

An A/B Testing Platform for Fastly’s Compute@Edge

Platform

A Major Qualifying Project Report submitted to the faculty of

WORCESTER POLYTECHNIC INSTITUTE

in partial fulfillment of the requirements for the

Degree of Bachelor of Science

Authors:

Samuel Gehly, Computer Science

Lauren Hatfield, Robotics Engineering and Computer Science

Caitlin Jung, Computer Science

Advisor:

Professor Mark Claypool, Computer Science and IMGD Professor

Sponsors:

Patrick Hamann, Principal Software Engineer at Fastly

Salman Saghafi, Principal Software Engineer at Fastly

March 18, 2021

This report represents the work of one or more WPI undergraduate students submitted to the

faculty as evidence of completion of a degree requirement. WPI routinely publishes these reports

on its web site without editorial or peer review.

ii

Abstract

A/B testing has become a common practice that companies use to continually improve

and optimize existing products and services due to its ability to evaluate design ideas quickly,

precisely, and cheaply. There are multiple A/B testing frameworks and platforms available for

companies to use, yet of all the existing ones, currently none use Rust, which is the primary

supported language with Fastly’s Compute@Edge (C@E) platform, the serverless execution

environment for this project. We designed and developed an end-to-end A/B testing platform

compatible with Fastly’s C@E serverless service offering. The three components of this platform

are a Rust Crate (Framework), an API written in Go, and a user interface (UI) written in

JavaScript using React and Next.js. We thoroughly unit tested these components and system

tested the overall platform with an example A/B test, which demonstrated that the platform is a

successful minimum viable product. By taking a novel serverless approach to A/B testing and

utilizing the maturity and benefits of the three languages, Fastly can contribute to the business

experimentation and serverless communities.

iii

Acknowledgments

First, our team would like to thank our sponsor, Fastly, for giving us this amazing

opportunity to contribute, learn and work with Fastly’s serverless execution environment,

Compute@Edge. Specifically, we want to thank our awesome and incredible Fastly mentors,

Patrick Hamann and Salman Saghafi, for their guidance and support throughout this project. We

also want to thank Peter Bourgon, Patrick McManus, Jim Rainville, katelyn martin, and all the

other fantastic Fastly employees that helped us along the way. Lastly, we would like to thank our

MQP advisor, Professor Mark Claypool, for organizing this project and for all his guidance

throughout this project.

iv

Table of Contents

Abstract ii

Acknowledgments iii

Table of Contents iv

List of Figures vi

1. Introduction 7

2. Background 10

2.1. Cloud Computing Services 10

2.2. Cloud Services at Fastly 12

2.3. A/B Testing 13

2.4. Languages 15

2.4.1. Rust 16

2.4.1. Go 16

2.4.1. JavaScript (JS) – React and Next.js 16

2.5. Agile Methodology and Scrum Framework 17

2.5.1. GitHub and Product Backlog 19

3. Methodology 21

3.1. Feature Priority List 21

3.2. System Architecture 23

3.3. Software Development 25

3.3.1. Agile Methodology and Scrum Framework 25

3.3.2. Software Development Tools 26

3.3.2.1. GitHub 27

3.3.2.2. VS Code 27

v

4. Implementation 28

4.1. Rust Crate/Framework 29

4.2. REST API 31

4.2.1. Database Layer 32

4.2.2. Service Layer 34

4.2.3. API Layer 35

4.3 UI 37

4.3.1. UI Creation Process 37

4.3.2. UI Features & Results 40

4.3.2.1. Create Experiments 41

4.3.2.2. View Experiments 47

4.3.2.3. Update an Experiment 48

4.3.2.4. Delete an Experiment 48

4.3.2.5. Publish Experiments 49

4.4. Results 50

4.4.1. Testing 50

4.4.1.1 Rust Crate 51

4.4.1.2 REST API 52

4.4.1.3 UI 52

4.4.2. Demo 53

5. Conclusion 55

6. Future Work 57

6.1. Initial Work 57

6.2. Further Functionality 58

7. References 59

vi

List of Figures

Figure 1. Types of Cloud Computing Services and What They Encapsulate 11

Figure 2. The Relationship between React, Next.js, and JavaScript/ES6 17

Figure 3. Scrum Flow for each Sprint [37] 18

Figure 4. Agile Scrum Product and Sprint Backlog [37] 19

Figure 5. The Relationships between C@E, Framework, Fastly, and User 24

Figure 6. The Three Components of the Platform 28

Figure 7. The Relationship between the Layers of the REST API 31

Figure 8. The Database Layer 32

Figure 9. Experiment Model and Variant Model 33

Figure 10. The Service Layer 34

Figure 11. The API Layer 35

Figure 12. The Sketch Prototype 37

Figure 13. The Experiment Screen with Components Shown 39

Figure 14. The Create Variant Screen with Components Shown 40

Figure 15. GOAT-AB – Home Screen 41

Figure 16. GOAT-AB – Create Experiment Page 42

Figure 17. GOAT-AB – Create Variants Page inside of Create Experiment Page 43

Figure 18. GOAT-AB – Missing Variant Fields Popup 44

Figure 19. GOAT-AB – Update Variant Page in Create Experiment Page 45

Figure 20. GOAT-AB – Successful Experiment Creation Popup 46

Figure 21. GOAT-AB – Missing Name Field Popup 46

Figure 22. GOAT-AB – Sample Rate Sum Not 100% Popup 47

Figure 23. GOAT-AB – Update Experiment Page 48

Figure 24. GOAT-AB – Delete Experiment Popup 49

Figure 25. GOAT-AB – Publish Experiment Popup 50

Figure 26. Example Experiment Set-up 53

Figure 27. Conversion Event Log Screen 54

Figure 28. The Variants Received by Fastly Logs 54

7

1. Introduction

A/B testing has become a common practice that companies use to continually improve

and optimize existing products and services. From choosing color schemes to surveying potential

marketing campaigns, companies utilize A/B testing to meet different goals. A/B testing is a

process of showing two variants of some element (a button, a web page, a title) to different

website visitors at the same time and comparing which variant drives more conversions, a metric

that a business might want to track (user signups, for example) [1]. A collection of related

variants is an experiment. With this method, companies can collect large amounts of conversion

data on websites as well as run experiments which evaluate ideas and design choices quickly,

precisely, and cheaply.

Due to the numerous benefits of experimentation, there are multiple A/B testing

frameworks and platforms available for companies to use. For the purposes of this document,

platforms are usually end-to-end solutions that include a user-interface, while frameworks are

usually code-exclusive. There exists a wide array of open-source testing frameworks, such as

PlanOut [2] and Optimizely [3], that support more complex experimental designs while

considering and satisfying the constraints of deployed Internet services, such as scalability and

performance. These frameworks are written in a broad range of programming languages and

execution environments. There are implementations of this in JavaScript, Objective-C, Java, C#,

PHP, Python, Go, and other popular languages.

Of all the existing frameworks that conduct A/B testing, currently none use Rust. Rust is

a systems programming language designed for performance, reliability, and productivity. Rust is

compatible with WebAssembly (WASM), a binary code format that provides native system

performance with little overhead, while also providing support for web APIs [4]. Furthermore,

8

Rust is the primary supported language with Fastly’s Compute@Edge (C@E) platform, the

serverless execution environment for this project [5]. Serverless is a cloud computing model

where the cloud provider allocates backend resources as needed, that is, the server scales up and

down based on how many requests the endpoint receives and is priced by usage [6].

Recently, there has been a shift towards edge computing, a paradigm which moves code

closer to users for improved response times [7]. In addition, rapid prototyping has become more

important to startups who may want to write and deploy code quickly. In light of both of these,

companies are looking to create and update A/B testing frameworks and platforms, namely by

utilizing the cloud. This provides rapid deployment capabilities and the ability for developers to

quickly iterate on experiments [8]. Another way companies achieve rapid prototyping is through

the use of hosted third-party solutions that do not require server integration.

In this project, we developed an open-source, end-to-end A/B testing platform, called

GOAT-AB, which runs on C@E. Companies can use this platform to experiment with which

variants a user interacts with. The platform has three primary components: the Rust

Crate/Framework, Representational State Transfer (REST) API, and user interface (UI). When

combined, these components provide a solution for A/B testing at the edge. Moreover, the

platform is flexible to give the developer control over how they configure and utilize the

platform.

