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ABSTRACTABSTRACTABSTRACTABSTRACT    

Aluminum-zirconium alloys exhibit superior strength at elevated temperature in 

comparison to traditional aluminum casting alloys. These alloys are heat-treatable and 

their strength depends to a large extent on the quenching and aging steps of the heat 

treatment process. However, measurements show that the critical cooling rate 

necessary to retain 0.6 wt. pct. zirconium(the minimum amount necessary for 

significant strengthening) in a super-saturated solid solution with aluminum is 90ºC/s, 

which is un-attainable with traditional casting processes. On the other hand, the critical 

cooling rate necessary to retain 0.4 wt. pct vanadium and 0.1 wt. pct. zirconium in a 

super-saturated solidsolution with aluminum is only 40ºC/s; which suggests that 

substituting vanadium for zirconium significantly decreases the critical cooling rate of 

the alloy. This is an important finding as it means that, unlike the Al-0.6Zr alloy, the 

Al-0.4V-0.1Zr alloy may be processed into useful components by traditional high 

pressure die-casting. Moreover, measurements show that the hardness of the 

Al-0.4V-0.1Zr alloy increases upon aging at 400ºC and does not degrade even after 

holding the alloy at 300ºC for 100 hours. Also, measurements of the tensile yield 

strength of the Al-0.4V-0.1Zr alloy at 300ºC show that it is about 3 times higher than 

that of pure aluminum. This increase in hardness and strength is attributed to 

precipitation of Al3(Zr,V) particles. Examination of these particles with high resolution 

transmission electron microscopy (HRTEM) and conventional TEM show that vanadium 

co-precipitates with zirconium and aluminum and forms spherical particles that have 

the L12 crystal structure. It also shows that the crystallographic misfit between the 

precipitate particles and the aluminum matrix is almost eliminated by introducing 

vanadium into the Al3Zr precipitate and thatthe mean radius of the Al3(Zr,V) particles is 

in the range from 1nm to 7nm depending on the alloy composition and aging practice. 

Finally, it is found that adding small amounts of silicon to the Al-0.4V-0.1Zr alloy 

effectively accelerates formation of the Al3(Zr,V) precipitate. 
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1.1.1.1. ObjectiveObjectiveObjectiveObjectivessss    

The objectives of this project are as follows: 

1. To determine the critical cooling rate needed to suppress formation of the 

equilibrium D023and D022precipitates in Al-Zr and Al-Zr-V alloys. 

2. To establish the optimum heat treatment schedule for processingAl-Zr and 

Al-Zr-V alloys. 

3. To elucidate the mechanism of precipitation in Al-Zr-V alloys and to characterize 

the structure and size of the precipitate particles. 
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2.2.2.2.    BackgroundBackgroundBackgroundBackground    

2.12.12.12.1    Precipitation StrengtheningPrecipitation StrengtheningPrecipitation StrengtheningPrecipitation Strengthening    

Alfred Wilm[1]discovered that the strength of an Al 4Cu-0.5Mg-0.5Mn alloy is 

unexpectedly high after quenching it from 525ºC and naturally aging it. However, he did 

not explain the mechanism responsible for the increased strength because of the 

limitations of the microscopes available at the time. Several years later, Merica, 

Waltenberg, and Scott[2] published a paper in which they correctly deduced that the 

different solubility of Cu, Zn, and Mg-Si in aluminum at 525ºC and at room temperature 

leads to the precipitation of a secondary phase which reinforces the strength of the 

aluminum alloy. However, the nature of the precipitates remained unclear because they 

are too small to be directly observed by the optical microscope. This issue was not 

resolved until the early 1960s when diffuse X-ray[3] and transmission electron 

microscopy[4] were used to investigate precipitates in metallic alloys and today it is 

well-known that in the binary Al-Cu system, four precipitates form in sequence. They are: 

Guuinier-Prestion (GP) zones, θ’’, θ’, and θ. GP zones form first and can form by aging at 

room temperature; the others require artificial aging, i.e., aging at elevated temperature. 

