

Abstract

Robot swarms are often considered suitable for tasks that are large-scale and

long-term. Large-scale missions force the robots to spread spatially. In these type of

tasks, actively maintaining connectivity allows the swarm to coordinate. Similarly,

long-term nature of the task requires robots to work for a long time. This is affected

by the limited energy level of the robot. However current studies normally focus

only on connectivity or energy awareness. Therefore, in this work, we propose

an approach to tackle the problem of maintaining global connectivity (swarm-level

property) considering finite battery life (individual property). We are specifically

focusing on growing the communication network and keeping it alive for a long

period. We construct a logical tree over the connectivity graph. The logical tree

is constructed by using a subset of robots from the swarm. The tree is grown by

adding robots as necessary. The tree is also periodically reconfigured to cope with

dynamic robot motion. This enables the swarm to grow the tree efficiently. In addition,

robots exchange their roles based on their available energy levels. This allows robots

with low energy levels to navigate to dedicated charging stations for recharging

thus allowing the swarm to maintain the communication network. We evaluate our

approach in a wide set of experiments with a realistic robot simulator named ARGoS.

ii

Acknowledgment

I would like to express my gratitude to my advisor Prof. Carlo Pinciroli for his guidance,
direction, and support for the duration of this work. I would like to thank Prof. Jane Li
and Prof. William R. Michalson for being part of the committee. I would like to thank
Nathalie Majcherczyk for her guidance and support throughout the project. Lastly, I would
like to thank my family and friends for their support.

iii

Contents

Contents iv

List of Figures vi

List of Tables viii

1 Introduction 1
1.1 Context . 1

1.2 Project Brief . 2

1.2.1 Objectives . 2

1.3 Outline . 3

2 Related Work 4
2.1 Connectivity . 4

2.2 Energy Awareness . 6

3 Problem Statement 8
3.1 Objectives . 8

3.1.1 Assumptions . 8

3.1.2 Constraints . 9

3.2 Robot Dynamics . 9

3.3 Battery Model . 10

3.4 Robot Communication and Interactions 10

3.4.1 Situated Communication . 10

3.4.2 Lennard-Jones Potential . 11

iv

3.4.3 Communication Graph . 13

4 Methodology 14
4.1 Roles . 14
4.2 Connectivity . 15

4.2.1 High-level Behavior . 15
4.2.2 Spare Management . 16
4.2.3 Root Selection . 17

4.3 Energy awareness . 19
4.3.1 Charging Stations . 19
4.3.2 High-Level Behavior . 20
4.3.3 Replacing phase . 21
4.3.4 Spare Management . 22

5 Experimental Setups and Results 25
5.1 Experimental Setup and Parameter Setting 25
5.2 Results and Discussion . 27

5.2.1 Liveliness Time . 27
5.2.2 Mission Time . 28
5.2.3 Disconnected Time . 30
5.2.4 Energy Drop . 30
5.2.5 Scalability . 31

6 Conclusion 35
6.1 Conclusion . 35
6.2 Future Work . 36

Bibliography 37

7 Appendices 40

v

List of Figures

1.1 Examples of natural swarm . 1

3.1 Situated Communication . 11

3.2 Communication model . 11

3.3 Lennard-Jones Potential . 12

4.1 Different Roles . 15

4.2 State Machine . 16

4.3 Sub State Machine . 17

4.4 Initial position of charging stations . 20

4.5 Charging Station State Machine . 20

4.6 Replacing Phase . 22

4.7 Sequence diagram . 23

4.8 Sub State Machine . 24

5.1 Simulation Environment in ARGoS . 26

5.2 Liveliness Time Ratio . 29

5.3 Example of crowding when line-of-sight communication is off 30

5.4 Simulation Time Ratio . 31

5.5 Disconnected Time Ratio . 32

5.6 Energy Drop when approaching charging station with line-of-sight communi-
cation true . 33

5.7 Energy Drop when approaching charging station with line-of-sight communi-
cation false . 34

vi

5.8 Time Complexity for Tree Selection: Data collected with different experimen-
tal setups fixing the charging factor to 0.1 and setting line-of-sight obstruction
true. 10 timestep equals 1 second . 34

vii

List of Tables

2.1 Summary: Literature related to connectivity 5
2.2 Summary: Literature related energy awareness 7

3.1 Robot Interaction . 12

5.1 Battery Parameters . 26
5.2 Parameters modifying the experiment . 27
5.3 Optimized Design Parameters . 28

viii

Chapter 1

Introduction

1.1 Context

In the field of robotics, coordinating a large number of robots to accomplish different tasks
is a research problem that has gained attention recently. Swarm robotics [1] is a field that
approaches this problem in a decentralized manner. Swarm robotics draws inspiration
from the collective behaviors of various species such as ant-colonies, fish schools, and bird
flocks. Simple local interactions between individuals are responsible for the emergence of
collective behaviors. Robot swarms can be used for large-scale tasks such as search and
rescue, construction, demining, exploration and mapping where using a single robot is
time-consuming and inefficient.

Figure 1.1: Examples of natural swarm

However, preferring only local interactions causes robots in the swarm to be unaware of
the global information. Robot swarms can perform basic tasks like aggregation [2] without

1

explicit information exchange. However, complex tasks such as construction or demining
require frequent information exchange for efficient task completion. Another important
aspect that affects the performance of the swarm is energy. The useful mission time of
any robot is limited by how efficiently it uses its available energy. Robots are forced to
abandon a mission when energy levels are critical low.

1.2 Project Brief

The problem statement we considered in this thesis is to deploy and maintain a commu-
nication network in the robot swarm while accounting for the energy limitation of the
individual robots. The robot swarm is required to reach a number of distant task locations
without any disconnection in the network. Once the connections are deployed, there should
be a path for the information to flow between any two robots. The network should be
persistently maintained despite the fact that robots lose energy over time.

The problem considered in this work is interesting because it combines two types of
constraints that are mutually contradictory. Connectivity is a swarm-level property, whose
maintenance requires the long-term cooperation of as many individuals as possible in the
swarm. Conversely, energy limitations force individual robots to abandon their duties to
recharge. Under this light, it is apparent that achieving long-term connectivity is a difficult
problem, whose solution would enable swarm applications that are today impossible.

When compared to recent studies in connectivity maintenance, two aspects set our work
apart from others. First, we used only part of the swarm to achieve global connectivity.
By doing this, we can use the remaining robots for other tasks. Second, considering two
conflicting constraints connectivity and energy limitation together.

1.2.1 Objectives

Objectives of this thesis are:

• Develop a strategy to enable long-term swarm survival despite battery depletion

• Manage charging stations to recharge low energy robots.

2

1.3 Outline

The rest of this thesis is organized as follows: In Chapter 2, we discuss recent works
associated with connectivity maintenance, and energy-awareness in robot swarm. In
Chapter 3, we formalize the problem description. In Chapter 4, we present our approach to
the problem. In Chapter 5, we display the experimental setup and the performance of our
approach under different conditions. In Chapter 6, we conclude the thesis and contemplate
the future work.

3

Chapter 2

Related Work

In this chapter, we present recent works about deploying and maintaining connectivity in
robot swarms. Additionally, we review current literature pertaining to energy awareness in
multi-robot systems. Both topics will be tied together in the following chapters.

2.1 Connectivity

Connectivity is the ability of the robots to exchange information whenever required.
In robot swarms, connectivity is essential to enable coordination between robots. By
exchanging information, robots will be aware of the situation. Different approaches have
been explored to solve the problem of connectivity.

Williams et al. [3] estimated the algebraic connectivity in a decentralized way and defined
a control law that aims at maximizing connectivity. They tested the algorithm when the
swarm is performing aggregation and leader following.

Cornejo et al. [4] developed an algorithm that modifies the plans provided by any motion
planner to preserve connectivity in the swarm. Their approach is split into three phases:
the collection, proposal and adjustment phases. In the collection phase, the robots query
their current position and plan. In the proposal phase, the swarm comes to consensus
on what edges need to be preserved to maintain connectivity. Finally, in the adjustment
phase, robots check if they can reach the target location and if so, they execute the motion.
Hsieh et al. [5], developed a reactive controller for maintaining communication links. They
estimated the link quality using radio signal strength and data throughput. Each robot

4

will react to the changes in the observed communication link quality around its neighbor.
Sabattini et al. [6] estimated algebraic connectivity using power iteration method [7] for
maintaining global connectivity. In [4–6] uses the idea of preserving only selected edges
of the graph to maintain global connectivity.

Due to uncertainties in the environment, the swarm might fail to preserve connectivity.
Such failures lead to degradation in performance, losing robot in the environment and
even failure of the tasks assigned to the swarm. Ghedini et al. [8, 9] improved robustness
in connectivity under failures. They proposed a mechanism which allows the individual
robots to estimate the probability of being in a harmful configuration. Further, they
defined a local control law strategy that is robust to connectivity failures. The control law
defines proactive and reactive mechanisms which prevent robots to the vulnerable topology
and accommodates the ongoing failures respectively. Battagello et al. [10, 11] estimated
algebraic connectivity to analyze the effects of communication failure and communication
delay in the distributed multi-robot system. They used the control strategy developed by
Sabattini et al. [12]

Summary

Authors Approach Strengths Limitations

Williams et al. [3]

Fiedler value - Collision avoidance - Tested with
estimation - Tested for aggregation ten robots

and leader following

Cornejo et al. [4]
Local connectivity - Works with any - Not scalable
by preserving edges motion planner

Hsieh et al. [5]
Used radio signal strength -Real robot validation - Tested with
& data throughput to four robots
maintain connectivity - Not scalable

Sabattini et al. [6]
Fielder value estimation - Preserved only - Tested with
using power iteration selected edges eight robots

Ghedini et al. [8, 9]
Probabilistic estimation - Improved robustness - Simulation
of harmful configuration - Tested with 100 robots

Battagello et al. [10, 11]
Fielder value estimation - Analyzed effects of - Simulation

communicationh failure

Table 2.1: Summary: Literature related to connectivity

5

2.2 Energy Awareness

Recently, there has been a wide interest in studying energy constraints in robot swarms.
By considering this energy limitation, the robot swarms are able to revise their decision to
mitigate the failures caused by limited battery life. Literature presented in this section can
be categorized into two groups.