There are three varieties of people that are likely to interact with this platform. In the

context of this paper, developers are the people who utilize the Rust Crate. They are people who

have experience with programming in Rust. Experiment designers are people who use the UI.

They may not have much, if any, programming experience. The end-users are the people who

visit a website and get bucketed into a variant.

9

Overall, this platform can serve as the foundation for future experimentation at Fastly’s

C@E platform and can give businesses the opportunity to improve conversions. For example, a

news company could determine which headline of an article gets more clicks, which could then

lead that company to improve its headlines to get more viewership for future articles. By

combining the maturity and benefits of Rust and deploying it to a new environment to take a

novel approach to A/B testing, Fastly can contribute to the serverless and business

experimentation communities.

The rest of the paper is structured as follows. Chapter 2 discusses background

information and related work about cloud computing, A/B testing and the software development

tools we used. Chapter 3 explains the detailed steps and system architecture of the project.

Chapter 4 describes the design of the project and the evaluation procedures and methods to fully

test the platform. This chapter also showcases our platform in depth along with a demonstration.

Chapter 5 summarizes our project conclusions, and Chapter 6 identifies potential future steps to

improve or expand upon our work.

10

2. Background

Our project relies on many modern technologies to provide businesses with an A/B

testing platform. This section first details these technologies, beginning with cloud computing

services, the kind of service on which GOAT-AB runs. The section then describes cloud services

at Fastly, the company at which our platform runs, and continues with an explanation of A/B

testing, the functionality of the platform. The third part of the section outlines the languages

utilized in this project to help with understanding the project software and technologies. Finally,

the last section discusses the necessary software development tools and methodologies for the

project’s workflow.

2.1. Cloud Computing Services

Cloud computing services are computing services provided through the Internet [9].

Companies typically use these services to increase computing power without the hassle of

maintaining their own hardware and networking. This simplifies companies’ operations as it

moves more of their infrastructure to what is called the “cloud,” where large companies like

Amazon and Google manage these servers and resources [10]. Companies typically provide

these services using pay-as-you-go pricing, however the metrics used to calculate usage depend

on the service. This cost-effective approach incentivizes many businesses to utilize their services.

Three common variations of cloud services are Infrastructure as a Service (IaaS), Platform as a

Service (PaaS) and Functions as a Service (FaaS). An overview of these services can be seen in

Figure 1.

11

Figure 1. Types of Cloud Computing Services and What They Encapsulate

The lowest level of these is IaaS. This service provides hardware virtualization for the

consumer. IaaS provides storage, networking, and servers [11]. Examples of IaaS include the

Amazon Web Services (AWS) EC2, Microsoft Azure Compute, and Google Cloud Compute. In

this structure, the business does not need to physically purchase or maintain hardware [12].

Businesses often choose this type of service because it allows them to specify many requirements

of the system in detail. Of all these types of services, IaaS is the most flexible and easy to

automate, but it is the most complex in terms of setup, configuration, and maintenance.

PaaS adds more abstraction to the concepts of IaaS, handling the server environment in

which code runs [13]. In addition to storage, networking, and servers, PaaS includes middleware

such as the OS and development tools [14]. The AWS Elastic Beanstalk, Google App Engine,

and Oracle Cloud Platform all provide PaaS [15]. A business might choose this type of service

because it is easily scalable and allows employees to produce and run applications without the

12

overhead of managing the hardware, while still having control over the configuration of the

execution environment and programming language. The business does not need to manage the

infrastructure or the hardware, and therefore loses some of the flexibility found in IaaS. It is the

“middle of the road” option when it comes to the sliding scale of complexity versus flexibility.

Similarly to PaaS abstracting IaaS, FaaS abstracts PaaS. In this case, FaaS contains the

same abstractions as PaaS, but additionally handles the execution environment (the application /

routing layer and the operating system) [16]. This service responds to the occurrence of specific

events, such as cron triggers (time-based execution) or in response to HTTP requests (API

requests, for example) [17]. AWS Lambda, Microsoft Azure Functions, Google Cloud Functions,

Cloudflare Workers, and Netlify Functions all provide FaaS. Businesses typically choose this

service for its ease-of-use and scalability. As the business does not need to manage even the data

layer, the business loses even more flexibility in exchange for simplicity. FaaS is a tool for

businesses who want an API with low overhead.

2.2. Cloud Services at Fastly

Fastly is a cloud computing service provider [18]. A large part of Fastly’s offerings

include its expansive content delivery network (CDN), which provides quick load times for

websites and keeps its users’ content up to date [19]. Large companies, such as GitHub,

KickStarter, TheGuardian, and Stripe, use Fastly’s CDN services. Moreover, Fastly provides a

wealth of products for image optimization, video streaming, cloud security, and networking. This

wealth of features allows its customers to create fast, secure websites and applications with high-

quality content, while continuing to innovate in new areas.

As of October 16, 2020, Fastly predicted an increase in revenue by 41% over the course

of a year [20]. As Fastly continues to grow, it continues to provide additional capabilities for its

13

edge computing offerings. One of these capabilities is becoming a FaaS provider through its

serverless computing environment, C@E. Fastly is entering the serverless industry to utilize its

preexisting network to allow developers to run code at the edge. One use case for this is enabling

developers to run A/B experiments at the edge.

2.3. A/B Testing

A/B testing is the process of comparing two versions of a web page or application [21].

Similarly, multivariate testing is the process of comparing two or more versions of a web page or

application. This paper uses A/B testing to refer to both. For a particular experiment, end-users

will see one of two versions of a web page or application. Each end-user will either see a version

determined by a wide range of factors including (but not limited to) location, type of device, and

user ID in a process known as “bucketing.” Companies that implement this kind of testing also

vary widely and include The New York Times and AirAsia [22]. Using experimentation enables

the testing of a wide range of elements, such as comparing different headlines in a newspaper,

shapes of buttons, or even pricing.

For example, Electronic Arts (EA) used Optimizely’s A/B testing platform on its pre-

order launch of SimCity in 2013 to improve overall sales on the game. The first version of the

webpage included a promotional banner, which moved the “Buy Now” button to the bottom of

the page. The second version removed the banner, which moved the “Buy Now” button closer to

the top of the page. EA tracked the number of clicks on the “Buy Now” button for each variation

and the results eventually led them to discover that the second version drove 43.4% more

purchases [23]. Another example is WallMonkeys, which used CrazyEgg’s A/B testing platform

to optimize its homepage for clicks and conversions by testing the image featured on the

homepage. By comparing the current featured image to a more “fun” one, WallMonkeys

14

discovered that this produced a 27% increase in conversion rates on the site [24]. Both examples

used existing A/B testing platforms to conduct their experiments and helped the companies

improve the conversion rates on their websites.

Currently there are several A/B testing platforms and companies that provide hosted

services. These platforms make it easy for businesses to conduct A/B experiments and the

services allow businesses to create experiments without hosting their own infrastructure to power

it. Frameworks include Conductrics, Planout, AB.js, Flagr, Togglz, Waffle, Gargoyle, CrazyEgg,

and many more. Hosted services include Firebase (Google), and Optimizely, VWO, Zoho

PageSense, HubSpot, Leadformly, Unbounce, Convertize, Kameleoon, and many more (and their

associated frameworks for implementation). One framework is Conductrics, which provides both

client and server-side A/B testing as well as predictive targeting using AI and machine learning

to aid with analytics [25]. Another framework is PlanOut, which is an open-source testing

framework geared towards researchers, businesses, and students that supports more complex

experimental designs. It features extensible classes, namespaces for mutually exclusive

experiments, and the PlanOut language [2].

Similar to PlanOut, Optimizely creates an easy-to-use environment for conducting

experiments while also being a hosted solution that businesses do not need to host themselves.

While the previously mentioned frameworks are capable of integration into the cloud,

Optimizely has a “full-stack” experimentation platform capability that provides a solution for

server-side experimentation [26]. Firebase, another example of a hosted service, focuses on

simplifying the process of running, analyzing, and scaling experiments [27]. Furthermore,

Firebase focuses on engaging users with notifications and targeting specific groups for

experiments alongside other integrations within the Firebase ecosystem.