All four precipitates strengthen the alloy as a result of their interaction with moving 

dislocations. The earliest attempt to explain age hardening on the basis of interactions 

of particles with dislocations is due to Mott and Nabarro [5] who suggested that 

strengthening arose from the interaction between dislocations and the internal stresses 

produced by “miss-fitting” coherent precipitates. Consider the situation where the 

movement of a dislocation is hindered by a precipitate particle as shown schematically 

in Fig.1. The tension forcesT on the dislocation are balanced by the resisting force F. As 

F increases, the bowing of the dislocation increases, i.e, the angle� increases. If the 
particle is hard, the resisting force F is large and can be larger than 2T. In this case, the 

dislocation will bypass the particle either by Orowan looping or by cross-slipping. In this 

scenario, the particle remains unchanged; however, if the maximum resistance force is 

attained and ���� � 1, then the particle will be sheared by the dislocation as the 
dislocation passes through it. 
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Fig.1.Fig.1.Fig.1.Fig.1. Balance of forces acting on a precipitate particle as  

a dislocation attempts to pass by it. 

Precipitate looping occurs if the precipitate particles are ‘hard’ enough that dislocations 

pass through them without causing them to deform. Typically, this happens in four steps 

as depicted schematically in Fig.2.These are: (1)the approach step, (2) the sub-critical 

step,(3) the critical step, and (4) the escape step. Orowan [6] considered the 

relationship between the applied stress and dislocation bowing and derived the 

relationship: 

∆�	
 � �/� (1) 

where ∆�	
 is the increase in yield stress due to the precipitation looping, G is the 

shear modulus of the matrix, b is the Burger’s vector of the dislocation, and L is the 

particle spacing. Ashby[7] further developed this equation by taking into account the 

inter-particle spacing and the effects of statistically distributed particles. The 

Ashby-Orowan relationship is given as 

                                                            ∆��	 � 0.538 · ����/�
� · ��  �

!�" (2) 

In Eq. (2), ∆��	 is the increase in yield strength, G is the shear modulus of the matrix, b 

is the magnitude of the Burgers vector, D is the real diameter of the particle, and f is the 

volume fraction of particles. A plot of the Ashby-Orowan stress as a function of 
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precipitate diameter for different volume fractions of particles in an aluminum matrix 

as generated by Eq. (2) with G = 26.2 GPa, and b = 0.286nm is shown in Fig.3.  

 

 

 

(1) Approach stage 

 

 

 

(2) Sub-critical stage 

 

 

 

 

 

(3) critical stage 

 

 

 

(4) Escape stage 

Fig.2.Fig.2.Fig.2.Fig.2. The four steps of precipitation looping. 
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Fig.3.Fig.3.Fig.3.Fig.3. The Ashby-Orowan stress as a function of precipitate diameter for  

various precipitate volume fractions, f. 

The dislocation loops the precipitate particle when the particle is hard, but what really 

impedes the movement of the dislocation is the strain field around the miss-fitting 

coherent precipitate. Mott and Nabarro[8] described phenomenon. Briefly, coherent 

strain fields around the precipitate cause repulsive forces against the dislocation as 

shown schematically in Fig.4.Consequently, the dislocation is stopped by the restraining 

force at the edge of the coherent precipitate. As the restraining force increases, the 

convolutions of the dislocation increase up to the point where Orowan looping occurs.   

 

Fig.4.Fig.4.Fig.4.Fig.4. Interaction between a dislocation and precipitate particles. 
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When the precipitates are relatively small, dislocation bending is limited; and the shear 

stress Δτ from the strain field is given by 

∆� � 4�$%
�&
�

� '(/! (3) 

In the case of relatively larger precipitates, where considerable flexing of the 

dislocations occurs as a result of the large spacing between the individual precipitate 

particles, any movement of the dislocation will have to overcome a larger number of 

obstacles per unit length and the shear stress Δτis given by 

∆� � 0.7�*�
�$�

+  �

"

%
+
 (4) 

In both Eq.(3) and Eq.(4), the misfit strain ε is defined as: 

ε � |δ| -1 . !G0(1!υ23
G20(4υ23 5 (5) 

Where Gp is shear modulus of the precipitate, υpis Poisson’s ration of the precipitate, 

and δ is related to the difference between the lattice parameters of the precipitate (αp) 

and the matrix (α) 

δ � α21α

α
 (6) 

Fig. 5 shows the relationship between shear strength and the average size of the 

precipitatefor small and large precipitates. For this plot, the shear modulus of the Al3Zr 

particles is�6 � 196 GPa, and its misfit strain in aluminum isε � 7.67 < 101=[9]. Fig. 5 

shows that for small particles, coherency strain hardening increases with increased 

particle size, whereas for larger particles, it decreases with increased particle size, 

giving rise to a maximum strengthening effect at a critical particle size which is of the 

order of 

> � �
?@ (7) 