In the first group, the swarm has a limited energy resource and studies involve optimizing
energy spent. Setter et a.l [13, 14] divided the rendezvous problem into two parts. First,
the robot team decides the rendezvous based on the individual’s energy levels. Second,
each robot realizes an optimal motion that minimizes power consumption. Liu et al. [15]
devised an algorithm that allows the individual robot in the swarm to optimize the swarm
energy in the foraging task. Food collected by the robots represent a limited energy that
robot can use to gather more food. Each robot uses cues that are internal (successful food
retrieval), social (teammates success in food retrieval) and environmental (collisions with
teammates while searching for food) to change their role between foraging and resting.

In the second group, charging stations are present as a part of the problem. This group
of literature focuses on continuing the tasks assigned to the swarm persistently. Kevin et
al. [16] developed an automated persistent surveillance system. They positioned charging
stations across the environment to recharge robots regularly. They generated a control
policy based on the constraints defined using bounded linear temporal logic (BLTL) to
accommodate charging time and deadlines for visiting a region. Guannan et al. [17]
developed an energy-aware decentralized algorithm to form a desired pattern using robot
swarms. The low energy robots exchange their position with their neighbors until they
reach the charging stations in the formed pattern. The potential application of pattern
formation includes infrastructure support during search and rescue and exploration. It
should also be noted that these approaches were tested with only 10 robots in the swarm.
The authors have not discussed the scalability of the algorithm to a larger group of swarms.

Bjerknes et al. [18] performed a case study on different types of failures by the robots in
the swarm. The failures include agent deaths and sensor/actuator failures. These failures
can be due to low energy levels in the robots. In this study, robot swarms are required
to reach a goal location. It is understood that actuator failure prevents the swarm from
reaching its goal because of the anchoring effect exerted by the failed robots. This shows

6

the importance of the charging stations in the environment to prevent these failures.

Summary

Authors Approach Strengths Limitations

Setter et.al [13, 14]
energy constrained - Tested for - Tested with
optimization for rendezvous three robots
coordination

Liu et al. [15]
role adaptation - Robust to environmental - Tested with
based on cues changes ten robots

Kevin et al. [16]
Temporal Logic - Persistent surveillance - Tested with
for surveillance - Real robot validation three robots

Guannan et al. [17]
Pattern formation - Considered network - Simulation
using point cloud data coverage

Bjerknes et al. [18]
Case study on - Tested with real robots - Tested only
failures for flocking

Table 2.2: Summary: Literature related energy awareness

7

Chapter 3

Problem Statement

This chapter frames the problem studied by discussing our main objectives and assumptions.
It includes a formal description of the system dynamics, robot battery model and robot
communication model.

3.1 Objectives

We aim to design a strategy to deploy and grow a connected network of robots with
realistic energy limitations. We consider a scenario in which the robot swarm has to reach
and service multiple tasks. These tasks are spread out in space. An important aspect of
our problem is to ensure that the system persists over time despite depleting batteries on
individual robots. Therefore, our objectives can be stated as follows:

• Study and help characterize the performance of the deployment strategy presented
in [19];

• Develop an extension of the deployment strategy to enable long-term swarm survival
despite battery depletion;

• Manage charging stations to recharge low energy robots in accordance to the above
mentioned strategy.

3.1.1 Assumptions

We make the following assumptions throughout our work:

8

• 2D Space: Robots are interacting in the 2D Euclidean space and their position and
orientations are represented by x, y and θ.

• Initial Condition: Robots are initially deployed in a tight cluster.

• Task Allocation: Assigning tasks for the each robot is done by some external
modules.

• Communication: Each robot is equipped with a range bearing sensor that measures
the relative position and orientation of the other robots and transmits information to
neighboring robots within the communication range C.

• Battery: The battery charges and discharges at a defined rate across the experiments.

• Obstacle free environment: The robot swarm operates in an environment without
any obstacles.

3.1.2 Constraints

We consider the following constraints:

• Decentralized: The algorithm should be completely decentralized

• Energy: Experiments are considered failure if any of the robot runs out of energy,
even if they are not part of the communication graph

3.2 Robot Dynamics

We considered N robots modeled as,

ẋi = ui

where, xi ∈ RM is the position of ith agent in the swarm. ui ∈ RM , is the control input
given to the robot i. In this work, we tested our approach (discussed in Chapter 4) in
a 2D space hence the state vector xi is defined as [px, py, θ]. Modeling agents as single
integrators simplifies the vehicle’s dynamics by treating them as a point-mass object.

9

3.3 Battery Model

To model the energy constraints of a robot swarm, we created a battery model with an
energy level ranging from zero to one. Robots in the swarm dissipates energy as they
move (i.e., change in position and orientation). To account for factors like sensing and
communication, the robot loses a a constant amount of energy at every time step as shown
in Eq. 3.1.

enew = eold − λt − λpos(∆pos)− λorient(∆orient) (3.1)

where enew, eold are the battery levels at current and previous time steps. λt, λpos, λorient
are the time, position, and orientation factors respectively. ∆pos,∆orient are the changes in
position and orientation respectively.

Whenever the robots are within a certain distance from the charging station, the batteries
are charged at a constant rate as shown in Eq. 3.2.

enew = eold + η (3.2)

where η is the charging rate per time step. Table 5.1 lists the values chosen for the
parameters in Eq. 3.1 and Eq. 3.2.

3.4 Robot Communication and Interactions

3.4.1 Situated Communication

We assume robots can perform situated communication (refer Fig. 3.1). This type of
communication allows robots to broadcast messages to their neighbors within the commu-
nication range C. Robots receiving messages can locate the relative position of the senders.
The advantage of situated communication is that messages are no longer need to contain
metadata like sender’s id and location.

The communication region of each robot is a disc shape. We divided the communication
region into different sub-regions based on the radial distance from the robot. They are
avoid region, safe region, and target region as shown in Fig. 3.2. The type of interaction
between each robot in the neighborhood is described in Table 3.1.

10

Hello!

Hello!

Figure 3.1: Situated Communication

Communication Radius

Target Radius

Safe Radius

Avoid Radius

Figure 3.2: Communication model

3.4.2 Lennard-Jones Potential

The magnitude of interactions between two robots is obtained using the Lennard-Jones
potential. Lennard-Jones potential (refer Eq. 3.3) is a simple model for particle interaction
where the magnitude and type of force depends on the distance between them. It consists

11

Region Interaction
Avoid Robot moves away from parent (repulsion)
Safe Robot circulates the parent (centripetal)

Target
Robot moves towards parent (attraction)

Beyond Target

Table 3.1: Robot Interaction

of a steep repulsive force and a smooth attractive force as a function of a distance between
two objects as shown in Fig. 3.3.

V (x) = ε

((δ
x

)4
− 2
(δ
x

)2
)

(3.3)

where, ε is the depth of the potential well, δ is the distance at which particle interaction is
zero and x is the distance between two interacting robots. By differentiating Eq. 3.3 we
obtain the magnitude of the virtual force acting between the robots in the swarm.

Figure 3.3: Lennard-Jones Potential

12

3.4.3 Communication Graph

The communication topology of the robot swarm can be represented as a graphG = (V,E),
where V is the set of nodes representing robots in the swarm and E represents edges
connecting the robots. At any given time t, an edge (i, j) exists only if the distance
between the robots connected by that edge is within the communication range C.

A graph is considered to be connected if there exists a path between any two robots in the
swarm. The graph connectivity can be quantified by the second smallest eigenvalue of
laplacian matrix L. Laplacian matrix L is defined as L = D−A where A is the adjacency
matrix and D is the degree matrix defined as follows:

Aij =

1 if (i, j) ∈ E
0 otherwise

(3.4)

Dij =

∑
Aij if i = j

0 otherwise
(3.5)

If the eigenvalues of the matrix L are arranged in increasing order, λ1 ≤ λ2 ≤ λ3 · · · ≤ λn

• Smallest eigenvalue λ1 is always zero

• Second smallest eigenvalue λ2 is greater than zero only if the graph is connected

The second smallest eigenvalue λ2 is known as algebraic connectivity or Fielder value.

13

Chapter 4

Methodology

In this chapter, we present our work in designing a swarm behavior that deploys a connected
network of robots while recharging robots with critically low energy levels. The connected
deployment strategy is a result of the work presented in [19] (see Appendix A) and we
describe it in section Sec. 4.2. We discuss the extended behavior including realistic energy
constraints in section Sec. 4.3.

4.1 Roles

Each robot in the swarm is assigned to either of the two roles: working or spare robot.
Working robots are part of the connected tree. Whereas, spare robots are not involved in
the tree. Further, working robots can take one of the three roles: root, worker or connector
as shown in Fig. 4.1. The root connects multiple branches together and at any given time
only one root can exist. Worker robots are the tree leaves that move towards the target
location, forcing the tree growth. The connector robot are the tree nodes between the tree
leaves and the root. These robots leave the pool of spares to join the tree helping the swarm
in growing the tree. Spare robots are the remaining robots in the swarm that are not part of
the tree. They become a connector or replacing a working robot whenever required. Apart
from these robots, one special type of robot that is not part of the swarm is the charging
station. These are robots that recharge the robots in the swarm whenever required. We
assume that workers and charging stations have unlimited energy.

14

Charging Station

Figure 4.1: Different Roles

4.2 Connectivity

In this section, we present our approach to deploy and maintain connectivity without
considering energy parameter. In Sec. 4.2.1 we discuss the high level behaviors of the
swarm and in Sec. 4.2.2 we present the local interaction between robots.

4.2.1 High-level Behavior

We start with a tight cluster of robots. The root and workers are assigned by an external
module (e.g., task allocation algorithm). The INIT state is used to serve this purpose. The
closest robot to the centroid of the cluster is selected as the root. The robots closer to
the target locations are assigned the role of worker. Remaining robots become spare by
default. The root robot signals the swarm to proceed with the START TREE state, informing
the swarm to form a new tree. The purpose of forming a new tree is to have an updated
tree that is suitable to the current robot positions. When robots receive the trigger, they
compute their relative distances to the root.