15

While A/B testing is a useful tool for introducing variation into a website or application,

experiment designers must consider the ethics and security of A/B testing platforms [28]. For

example, Optimizely exposes the entire experiment configuration to the end-user’s web browser,

which allows end-users to see the factors that decide which variant the experiment buckets them

in. According to the Optimizely developer documentation, this is still the case [29]. One study at

Northeastern University took advantage of this design to perform in-depth analytics on A/B

testing on a variety of web pages [22]. This study determined which factors the experiment

considered when choosing which web page to display and looked at the different variants. This

may raise some concerns for websites that use Optimizely’s services, but may also favor the end-

user, in terms of transparency, to ensure that the experiments are ethical.

Furthermore, many businesses, including The New York Times, use A/B testing without

notifying users [22]. While this may be harmless in most cases, this can facilitate the unethical,

but legal, gray area of price discrimination, where experiments use end-user data to modify the

price shown for a particular product. While some differentiations of end-users may be useful to

determine who clicks on what, it is important that this differentiation does not become

discrimination and does not extend to the prejudiced or unjust treatment of the end-users.

2.4. Languages

This subsection discusses the high-level concepts of all the programming languages that

aided in the development of GOAT-AB. Different languages have advantages and disadvantages

for different use cases, and they are important to recognize to understand why we used them in

this project.

16

2.4.1. Rust

Rust is a systems programming language that focuses on memory safety, thread safety,

and performance [30]. Because of Rust’s emphasis on safety, the compiler enforces many rules

which do not exist in other languages. For example, Rust adheres to specific ownership rules for

passing data between functions. If access to the original value of the function parameter is

necessary after the function terminates, then the function parameter must be a reference,

indicating that the function can read the data, but not modify it. On the other hand, if access to

the original value is not necessary, then the function will own that data and can directly modify

it. Typically, referenced data is the input to functions and the function returns owned data. These

rules, combined with Rust’s other complexities, give Rust a relatively steep learning curve.

2.4.1. Go

Go is a type safe programming language developed by Google that programmers

commonly use for building REST APIs, which provide the connection between the user

interfaces and other infrastructure, such as SQL databases [31]. Compared to Rust, the learning

curve for Go is much lower and enables REST APIs to be built quickly and safely as the

language has many built-in functions for creating these kinds of applications.

2.4.1. JavaScript (JS) – React and Next.js

React is a JS framework developed by Facebook that allows programmers to easily build

UIs [32]. Several companies, such as Netflix, Cloudflare, Twitter, Reddit, and GitHub, use this

framework. Next.js is a further abstraction of React to make it easier to build multi-page

applications without the need to implement a router to determine what pages execute what code

[33]. In a Next.js application, all the pages are loaded at the beginning of the end-user’s session

instead of upon request. As a result, when navigating the application, Next.js will immediately

17

swap the page content with the new page, instead of the browser needing to wait for this new

content. The relationship between these three items are shown in Figure 2. Next.js and React are

modules written in JavaScript (Version ES6), Next.js depends on React, and applications can

depend on both Next.js and React.

Figure 2. The Relationship between React, Next.js, and JavaScript/ES6

2.5. Agile Methodology and Scrum Framework

To develop our A/B testing platform, we utilized the Agile Methodology and Scrum

Framework. The Agile Methodology is an iterative approach used in software development

project teams that focuses on continuous product releases and incorporating customer feedback

18

with every iteration [34]. Scrum is a framework for Agile that helps teams work together by

encouraging communication and collaboration amongst team members as well as project

management [35]. Project teams break down their projects into fixed-length iterations, called

sprints, that are typically one to four weeks in length [36]. During each sprint, these teams

participate in multiple meetings, as shown in Figure 3, and deliver a releasable, well-tested

product.

Figure 3. Scrum Flow for each Sprint [37]

As shown in Figure 4, each project team consists of a product backlog to manage all the

tasks for the project. The backlog consists of user stories, which represent features that are

important to the product’s users and appear in the final product. At the beginning of each sprint,

the team conducts a sprint planning meeting, where they choose a reasonable amount of

achievable and pertinent user stories to complete by the end of the sprint. The team moves the

selected user stories to the sprint backlog.

19

Figure 4. Agile Scrum Product and Sprint Backlog [37]

Teams participate in daily stand-up meetings, or daily scrums, where each member must

speak about what tasks they completed the previous day, what tasks they will complete today,

and any issues that currently block them from performing their tasks. At the end of each sprint,

the team demonstrates their product to the stakeholders in the sprint review to receive crucial

feedback that the team will implement in the next sprint. Each sprint ends with a sprint

retrospective meeting, in which the team reflects on the current sprint by reflecting on what went

well, what problems the team encountered, and how the team resolved (or did not resolve) them.

Retrospectives aim to help teams improve and adapt for future sprints to maximize efficiency

and minimize any potential blockers.

2.5.1. GitHub and Product Backlog

GitHub is a code hosting platform that many software programmers and technology

companies utilize for its numerous benefits for projects, which include version control, code

storage, and code management [38]. In addition to these benefits, GitHub has a feature called

GitHub Projects that allows software programmers to integrate project management into their

development cycle [39]. When creating a project board, there are several templates that

20

programmers can select from, including Kanban boards, to best align with the needs of the

project team. All changes to the boards, such as creating cards and organizing them into custom

columns, occurs in real-time. Furthermore, programmers can convert the cards to issues and

associate them with a pull request (PR) or assign other programmers to specific cards.

Ultimately, GitHub Projects has a UI that allows teams to visualize progress and prioritize tasks

for each sprint in their GitHub repository.

21

3. Methodology

This chapter details the design process as well as the software development tools and

methodologies we utilized in order to develop an end-to-end A/B testing platform for Fastly that

will run on Fastly’s C@E platform.

3.1. Feature Priority List

To identify the most important and useful features for our platform, we gathered

information from discussions with our sponsors and from online research on what experiment

designers desire in A/B testing platforms. For this project and throughout the rest of the report,

experiment designers are people who directly interact with the platform to generate experiments.

From our information gathering, we developed a prioritized list of potential features that mostly

dealt with integrating our platform into Fastly’s ecosystem. The features are as follows, in order

of importance:

1. Providing A/B testing functionality through a default selection function

2. Allowing custom selection functions for bucketing

Giving flexibility to the experiment designers to add their own selection functions

tailors the framework to the experiment they want to perform.

3. Incorporating a persistent database to store experiments and variants

The experiment designers then create, view, modify, and delete experiments and

variants at any time.

4. Enabling experiment configuration through a UI

22

Configuring experiments within a UI would make the A/B testing platform

accessible to experiment designers and allows for cleaner and more standardized

C@E codebases.

5. Developers logging their end-users’ activity on C@E

Logging end-user activity along with their variants allows companies to do their

own analysis. This platform is intended to be used by customers of Fastly—Fastly

does not use the platform to log/analyze user activities for internal use. For this

project and throughout the rest of the report, end-users are participants in the

experiments.

We also compiled a list of stretch goals that would later become contenders for future work:

1. Adding explicit bucketing characteristics to integrate with C@E

Additional bucking characteristics include (but are not limited to) the end-user’s

location, browser, device, and visit count.

2. Providing configuration, results, and an analytics UI in the Fastly Dashboard

We would provide an end-to-end solution for Fastly by providing all necessary

elements of A/B testing and analytics within the Fastly serverless environment.

An experiment designer could configure experiments and see the results of said

experiments visually within the same dashboard, instead of relying on third-party

analytics services or databases.

3. Supporting predictive designing for experiments, using statistical learning

A statistical learning model could then analyze previous experiment data to make

predictions about which changes in an experiment may cause specific changes in

results.

23

4. Real-time suggestions for improving current experiments

Finally, we could develop an algorithm to suggest changes mid-experiment to

achieve specific goals.

These lists of features provided the foundation for our project and guided us in the development

process.

3.2. System Architecture

After identifying the important components of our platform, we made an architecture

diagram of how our platform would function in Fastly’s ecosystem (Figure 5). The key for the

diagram is as follows:

• A green box is an HTTP request.

• A pink box is a C@E action.

• A red, outlined box is an experiment designer action.

• A red, filled in box is an end-user action.