As pointed out previously, the upper limit of this form of strengthening is imposed by 

the transition to the classical Orowan looping process. 
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Fig.5.Fig.5.Fig.5.Fig.5. Shear strength increment due to coherent strengthening 

When dislocations penetrate the precipitate, the precipitate will be deformed, as shown 

schematically in Fig.6. In this case, there are several factorsthat may be involved in 

raising the stress level required for plastic yielding. These include: 

 

 

 

 

 

Fig.6.Fig.6.Fig.6.Fig.6. A precipitate particle being cut by a dislocation. 
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                                                   �A � &6 BC%��
DE '(/! � > F1( (8) 

Whereγs is energy of a matrix-precipitate interface created by slip, � > F is the average 

radius of the precipitate particles, and Γ is the line tension of a dislocation. Eq. (8) 

shows that the smaller the average precipitate radius, the more the Chemical 

Strengthening. Chemical Strengthening is usually a minor contributor to precipitation 

hardening, and it is not as important as Stacking-Fault Strengthening. 

(2) Stacking-fault Strengthening – the passage of the dislocation through the 

precipitate produces a stacking fault within the precipitate. Because the stacking fault 

energy and width in precipitates are different from their counterparts in the matrix, the 

movement of the dislocation is impeded by the precipitate. According to Hirsch and 

Kelly[10] and Gerold and Hartmann[11] the maximum force experienced by the split 

dislocation is given by  

                                                                   GH � ∆I� (9) 

Where ∆γ is the difference between the stacking fault energy in the matrix and in the 

precipitate,�is the length of the chord inside the precipitate at the critical breaking 
condition depicted in Fig. 7. The shear strength increment due to Stacking-Fault 

Strengthening is given by 

                                                           �JB � ∆I%
�  =D��K
L

=!E�� "(/!
 (10) 

 

Fig.7.Fig.7.Fig.7.Fig.7.Dislocation-precipitate interactions in stacking-fault strengthening. 

2.22.22.22.2    The Stability of PrecipitatesThe Stability of PrecipitatesThe Stability of PrecipitatesThe Stability of Precipitates    

When an alloy is employed at an elevated temperature, Ostwald ripening of the 

L 
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precipitate particles may occur; i.e., the larger precipitate particles may grow even 

larger at the expense of the small precipitate particles. As a consequence, the average 

radius of the precipitate particles increases at elevated temperatures while the density 

of the particles decreases. As pointed out earlier, precipitation hardening strongly 

depends on the average radius of precipitate. Large, coarsened precipitates contribute 

little to precipitation hardening. 

The kinetics of Ostwald ripening is controlled by volume diffusion, as solute atoms are 

transferred through the matrix from the shrinking precipitates to the growing ones. 

Lifshits, Slyozov [12] and Wagner [13] (the LSW theory) shows that the average 

precipitate size <r> increases with time t according to  

                                             &� >&M' F'= N &� >&M � 0' F'= � OM (11) 

where � >&M' F  is the average precipitate radius at time M , � >&M � 0' F  is the 

average precipitate radius at the onset of coarsening, and O is a rate constant given by 
Eq. (12) in which P  is the diffusivity of the rate-controlling solute, �  is the 

precipitate-matrix interfacial free energy, and QR
6
and QRH  are the equilibrium 

solubilities of the solute elements in the precipitate and matrix phases, respectively. 

                                                                     O S �T
&AU

V1AUW'� (12) 

For creep-resistant alloys, the Ostwald ripening process must be slowed down. Hence, it 

is essential to have in the alloy solutes with low diffusion coefficient and low solubility in 

the matrix, and that form precipitates with a low interfacial energy withthe matrix.  

In order to illustrate this point, considerthe three aluminum alloys: 

(1) Al-Si12-Cu-Mg-Ni (eutectic composition),  

(2) Al-Si18-Cu-Mg-Ni (hypereutectic composition), and  

(3) Al-Si12-Cu4-Ni-Mg (special eutectic alloy).  