Once the relative distance to the root is estimated, robots proceed to the SELECT PARENT

state to select a new parent. The parent should be within communication range C and
closer to root. The parent selection process is started by workers and end with the root.

15

INIT START
TREE

SELECT
PARENT

parent
selected?

GROW
TREE

growth
done?

SELECT
ROOT

root
selected?

Figure 4.2: State Machine

In this process, robots form a shorter path between workers and root when compared to
the previously grown tree. Robots coexist in both old and new tree until the new tree is
completely formed. Once robots switch to the new tree, spare robots chooses the closest
working robot as their parent.

Robots proceed to the GROW TREE state after choosing their parent. In this state, spare
robots can join the tree to help worker robots reach their target location. After a predefined
period, the root triggers state transition to allow robots to switch to the SELECT ROOT state,
allowing the swarm to select a new root. This makes the tree topology evenly distributed.
Finally, the newly assigned root signals swarm to proceed with START TREE state. The
root selection process is discussed detail in Sec. 4.2.3.

State transitions to START TREE, GROW TREE and SELECT ROOT states happen simulta-
neously in robots only when the root satisfies those conditions. This synchronization is
archived through a barrier-trigger mechanism, where a barrier is a "wait state" preventing
robots transitioning to next state until the trigger from the root is received.

4.2.2 Spare Management

Robots in the swarm move only when they are in the GROW TREE state, this is to allow
robots to do distance estimation and parent selection process properly. The state machine
diagram shown in Fig. 4.3 describes the interaction between working and spare in the
GROW TREE state.

Working robots start in the NO NEED state, they can extend the edge with their parent
without an additional robot. They switch to the NEED state whenever any of their children

16

Working

Figure 4.3: Sub State Machine

are in the NEED state or distance to their parent is more than the safe radius S. When
robots are in the NEED state, they check if the spare robot is joining the edge they are
present in or if the parent is in the AWAIT state. Robots switch to the AWAIT state whenever
either of the conditions are satisfied. Robots in the AWAIT state switches to NO NEED state
once the spare robot joins the tree.

Spare robots start in the WAIT state, looking for an edge to extend in the neighborhood. If
the spare robot finds an edge, it switches to EXTEND state to extend the tree. If they do no
find an edge, spare robots enter the ADJUST state, to circumvent around the parent if it is
within safe radius else move straight towards the parent.

4.2.3 Root Selection

Selecting a new root for the tree allows us to balance the uneven distribution of robots
in the swarm. Balancing the tree helps to reduce the number of robots between worker
and root. This is critical when comes to time complexity because some states described
in the Sec. 4.2.1 uses diffusion or aggregation of information whose time complexity is
linear to the depth of the tree. Processes that involve diffusion of information includes
distance estimation and barrier-trigger mechanism. Processes that include aggregation of
information includes centroid calculation and counting algorithm (discussed later in this
section). If the depth of the tree is high, it takes more time for the robots away from the
root to obtain/process the information. Thus, by choosing a new root, we are reducing the

17

Algorithm 1 Distributed centroid estimation algorithm executed by robot i: ai denotes an
accumulator value; qi denotes the contribution of robot i to the estimation algorithm; ci
and di denote the number of robots in the swarm estimated by robot i and the tree depth of
robot i, respectively; and pparent

i is the vector from robot i to its parent.
1: ai = 0
2: for all child j do
3: qi

j = express qj in i’s reference frame
4: ai = ai + qi

j

5: end for
6: if robot i has a parent then
7: qi = ai − (ci − di︸ ︷︷ ︸

nb descendants

+1) · pparent
i

8: end if
9: if robot i is the root then

10: qi = ai/ ci︸︷︷︸
robot count

11: end if

tree depth and time to complete the diffusion or aggregation process.

Based on the above discussion, we can say that the robot closer to the centroid of the
swarm will be an ideal candidate for the root role. The new root is selected based on
the centroid and count obtained in the SELECT PARENT state. The Alg. 1 describes how
the centroid is estimated. As the robots are only aware of their relative position, each
robot accumulates the contribution of their children and themselves and passes it to their
parent as a vector in their own reference frame. By repeating this, the root obtains the total
contributions made by the swarm. Now to calculate the centroid, the root needs the count
of robots in the swarm as shown in the Alg. 2. Algorithm defined in Alg. 2 counts the
number of robots in the tree, where each robot count the number of children and passes
that to their parents. In SELECT ROOT state, the current root estimates the distance to the
centroid and if it the closets to the centroid, the swarm proceeds with the START TREE

state. If any other robot is closer to the centroid than the current root, the root elects this
robot as the new root. The newly selected root acknowledges it and repeats this process
until the closest robot is chosen as the root.

18

Algorithm 2 Tree-based count algorithm for robot i. The depth of robot i in the tree is
denoted as di. The depth of the tree root is set to 1. The count calculated by robot j is
denoted as cj .

1: switch number of children do
2: case 0
3: return di
4: case 1
5: return cchild

6: default
7: return

∑
neighbors j(cj − di) + di

8: end switch

4.3 Energy awareness

In this section, we consider energy constraint to our deployment strategy discussed in the
previous section. First, we present how the charging stations work and in the later part, we
discuss the behaviors that are modified to satisfy the energy constraint in our connectivity
maintenance problem.

4.3.1 Charging Stations

Charging stations are the special robots that are not part of the swarm and are assumed to
have unlimited energy. These charging robots recharge the robots in the swarm whenever
needed. The charging stations are deployed in the area between the tasks as shown in
Fig. 4.4.

Charging stations have three states: PATROLLING, MOVING towards incoming robots and
CHARGING as shown in the Fig. 4.5. At the start of the experiment, charging stations start
in the PATROLLING state as they move between predefined checkpoints. By patrolling,
charging stations make themselves available to a large number of robots in the swarm.
When the incoming spare robots are within the communication range of the charging
station, they move towards the energy-based centroid of all the incoming robots. Once all
the robots are close enough, the charging station will switch to charging state till all the
robots are charged.

19

Root Robot

Tasks

Working Robots

Spare Robots

Charging Station Robots

Connecting Robots

Figure 4.4: Initial position of charging stations

Patrolling

Low energy robot
approaching?

Low energy robot
close enough?

Still
Charging ?

True True

True

False

False

Moving

Charging

Init

Figure 4.5: Charging Station State Machine

4.3.2 High-Level Behavior

To maintain the tree connectivity for a long period, robots in the tree should have high
energy levels. We need to include the robot energy levels as a factor in the parent selection
and root selection processes. This allows building a tree that can be connected as well as
maintained for a longer period. In the parent selection process, the robots that are closest

20

to the root are taken and their energy levels are compared to respective communication
regions shown in Fig. 3.2.Similarly, in root selection process, the robot closer to the
centroid is chosen only if it has higher energy level than the current root.

4.3.3 Replacing phase

In this phase, low energy working (L.E.W) robot, children of L.E.W of low energy working
robot and a spare robot are involved. The sequence of actions taken by these robots is
shown in Fig. 4.7 as a sequence diagram.

Whenever the energy of a working robot is below a certain threshold, it broadcasts messages
(like the SOS signal) to the neighboring spare robots requesting for a replacement. Spare
robots respond with their availability upon receiving the message. The low energy working
robot gets to choose one of the available spare robots to replace it. As the replacing
spare robots are close enough, low energy working robots inform their children and
parent about exchanging roles. After informing they leave the tree allowing new working
robot (replacing spare robot) to join. Once the new working robot joins the tree, the low
energy robot heads towards an approximate charger location. The charger location will be
corrected when the robot see one.

Low Energy Working Robot

Whenever the available spare robots are in the neighborhood of a low energy robot, they
choose a spare with a higher energy level. Choosing the robot with high energy level for
substitution avoids the new working robot to become a low energy robot. Once the low
energy working robot selects the spare robot, it broadcasts a message to that spare robot
requesting for substitution. If the spare robot did not acknowledge this message within a
certain time, the low energy working robot selects another available spare robot.

When the selected spare robot comes closer, the low energy working robot will move
in the opposite direction to give space for the replacing spare robot. Just before the low
energy working starts to move, it sends information like parent id, number of children,
and the role it was playing within the tree to the replacing spare robot. Also, it informs
children about the exchange of roles. As soon as the parent and children connect to the
new replacing robot, the low energy working robot becomes a spare robot and establishes
a flexible connection with any of the robots in the swarm.

21

High

Low

E
n
e
rg

y
 L

e
v
e
l

Available

Unvailable

Spare:

To charging
station

Figure 4.6: Replacing Phase

Replacing Spare Robot

When the spare robots receive the SOS message from the low energy working robot, they
respond if they are available for substitution. A spare robot is considered unavailable if
it currently replacing another working robot or if it approaching a charging station. If a
spare robot is chosen from a pool of neighboring spare robots, the selected spare robot has
to acknowledge to the low energy robot. This is to ensure the availability of the chosen
spare robot is not changed.

Once they are close enough to the low energy working robot, the replacing spare robot
tries to establish a strict connection with the parent of the low energy working robot and
becomes a node in the tree.

Children of low energy working robot

Children of the low energy working robot receive the information about the new parent
from its current parent. It connects to the new parent relieving the low energy robot.

4.3.4 Spare Management

Apart from the behaviors discussed previously, spare robots also recharge periodically and
replace low energy working robots from the tree. Spare robots need to recharge if any of
the following conditions are satisfied:

• The robot just left the tree because of low energy

• The robot’s energy level is below a certain threshold and it is currently not extending
an edge.

Each Spare robots choose the closest charging station to recharge. However, it is not
necessary that charging stations are always in the neighborhood of spare robots. To

22

Low Energy Working Spare Robots Replacing Spare Robot Working Children Working Parent

SOS signal

Return availability

choosing spare robot

informing choosen robot

acknowledgement

Move towards low energy working

Estimating incoming
robot distance

Broadcast new parent info

Broadcast Working Parent info

Move away from
the current position

Establish connection

New Working Robot

Establish connection

Figure 4.7: Sequence diagram

overcome this shortcoming, robots remember the charging station’s location whenever
they see one. Once the charging station is selected, the spare robot moves towards
an approximate location and corrects them whenever a charging station is within the
communication range. Spare robots stop when they are close enough to the charging
station for charging. When spare robots are charged, they enter the WAIT state and
continue to help to grow the tree or substitute low energy working robots. The state
machine shown in Fig. 4.8 is the part of GROWTH TREE state, describing the interactions
between working and spare robot. It should be noted that working states NO NEED,NEED,
and AWAIT are interrupted whenever the energy level is low. This interrupt will allow the
working robots to notify neighbors about the low energy and initiate the replacing phase.