• A blue box is a Rust framework action on C@E.

• An orange box is a Fastly API/Edge Dictionary action.

24

Figure 5. The Relationships between C@E, Framework, Fastly, and User

To use the platform, first the experiment designers interact with the UI of our platform, to

create, update or delete experiments. Then, the experiment designers publish all the experiments

to an API that stores persistent data. When an experiment designer is ready, they may publish the

data to Fastly’s Edge Dictionaries. An Edge Dictionary is an offering from Fastly to save data at

the edge, similar to how code runs at the edge with C@E [40].

Once the experiment designers publish the experiments, end-users can visit the specific

website where the experiment runs. When an end-user visits the website, our framework reads

the associated experiment configuration from the Edge Dictionary along with information

associated with the user. Then, the framework buckets the end-user into one of the variants

associated with the experiment. This bucketing is deterministic, which allows the framework to

25

always bucket the same end-user into the same variant each time the end-user interacts with the

experiment.

Once the framework buckets the end-user into a variant, the end-user can see that variant

on the screen. For example, one end-user may see a red button and another may see a blue

button. Oftentimes with A/B testing, end-users perform an action, sometimes called a

“conversion event”, where they interact with the framework in some way to provide analytics for

the experiment. For our framework, if the end-user interacts with the variant, for example

clicking on one of the buttons, then the framework logs the action to C@E. The C@E function

reads the associated experiment from the Edge Dictionary and sends that information along with

the selected variant to wherever the developer wants. From there, the experiment designer can

get the results and send them to an external analytics service to gain feedback from the

experiment.

3.3. Software Development

To develop our platform according to the system architecture described above, we

followed the Agile Methodology and Scrum Framework and utilized several software tools.

Agile and Scrum were helpful for creating an application and continually building upon previous

designs to ensure that the platform is suitable for the users. Combining GitHub Projects for

project management, GitHub for our code repository and Visual Studio Code (VS Code) for our

Integrated Development Environment (IDE) facilitated programming and fostered collaboration

and the development of well-written code.

3.3.1. Agile Methodology and Scrum Framework

Our team utilized the Agile Methodology to ensure the creation of a platform that meets

the needs of our sponsor and the potential users of our platform. We had seven one-week sprints

26

to develop our product. At the beginning of each sprint, we chose a reasonable amount of

achievable and pertinent tasks to complete by the end of the sprint. We maintained all of our

tasks in our product backlog on GitHub Projects. For the majority of the tasks, we all worked

together to complete them.

We had daily stand-up meetings with at least one of our sponsors to discuss our progress

and resolve any impediments, which often entailed walking them through the new parts of our

code. We also communicated frequently with them via Slack for any issues or questions that

arose during the day.

At the end of each sprint, we demonstrated our platform to our sponsors and requested a

review of the changes to our code to receive crucial feedback. Each sprint ended with a sprint

retrospective meeting where we reflected on the current sprint by discussing what went well,

what problems we encountered, and how those problems were resolved. At the beginning of the

project, the main takeaways from our retrospectives were our desires to do more pair

programming and to block off time during the week to work together. As the project progressed,

our ability to work as a team improved and these retrospectives shifted towards pointing out

problems with our code or other issues that halted our progress. In fact, during Sprint 3, a lot of

the work planned got pushed to Sprint 4, as there were a lot of code comments to address and we

planned more tasks than we were able to accomplish.

3.3.2. Software Development Tools

Software development tools, such as GitHub and VS Code, played an integral role in the

development of our platform.

27

3.3.2.1. GitHub

Our sponsors set up a private GitHub repository for us to store the code for this project.

During Sprint 1, we created branches for each task that we completed, but for the rest of the

sprints, per the request of our sponsors, we created one branch for each sprint. Since we worked

together to complete the majority of the tasks, we did not have to deal with many merge

conflicts. However, whenever we split up the work and any merge conflicts appeared, we

reviewed the code differences, made appropriate changes, and noted all affected files in the

merge commit comment. After completing the sprint tasks, we created a review request (or “pull

request”) for our sponsors, which due to GitHub’s collaborative nature, allowed them to

comment on specific lines that we could then discuss with them on the platform if they were

unavailable to meet. Once we addressed all comments on the pull request, we merged it to the

main branch and deleted our sprint branch.

3.3.2.2. VS Code

For all the programming done in this project, we used VS Code version 1.54 for our IDE

[41]. With VS Code, we downloaded all the necessary language extensions (Rust, Go and

React/Next.js) and associated linting tools that allowed us to write well-structured code for our

project. Also, we handled merge conflicts on VS Code by choosing to accept the incoming or

current changes and modifying where appropriate. Furthermore, we often used VS Code’s Live

Share feature to do pair programming and collaborate [42].

28

4. Implementation

To implement the system architecture described in Chapter 3, we created a platform that

is both generic and performant. This platform took the form of a minimum viable product (MVP)

within the scope and time limitations of the project. While it may not be a complete product, this

platform provides a starting point for future work, while still providing A/B testing functionality.

Figure 6. The Three Components of the Platform

The platform consists of three components, shown in Figure 6 above:

• The Rust Crate (Goat-AB Crate shown in blue)

• The REST API (shown in red)

• The Configuration UI (UI shown in green)

First, an experiment designer would use the UI to configure which experiments and

variants they want to deploy. The UI communicates with the REST API to store that specific

configuration in a database of their choosing, whether it be a PostgreSQL database or Fastly’s

29

Edge Dictionaries. When the developer wants to test a specific experiment, they use the Rust

Crate, which uses their selected data source as an input to sort an end-user into one variant per

experiment. This process allows the developers and experiment designers to work together to

implement A/B testing.

4.1. Rust Crate/Framework

The Rust crate provides functionality associated with A/B testing, specifically, bucketing

users into the appropriate variant. This A/B testing crate can run anywhere that supports WASM,

however for the scope of our project we utilized C@E. Since Rust is the primary supported

language with C@E, developing the code for the A/B testing process in Rust was essential for

this integration.

We developed the Rust Crate as the first step of the project because it provides the

foundation for the entire platform. First, we determined which pieces of information were

necessary for the different API calls to the crate. We decided that each time the crate buckets a

user, we would pass in end-user-specific information, such as the end-user's IP address, and

when initializing the crate, we would pass in any configuration files defining the experiments or

variants. Next, we modeled the experiments and variants. Each experiment needs to hold

information on its ID, name, published status, and variants. Each variant needs to hold

information on its ID, name, value (which can be any valid JSON), and sample rate. When

creating these objects, the crate validates them to ensure that the fields of each contain the

appropriate data types. The sample rates for all of the variants in an experiment must sum exactly

to 1. We also considered other validation constraints such as length, character set, and

uniqueness.

30

The next step was developing the selection function, which buckets users into variants.

We developed a default selection function, called the random selection function, that uses a

hasher to convert hash input (usually something that identifies an end-user, e.g. IP address, web

browser) into a random integer. Then the function converts this integer to a decimal, which

corresponds to one of the variants. While we only created the random selection function, we

developed the selection function to allow for multiple future selection function integrations.

One main goal during the development of the crate was to make it abstract and flexible so

developers could customize A/B testing to their needs. The selection function uses Rust traits

and generics to allow developers the ability to provide custom selection functions not currently

programmed in the crate. This initially was difficult as there were issues with using a Hash

object as a generic data type with our selection function implementation. We explored defining

the selection function as an integer, enum and other data types, but ultimately, we added a

“UIExperiment” struct which included an enum of the crate’s selection functions and an instance

of the “Experiment” model. We then removed the selection function altogether from the

“Experiment” model. This solved our issues while retaining the abstraction we desired.

We were then ready to put together the public API. It consists of two functions:

initialize_from_string and bucket_all. The first initializes the crate. It takes a string representing

a valid JSON object and converts it into either a vector of experiments or returns a configuration

error. There are various types of configuration errors that can result: parsing, validation, or

runtime. A parsing error occurs when the Rust Crate cannot parse the input JSON string into a

valid experiment. A validation error occurs when the JSON object does not conform to valid

standards, such as string length. A runtime error occurs when there is an issue with bucketing.

