchers in database technologies are interested 

in methods for exploiting system characteristics. A Microsoft Research paper “Query 

Optimizers: Time to Rethink the Contract?” [48] suggests revisiting the contract for 

query optimizers and to be able to gather additional information to achieve scalability 

from usage-based analysis e.g. search directives. Our framework applies state based 

search over database layouts and combines different partitioning guidelines utilizing full-

replication, horizontal and vertical partitioning, and denormalization operators.  

 

1.4.3. State Based Search over Database Layouts 
 

Database designs have been studied in the past [69, 70, 71, 72, 73, 74, 75]. By 

characterizing the problem as a state space search over database layout configurations, 

we iteratively minimize the total cost of the workload creating different database layouts 

and increase the total system throughput. Our optimization goal is to minimize the total 

system response time by figuring out how to best distribute the data. We do a time 

intensive search over different layouts, and each time, physically create the 
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configurations, and evaluate the response time of the system. A state is a given 

assignment of tables to computer servers and it represents the actual status of the system. 

The operators in the search are to fully replicate, horizontally partition, vertically 

partition, and denormalize a table. After each valid state creation the system measures the 

total response time of the system using the query workload to get actual performance 

measures from a real setup. Through our experiments and construction we used these real 

numbers in place of a possible estimator to demonstrate our algorithm’s functionality. 

The search over layouts can be very expensive and a possible virtual partitioning 

(Chapter 6.4) or a DBMS optimizer (like IBM DB2 [10]) can be used to predict numbers 

as a replacement black-box component for actual performance measures. However, 

entities trying to scale up their Web-based applications would be perfectly happy to 

prefer real run-time measurements over estimated ones and spend a few weeks of CPU 

time to increase their system throughput.  

We apply search algorithm where the idea is to always move towards a state that 

is better than the current one. If the state is not better than the current one (the total 

system response time is worse) we do not continue the search along that path.  The search 

terminates when no more states are left to be explored. We understand that heuristics 

searches converge to local minimums but this convergence is an acceptable compromise 

to achieve a faster search.  

 

1.4.4. Machine Learned Rules 
 

To reduce the time intensive search over layouts and to make this search more practical, 

we apply our reasonable determined rules to guide the search to eliminate many layout 
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configurations that are not likely to succeed. There can be complex interactions between 

the four different operators, which make it even more difficult to predict what the best 

way to do is. After collecting empirical data where these four different layout operators 

have been applied, we use the created configurations as input into a machine-learning 

component, to predict when to use them.  This learning, in turn, would allow the database 

placement algorithm to get better over time and reduce the execution time of a long 

running brute-force search. 

 

1.5.  Dissertation Outline 
 

The remainder of this dissertation is outlined as follows. Chapter 2 presents prior work on 

different frameworks: industry, academia research, and hybrid solutions. Chapter 3 

describes the problem statement, state space search, data placement algorithm, and 

partitioning methods. It introduces us to the world of possets and their graphical 

representations. Chapter 4 introduces the implemented framework and its components. It 

shows the complete workflow of the framework combined with performance evaluation 

using TPC-W industrial benchmark. Chapter 5 shows how we can determine trade-offs 

based on database best practices and presents the collected empirical data. Chapter 6 

introduces our machine learned rules, features, matrix models, ground truth, and the 

analysis of the model predictions. Chapter 7 performs a comparative analysis on the 

determined rules and it discusses a method how to vote on the best operator. It also 

connects the learned rules with best practices and shows how to create a representation of 

the operator precedence as a “molecular structure”.   
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2. Related Work 

 
This chapter describes prior work on industry and academia research. It also discusses 

hybrid data store solutions.  

 

2.1.  Overview 
 

Scaling up web applications requires distribution of load across multiple application 

servers and across multiple database servers. Distributing load across multiple application 

servers is fairly straightforward; however distributing load (select and UDI queries) 

across multiple database servers is more complex because of the synchronization 

requirements for multiple copies of the data. 

There are thousands of web applications, and these systems need to figure out how 

to scale up their performance [18]. Issues related to the distribution of requests among 

multiple database servers to decrease database server loads have stayed open. A 

characteristic of web applications is that all the incoming query templates are known 

beforehand as the users typically interact with the system through a web interface such as 

web forms [1]. Others have already tried to take advantage of this fact [1][17][14]. 

Knowing each query template in advance allows us to propose better solutions for 

balancing load across multiple servers in the scenario of web applications, above and 

beyond what is supported for traditional applications. Prior knowledge of all of the 

incoming query templates and the workload give us the ability to select an appropriate 

table placement where each query template can be answered with a single database 

server. 
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2.2.  Review of Industry Research 
 

While there has been work in the area of automating physical database design [7] [8] we 

are not aware of any work that addresses the problem of incorporating the full range of 

common operators (full replication, horizontal and vertical partitioning, and 

denormalization), and can learn rules to better partition a given database with multiple 

database nodes. 

For example, in [6] they automatically select an appropriate set of materialized 

views and indexes to optimize the physical design for a given database and query 

workload as a built in tool in Microsoft SQL server 2000 using a single node. Their 

system has a candidate selection module that identifies the set of indexes and 

materialized views for the given workload that are worth consideration. They do not 

make our key assumption about the known query templates but their candidate selection 

module tries to reduce the layout possibilities. They suggest developing a physical 

database design tool that is able to apply more data operators (e.g. vertical partitioning 

and de- normalization) to achieve better system performance. 

The paper [6] has tackled the related problem of how to figure out how to 

automatically know which indexes to put on the system and which materialized views 

apply. This is similar to our approach where we try to use horizontal and vertical 

partitioning, full replication, and denormalization operators to lay out tables. They, like 

our approach, assume they know the workload. Unlike our approach, they only deal with 

a single database while we deal with multiple bases. In their solution they have more 

assumptions, and they try to figure out which materialized views to build, which is a 
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topic we do not address. We should be able to take advantage of the work in [6] to apply 

it as a post processing step after our algorithm is complete. 

In paper [9], they added a new operator, called horizontal partitioning, to the 

previous optimization goal in Microsoft SQL server 2005. Microsoft SQL server 2005 

offers an automated database design tool that has physical design recommendation for 

horizontal partitioning. It recommends to give ability to database administrators to 

specify alignment requirements for data partitioning while optimizing for performance. 

Compared to our multiple database node handling, their system handles databases on a 

single node. Their output is a physical design recommendation on horizontal partitioning 

of tables, materialized views, and indexes. They have a query optimizer that has a cost 

model ("what-if") for queries. Their system does not assume that they know all the query 

templates beforehand. Instead, they try to filter the workload and capture parameters like 

which column group has higher impact on the workload, and fine tune with workload 

compression. They realized that knowing about the query templates can lead to a better 

optimization result. They assume that queries in the workload often belong to the same 

template and this fact can help to tune their system with workload compression. This 

workload compression captures the similar queries and tries to determine the different 

query templates. Compared to our automated data replication middleware, database 

administrators have to copy the original database to a test server and run the advisor on 

the dataset. After this step, the system will recommend a physical design to achieve the 

best performance and the administrator has to configure the original database manually. 

IBM DB2 Design Advisor [10] is a tool, that for a given workload, automatically 

recommends physical design features for indexes, materialized views, horizontal and 
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vertical partitioning for a single-node. We are not considering indexing in our system but 

we could use the idea from [10] as a preposition step. This tool [10] is the first one that 

supports several operators. It has a workload compression module that reduces the 

workload size automatically. In their experience, the workload was not given and they 

realized it is really hard to collect information about infrequent queries. Therefore, they 

created a workload compression module where an administrator can give a workload 

from command line, file, or an existing workload table. To increase the efficiency of the 

workload they "take an approach that only keeps the top K most expensive queries, 

whose total cost is no more than X% of the original workload cost". After this approach, 

they will sort the statements in descending order combining with continuous selection 

from the top to increase the efficiency of the workload. As a final outcome, their system 

displays the results and their initial result shows that the design advisor can improve the 

performance of workloads. They define dependencies among operators as strong or weak 

one to classify them for easier decision. They introduce iterative and integrated approach 

for layout design. In the first case, the interaction between each operator is ignored and it 

can handle each operator selection as a black box. Iterative approach searches the entire 

search space of the combined operators. They determined the dependencies between each 

operator. Their solution is a hybrid one that combines the two approaches (iterative and 

integrated) into one. Unlike our work, where we have working code for horizontal and 

vertical partitioning, full replication, denormalization and that not only make a 

suggestion, we actually implement the suggestion by doing the database layout. There are 

features they don’t do in this paper that we seek to do. First of all, the system attempts to 

give "advice" but it does not actually implement the advice. For example, it might 
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suggest to horizontally partition a table, but it won’t do it for you, nor will it give you a 

query router that would handle the queries coming into the system. Probably more 

importantly, since the system does not implement its advice automatically, it can’t check 

to see if the advice really is going to result in an increased performance on the workload 

that is given. They assume that the "subsequent searching only further improves the 

performance marginally". This assumption is their stopping criteria for their algorithm. 

They will stop the advisor when no further improvement is possible after a certain 

number of iterations. According to their results, they implemented the advisor 

recommendations and measured the actual cost of the workload for the TPC-H 

benchmark. The achieved real performance improvement as 84.54%, which is close to 

the advisor's estimation (88.01%). 

There is an empirical question about whether the system can apply all the 

operators in a single pass, or whether it is really worthwhile to do it one step at a time 

(multi pass). The later procedure will consume more CPU time but might give better 

performance result. The single pass execution time could be shorter but might not give as 

good of a performance result as the multi pass. Our system considers the multi pass 

procedure as default but it could apply the single pass as an optional configurable 

parameter. Furthermore, we can use [10] as a pre-processing step to figure out what 

indexes do we need to build, and assume that those indexes will be worthwhile to keep 

even after the parallelization step we propose. 

While in [10] they focused on a single node, in the next paper [7], IBM DB2 

looked at the problem of laying out multiple nodes using many operators like we propose. 

[7] is certainly the work that most closely relates to our work. In [7] they are concerned 
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with our same problem in the IBM DB2 Enterprise Extended Edition. They are similar in 

that they consider horizontal partitions and full replication and they are different because 

their system also considers materialized views. Compared to our middleware, their 

system is based on a shared-nothing architecture where a collection of nodes is used for 

parallel query execution. This means that their tool uses multiple nodes for partitioning 

tables horizontally. They do not have the assumption that each query needs to be 

answered using a single node. They assume that the workload of SQL statements is 

given, as assumed by our system. Their optimization goal is to achieve optimal 

performance of the given workload. Their tool suggests possible partitions based on the 

given workload and the frequency of each SQL statement occurrence. Their approach 

"only recommends one best candidate partition for each table referenced by the query to 

determine good candidate partitions for each table in each individual statement". 

Furthermore, their system recommends only the best operator (partitioning or full 

replication) for each table. They introduced "RECOMMEND" mode to find the optimal 

partition of a table for each query. They compute a set of interesting candidates that can 

help to reduce the query cost and storing them in the "CANDIDATE_PARTITION" 

table. For example, they consider the size of the table to decide about replication. They 

will replicate the table if the size is smaller than a threshold. Because we know the 

incoming query templates we can replicate the table if the number of SQL selects are 

significantly higher than the number of UDIs. They consider materialized views as an 

option to improve performance (e.g. to handle joins across nodes) which is a topic we do 

not address. They have an interesting approach for cost estimations of the queries. Their 

overall cost is a combination of different constraints (I/O, CPU, and communication 
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cost). They have an important assumption: "repartitioning is an expensive process and is 

not expected to be run frequently". We share this assumption especially if we know all 

the incoming query templates then it is not necessary to redesign the complete structure 

upon a possible new template (if the workload characteristics or the data distribution have 

not changed significantly). We just have to update the router logic with the new template. 

If they will create a structure then the DB2's built in router logic is responsible for 

maintaining it and answering each query using multiple nodes. 

Paper [8] describes IBM DB2 partitioning selection strategy for a given static 

database schema and workload characteristic to minimize the overall response time of the 

workload in a multiple node environment. In [8] they introduced the function-shipping 

model that manages IBM DB2 query execution. This model minimizes the 

intercommunication cost between nodes with answering the queries using a single node 

(e.g. joins are done locally). It is really important that the data placement can recognize 

the partition specific attributes of the templates. They introduce two main placement 

algorithms the Independent relations and the Comb one. The Independent Relation 

considers each query attributes separately. For example, if there is a query 'select book 

from table1, table2 where table1.book_id = table2.book_id', then the algorithm considers 

table1.book_id as a partition key first and then table2.book_id. The Comb algorithm 

considers the combination of the keys, e.g. table1.book_id and table2.book_id together. 

After the partition key decision, the algorithm groups the relations together and 

determines the node to which to assign the partition key to be based on their relation 

grouping technique. The created groups contain different tables, e.g. group1 contains t1, 

and group2 contains t2 and t3. If the partitioning key is book_id for each, then t2.book_id 



 28 

is guaranteed to be on the same node as t3.book_id. Compared to our assumption that we 

know all incoming query templates and the queries will be answered by a single node we 

guarantee that t1.book_id , t2.book_id, and t3.book_id will be on the same node and that 

they will belong to the same group. 

 

2.3.  Review of Academia Research 
 

GlobeTP [1] exploits the same fact that our system does: the workload of the web 

application is composed of a small set of query templates. They predict query execution 

costs based on the known templates and using the result for table placement involving 

table replications, they can only answer the queries they are prepared for. They employ 

full replication and use a replication-like operator to improve the total throughput. Their 

replication like operator replicates the entire table on a sub-set of database nodes. In the 

database domain, partial replication assumes that shared data is partitioned into n disjoint 

databases and we allow replication of an arbitrary subset of the databases as long as every 

database is present on at least one node. They are similar in that they make the same 

assumption that our system uses: each query template can be treated locally by at least 

one server. This means that there is at least one server that is able to execute each query. 

Their system is different because the only operator that they use is replication. Each 

server has a replica of one or more tables of the original database. Their main goals are to 

increase the total system throughput and decrease the query access latency. They have a 

query router that routes the incoming query to the appropriate node that contains all 

tables to answer the request. The router knows the current placement of the tables and it 

is responsible for maintaining the consistency of the system. If a UDI query comes in, 
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then the router will execute it on all the servers that hold the required tables. The router 

serializes the incoming queries to maintain consistency and it handles each read or write 

independently. Their query router has two main routing policies: the round-robin per 

Query ID and the Cost-Based Routing. In the first case, each query template has its own 

queue and each queue has a set of databases that can answer the template related queries. 

In the second case, the router can estimate the load on each database server and routes the 

queries to the least loaded database server that has the required set of tables to answer the 

request. Our system is similar because it has router logic too. But in our case each 

database server is managed by a thread that maintains two data structures: a queue of 

requests it has received, and a lock table to handle conflicting select and UDI queries. In 

order to increase the performance of each database server, the thread for the database 

server maintains multiple connections to that server; thus multiple queries can be 

executed simultaneously on a single server to minimize the average response per query. 

Their system is efficient if the application has few UDIs compared to selects, but to 

schedule and maintain consistency when the number of UDIs is high is a real bottleneck, 

especially if the system has large number of database nodes with fully replicated tables. 

One of the obvious drawbacks is if there is a table with a couple million rows then their 

replication operator distributes the same data on multiple nodes creating high storage 

cost.  

In [17] their approach describes two common properties of web based 

applications. According to their strong assumption, workload is dominated by reads and it 

consists of a small number of query and update templates (typically between 10 and 100). 

Using the second assumption, their system solves strong consistency management of the 
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servers. They use a fully distributed consistency mechanism that leverages the fact that 

querying and updating is mainly restricted by the templates specified in advance. This 

assumption is similar to our system because they realized if the query templates are 

known beforehand then their consistency mechanism can achieve better performance but 

their system does not know the total workload beforehand. They have proxy servers for 

replicating the query results with distributed consistency management that has an 

efficient routing mechanism for messages. The proxy server has a copy of the web server 

and the application server, and acts as a database containing read-only copy of the query 

results. Their infrastructure has a home server with a master copy of the database at the 

back-end. If there is an insert, update, or delete they have to distribute the request among 

all of the proxy servers and invalidate the old data in the caches. They adopt a simple 

consistency model and group the query templates into cacheable and uncacheable ones to 

help reduce the update cost. Clearly their system is similar to ours because it tries to use a 

single proxy node to answer the query before connecting to the home server. Moreover, 

they want to build a full replica of the known query results dynamically and distribute it 

with proxy servers. The drawback of this approach is if the system has many proxy 

servers then to keep maintaining the consistency is inefficient (query caching requires 

high temporal locality) and the system throughput can be limited by them. 

DBProxy [14] observed that most applications issue template-based queries and 

these queries have the same structure that contains different strings or numeric 

constraints. This observation helps to reduce containment checking overhead 

significantly. Their research - similarly to ours - assumes they know the workload and 

they can pick a good caching strategy. Their system is a semantic data cache designed for 
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adopting changes in the workload. They aggregate the similar query templates in the 

cache, which leads to a faster query search and significant performance improvement. 

Their system caches the materialized views of the given workload. This method uses 

different tables for views that can be set by the administrator. They have a query 

evaluator and a caching logic decides which query result should be cached. The query-

matching module checks the query templates and directs them according to the views. 

Their system benefits from the known query templates -similarly to our system - as a 

template-based matching of the queries. Their assumption is that the system can reduce 

the containment checking by a significant amount. Queries belonging to the same 

template are aggregated and can help to identify the query and get the result much faster. 

They realized that their solution suffers from the same problem that [7] suffers, so when 

one of the tables gets hit by heavy UDIs they will disable the copies for a specified time 

period. With his solution they propagate UDIs directly to the main database and later the 

data will be updated to the database caches by the data propagator module. 

AutoPart [19] deals with large scientific databases where the continuous 

insertions limit the application of indexes and materialized views. For optimization 

purposes, their algorithm horizontally and vertically partitions the tables in the original 

large database according to a representative workload using a single node. Their solution 

is similar to our system that considers these two operators as well. They do not know the 

query templates beforehand but their system has a Query Access Set component to 

capture each query access frequency and determine their cost with a query optimizer of a 

database system. Their result shows that the partitioned schema can speed up the query 

execution time without indexes and the new schema even performs better when indexes 
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are applied after the partitioning phase and not on the original database. They expect to 

lower the workload cost with the partitioned design, because it is faster to access the 

partitions and queries do not need to access useless attributes. Their optimization goal is 

to increase the query execution performance with partitioning and recommend a physical 

design using a single node. Compared to our system their work assumes a given query 

router logic and a consistency management solution. 

Paper [15], an addition to [6], talks about the importance of horizontal and 

vertical partitioning operators for physical design in relational databases using a single 

node. These operators can significantly impact the performance of the workload. They 

assume that combining these operators with alignment requirements can lead to 

significant performance improvements. They consider layouts where the structures on 

each table are aligned (identically partitioned). This paper is similar to our system 

because they consider partitioning operators and they try to combine these operators with 

alignment and manageability assuming that the workload is given. A big difference is that 

their system focuses on the single-node partitioning where all objects are presented on a 

single server and they do not consider the incoming query templates to be known. The 

paper introduces alignment and it considers indexes aligned if they are horizontally 

partitioned in the same way as the related tables. Tables can be partitioned differently 

according to the different queries and the partitioning requirements. They divide their 

horizontal partitioning operator into range and hash partitioning. Their optimization goal 

is to optimize the database for a given workload to decrease the query access time. They 

model the workload as a set of SQL statements and with each statement they associate a 

weight to capture the multiplicity of a given SQL statement in the workload similarly to 
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our system. They determine the cost of each statement using "what if" or assume that is 

given by the database optimizer. 

In [5], their optimization goal is to restructure data services into multiple 

independent ones with separated data access using a denormalization operator on select 

queries. Denormalization takes the benefit of special queries and transactions which often 

access only a part of the columns of a table. One can decompose such tables into multiple 

ones to simplify the workload and to optimize the efficiency of query execution. These 

restructured data structures can lead to a total throughput improvement using multiple 

nodes. In denormalization, one moves from higher to lower normal forms in the database 

modeling and adds redundant data. The performance improvement is achieved because 

some joins are already pre-computed. However there are disadvantages. For instance UDI 

queries are cumbersome when performed against denormalized data, as we need to 

synchronize between duplicates. This paper [5] applies denormalization on web services 

directly to distribute them with a possible caching solution. If the application has a large 

number of query templates an appropriate caching mechanism can also help to scale as an 

additional technique to data placement. Instead of using a single database node, their 

system splits the application data into three databases. Each database is encapsulated into 

a data service that creates a bridge to the business logic. According to the access patterns 

of the databases, each data service and its database can be further divided into databases 

on different nodes and different operators can be applied on them. For example, the first 

denormalized database can be partitioned into two databases and the second database can 

be replicated across 3 servers. Their optimization goal is to improve the overall system 

scalability and increase the throughput. They consider transaction support in their system 
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where all data they access must be handled atomically and kept under the same service 

(ACID properties). Compared to our system, they do not assume that the query templates 

are known beforehand and each query can be answered with a single node. Although, as a 

result of their experiment, they noticed that the data structures are mostly queried by few 

query templates, which could help to simplify their task. They do not talk about a 

possible router logic and automatic physical layout generation but they note that web 

service denormalization does not have any problem with consistency. 

Ganymed [20] uses a novel-scheduling algorithm that separates update and read-

only queries using multiple nodes. Ganymed routes ‘updates’ to a main server and 

‘selects’ to read-only copies. Their system offers scalability without partitioning the data 

and it does not impose any restrictions on the incoming queries. It uses full replication 

and routes updates to the main replica to increase throughput, reduce response time, and 

increase the availability of the system. Their algorithm handles transactions and it keeps 

the replicas consistent, guaranteeing the ACID durability. It uses RSI-PC (Replicates 

Snapshot Isolation with Primary Copy) scheduling algorithm that separates reads and 

updates and hides the inconsistency from the client. Comparing to our assumption that we 

know the incoming query templates beforehand, Ganymed does not impose any 

restrictions on the queries submitted and has transaction support. It does not assume that 

the workload is known. It separates ready-only and update transactions and routes them 

to the set of duplicates. Updates, inserts, and deletes are routed to the main replica and 

reads are routed to any of the read-only copies. Their main optimization goal is the same 

as ours: to increase the throughput and reduce query response times. They realized that 

the communication cost between replicas can be really high and there can be deadlocks 



 35 

involved at the scheduler level. Their scheduler takes care of inconsistency of the replicas 

and all synchronization is done transparently. They suggest an interesting solution to use 

multiple schedulers instead of a central one. This solution is different than ours but did 

not improve their performance. Read-only queries are assigned to a valid replica. A 

replica is valid if the latest writeset is committed. The scheduler keeps a connection pool 

open for each replica for serving the writesets. 

[21] introduces an edge service architecture (edge refers to a component that 

intends to improve the performance of a Web-based system and distributes web content 

over the Internet) to improve the availability and performance of the Web-based 

applications by replication not just in a clustered environment but at geographically 

distributed sites. Their architecture is different than our system because we focus on the 

clusterized environment. Their system does not know about query templates beforehand 

but they try to answer each query locally using a single edge server. Their main 

optimization goal is to demonstrate that object-based data replication minimizes 

communication cost across the wide area network between database servers. Their main 

goal is to dramatically improve both availability and performance of the system with an 

object-based data replication. In object-based replication, data and business logic are 

replicated together on edge servers. They introduce different objects to handle one-to-

many and many-to-one updates to propagate changes to multiple servers for keeping the 

consistency. They consider solving the update propagation problem across edge servers 

as a future work. 