Their yield strength and fatigue strength diminish rapidly with increased temperature 

due to coarsening and dissolution of their precipitated phases, as depicted in Table 1 

[14]. The major strengthening phases in the eutectic and hypereutectic alloys are 
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β’-Mg2Si and θ’-Al2Cu precipitates. When the temperature is above 200ºC,precipitate 

coarsening becomes significant and as a consequence, theβ’-Mg2Si and θ’-Al2Cu 

precipitates evolve into incoherent β-Mg2Si and θ-Al2Cu precipitates, respectively. The 

loss of coherency between the matrix and the precipitate further accelerates the 

coarsening process until eventually the coarsened low-density precipitates totally lose 

their strength. 

Table 1.Table 1.Table 1.Table 1. Effect of temperature on the yield and fatigue strength of aluminum alloys. 

 Eutectic Alloy 

Al-Si12-Cu-M-gNi 

Hypereutectic Alloy 

Al-Si-18-Cu-Mg-Ni 

Special Eutectic alloy 

Al-Si12-Cu4-NiMg 

Cast Forged Cast Forged Cast 

Yield Strength (in MPa) at Temperature: 

20X 190-230 280-310 170-200 220-280 200-280 

150X 170-220 230-280 150-190 200-250 ----- 

200X 120-170 ----- 100-150 ----- 150-200 

250X 80-100 90-120 80-120 100-140 100-150 

300X 50-80 ----- 60-80 ----- 85-100 

Fatigue strength (in N/mm
2
) at Temperature: 

20X 80-120 110-140 80-110 90-120 90-120 

150X 70-110 90-120 60-90 70-100 90-120 

250X 50-70 60-70 40-60 50-70 60-80 

300X ----- ----- ----- ----- 45-60 

2.32.32.32.3    Characteristics ofCharacteristics ofCharacteristics ofCharacteristics ofPPPPrecipitates in recipitates in recipitates in recipitates in HHHHigh Temperature igh Temperature igh Temperature igh Temperature AAAAluminum luminum luminum luminum AAAAlloyslloyslloyslloys    

Several precipitate characteristics must be considered when designing aluminum alloys 

for high temperature applications. These include: (1) overall thermal stability, (2) 

volume fraction, (3) average radius, and (4) coherency with the matrix. 

First, as mentioned earlier, the different solubility of elements in theα-Al matrix at high 

temperature and at low temperature is the reason for second phase precipitation. The 

maximum solubility Cmax, and the slope of the solvus line k, are the two most important 

parameters, as shown in Fig.8. They determine whether or not the alloy will precipitate 

a large amount of globally distributed fine phases. Even though for some types of 

age-hardenable alloys, the maximum solubility Cmax is small, (e.g., the maximum 
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equilibrium solubility of scandium and zirconium in aluminumis only 0.28 at.%[15] and 

0.083 at.%[16], respectively) they still yield excellent precipitation strengthening by 

means of proper heat treatment because the slop of the solvus line k for the alloy is 

very steep. 

 

Fig.8.Fig.8.Fig.8.Fig.8.The maximum solubility and solvus line in 

(a) eutectic alloys and in (b) peritectic alloys. 

Second, the average size of the precipitates strongly influences the yield strength of the 

alloy. For the precipitate looping, stacking-fault, and Chemical Strengthening 

mechanisms, the smaller the precipitate, the higher the yield strength of the alloy. 

However, there is an optimum radius for the coherent strengthening mechanism where 

strengthening is maximized. 

Third, Fine [17] suggested that when the precipitate is coherent and coplanar with the 

matrix, dislocations in the matrix can readily traverse through the precipitate particles, 

and if the precipitate and matrix have different structures, then the dislocations which 

traverse the precipitate create stacking faults in the precipitate. Since a large amount 

of energy is required to create the stacking fault and the traversing dislocation creates 

more stacking fault with each unit of slip, this is a very effective strengthening 

mechanism for elevated temperatures. Also, the coherent-coplanar correspondence 

between the precipitate and matrix means that the precipitate-matrix interface is a low 
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energy interface and there is little tendency forcoarsening or coalescence of the 

precipitateparticles. Therefore, good coherency between the precipitate particles and 

the matrix is favored for precipitation strengthening. 

Fourth, low diffusivity of the solute elements in the matrix effectively minimizes the 

coarsening of the precipitate particles at high temperature. 