When initialize_from_string returns a vector of experiments, the bucket_all function takes that

31

vector as an input along with the end-user information as a string. This function calls the

selection function for each experiment in the vector. The bucket_all function returns a vector of

the selected variants for each experiment for that specific user’s information.

This all integrates into Fastly with C@E and Fastly’s Edge Dictionaries. The design of

our crate inherently supports C@E. Edge Dictionaries provide the experiment and variant

definitions for the crate’s initialization function.

4.2. REST API

The REST API mainly deals with storing persistent data (experiments and variants) and

writing this data to Fastly’s Edge Dictionaries. Currently, Edge Dictionaries do not enable data

modification from C@E, so this REST API was necessary to handle that [43]. We wrote this API

in Go, which allowed us to be quickly productive and efficient because of Go’s strong support

and built-in features for creating HTTP servers [44]. As seen in Figure 7, the REST API contains

three layers: the API layer, the service layer, and the database layer.

Figure 7. The Relationship between the Layers of the REST API

32

These layers loosely model the Open Systems Interconnection (OSI) model to achieve

low coupling and high cohesion [45]. Each layer follows the Dependency Rule, which states that

an inner layer should never rely on, or have access to, anything from an outer layer, but the outer

layers rely on the inner layers [46]. In other words, the database layer cannot know anything

about the service and API layers and the service layer cannot know about the API layer.

However, the service layer can know about the database layer and the API layer can know about

both the service and database layers (and therefore have access to the information in the layers

that they have knowledge on). All layers utilize the logrus package [47] to provide custom error

messages that contain optional fields for referencing specific experiments or variants for

debugging purposes.

4.2.1. Database Layer

The database layer consists of a database that holds all the persistent data, which in our

project are the experiments and variants, as seen in Figure 8.

Figure 8. The Database Layer

Thus, there are two tables in the database, the experiments and variants, that both have an

ID field as their primary keys, which the database generates upon creation of a given experiment

33

and/or variant. The experiment table also contains a name, selection function, active status, and

timestamps that signify when the database created or modified an experiment. Similarly, the

variant table also has other fields in addition to the ID – a name, value which is a JSON object,

sample rate, experiment ID and timestamps that signify when the database created or modified

the variant. Variants have an experiment ID field because this acts as the foreign key that links

the experiments and variants tables together. Furthermore, when there is a call to remove an

experiment from the experiments table, this will also trigger the removal of all associated

variants from the variants table. All the experiments and variants fields are shown in Figure 9.

Figure 9. Experiment Model and Variant Model

We used an external package called sqlx [48] to assist with performing all calls to the

database. While we used PostgreSQL because of its native JSON support [49], this layer

supports other databases as well, such as MySQL. In this layer, we instantiate the connection to

the database and provide wrapper methods on the database functions, Get, Select and Query, as

these appear frequently in the Service layer. Get, which we used when fetching one experiment

or variant by its ID and when creating and updating an experiment or variant, returns a single

query row. Select, which we used when fetching multiple experiments or variants, returns

multiple query rows. Query, which we used when deleting experiments and variants from the

database, returns all affected rows.

34

4.2.2. Service Layer

The service layer handles all the database calls for the experiments and variants and the

syncing required for integration with the Edge Dictionaries, as seen in Figure 10.

Figure 10. The Service Layer

These database calls consist of getting all experiments and variants, getting a specific

experiment or variant by its ID, creating experiments and variants, updating them, and removing

them from the database. In other words, the calls perform CRUD (Create Read Update Delete)

operations on the data. Each database call requires the execution of an SQL statement, where the

methods that get experiments and variants use SQL’s SELECT, those that create use SQL’s

INSERT INTO, those that update use SQL’s UPDATE, and those that remove use SQL’s

DELETE FROM.

In all the methods that get experiments, the REST API executes a query to get all the

corresponding variants as well. For the create method, there is an initial check on the variant

sample rates to ensure that none are negative numbers and that the sum of all the variants’

sample rates for the experiment equals 100%. If this check passes, then the function creates the

experiment in the experiments table and adds all its associated variants to the variants table. The

35

create method on the variants adds the variant to the database. To update an experiment, the

update method first fetches it from the database and if it exists, then the input experiment or

variant will replace the corresponding one in the database. Similar to the create experiment

method, the update method checks that the sample rates of the input variant are non-negative and

sum to 100%. The update method on variants updates the variant in the database.

Moreover, the service layer contains the necessary support to integrate Fastly’s Edge

Dictionaries into the REST API. To do this, we used the Go Fastly package, which is a Go API

client for interacting with the Fastly API that allows us to write to an Edge Dictionary [50].

Using the package, we instantiate a Fastly client that updates the Edge Dictionary with the

experiments.

4.2.3. API Layer

The API layer contains all the HTTP handlers for the methods in the service layer and

provides the connection between the REST API and the UI, as seen in Figure 11.

Figure 11. The API Layer

36

To match incoming HTTP requests to their respective handler, we used an external

package called Gorilla Mux [51]. This package also provided support for middleware, such as

requiring authentication with an API key, and enabling cross-origin resource sharing (CORS) to

allow our UI to access the REST API.

The HTTP handlers featured in this layer handle GET, POST, PUT, and DELETE HTTP

requests, which are all CRUD operations. In the GET (by ID), PUT, and DELETE requests, the

corresponding handlers read the path variable to identify which specific experiment or variant

the request will fetch, update, or remove from the database, respectively. For a GET request that

fetches all of the experiments in the database, there are two additional parameters, limit and

offset, that describe how to group and display the experiments. Limit refers to the maximum

number of experiments that the handler method will return at one time, whereas offset represents

the number of experiments to skip before beginning to return experiments. Both POST and PUT

requests require additional data, the experiments and variants, that their handler methods read

from the request body using the ioutil package [52]. This package turns the response body into a

byte array, which the handler methods transform into the corresponding experiment and variants

using the JSON package. If any of the requests fail, or return an HTTP status error code, the

corresponding method will return an error message.

Furthermore, this layer handles the integration with the Edge Dictionary by publishing

the experiments and variants through a POST request. The handler method for this performs a

GET request on all experiments and then attempts to publish each one to the Edge Dictionary. If

any integrations fail, the handler method returns an error message.

37

4.3 UI

The UI allows experiment designers to configure their experiments. Experiment

designers, who may or may not have programming experience, may not want to use the REST

API directly through developer networking tools such as Postman, Paw, or Insomnia. Therefore,

in order to make the REST API functionality accessible to experiment designers, we developed a

UI for the aforementioned CRUD methods.

4.3.1. UI Creation Process

In order to begin this process, we first designed an outline, shown in Figure 12, in the

popular design prototyping tool, Sketch [53]. This application, somewhat akin to Photoshop, is a

popular tool for mocking up what a website or application might look like.

Figure 12. The Sketch Prototype

The Sketch prototype includes the three main screens of the application: the page to view

experiments, create experiments, and add variants to an experiment. The first screen includes a

38

list of all current experiments, variants that belong to them, and buttons to edit or delete

experiments. This first screen also includes a button to create a new experiment and one to

publish the experiments to a Fastly Edge Dictionary, where the Rust Crate would read the

configuration. The second screen is the form to create and update experiments. Here experiment

designers can edit the name, selection function, status, and variants of the experiment. The third

page allows for the configuration of the name, value, and sample rate of variants. During the

design process, we merged the experiment and variant configuration pages for the sake of

simplicity, so users have an awareness that the variant is tied to the experiment.

We then moved on to implementing the designs in code. We built this user interface in

JavaScript, utilizing the React framework alongside the Next.js module for React.

Utilizing these features, we built two main screens. These screens are near replicas of the

aforementioned designs, but are created with React and Next.js components and use real data

from the REST API instead of the shapes and mocked data in Sketch. In the React version, we

worked to separate the different parts of the page into separate reusable components, shown in

Figure 13.

39

Figure 13. The Experiment Screen with Components Shown

As shown in Figure 13, we separated the parts of the page down into “Sidebar,”

“ExperimentBlock,” “VariantBlock,” “ControlBar,” and “Modal” components (amongst others)

for the sake of modularity, reusability and testability, as we use them throughout the UI.