GlobeDB [22] offers a different approach for edge servers to handle data 

distribution. They replicate the data along with its access code across machines only if 



 36 

the update rate is high enough at the specific location. The optimization goals are to 

figure out which part of the database needs to be replicated, find the appropriate place for 

the database part in the wide-area network, and keep the databases consistent. Their 

system automatically partitions and replicates the database through wide area network 

using multiple nodes. Their system is different than our middleware's infrastructure 

because we are operating within a cluster environment. GlobeDB realizes that replicating 

data on all servers can be a serious bottleneck. Their optimization goal is to place the data 

only on the servers that most frequently access them and increase the query response 

time. Their system focuses on the consistency issue as well with update propagation and 

concurrency control. They  update the replicas immediately as soon as an update 

happens. GlobeDB follows a master-slave protocol where a master server is responsible 

for UDIs and propagating them to the replicas. GlobeDB does not assume that it knows 

the query templates beforehand. It tries to detect the complexity of a query (e.g. simple 

select, not an aggregate query) and use local replicas when it is possible to answer it. For 

complex queries, it forwards the query to a subset of servers that jointly have the 

complete database. GlobeDB does not assume that each query can be answered by a 

single node. They realized that the majority of web applications use simple queries which 

is a step toward our assumption. Some researchers make claims that their system will 

function well, if the real load is at least close to the load used for testing. Knowing the 

load ahead of time is not something that differentiates our work from others. 

Several techniques are known for distributing the load across multiple database 

servers. One of these is replication [2]. In replication a table is placed on more than one 

database server. In such a case, a select query on the table can be executed by any one of 
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the database servers that have a replica of that table. An UDI query on that table however, 

needs to be executed on all the database servers that have a replica of that table. A 

drawback of this technique is that every UDI query needs to be executed against the 

node(s) that hold all of the entire data and these nodes become the bottleneck of the 

performance. 

Our data replication middleware will detect which tables need to be replicated 

based on the given workload and the known query templates. The system will keep track 

of the reads and writes ratio for each data table and will determine the possible candidates 

for replication. 

Master-slave architecture is supported by a couple of database systems [23][24] 

where there is a single master server that holds all of the data and every UDI query is 

executed against the master node and propagated to slave nodes as necessary. In this case, 

the master server is a real bottleneck of the system. Moreover, the synchronization cost of 

the slaves with the master database can be an issue as well. In a master-slave 

environment, all writes and updates must take place on the master server and reads can 

take place on one or more slave servers. This model can significantly increase the 

performance of reads. Its obvious that setting a single database node to be the master for 

all tables has a bottleneck, in that all UDI have to go to the same server. Large number of 

UDIs can cause a serious synchronization problem of the slaves, especially when the 

system has multiple slaves. There are two types of synchronizations: asynchronous and 

synchronous. Asynchronous data propagation happens immediately and it can take a 

relatively long time to write the data on all slaves and the client must wait for the 

propagation to happen. In the asynchronous scheme, data is written to the master but may 
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not be sent to the slaves until a certain elapsed time has passed. The downside of this 

schema is the possibility of data loss if the data has not been propagated to the slave 

when a critical fault occurs. In our system, if we shift the control over to a different table 

to different nodes we could possibly distribute the UDI bottleneck. 

However, other master-slave architectures are possible where there is more than 

one master node [3]. DBFarm does not make the assumption we make that all queries are 

known ahead of time but they answer all read-only queries using a single replica and 

write-queries with one of the master databases. We are similar to [3] in that we will 

support full replication across serves, but we are different in that we will support 

horizontal and vertical partitioning, and denormalization. They simply separate reads and 

writes transactions where writes are performed at the master level and reads at the slave 

level. Read-only transactions executed at the slave databases are able to see all updates of 

the master database. DBFarm handles commit acknowledgements and assures read-only 

consistency. The drawback of this architecture is that writes have to happen on all 

masters. Write propagation can introduce a significant overhead and decrease the system 

throughput. Another technique for distributing load across multiple database servers in 

web applications is partitioning of data, which includes both horizontal and vertical 

partitioning. Horizontal partitioning splits the table up into multiple smaller tables 

containing the same number of columns, but fewer rows. Smaller partitions can speed up 

query performance if data needs to be accessed from only one of the partitions. Vertical 

partitioning splits the table into smaller ones with the same number of rows but fewer 

columns. It is a reasonable approach when the system does not want to combine the 

records between the partitions. To handle correct partitioning the system needs an 
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application logic to maintain partitions and balance the queries. Moreover, the horizontal 

and vertical partitioning problems over set of processors have been shown to be NP hard 

[4] and each operator faces a large search space. Paper [4] also describes a first-fit 

heuristic greedy algorithm to solve horizontal and vertical partitioning problems using 

multiple processors that are clusterized at one location but it does not assume that the 

workload and query templates are known. Moreover, it does not talk about any system or 

application logic that can maintain the created data structures. Some other researchers 

have done horizontal and vertical partitioning similar to our work, but in a different way. 

A Case for Fractured Mirrors [12] combines partitioning with multi-level cache and 

mirroring functions at the hardware level (e.g RAID1). This work is at the hardware 

level. Their work is similar to ours to the degree that they use vertical and horizontal 

partitions to try to get a speed, but its quite different in that it does not apply to multiple 

nodes, nor in the partition the same, even though it is called partitioning. This work is at 

the disk level, while ours is at the database level. While their work is interesting, its in 

use of vertical partition paying attention to which hard-drive cylinders are used to store 

the data but its similarity stops there. 

Appendix B shows the comparison of the different systems. 

 

2.4.  Hybrid Solutions 
 

MapReduce [50] is a programming model with an associated implementation to process 

and generate huge amounts of data in large scale (hundreds and thousands of nodes) 

heterogeneous shared-nothing environment. Shared-nothing environment deploys the 
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servers with their own local disk and memory connected with a high-speed network. 

MapReduce is a simple model consisting of only two functions: map and reduce. Users 

have to write these functions to produce key-value pairs based on the available input data. 

It uses a distributed file [51] system where the input data is partitioned and stored on 

multiple nodes of the cluster. The map function works like a filter or transformer operator 

that is applied on the input data set. The output of the map operator is a set of 

intermediate key-value pairs stored on the local disk of the node. These intermediate key-

value pairs are partitioned into R disjoint buckets based on a hash function on the key of 

each output record. In the second phase R instances of the Reduce function are executed. 

The input files for Rs are transferred through the network from the local disk of the 

previous nodes where the Map function saved them. Reduce function processes and 

combines the input records and writes them back to the distributed file system in an 

output file. Parallel databases use shared-nothing infrastructures in a cluster environment 

and it can execute queries in parallel using multiple nodes. One big difference is that 

parallel databases support SQL (Structured Query Language) and standard relational 

database tables. MapReduce has no pre-defined schema and it allows the data to be in any 

format. Because the data can be in any format the system does not provide e.g. built in 

indexes.  

However, HadoopDB [52] (Figure 2) combines the two approaches into one and 

targets the performance and scalability of a parallel database and the fault-tolerance 

feature of the flexible MapReduce to achieve better structured data processing. It uses 

Hadoop [53] the open source implementation of MapReduce to parallelize the queries 

across nodes. Scheduling and job tracking is managed by the Hadoop task coordinator 
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(JobTracker and TaskTracker). HadoopDB provides a front-end for users to process SQL 

queries. Queries are created using SQL-like query language (HiveQL [54]) and translated 

into MapReduce jobs by the help of the extended version of the Hive warehousing 

solution [54], called SMS planner. HadoopDB uses PostgreSQL [55] as a database layer 

that processes the translated SQL queries. To design a hybrid infrastructure like 

HadoopDB multiple key issues should be considered at different levels. 

 

 

Figure 2: Architecture of HadoopDB [53] 

 
 
To process extremely large datasets on a large-scale (thousand of nodes) shared-nothing 

environment where analytical workload performs heavy table scans scalability, 

performance, and availability are important factors. The amount of the analyzable data is 

growing and requires more and more computational nodes to complete the data analysis 

within a reasonable amount of time. Parallel databases can scale-up well if the number of 

the involved nodes is small. They assume a homogenous set of machines, but on a large 
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scale this assumption fails. In a heterogeneous environment the probability of a possible 

server failure is high. Google reported 1.2 failures/analysis job [50] for MapReduce. One 

of the first key issues is the data distribution. A highly scalable distributed file system is 

necessary to handle large amount of data and to eliminate a possible performance 

bottleneck. This file system should be fast and fault-tolerant for a possible node failure. 

HDFS (Hadoop Distributed File System) stores the data in fixed sized blocks and 

distributed across multiple nodes. A central service (NameNode) maintains information 

about the location and size of each chunk. The parallel query optimizer of a parallel 

database always sends the query to the node where the data is located. MapReduce 

always moves the data where the computation is performed. This hybrid infrastructure 

takes this data placement one step further. It loads the data from HDFS to the 

PostgreSQL nodes by the help of a dataloader that enforces two hashing phases. It 

utilizes the databases by dividing the data into as many chunks as the number of nodes. In 

the second phase it divides them further into chunks and loads each chunk into a separate 

database using a node. This structure is distributed thereafter. It can happen that some 

tables are collocated and partitioned on the query’s attribute. In this case the requested 

operator can be handled by the database layer (PostgreSQL) directly. The implemented 

service (dataloader) should be fast and accurate to perform the two phase hashing, data 

re-partitioning, and loading the chunks. The SQL query interpreter and translator can be a 

performance bottleneck as well. This part of the system is responsible to optimize the 

query plans and translate SQL queries into MapReduce relational operators. The 

translator should be able to translate MapReduce relational operators back to SQL queries 

and utilize the parallel database at the database layer. Moreover, the SMS planner of the 
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system can be a huge single-point-of-failure. The SMS planner extends Hive and it is 

responsible for updating MapReduce’s central information bank with the location of the 

database tables. It also scans the generated MapReduce jobs to determine the partitioning 

key in the DAG. SMS planner is a key component of the HadoopDB. If this component is 

not designed perfectly the system cannot interact with MapReduce. Fault tolerance is 

another key issue. If MapReduce is combined with parallel databases then it provides a 

more robust and sophisticated failure mechanism. If a job fails during execution the 

MapReduce framework can continue the failed job on the same node since output files of 

the Map function are kept on the local disk. If the node has a hardware failure then the 

system can re-schedule the task on a different node automatically. Parallel databases will 

not save intermediate results to disk and cannot continue the job execution. In the case of 

a possible node failure the database is capable to commit transactions successfully (e.g. 

log based commit).  

As we have already mentioned above, parallel databases are not designed for 

usage in a large-scale heterogeneous environment. Concurrent queries, node disk 

fragmentations, or corrupted data parts can decrease the performance of the system. 

MapReduce can handle these problems as well. It can schedule parallel execution of the 

same task on different node if it detects that the data processing is slow. Furthermore it 

can catch the process before it terminates due to a bad data segment and re-schedule the 

task using data from a different location. These are all important designing issues. Further 

design issues are load sharing within the system and locality tracking. Load sharing 

should balance the load equally utilizing all the nodes. Locality keeps the slave processes 

close to the master process to reduce the communication overhead. MapReduce uses 



 44 

master-slave topology to process the job. The master monitors the slave processes. 

Finally, this complex system should be flexible and allow users to write their own user 

defined functions that can be executed parallel to utilizing the databases. 

There is a conceptual difference between parallel database management systems 

(DBMS), MapReduce-based systems (Hadoop), and hybrid systems like HadoopDB. In 

the case of DBMS, users can state what he/she wants in SQL language. In the case of 

MapReduce-like systems the user can present an algorithm to specify what he/she wants 

in a low level programming language [56]. HadoopDB hides the latest one from the users 

and provides the DBMS flexibility to the data analyst. In general there are a couple of 

differences between this MapReduce-based hybrid system and other parallel databases. 

DBMSs have pre-defined table schemas with rows and columns. MapReduce does not 

have any pre-defined schemas so the user has to create them. Once such schema is 

defined then the next task is to make sure no specific constraints are violated by the 

programmers. DBMS provides this check by default. DBMSs have the capability to 

create indexes (B-Tree/Hash-based) on specific columns to speed up scan functions. 

MapReduce does not have any built-in indexes. MapReduce introduces additional 

network traffic and disk accesses with the Reduce function that transfers and groups data 

parts together. Users can implement different functions in the Map and the Reduce parts, 

but DBMSs support user-defined functions, which can be executed in parallel. 

MapReduce HadoopDB combines all features of the DBMS with MapReduce to create a 

hybrid system that is good for analytical purposes.  
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Vertica Analytic Database [57] utilizes cheap shared-nothing commodity 

hardware and it is designed for large-scale data warehouses. It uses a column store 

architecture where each column is independently stored on different nodes. It applies 

vertical partitioning on the original dataset to create multiple partitions that can be 

replicated across cluster nodes (Figure 3). It is mostly for read intensive analytical 

applications where the system has to access a subset of columns. Vertica’s optimizer is 

designed to operate on this column-partitioned architecture to reduce I/O costs 

dramatically. It employs various data compression techniques to minimize the space 

requirements of the columns. The optimizer stores views of the table data in projections. 

The projection can contain a subset of the columns of a table or multiple tables to support 

materializing joins. Projections are created automatically by Vertica to support ad-hoc 

queries. To avoid node failure, Vertica creates k+1 copies of the projections (k is the total 

number of nodes) and fully replicates them. In the case of a failure, it automatically 

switches to the next available instance. It has a built-in automatic physical database 

design tool that creates these projections automatically and targets star (fact and 

dimension tables where fact tables are range partitioned across the nodes and dimension 

tables are replicated) or snowflake (normalization of dimension tables) schemas for 

automatic design.  

The hybrid storage module caches all updates to a memory segment called WSO 

(Write- optimized Store). A tuple mover migrates recent updates to permanent storages 

periodically and the system uses snapshot isolation to keep the consistency with the 

current updates. HadoopDB is a more robust system that provides fully structured 

relational tables with SQL language support where the structured data can be optimized. 
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Vertica has a built-in automatic database design tool that can adjust the system 

performance creating a new projection or partitioning the data according to the preferable 

schema. 

 
Figure 3: Architecture of Vertica [57] 

 

Vertica has nice data compression techniques that outperform HadoopDB in an 

I/O intensive task. HadoopDB SMS planner pushes the different SQL clauses into the 

database layer and it can benefit from the created table indexes. A problem can be that 

the data is not partitioned according to the requested key. In this case the hybrid 

infrastructure re-partitions the data that can decrease the system performance 

significantly. In the case of a join task – that execution time can be crucial – the two 

systems have a big difference. Vertica with the data compression, indexing, and 

projection has a native built-in join query support. HadoopDB SMS optimizer (based on 

Hive) does not have full support for joins and cost-based optimization of the queries. 

HadoopDB can benefit from the join if both input datasets are sorted on the join key. 

Then it can push down the join to the database layer. Otherwise, re-partitioning of the 
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input data is required that adds significant overhead.  

Netezza [58] parallel system is a two-tiered system that is capable of handling 

large queries from multiple users. The first-tier is a high-performance multiprocessing 

unit that compiles queries and generates the query execution plans. It divides the queries 

into sub-tasks for parallel processing and utilizes the second tier’s Snippet Processing 

Units (SPU) for execution. Netezza combines the two tiers into one and hides the 

complexity of the system while providing SQL interface to the users. In the case of 

HadoopDB indexing can speed-up the queries execution time. Netezza has no indexing 

feature because the query processing is done at the disk level. The proper distribution of 

the tables over SPUs is the key issue to achieve high performance. The system distributes 

the tables based on the fields that would be indexed by HadoopDB and each SPU can 

process its own set of data without intercommunication with other SPUs. Teradata [59] 

has two main requirements: ensure that the data is available when it is requested and 

being able to access the information without significant delay. It uses a shared-nothing 

architecture where the data is assigned to each unit. Virtual Access Module Processes 

(VAMPs) is responsible for controlling the database processing. VAMP executes index 

scans, reads, join, etc. functions using its own independent file system. A difference is 

that Teradata supports single row manipulation, block manipulation and full table or sub-

table manipulation as well. It distributes the data randomly utilizing all the nodes. It 

provides a single hash-based partitioning algorithm that partitions the data equally across 

all VAMPs. The hash re-distribution is an automatic task in the background according to 

the required update, delete, or insert actions. Another big difference is that it has a built-

in dynamic statistics collector that dynamically increases the number of VAMPs upon 
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high load and distributes the requests equally. It has a built in optimizer that can handle 

sophisticated queries, ad-hoc queries, and complex joins as well. Teradata supports direct 

data loading into the database and the system handles the partitioning, indexing, etc. 

automatically.  

IBM DB2 Data partitioning [25] is based on shared-nothing architecture as well. 

Their tool suggests possible partitions based on the given workload and the frequency of 

each SQL statement occurrence. Their system recommends the best operator (partitioning 

or full replication) for each table. The system computes a set of interesting candidates 

that can help to reduce the query cost (overall cost is a combination of different 

constraints: I/O, CPU, and communication cost). There are several other parallel 

databases available like Exadata (parallel database version of Oracle), MonetDB, 

ParAccel, InfoBright, Greenplum, NeoView, Dataupia, DATAllegro, Exasol, etc. that all 

combine different techniques to achieve better performance and reliability. 

Our parallel database architecture [42] is also based on shared-nothing community 

hardware where each node has its own CPU, disk, RAM, and file system. We specialized 

on Web-based application where the workload consists of a fixed number of query 

templates. This means the system does not face ad-hoc and unexpected queries. Because 

we know all the query templates beforehand our system can pre-partition the data using 

different operators and pre-determined heuristics [60]. Each node has a relational 

database but the main difference is that we do not need to re-partition the data like 

HadoopDB since we do not have unexpected queries. We characterize the problem as an 

AI search over database layout. We iteratively minimize the total cost of the workload 

creating different database layout and increase the system throughput (model and 
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partition first then load the data approach vs. load the data and re-partition). Moreover, 

our system has a built-in corpus with generalized machine learned rules to determine 

which operator (Horizontal partitioning, Vertical Partitioning, Replication, and 

Denormalization) is applicable and when. As soon as the layout is determined, the data is 

distributed across the server nodes. A central dispatcher – similar to HadoopDN catalog - 

maintains the statistics about the current layout (table descriptors, data part locations, 

etc.). Since we do not have an unexpected query, the data can be partitioned according to 

a pre-defined rule: each query should be answerable using a single node. This means that 

all the joins can be pre-computed and the communication bottleneck (e.g. in the case of 

MapReduce the Reduce function moves the files and loads the data from multiple 

location) can be eliminated. The central dispatcher can push each query into the database 

layer directly where the well-defined schemas support indexing. We support INSERT 

INTO, UPDATE, and DELETE SQL statements natively (Hadoop with Hive does). We 

do not have an additional failure detection mechanism, but the system is easily 

expandable with a full copy of the original database. Furthermore, our system needs an 

additional layer – possible integration with Hadoop - if it wants to scale-up to thousands 

of nodes. 

 

The next chapter will talk about the data placement problem, problem statement, 

optimization goal, data placement algorithm, and the state space search. 
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3. Data Placement 
 

Scaling up web applications requires distribution of load across multiple application 

servers and across multiple database servers. Distributing load across multiple application 

servers is fairly straightforward; however distributing load (select and UDI queries) 

across multiple database servers is more complex because of the synchronization 

requirements for multiple copies of the data. Different techniques have been investigated 

for data placement across multiple database servers, such as replication, partitioning and 

denormalization. In this chapter, we describe our framework that utilizes these data 

placement techniques for determining the best possible layout of data. Our solution is 

general, and other data placement techniques can be integrated within our system. Once 

the data is laid out on the different database servers, our efficient query router routes the 

queries to the appropriate database server/(s). Our query router maintains multiple 

connections for a database server so that many queries are executed simultaneously on a 

database server, thus increasing the utilization of each database server. We have 

implemented our solutions in our framework. 

There are thousands of web applications, and these systems need to figure out 

how to scale up their performance. Web applications typically have a 3-tier architectures 

consisting of clients, application, and a database server that work together (Figure 4). 

Significant work has been done in load balancers to solve possible scalability issues and 

to distribute requests equally among multiple application servers. However, issues related 

to the increased database server usage and to distribute requests among multiple database 

servers have not been adequately addressed. The increasing load of the database layer can 
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lead to slow response time, application error, and in the worst case, to different types of 

system crashes.  

 
Figure 4: General Architecture of a Web-based application 

The requests are distributed among the different application servers by the load 
balancer. Requests that need to access the data are sent to the query router, that 

routes the query to the appropriate database server(s). 

 

In a Web-based application the increasing number of user sessions can be easily balanced 

among application servers but the continuous database read (select) queries, and update, 

delete and insert (UDI) queries decrease the system response time significantly.  

 

3.1.  Current Techniques for Distributing Load 
 

Several techniques are known for distributing load across multiple database servers; one 

of them is replication [2]. In replication, a table is placed on more than one database 

server (see Figure 5). In such a case, a select query on that table can be executed by any 

one of the database servers that have a replica of that table. An UDI query on that table 

however needs to be executed on all the database servers that have a replica of that table. 
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If we do not know all the queries that the application may need to process beforehand, 

then one of the database servers must hold the entire data (all the tables) of that 

application. Such a layout of the data is needed to answer a query that needs to access all 

the tables. A drawback of this technique is that every UDI query needs to be executed 

against the node/(s) that hold the entire data and thus these nodes can become the 

bottleneck for performance. Such an architecture is supported by Oracle, and is referred 

to as a master-slave architecture. In this case, the master node holds the entire data; every 

UDI query is executed against the master node and propagated to slave nodes as 

necessary using log files. 

 
Figure 5: Full replication of a table 

 
In the case of web applications, we no longer need a node that holds the entire data 

(assuming that none of the queries access all the data). We can therefore do a more 

intelligent placement of the data such that there is no node that must execute all UDI 

queries; thus we can remove the bottleneck node for UDI queries that is inherent in non-

web applications. This placement improves performance of read queries while not 

significantly impacting the performance of UDI queries. In case of full-replication (all 

nodes are effectively master nodes), any node can act as a master when the original 

master fails, and the routing of queries to the nodes is straightforward as any node can 
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answer any query, but the updates have to be propagated to all of the nodes.  

Another technique for distributing load across multiple database servers in web 

applications is partitioning of data, which includes both horizontal and vertical 

partitioning. Horizontal partitioning (Figure 6) splits the table up into multiple smaller 

tables containing the same number of columns, but fewer rows.  

 

Figure 6: Horizontal Partitioning of a table 
 

This technique can speed up query performance if data needs to be accessed from only 

one of the partitions. However, horizontal partitioning cannot be done in all 

circumstances, if we want a query to be answered by one of the nodes. For instance, if 

there are two queries in the workload that access the same table, one which selects based 

on a column say C1, and another which selects based on a column C2, then if we do 

horizontal partitioning based on the values in C1, then this partitioning cannot be used to 

answer queries based on C2. Vertical partitioning (Figure 7) splits the table into smaller 

ones with the same number of rows but fewer columns. It is a reasonable approach when 

the system does not want to combine the records between the partitions. Another big job 

for both the partitioning schemes is that the system needs to maintain the partitions and 

balance the amount of data with a built in application logic.  
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Figure 7: Vertical Partitioning of a table 

 
 
Denormalization [40] can optimize the performance of database systems as well. In 

denormalization, one moves from higher to lower normal forms in the database modeling 

and add redundant data (Figure 8). The performance improvement is achieved because 

some joins are already pre-computed. However, there is more complexity involved. For 

instance, handling UDI queries are more complicated when performed against 

denormalized data, as we need to synchronize between duplicates. Also, the routing logic 

needs to be more advanced. 