23

move
charging

energy level
< TS

charging

dist(charger)
< dist thresh

dist(charger)

> dist thresh

charging done?

replacing working

robot?

replacing
new parent
adjusting

joined tree? all sons found?

energy level
< TW

energy
waiting

dist(replacing spare)
< dist thesh

energy
move away

all sons

disconnected ?

spare

worker

Figure 4.8: Sub State Machine

24

Chapter 5

Experimental Setups and Results

In this chapter, we first present our experimental setup and how we set values to the
parameters that control the algorithm’s performance in Sec. 5.1. Later, we define the
metrics to evaluate the performance of the swarm and present the results in Sec. ??.

5.1 Experimental Setup and Parameter Setting

We tested our approach with Khepera IV1 ground robots using the ARGoS multi-robot
simulator [20] as shown in Fig. 5.1. These robots have communication range limited to 2

meters mimicking the actual hardware configurations.

To simulate the battery model, we set the discharge parameters as shown in Table 5.1. We
obtained these parameters by assuming that the fully charged robot can travel only three
times along the diagonal of the 30 m× 30 m arena at the maximum speed of 10 cm/s. We
also considered the fact that the robots do not travel at full velocity. This is compensated
by setting the time spent to 50% more than the ideal time spent (time spent if robot travel a
full velocity).

To recharge the low energy robots, we deployed charging stations at the centroid of the
area between two task locations as shown in Fig. 4.4. Each charging station is set with
three patrolling checkpoints within the assigned area. These checkpoints are defined along
the sides of the branches forcing the charging station to stay in their assigned area.

1https://www.k-team.com/mobile-robotics-products/khepera-iv

25

https://www.k-team.com/mobile-robotics-products/khepera-iv

Figure 5.1: Simulation Environment in ARGoS

Parameter Value Units
λt 5.6e− 4 per timestep
λpos 7e− 4 per cm
λorient 4.6e− 4 per rad

Table 5.1: Battery Parameters

We tested our approach in different experimental setups to evaluate the performance. We
modified target radius, the number of targets, and redundancy factor. Various targets are
placed uniformly on a circle of radius, target radius. Redundancy factor is the ratio of the
total number of robots to the number of robots required to complete the task in the ideal
condition. We also evaluated the performance based on line-of-sight obstruction for the
communication model. Number of robots NR required for each experiments varies based
on the parameters in Table 5.2 and is calculated using Eq. 5.1. To ensure repeatability, the
simulation is run with 50 different random seeds for each combination of parameters shown
in Table 5.2. The experiments are continued even when the workers reach their target
locations. It is considered complete whenever any robot in the swarm has no available
energy or if the swarm operated for the maximum experiment time tmax. tmax is 10 times

26

the minimum time taken by a robot to reach any task location from the origin.

NR = α
ρT
C
NT +NT (5.1)

Symbol Meaning Value Unit
α Redundancy factor 2, 3, 4
ρT Task Radius 3, 6, 9 m
NT Number of Tasks 2, 3, 4
η Charging rate (in %) 0.05, 0.1, 1 per timestep

Table 5.2: Parameters modifying the experiment

Based on parameters listed in Table 5.3, the algorithm’s performance can be modified.
Ideal values for those parameters are obtained using a genetic algorithm. The optimization
is stopped after 100 generations because the optimizer reached a plateau region in most
cases. The scoring function is designed to first optimize parameter for connectivity. Once
robots are connected throughout the experiment, time to reach target location is minimized.
The table shows the value of the parameter after optimization. Energy threshold parameters
Tw and Ts are not optimized using an optimizer because the scoring function promotes
only connectivity. Hence, it is determined by trial and error.

5.2 Results and Discussion

In this section, we provide the results we obtained for our approach in different experimen-
tal setups. The experiments are divided into three scale: small, medium and large based on
the task radius ρt.

5.2.1 Liveliness Time

We studied the extent of the liveliness of the network considering the robots lose energy
over time. We normalized the time parameter with the maximum simulation time tmax to
compare the results across the different scenarios. The results are displayed in Fig. 5.2.
When comparing across different scale, our approach works better in small scale. This
is due to the fact that the charging stations need to cover only a small distance when

27

Table 5.3: Optimized Design Parameters

Type Symbol Meaning Value Unit

Motion

S Safe range between parent and child 135.25581 cm
A Non-parent-child avoidance range 40.99 cm
δ Ideal distance between parent and child 154.0841 cm
ε Factor gain in parent-child interaction 10
τ Magnitude of attraction to target 0.2539

Tree Growth
R Reconfiguration period 44.0 sec
I Information liveness period 0.5 sec

Uncommitted Management
E Distance threshold for spare recruit-

ment
132.1353 cm

J Distance threshold to switch to connec-
tor

6.6395 cm

Energy Parameter
Tw Energy threshold for working to inform

neighbors about low energy
32 %

Ts Energy threshold for spare to recharge 60 %

compared to medium and large scale. Also, this shows that one charging station per task is
not sufficient as the number of robots increases based on the task radius. Within small scale,
the results for keeping line-of-sight communication true is better than keeping line-of-sight
communication false. This result seems contradictory because of the fact that more robots
are available for replacing low energy robots when line-of-sight communication is false.
However, the reason is that more spare robots are trying to perform the same action in the
neighborhood leading to the crowding effect as shown in Fig. 5.3. This sometimes prevents
the low energy robots to reach the charging station. In small-scale with line-of-sight
communication on, results with higher redundancy factor are better because more spare
robots are available for replacing low energy robots.

5.2.2 Mission Time

We studied the time performance of the worker robots to reach the target locations. We
compared the performance of the swarm with and without energy constraint to understand
the effect of combining two contradictory constraints. The result is shown in Fig. 5.4.
In medium and large scale, the workers reached the target location occasionally, this is
because robots run out of energy before it reaches the target location. This can be avoided
by adding extra charging stations based the swarm size and allowing the robots to leave
the swarm to recharge even when the swarm is not in the GROW TREE state. In small-scale

28

Figure 5.2: Liveliness Time Ratio

experiments, the workers were able to reach the target locations consistently and the swarm
performances similar to the performance when only connectivity constraint is considered.
It should be noted that the energy constraint forces the working robots to leave the tree
whenever a substitution is available, this exchange of roles often makes the tree shrink for
a brief period to ensure connectivity.

29

Figure 5.3: Example of crowding when line-of-sight communication is off

5.2.3 Disconnected Time

We studied the ability of our approach to maintaining connectivity. The result is shown in
Fig. 5.5. We presented two sets of parameters, one considers the connectivity of the entire
swarm and another is the connectivity of only the robots in the tree. The swarm-level
connectivity is defined as the ratio of the number of time steps with fielder values less than
10−5 to the total experiment time. The tree-level connectivity is defined as the ratio of the
number of time steps with at least one broken edge in the tree to the total experiment time.
In small-scale, the swarm stays connected with occasional disconnection. In medium scale,
with higher redundancy factor, the disconnections are noticed only at the tree level and
the connectivity is usually maintained throughout the experiment. These disconnections
are seen only when line-of-sight communication is true because of the possibility of the
message drops. In large scale, the effect of a large number of robots is prominent and the
tree edges are disconnected in most of the experiment. In this study, the trend between
connectivity constraint and both connectivity and energy constraint is similar.

5.2.4 Energy Drop

From the results of liveliness and simulation time, it is evident that one charging station per
task is not sufficient. In this study, we analyzed the effect adding an extra charging station.
We examined only medium and large scale as it is noticed that in small-scale the swarm
was able to reach the target locations consistently. In this study, the metric is the robots’
energy drop when they are approaching the charging station. The results are presented in
Fig. 5.6 for line-of-sight communication true and Fig. 5.7 for line-of-sight communication
false. In medium-scale, when there is only one charging station per task, the energy drop
is distributed between [0, 0.2]. The distribution is skewed towards zero when an additional
charging station is introduced. In large-scale this effect is noticeable. This trend is also

30

Figure 5.4: Simulation Time Ratio

followed when line-of-sight communication is false.

5.2.5 Scalability

We studied the ability of the algorithm to scale to a different number of robots. To
understand scalability, we measured the time taken by the swarm to form a tree. The
number of robots in the swarm is varied from 9 to 97 robots for different experimental

31

Figure 5.5: Disconnected Time Ratio

setups mentioned in Table 5.2. The obtained result is shown in Fig. 5.8. We also used a
line fitting algorithm (linear regression) on the data points to calculate the slope of the line.
The line equation we obtained is in Eq. 5.2. The variance score for the line fitting is 0.9,
for the score in the range [0, 1], 1 representing the best fit and 0 representing the worst fit.

32

Figure 5.6: Energy Drop when approaching charging station with line-of-sight communi-
cation true

Using the line equation and the graph we can conclude that the time complexity is O(n).

y = 1.08x+ 8.16 (5.2)

where, x is the number of robots and y is the time taken for tree selection.

33

Figure 5.7: Energy Drop when approaching charging station with line-of-sight communi-
cation false

Figure 5.8: Time Complexity for Tree Selection: Data collected with different experimental
setups fixing the charging factor to 0.1 and setting line-of-sight obstruction true. 10
timestep equals 1 second

34

Chapter 6

Conclusion

In this chapter, we present our conclusion in Sec. 6.1 derived from the results we presented
in Chapter 5. In Sec. 6.2 we present some possible future directions of this work.