40

Figure 14. The Create Variant Screen with Components Shown

 As shown in Figure 14, we see that the second screen, the form for creating and updating

experiments and variants, reuses the “Sidebar,” “Modal,” and “ControlBar” components. Both

screens drive the main functionality for the aforementioned REST API and are fully functional

with reading, creating, updating, and deleting the experiments and variants that power the Rust

Crate.

4.3.2. UI Features & Results

The UI of our end-to-end, A/B testing platform provides experiment designers the ability

to run experiments in real-time. When first navigating to the UI, the home screen defaults to the

experiment list, as shown in Figure 15. The sidebar, located on the left side of the screen,

contains different functionalities for the platform that future iterations could implement.

41

Figure 15. GOAT-AB – Home Screen

There are five major components of the UI: create experiments, view all experiments,

update experiments, delete experiments, and publish experiments. These are detailed in

subsections 4.3.2.1-4.3.2.5.

4.3.2.1. Create Experiments

The Create Experiment page, as shown in Figure 16, allows users to add experiments

through a form.

42

Figure 16. GOAT-AB – Create Experiment Page

Each field has a small description to inform the developer of its purpose. The default for

the selection function is “Random Selection,” yet developers can choose a different function

using the dropdown or indicate that they will add a custom selection function. When adding

variants to the experiment, a separate form will appear on the same screen, as shown in Figure

17.

43

Figure 17. GOAT-AB – Create Variants Page inside of Create Experiment Page

Similar to the Create Experiments form, each field in this Create Variants form has a

small description. The value field accepts a proper JSON object, which the UI validates when

developers click the “Save Variant” button. The sample rate slider ranges from 0 to 100 to ensure

that developers do not input negative sample rates, and the corresponding percentage appears to

the right of the slider. It is important to note that all variant fields are required and a popup, as

shown in Figure 18, will appear on the screen if fields are missing. If the experiment designer

decides to not create the variant, they can click on the “Cancel” button.

44

Figure 18. GOAT-AB – Missing Variant Fields Popup

If experiment designers want to modify the fields of a variant, they can click on the edit

button next to the variant. The same form that appeared for creating variants shows on the screen

filled with the information associated with the selected variant, as seen in Figure 19. Experiment

designers are not able to successfully update the variant if any of the fields are empty or invalid.

45

Figure 19. GOAT-AB – Update Variant Page in Create Experiment Page

Additionally, if experiment designers create a variant, but later decide to delete it, they

can click on the delete button next to the variant.

After the experiment designers finish filling out the form and adding variants, they can

click on the “Create Experiment” form and will either see a success popup, as seen in Figure 20,

or one of the failure popups, as seen in Figure 21 and Figure 22. It is important to note that all

fields in this form are required and the sample rates of the variants must sum to 100%. If

experiment designers decide to not create the experiment, they can click on the “Cancel” button.

46

Figure 20. GOAT-AB – Successful Experiment Creation Popup

Figure 21. GOAT-AB – Missing Name Field Popup

47

Figure 22. GOAT-AB – Sample Rate Sum Not 100% Popup

4.3.2.2. View Experiments

After creating an experiment, experiment designers can view their experiments on the

home screen, as seen in Figure 15 above. Each experiment block contains the following fields:

• The name of the experiment

• The approximate time when the experiment was last created or modified

• A filled-in circle indicating whether the experiment is active or not (green indicates the

experiment is active and red indicates it is not)

• The list of variants with their respective sample rates associated with the experiment

On the right-hand side of each experiment block, there are two buttons—clicking on the

edit button indicates that the user would like to edit the experiment and clicking on the delete

button indicates that the user would like to delete the experiment.

48

4.3.2.3. Update an Experiment

By clicking on the edit button of an experiment, experiment designers will see the Update

Experiment page, as seen in Figure 23, that mimics the Create Experiment page, except that the

fields contain the selected experiment information. It is important to note that in order to update

the experiment, all fields in this form must be filled out and the sample rates of the variants must

sum to 100%. If developers decide to not update the experiment, they can click on the “Cancel

Update Experiment” button.

Figure 23. GOAT-AB – Update Experiment Page

4.3.2.4. Delete an Experiment

To delete an experiment, experiment designers can click on the delete button of an

experiment. Before deleting the experiment, a popup will appear on the screen, as shown in

Figure 24, to verify that the experiment designer wants to delete the selected experiment.

49

Figure 24. GOAT-AB – Delete Experiment Popup

4.3.2.5. Publish Experiments

When experiment designers want to publish their experiments on C@E, they can click on

the “Publish All Experiments” button at the top right-hand side of the home screen. This

publishes the experiments to Fastly’s Edge Dictionaries. Before doing so, however, it asks the

experiment designer to confirm that the codebase attached to the experiment can handle the new

values as seen in Figure 25.

50

Figure 25. GOAT-AB – Publish Experiment Popup

4.4. Results

To evaluate our platform, we performed tests on the functional components (Rust Crate,

REST API and UI) and created a demo using the platform.

4.4.1. Testing

Testing was an integral part of our platform to ensure that each component was not only

effective, but also responded appropriately to a variety of configurations and use cases. We

determined the best ways to test our platform based on advice from our advisors and our

previous knowledge and experience with testing. The testing standard we had for our code

development is as follows:

1. For the Rust crate and REST API, we wrote unit tests for all the functions.

2. For the UI, we manually tested by running the service and validating that all the buttons

and features worked as programmed.

51

3. For any instances where we utilized C@E, we used Fastly’s log tailing, which allows

developers to see their function logs in near-real-time [54].

4. For the end-to-end functionality, we developed a demo that showcases a sample

experiment that changed parts of a video at the edge.

4.4.1.1 Rust Crate

To test the Rust Crate, we wrote unit tests for each of the major functions: validating the

configuration file, initializing the crate, the selection function, and bucketing users. For each

function, we utilized the assertion crate in Rust’s standard library, which either evaluates to true

if the assertion passes and panics if the assertion fails, which raises the panic! macro. Panic! is a

macro that allows a program to terminate immediately when the program reaches an

unrecoverable state and provides detailed feedback on the specific error.

To test the validate_configuration function, we first ensured that the configuration string

contained complete information for each of the experiments and variants. Each sample

configuration string is inside of a fixtures directory, rather than inline for readability. Then, we

used assert! and assert_eq! to assert that the fields of the experiments and variants were valid, in

terms of the fields having appropriate lengths and data types. Since we created an enum to hold

all the potential errors that could result from the validation, we also checked to make sure that

error returned from the test was the same as what we expected. Similar to validate_configuration,

we used assert_eq! to test initialize_from_string. To test the selection function and bucket_all,

we checked that each method returned one of the expected variants of an experiment and that the

same variant gets returned for a specific user each time for 100 attempts. Each test for the crate

passed, which provides an assurance that the crate is functional.

52

4.4.1.2 REST API

To evaluate the REST API, we used mocking to unit test the CRUD methods for

experiments and variants. Unit testing external dependencies, such as network requests and

database calls, is cumbersome, unreliable, and outside the scope of this project. Mocking

provides the solution to this by replacing external dependencies with controlled objects that

simulate their behavior. To apply mocking to the REST API, we created a mock interface that

defined the functions necessary to make calls to the database. Then, instead of calling the actual

functions that communicate with the database, we injected our mock interface into the handler

functions, which handle the HTTP requests, so we could isolate them and ensure that they

worked properly.

Since each handler function contained multiple test cases that resulted in repetitive code,

we used table-driven tests to remove the repetition, produce tests, and provide a way to add more

scenarios. In table-driven tests, the test function iterates over a table of test cases and performs

the necessary evaluations on that test case. However, if one of the table-driven tests produces a

fatal error, the remaining test cases never run. To resolve this, we created our table-driven tests

using subtests, which allowed all tests in the table to run regardless of errors and associated a

name with each test for individual testing. Each written test for the REST API passed and any

that produced errors returned the expected and appropriate error message.

4.4.1.3 UI

We conducted manual tests for the UI since writing test cases for UIs is complicated. We

ensured the accuracy of each input by displaying proper error messages, such as when the sample

rates of the variants do not sum to 100% and if any fields had improper or no input. Each manual

test of the UI passed our and our advisors’ expectations.

53

4.4.2. Demo

While experiment designers have hands-on interactions with the platform with the UI

described above, end users indirectly interact with the platform if they are a part of active

experiments. We created an example experiment that inserts a different video clip into a

commercial for cat food, as seen in Figure 26.