 
 

Figure 8: Denormalization of two tables 
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3.2.  Data Placement Problem 
 

Let us now define the data placement problem as: we are given all the query templates for 

a Web-based application, the database constraints, and a query workload (W) that 

includes the percentage of queries of each template that the application typically 

processes. Determine the best possible placement of the tables on the different database 

server nodes minimizing the total system response time (T) [60]. 

We conceptualize the database layout problem as a state search problem where each state 

is a valid configuration of layouts across database nodes. 

Let L = {L1..Ln} be the set of possible valid layout configurations of the tables on the 

different server nodes. Let cost(Q, L) be the total system response time with query 

workload (W) using a valid layout configuration.  Find the best valid configuration such 

that: 

𝑀𝐼𝑁 𝑐𝑜𝑠𝑡 𝑄i, 𝐿
!

!!!

                                                          (equation 1) 

Definition 1: Valid state. A state Sn is considered to be valid if and only if the created 

layout configuration Li correctly answers each and every query Qi from the given 

workload W. 

A query template maps a query to one or more SQL statement. For example ‘SELECT * 

from problem_logs where problem_logs.id = 12’ and ‘SELECT * from problem_logs’ 

are two different query templates of the same table. A query workload is any group of 

queries that run on the database (percentage of queries for each query template).  
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We leverage the fact that the workload of a Web-based application contains only a small 

set of read and update/delete/insert (UDI) query templates (typically between 10 and 100) 

[1] [14] [17]. One detailed architecture for a Web-based application is shown in Figure 9. 

First, the data is placed on different database servers. Different clients connect and issue 

requests, which are distributed across different application servers by the load balancer. 

Balancing the load across different application servers can be done effectively by 

scheduling the requests using simple schemes such as round-robin, or scheduling the next 

request on the current least loaded server; these are not discussed further in this paper. A 

request may need to access data in the database server, in which case a query is issued to 

the query router. The query router has the logic to route the queries to the appropriate 

database server/(s). In short, the query router maintains the information about how the 

data is placed across different database servers. 

 

Figure 9: Detailed architecture of a Web-based application 
 

Let us motivate the data placement problem using a thinned down schema. The portion of 
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the schema that we consider includes users (students), schools, user roles (that maintains 

the school that a user attends), problems and logged action (that maintains all the actions 

of every user, including logins of a user, problems that a user has attempted). Let’s define 

16 query templates for illustration as shown in Table 1. Note that for illustration 

purposes, we used only simple queries that do not perform a join. These data were 

collected over the duration of one week from a real Web-based application [62], and we 

counted the number of queries for each template. The total number of queries for these 16 

templates over the week was about 360,000. We also have shown the number of rows of 

each table, at the end of the week over which the data was collected. Before we describe 

our data placement algorithm, let us examine Table 1 closely, and study what issues the 

placement algorithm may have to tackle. 

 
Table 1: Example Illustrating Query Templates and Workload 

# of rows denotes the number of rows in the table accessed by the query. 
Query Template Table name % of queries # of rows 

1 SELECT * FROM schools WHERE 
school.id=? 

schools <1% 321 

2 SELECT * FROM schools WHERE 
schools.name=? 

schools <1%  

3 SELECT * FROM schools schools <1%  
4 SELECT * FROM users WHERE users.id=? users 19% 30826 
5 SELECT * FROM users WHERE 

users.login=? 
users <1%  

6 UPDATE users WHERE users.id=? users <1%  
7 INSERT INTO users users <1%  
8 SELECT * FROM problems WHERE 

problem.assignment id=? 
problems 13% 20566 

9 SELECT * FROM problems WHERE 
problems.id=? 

problems 15%  

10 SELECT * FROM problems WHERE 
problems.scaffold id=? 

problems <1%  

11 UPDATE problems WHERE problems.id=? problems 1%  
12 DELETE problems WHERE problems.id=? problems 1%  
13 SELECT * FROM user_roles WHERE user 

roles.id=? 
user_roles 19% 42248 

14 INSERT INTO user_roles user_roles <1%  
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15 UPDATE logged action WHERE 
logged_action.user id=? 

logged_action 16% 7274174 

16 INSERT INTO logged_action logged_action 16%  
 

As there are many updates against the logged_action table, if logged_action is replicated, 

the costs of performing these updates will high. Instead it might be better to perform a 

horizontal partitioning of the logged_action table and place the different partitions on the 

different database server nodes. We notice that there are lots of updates against the 

problems table as well (ratio of UDI queries to select queries is roughly 1:14). However, 

Q8, Q9 and Q10 all access the problems table, but perform selects on different columns 

(Q11 and Q12 use the same column as Q9). In this case, we may want to consider 

maintaining only one copy of the problems table (rather than replicating the table or 

horizontally partitioning the table). Once a table is placed on only some of the database 

server nodes, the workload on the different database servers may now be high. For 

instance, suppose problems table is placed on node 1, there is additional load on node 1 

as compared to the other nodes. This placement may impact the horizontal partitioning.  

 

3.3.  Data Placement Solution 
 

In this chapter, we describe our algorithm [60] that given any query workload determines 

the best possible placement of the tables. Our data placement algorithm (DPA) is shown 

in Figure 10. 
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Figure 10: Data Placement Algorithm (DPA) 
The dataLayout array returns the best possible layout of the tables across the 

different database servers. 

 

Let us examine this data placement algorithm in detail. The dataLayout is the data 

structure that returns the best possible placement as determined by our algorithm. First, a 

<query template, table> pair (described in Step 4) consists of the table that is accessed by 

the template. For instance, for Q1 in Table 1, we consider <Q1, schools>, whereas for  

Q4, we consider <Q4, users>. For a join query, say Qi that joins tables T1, T2, we 

consider <Qi, T1> and <Qi, T2>. Also, the set of options described in Steps 4 and 5 can 

be modified based on what options are suitable for a specific application.  

 

3.4.  State Space Search over Layouts 
 

We consider the database layout problem as a state space search problem with the 

assumption that all incoming queries should be answered by a single node. We do a time 

intensive search over different layouts, and each time, physically create the 
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configurations, and evaluate the total response time of the system. A state is a given 

assignment of tables to computer servers. The operators in the search are to fully 

replicate, horizontally partition, vertically partition, and denormalize a table. After each 

valid state creation the system measures the total response time of the system using the 

query workload to get actual performance measures from a real setup. Through our 

experiments and construction we used these real numbers in place of a possible estimator 

to demonstrate our algorithm’s functionality. The search over layouts can be very 

expensive and a possible virtual partitioning (Chapter 6.4) or a DBMS optimizer (like 

IBM DB2) can be used to predict numbers as a replacement black-box component for 

actual performance measures. However, entities trying to scale up their Web-based 

applications would be perfectly happy to prefer real run-time measurements over 

estimated ones and spend a few weeks of CPU time to increase their system throughput.  

We determine the possible states based on the query templates and we do not consider 

states that are possible to further create but not be used in these templates. Figure 11 

shows an initiated complete search. As a start state (state 0) we fully replicate all tables 

across all database nodes and measure the total response time of the system using the 

given workload. The system provides two algorithms to traverse the search tree: the naive 

and a simplified one-level search algorithm. The default search algorithm is the naive. 

We traverse down an entire path (state 1, 2, 3, and 4) before backtracking to the next 

valid path (state 2, 5, and 6). As soon as a valid state is created, the system measures the 

total system response time using the query workload. As one of the guiding rules we 

backtrack to the next valid path if the throughput of a child is less than the throughput of 

its parent. For example, if the throughput of state 18 is less than the throughput of state 
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17 then we will not explore states 19, 20, 21, and 22. 

 

Figure 11: State Space Search 

 

Figure 12: Result of an initiated layout search 

 
 
Figure 12 shows a result of an initiated layout search. Green state means that the total 

system response time is significantly better (t-test) compared to the previous state’s time. 

Red state means that the total system response time is significantly worse or not 

significantly better (t-test) than the result of the previous state. In this case we will not 

continue the search along that path and the algorithm backtracks. 
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The framework automatically executes the workload and measures the total 

system response time two times in default. Based on the measurements, it generates the p 

value of the results and marks the state green or red. The significance level is 0.05. The 

naive approach does not avoid us considering the same state over and over again. The 

one-level search algorithm simplifies the search by working at one level deep only. State 

0 is the start state. At the next level, it considers all possible valid states one by one (see 

Figure 13). If one state is evaluated (eg. state 1) it does not continue along the same path. 

It backtracks to state 0 and removes the previously evaluated state (state 1) from its list. 

As a continuation it considers a never tried new state (state 2). The One-level search 

method eliminates the redundancy problem. 

 

 

Figure 13: Simplified one-level search 

 

3.5.  Horizontal Partitioning 
 

Horizontal partitioning is a logical database design technique that reduces the size of the 

irrelevant tuples accessed. This technique is used for distributing load across multiple 

database servers in web applications. Horizontal partitioning splits the table up into 

multiple smaller tables containing the same number of columns, but fewer rows. These 

splits can speed up query performance if data needs to be accessed from only one of the 

partitions. However, horizontal partitioning cannot be done in all circumstances, if we 

want a query to be answered by one of the nodes. For instance, if there are two queries in 
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the workload that access the same table, one which selects based on a column say C1, and 

another which selects based on a column C2, then if we do horizontal partitioning based 

on the values in C1, then this partitioning cannot be used to answer queries based on C2. 

There are two important facts of the horizontal partitioning that we support, 

namely, partition localization for the given workload to generate a correct result set and 

answering queries using a single node. The problem of partitioning in the relational 

database systems has been recognized for its impact on the performance of the system as 

a whole [36], where one of the main optimization parameters is the number of accesses 

by the application to different parts of the data [37]. We addresses the horizontal 

partitioning problem for Web-based systems where all the incoming query templates are 

known beforehand and the retrieval queries should be answered by a single node. We 

propose a primary algorithm that searches for possible partitioning keys based on the 

query access patterns and based on the algorithm’s optimized search space. Our 

horizontal partitioning algorithm supports simple predicates only. We introduce a 

definition before describing the algorithm. 

Definition 2: Simple Predicate [36]. A simple predicate is a predicate defined on a 

simple attribute or a method and it is defined as: attribute-method operator value, where 

the operator is a comparison operator (<, >, <=, >=, <>, =). The value is from the domain 

of the attribute. The predicate evaluates to a logical value true, false, or unknown. For 

example, grade=’A’ returns true if the grade column contains the string A, false if the 

column has no ‘A’ value, or unknown if the grade column contains null.  

A predicate also can be range comparison (BETWEEN), inclusion test (IN), pattern 

match (LIKE), NULL test (IS NULL), and unique predicate (DISTINCT) but we do not 
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support these predicates for horizontal partitioning. 

 

3.5.1. Operator and Framework Limitations 
 

In the case of horizontal partitioning, our algorithm does not support range comparison, 

inclusion test, pattern match predicates, and <, >, <=, >=, <> comparisons on the 

partitioning key.  

A typical SQL query can be represented as: 

“SELECT [ DISTINCT | ALL ] column_expression1, column_expression2, .... [ FROM 

from_clause ] [ WHERE where_expression ] [ GROUP BY expression1, expression2, .... 

] [ HAVING having_expression ] [ ORDER BY order_column_expr1, 

order_column_expr2, .... ]” 

The “WHERE” clause can specify the limitations of the horizontal partitioning. The 

“WHERE” clause is not necessary if you want to retrieve parameters of all rows in a 

specified table, but this leads to not be able to consider horizontal partitioning operator 

without a “WHERE” clause.  

The “GROUP BY” cannot be considered for horizontal partitioning because it terminates 

our assumption and we cannot answer the query using a single node. 

“JOINS”: We can join any two (or more) tables in the databases as long as they have 

some quantity or an appropriate relationship in common (e.g an ID). In this case, we have 

to check each joining condition and their relationship (see Chapter 3.5.3): 
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- We must specify all the tables on which we place constraints (including the join) 

in the FROM clause, but we can use any subset of these tables in the SELECT. If 

we use more than two tables, they do not all need to be joined on the same 

quantity 

- The parser component of our framework does not have support for queries in the 

format of an implicit JOIN: “SELECT * from user, progresses WHERE 

user.id=progresses.id” and for three/multiple way joins in the format of 

“SELECT user.ID, progresses.ID, teacher.ID FROM user u, progresses p, teacher 

t WHERE u.id = p.id and  p.id = t.id” 

Aggregate functions and Mathematical operators: MAX, MIN, SQRT, POWER, 

AVG, EXP, LAST, FIRST, COUNT(*) without WHERE condition e.g. “SELECT 

min(score),max(score) FROM user u group by score” are not handled by our framework. 

We cannot handle Aggregate functions and Mathematical function without using more 

than one node to answer the query unless we are individually querying all database nodes 

and creating the union of the results. 

OR operator: We do not support “OR” operators for horizontal partitioning since the 

“OR” keyword can request keys that was not used for horizontally partitioning a table. 

Views: Systems with views (virtual subset of a table) are handled as normal table by our 

algorithm. 

Nested queries: We do not support nested queries. 

Transactions: We do not support transactions. 
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Union: We do not support the UNION operator. 

We support hash-based partitioning only where the partition number for a given row is 

generated by a system specific hash function and it is applied on an object or objects of 

the table. This type of partitioning is defined by (O, H, n), where O is the involved 

objects or columns of a table, H is the system specific hash function, and n is the number 

of available nodes for partitioning. 

For example, if table A has three columns (C1 int, C2 int, C3 int) then the partitioning 

function defined by (A:C1(int), H, 3) partitions table A into 3 partitions applying H hash 

function on the values of column C1 in each row of table A.   

If any queries do not meet these limitations then the horizontal partitioning operator is not 

viable as a choice for our algorithm. 

 

3.5.2. Database Constraints 
 

Database constraints define different rules regarding the values allowed in the database 

table or in the specific column. There are multiple types of constraints. A constraint can 

be defined when a table is created and modified later on. Typically there are five types of 

database constraints: primary key, foreign key, check, NOT NULL, and UNIQUE 

constraint. For us the most important ones are the primary and foreign key constraints 

because we can identify the relationships between two tables. Primary key constraint 

ensures that a column value is unique among all rows in a table and does not allow null 

values. Foreign Key restricts the values that are accepted in a column or columns and it 
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establishes a link between the data in two tables. It is the primary element needed to 

detect and analyze how to partition the tables.  A foreign key points to the primary key of 

another table and the purpose of the foreign key is to ensure referential integrity of the 

data.  A foreign key is a column or group of columns in one table whose values are 

defined by the primary key in another table [61].   

For example, we have two tables: user and user_details   

- All user details must be associated with an user that is already in the user table;  

- We place a foreign key on the user_details table and have it related to the primary 

key of the user table;  

- The user_details table cannot contain information that is not in the user table;  

- The user table can contain information that is not in the user_details table; 

If we have a join where user.user_id is a foreign key and it points to the primary key of 

user_details table user_details.id:  

“SELECT user.Lastname FROM user INNER JOIN user_details ON user.user_id = 

user_details.id WHERE user.user_id=1299”  //Retrievable if HP key is user.user_id 

Only the columns of the user table can be considered as a key for horizontal partitioning. 

“SELECT user.Lastname FROM user INNER JOIN  user_details ON user.user_id = 

user_details.id WHERE user_details.id=2349” //Retrievable because the user_details 

table cannot contain information that is not in the user table and if the HP key is 

user.user_id  
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A foreign key relationship can be explicit or implicit. The explicit key relationships are 

defined in the database itself but the implicit ones (virtual) are not.  

Check constraint is a table level one and it restricts a column value to a set of values 

defined by the constraint. NOT NULL restricts a column and we cannot insert a row in 

the table without providing a valid data for the column. UNIQUE one will make the 

column value unique among all rows in the table. 

3.5.3. Table Relationships 
 

Foreign keys identify a relationship between two tables. Table relationships can be one-

to-one, one-to-many, and many-to-many. 

 

3.5.3.1.   One-to-One 
 

In a one-to-one relationship there is a single value in both directions. Each row in table A 

is linked to one and only one other row in table B. The number of rows in Table A must 

equal the number of rows in Table B (see Figure 14). 

 
 

 

  
  
  
  
 
 
 

Each row in table A is related to 1 and only 1 other row in table B and vice-versa. 

Figure 14: One-to-one relationship 
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3.5.3.2.   One-to-Many 
 

In a one-to-many relationship between Table A and Table B the rows in Table A are 

linked to zero, one, or many rows in Table B. This relationship allows information to be 

saved in a table and referenced many times in other tables. The total number of rows in 

Table B is almost always greater than the number of rows in Table A (see Figure 15).  

 

Figure 15: One-to-many relationship 

Each row in the related table can be related to many rows in the relating table. 

If we turn the relationship around then the relationship will be many-to-one. 
 

3.5.3.3.   Many-to-Many 
 

In the case of a many-to-many relationship, each row in Table A is linked to zero, one or 

many rows in Table B and vice versa. Normally, Table C a mapping table is required to 

map such kind of relationships (see Figure 16).   
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Each row in the related table can be related to many rows in the relating table and 
vice versa. 

 
 

3.5.4.  Partitioning Rules 
 

3.5.4.1.   Partitioning Table “A” 
 

Definition 3: Horizontally partition table “A”. We could horizontally partition table 

“A” if there is a key “X” and for “X” both of the conditions hold: 

1. All the queries that join with table “A” use key “X” or a child key “Y” (child key 

“Y” has a one-to-one relationship or a many-to-one relationship with parent key 

“X”) in the join; 

2. All of the queries on table “A” have a “WHERE” clause that contains key “X” or 

a key “Y” that is a child of “X”. 

If there are more than one keys possible e.g. “X” or “Y”, then we consider both keys 

for horizontal partitioning in a random order.   

As an example for partitioning tables individually, we can mention when 

dimension tables of a star schema are large, they can each be normalized to create 

Figure 16: Many-to-many relationship 
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multiple tables having a typical relational database design. The resulting variation of 

the star schema is called a “snowflake schema” shown in Figure 17. In the figure, the 

dimensions tables are decomposed into a snowflake structure to avoid joins to a large 

table. In some cases decomposed structure may improve performance because smaller 

tables are joined. We assume that queries in the workload can contain any subset of 

these foreign keys to primary key joins. We can horizontally partition the 

“Customer”, “Parts” and “Supplier” tables individually based on X(1)=“Custkey”, 

X(2)=“Partkey”, and X(3)=“Suppkey”. 

 

 

 

 

 

 

 

 

 

3.5.4.2.   Partitioning Table “A” and “B” Together 
 

 
Definition 4: Horizontally partition table “A” and “B”. We could horizontally 

partition table “A” and “B” together if: 

- Table “A” is nested in table “B” and;  

- There is a key “X” and for “X” two conditions are hold: 

Figure 17: Snowflake schema 
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1. All the queries that join with either table (“A” and “B”) use nested key “X” or 

a child key “Y” (child key “Y” has one-to-one relationship or a many-to-one 

relationship with nested parent key “X”) in the join; 

2. All the queries on each table (“A” and “B”) have a “WHERE” clause that 

contains nested key “X” or a key “Y” that is a child of “X”. 

Table A is nested with respect to table B if there is a one-to-one or a many-to-one 

relationship from table B to table A. Alternatively, table A is nested with respect to table 

B if: 

- Table B has a column that is a foreign key to table A’s primary key, or 

- Table B has a column that is a duplicate of one of the table A’s columns 

Figure 18 shows an example for partitioning group of tables together. 

user_details users

user_roles
comments

users.id=user_details.user_id	  where	  users.id=x

Comments.user_id=users.id	  where	  
users.id=x

enrollments

No	  direct	  join

user_details	  nested	  in	  users
user_roles	  nested	  in	  users
comments	  nested	  in	  users
enrollments	  nested	  in	  users

user_roles.id=enrollments.student_id	  
where	  user_roles.user_id=x
OR
user_roles.id=enrollments.student_id
Where	  enrollments.user_id=X

HP	  :	  users.id/table.user_id

 

Figure 18: Partitioning group of tables 

 
Appendix D shows the possible relationships between tables. 
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3.5.5.  Partially Ordered Set 
 
 
P = (X, P) is a partially ordered set – poset, if X is a set and P is a reflexive, 

antisymmetric, and transitive relation. X is the ground set and P is a partial order. We use 

the notation x≤y for (x,y) ∈ P and x<y if x≤y but x≠y. We also use xày for x<y. Two 

elements x,y∈ X are either comparable when either x≤y or y≥x, or they are 

incomparable. A poset is a chain (or a totally ordered set or a linearly ordered set) if each 

pair of elements is comparable, and it is an anti-chain if each pair of elements is 

incomparable. The height of a poset is the maximum cardinality of a chain and the width 

is the maximum cardinality of an anti-chain. We say that y covers x in P, if xày and 

there is nothing in between, i.e. there is no z such that xàz and zày [41].   

 

3.5.6.  Hasse Diagram 
 

 
The cover graph associated with P = (X,P) is the graph G = (X, E) where the edge set E 

consists of pairs (x,y) for which xày in P. The Hasse diagram is a graph representation 

of a partially ordered set P if x is lower in the plane than y whenever xày. 

For example Figure 19 shows the Hasse diagram for P=({1,2,3,4,6,8}, divisibility).  

To create the Hasse diagram we follow four easy steps: 

1) Construct a digraph representation of the poset where all the arcs point up 

2) Eliminate all the loops 

3) Eliminate all redundant arcs (transitivity) 

4) Eliminate the arrows at the end of each arc (everything points up) 
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Figure 19: Hasse diagram for P=({1,2,3,4,6,8}, divisibility) 

 
If xày in the poset, then the point corresponding to x appears lower than the point 

corresponding to y. An arc between the two points is represented if and only if x covers y 

or y covers x. 

The power set of any set S, ℘(S), is the set of all subsets of S including the empty set and 

S itself. Note that if S contains exactly s elements, then the cardinality of ℘(S) is 2!. 

If S is the set {teacher.id, users.user_id, teacher.teacher_id}, then the subsets of S are: 

{}, {teacher.id}, {users.user_id}, {teacher.teacher_id}, {teacher.id, users.user_id}, 

{teacher.id, teacher.teacher_id}, {users.user_id, teacher.teacher_id}, {teacher.id, 

users.user_id, teacher.teacher_id} 

and ℘(S) = {{}, {teacher.id}, {users.user_id}, {teacher.teacher_id}, {teacher.id, 

users.user_id}, {teacher.id, teacher.teacher_id}, {users.user_id, teacher.teacher_id}, 

{teacher.id, users.user_id, teacher.teacher_id}}.  

Figure 20 shows the Hasse diagram of P=(℘(S), ⊆) where ⊆ represents the partial order. 
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Figure 20: Hasse diagram of P=(℘(S), ⊆) 

P={{}, {teacher.id}, {users.user_id}, {teacher.teacher_id}, {teacher.id, users.user_id}, 
{teacher.id, teacher.teacher_id}, {users.user_id, teacher.teacher_id}, {teacher.id, 

users.user_id, teacher.teacher_id}, ⊆) 

 

3.5.7.  Maximal Element  
 
 

If P = (X,P) is a poset, an element x∈X is called a maximal element if there is no y∈X 

for which  xày. The set of maximal elements is represented by MAX(X,P).  This is 

always an antichain since if there are two elements that are comparable then one of them 

is not maximal [41]. However, MAX(X,P) may not be as large as the width of (X,P) (the 

maximum cardinality of an antichain). A maximal element of a poset has no upward line 

in the Hasse diagram. There may be zero, one, or many elements. Finite posets must have 

at least one maximal element.  