6.1 Conclusion

In this work, we present an approach to deploy a communication network that connects
multiple target locations and maintain the network persistently. We considered connectivity
constraint, the global property of the swarm and energy constraint, the local property of
the robot. These two constraints are contradictory because connectivity requires as many
robots as possible in the network while limited energy forces the robots to abandon the
task for recharging. In this work, a logical tree is constructed to deploy a communication
network from the worker to root. This approach allows our algorithm to scale to a large
number of robots in the swarm. Considering limited energy of the robots, charging stations
are placed in the area between adjacent target locations to recharge low energy robots. In
this work, the communication network is deployed using only a group of robots in the
swarm. Remaining robots take the role spare. These robots are later used to grow the tree
and replace low energy robots from the tree.

We tested our approach in a variety of experimental setups to analyze swarm’s performance
in long-term connectivity maintenance, effectiveness in reaching target locations. The
results suggest that our approach works in almost all the small-scale experiments. When
the scale increases, our approach struggles to reach the target locations because robots’
battery levels are critically low. For medium and large scale tasks, charging stations are

35

required to recharge robots over a large area, which is also affecting the performance of
the swarm. We tested our algorithm with up to 97 robots in the swarm, indicating the
scalability character of our solution.

6.2 Future Work

• Charging station: At times, the robots run out of energy because of the unavailabil-
ity of the charging station in the neighborhood. Optimizing the charging station’s
motion might help the swarm to perform better.

• Spare Robots: The spare robots help in growing the tree and exchanging roles with
low energy robots. Distribution of these robots across the environment might have
the effect in the swarm’s performance.

• Environment: Studying our approach in the presence of obstacles and moving
target location would be close to realistic

• Energy Constraint: In this work, the energy levels are considered only in the
GROWTH TREE state. Considering the energy constraint while building the logical
tree would be an interesting improvement of our approach.

36

Bibliography

[1] Manuele Brambilla, Eliseo Ferrante, Mauro Birattari, and Marco Dorigo. Swarm
robotics: A review from the swarm engineering perspective. Swarm Intelligence,
7(1):1–41, 2013.

[2] Melvin Gauci, Jianing Chen, Wei Li, Tony J Dodd, and Roderich Groß. Self-
organized aggregation without computation. The International Journal of Robotics

Research, 33(8):1145–1161, 2014.

[3] Ryan K Williams and Gaurav S Sukhatme. Locally constrained connectivity control in
mobile robot networks. In Robotics and Automation (ICRA), 2013 IEEE International

Conference on, pages 901–906. IEEE, 2013.

[4] Alejandro Cornejo, Fabian Kuhn, Ruy Ley-Wild, and Nancy Lynch. Keeping mobile
robot swarms connected. In International Symposium on Distributed Computing,
pages 496–511. Springer, 2009.

[5] M Ani Hsieh, Anthony Cowley, Vijay Kumar, and Camillo J Taylor. Maintaining
network connectivity and performance in robot teams. Journal of Field Robotics,
25(1-2):111–131, 2008.

[6] Lorenzo Sabattini, Cristian Secchi, and Nikhil Chopra. Decentralized estimation and
control for preserving the strong connectivity of directed graphs. IEEE transactions

on cybernetics, 45(10):2273–2286, 2015.

[7] Lloyd N Trefethen and David Bau III. Numerical linear algebra, volume 50. Siam,
1997.

37

[8] Cinara Ghedini, Cristian Secchi, Carlos HC Ribeiro, and Lorenzo Sabattini. Im-
proving robustness in multi-robot networks**. IFAC-PapersOnLine, 48(19):63–68,
2015.

[9] Cinara Ghedini, Carlos HC Ribeiro, and Lorenzo Sabattini. Improving the fault
tolerance of multi-robot networks through a combined control law strategy. In
Resilient Networks Design and Modeling (RNDM), 2016 8th International Workshop

on, pages 209–215. IEEE, 2016.

[10] Vinicius A Battagello and Carlos HC Ribeiro. Analysis of the effects of failure
and noise in the distributed connectivity maintenance of a multi-robot system. In
Computational Intelligence and Informatics (CINTI), 2014 IEEE 15th International

Symposium on, pages 427–432. IEEE, 2014.

[11] Vinícius A Battagello and Carlos HC Ribeiro. Analysis of the effects of communica-
tion delay in the distributed global connectivity maintenance of a multi-robot system.
In CompleNet, pages 149–157, 2015.

[12] Lorenzo Sabattini, Nikhil Chopra, and Cristian Secchi. On decentralized connectivity
maintenance for mobile robotic systems. In Decision and Control and European

Control Conference (CDC-ECC), 2011 50th IEEE Conference on, pages 988–993.
IEEE, 2011.

[13] Tina Setter and Magnus Egerstedt. Minimum time power-aware rendezvous for
multi-agent networks. In Control Applications (CCA), 2014 IEEE Conference on,
pages 2159–2164. IEEE, 2014.

[14] Tina Setter and Magnus Egerstedt. Energy-constrained coordination of multi-robot
teams. IEEE Transactions on Control Systems Technology, 25(4):1257–1263, 2017.

[15] Wenguo Liu, Alan FT Winfield, Jin Sa, Jie Chen, and Lihua Dou. Towards energy
optimization: Emergent task allocation in a swarm of foraging robots. Adaptive

behavior, 15(3):289–305, 2007.

[16] Kevin Leahy, Dingjiang Zhou, Cristian Ioan Vasile, Konstantinos Oikonomopoulos,
Mac Schwager, and Calin Belta. Persistent surveillance for unmanned aerial vehicles
subject to charging and temporal logic constraints. Autonomous Robots, 40(8):1363–
1378, 2016.

38

[17] Guannan Li, Ivan Švogor, and Giovanni Beltrame. Self-Adaptive pattern formation
with battery-powered robot swarms. 2017 NASA/ESA Conference on Adaptive

Hardware and Systems, AHS 2017, pages 253–260, 2017.

[18] Jan Bjerknes and Alan Winfield. On fault tolerance and scalability of swarm robotic
systems. Distributed autonomous robotic systems, pages 431–444, 2013.

[19] Nathalie Majcherczyk, Adhavan Jayablan, Giovanni Beltrame, and Carlo Pinciroli.
Decentralized connectivity-preserving deployment of large-scale robot swarms. In
Intelligent Robots and Systems, 2018 IEEE/RSJ International Conference on. IEEE,
2018. Submitted for review.

[20] Carlo Pinciroli, Vito Trianni, Rehan O’Grady, Giovanni Pini, Arne Brutschy, Manuele
Brambilla, Nithin Mathews, Eliseo Ferrante, Gianni Di Caro, Frederick Ducatelle,
Mauro Birattari, Luca Maria Gambardella, and Marco Dorigo. ARGoS: a modu-
lar, parallel, multi-engine simulator for multi-robot systems. Swarm Intelligence,
6(4):271–295, 2012.

39

Chapter 7

Appendices

Appendix A

This section includes the paper we submitted to 2018 IEEE/RSJ International Conference
on Intelligent Robots and System.

40

Decentralized Connectivity-Preserving
Deployment of Large-Scale Robot Swarms

Nathalie Majcherczyk1, Adhavan Jayabalan1, Giovanni Beltrame2 and Carlo Pinciroli1

Abstract— We present a decentralized and scalable approach
for deployment of a robot swarm. Our approach tackles scenar-
ios in which the swarm must reach multiple spatially distributed
targets, and enforce the constraint that the robot network
cannot be split. The basic idea behind our work is to construct
a logical tree topology over the physical network formed by
the robots. The logical tree acts as a backbone used by robots
to enforce connectivity constraints. We study and compare two
algorithms to form the logical tree: outwards and inwards. These
algorithms differ in the order in which the robots join the
tree: the outwards algorithm starts at the tree root and grows
towards the targets, while the inwards algorithm proceeds
in the opposite manner. Both algorithms perform periodic
reconfiguration, to prevent suboptimal topologies from halting
the growth of the tree. Our contributions are (i) The formulation
of the two algorithms; (ii) A comparison of the algorithms in
extensive physics-based simulations; (iii) A validation of our
findings through real-robot experiments.

I. INTRODUCTION

Swarm robotics [1] is a branch of collective robotics that
studies decentralized solutions for the problem of coordinat-
ing large teams of robots. Robot swarms are a promising
technology for large-scale scenarios, in which performing
spatially distributed tasks would entail prohibitive costs for
single-robot solutions [1]. Typical examples include plan-
etary exploration [2], deep underground mining [3], ocean
restoration, and agriculture.

A common aspect in these scenarios is the necessity
to maintain a coherent state across the swarm. Many ba-
sic coordination problems can be solved assuming low-
bandwidth, occasional communication or even no commu-
nication. However, global connectivity is an asset when
information must be exchanged in a timely manner, either
to optimize a global performance function, or to aggregate
data in a sink. Task allocation scenarios with stringent space
and time constraints, such as warehouse organization and
search-and-rescue operations [4] are prime examples of this
category of problems. In these scenarios, it is desirable for
the robot network to allow both short-range and long-range
information exchange.

In this paper, we tackle the problem of deploying a robot
network in a decentralized fashion, under the constraint that
long-range information exchange must be possible at any
time during a mission. We assume that the robots must

1 N. Majcherczyk, A. Jayabalan, and C. Pinciroli are with
Robotics Engineering, Worcester Polytechnic Institute, 85 Prescott
St., Worcester MA 10609, USA. E-mail: {nmajcherczyk,
ajayabalan,cpinciroli}@wpi.edu

2 G. Beltrame is with Department of Computer and Software Engineering,
École Polytechnique Montréal, 2900 Edouard Montpetit Blvd, Montréal, QC
H3T 1J4, Canada. E-mail: giovanni.beltrame@polymtl.ca

reach a number of distant locations. While navigating to
these locations, the robots must spread without splitting the
network topology in disconnected components. The robots
must achieve a final configuration in which data can flow
between any two target locations, using the robots as relays.

It is important to notice that it is not required for all of the
robots to take part in the final topology. Rather, it is desirable
that as few robots as possible are engaged in connectivity
maintenance, as this would free any extra robot for others
tasks or to act as occasional replacement for damaged robot
in the topology. In constrast, the robots that are part of
the final topology must form a persistent communication
backbone that can be used by any robot when necessary.