Figure 26. Example Experiment Set-up

The cat food commercial is for Purina Cat Chow and the inserted video clips are courtesy

of Salman Saghafi, one of our sponsors, and his cats, Duchy and Fenny.

When end users go to the website that hosts this experiment, they would watch the

commercial. The specific commercial relayed to the user depends on which variant the selection

function bucketed the user into. Once a user clicks the button, the demo displays some “thank

you” text, and lists the variants that the selection function bucketed them, as shown in Figure 27.

54

Figure 27. Conversion Event Log Screen

In addition to the end-user seeing the variants, Fastly’s logging service receives the

variants, as shown in Figure 28, which shows that our framework can send the variants to any

third-party (or future first-party) analytics services.

Figure 28. The Variants Received by Fastly Logs

The variants in Figures 26-28 show that even through three different requests and

processes, the variants remain consistent, showing that the framework always buckets the end-

user into the same variants as long as the bucketing uses the same end-user information.

55

5. Conclusion

In order to evaluate design choices and improve upon existing products and services,

many companies employ A/B testing. With the recent shift towards edge computing and rapid

prototyping, companies are beginning to support and integrate A/B testing platforms with the

cloud to quickly iterate on experiments. While there are several A/B testing frameworks and

platforms that satisfy complex experimental designs while maintaining Internet scalability and

efficiency, none currently use Rust, which is the primary supported language of Fastly’s

serverless platform, C@E.

We developed an open-source, end-to-end A/B testing platform for Fastly, called GOAT-

AB, which serves as a MVP for A/B testing on Fastly’s C@E. Our platform provides a graphical

UI for the creating, modifying, and deleting experiments. To store and keep track of experiments,

the UI directly communicates to a REST API that handles HTTP requests and updates a database

appropriately. When the developer publishes the experiments and begins testing on end-users,

the Rust Crate containing the A/B testing functionality assigns the end-user to one variant per

experiment. We designed each part of the platform with flexibility and abstraction in mind to

provide the developer control over how they would like to design experiments.

To evaluate our platform, we individually tested each component of the platform. We

wrote unit tests for the Rust Crate and REST API and manually tested the UI with error popups.

To show the performance of our platform, we created a demo. The demo shows that when

combined with Fastly’s C@E, the platform provides working functionality for A/B testing and

tracking for conversion events. Based on our tests, demonstration, and the expectations of our

sponsors, the platform is a successful MVP for an A/B testing platform. Overall, GOAT-AB

56

provides the foundation for future experimentation in a serverless space and shows a future for

products that can run on Fastly’s C@E.

57

6. Future Work

As Fastly expands into the serverless market, there are several areas for improvement for

future iterations of our platform. We divided our recommendations into two categories. The first

category describes the minimum work that should be done once we leave this project. The

second category includes interesting extensions of the platform that provide additional

functionality for the end-user to improve their A/B testing.

6.1. Initial Work

After the completion of the project, there are several initial future implementations that

directly correlate to the work already performed in this project. First, there should be some kind

of maintenance for the code to ensure that we followed Fastly’s code and documentation

standards for Rust, Go and React/Next.js. This would also include more thorough testing for the

UI using Jest, which is a testing framework to test JS and React code. Additionally, if the

platform ties to the Fastly UI or Dashboard, it is crucial to conduct penetration tests, or pen tests,

to identify any security weaknesses in the codebase. Adding proper authentication for databases

among other infrastructure, would supplement these pen tests to ensure that unauthorized

developers cannot access or modify the experiments and variants in the database. Moreover, it

may be interesting to conduct performance evaluations to reduce potential overhead or discover

any performance impacts. Lastly, it would be convenient for developers to have a larger range of

selection functions to choose from when bucketing end-users into variants. One way to do this is

to develop selection functions that include explicit bucketing characteristics, such as the end-

user’s location and browser, which the framework receives from C@E.

58

6.2. Further Functionality

Going forward, there are several interesting enhancements that we recommend for our

platform. One enhancement is migrating to a scalable database, which would allow for the

storage of increasing amounts of data without harming performance. Ideally, the REST API

would directly store all persistent data in Fastly’s Edge Dictionaries rather than in a local

database, which would further integrate our platform with C@E.

Another enhancement is publishing the experiments and variants to other integrations

besides the Edge Dictionaries on C@E. Other companies could then use our platform to conduct

A/B testing on the edge, which could provide some interesting results such as whether different

integrations would bucket the same user into the same variant.

Furthermore, developing a full analytics suite with real-time analysis of experiments

could be useful for experiment designers with little analysis experience. Combining analytics

with dashboards allows experiment designers to keep track of all their experiments in an efficient

way as they would no longer have to rely on third-party analytics services or databases. Fastly

customers could use this platform to perform meta-analysis, possibly using deep learning, across

various clients in order to make useful suggestions for experiments. With this analytics suite,

Fastly will not track or analyze client activities. This proof of concept project has many

interesting and viable directions in which development could continue.

59

7. References

[1] "What is A/B Testing? A Practical Guide With Examples," VWO. Available:

https://vwo.com/ab-testing/ [Accessed: Mar. 18, 2021].

[2] "PlanOut | A Framework for Online Field Experiments," GitHub.io. Available:

https://facebook.github.io/planout/ [Accessed: Mar. 15, 2021].

[3] "Optimizely," Optimizely. Available: https://www.optimizely.com/. [Accessed: Mar. 15,

2021].

[4] E. Elliott, "What is WebAssembly? The Dawn of a New Era," Medium, Jun. 18, 2015.

Available: https://medium.com/javascript-scene/what-is-webassembly-the-dawn-of-a-new-

era-61256ec5a8f6 [Accessed: Dec. 11 2020].

[5] "Rust on Compute@Edge," Fastly. Available:

https://developer.fastly.com/learning/compute/rust/ [Accessed: Mar. 18, 2021].

[6] "Serverless Computing - The Complete Guide," Confluent. Available:

https://www.confluent.io/learn/serverless-computing/ [Accessed: Mar. 17, 2021].

[7] M. Teodoro, "The power of serverless, 72 times over," Fastly, Nov. 11, 2020. Available:

https://www.fastly.com/blog/the-power-of-serverless-at-the-edge [Accessed: Dec. 11

2020].

[8] M. G. Avram, "Advantages and Challenges of Adopting Cloud Computing from an

Enterprise Perspective," Procedia Technology, volume 12, pp. 529-534, Dec, 2014. doi:

10.1016/j.protcy.2013.12.525.

[9] "What Is Cloud Computing? A Beginner’s Guide," Microsoft Azure. Available:

https://azure.microsoft.com/en-us/overview/what-is-cloud-computing/ [Accessed: Dec. 11

2020].

[10] Cloudfare, "What is the Cloud? | Cloud Definition," Cloudfare. Available:

https://www.cloudflare.com/learning/cloud/what-is-the-cloud/ [Accessed: Dec. 11 2020].

60

[11] S. Bhardwaj, L. Jain and S. Jain, "Cloud Computing: A Study of Infrastructure as a Service

(IaaS)," International Journal of Engineering and Information Technology, vol. 2, no. 1, pp.

60-63, 2010.

[12] IBM Cloud Education, "What is IaaS (Infrastructure-as-a-Service)," IBM, Jul. 12, 2019.

Available: https://www.ibm.com/cloud/learn/iaas [Accessed: Dec. 11 2020].

[13] D. Beimborn, T. Miletzki and S. Wenzel, "Platform as a Service (PaaS)," Business &

Information Systems Engineering, volume 3, issue 6, pp. 381-384, 2011. doi:

10.1007/s12599-011-0183-3.

[14] "What is PaaS? Platform as a Service," Microsoft Azure. Available:

https://azure.microsoft.com/en-us/overview/what-is-paas/ [Accessed: Dec. 11 2020].

[15] A. Davies, "10 Top PaaS Providers of 2021," DevTeam. Available:

https://www.devteam.space/blog/10-top-paas-providers/ [Accessed: Dec. 11 2020].