In Figure 20 {teacher.id, users.user_id, teacher.teacher_id} is the maximal element since 

there is no further element above it. We draw the Hasse diagram of a finite poset in such 

way, if y covers x, then the point that represents y is higher than the point of x in the 
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plane. No arrows required in the drawing (directions of the arrows are implicit). 

 

3.5.8.  HP Key Search 
 

As a first step we build up a data matrix based on the query templates. The matrix 

contains all table.key entries for all queries including the query conditions. If a query 

template has no “WHERE” condition or falls into our limitations then we remove all 

entries of the involved tables from the matrix. For example, “SELECT * FROM A” would 

not give us a partitioning key for table A since there is no specified key in the query. 

After building the matrix we create an object key set that includes all the possible 

TABEL.KEY entries. If we would like to know weather TABLE1.KEY1≤ 

TABLE2.KEY2 we have to check all queries for TABLE1.KEY1 and TABLE2.KEY2. 

After this step we find the maximal elements of the object key applying horizontal 

partitioning rules set. As the last step we compare the maximum elements for partition 

key(s) selection. For example, consider the queries “SELECT A.K from B inner JOIN A 

ON B.K = A.K WHERE A.K = 12” and “SELECT * from A WHERE A.K = 54” and 

“SELECT C.K from B inner JOIN C ON C.K = B.K WHERE C.K= 34” where B.K, A.K, 

and C.K have one-to-one relationship between each other. Let’s build the data matrix D: 

 Q1 Q2 Q3 
A.K 1 1 0 
B.K 1 0 1 
C.K 0 0 1 
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Create the object key X={A.K, B.K, C.K} and let’s draw the Hasse diagram for 

P=({A.K, B.K, C.K}, HP). Since A.K, B.K, and C.K have one-to-one relationship with 

each other therefore, they fulfill our requirement for horizontal partitioning. 

 

 

Figure 21: Hasse diagram for P=({A.K, B.K, C.K}, HP) 

 

There is an easy 𝑛2 =O(n2) time algorithm finding MAX(X,P). For each x∈X we check 

all the pairs (x,y), y∈X. Those elements x which never “loose”, i.e. always either y≤x or 

(x,y) are incomparable, are the maximal elements. In the Hasse diagram (see Figure 21) 

these are the elements that there is no element covering them. Note that it is not hard to 

see that in the worst case, if we have no information on the poset, then we need this many 

comparisons. Indeed, suppose that our algorithm does not compare the pair (𝑥!,𝑥!). Then 

consider two posets (X,  𝑃!) and (X,  𝑃!), where in 𝑃! no two elements are comparable and 

in 𝑃! no two elements are comparable except  𝑥! ≤ 𝑥!. Then indeed our algorithm is 

going to give incorrectly the same result on the two posets. However, note that if we have 

more information on the poset, then we might be able to do better. For example, if it is a 
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linear order, then it is well known that we can find the maximum element in n-1 

comparisons. However, here we use the fact that it is a linear order which might not be 

true for us. Let us also mention here that if we need a little more information on the 

structure of the poset, then we can apply the following fundamental theorem of posets: 

 
 
Theorem (Dilworth, 1950, see [41]). If (X,P) is a poset of width n, then there exists a 

partition X = 𝐶!  ∪  𝐶!  ∪  … ∪  𝐶!  where each 𝐶!  is a chain.  

In this case we can partition all tables based on key A.K, B.K, or C.K.  

Figure 22 shows the algorithm. 

 
Figure 22: HP key search algorithm 

 

3.6.  Vertical Partitioning 
 

Vertical partitioning splits the table into smaller ones with the same number of rows but 

fewer columns. We do not require that one can recreate a row of a column in an original 

format and we do not add an extra ID column of the table in each vertical partition. The 
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vertically partitioned table contains a subset of the original table. It is a reasonable 

approach because the queries can be executed on a subset of the original table, thus 

generating a smaller number of page accesses [63]. The main goal of this partitioning 

activity is to find sets of columns that are accessed by the query templates. We do not 

have exactly the same restrictions that horizontal partitioning has. In the case of vertical 

partitioning, we only need to identify the accessed columns for each table in the query 

templates.     

 

3.6.1.  Operator and Framework Limitations 
 

The parser component of our framework does not have support for queries in the format 

of an implicit JOIN: “SELECT * from user, progresses WHERE user.id=progresses.id” 

and for three/multiple way joins in the format of “SELECT user.ID, progresses.ID, 

teacher.ID FROM user u, progresses p, teacher t WHERE u.id = p.id and  p.id = t.id”. 

Also, we do not parse the following aggregate functions and Mathematical operators: 

SQRT, POWER, EXP, and COUNT(*). 

The system can be easily extended for such supports. 

Views: Systems with views (virtual subset of a table) are handled as normal table by our 

algorithm. 

Nested queries: We do not support nested queries. 

Transactions: We do not support transactions. 

Union: We do not support the UNION operator.  



 80 

3.6.2.  VP Key Search 
 

As a first step we build up a data matrix for each table based on the query templates. The 

matrix contains all key entries of a table for all queries including the query conditions. 

For example, “SELECT A.K1, A.K2 FROM A” would give us K1 and K2 keys to 

vertically partition table A. After building the matrixes we create object key set for each 

table that include all the possible KEY entries. As a last step we find the maximal 

elements of these object keys. For example, consider the queries “SELECT A.K1 from B 

inner JOIN A ON B.K1 = A.K2 WHERE A.K2 = 12” and “SELECT K2 from A WHERE 

A.K3 = 54” and “SELECT C.K1 from B inner JOIN C ON C.K1 = B.K1 WHERE C.K1= 

34. Let’s build the data matrixes D1, D2, and D3 for each table (A, B, C): 

A Q1 Q2 Q3 
K1 1 0 0 
K2 1 1 0 
K3 0 1 0 

 
B Q1 Q2 Q3 

K1 1 0 1 
 

C Q1 Q2 Q3 
K1 0 0 1 

 
Create the key sets (X1, X2, and X3) for each table: X1={K1, K2, K3}, X2={K1}, and 

X3={K1}.  

If X1 is the set then the subsets of X1 are: 

{}, {K1}, {K2}, {K3}, {K1, K2}, {K1, K3}, {K2, K3}, {K1, K2, K3} 

and ℘(X1) = {{}, {K1}, {K2}, {K3}, {K1, K2}, {K1, K3}, {K2, K3}, {K1, K2, K3}}. 
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Similarly, ℘(X2) = {{}, {K1}} and ℘(X3) = {{}, {K1}}. 

Figure 23 shows the Hasse diagram of P1=(℘(X1), ⊆), P2=(℘(X2), ⊆), and P3=(℘(X3), 

⊆) where ⊆ represents the partial order.  

 
Figure 23: Hasse diagram of P1(a), P2(b), and P3(c) 

 

As mentioned above there is an easy 𝒏𝟐 =O(n2) time algorithm finding MAX(X,P). For 

each x∈X we check all the pairs (x,y), y∈X. These elements x which never “loose”, i.e. 

always either y≤x or (x,y) are incomparable, are the maximal elements. In the Hasse 

diagram these are the elements that there is no element covering them. We calculate 

MAX(X,P) for each table. As an additional step, we check if the total number of 

candidates in the result sets is not equal to the total number of related table’s columns. If 

yes, then we do not consider the table for vertical partitioning. As a result of this 

example, we can vertically partition table A based on key A.K1, A.K2, and A.K3, table B 

based on B.K1, and table C based on C.K1. Figure 24 shows the algorithm. 
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Figure 24: VP key search algorithm 

 
 

3.7.  Combined Vertical Partitioning 
 

Normal vertical partitioning has a drawback. We have to scan all the query templates and 

find all the referenced columns for a particular table. If one query template references 

three columns of the table and a second query retrieves all the columns then normal 

vertical partitioning will not apply the operator on the table. For example, “SELECT K1, 

K2, K3 from A” and “SELECT * from A”. In this case, table A will not be considered for 

vertical partitioning. What if we combine vertical partitioning with full replication 

operator? We can still create a vertically partitioned table A’ that involves K1, K2, and 

K3 columns if we keep a full copy of the original table A as well. This solution combines 

the two operators. In this case, the first query is answered by using table A’ (table A’ will 

be fully replicated across all the nodes as well) and the second query is routed to table A. 

This solution involves the inserts of the UDI queries into A and A’ tables but opens more 

possibilities for vertical partitioning (see Figure 25).  
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Figure 25: Combined Vertical Partitioning (VPM) 

 
 

3.7.1.  Operator and Framework Limitations 
 

The parser component of our framework does not have support for queries in the format 

of an implicit JOIN: “SELECT * from user, progresses WHERE user.id=progresses.id” 

and for three/multiple way joins in the format of “SELECT user.ID, progresses.ID, 

teacher.ID FROM user u, progresses p, teacher t WHERE u.id = p.id and  p.id = t.id”. 

Also, we do not parse the following aggregate functions and Mathematical operators: 

SQRT, POWER, EXP, and COUNT(*). 

The system can be easily extended for such supports. 

Views: Systems with views (virtual subset of a table) are handled as normal table by our 

algorithm 

Nested queries: We do not support nested queries. 

Transactions: We do not support transactions 

Union: We do not support the UNION operator.  
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3.7.2.  VP Combined Key Search 
 

As a first step we build up a data matrix for each table based on the query templates. The 

matrix contains all key entries of a table for all queries including the query conditions. 

For example, “SELECT A.K1, A.K2 FROM A” would give us K1 and K2 keys to 

vertically partition table A. After building the matrixes we create object key set for each 

table that include all set of KEY entries per queries. Additionally to this step, we search 

for tables that should be kept fully replicated. For example, consider the queries 

“SELECT A.K1 from B inner JOIN A ON B.K1 = A.K2 WHERE A.K2 = 12” and 

“SELECT K2 from A WHERE A.K3 = 54” and “SELECT * from A”. Let’s build the data 

matrixes D1 and D2 for each table (A, B): 

A Q1 Q2 Q3 
K1 1 0 0 
K2 1 1 0 
K3 0 1 0 
* 0 0 1 

 

B Q1 Q2 Q3 

K1 1 0 0 
 

Create the key sets for each table: X1={K1, K2}, X1={K2, K3}, X2={K1}, and find table(s) 

that should be fully replicated.  

To be able to answer each query correctly, table A should be fully replicated in 

partitioning case. Figure 26 shows the algorithm. 
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Figure 26: Combined VP key search algorithm 

  

3.8.  Denormalization 
 

In denormalization, one moves from higher to lower normal forms in the database 

modeling and add redundant data. The performance improvement is achieved because 

some joins are already pre-computed and the query response time will be minimized 

[64,65]. For improving the performance of database systems, denormalization has been 

studied in several projects [66,67,68]. During the normalization task one decomposes 

tables into smaller ones. One of the main purposes of denormalization is to decrease the 

number of tables that must be accessed to answer a query. The more tables we have, the 

more joins we have to perform in the query templates. During the denormalization task 

one combines tables together to form a bigger one. As the result of denormalization, the 

data is presented in the same table and there is no need for any previous joins. If one 

denormalizes two tables with one-to-many relationship, one has the options of how to 

limit the ‘many’ relationship in the denormalized table. Either the DBA has pre-

knowledge which data segment is used or the created table will end up with more rows 
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and columns. The denormalized table contains no redundant columns to match the join 

criteria. We denormalize tables based on the join frequency in the query templates. In 

default, the denormalization ratio is set to 10%. That means the occurrence of the same 

join is equal or greater than 10%. If the condition is fulfilled, we denormalize the 

involved tables based on their join condition.  

 

3.8.1.  Operator and Framework Limitations 
 

The parser component of our framework does not have support for queries in the format 

of an implicit JOIN: “SELECT * from user, progresses WHERE user.id=progresses.id” 

and for three/multiple way joins in the format of “SELECT user.ID, progresses.ID, 

teacher.ID FROM user u, progresses p, teacher t WHERE u.id = p.id and  p.id = t.id”. 

Also, we do not parse the following aggregate functions and Mathematical operators: 

SQRT, POWER, EXP, and COUNT(*). 

The system can be easily extended for such supports. 

Views: Systems with views (virtual subset of a table) are handled as normal table by our 

algorithm 

Nested queries: We do not support nested queries. 

Transactions: We do not support transactions 

Union: We do not support the UNION operator. 

 

The next chapter will talk about the framework and its performance evaluation. 
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3.9.  Conclusion 
 

In this chapter, we studied the problem of scalability in web applications; in specific we 

considered distributing load across multiple database servers. The contribution of this 

chapter is a methodology, which can help Web-based applications that deal with 

scalability problems and helps to figure out what is a good database layout for a 

particular Web-based application given a query workload. The typical scaling bottleneck 

of an application is at the database side.  

We proposed a data placement algorithm that considers a data placement 

technique and determines the best possible layout of tables across multiple database 

servers for a given query workload. This layout algorithm is capable of determining a 

possible data placement based on the query templates, constraints, and the optimization 

goal using four operators (full replication, horizontal partitioning, vertical partitioning, 

denormalization) and arbitrary number of database servers answering each query by a 

single node.  

We introduced a state space search methodology by which we search for better 

database layouts. By conceptualizing the problem as a state space search problem and by 

doing a full state space search, we were able to physically create the layouts and evaluate 

the overall response time of the system to parameterize the guiding rules. One of the 

assumptions we actually impose upon ourselves is that queries should be answerable by a 

single database node. By making this assumption we simplified the processing of 

individual queries to the databases. Of course, sometimes DBAs want to write queries 

that can go across all database nodes involving multiple tables, e.g. for analytical 
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purposes but these analytic queries can be executed as a background task by the DBAs. In 

this chapter, we applied posset theory and its Hasse diagram representation to 

algorithmically describe our operators and visualize their operations. We propose to 

identify other features that can be important to guide the search and use them as an input 

of a machine learning technique to create general rules about when to use the different 

layout operators. We would like to use our middleware to actually find more interesting 

rules involving different features. We propose to use them as rules of thumb of a machine 

learning system to recommend when to use the different layout operators.  

 

The next chapter will talk about the architecture of the framework, implemented 

components, and it introduces a complete workflow of the system. 
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4. The Framework 
 

Figure 27 illustrates the high-level architecture of the system and its main inputs. The 

workload specifies the sequence of queries that were collected during normal usage of the 

database. It needs to contain all incoming query templates of the application. Constraints 

represent the relationships between tables. The placement algorithm determines the 

applicable operators, partitions, and partitioning keys based on the workload and 

constraints. The system also considers the application source database and the available 

database nodes for partitioning which applies the nodes’ addresses and database 

connector strings.  

Figure 28 shows the modularized architecture of the system. The Data Placement 

Algorithm (DPA) is responsible for determining the valid sets of tables and keys for each 

operator based on the given workload, constraints, and node information.  

 

 
Figure 27: High-level architecture of the framework 



 90 

Appendix J shows a flowchart of step 4 of the DPA (how the operator-key pair is 

selected) and Appendix K describes a flowchart of step 6.1 of the DPA (how the 

partitioning key is selected). As soon as the algorithm creates the sets it passes them to 

the State Space Search Module (SSSM). This module is the heart of the search. If the 

SSSM determines a valid state then it contacts the Layout Module (LM) to initiate the 

creation of the physical configuration with the selected operator. The LM stores 

information about the created configurations in the Layout Bank (LB). Therefore, it asks 

the LB for the required configuration. If the LB has no previous information about the 

requested layout then the LM starts the layout generation process. First, it connects to the 

source database to initialize the layout generation.  

 
Figure 28: Modularized architecture of the framework 

 

Then it collects information about the source table Users (e.g. column names and types, 

indices, triggers, etc.) and generates the new table schema (Table name + Applied 

operator + New Table identifier + Partitioning Key) utilizing the given database nodes 



 91 

(e.g. Users_HP_2abc4_id). In the next step the LM creates the new tables using the 

cloned table information on each node. With a pre-defined hash function, it distributes 

the tuples among multiple database nodes before sending the layout information to the 

LB. When the layout creation finishes, the SSSM initiates a test request to measure 

response time of the system. The Tester Module (TM) simulates the real world example 

with multiple application servers. Each simulated application server uses the workload to 

generate hundreds or thousands of requests for the back-end. The Database Connector 

(DCM) and Linker (DLM) modules are responsible for initializing and maintaining the 

database connections towards the available database nodes. The Query Analyzer Module 

(QAM) parses the queries in the workload and rewrites them to replace the original table 

names with the partitioned ones (e.g. replace table Users with Users_HP_2abc4_id). It 

uses the same hash function the LM applies to determine the correct database nodes for 

data retrieval. Once the data is laid out on the database servers, the LM updates the 

middleware’s Query Router (QR) about the new changes in the layout configuration. The 

QR maintains multiple connections to the database nodes, routes queries to the correct 

node, and transfers results back to the requestor. As soon as a new configuration is laid 

out, the Web-based application can connect to the QR without needing any code 

modification. The application detects the QR as a database node that manages and hides 

the configuration differences utilizing multiple databases.  

 

4.1.  Routing the Queries 
 

After the data is laid out across the different database servers, the system is ready to start 

processing the queries. The query router routes the queries to the appropriate database 
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server/(s): a select query is sent to the appropriate database server, and an UDI query is 

sent to all the appropriate database servers. For performing the routing, the query router 

utilizes the dataLayout that is returned by the data placement algorithm. In addition to 

routing the queries correctly, the query router must also ensure that the database servers 

are utilized effectively. For this, we need to be executing multiple queries on any 

database server at any instant, while also maintaining the correct in-order semantics 

specified by the application. Our solution includes an efficient query router that maintains 

multiple connections for each database server, thus enabling multiple concurrent queries 

on a database server. Our detailed architecture for routing queries is shown in Figure 29.  

 
Figure 29: Architecture of the Query Router 

 

The thread that handles the requests for a database server maintains a queue of requests 

that the server needs to process, multiple connections to the server for executing multiple 

queries concurrently. The queries from all the application servers are sent to the query 

router, where the requests are queued. The query router also maintains how the tables are 

placed on the different database server nodes (using the dataLayout structure returned by 
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the placement algorithm); this information is used to route a query to the appropriate 

database server node/(s). In our system, how to route a query is determined statically and 

does not vary based on the current load on the database servers. A select query is routed 

by the query router to one database server, whereas an update query is routed to all of the 

appropriate database servers. For example, a query of type Q1 (see Table 1) may be 

routed to node 1; a query of type Q2 may be routed to node 5; a query of type Q6 has to 

be routed to all the five nodes.  

For replicated tables when a query can be answered by more than one node, our 

system routes the queries in a simple round-robin fashion. This routing ensures that the 

database servers are equally loaded. Each database server is managed by a thread that 

maintains two data structures: a queue of requests it has received, and a lock table to 

handle conflicting select and UDI queries. In order to increase the performance of each 

database server, the thread for the database server maintains multiple connections to that 

server; thus multiple queries can be executed simultaneously on a single server. If 

multiple queries can be scheduled simultaneously on a database server, we need to 

implement a simple locking mechanism. Let us illustrate how the locking mechanism is 

implemented in our system using a lock table. Consider queries of type Q4 and Q7 (see 

table 1) that are conflicting: Q4 reads from the users table while Q7 inserts into the users 

table. If there is a query of type Q4 and a query of type Q7 both waiting to be serviced in 

that order, they cannot be scheduled simultaneously. Rather, we have to wait for Q4 to be 

finished before Q7 is scheduled. We cannot let the database server handle the conflict 

management, because it will not guarantee the serial order of Q4 and Q7. Such conflicts 

are handled using the lock table as follows: first the thread for the database server 
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examines the current query and sees if it can obtain the appropriate locks (read/exclusive 

lock). If the locks are available, then the query is scheduled on one of the available 

connections; otherwise, it waits till the lock is available and then the query is scheduled 

on one of the connections. When the query is finished, the locks are updated accordingly. 

While a query is waiting for a lock to be available, the following queries in the thread 

queue are not scheduled (even though locks may be available for those queries); this 

solution is done for simplifying our architecture. 

 

4.2.  The Tester Module 
 

The tester module is responsible for measuring the total system response time using the 

workload. The module models the expected usage of the application by simulating users 

who can access the application at the same time. This modeling makes the measurements 

more realistic to the real word application. There is an option to set the standard deviation 

(stderr) requirement between the results of each measurement. In default, this value is 

0.05. This means the tester module continues to determine the system response time until 

the standard deviation of the measurements’ results is less than or equal to 0.05. This 

measurement method also eliminates the cache warm-up effects so that the disk caches 

get populated with valid data and it makes the measurement accurate. The module also 

handles the database cleaning. The workload can contain insert/delete queries that modify 

the total number of tuples in a table after inserting or deleting rows. After each 

measurement, it runs the cleaner workload to delete or insert into the tables and clean the 

previously inserted or deleted extra tuples. 



 95 

4.3.   The workflow 
 

The framework is automatically decides on the suitable partitioning strategy without any 

human intervention. TPC-W [43], the Industry Standard eBusiness transactional web 

benchmark’s tables and query templates were used to generate different database 

configurations. Appendix C shows the query templates of the Java TPC-W [43] 

Implementation distribution (PHARM University of Wisconsin – Madison). This Web-

based application has 48 query templates.   

The start condition requires four inputs. The first input is the query template file that 

includes all the possible mappings of the logical model to SQL statements (see appendix 

C for TPC-W). The second input is the workload file that contains the actual percentage 

of queries of each template that the application typically processes. The system can have 

more than one workload descriptor as input based on the measurement needs. If one 

would like to increase the number of simulated users who can access the application at 

the same time then the framework requires as many workload files as the simulated users. 

The third input is the constraint descriptor file that describes the relationships between 

tables and columns (see Appendix E for the constraint file of TPC-W).  The last input is 

the database node descriptor file that describes the server names and connection details 

(database name, port, user, and password). The framework starts to analyze the query 

templates and determines the partitioning possibilities. After analyzing them it starts the 

state space search over layouts. The state space search module conducts the full state 

based search. When a state is created, the framework physically lays out the data, updates 

the query router with the actual layout configuration, and measures the total system 
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response time using the given workload. Furthermore, it conducts the significance testing 

of the results with a significance level of 0.05. During the search a result file is generated. 

The result file contains the details of the measurements (total system response time of 

each state and the related layout configuration) and gives information about the best path. 

Figure 30 shows the configuration of the measurements.  

 

 
Figure 30: Configuration of the measurements 

  

Table 2 displays the details of the server infrastructure.  
 
 

Table 2: Information of the infrastructure 

Server Server function Information Database 

1 Framework Intel Pentium 4, 3.0Ghz CPU, 4 GB 
RAM, 64 bit Ubuntu 4.1.2 - 

2 Query Router Intel Xeon 2 core 3.0Ghz CPU, 4 GB 
RAM, 64 bit SUSE 11.1 - 

3 Source Database Intel Xeon 4 core 3.2Ghz CPU, 8 GB 
RAM, 64 bit Debian 3.4.3 Sarge PostgreSQL 8.2 

4 Database Node 1 Intel Xeon 4 core 3.2Ghz CPU, 8 GB 
RAM, 64 bit FreeBSD 7.3 PostgreSQL 8.2 

5 Database Node 2 Intel Xeon 4 core 3.2Ghz CPU, 4 GB 
RAM, 64 bit FreeBSD 8.2 PostgreSQL 8.2 

6 Database Node 3 Intel Xeon 4 core 3.2Ghz CPU, 4 GB 
RAM, 32 bit FreeBSD 7.2 PostgreSQL 8.2 
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As an example, table 3 presents a result of the state based search for TPC-W.  
 