This aspect sets apart our work from existing research
on connectivity maintenance, which generally requires all
robots to be part of the connected topology. The literature on
this topic can be broadly divided in two classes: algorithms
in which the robots must attain a final, static structure to
maximize coverage [5], and algorithms in which global con-
nectivity is enforced while navigating to a specific location
as a single unit (flocking) [6]. Our work, in contrast, aims
to create a dynamic, decentralized communication infrastruc-
ture that connects specific locations and uses as few robots
as possible.

Our approach assumes that the robots are initially de-
ployed in a compact, connected cluster. The robots then form
a logical tree over the physical network topology. By growing
the tree over time, the distribution of the robots progressively
and dynamically extends to reach the target locations. The
final configuration is a star-like topology, in which data can
flow between any two target locations.

The main contributions of this work are:

1) The formalization of two algorithms to form and grow
logical tree topologies that connect multiple target lo-
cations;

2) A comparative study of the algorithms, based on exten-
sive physics-based simulations;

3) The validation of our findings through a large set of
real-robot experiments.

The rest of this paper is organized as follows. In Sec. II
we formalize the problem statement. In Sec. III we present
our methodology. In Sec. IV we report an evaluation of the
algorithms. In Sec. V we discuss related work. The paper is
concluded in Sec. VI.

II. PROBLEM STATEMENT

A. Robot Dynamics

We consider N robots with linear discrete dynamics

xi(t+ 1) = Axi(t) +Bui(t)

where xi(t) ∈ R2M is the state of robot i at time t,
ui(t) ∈ R2M is the control signal, and A,B ∈ R2M×2M .
The state xi(t) is defined as [pi(t), vi(t)], where pi(t) ∈ RM

designates the position of robot i and vi(t) ∈ RM its velocity.
State and controls are subject to the convex constraints

∀t ≥ 0 xi(t) ∈ Xi ui(t) ∈ Ui.

In this work we focus on 2-dimensional navigation (M = 2).

B. Robot Communication

We assume that the robots are capable of situated commu-
nication. This is a communication modality in which robots
broadcast data within a limited range C, and upon receiving
data, a robot is able to estimate the relative position of the
data sender with respect to its own local reference frame.

We define the communication graph GC = (V, EC), where
V is the set of robots {1, . . . , N}, and EC ⊆ V × V is the
set of edges connecting the robots. An edge (i, j) between
two robots exists at time t if their distance is within their
communication range C, i.e., ‖ pi(t)− pj(t) ‖≤ C.

Definition 1 (Graph connectivity): A graph is connected
is there exists a path between any two nodes.

Graph connectivity can be verified through well-known
concepts in spectral graph theory. From the definition of the
graph adjacency matrix

Aij =

{
1 if (i, j) ∈ EC
0 otherwise

and of the graph degree matrix

Dij =

{∑
k Aik if i = j

0 otherwise

we can derive the Laplacian matrix L = D −A. The graph
is connected if and only if the second smallest eigenvalue
of L is greater than 0. For this reason, this eigenvalue is
called algebraic connectivity or Fiedler value [7]. We will
employ algebraic connectivity as a performance measure in
the experiments of Sec. IV.

C. Objectives

The objective of this work can be stated as follows:
we aim to create a progressive deployment strategy that
can reach an arbitrary number of geographically distant
tasks while satisfying connectivity constraints. In particular,
the final configuration of the network topology must allow
communication between any two target locations.

INIT
START
TREE

SELECT
PARENT

parent
selected?

GROW
TREE

growth
done?

SELECT
ROOT

root
selected?

Fig. 1: The high-level Finite State Machine that formalizes
the individual robot behaviors in the two tree-formation
algorithms. Rounded rectangles denote states, and diamonds
denote barriers, i.e., conditions that all robots must meet
before proceeding to the next state. States filled in white are
common among both algorithms; states and barriers filled in
light gray differ across algorithms.

III. APPROACH

A. Roles

In both algorithms, we assume that the robots are initially
deployed in a fully connected cluster. Subsequently, the
robots must form a tree by dynamically assuming a specific
role in the process.

In both tree-forming algorithms, the robots can have four
possible roles: root, worker, connector, or spare. The root
robot corresponds to the tree root, and at any time during the
execution only one robot can assume this role. The worker
robots are the tree leaves, and they correspond to robots
that must reach the target locations, forcing the tree to grow
progressively. The connector robots dynamically join the tree
to support its growth, leaving the pool of available spare
robots.

B. High-Level Behavior Specification

The algorithms can be formalized through a high-level
state machine that encodes the behavior of every robot, as
depicted in Fig. 1.

Every robot starts in state INIT. We assume that a process
that assigns the role of worker to the robots closest to the
targets has been already executed, through, e.g., a task allo-
cation algorithm or a gradient-based algorithm. In addition,
a random robot is assumed assigned the role of root. The
other robots are initially spare.

The START TREE state is triggered by the root, which
propagates a signal throughout the robot network. This state
signifies that a new tree must be created. As the message
propagates throughout the network, the robots estimate their
distance from the root. This is possible because of situated
communication—every robot can estimate a relative vector
to each of its immediate neighbors.

Robots receiving a “start tree” signal switch to SELECT
PARENT. In this state, each robot must identify a new parent
to attach to. The selection of a new parent aims to create the
shortest possible paths between the root robot and the worker
robots, i.e., the leaf nodes in the tree. The specifics of this

state are different in the outwards and inwards algorithms,
and are explained in Sec. III-D and Sec. III-E. At the end
of this state, a robot is part of two trees—the one from the
previous iteration of the algorithm (excluding the very first
iteration), and a new one that reflects the new parent.

Once every robot has selected a new parent, the robots
switch to the GROW TREE state, in which the robots forget
the tree from the previous iteration and spare robots are
accepted to join an edge. The algorithms differ in the
implementation of this state, and details are reported in
Sec. III-D and Sec. III-E.

Once the growth state is complete, the robots switch to the
SELECT ROOT state. As the tree grows, the initial choice of
the root robot (which is random) or an uneven distribution
of target locations might render the tree topology unoptimal.
By selecting a new root, the swarm can balance the tree
branches, thus fostering even growth over time. The design
of this state is illustrated in Sec. III-C.

Finally, the new assigned root switches to state START
TREE and broadcasts a new “start tree” signal.

In Fig. 1, certain state transitions are marked with dia-
monds. These transitions, which we call barriers, are special
in that they correspond to “wait states” in which the robots
must stay until a certain condition is verified for every robot.
The specific implementation of these conditions depends on
the algorithms. However, the general principle is that the root
aggregates the information necessary to evaluate a certain
condition, and then broadcasts a “go” signal throughout the
tree. The “go” signal triggers a state transition in the robots
that receive it.

C. Selection of a New Root

The purpose selecting a new root is to balance the tree,
which fosters better growth and compensates for an uneven
distribution of target locations. In addition, balancing the
tree has positive effects on the scalability of our algo-
rithms. Every state in our algorithms involves some form
of diffusion/aggregation process across the tree, with a time
complexity that is linear with the depth of the tree. By
balancing the tree, we also shorten its depth, thus lowering
the time for diffusion/aggregation processes to complete.

These considerations suggest that the best location for the
root is as close as possible to the centroid of the distribution
of robots. The selection of a new root occurs at the end
of a tree configuration loop, but the data upon which the
process depends is collected in state SELECT PARENT, when
the robots select a new parent.

The algorithm provides an estimate of the centroid in the
root reference frame by adding up each robot contribution
from the leaves to the root. The algorithm is formalized in
Alg. 1. An intuitive explanation of this algorithm proceeds
as follows. Since each robot only knows its relative position
to other robots, it must send to its parent an accumulation
vector qi which aggregates its contributions and that of all
its descendants in the tree, according to its own reference
frame. Fig. 2 reports an example with three robots, where

Algorithm 1 Distributed centroid estimation algorithm exe-
cuted by robot i: ai denotes an accumulator value; qi denotes
the contribution of robot i to the estimation algorithm; ci and
di denote the number of robots in the swarm estimated by
robot i and the tree depth of robot i, respectively; and pparent

i

is the vector from robot i to its parent.
1: ai = 0
2: for all child j do
3: qi

j = express qj in i’s reference frame
4: ai = ai + qi

j

5: end for
6: if robot i has a parent then
7: qi = ai − (ci − di︸ ︷︷ ︸

nb descendants

+1) · pparent
i

8: end if
9: if robot i is the root then

10: qi = ai/ ci︸︷︷︸
robot count

11: end if

Algorithm 2 Tree-based count algorithm for robot i. The
depth of robot i in the tree is denoted as di. The depth of
the tree root is set to 1. The count calculated by robot j is
denoted as cj .

1: switch number of children do
2: case 0
3: return di
4: case 1
5: return cchild

6: default
7: return

∑
neighbors j(cj − di) + di

8: end switch

robot 0 is the root, robot 2 is a worker, and robot 1 is a
connector.

To perform the final calculation of the centroid, Alg. 1
needs the number of robots in the swarm. A tree-based
distributed algorithm to count the number of robots currently
committed in the tree is reported in Alg. 2. This algorithm
requires the robots to aggregate a partial count, denoted with
ci, from the tree leaves to the root.

In our implementation, both Alg. 1 and Alg. 2 are executed
in parallel in state SELECT PARENT. In SELECT ROOT, the
current root compares its position and the position of its
neighbors to the centroid estimate (all are expressed in its
reference frame). If the current root is the closest to the
centroid, it remains the root and restarts a new tree loop.
Otherwise, it designates a new root and sends the centroid
vector and the angle to the new root. When the new root
receives this message, it sends an acknowledgement message
to the old root, and then it expresses the centroid in its own
reference frame. The process is repeated until the root is the
closest robot to the centroid estimate.

Fig. 2: The red triangle represents robot 0 with the root
reference frame. The blue square represents robot 1, which is
a child of robot 0 and a parent of robot 2, in turn represented
by the green circle.

Fig. 3: Spare management in the outwards algorithm. The
useful tree edges (blue nodes) are extended by pruning
useless tree branches (grey nodes).

D. The Outwards Algorithm

The intuition behind the outwards algorithm is to build a
logical spanning tree over the entire robot network. The pro-
cess starts at the root, and robots join the tree progressively.