[16] L. F. Albuquerque Jr., F. S. Ferraz, R. F. A. P. Oliveira and S. M. L. Galdino, "Function-

as-a-Service X Platform-as-a-Service: Towards a Comparative Study on FaaS and PaaS,"

The Twelfth International Conference on Software Engineering Advances, pp. 206-212,

2017.

[17] P. Sroczkowski, "Cloud: IaaS vs PaaS vs SaaS vs DaaS vs FaaS vs DBaaS," Brainbub, Jan.

24, 2018. Available: https://brainhub.eu/blog/cloud-architecture-saas-faas-xaas/ [Accessed:

Dec. 11 2020].

[18] "Fastly," Fastly. Available: https://www.fastly.com/ [Accessed: Dec. 11 2020].

[19] A. Sraders, "What is Fastly? Analysts say the best-performing tech stock during the

pandemic may still have room to run," Fortune, Jun. 23, 2020. Available:

https://fortune.com/2020/06/23/what-is-fastly-fsly-zoom-pandemic-tech-stocks-best-

performers-stock-market-news/ [Accessed: Dec. 11 2020].

61

[20] T. Green, "The Fastly Growth Story Takes a Hit," Nasdaq, Oct. 16, 2020. Available:

https://www.nasdaq.com/articles/the-fastly-growth-story-takes-a-hit-2020-10-16

[Accessed: Dec. 11 2020].

[21] "A/B Testing," Optimizely. Available: https://www.optimizely.com/optimization-

glossary/ab-testing/ [Accessed: Dec. 11 2020].

[22] S. Jiang, J. Martin and C. Wilson, "Who's the Guinea Pig?: Investigating Online A/B/n

Tests in-the-Wild," Proceedings of the Conference on Fairness, Accountability, and

Transparency, pp. 201-210, Jan. 29-31, 2019, Atlanta, GA, USA. ACM, New York, NY,

USA. doi: 10.1145/3287560.3287565.

[23] "Case Study: Electronic Arts," Optimizely, Jun. 2013. Available:

http://pages.optimizely.com/rs/optimizely/images/Customer_Story_EA.pdf [Accessed:

Mar. 15, 2021].

[24] C. E. Inc, "Crazy Egg Case Studies| The Best Website Optimization Tool," Crazy Egg.

Available: https://www.crazyegg.com/case-studies [Accessed: Mar. 15, 2021].

[25] "Algorithms - Conductrics," Conductrics. Available: https://conductrics.com/machine-

learning/ [Accessed: Dec. 11 2020].

[26] "Optimizely Full Stack," Optimizely. Available:

https://www.optimizely.com/platform/full-stack/ [Accessed: Dec. 11 2020].

[27] "Firebase A/B Testing," Firebase. Available: https://firebase.google.com/docs/ab-testing

[Accessed: Dec. 11 2020].

[28] R. Kohavi, A. Deng, B. Frasca, R. Longbotham, T. Walker and Y. Xu, "Trustworthy online

controlled experiments: five puzzling outcomes explained," Proceedings of the 18th ACM

SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 786-

794, Aug. 2012. doi: doi/10.1145/2339530.2339653.

62

[29] "Getting started with web - Optimizely web," Optimizely. Available:

https://docs.developers.optimizely.com/web/docs/getting-started [Accessed: Dec. 11 2020].

[30] "Rust Programming Language," Rust. Available: https://www.rust-lang.org/ [Accessed:

Mar. 17, 2021].

[31] "Golang," Golang. Available: https://golang.org/ [Accessed: Mar. 17, 2021].

[32] S. Aggarwal, "Modern Web-Development using ReactJS," International Journal of Recent

Research Aspects, volume 5, issue 1, pp. 133-137, 2018. Available:

http://ijrra.net/Vol5issue1/IJRRA-05-01-27.pdf [Accessed: Mar. 18, 2021].

[33] "Next.js by Vercel," Next.js. Available: https://nextjs.org/ [Accessed: Mar. 17, 2021].

[34] "What is Agile?," Atlassian. Available: https://www.atlassian.com/agile [Accessed: Mar.

11, 2021].

[35] A. Srivastava, S. Bhardwaj and S. Saraswat, "SCRUM model for agile methodology,"

International Conference on Computing, Communication and Automation, pp. 864-869,

May 5-6, 2017, Greater Noida, India. doi: 10.1109/CCAA.2017.8229928.

[36] "What Is a Sprint in Agile?," Wrike. Available: https://www.wrike.com/project-

management-guide/faq/what-is-a-sprint-in-agile/ [Accessed: Mar. 11, 2021].

[37] M. James and L. Walter, "Scrum Reference Card," Scrum Reference Card, 2017.

Available: https://scrumreferencecard.com/scrum-reference-card/ [Accessed: Mar. 11,

2021].

[38] K. Finley, "What Exactly Is GitHub Anyway?," TechCrunch, Jul. 14, 2012. Available:

https://techcrunch.com/2012/07/14/what-exactly-is-github-anyway/ [Accessed: Mar. 11,

2021].

[39] C. Wanstrath, "A whole new GitHub Universe: announcing new tools, forums, and

features," GitHub Blog, Sept. 14, 2016. Available: https://github.blog/2016-09-14-a-whole-

63

new-github-universe-announcing-new-tools-forums-and-features/ [Accessed: Mar. 11,

2021].

[40] "Edge Dictionaries," Fastly Developer Hub. Available:

https://developer.fastly.com/reference/api/dictionaries/ [Accessed: Mar. 18, 2021].

[41] "Visual Studio Code," Visual Studio Code. Available: https://code.visualstudio.com/

[Accessed: Mar. 11, 2021].

[42] A. Silver, "Introducing Visual Studio Live Share," Visual Studio Code, Nov. 15, 2017.

Available: https://code.visualstudio.com/blogs/2017/11/15/live-share [Accessed: Mar. 11,

2021].

[43] Fastly, "About Edge Dictionaries," Fastly Help Guides, Jan. 18, 2019. Available:

https://docs.fastly.com/en/guides/about-edge-dictionaries [Accessed: Mar. 15, 2021].

[44] K. Rogovoy, "Here are some amazing advantages of Go that you don’t hear much about,"

freeCodeCamp, Feb. 1, 2018. Available: https://www.freecodecamp.org/news/here-are-

some-amazing-advantages-of-go-that-you-dont-hear-much-about-1af99de3b23a/

[Accessed: Mar. 18, 2021].

[45] J. Day and H. Zimmermann, "The OSI reference model," Proceedings of the IEEE, volume

71, issue 12, pp. 1334-1340, Dec. 1983. doi: 10.1109/PROC.1983.12775.

[46] K. Stemmler, "The Dependency Rule," Khalilstemmler, Jul. 30, 2019. Available:

https://khalilstemmler.com/wiki/dependency-rule/ [Accessed: Mar. 16, 2021].

[47] S. Eskildsen, "Logrus," GitHub, 2014. Available: https://github.com/sirupsen/logrus

[Accessed: Mar. 17, 2021].

[48] J. Moiron, "sqlx," GitHub, 2013. Available: https://github.com/jmoiron/sqlx [Accessed:

Mar. 17, 2021].

64

[49] L. Halliday, "Unleash the Power of Storing JSON in Postgres," CloudBees, Jul. 9, 2015.

Available: https://www.cloudbees.com/blog/unleash-the-power-of-storing-json-in-postgres/

[Accessed: Mar. 16, 2021].

[50] Fastly, "Go Fastly," GitHub. [Online]. Available: https://github.com/fastly/go-fastly

[Accessed: Mar. 16, 2021].

[51] The Gorilla Authors, "gorilla/mux," GitHub. Available: https://github.com/gorilla/mux

[Accessed: Mar. 17, 2021].

[52] The Go Authors, "Package ioutil," Golang, 2009. Available:

https://golang.org/pkg/io/ioutil/ [Accessed: Mar. 17, 2021].

[53] "Prototyping," Sketch, Nov. 24, 2020. Available:

https://www.sketch.com/docs/prototyping/ [Accessed: Mar. 18, 2021].

[54] E. Muller, “Introducing Compute@Edge Log Tailing for better observability and easier

debugging,” Fastly, Feb. 8, 2021. Available: https://www.fastly.com/blog/introducing-

compute-edge-log-tailing-for-better-observability-and-easier-debugging/ [Accessed: Mar.

18 2021].