 
 

Table 3: The results of the state based search for TPC-W 

State Operator Table 
Improv
ement 
State 0 

Improvement 
Parent State 

System 
Response 

Time 

TTEST 
State 0 

TTEST  
Parent Parent 

0 FR ALL N/A N/A 8.919s N/A N/A 0 

1 HP 

cc_xacts 
Key: cx_o_id 

New table: 
cc_xacts_HP_2af5f4b9 

 
YES 

(0.267s) 
 

 
YES 

(0.267s) 
 

8.652s 
Signific

antly 
better 

Signific
antly 
better 

0 

2 HP 

shopping_cart_line 
Key: scl_sc_id 

New table: 
shopping_cart_line_HP_

461bacd1 

YES 
(0.55s) 

YES 
(0.283s) 8.369s 

Signific
antly 
better 

Signific
antly 
better 

1 

3 DN 

shopping_cart_line, item 
New table: 

shopping_cart_line_item
_DN_78a96b32 

YES 
(0.517s) 

YES 
(0.25s) 8.402s 

Signific
antly 
better 

 
Signific

antly 
better 

 

1 

4 HP 

shopping_cart_line 
Key: scl_sc_id 

New table: 
shopping_cart_line_HP_

461bacd1 

YES  
(0.589s) 

YES 
(0.04s) 8.330s 

Signific
antly 
better 

Signific
antly 
better 

0 

5 HP 

cc_xacts 
Key: cx_o_id 

New table: 
cc_xacts_HP_2af5f4b9 

YES 
(0.638s) 

YES 
(0.05s) 8.281s 

Signific
antly 
better 

Signific
antly 
better 

4 

6 VP 

cc_xacts 
Keys: cx_o_id, 

cx_type, 
cx_num, 
cx_name, 
cx_expire, 

cx_auth_id, 
cx_xact_amt, 
cx_xact_date 
New table: 

cc_xacts_VP_973d6367 

YES 
(0.566s) 

NO 
(0.02s) 8.353s 

Signific
antly 
better 

Not 
signific

antly 
worse 

4 

7 VP 

cc_xacts 
Keys: cx_o_id, 

cx_type, 
cx_num, 
cx_name, 
cx_expire, 

cx_auth_id, 
cx_xact_amt, 
cx_xact_date 
New table: 

cc_xacts_VP_973d6367 

NO 
(0.02s) 

NO 
(0.02s) 8.9s 

Not 
significa

ntly 
better 

Not 
signific

antly 
better 

0 
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8 DN 

shopping_cart_line, item 
New table: 

shopping_cart_line_item
_DN_78a96b32 

YES 
(0.337s) 

YES 
(0.337s) 8.582s 

Signific
antly 
better 

Signific
antly 
better 

0 

9 HP 

cc_xacts 
Key: cx_o_id 

New table: 
cc_xacts_HP_2af5f4b9 

YES 
(0.504s) 

YES 
(0.167s) 8.415s 

Signific
antly 
better 

Signific
antly 
better 

8 

10 VP 

cc_xacts 
Keys: cx_o_id, 

cx_type, 
cx_num, 
cx_name, 
cx_expire, 

cx_auth_id, 
cx_xact_amt, 
cx_xact_date 
New table: 

cc_xacts_VP_973d6367 

YES 
(0.503s) 

YES 
(0.166s) 8.416s 

Signific
antly 
better 

Signific
antly 
better 

8 

 

The cardinality of the item table, TPC-W’s scaling factor was one million rows and the 

workload contained 144 queries, 3 times all the query templates. We started with two 

simultaneous threads for the measurements (Emulated Browsers or EBs). The standard 

error between the threads’ results was less than or equal to 0.05. Path[0-4-5] minimizes 

the total system response time the most: shopping_cart_line and cc_xacts tables are 

horizontally partitioned, and all the other tables are fully replicated. Compared to state 0 

(8.919s) we minimized the total system response time by 7.153% (0.638s). Figure 31 

visualize the complete state space search.  

 

Figure 31: TPC-W state space search 
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We used the determined best layout configuration (Path[0-4-5]) to repeat the 

measurement with 100 EBs. We scaled the tables (number of rows) according to the 

cardinality of the various database tables as a function of number of EBs [76] (see 

Appendix F).  For 100 EBs the total system response time was 28.442s using Path[0-4-5] 

and 47.899s for State 0 (all tables are fully replicated). The standard deviation was 0.28. 

The t-test result showed significant improvement. We minimized the total system 

response time by 40% (19.457s). We also captured the CPU and memory utilization of 

the query router to ensure that the measurement will not consume 100% of the overall 

CPU and the memory (swap effect). The highest average (all cores) CPU utilization was 

50.2% and swap was not being used. The framework CPU and memory utilization is not 

significant. The framework and the query router are implemented in python 2.6.6. Figure 

32 shows the results of the two experiments. 

 

Figure 32: Total system response time vs. number of users (State 0 and best path) 
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We can see that the cardinality scaling of the database lead to significant improvement 

and the query router handled multiple clients efficiently.  

 

4.4.   Conclusion 
 

The contribution of this chapter is an established middleware that is general and that can 

be used by any Web-based application. This chapter describes a designed and developed 

shared-nothing data replication framework for Web-based applications with a state based 

search component to predict when to choose between horizontal partitioning, vertical 

partitioning, denormalization or full replication layout operators.  

This chapter also introduces its main components. For routing the queries to the 

appropriate database servers, we developed an efficient query router that is introduced via 

query routing examples. We also describe our implemented tester module for response 

time measurements. This chapter establishes empirical results that are described in the 

workflow section. With our methodology we were able to minimize the total system 

response time significantly. We report our experimental results -layout operators and best 

path- using TPC-W and performing the layout search over multiple database nodes with 

different database cardinalities.  

 

The next chapter will talk about best practices and trade-offs detection to help learn rules 

and features to input them into a machine learning method.  
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5. Identification of Trade-Offs 
 

We would like to collect empirical data that can help the state space search to focus on 

creating layout configurations that could boost the performance of the application. These 

data are the key to knowing the “ground truth” about what is effective and under what 

conditions. After collecting empirical data, where these four different operators have 

been applied, we can use the created configurations as input into a machine learning 

component to learn rules. These machine learned rules can help to govern the physical 

design of the database across an arbitrary number of computer nodes. This help, in turn, 

allows the database placement algorithm to get better over time as its trains over a set of 

examples.  

 

5.1.   Cut-off Points 
 

Cut-off points help the state space search to focus on creating layout configurations that 

could boost the performance of the application. Cut-off points reduce the size of the 

search space by eliminating valid table-operator key-pairs because of their possible 

negative performance effect on the system. To determine these points we turned our 

attention towards database best practices [37]: 

 
• “horizontal partitioning can increase the performance by splitting large tables into 

smaller ones. This results in smaller data size and queries can run faster”; 

• “if a table has many rows, then horizontal partitioning can help to increase the 
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performance”; 

• “horizontal partitioning can help to increase the performance if the application is 

UDI intensive”; 

• “vertical partitioning can increase the performance by dividing tables into 

multiple tables that contain fewer columns”; 

• “vertical partitioning lets queries scan less data and this increases query 

performance”; 

• “if a query is focused on a sub-set of columns, then consider vertically 

partitioning the table”; 

• “if a table is read intensive, then consider full replication to distribute the load”; 

• “if the partitioned data is skewed that could effect the performance”; 

• “if the queries are focused on a specific node in a distributed environment that 

could effect the performance”; 

• “if the table is join heavy, then denormalization can help to increase the 

performance”; 

These and similar rules (see chapter 6) can only suggest the DBAs what to do but cannot 

tell them how to partition the database effectively considering the interactions of rules. 

To explore interactions, guide our search, and to train our machine learning component 

we created different configurations to find cut-off points. All of our cut-off points form a 

binary system that reflects when one operator is better than the other one in terms of a 

suggested feature. In this binary system 1 means that the attribute (e.g. number of 

columns) is high and 0 means low. For example, can we identify a cut-off point between 

horizontal and vertical partitioning if a query focuses on a subset of table columns? We 
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used TPC-W query templates and table schemas to identify 14 cut-off points: 

1. Vertical Partitioning vs. Horizontal Partitioning in terms of number of columns; 

2. Vertical Partitioning vs. Full Replication in terms of number of columns; 

3. Vertical Partitioning vs. Full Replication in terms of UDI vs. read ratio; 

4. Denormalization vs. Full Replication in terms of join heaviness; 

5. Vertical Partitioning vs. Denormalization in terms of join heaviness; 

6. Horizontal Partitioning vs. Denormalization in terms of join heaviness; 

7. Vertical Partitioning vs. Denormalization in terms of number of columns; 

8. Vertical Partitioning vs. Denormalization in terms of UDI vs. read ratio; 

9. Horizontal Partitioning vs. Denormalization in terms of number of rows; 

10. Full Replication vs. Denormalization in terms of number of rows; 

11. Vertical Partitioning vs. Denormalization in terms of number of rows; 

12. Vertical Partitioning vs. Horizontal Partitioning in terms of workload balance; 

13. Horizontal Partitioning vs. Full Replication in terms of workload balance; 

14. Horizontal Partitioning vs. Denormalization in terms of workload balance; 

Join heaviness gives a measure of the join intensity of two tables, workload balance gives 

a measure of the routing of the queries to the same node in a distributed environment, and 

skewness gives a measure of asymmetry in the distribution of the data values. We 

measured each measurement with two threads where the standard error requirement 

between the results of the threads was 0.05. Figure 33 shows one of the identified cut-off 

points when vertical partitioning is better than horizontal partitioning. To identify the 

points we used our framework with different combinations and modifications of TPC-W 
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query templates (Appendix C) in the workload. We utilized three database nodes and two 

emulated browsers. The initial cardinality of the TPC-W item table was set for 1M tuples.     

 

Figure 33: Cut-off point: HP vs. VP (number of columns) 
Before the cut-off point vertical partitioning is better than horizontal partitioning 

and vice-versa after the cut-off point  

 

Figure 33 shows that we horizontally and vertically partitioned the item table with the 

highest number of columns and changed the number of referenced columns in the query 

template (Appendix C, query template ID 26) from 1 to the total number of columns-1. 

The query template frequency was in the range of thousands in the workload. After the 

change, we re-run the framework to create a new partition and re-measured the total 

system response time. The red circle shows the cut-off point. Before the cut-off point 

vertical partitioning is better than horizontal partitioning in terms of number of columns 

and vice-versa after the cut-off point. We used the same method to determine all 14 cut-

off points and we changed different attribute in each case. Figure 34,35, and 36 present 

the cut-off points. 
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Figure 34: Cut-off points I. 

 
a.) HP vs. VP (#columns): before the cut-off point VP is better than HP and vice-versa after the point 
b.) FR vs. VP (#columns): before the cut-off point VP is better than FR and vice-versa after the point 

c.) FR vs. VP (UDI vs. Read): before the cut-off point VP is better than FR and vice-versa after the point  
d.) FR vs. DN (join heaviness): before the cut-off point FR is better than DN and vice-versa after the point  
e.) VP vs. DN (join heaviness): before the cut-off point VP is better than DN and vice-versa after the point 
f.) HP vs. DN (join heaviness): before the cut-off point HP is better than DN and vice-versa after the point 
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Figure 35: Cut-off points II. 

 
g.) VP vs. DN (#columns): before the cut-off point VP is better than DN and vice-versa after the point 

h.) VP vs. DN (UDI vs. R): before the cut-off point VP is better than DN and vice-versa 
i.) HP vs. DN (workload): before the cut-off point HP is better than DN and vice-versa after the point  

j.) HP vs. DN (#rows): before the cut-off point HP is better than DN and vice-versa after the point 
k.) FR vs. DN (#rows): before the cut-off point FR is better than DN and vice-versa after the point 
l.) VP vs. DN (#rows): before the cut-off point VP is better than DN and vice-versa after the point 
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Figure 36: Cut-off points III. 

 
g.) HP vs. VP (workload): before the cut-off point HP is better than VP and vice-versa after the point 
h.) HP vs. FR (workload): before the cut-off point HP is better than FR and vice-versa after the point 

 

5.2.   Conclusion 
 

This chapter has a contribution to show how we can go and parameterize database rule of 

thumbs for cut-off values. Cut-off points help to learn rules that can be effective at 

speeding up the entire system. By utilizing these cut-off points and their attributes, we 

can determine possible sets of important features that we need to take into consideration 

to learn rules with a machine learning method. With the learned rules the state space 

search can select and focus on creating layout configurations that could boost the 

performance of the application. This chapter introduced 14 rules and their attributes like 

“number of rows” or “join heaviness” that we can consider as a set if important features 

to take into consideration to learn a general rule. The method for parameterizing cut-off 

rules is quite general and further cut-off point/attribute pairs can be added to the system 

easily.    

The next chapter will describe how we machine learned rules and built our model for 

operator prediction.   
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6. Machine Learned Rules 
 

By characterizing the problem as a state space search over database layout 

configurations, we iteratively minimize the total cost of the workload creating different 

database layouts and minimize the total system response time. We do a time intensive 

search over different layouts. There can be complex interactions between the four 

different operators, which make it even more difficult to predict what the best way to do 

is. After collecting empirical data where these four different layout operators have been 

applied, we use the created configurations as input into a machine-learning component, to 

predict when to use them. This process, in turn, would allow the database placement 

algorithm to get better over time and reduce the execution time of a long running brute-

force search. A natural consequence of making the search more efficient by using 

machine learning as broadly outlined above would be enhancing the applicability of the 

system. To test the machine learning idea we gathered data using our framework 

involving the TPC-W benchmark schemas, and generated machine learned rules. We can 

then see how good these rules are to search for the optimal layout in similar settings. Our 

knowledge is based on the different database configurations and schema attributes of 

TPC-W that we created. [81] proposed a solution to use Bayesian machine learning to 

find the optimal matching of attributes between two semantically related schemas. They 

mainly focused on probabilistic matching of domains by DBAs. [82] introduces 

“discriminators” that could work well to define classifiers. They noted that the 

“discriminators” should be selected by experiments and that they can be expanded any 

time on per-DBMS (Database Management Systems) basis (extra discriminators). They 

propose a Neural Network [83] approach for classification without being given any rule, 
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but the method has a long training curve and cannot be easily adopted to deal with 

different database systems. For classification, it is natural to pick up a machine learning 

method that works to generate rules such as JRip [79] or J.48 [80] given binary attributes. 

Decision trees have proven to be an efficient way of classification [78]. While it has been 

seen that Neural Networks are hard to be trained and adopted to a new DBMS [82] 

Decision Trees could be adopted easily and perform well in the case of small and noisy 

datasets [77]. We are focused on rule generation as well. Because our instances are 

describable by attribute-value pairs, the target function is discrete valued (HP, VP, DN, 

or FR), and the binary cut-off points are determined, we consider the J.48 decision tree 

for classification. Chapter 6.3 describes the modified Data Placement Algorithm that 

includes the model prediction step and it also presents the structure of the learned model 

using unseen data. Of particular interest to us is the fact that a decision tree could be 

represented as a set of if-else rules based on binary attributes. Like in any supervised 

learning method, we need a training dataset for learning the decision tree. A training 

dataset has points that come in feature-label pairs x,y where x is a feature vector and y is 

the label. Our first task is thus to generate relevant features and their associated labels and 

to determine the ground truth via extensive measurements on the framework. In the next 

sub-chapter we describe how these data were collected with a particular emphasis on 

what were the relevant features and which features were selected.  

 

6.1.   Data Collection and Feature Selection 
 

In this chapter we review how the data was collected and how the features were selected. 



 110 

We also present what we call a “relevance matrix” representing the ground truth and the 

selected features. The results of the actual measurements are called the ground truth. The 

relevance matrix also gives an intuitive insight on which operator is more relevant in a 

given case (given our feature set). For example, feature 1 (Join heaviness: lots of joins 

per table A in the overall workload compared to other tables) is true and feature 2 (UDI 

and Read ratio) is false then the relevance matrix indicates that the horizontal partitioning 

operator minimizes the total system response time the best. It does not just indicate the 

best operator but also indicates the set of possible operators and how they differ 

statistically (from each other and the comparing factor that is Full Replication operator) 

in terms of total system response time. It is important to note that we compared all 

applicable operators to full replication because of our initial distribution policy that fully 

replicates all tables across all the nodes (state 0). Cut-off points are manual input to our 

algorithm based on the determined rules (Chapter 5). 

  
6.1.1. Feature Selection 
 
 
We parameterize common guidelines that DBAs use as heuristics in doing this task 

manually. Figure 37 shows a possible group of features that one can apply to 

parameterize guidelines for the search. The features can be broadly divided into three 

categories: table-related, query- and workload-related, and state-related features. Table-

related features like table size, distinct values, number of columns, etc. can help to pre-

select the applicable operators for a specific table. ”Is schema heavy?” feature considers 

the table schema heavy if the column type can generate high database memory and 

caching demand. For example, if the column type is text, byte, xml, etc. and the  
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frequency of the column specific retrieval query is high then one should help the database 

to share the memory requirements among multiple nodes. Query and workload features 

are also important to determine exact cut-off points. For example, a table with few tuples 

is not worth horizontally partition unless the number of table-related UDI vs. read ratio is 

high enough. As another example: analyze the query templates in the workload and 

determine a cut-off point to characterize the application as write intensive. Feature 

selection from the set listed in Figure 37 is an important task, one way to inform 

ourselves better about the same is to turn to perspectives from database best practices 

[37] such as: 

• “when the number of update/delete/insert queries on a table is small compared to 

the number of retrieval queries (e.g selects), then one should fully replicate”; 

• “when the number of update/delete/insert queries on a table is large compared to 

Figure 37: Illustrating Table, Query, Workload, and State features 
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the number of retrieval queries, then one should horizontally partition”; 

• “if there is a wide table but a lot of read queries are focused on a small set of 

columns of the table, then one should vertically partition”; 

• “when the table size is large, then one should horizontally partition”; 

• “when one frequently joins two tables, then one should denormalize them”; 

• “vertical partitioning can reduce the amount of data that needs to be scanned to 

answer the query”. 

Other than ideas from database best practices [37], we used our cut-off rules, 

recommended experimental evidence [82] and domain knowledge to select a subset of 

features. These features are listed below: 

1. Update/Delete/Insert versus read query ratio of the table; 
2. Number of columns of the table; 
3. Number of rows in the table; 
4. Join heaviness: this feature gives a measure of the join intensity of a table in the 

overall workload compared to other tables  
5. Workload balance: this feature gives a measure of the routing of the queries to the 

same node in a distributed environment 
6. Skewness: this feature gives a measure of asymmetry in the distribution of the 

data values. If we have 2 database nodes and all the 9,000 records are distributed 
under the same node after hashing, then this distribution creates a positive 
skewness (+1) for the table under the node. If the same value is applicable for 100 
records only, then this distribution creates a negative skewness  (-1) for the same 
table under the node. Possibly, most of the queries from the workload can access 
only that specific node after computing the hash function of the table’s key e.g. 
the majority of the logins are from the same school and the data are partitioned 
based on schools. In this case that node could be a bottleneck on the load based on 
skewness and the access pattern of the workload. 

 

Except skewness, all features are binary valued. For example, UDI vs. read ratio of a 

table can be high (1:only UDI queries) or low (0:only read queries). Skewness can take 

three values (0: no skewness, +1: positive skewness, -1: negative skewness).  
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6.1.2.  The Relevance Matrix 
 

The “relevance matrix” represents the ground truth and the selected features. The results 

of the actual measurements are called the ground truth. The relevance matrix also gives 

an intuitive insight on which operator is more relevant in a given case (given our feature 

set). To generate this matrix we created 64 different cases (each case is one data point) 

and for each case we considered the interactions of the six features with each other (26). 

We changed only one parameter for every measurement to be able to detect how ground 

truth is affected by that particular parameter. Figure 38 shows the relevance matrix.  

 

 

Figure 38: The Relevance Matrix 

 

We iteratively changed the features involving the query templates and the schemas of 

TPC-W to create our new database configurations. In each case, we created different 

database layouts and measured the total system response time using two threads 

simultaneously. We turned off the caches of the databases and repeated the measurements 

until the standard error of the two threads’ results was equal or less than 0.05. This 

process also takes care of warming up the disk caches. The created database layouts 
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involved FR, HP, VP, and DN operators and their significance testing to each other and 

to our initial distribution policy. For example, the result for 010110 (skewness low, join 

heaviness high, UDI/R ratio low, number of columns high, number of rows high, 

workload balance low) is presented by Table 4.  

 
Table 4: The result of one measurement (010110) 

010110 R1[s] R2[s] TTEST1 TTEST2 TTEST3 AVERAGE[s] 
FR 44.2 44.2 0.0002 0.0471 0.017 44.2 
HP 43.7 43.7 0.0006 0.0005 - 43.7 
DN 44.1 44.1 0.2307 - - 44.1 
VP 44.1 44.1 - - - 44.1 

 
 

We calculated T-TEST values for significance testing. The first row of the TTEST1 

column tests if FR and HP are significantly different from each other. TTEST2 column 

tests if FR and DN are significantly different from each other and TTEST2 does the same 

for FR and VP. The second row of TTEST1 computes the same for HP and DN and so 

on. This measurement reflects that HP, DN, and VP operators are reduced the total 

system response time and their results are significantly different from Full Replication 

but DN and VP are not significantly different from each other. We can see that HP-VP 

and HP-DN are significantly different from each other. Therefore, HP operator 

minimized the total system response time the most.  The Relevance Matrix sixth row and 

second column shows the result. The matrix reflects all the operators that had significant 

improvements on the total system response time compared to Full Replication. It also 

reflects which operator minimized the total system response time the most (underscored 

operator). If more than one operator is underscored that means they are significantly 

different from Full Replication but they are not significantly different from each other. 
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Moreover, both of them lead to an improvement in terms of total system response time. 

We used the same process to determine each column and row of the Relevance Matrix. In 

our ground truth there were some instances were multiple outcomes were possible and 

they were not significantly different from each other. In such cases we considered the 

operator the one that minimized the total system response time the most - even if it was 

not significantly different from the other outcomes (HP, VP, or DN), but it was still 

significantly better than FR.  We created the Decision Matrix that includes only a single 

operator that affected the total system response time the most. Figure 39 shows the 

Decision Matrix. 