In state SELECT PARENT, robot i considers its neighbors
as potential candidates. Viable candidates are non-workers
already in the tree and at a distance smaller than the com-
munication range. Among these, the robot selects the closest
robot. The robot commits to the tree and starts broadcasting
its parent id, which indicates to the parent robot that robot i
is a child and that i is a connector. Each connector maintains
its list of children and checks for obstructions of line-of-sight
with respect to its parent. If a robot can not receive data from
its selected parent, it selects another parent and updates its
data.

In state GROW TREE, the robots undergo two main phases:
first, they discard the information about the old tree; second,
they prune tree branches that contain no workers. To establish
whether a branch contains a worker, when a worker selects
a parent (state SELECT PARENT), the latter propagates this
information upstream towards the root.

The branches not containing a worker are considered

Fig. 4: Spare management in the inwards algorithm. Useful
tree edges (blue nodes) are extended by adding spare robots
(purple nodes)

“useless” and the robots that are part of them take the spare
role. To disband a useless branch, spare robots leave it
starting from the leaves. The leaves curl the branch back
towards the root, and upon entering in contact with another
branch might decide to join it. The logic for spares to join
a branch is explained in Sec. III-F

E. The Inwards Algorithm

The intuition behind the inwards algorithm is that the
robots join the tree starting from the workers towards the
root. Growth is therefore directed, and the final topology is
a sparse tree, in that only a subset of the robots takes part in
it. The spare robots, in contrast to the outwards algorithm,
do not form branches; rather, they disperse along the tree
and select a robot to use as reference.

In state SELECT PARENT, viable candidates for parent
selection are non-workers in the tree or robots not in the
tree which are at a distance smaller than the communication
range C. Among these, a robot selects a neighbor with the
smallest distance to the root. When the robot i commits to the
tree, it broadcasts its parent id, which indicates to the parent
robot that robot i is a child and that i is a connector. In
the inwards algorithm, by definition, all branches are useful
because they all terminate with a worker as leaf node.

In state GROW TREE, spare robots attempt to join a
branch. The logic for branch joining is the same as in the
outwards algorithm, and it is explained in Sec. III-F.

F. Spare Management

The state machine diagram in Fig. 5 describes the part of
the GROW TREE state that concerns the interaction between
spare robots and non-spare robots (i.e., connectors, workers,
and root).

Non-spare robots enter the NO NEED state when they
have no need for a spare robot. They exit this state either
if their distance to their parent becomes smaller than the
safe communication range S, or if at least one of their
children’s state is the NEED state. In the NEED state, each
robot continuously checks if it is in an edge selected by
a spare robot, or if their parent is in the AWAIT state. If

Fig. 5: Interaction between spare and non-spare robots.

one of these conditions is fulfilled, the robot transitions to
the AWAIT state. In the AWAIT state, the robot is waiting
the insertion of a spare robot either in one of its edges or
upstream in the tree.

Spare robots enter the WAIT state and look for an edge
to extend. They transition to the EXTEND EDGE state or the
ADJUST POSITION state after performing a search for edges
in need among their neighbors. In the ADJUST POSITION
state, spare robots rotate around their parent if they are within
the safe radius or move towards their parent in a straight line
otherwise. In the EXTEND EDGE state, spare robots head for
the middle of the edge to be extended.

G. Robot Motion

The integrity of the tree over time is ensured by con-
straining the robots’ motion. We enforce the constraints by
expressing the robot motion as a sum of virtual potential
forces (we omit time dependency for brevity of notation):

ui =

{
utree,old
i + utree,new

i + fi(d
parent
i)(utarget

i + uavoid
i) if di,j ≤ E

pparent
i otherwise

where di,j =‖ pi − pj ‖, E < C is the emergency range
beyond which a robot is dangerously distant from its parent,
and

• utree,old
i and utree,new

i indicate the interaction law between
robots (i, j) in a parent-child relationship, in either the
old or the new tree. We use the control law

utree
i =

ε

di,j

((
δ

di,j

)2

−
(

δ

di,j

)4
)

where δ = E and ε are parameters to set at design time.
• utarget

i is a control law that attracts a robot to a target,
promoting tree growth. For workers, this is a force that
points the assigned target location li and calculated with

utarget
i = τ

li − pi
‖ li − pi ‖

where τ is a design parameter. Workers propagate to
their parents the calculated utarget

i , and connectors apply
it in turn.

• uavoid
i is a repulsive force for obstacle avoidance between

neighbors not in a parent-child relationship.

• fi(d
parent
i) is a function defined as follows:

fi(d
parent
i) =

{
1 if dparent

i ≤ S
0 otherwise

where dparent
i is the distance between a robot and its

parent and S < E is the safe communication range.
Through this function, a robot can ignore navigation
to target and obstacle avoidance to perform emergency
maneuvers when the distance to its parent becomes
unsafe.

IV. EVALUATION

A. Parameter Setting
The dynamics and the performance of our algorithms

depends on the design parameters reported in Table I. To set
their value, we used a genetic algorithm. We ran multiple
instances of the optimization process for both inwards and
outwards, and Table I reports the best values we found.

Every instance of the optimization was executed for 100
generations. We set this number as a reasonable margin after
observing that, across instances, after about 50 generations
the optimization process would find a plateau beyond which
no improvement was found.

Every generation consisted of trials in which 9 Khepera
IV robots1 were placed in the arena in a tight cluster. We
configured two types of trials:

• 2 target locations on a circle with a radius of 2.3 m at
180 ◦ from each other;

• 3 targets on a circle with a radius of 1.6 m at 120 ◦ from
each other.

We ran the trials in the ARGoS multi-robot simulator [8],
and maximized a two-step performance function. The first
step (performance 0 to 1) promoted connectivity maintenance
by penalizing the time spent with disconnected robots; the
second step (performance 1 to 2) was activated when no
disconnections occurred, and higher values corresponded to
lower times to reach the targets.

B. Simulated Experiments
We tested the performance of the algorithms by varying

three parameters: the target radius, the redundancy factor, and
number of targets. We placed multiple targets on a circle
with equal angles between each other. The target radius
is the radius of the circle. We chose radii of 3, 6 and 9
meters corresponding to small, medium and large scales. The
redundancy factor is the factor by which we multiply the
minimum required number of robots needed to reach all the
targets given our communication range. We tested the values
of 2, 3 and 4 for this parameter. The number of targets was
2, 3, and 4. The largest configuration we considered involved
94 robots. Each scenario was executed with 50 different
random seeds. We ran all the experiments for both algorithms
with and without activating line-of-sight obstructions in the
communication models of ARGoS, to test the effect of this
aspect.

1https://www.k-team.com/mobile-robotics-products/
khepera-iv

TABLE I: Optimized Design Parameters

Type Symbol Meaning Outwards Inwards Unit

Motion

S Safe range between parent and child 138.93 135.25581 cm
A Non-parent-child avoidance range 43.16 40.99 cm
δ Ideal distance between parent and child 190 154.0841 cm
ε Factor gain in parent-child interaction 10 10
τ Magnitude of attraction to target 0.49 0.2539

Tree Growth R Reconfiguration period 38.8 44.0 sec
I Information liveness period 1.2 0.5 sec

Uncommitted Management E Distance threshold for spare recruitment 132.09 132.1353 cm
J Distance threshold to switch to connector 9.79 6.6395 cm

1) Simulation Time: We studied the time performance of
both algorithms, and declared an experiment finished when
all workers reach their targets. To compare results across
different scales, we normalized the mission duration by the
maximum allowed time. The maximum allowed time was
computed by considering the time for a robot to reach a target
from the center of the arena; this time was then multiplied
by 10. The results are reported in Fig. 6. For small scales,
the outwards algorithm outperforms the inwards algorithm.
However, as the scale of the experiment is increased, the
directed growth of the inwards algorithm is increasingly ad-
vantageous. In addition, with the outwards algorithm, some
missions do not reach their targets in the allotted time limits
when higher redundancy factor is employed. This is due to
the increased interference that too many useless branches
create in robot navigation. This effect is not prominent in
the inwards algorithm because the robots are added to the
tree only when it is necessary.

2) Disconnected Time: We studied the ability to maintain
connectivity by considering the following metrics: (i) The
disconnected time ratio, defined as the number of time steps
(over the total experiment time) with at least a broken
edge in the tree; (ii) The Fiedler value time ratio, defined
as the number of time steps (over the total experiment
time) with swarm-wide Fiedler value lower than 10−3. The
results are reported in Fig. 7. In small-scale scenarios, in
only two experiments out of 50 have positive disconnected
time, and the global communication graph always stays
connected. In medium-scale scenarios, larger numbers of
redundant robots cause occasional line-of-sight obstructions
that delay messages exchanges, but connectivity is generally
maintained throughout the duration of the experiment. In
large-scale scenarios, the disruptive effect of a large number
of redundant robots is prominent for both algorithms. With
fewer robots, the inwards algorithm is capable of maintain-
ing global connectivity in all of the experiments, despite
occasional breaking of tree edges (in less than 5% of the
experiments).

C. Real-Robot Validation

To validate the simulated results simulations, we tested
our algorithms with 9 Khepera IV robots. A Vicon motion
capture system was used to track the position and orientation
of the robots throughout the duration of the experiments,
and to simulate situated communication. We employed 2
experimental scenarios: (i) 2 targets on a circle with a radius

of 2.3 meters at approximately 180 degrees from each other;
(ii) 3 targets on a circle with a radius of 1.6 meters at
approximately 120 degrees from each other. We rescaled
the distance-related paremeters in Table I to fit the arena
and accommodate for the small number of robots involved.
We repeated these experiments 15 times for setup (i) and
10 times for setup (ii) with robots starting from the same
positions and orientations, to allow for better comparison.
We also performed the same experiments in simulation, with
the same initial positions.

Fig. 8 shows that real-robot and simulated experiments
follow analogous trends. In particular, we verified that for
small-scale experiments with low redundancy factor (in these
experiments it was set 1) the outwards algorithm has better
performance than the inwards algorithm.