 

Figure 39: The Decision Matrix 

 

6.1.3.  Empirical Validation 
 

The Decision Matrix was used to machine learn the rules (Figure 39). This process was 

done by training and validating a decision tree model on WEKA [84].  Specifically, we 

used the J.48 decision tree classifier provided in the WEKA library. Cross-validation is 

done to ensure that our model does not overfit on the training data and generalizes well to 
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unseen data. Given the small size of data set we performed a leave-one-out cross- 

validation on the data [85]. Kohavi [85] shows that leave-one-out cross-validation almost 

always gives an unbiased estimate of the performance of the model learnt. Hence it is 

quite applicable in our case. This is the same as k-fold cross-validation where the k is 

equal to the number of data points. In each fold 63 data points are used to train the 

decision tree and the one point in the validation set is used to test the generalizability of 

the learned tree. The final results are the average of the 63 folds. The predicted attribute 

is the “operator” which can take four values (FR, HP, DN, VP). We generated the 

prediction under leave-one-out cross-validation and compared the actual and the 

predicted values. One of the cases (see Decision Matrix light green color) that were 

predicted incorrectly belongs to the group with multiple possible outcomes. In our ground 

truth there were some instances where multiple outcomes were possible and they were 

not significantly different from each other. In such cases we considered the label for 

training to be the one that minimized the total system response time the most - even if it 

was not significantly different from the other outcomes (HP, VP, or DN), but it was still 

significantly better than FR.  In subsequent training of the model we removed that 

particular instance from the training data. After removing that instance, we were left with 

63 data points. In this case, in each fold 62 data points are used to train the decision tree 

and the one point in the validation set is used to test the generalization of the learned tree. 

The final results are the average of the 63 folds. The predicted attribute is the “operator” 

which can take four values (FR, HP, DN, VP). Appendix F indicates the dataset in 

WEKA attribute-relation file format (ARFF). Since skewness is a three-valued attribute 

and our experiments indicated that it was not considered for splitting a node in the 
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learned decision tree therefore, we removed skewness from the set of features. In other 

words, our data indicates that skewness might not be a good feature. So, we repeated our 

experiments without skewness included as a feature and we reported exactly the same 

results. The tree learnt through our data is shown in Figure 40. The numbers in brackets 

after the leaf nodes show the total number of instances assigned to that particular node, 

followed by how many of those instances are incorrectly classified. 

 

Figure 40: The learned model 

 
This tree can also be interpreted as a set of if-else rules as given by Figure 41.  
 
 

 
Figure 41: Interpretation of the decision tree as a set of if-else rules 
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The decision tree learned above correctly classified 76.1905% of the time. The mean 

absolute error was 0.1852 and the root mean square error was 0.336. The following 

confusion matrix was obtained for the leave-one-out cross-validation: 

 

A B C D ßClassified as 

3 2 0 0 a = FR 

1 24 0 3 b = HP 

0 1 7 0 c = VP 

0 7 1 14 d = DN 

 

This matrix shows for each class, how instances from that class received classifications. 

From Full Replication (FR) 3 instances were correctly classified and 2 were put into 

Horizontal Partitioning class (HP). From “HP” 24 instances were correctly classified by 

WEKA, 1 was put into “FR” and 3 were assign into “DN” class. From “VP” 7 were 

correctly classified and 1 was put into “HP”. Finally, from “DN” 14 were correctly 

classified, 1 was put into “VP” and 7 were assign to class “HP”. Table 5 shows the result 

of the prediction under leave-one-out cross-validation and the correctly/incorrectly 

classified instances. 

 
Table 5: Prediction under leave-one-out cross-validation 

Actual Predicted Error Prediction ID Fold 
FR FR - 0.667 26 1 
FR FR - 0.667 57 2 
FR FR - 0.667 56 3 
FR HP + 0.733 10 4 
FR HP + 0.733 46 5 
DN DN - 0.867 53 6 
DN HP + 1 32 7 
DN DN - 0.867 22 8 
DN DN - 0.867 48 9 
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DN VP + 1 27 10 
DN HP + 0.733 40 11 
DN DN - 0.867 55 12 
DN HP + 0.733 4 13 
DN DN - 0.867 19 14 
DN DN - 0.867 51 15 
DN HP + 0.733 16 16 
DN HP + 0.733 2 17 
DN DN - 0.867 18 18 
DN DN - 0.867 20 19 
DN DN - 0.867 49 20 
DN DN - 0.867 52 21 
DN HP + 0.733 35 22 
DN HP + 1 38 23 
DN DN - 0.867 50 24 
DN DN - 0.867 24 25 
DN DN - 0.867 23 26 
DN DN - 0.867 17 27 
HP HP - 1 31 28 
HP HP - 0.667 12 29 
HP HP - 1 63 30 
HP HP - 0.857 5 31 
HP HP - 0.667 44 32 
HP HP - 0.667 15 33 
HP DN + 0.933 54 34 
HP HP - 0.857 39 35 
HP FR + 1 25 36 
HP DN + 1 33 37 
HP DN + 0.933 21 38 
HP HP - 0.857 36 39 
HP HP - 0.667 9 40 
HP HP - 0.857 7 41 
HP HP - 0.667 41 42 
HP HP - 0.667 42 43 
HP HP - 0.857 8 44 
HP HP - 0.667 14 45 
HP HP - 0.667 47 46 
HP HP - 0.667 3 47 
HP HP - 0.667 43 48 
HP HP - 0.667 11 49 
HP HP - 1 62 50 
HP HP - 0.667 45 51 
HP HP - 0.857 6 52 
HP HP - 0.667 34 53 
HP HP - 0.857 37 54 
HP HP - 0.667 1 55 
VP VP - 0.667 58 56 
VP VP - 1 30 57 
VP VP - 1 60 58 
VP VP - 1 29 59 
VP VP - 0.667 28 60 
VP VP - 0.667 59 61 
VP HP + 0.733 13 62 
VP VP - 1 61 63 
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Table 5 also includes the number of folds and the IDs of each row that was tested in that 

fold. Figure 42 shows the result of the class distribution of the operators.  

 

 
Figure 42: The class distribution of the operators 

 
 
This distribution reflects that Horizontal Partitioning is the most common operator with 

44.444%, Vertical Partitioning is the second most common with 34.92%, 

Denormalization is the third one with 12.698%, and Full Replication is the last one with 

7.936%. The Kappa coefficient produced by WEKA is 0.6307. Kappa value greater than 

0 means that our classifier does better than chance. The Receiver operating characteristic 

curve (ROC) [86] class labels the true positive rate versus the false positive rate for our 

classifier. The best possible prediction would be a perfect classification: a point in the 

upper left corner of the ROC space (no false negatives and no false positives). A 

completely random guess would generate a diagonal line from the left bottom to the top 

right corner. Figure 43 shows the ROC curves of the operators.  
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Figure 43: ROC curves of the operators 

X axis reflects the False Positive Rate and Y axis shows the True Positive Rate 

 

AUC (Area Under the ROC curve) represents the expected performance in terms of the 

trade of between the false positive and the true positive rates. Classifiers should perform 

better than 0.5 and the values greater than 0.5 have better expected performance.  

Table 6 presents the AUC values for each operators and the weighted average of them.   
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Table 6: AUC values for each operators and the weighted average 

Operator AUC 
FR 0.886 
HP 0.721 
VP 0.908 
DN 0.739 

Weighted average 0.764 
 

6.2.  Rules and the Learned Model 
 

The learned model shows us that the most important feature to know is the write or read 

intensity of a table.  The second one is the join heaviness and the third one is the number 

of columns. At the fourth level the workload balance and the number of rows are present. 

Based on the tree we can create our database rules:  

• “when the number of update/delete/insert queries on a table is small compared to 

the number of retrieval queries (e.g selects), then one should consider FR, HP, 

and VP operators first”; 

• “when the number of update/delete/insert queries on a table is small compared to 

the number of retrieval queries and the table is heavily involved in joins, then one 

should horizontally partition”; 

• “when the number of update/delete/insert queries on a table is small compared to 

the number of retrieval queries and the table has high number of columns but 

small number of rows, then one should vertically partition”; 

• “when the number of update/delete/insert queries on a table is small compared to 

the number of retrieval queries and the table has high number of columns and 

high number or rows, then one should fully replicate”;  
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The last two rules can show us that vertical partitioning has more benefit compared to full 

replication if the involved table has only simple retrieval queries, they are focused on a 

large number of columns, and the table has small number of rows. If the table is read 

intensive but not join heavy and it has a large number of rows, then one should consider 

fully replicating the table. 

• “when the number of update/delete/insert queries on a table is small compared to 

the number of retrieval queries and the table has small number of columns but 

high number of rows, then one should vertically partition”; 

• “when the number of update/delete/insert queries on a table is small compared to 

the number of retrieval queries and the table has small number of columns and 

small number or rows, then one should horizontally partition”; 

• “when the number of update/delete/insert queries on a table is high compared to 

the number of retrieval queries, then one should consider HP operator first”; 

The last two rules can show us that vertical partitioning has more benefit compared to 

horizontal partitioning if the involved table has only simple retrieval queries, they are 

focused on a small number of columns, and the table has small number of rows. If the 

table has large number of rows then one should consider fully replicating the table 

instead. 

When the UDI vs. read ratio is high, we can also create interesting rules:  

• “when the number of update/delete/insert queries on a table  is high compared to 

the number of retrieval queries and the table is join intensive, then one should 

consider denormalizing the table”; 
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This rule gives an addition to the previously mentioned recommendation: “when one 

frequently joins two tables, then one should denormalize them”. One should still consider 

denormalization operator if frequent joins are mixed with frequent UDIs. One logical 

explanation could be that in the case of a full replication, vertical partitioning, or a 

denormalization we do have update propagation (distribute new records across all nodes) 

but the rewrite of the join condition to a simple select can still give enough benefit to 

make denormalization preferable.  

• “when the number of update/delete/insert queries on a table is high compared to 

the number of retrieval queries and the table is join intensive with high workload 

balance, then one should still consider horizontal partitioning”; 

This rule shows that even if lot of queries are routed to the same node and the node 

becomes more loaded compared to the other ones, then we should still consider 

horizontal partitioning if the table is UDI and join intensive. 

 

6.3.  The Modified Data Placement Algorithm 
 

To make the state based search for a new system more efficient over time we can use our 

model to bias the search for layout for a new database. We can load our saved model (see 

Figure 44 for the structure of our saved model) and input the unseen data to predict which 

operators to use. With the predictions, the Data Placement Algorithm became more 

efficient with laying out database configurations. Database Administrators can get 

immediate recommendations on partitioning operators that could lead to a performance 

improvement of their web based application.  Also, the model is quite expandable: 
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additional features and their interactions can be easily added to further increase the 

number of correctly classified instances. Figure 45 presents the modified version of our 

Data Placement Algorithm. Step 6.1 integrates the model. In step 6.1 we predict which 

operator to use on the table that could minimize the total system response time the most. 

After the prediction we generates the layout configuration and measures the response 

time of the system. We significantly can reduce the search space because only the 

predicted states will be created. 

 

Figure 44: The structure of the model 

 
Figure 45: Data Placement Algorithm with prediction 
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6.4.  Virtual Partitioning 
 

Even if the Data Placement Algorithm considers the recommendations we still conduct a 

search to measure the response time of the system. Also, if we have more than one 

partitioning key to consider for a table (e.g. we can horizontal partitioning table A based 

on key K1 or on key K2) then we still have to try both possibilities. To further increase 

the effectiveness of our algorithm we can get an estimated performance decision on 

which key to use by connecting our framework with a black-box query optimizer. By 

connecting to the optimizer we can virtually create a state and get the estimated run times 

from the optimizer. If the DBA decides not to run the actual search, then the virtual 

partitioning not only can give recommendations on placement but it can run the search 

virtually, estimate the states, and generate immediate results.  

 

6.5.  Conclusion 
 

This chapter makes one clear contribution, that is of using machine learned rules to help 

govern the physical design of the database layouts across an arbitrary number of 

computer nodes. This learning, in turn, allows the database placement algorithm to get 

better over time as its trains over a set of examples. By utilizing our model the layout 

algorithm is capable of automatically recommending when it makes sense to apply each 

of the operators.  

The second contribution of this chapter is to select a good set of features based on 

ideas from database best practices, cut-off rules, experimental evidence, and domain 

knowledge. Based on the generalization of the learned model, which seems to be good, 
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we can use the rules themselves to bias a search for a layout for a new database and 

therefore reduce the search space. Another advantage of such an approach is that the 

learned model is easily expandable based on new data. In other words, given new data 

(e.g. more features) new rules can be learned quickly. Finally, the chapter also introduced 

a methodology to determine the ground truth based on the interactions of the features 

(Relevance Matrix), determined which operator is significantly different from each other, 

and concluded this by creating the Decision Matrix for machine learning.    

 

The next chapter describes a comparative analysis of the cut-off rules to be able to assign 

confidence values for each operator and determine the precedence of each operator. 
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7. Comparative Analysis 
 

In this part, we first predict operators based on our 14 rules that we determined in chapter 

5. Second, we construct an easy representation of the operator precedence as a molecular 

structure based on the confidence measure of the operators. Finally, we compare our 

ground truth (Decision Matrix) with our model predictions. This comparison allows us to 

analyze how cut-off rules based on practices predict the best operators comparing to our 

ground truth and to the learned model.  

 

7.1.  Operator Prediction Based on Cut-off Rules 
 

Based on the selected features (UDI vs. R ratio, join heaviness, number of columns, 

number of rows, and workload balance, see chapter 6) we determine which of the 14 

rules is applicable. Given that we have 5 binary valued features there are 25 possibilities 

as indicated by the Decision Matrix (chapter 6) when there is no skewness. So, we repeat 

the exercise of determining which of the 14 rules is applicable in each of these cases 

using the features of the matrix. Table 7 shows this step for two entries. After 

determining them, we create an Operator Matrix (see Figure 46 for feature set 11000) that 

reflects how many times one operator was better and worse than the other one. We also 

construct a pairwise Occurrence Matrix (see Figure 47), which records how many times 

two operators occur together in the rules. We see that this is a symmetric matrix. We use 

these two matrices to create a “Voting Matrix” (see Figure 48), in which each element is 

obtained by dividing the corresponding elements of the Operator Matrix and the pairwise 

Occurrence Matrix.  This matrix gives us a method to compute a value that reflects our 
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confidence of which operator is better. To determine the confidence value we summarize 

each row of the Voting Matrix and dividing that by 3 (total number of operators – 1). The 

numbers represent the precedence order of the operators starting with the best one. 

 
Table 7: Features and rules selection for operator prediction 
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For example, the second row and first column of the Operator Matrix (Figure 46) shows 

that DN operator was 2 times better than VP operator.  The first row and second column 

indicates that VP was 2 times worse than DN based on the rules of table 7 (first entry – 

VP<DN means VP is better than DN in terms of response time).  
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 WORSE 

BETTER 

 VP DN HP FR 

VP X 2 1 1 
DN 2 X 1 1 
HP 1 2 X 1 
FR 1 1 0 X 

Figure 46: Operator Matrix (feature set: 11000) 

 
 

 VP DN HP FR 
VP X 4 2 2 
DN 4 X 3 2 
HP 2 3 X 1 
FR 2 2 1 X 

Figure 47: Occurrence Matrix 

 

The Occurrence Matrix (Figure 47) displays that DN-VP and VP-DN rule occurred 4 

times overall in the set of cut-off rules. This is a symmetric matrix because VP<DN and 

DN<VP are the same in terms of rule occurrence.  

 

 

Figure 48: The Voting Matrix (feature set: 11000) 

 
To create a “Voting Matrix” (see Figure 48) we divide the corresponding elements of the 

Operator Matrix and the pairwise Occurrence Matrix. For example, let’s divide the 

second row and the first column of the Operator Matrix (2) by the second row and the 
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first column of the Occurrence Matrix (4). The result is 2/4 = 0.5 as the Voting Matrix 

second row and first column shows that. We sum all the rows to get the total amount of 

the earned values then we divide each value by (total number of operators – 1) 3 to get 

the confidence values. Each confidence value can vary from 0 to 1. In this example 

horizontal partitioning got the highest value. Therefore, HP is the best operator (see table 

6 first entry of the “Predicted” column and %VotingOnBest column of the Voting 

Matrix). Figure 49 presents the process in an algorithmic format.  

 

 

Figure 49: Algorithm to determine the operator precedence 

 

7.2.  Molecular Structure: The Order of Partitioning 
 

As the result of the process, all operators have a confidence factor. Based on the 

confidence measure of the operators we can construct an easy representation of the 

operator precedence as a molecular structure. In the previous example, the precedence 

order is HP-VP-DN-FR with confidence factors of 0.72, 0.5, 0.44, and 0.33. These values 
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are based on the previous calculations and they are independent of the inputs or states of 

the decision tree. 

 
Figure 50: Molecular representation of the operators with confidence values 

a.) HP-VP-DN-FR (first entry of table 7) 
b.) HP-DN-VP-FR (second entry of table 7) 

 
Figure 50 presents the molecular representation of the operators with confidence values. 

Each node is an operator and each edge is a path between two operators. The best 

operator is on the top with the highest confidence value voted to be the most effective 

one. One can easily check which operator is the second or third best. Despite the 

confidence values we can go from one operator to the next one following a path that is 

applicable for us.  

 

7.3.  Weighting of the Rules 
 

In the previous sub-chapter we showed that each operator has a confidence value. This 

confidence value can vary from 0 to 1 but it could happen that two operators have exactly 

the same values e.g. DN(0.5) and FR(0.5) and the best operator cannot be determined. To 
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avoid situations with ties, we expand the confidence factor by assigning weights to each 

rule and use these weights to re-calculate the actual value.      

 
Table 8: The result of one measurement (011111) with Logical Matrix 

011111 R1[s] R2[s] TTEST1 TTEST2 TTEST3 AVERAGE[s] FR HP DN VP 

FR 99.134 99.128 2.23421E-08 1.15895E-
07 

1.48618E-
05 99.131 X    

HP 74.579 74.582 0.002396276 1.11885E-
08 - 74.580 T X   

DN 74.410 74.425 9.78688E-08 - - 74.418 T T X  
VP 100.109 100.113 - - - 100.111 F F F X 

 

As a first step, we add a Logical Matrix to each measurement of the Relevance Matrix 

(Table 8). A Logical Matrix is a lower triangular matrix. A value of a Logical Matrix is a 

binary representation: it is True, if a row operator has smaller average value than the 

column one that we compare to. Otherwise, it is False. For example, if the average value 

of HP is less than the average value of FR then it is True (first row, first column of the 

Logical Matrix). If we compare two operators, this representation can quickly inform us 

which operator minimized the system response time the most. After creating a Logical 

Matrix for each measurement, then we compare their results with the cut-off rules based 

on best practices. If two of them agree, then we mark their agreement with 1 otherwise, 

with 0 (a cut-off rule agreed with the related measurement or not). The weight of a 

specific rule is calculated by dividing the total number of agreements with the total 

number of candidates (see Table 9). As the final step, we update our Operator Matrix. We 

multiply the elements of the matrix by the sum of the related weights. For example, 

Figure 51 shows the updated Operator Matrix for feature set of 11000 using the weights 

of Table 9. 
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Table 9: Calculation of the cut-off rule weights 
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 WORSE 

BETTER 

 VP DN HP FR 

VP X 2(1/3+1/3) 
1.33 

1(2/3) 
0.66 

1(1/3) 
0.33 

DN 2(1/3+3/3) 
2.66 X 1(1/3) 

0.33 
1(2/3) 
0.66 

HP 1(2/3) 
0.66 

2(3/3+2/3) 
3.33 X 1(2/3) 

0.66 

FR 1(2/3) 
0.66 

1(2/3) 
0.66 0 X 

Figure 51: Operator Matrix example with weights 

 
Table 10 presents the weights for all of the 14 rules based on the calculation steps applied 

to our measurements. Figure 52 shows the updated Voting Matrix for the same feature set 

of 110000.  

 

Figure 52: Updated Voting Matrix (feature set: 110000) 

 
Table 10: Rules and their weights 

Rule Weight [%] 
HP-VP (number of columns) 14/32 = 43.75% 
VP-HP (workload balance) 16/32 = 50% 
FR-HP (workload balance) 17/32 = 53.125% 
DN-HP (workload balance) 12/32 = 37.5% 

DN-HP (join heaviness) 12/32 = 37.5% 
DN-HP (number of rows) 20/32 = 62.5% 

FR-VP (number of columns) 16/32 = 50% 
FR-VP (UDI vs. read ratio) 18/32 = 56.25% 

DN-FR (join Heaviness) 17/32 = 53.125% 
DN-VP (join Heaviness) 14/32 = 43.75% 

DN-VP (number of columns) 16/32 = 50% 
DN-VP (UDI vs. read ratio) 26/32 = 81.25% 
DN-FR (number of rows) 21/32 = 65.625% 
DN-VP (number of rows) 18/32 = 56.25% 

 

To determine the best operators, we had 2 cases with ties without weights and 0 ties with 
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weights. Appendix G presents the Ground Truth, cut-off rule predictions with/without 

weights, and the learned model predictions.  

 

7.4.  Comparison of the Predictions 
 

It is interesting to compare the Ground Truth to the predictions of the cut-off rules 

(with/without weights) and to the learned model. The agreement between the Ground 

Truth, learned model, and the non-weighted prediction is 22% (Appendix H column E). 

From the total of 32 predictions all three agreed 7 times. Comparing to the weighted one 

(Appendix H column F) this value is 37.5%. All three of them agreed 12 times. If we do 

the comparison based on the Ground Truth and the predictions of the non-weighted cut-

off rules (Appendix H column H) we can see that they agreed 9 times (28.1%). However, 

comparing Ground Truth to the weighted predictions (Appendix H column I) we can 

conclude that they agreed 15 times (46.8%). This demonstrates that using weights not 

only can help to select the best operator - in the case of ties - but they can increase the 

correlation between the cut-off rule based predictions and the Ground Truth. We can also 

compare the predictions of the learned model with the weighted cut-off rule predictions. 

They agreed 17 times (53.1%).  By introducing and calculating the weights we were able 

to increase the agreement between the Ground Truth and the cut-off rules by 18.7% (from 

28.1% to 46.8%).  
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7.5.  Conclusion 
 

This chapter described a comparative analysis of the cut-off rules to be able to assign 

confidence values for each operator. With the help of the described operator precedence 

algorithm, we are able to predict not only the best operators but also the next best 

choices. This could be useful, especially if the best operator is not applicable for the 

given application and therefore one should consider the second best operator. It also 

could happen if the DBA does not want to try out a specific partitioning operator even if 

it is possible to apply. In this case, we are interested in the second or third best operators.  

This chapter shows an easy representation of the operator’s precedence as a molecular 

structure based on their confidence values. This representation can be used to compare 

and represent the order of partitioning. The chapter also compares the ground truth with 

our model predictions. We introduce two calculations to determine predictions based on 

the cut-off rules. Predictions without considering weights could create scenarios where 

we cannot determine the best operators (because of ties). Also, the agreement between 

the Ground Truth and these predictions is lower. If we consider weighting the rules then 

we are able to calculate confidence factors that avoid scenarios with ties. Weights also 

increase the agreement factor between the Ground Truth and the predictions by 18.7%.  

 

The next chapter will show an empirical validation of the learned model on an un-seen 

test dataset. 
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8. Empirical validation: ASSISTments, a Free Public Service 
of Worcester Polytechnic Institute  

 
 
ASSISTments© [87,88,89] (www.assistments.org) is a Web-based Intelligent Tutoring 

System that supports thousands of users across Massachusetts. The system is hosted at 

Worcester Polytechnic Institute. We had full access to the system and its backend. We 

captured SQL queries during an average school day using the production environment. 

The size of the log file was 4.3GB and the distribution of the total number (2351381) of 

SQL queries was: SELECT (1970153), INSERT (48226), UPDATE (305900), DELETE 

(27102). The system had 83.78% retrieval (select) and 16.22% UDI queries on that day. 

We collected 194 query templates, not counting the templates of the recently 

implemented features. Horizontal partitioning (HP) determined 21 possibilities (Table 

11), vertical partitioning (VP) created 12 candidates (Table 12), and denormalization 

(DN) considered 7 possibilities (Table 13) with a 10% denormalization ratio.   

 
Table 11: ASSISTments HP possibilities based on a given workload 

Table Partitioning Key 
assistment_ownerships assistment_id 

item_difficulty_logs problem_id 
assistments Id 

assistment_infos assistment_id 
sequence_ownerships sequence_id 

student_classes Id 
Sessions session_id 

teacher_classes student_class_id 
assistment_types Name 

class_files class_assignment_id 
variables assistment_id 

student_class_sections student_class_id 
user_details user_id 

enrollment_states Name 
comments user_id 
taggings tag_id 

tags Id 
problems assistment_id 

item_difficulties problem_id 
tag_categories_tags tag_id 

assignment_logs assignment_id 
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Table 12: ASSISTments VP possibilities based on a given workload 

Table Partitioning Key 

item_difficulty_logs difficulty_error, 
problem_id 

enrollment_states name,description 

problem_logs 

correct,overlap_time, 
user_id,assistment_id, 

first_action, 
tutor_mode, 

assignment_type, 
start_time, 

first_response_time, 
actions, original, 
assignment_id, 
answer_text, 
bottom_hint, 

end_time, hint_count, 
teacher_comment, 
tutor_strategy_id, 

answer_id, 
problem_id, 

attempt_count 

transfer_models is_public, subject_id, 
inferred_from,id 

subjects framework_id,id 
images data 

transfer_model_ownerships content_creator_id, 
transfer_model_id 

item_difficulties difficulty,problem_id 
frameworks id 
class_files class_assignment_id,id 

tags id,name 
assistment_types name,description 

 

Table 13: ASSISTments DN possibilities based on a given workload 

Table Joining Key 
users 

comments id,user_id 

assistments 
assistment_infos id,assistment_id 

tag_categories_tags 
tags tag_id,id 

assistments 
variables id,assistment_id 

sections 
section_links id,child_id 

user_details 
users user_id,id 

taggings 
tags tag_id,id 
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The total number of fully replicated tables was 140. Table 14 shows the set of tables that 

have one or more partitioning operators applicable based on the previous partitioning 

options (Table 11, 12, and 13). It also shows the operator predictions using the learned 

model (Figure 40). The “Feature Set” column shows the High/Low values for the cut-off 

points (Figure 34, 35, and 36). For example, the Feature Set of “01110” means: UDI/R 

ratio: Low, Join Heaviness: High, Number of Columns: High, Number of Rows: High, 

Workload Balance: Low. We manually inputted the cut-off points to our algorithm based 

on the determined rules (see Chapter 5). The states are compared to State 0 where all 

tables are fully replicated across the database nodes. The constructed workload had 

40,000 queries (combinations of the 194 query templates) shuffled in a random order.   

 
 

Table 14: ASSISTments test set 

ID Table Applicable 
operators 

Feature 
Set 

Measured 
Result 

Model 
Prediction 

Agreement 

1 item_difficulty_logs HP/VP/FR 00000 HP HP YES 
2 assistments HP/DN/FR 01110 DN HP NO 
3 assistment_infos HP/DN/FR 01110 HP HP YES 
4 assistment_types HP/VP/FR 00110 FR FR YES 
5 class_files HP/VP/FR 01010 HP HP YES 
6 variables HP/DN/FR 11110 HP DN NO 
7 user_details HP/DN/FR 11110 HP DN NO 
8 enrollment_sates HP/VP/FR 00000 HP HP YES 
9 comments HP/DN/FR 01110 HP HP YES 

10 taggings HP/DN/FR 11000 HP HP YES 
11 tags HP/VP/DN/FR 01000 DN HP NO 
12 item_difficulties HP/VP/FR 00100 VP VP YES 
13 tag_categories_tags HP/DN/FR 01100 HP HP YES 
14 sequence_ownerships HP/FR 01100 HP HP YES 
15 student_classes HP/FR 11000 HP HP YES 

16 sessions HP/FR 10010 HP 
DN  

Not a valid 
operator 

NO 

17 teacher_classes HP/FR 11011 HP HP YES 
18 student_class_sections HP/FR 11010 HP HP YES 
19 problems HP/FR 11010 HP HP YES 
20 assignment_logs HP/FR 11010 HP HP YES 

21 problem_logs VP/FR 11110 VP 
DN  

Not a valid 
operator 

NO 

22 transfer_models VP/FR 00100 VP VP YES 
23 subjects VP/FR 00100 VP VP YES 
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24 images VP/FR 10000 VP 
DN 

Not a valid 
operator 

NO 

25 transfer_model_ownership VP/FR 01100 FR 
HP  

Not a valid 
operator 

NO 

26 frameworks VP/FR 01100 VP 
HP  

Not a valid 
operator 

NO 

27 sections DN/FR 11110 FR DN NO 
28 users DN/FR 11110 DN DN YES 
29 section_links DN/FR 11100 FR DN NO 
30 assistment_ownership HP/FR 11110 HP DN  

Not a valid 
operator 

NO 

 

For each table, Table 14 shows the applicable operators, the set of features, the Ground 

Truth (measured result), and the operator predictions based on the learned model. We 

saved our learned model (Figure 40, Appendix F) using Weka and re-evaluated it on our 

supplied ASSISTments test set. Appendix I contains the test data in WEKA attribute-

relation file format (ARFF) based on the feature sets and the measured results. In each 

case that we identified a state with significantly not different result from State 0 (FR) but 

with a lower system response time, we accepted FR as a result. In each case where more 

than two operators were possible but none of them were significantly different from each 

other and all of them were significantly different from State 0 we selected the operator 

with the lowest response time as a result. The model correctly predicted 60% of the time. 

The results include 6 cases where the operator prediction is not applicable for the 

particular table (ID 16, 21, 24, 25, 26, and 30 of Table 14). The mean absolute error was 

0.237 and the root mean square error was 0.389. The following confusion matrix was 

obtained for the prediction: 
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A B C D ßClassified as 

1 1 0 2 a = FR 

0 13 0 4 b = HP 

0 1 3 2 c = VP 

0 2 0 1 d = DN 

 

This matrix shows for each class, how instances from that class received classifications. 

From Full Replication (FR) 1 instance was correctly classified, 1 was put into Horizontal 

Partitioning (HP) class, and 2 were assigned to the class of Denormalization (DN). From 

“HP” 13 instances were correctly classified and 4 were assign to “DN” class.  From “VP” 

3 were correctly classified and 1 was put into “HP” and 2 were assigned to “DN”. 

Finally, from “DN” 1 was correctly classified and 2 were put into “HP”. The Kappa 

coefficient produced by WEKA was 0.55. A Kappa value greater than 0 means that our 

classifier performs better than chance. 

 

8.1.  Conclusion 
 

This chapter applies the learned model and re-evaluates it on an unseen data set to make 

operator predictions. For this purpose we collected empirical data using ASSISTments, a 

Web-based Intelligent Tutoring System that supports thousands of users across 

Massachusetts. After running a one-level search using our database placement algorithm, 

the system created all possible valid states and measured the total response time. We 

utilized two simultaneous threads, each with a workload of 40,000 queries and 194 query 

templates. The system determined 21 states for HP, 12 for VP, and 7 for DN. Including 

all tables with more than one applicable operator, the total number of data points became 



 143 

30. By applying our learned model on the constructed test set, we were able to correctly 

predict the preferred operator 60% of the time. This prediction included 6 cases where the 

predicted operator was not applicable for the given table. These cases decreased the 

percentage of the correctly predicted operators. For the sake of curiosity, we removed 

these 6 cases (24 remaining data points) and reevaluated the model. Using this test set, 

the system was able to correctly predict the preferred operator 75% of the time. 

The predictions that we made can eliminate the need to run a full brute force 

search and can help to govern the physical design of the database layouts across an 

arbitrary number of computer nodes. Also, they can help govern the data placement 

algorithm to consider only states with the highest impact on the total system response 

time. Furthermore, by utilizing our model, the layout algorithm is not only capable of 

automatically recommending when it makes sense to apply each of the operators, but it 

can also select from the group of applicable operators and determine which one should be 

considered for a particular table.  

 

The next chapter will conclude our work and give ideas for future work. 
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9. Conclusion of this Dissertation 
 

9.1.  Conclusion 
 

This dissertation contributes to the field of database design in computer science.  Our 

methodology, which can help Web-based applications that deal with scalability problems, 

proposes a solution to resolve database scalability issues and it makes certain 

assumptions about how to simplify the task. 

The techniques described in this dissertation assume that the data is distributed on 

different database servers in such a manner that any retrieval query is answered by one 

database server. However, the constraint that any select query is answered by one server 

is applicable to several applications, especially web applications where all the query 

templates are known beforehand and the application logic executes the same hard-wired 

queries over and over again for the same web form request. 

This constraint also greatly simplifies query processing and optimization, as no 

data needs to be exchanged between nodes. Therefore such a system has to only 

determine which database server needs to execute a query, and then the optimization and 

execution of the query proceeds on that server as if it was a non-distributed database. To 

be able to answer each query by a single database node, this dissertation proposes an 

initial data distribution policy that fully replicates all tables across all database nodes as a 

starting condition. We compare all measurements and data layouts to this distribution 

policy.   
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The dissertation focuses on Web-based applications where the workload consists 

of a fixed number of query templates. This means that the system is not presented with 

ad-hoc and unexpected queries. By making our assumption we simplified the processing 

of individual queries to the databases. Of course, sometimes DBAs want to write queries 

that can go across all database nodes involving multiple tables, e.g. for analytic purposes, 

but these analytic queries can be executed as a background task by the DBAs. 

This dissertation has investigated the database layout problem and the major 

contributions are: 

• We propose a data placement algorithm that is general. Our placement algorithm 

considers the given query workload and the time for each query and then 

determines the best possible placement of data across multiple database nodes 

using four data operators (full replication, horizontal partitioning, vertical 

partitioning, denormalization) and our assumptions. What this algorithm calls for 

is that it learns 1) “What is a good database layout for a particular application 

given a query workload?” and 2) “Can this algorithm automatically improve itself 

in making recommendations by using machine learned rules to try to generalize 

when it makes sense to apply each of these operators?” Our placement algorithm 

is general so that other techniques for placement can be integrated into our 

algorithm.  

 

• We propose a search methodology by which we search for better database 

layouts. By conceptualizing the problem as a state space search problem over 

database layouts and by doing a full state space search, we can physically create 
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the layouts and evaluate the overall response time of the system to parameterize 

the guiding rules of partitioning. There are four operators that we consider that 

can create a search space of possible database layouts: full replication, horizontal 

partitioning, vertical partitioning, and denormalization. This dissertation examines 

the complex interactions between these four different operators to be able to 

predict which operator is the best to use for a particular database layout. Instead 

of using best practices to do database layout, we collected empirical data on when 

these four different operators are effective to determine the ground truth.  

We wanted to learn rules that are effective at speeding up the entire system, 

parameterize these rules for cut-off values, and determine the possible sets of 

important features that we need to take into consideration to learn a general rule. 

After we created a dataset where these four different operators have been applied 

to make different databases, we employed machine learning to induce rules to 

help govern the physical design of the database across an arbitrary number of 

computer nodes.  

 

• We propose key search algorithms using partially ordered sets and their Hasse 

diagram representations finding maximal elements of a poset. 

 

• We propose a shared-nothing data replication framework for Web-based 

applications with state based search and machine learning components to predict 

when to choose between horizontal partitioning, vertical partitioning, 

denormalization or full replication layout operators. This established middleware 
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is general and it can be used by any Web-based application with relational 

databases.   

The proposed framework includes an efficient distributed query router and 

a tester component. The router directs the queries to different database servers, 

while ensuring that all the database servers are utilized efficiently.  The tester 

component models the expected usage of an application to make the 

measurements more realistic to a real word application. 

 

• We propose machine learned rules to help govern the physical design of the 

database across an arbitrary number of computer nodes. These rules, in turn, 

allow the placement algorithm to get better over time as it trains over a set of 

examples.  

We parameterized cut-off points to help the state space search to focus on 

creating layout configurations that could boost the performance of the application. 

To determine these points we turned our attention towards database best practices 

and identified 14 rules. These rules can reduce the size of the search space by 

eliminating valid table-operator key-pairs because of their possible negative 

performance effect on the system. The method for parameterizing cut-off rules is 

quite general and further cut-off point/attribute pairs can be added to the system 

easily. 

We propose a good set of features based on ideas from database best 

practices, cut-off rules, experimental evidence, and domain knowledge. Based on 

the generalization of the learned model we can use the rules themselves to bias a 
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search for a layout for a new database and therefore reduce the search space. 

Another advantage of such an approach is that the learned model is easily 

expandable based on new data.  

To test the machine learning idea we gathered data using our framework 

involving the Industry Standard eBusiness transactional web benchmark’s tables 

and query templates (TPC-W), and generated machine learned rules. Our 

knowledge is based on the different database configurations and schema attributes 

of TPC-W that we created. We propose a relevance matrix that represents the 

ground truth and the selected features. It gives an intuitive insight as to which 

operator is more relevant in a given case for a specific set of features. We created 

64 different cases and for each case we considered the interactions of the 

identified six features with each other. We captured how ground truth is affected 

by a particular parameter.  

Based on the results of the relevance matrix, we propose the decision 

matrix that includes only a single operator that affected the total system response 

time the most. The decision matrix was used to machine learn the rules.  

To learn rules we propose to use a decision tree classifier (J.48) provided in the 

WEKA library. Because of the small set of data points we applied leave-one-out 

cross-validation on the data set to ensure our model does not overfit on the 

training data and generalizes well to unseen data.  

We propose rules and the decision tree that we learnt through our data that 

show important features to consider. We showed that our classifier performs 

better than chance and it correctly classified 76.19% of the time. 
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• We propose a comparative analysis of the trade-offs to be able to assign 

confidence values to each operator and to determine their precedences. We also 

propose an operator precedence algorithm that is able to predict not only the best 

operators but also the next best choices. The algorithm is especially useful if the 

best operator is not applicable for the given table and therefore one should 

consider the second or the third best operator.  

We propose a comparison of the ground truth with our model predictions. 

We introduce two calculation methods to determine predictions based on the cut-

off rules: predictions without considering weights and with considering weights. 

Predictions without considering weights could create scenarios where we cannot 

determine the best operators because of a possible tie situation. Introducing 

weights can increase the agreement factor between the Ground Truth and the 

predictions by 18.7%.  

We also propose an easy representation of the operator’s precedence as a 

molecular structure based on the confidence values. 

 

• We performed performance evaluation of the system in the workflow section 

(4.3). We report our experiment using TPC-W with the performed layout search 

over multiple database nodes and different number of simultaneous emulated 

browsers (EBs). We used the framework-determined best layout configuration for 

the measurement with 100 EBs and we minimized the total system response time 

by 40% compared to state 0. With our methodology we were able to minimize the 

total system response time significantly.  
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• We performed empirical validation on ASSISTments, a Free Public Service of 

Worcester Polytechnic Institute. ASSISTments is a Web-based Intelligent System 

that is used by thousands of users across Massachusetts. We applied the learned 

model and re-evaluated it on an un-seen data set to make operator predictions. For 

this purpose we collected empirical data using ASSISTments. After performing 

the one-level search using our database placement algorithm, the system created 

all possible valid states and measured the total response time. We utilized two 

emulated clients each with a workload of 40,000 queries and 194 query templates. 

By applying our learned model on the constructed test set we were able to 

correctly predict the preferred operator 60% of the time. This prediction included 

six cases where the predicted operator was not applicable for the given table. Re-

evaluating our model without these cases the system was able to correctly predict 

the preferred operator 75% of the time. The predictions can eliminate the need to 

run a full brute force search and they help govern the data placement algorithm to 

consider only states with the highest impact on the total system response time. By 

using our model, the layout algorithm is not only capable of automatically 

recommending when it makes sense to apply each of the operators but can 

determine which operator should be considered for a particular table as well. 
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9.3.  Ideas for Future Work 
 

9.3.1.  Virtual Partitioning and Black-Box Query Optimizer 
 

To further increase the effectiveness of our algorithm, we can get a quick cost estimate 

for partitioning keys. For example, if we can horizontally partition table A based on key 

K1 or on key K2, then our system physically considers both states for partitioning. If we 

connect our framework with a black-box query optimizer, like IBM DB2, then we can get 

an estimated performance decision on which key is the best to pick. By connecting the 

data placement algorithm to a black-box query optimizer, we can virtually create valid 

states and get the estimated query run times faster from the optimizer. Maybe 

virtualization could not completely predict the outcome of a real measurement within a 

distributed environment.  

Virtualization can help to expand the applicability of our framework for non-web-

based applications where the combinations of valid states are significantly more than in 

the case of a Web-based application. A brute-force layout search could take much more 

time to complete. 

 

9.3.2.  Combining Operators  
 

Combining different operators with each other could lead to a more advanced data 

placement algorithm with further performance benefit. For example, we mentioned that 

we combine vertical partitioning with full replication in section 3.7. We can visualize the 

combinations of all operators with each other. This means e.g. first we apply the vertical 
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partitioning operator on table A and then we horizontally partition the vertically 

partitioned table. Similarly to this, we can do all the possible combinations. It is also 

possible to re-apply the denormalization operator on an already denormalized table and 

involve more tables. 

 

9.3.3.  Additional Set of Features to Expand the Model 
 

It is important to investigate further significant sets of features to increase the precision of 

our model. Further table-, query-, and workload-related features can be easily added to 

our machine-learning environment and they can help to pre-select the applicable 

operators for a specific table. Further query and workload features are also important to 

determine more cut-off points. Additional decision trees can be generated based on new 

sets of features and the precision of the operator predictions can be increased as well. 

 
9.3.4.  Ad-hoc and Analytic Queries 
 

We specialized in Web-based applications where the workload consists of a fixed number 

of query templates. This means the system does not face ad-hoc and unexpected queries. 

Of course, sometimes DBAs want to write queries that can go across all database nodes 

involving multiple tables, e.g. for analytical purposes. One possible solution to solve this 

problem is to maintain a separate database node with fully replicated tables for analytical 

purposes. These analytic queries can be executed as a background task utilizing the 

separate database node. To keep the separated database node up-to-date is a challenging 

task and a possible effective synchronization technique that could be further investigated.   
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9.3.5.  Fault Tolerance 
 

In real systems, we encounter system crashes quite often, and these crashes also need to 

be handled. In this dissertation, we did not consider fault tolerance. Incorporating fault 

tolerance into the problem definition could potentially lead to interesting results. For 

instance, one way of formulating the problem definition with fault tolerance is to impose 

a constraint that every data item is present in at least two nodes. This is also a promising 

research direction, worth investigating in future. 

Another aspect of fault tolerance is how to handle if an UDI query fails on some 

nodes, and succeeds in other nodes. How do we detect this scenario, and also how do we 

remedy such an inconsistency. One can think of a distributed transaction protocol, but 

such distributed transactions are very heavy weight, and drastically bring down the 

performance of a system. We therefore need to investigate different semantics as may be 

applicable for these scenarios, and which can be implemented without drastically 

impacting the performance of the overall system. 

 

9.3.6.  Increased Database Scalability 
 

One potential opportunity for database scalability is to pull some of the database 

functionality that can be easily replicated out of the database server. For instance, range 

selection operation that scans a set of rows and selects rows based on a filter condition 

can be pulled outside the database server. The range selection operation can be easily 

replicated across multiple servers. However this comes at a cost: the database server may 

be able to perform the range selection more efficiently, for instance, by building an index, 
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whereas these options may not be available in the selection operation outside the database 

server.  

We believe that this is a promising direction that we plan to investigate in the future. 

 

9.3.7.  Adjustment of Partitioning Decisions 
 

It could happen if there are lots of UDIs such that the database starts to change so much 

so as to lead to a small table moving to a large table. If the database state changes, one 

can easily run our method again and include the ability to determine which tables should 

change their partitioning decisions (potentially with the least cost). 

 

It is my hope that this work will provide some useful insights for solving the layout 

optimization problem for distributed relational databases using machine learning.  
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APPENDIX A: Case-studies (Join-graphs of Web-based 
Applications) 
 
 
1. The ASSISTments System 
 

The ASSISTments system is a web based intelligent tutoring system at WPI CS 

department. 

Location : http://www.assistments.org 

We had access to the system and the backend. We applied ruby code to capture the SQL 

queries in the logfiles. During a week time interval we collected the production 

environment log files (20 mongrel ruby processes). 

Size of the logfile: 2.107GB 

Total number of captured SQL queries: 31515964 

A written code part filtered, sorted the queries, and constructed the appropriate format for 

GraphViz (.dot).  

Figure below shows the generated join graph of the ASSISTments system. 

 

 

 

 

 
The ASSISTments join graph 
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2. MediaWiki 
 
MediaWiki (http://www.mediawiki.org/wiki/MediaWiki) is a web based wiki software 

originally for Wikipedia the free encyclopedia.  

TeacherWiki is a dynamic place where teachers, students and visitors can interact with 

each other. Work-study undergraduate students are working on the system as well. 

 

Location: http://teacherwiki.assistment.org 

We have access to the system including the backend and the logfiles as well.  During a 

time interval we collected the logfiles and analyzed them. 

Size of the logfile: 445M 

Total number of captured SQL queries: 119265 

Figure below shows the generated join graph of the TeacherWiki system. 

 

 

 

 
The TeacherWiki Join Graph 

 
 
3. TPC-W 
 
TPC-W (http://www.tpc.org/tpcw/) is a transactional web e-Commerce benchmark that 

models a web based online bookstore.  

Used implementation: Java TPC-W Implementation distribution (PHARM University of 

Wisconsin – Madison) (http://pharm.ece.wisc.edu/tpcw.shtml) 
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First figure below presents the generated join graph of the TPC-W based on the 

implementation and the analyzed query templates in the source code. The second figure 

below shows the ER diagram of TPC-W [76]. 

 
TPC-W Join Graph 

 

 

 

 

 

 

 

 

 
  
  

The ER diagram of TPC-W [76] 
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4. NorthWind 
 

NorthWind (http://office.microsoft.com/en-

us/templates/TC012289971033.aspx?CategoryID=CT101428651033) is a sample 

database in Microsoft Access 2007. It contains table sets with given queries (27).  

Figure below presents the generated join graph based on the analyzed queries and tables 

structures used Microsoft Access 2007 (Microsoft Office Suite is from WPI with my 

student license).  

 
NorthWind Join Graph 
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5. Moodle  
 

Moodle 1.8 (http://moodle.org/) is an open-source web based course management system 

(CMS) for colleges and universities.  It is sometimes called Learning Management 

System (LMS). 

By the help of the fabForce DBDesigner4 (http://www.fabforce.net/dbdesigner4/) - that is 

a visual database design system - we can present the Moodle database table schemas (178 

tables). We used the descriptor file posted by Moodle 

(http://docs.moodle.org/en/Development:Database_Schema) 

 

Total number of ‘SELECT SQL’ queries in the source code: 793 

Figure below presents the join graph of Moodle based on the database schemas and the 

analyzed query templates in the source code. 

 

 

 

 

 
Moodle Join Graph 
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6. Web-based meeting scheduler by Prof. George Heineman at WPI 

Prof. George Heineman (http://www.cs.wpi.edu/~heineman/) has a web based meeting 

application that he wrote (1999) in CGI-bin perl with a MySQL back-end. Starting 

around 2005 he began logging all activity for debugging purpose, but the logs haven't 

been eliminated. It currently contains 86817 log entries. Some of these entries reflect 

errors, but the majority includes the SQL statements that were executed on the back-end 

database.  