V. RELATED WORK

Extensive literature exists on methods for connectivity
preservation. Several recent works consist of motion control
laws that include an estimate of the Fielder value. Yang
et al. [9] introduced a decentralized algorithm to estimate
the Fiedler value and use it to maintain connectivity while
moving towards a target location. This algorithm was later
refined by Sabattini et al. [10] and Williams et al. [11]. Fur-
ther extensions include inter-robot collision avoidance [12]
and multi-target exploration [6]. The main advantage of this
family of approaches is that they allow navigation with
arbitrary topologies. However, accurate decentralized com-
putation of the Fiedler value is not easy in realistic settings
in which messages might be lost due to communication
interference [13]. In addition, computing the Fielder value
in a decentralized manner involves network-wide power
iteration methods [14], the slow convergence of which makes
them suitable only for small teams of robots [15], [11]. It
should also be noted that all of the above algorithms, with the
exception of [12], have only been demonstrated in simulated
environments.

A second family of methods select a communication sub-
graph and aim to preserve its edges through some form of
global consensus. Hsieh et al. [16] devised a reactive control
law based on radio signal and bandwidth estimation, in
which links between robots can be activated and deactivated
as the topology changes over time. Michael et al. [17]
employed distributed consensus and auctions algorithms to
establish which links to activate and deactivate over time.
Cornejo et al. [18], [19] proposed a distributed algorithm

Fig. 6: Assessment of mission completion time in simulation.

Fig. 7: Assessment of connectivity loss.

Fig. 8: Results of real-robot evaluation.

for link selection in which the robots undergo a number
of motion rounds, during which the selected links must be
preserved. Being based on achieving global consensus before
any topology modification can be finalized, these algorithms
are not scalable and work best when teams involve a small
number of robots.

A third class of connectivity-preserving algorithms as-

sumes that a certain structure is pre-existing. The dynamic
structure is some form of logical tree, dynamically built and
updated over the physical links of the robot network. Our
work falls into this category. Krupke et al. [20] employed
a Steiner tree as a pre-existing structure, and use spring-
like virtual forces to balance connectivity and cohesiveness
while reaching distant targets. A number of works, which
constitute our main source of inspiration, utilized minimum
spanning trees as structures to preserve. Aragues et al. [5]
focused on a distributed coverage strategy with connectivity
contraints, and proposed a method based on maintaining
a network-wide minimum spanning tree. Analogously, So-
leymani et al. [21] proposed a distributed approach that
constructs and preserves a network-wide minimum spanning
tree, allowing for tree switching. Schuresko et al. [22] studied
a theoretical approach for distributed and robust switching
between minimum spanning trees. All these works were only
demonstrated in numerical simulations. The main advantage
of these methods is the ease and speed with which spanning
trees can be built and updated in a distributed manner.
However, as discussed in this paper, spanning trees do not
scale well with the number of robots involved.

VI. CONCLUSIONS

In this paper, we presented two algorithms to construct a
long-range communication backbone that connects multiple
distant target locations. The algorithms are decentralized and

based on the idea of constructing a logical tree over the set
of physical network links.

We performed an extensive large set of experiments, both
in simulation and with real robots, to assess the perfor-
mance of the algorithms according to various experimental
conditions. Our results show that, in small-scale scenarios,
outwards tree growth, corresponding to spanning tree for-
mation, is a viable approach. However, as the scale of the
environment and the number of robots involved increase, a
more directed, inwards growth from target locations towards
the tree root, is a preferable approach.

Our results also show that, as the number of unnecessary
robots increases, the benefit of redundancy is voided by
the increased physical interpherence in navigation. While a
better spare robot strategy could diminish this phenomenon,
our results suggest that a more progressive approach to
deployment might be a better idea.

Nonetheless, the presence of a reasonable number of
spare robots offers the opportunity to tackle the problem of
maintaining persistent long-range global connectivity despite
individual limitations in the energy supply of individual
robots. We plan to consider this scenario in future research.

In addition, possible extensions of our work include the
presence of moving targets, rather than static ones, and the
presence of obstacles in the environment.

REFERENCES

[1] M. Brambilla, E. Ferrante, M. Birattari, and M. Dorigo, “Swarm
robotics: A review from the swarm engineering perspective,” Swarm
Intelligence, vol. 7, no. 1, pp. 1–41, 2013.

[2] D. Goldsmith, Voyage to the Milky Way: The Future of Space Explo-
ration. TV Books, NY, 1999.

[3] R. F. Rubio, “Mining: The challenge knocks on our door,” Mine Water
and the Environment, vol. 31, no. 1, pp. 69–73, 2012.

[4] D. P. Stormont, “Autonomous rescue robot swarms for first re-
sponders,” in Computational Intelligence for Homeland Security and
Personal Safety, 2005. CIHSPS 2005. Proceedings of the 2005 IEEE
International Conference on. IEEE, 2005, pp. 151–157.

[5] R. Aragues, C. Sagues, and Y. Mezouar, “Triggered minimum span-
ning tree for distributed coverage with connectivity maintenance,” in
2014 European Control Conference (ECC), 2014, pp. 1881–1887.

[6] T. Nestmeyer, P. R. Giordano, H. H. Bülthoff, and A. Franchi, “De-
centralized simultaneous multi-target exploration using a connected
network of multiple robots,” Autonomous Robots, vol. 41, no. 4, pp.
989–1011, 2017.

[7] M. Fiedler, “Algebraic connectivity of graphs,” Czechoslovak Mathe-
matical Journal, vol. 23, no. 98, pp. 298—-305, 1973.

[8] C. Pinciroli, V. Trianni, R. O’Grady, G. Pini, A. Brutschy, M. Bram-
billa, N. Mathews, E. Ferrante, G. Di Caro, F. Ducatelle, M. Birattari,
L. M. Gambardella, and M. Dorigo, “ARGoS: A modular, parallel,
multi-engine simulator for multi-robot systems,” Swarm Intelligence,
vol. 6, no. 4, pp. 271–295, 2012.

[9] P. Yang, R. A. Freeman, G. J. Gordon, K. M. Lynch, S. S. Srinivasa,
and R. Sukthankar, “Decentralized estimation and control of graph
connectivity for mobile sensor networks,” Automatica, vol. 46, no. 2,
pp. 390–396, 2010.

[10] L. Sabattini, N. Chopra, and C. Secchi, “On decentralized connectivity
maintenance for mobile robotic systems,” Proceedings of the IEEE
Conference on Decision and Control, pp. 988–993, 2011.

[11] “Locally constrained connectivity control in mobile robot networks,”
in 2013 IEEE International Conference on Robotics and Automation.
IEEE, may 2013, pp. 901–906. [Online]. Available: http://ieeexplore.
ieee.org/document/6630680/

[12] P. Robuffo Giordano, A. Franchi, C. Secchi, and B. HH, “A passivity-
based decentralized strategy for generalized connectivity mainte-
nance,” The International Journal of Robotics Research, vol. 32, no. 3,
pp. 299–323, 2013.

[13] P. Di Lorenzo and S. Barbarossa, “Distributed Estimation and
Control of Algebraic Connectivity over Random Graphs,” pp. 1–
13, sep 2013. [Online]. Available: http://arxiv.org/abs/1309.3200http:
//dx.doi.org/10.1109/TSP.2014.2355778

[14] A. Bertrand and M. Moonen, “Distributed computation of the Fiedler
vector with application to topology inference in ad hoc networks,” in
Signal Processing, vol. 93, no. 5, 2013, pp. 1106–1117.

[15] T. Sahai, A. Speranzon, and A. Banaszuk, “Hearing the clusters of a
graph: A distributed algorithm,” Automatica, vol. 48, no. 1, pp. 15–24,
2012.

[16] M. A. Hsieh, A. Cowley, V. Kumar, and C. J. Taylor, “Maintaining
network connectivity and performance in robot teams,” Journal of
Field Robotics, vol. 25, no. 1-2, pp. 111–131, 2008.

[17] N. Michael, M. M. Zavlanos, V. Kumar, and G. J. Pappas, “Main-
taining Connectivity in Mobile Robot Networks,” Springer Tracts in
Advanced Robotics, vol. 54, pp. 117–126, 2009.

[18] A. Cornejo, F. Kuhn, R. Ley-Wild, and N. Lynch, “Keeping mobile
robot swarms connected,” Lecture Notes in Computer Science (includ-
ing subseries Lecture Notes in Artificial Intelligence and Lecture Notes
in Bioinformatics), vol. 5805 LNCS, pp. 496–511, 2009.

[19] A. Cornejo, “Local Distributed Algorithms for Multi-Robot Systems,”
PhD Thesis, 2012.

[20] D. Krupke, M. Ernestus, M. Hemmer, and S. P. Fekete, “Distributed
cohesive control for robot swarms: Maintaining good connectivity in
the presence of exterior forces,” in IEEE International Conference on
Intelligent Robots and Systems, vol. 2015-Decem, 2015, pp. 413–420.

[21] T. Soleymani, E. Garone, and M. Dorigo, “Distributed Predictive Con-
nectivity Control for Double Integrator Agents based on a Receding
Horizon Scheme,” in American Control Conference, ACC 2015, 2015,
pp. 1369–1374.

[22] M. Schuresko and J. Cortés, “Distributed tree rearrangements for
reachability and robust connectivity,” SIAM Journal of Control Op-
timization, vol. 50, no. 5, pp. 2588—-2620, 2012.

	Contents
	List of Figures
	List of Tables
	Introduction
	Context
	Project Brief
	Objectives

	Outline

	Related Work
	Connectivity
	Energy Awareness

	Problem Statement
	Objectives
	Assumptions
	Constraints

	Robot Dynamics
	Battery Model
	Robot Communication and Interactions
	Situated Communication
	Lennard-Jones Potential
	Communication Graph

	Methodology
	Roles
	Connectivity
	High-level Behavior
	Spare Management
	Root Selection

	Energy awareness
	Charging Stations
	High-Level Behavior
	Replacing phase
	Spare Management

	Experimental Setups and Results
	Experimental Setup and Parameter Setting
	Results and Discussion
	Liveliness Time
	Mission Time
	Disconnected Time
	Energy Drop
	Scalability

	Conclusion
	Conclusion
	Future Work

	Bibliography
	Appendices