Location: http://users.wpi.edu/~heineman/cgi-

bin/meeting/2.0/index.cgi?meetingid=heineman 

Size of the logfile: 14MB 

Total number of captured SQL queries: 86730 

Figure below show the join graph of the application. 

 

Web based meeting application join graph 
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APPENDIX B: Illustrating Features vs. Related Systems 
 
 
Feature\System Microsoft 

SQL 
Server 
2000 [6] 

Microsoft 
SQL 
Server 
2005 [9] 

IBM 
DB2 
Design 
Advisor 
[10] 

IBM DB2 
Design 
Advisor 
Enterprise 
[7] 

 

GlobeTP 
[1] 

 

Scalability 
Service 
[17] 

 

DBProxy 
[14] 

 

Horizontal 
Partitioning 

N Y Y Y N N N 

Vertical 
Partitioning 

N N Y Y N N N 

Replication N N N Y Y Y Y 
Denormalization N N N N N N N 
Recommends 
DB layout 

Y Y N Y N N N 

Implements DB 
layout 

N N N N N N N 

Known query 
templates 

Y Y Y Y Y Y Y 

Use Machine 
Learning 
Technique 

N N N N N N N 

Single/Multi 
node 

S S S M M M M 

 
Feature\System AutoPart 

[19] 
APD [15] SODD 

[5] 
GanyMed 
[20] 

 

GlobeDB 
[22] 

Our 
framework 

 

Horizontal 
Partitioning 

N Y Y Y N Y 

Vertical 
Partitioning 

N N Y Y N Y 

Replication N N N Y Y Y 
Denormalization N N N N N Y 
Recommends 
DB layout 

Y Y N Y N Y 

Implements DB 
layout 

N N N N N Y 

Known query 
templates 

Y Y Y Y Y Y 

Use Machine 
Learning 
Technique 

N N N N N Y 

Single/Multi 
node 

S S S M M M 
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APPENDIX C: Query Templates of TPC-W 
 
 

ID QUERY TEMPLATE 
1 SELECT customer.c_fname, customer.c_lname FROM customer WHERE customer.c_id = ? 
2 SELECT * FROM item INNER JOIN author ON item.i_a_id = author.a_id WHERE item.i_id = ? 
3 SELECT * FROM customer inner JOIN address ON customer.c_addr_id = address.addr_id inner 

JOIN country ON address.addr_co_id = country.co_id WHERE customer.c_uname = ? 
4 SELECT * FROM item inner JOIN author ON item.i_a_id = author.a_id WHERE item.i_subject = 

? ORDER BY item.i_title limit 50 
5 SELECT * FROM author inner JOIN item ON item.i_a_id = author.a_id WHERE author.a_lname 

= '?' limit 50 
6 SELECT item.i_id, item.i_title, author.a_fname, author.a_lname FROM item inner JOIN author 

ON item.i_a_id = author.a_id WHERE item.i_subject = ? ORDER BY item.i_pub_date DESC, 
item.i_title 

7 SELECT item.i_id, item.i_title, author.a_fname, author.a_lname, SUM(order_line.ol_qty) AS 
orderkey FROM item inner JOIN order_line ON item.i_id = order_line.ol_i_id inner JOIN author 
ON item.i_a_id = author.a_id WHERE order_line.ol_o_id = ? and item.i_subject = ? GROUP BY 
order_line.ol_i_id, item.i_id, item.i_title, author.a_fname, author.a_lname ORDER BY orderkey 
DESC 

8 UPDATE item set item.i_cost = ?, item.i_image = ?, item.i_thumbnail = ?, item.i_pub_date = 
'XXXX-XX-XX' WHERE item.i_id = ? 

9 SELECT order_line.ol_i_id, SUM(order_line.ol_qty) AS orderkey FROM orders inner JOIN 
order_line ON orders.o_id = order_line.ol_o_id WHERE order_line.ol_i_id = ? and orders.o_c_id 
= ? GROUP BY order_line.ol_i_id 

10 SELECT orders.o_c_id FROM orders inner JOIN order_line ON orders.o_id = order_line.ol_o_id 
WHERE order_line.ol_i_id = ? and orders.o_id = ? 

11 UPDATE item SET item.i_related1 = ?, item.i_related2 = ?, item.i_related3 = ?, item.i_related4 = 
?, item.i_related5 = ? WHERE item.i_id = ? 

12 SELECT customer.c_uname FROM customer WHERE customer.c_id = X 
13 SELECT customer.c_passwd FROM customer WHERE customer.c_uname = ? 
14 SELECT item.i_related1 FROM item where item.i_id = ? 
15 SELECT orders.o_id FROM customer inner JOIN orders ON customer.c_id = orders.o_c_id 

WHERE customer.c_uname = ? ORDER BY orders.o_date, orders.o_id DESC 
16 SELECT item.i_id FROM item 
17 SELECT * FROM orders 
18 SELECT * FROM shopping_cart 
19 SELECT * FROM customer 
20 SELECT * FROM address 
21 SELECT COUNT(*) from shopping_cart_line where shopping_cart_line.scl_sc_id = ? 
22 UPDATE shopping_cart_line SET shopping_cart_line.scl_qty = ? WHERE 

shopping_cart_line.scl_sc_id = ? 
23 SELECT scl_qty FROM shopping_cart_line WHERE shopping_cart_line.scl_sc_id = ? 
24 SELECT address.addr_id FROM address 
25 SELECT customer.c_id FROM customer 
26 SELECT item.i_stock FROM item WHERE item.i_id = ? 
27 INSERT into order_line (ol_id, ol_o_id, ol_i_id, ol_qty, ol_discount, ol_comments) VALUES (?, 

?, ?, ?, ?, ?) 
28 INSERT into orders (o_id, o_c_id, o_date, o_sub_total, o_tax, o_total, o_ship_type, o_ship_date, 

o_bill_addr_id, o_ship_addr_id, o_status) VALUES (?, ?, '????-??-??', ?, ?, ?, ?, '????-??-??', ?, ?, 
'?') 

29 INSERT into address (addr_id, addr_street1, addr_street2, addr_city, addr_state, addr_zip, 
addr_co_id) VALUES (?, ?, ?, ?, ?, ?, ?) 
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30 SELECT customer.c_addr_id FROM customer WHERE customer.c_id = ? 
31 SELECT country.co_id FROM address inner JOIN country ON address.addr_co_id = 

country.co_id WHERE address.addr_id = ? 
32 INSERT into cc_xacts (cx_o_id, cx_type, cx_num, cx_name, cx_expire, cx_xact_amt, 

cx_xact_date, cx_co_id) VALUES (?, ?, ?, '?', '????-??-??', ?, '????-??-??', ?) 
33 DELETE FROM shopping_cart_line WHERE shopping_cart_line.scl_sc_id = ? 
34 SELECT country.co_id FROM country WHERE country.co_name = ? 
35 SELECT address.addr_id FROM address WHERE address.addr_street1 = ? and 

address.addr_street2 = ? and address.addr_city = ? and address.addr_state = ? and address.addr_zip 
= ? and address.addr_co_id = ? 

36 SELECT customer.c_discount FROM customer WHERE customer.c_id = ? 
37 SELECT * FROM order_line inner JOIN item ON order_line.ol_i_id = item.i_id WHERE 

order_line.ol_o_id = ? 
38 INSERT into shopping_cart (sc_id, sc_time) VALUES (?, '????-??-??') 
39 SELECT orders.*, customer.*, cc_xacts.cx_type, address.addr_street1, address.addr_street2, 

address.addr_state, address.addr_zip, country.co_name, address.addr_street1,address.addr_street2, 
address.addr_state, address.addr_zip, country.co_name FROM customer, orders, cc_xacts, address, 
country, address, country inner JOIN orders ON cc_xacts.cx_o_id = orders.o_id inner JOIN 
customer ON customer.c_id = orders.o_c_id inner JOIN address ON orders.o_bill_addr_id = 
address.addr_id inner JOIN country ON address.addr_co_id = country.co_id inner JOIN address 
ON orders.o_ship_addr_id = address.addr_id inner JOIN country ON address.addr_co_id = 
country.co_id inner JOIN customer ON orders.o_c_id = customer.c_id WHERE orders.o_id = ? 

40 SELECT shopping_cart_line.scl_qty FROM shopping_cart_line WHERE 
shopping_cart_line.scl_sc_id = ? and shopping_cart_line.scl_i_id = ? 

41 UPDATE shopping_cart_line SET shopping_cart_line.scl_qty = ? WHERE 
shopping_cart_line.scl_sc_id = ? and shopping_cart_line.scl_i_id = ? 

42 INSERT into shopping_cart_line (scl_sc_id, scl_qty, scl_i_id) VALUES (?,?,?) 
43 DELETE FROM shopping_cart_line WHERE shopping_cart_line.scl_sc_id = ? and 

shopping_cart_line.scl_i_id = ? 
44 SELECT * from shopping_cart_line where shopping_cart_line.scl_sc_id = ? 
45 UPDATE shopping_cart SET shopping_cart.sc_time = '????-??-??' WHERE shopping_cart.sc_id = 

? 
46 SELECT * FROM shopping_cart_line inner JOIN item ON shopping_cart_line.scl_i_id = item.i_id 

WHERE shopping_cart_line.scl_sc_id = ? 
47 UPDATE customer SET customer.c_login = 'joe', customer.c_expiration = ? WHERE 

customer.c_id = ? 
48 INSERT into customer (c_id, c_uname, c_passwd, c_fname, c_lname, c_addr_id, c_phone, 

c_email, c_since, c_last_login, c_login, c_expiration, c_discount, c_balance, c_ytd_pmt, 
c_birthdate, c_data) VALUES (?, '?', '?', '?', '?', ?, ?, '?', '????-??-??' , '????-??-??' , '????-??-?? 
??:??:??.???', '????-??-?? ??:??:??.???', ?, ?, ?, '????-??-??', '????-??-??') 
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APPENDIX D: Relationship Possibilities  
 

 
 
1.) Table B: Foreign KEY on ROLES(ID) 
     Table C: Foreign KEY on USERS(ID)  
     HP on ROLES(ID) : (A.ID) 
 
2.) Table B: Foreign KEY on ROLES(ID) and Foreign KEY on LOGS(LOGS_ID) 
      BROKEN unless creating a relationship between e.g. Table A and C 
 
3.) Table A: Foreign KEY on USERS(ID) 
      Table C: Foreign KEY on USERS(ID) 
      HP on USERS(ID): (B.ID) 
 
4.) Table A: Foreign KEY on USERS(ID) 
     Table B: Foreign KEY on LOGS(LOGS_ID) 
     HP on LOGS(LOGS_ID) : (C.LOGS_ID) 
 
5.) Table C: Foreign KEY on LOGS(LOGS_ID)  
      HP on ROLES(ID) or on USERS(ID) : (A.ID) or (B.ID) based on the WHERE clause 
 
6.) Table B: Foreign KEY on LOGS(LOGS_ID) 
     BROKEN unless creating a relationship between e.g. Table C and A  
 
7.) Select A.ID or B.ID or C.LOGS_ID for HP based on the WHERE clause 
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8.) Table A: Foreign KEY on USERS(ID)  

HP on LOGS(LOGS_ID) or on USERS(ID): (C.LOGS_ID) or (B.ID) based on the 
WHERE clause 

 
9.) Table B: Foreign KEY on ROLES(ID) 
      BROKEN  
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APPENDIX E: The Constraints File of TPC-W 
 
customer.c_id=orders.o_c_id|one2many 
address.addr_id=customer.c_addr_id|one2many 
address.addr_id=orders.o_bill_addr_id|one2many 
address.addr_id=orders.o_ship_addr_id|one2many 
country.co_id=cc_xacts.cx_co_id|one2many 
country.co_id=address.addr_co_id|one2many 
orders.o_id=order_line.ol_o_id|one2many 
cc_xacts.cx_o_id=order_lines.ol_o_id|many2many 
item.i_id=order_line.ol_i_id|one2many 
author.a_id=item.i_a_id|one2many 
order_line.ol_o_id=item.i_id|many2one 
order_line.ol_o_id=order_line.ol_i_id|many2many 
item.i_subject=order_line.ol_i_id|many2many 
order_line.ol_o_id=item.i_a_id|many2many 
order_line.ol_o_id=author.a_id|many2many 
item.i_subject=author.a_id|many2many 
order_line.ol_i_id=orders.o_id|many2many 
orders.o_c_id=order_line.ol_o_id|many2many 
customer.c_uname=customer.c_id|many2many 
customer.c_uname=orders.o_c_id|many2many 
orders.o_id=cc_xacts.cx_o_id|one2one 
orders.o_id=orders.o_id|one2one 
orders.o_c_id=customer.c_id|many2one 
orders.o_id=orders.o_c_id|many2many 
orders.o_id=orders.o_bill_addr_id|many2many 
orders.o_id=bill.addr_id|many2many 
orders.o_id=bill.addr_co_id|many2many 
orders.o_id=bill_co.co_id|many2many 
orders.o_id=orders.o_ship_addr_id|many2many 
orders.o_id=ship.addr_id|many2many 
orders.o_id=ship.addr_co_id|many2many 
orders.o_id=ship_co.co_id|many2many 
shopping_cart_line.scl_sc_id=shopping_cart_line.scl_i_id|many2many 
shopping_cart_line.scl_sc_id=item.i_id|many2many 
address.addr_id=address.addr_co_id|many2many 
address.addr_id=country.co_id|many2many 
item.i_a_id=author.a_id|many2one 
item.i_id=item.i_a_id|many2many 
item.i_id=author.a_id|many2many 
item.i_a_id=item.i_a_id|one2one 
customer.c_uname=customer.c_addr_id|many2many 
customer.c_uname=address.addr_id|many2many 
customer.c_uname=address.addr_co_id|many2many 
customer.c_uname=country.co_id|many2many 
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item.i_subject=item.i_a_id|many2many 
author.a_lname=item.i_a_id|many2many 
author.a_lname=author.a_id|many2many 
item.i_id=item.i_id|one2one 
item.name=author.a_id|many2many 
shopping_cart_line.scl_i_id=item.i_id|many2one 
address.addr_street1=address.addr_street2|many2many 
address.addr_co_id=country.co_id|one2one 
country.co_id=country.co_id|one2one 
orders.o_id=customer.c_id|many2many 
orders.o_id=address.addr_id|many2many 
orders.o_id=address.addr_co_id|many2many 
orders.o_id=country.co_id|many2many 
orders.o_id=ord.o_ship_addr_id|many2many 
orders.o_id=cust.c_id|many2many 
orders.o_c_id=orders.o_c_id|one2one 
customer.c_id=customer.c_id|one2one 
order_line.ol_i_id=item.i_id|many2one 
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APPENDIX F: Attribute-Relation File Format (ARFF) 
 
@relation Operator-weka.filters.unsupervised.attribute.AddID-Cfirst-NID 
 
@attribute ID numeric 
@attribute Join_Heaviness {HIGH, LOW} 
@attribute UDI/R_Ratio {HIGH, LOW} 
@attribute Number_of_Columns {HIGH, LOW} 
@attribute Number_of_Rows {HIGH, LOW} 
@attribute Workblance {HIGH, LOW} 
@attribute Operator {FR, HP, VP, DN} 
 
@data 
1,HIGH,HIGH,HIGH,HIGH,HIGH,HP 
2,HIGH,HIGH,HIGH,HIGH,LOW,DN 
3,HIGH,HIGH,HIGH,LOW,HIGH,HP 
4,HIGH,HIGH,HIGH,LOW,LOW,DN 
5,HIGH,HIGH,LOW,HIGH,HIGH,HP 
6,HIGH,HIGH,LOW,HIGH,LOW,HP 
7,HIGH,HIGH,LOW,LOW,HIGH,HP 
8,HIGH,HIGH,LOW,LOW,LOW,HP 
9,HIGH,LOW,HIGH,HIGH,HIGH,HP 
10,HIGH,LOW,HIGH,HIGH,LOW,FR 
11,HIGH,LOW,HIGH,LOW,HIGH,HP 
12,HIGH,LOW,HIGH,LOW,LOW,HP 
13,HIGH,LOW,LOW,HIGH,HIGH,VP 
14,HIGH,LOW,LOW,HIGH,LOW,HP 
15,HIGH,LOW,LOW,LOW,HIGH,HP 
16,HIGH,LOW,LOW,LOW,LOW,DN 
17,LOW,HIGH,HIGH,HIGH,HIGH,DN 
18,LOW,HIGH,HIGH,HIGH,LOW,DN 
19,LOW,HIGH,HIGH,LOW,HIGH,DN 
20,LOW,HIGH,HIGH,LOW,LOW,DN 
21,LOW,HIGH,LOW,HIGH,HIGH,HP 
22,LOW,HIGH,LOW,HIGH,LOW,DN 
23,LOW,HIGH,LOW,LOW,HIGH,DN 
24,LOW,HIGH,LOW,LOW,LOW,DN 
25,LOW,LOW,HIGH,HIGH,HIGH,HP 
26,LOW,LOW,HIGH,HIGH,LOW,FR 
27,LOW,LOW,HIGH,LOW,HIGH,DN 
28,LOW,LOW,HIGH,LOW,LOW,VP 
29,LOW,LOW,LOW,HIGH,HIGH,VP 
30,LOW,LOW,LOW,HIGH,LOW,VP 
31,LOW,LOW,LOW,LOW,HIGH,HP 
32,HIGH,HIGH,HIGH,HIGH,HIGH,DN 
33,HIGH,HIGH,HIGH,HIGH,LOW,HP 
34,HIGH,HIGH,HIGH,LOW,HIGH,HP 
35,HIGH,HIGH,HIGH,LOW,LOW,DN 
36,HIGH,HIGH,LOW,HIGH,HIGH,HP 
37,HIGH,HIGH,LOW,HIGH,LOW,HP 
38,HIGH,HIGH,LOW,LOW,HIGH,DN 
39,HIGH,HIGH,LOW,LOW,LOW,HP 
40,HIGH,LOW,HIGH,HIGH,HIGH,DN 
41,HIGH,LOW,HIGH,HIGH,LOW,HP 
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42,HIGH,LOW,HIGH,LOW,HIGH,HP 
43,HIGH,LOW,HIGH,LOW,LOW,HP 
44,HIGH,LOW,LOW,HIGH,HIGH,HP 
45,HIGH,LOW,LOW,HIGH,LOW,HP 
46,HIGH,LOW,LOW,LOW,HIGH,FR 
47,HIGH,LOW,LOW,LOW,LOW,HP 
48,LOW,HIGH,HIGH,HIGH,HIGH,DN 
49,LOW,HIGH,HIGH,HIGH,LOW,DN 
50,LOW,HIGH,HIGH,LOW,HIGH,DN 
51,LOW,HIGH,HIGH,LOW,LOW,DN 
52,LOW,HIGH,LOW,HIGH,HIGH,DN 
53,LOW,HIGH,LOW,HIGH,LOW,DN 
54,LOW,HIGH,LOW,LOW,HIGH,HP 
55,LOW,HIGH,LOW,LOW,LOW,DN 
56,LOW,LOW,HIGH,HIGH,HIGH,FR 
57,LOW,LOW,HIGH,HIGH,LOW,FR 
58,LOW,LOW,HIGH,LOW,HIGH,VP 
59,LOW,LOW,HIGH,LOW,LOW,VP 
60,LOW,LOW,LOW,HIGH,HIGH,VP 
61,LOW,LOW,LOW,HIGH,LOW,VP 
62,LOW,LOW,LOW,LOW,HIGH,HP 
63,LOW,LOW,LOW,LOW,LOW,HP 
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APPENDIX F: The Cardinality of the Various Database 
Tables (TPC-W) 

  
  
 

 

 
 

 
 

 
 

 
The cardinality of the tables and Emulated Browsers [76] 
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APPENDIX G: Predictions 
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APPENDIX H: Comparison of the Predictions 
 

 
COLUMN LEGEND: E:	  IsThereAgreementOnBest(Non-‐Weighted)?	  -‐,	  F:	  
IsThereAgreementOnBest(Weighted)?,	  G:	  IsThereAgreementOnBest(Overall)?,	  H:	  
DoesBestPracticeAgreeWithGroundTruth(Non-‐Weighted)?,	  I:	  
DoesBestPracticeAgreeWithGroundTruth(Weighted)?	  
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APPENDIX I: ARFF of ASSISTments test data 
 
@relation Operator-weka.filters.unsupervised.attribute.AddID-Cfirst-NID 
 
@attribute ID numeric 
@attribute Join_Heaviness {HIGH, LOW} 
@attribute UDI/R_Ratio {HIGH, LOW} 
@attribute Number_of_Columns {HIGH, LOW} 
@attribute Number_of_Rows {HIGH, LOW} 
@attribute Workblance {HIGH, LOW} 
@attribute Operator {FR, HP, VP, DN} 
 
@data 
1,LOW,LOW,LOW,LOW,LOW,HP 
2,HIGH,LOW,HIGH,HIGH,LOW,DN 
3,HIGH,LOW,HIGH,HIGH,LOW,HP 
4,LOW,LOW,HIGH,HIGH,LOW,FR 
5,HIGH,LOW,LOW,HIGH,LOW,HP 
6,HIGH,HIGH,HIGH,HIGH,LOW,HP 
7,HIGH,HIGH,HIGH,HIGH,LOW,HP 
8,LOW,LOW,LOW,LOW,LOW,HP 
9,HIGH,LOW,HIGH,HIGH,LOW,HP 
10,HIGH,HIGH,LOW,LOW,LOW,HP 
11,HIGH,LOW,LOW,LOW,LOW,DN 
12,LOW,LOW,HIGH,LOW,LOW,VP 
13,HIGH,LOW,HIGH,LOW,LOW,HP 
14,HIGH,LOW,HIGH,LOW,LOW,HP 
15,HIGH,HIGH,LOW,LOW,LOW,HP 
16,LOW,HIGH,LOW,HIGH,LOW,HP 
17,HIGH,HIGH,LOW,HIGH,HIGH,HP 
18,HIGH,HIGH,LOW,HIGH,LOW,HP 
19,HIGH,HIGH,LOW,HIGH,LOW,HP 
20,HIGH,HIGH,LOW,HIGH,LOW,HP 
21,HIGH,HIGH,HIGH,HIGH,LOW,VP 
22,LOW,LOW,HIGH,LOW,LOW,VP 
23,LOW,LOW,HIGH,LOW,LOW,VP 
24,LOW,HIGH,LOW,LOW,LOW,VP 
25,HIGH,LOW,HIGH,LOW,LOW,FR 
26,HIGH,LOW,HIGH,LOW,LOW,VP 
27,HIGH,HIGH,HIGH,HIGH,LOW,FR 
28,HIGH,HIGH,HIGH,HIGH,LOW,DN 
29,HIGH,HIGH,HIGH,LOW,LOW,FR 
30,HIGH,HIGH,HIGH,HIGH,LOW,HP 
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APPENDIX J: Flowchart of Table Operator-Key Pair 
Selection  
 
 
 

 
 
For Data Placement Algorithm (DPA) see Figure 10. 
 
 
 
 
 
 



 181 

APPENDIX K: Flowchart of Table Partitioning Key Selection 
 
 

 
 
For Data Placement Algorithm (DPA) see Figure 10. 