2.42.42.42.4    Transition Transition Transition Transition MMMMetals that etals that etals that etals that FFFForm orm orm orm AAAAluminides with luminides with luminides with luminides with MMMMetaetaetaeta----stable stable stable stable L1L1L1L12222SSSStructuretructuretructuretructure    

Addition of transition elements to aluminum can result in the formation of a large 

density of elastically stiff Al3M (M≡ transitional element) precipitates. The Al3M 

precipitates with L12 structure are fully coherent with the aluminum matrix and 

therefore they can considerably strengthen the alloy. Table 2 shows the maximum 

solubility (Cmax) and the solubility at 400ºC (C400ºC) for some transition metals in 

aluminum. 

Table 2Table 2Table 2Table 2....Solubility of some transition metals in aluminum. 

Element QH�_ 
(at.%) 

Q?``X 
(at.%) 

QH�_
Q?``X

 Reference 

Group 3 transition elements 

Sc 0.23 0.01 23.0 [18,19] 

Y 0.049 0.016 3.1 [18,20) 

Group 4 transition elements 

Ti 0.15 0.03 5 [21] 

Zr 0.083 <0.025 166 [22] 

Hf 0.186 0.13 1.4 [18,23] 

Group 5 transition elements 

V 0.33 <0.15 2.2 [18] 

Nb 0.066 0.038 1.7 [18] 

Ta 0.235 0.05 4.7 [18] 

Because nearly all the Al3M particles precipitate at around 400X, the ratio Cmax to 

C400
o

Cis a good indicator of the tendency of the alloy to form precipitates with the L12 

structure. A larger ratio indicates that more precipitates will form after solutionizing and 
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aging. As Table 2 indicates, zirconium and scandium are superior to the other transition 

metals in that respect; accordingly they have been comprehensively studied [35]-[52]. 

However, the high cost of scandium limits its application and the mechanical properties 

of Al-Zr alloys are far below what is expected. 

The diffusivity of transition metals in aluminum directly influences the thermal stability 

of the Al3M precipitates. As Table 3 shows, the diffusion coefficients of the various 

transition metals in aluminum at 400ºC are at least three magnitudes smaller than that 

of copper (2.27 < 101(? m/s)[29] or Mg (6.14 < 101(? m/s)[30] in aluminum. Therefore, 

Al3M precipitates are more thermally stable than traditional precipitation hardening 

phases, such as θ′-Al2Cu and β
′-Mg2Si. 

Table 3Table 3Table 3Table 3.... Diffusion coefficients of some transition metals in aluminum. 

Element Do 

m!s1( 
Q 

kJmol1( 
P at 400X 

m!s1( 
Reference 

Sc 5.31 < 101? 124 1.98 < 101(h [24] 

Ti 1.12 < 101( 260 7.39 < 101!! [25] 

V 1.60 303 4.85 < 101!? [24] 

Zr 7.28 < 101! 242 1.20 < 101!` [25] 

Hf 1.07 < 101! 242 2.11 < 101!( [26] 

Cr 10.00 282 1.29 < 101!( [27] 

Fe 7.7 < 101( 221 5.14 < 101(i [28] 

Coherency determines the strengthening mechanisms and the thermal stability of 

precipitates. Lower misfit with the aluminum matrix not only leads to better thermal 

stability of the precipitate, but it also results in higher yield strength at high 

temperature. Table 4 shows the mismatch of some Al3M precipitates with aluminum. 

All the phases are metastable and have the L12 structure. As Table 4 shows, Sc, Y, Zr, 

and Nb trialuminides have a positive mismatch with aluminum; while Ti, Hf, and V 

trialminides have a negative mismatch. A possible way to decrease the misfit between 

the precipitate and the matrix is to alloy the L12 precipitates. Some alloying elements 

may change the lattice parameter of the L12 precipitate and by a proper heat treatment 
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the mismatch between the precipitate and the matrix may be considerably reduced or 

even eliminated. 

    

    

Table 4Table 4Table 4Table 4.... Magnitude of the mismatch between transition metal trialuminides and aluminum. 

Trialuminide 
Lattice parameter 

(nm) Mismatch with 

Al 

Absolute 

mismatch  

∆ 

Reference 

Group 3 transition elements 

Al3Sc 0.4103 +1.32% 1.32% [27] 

Al3Y 0.4234 +4.55% 4.55% [23] 

Group 4 transition elements 

Al3Ti 0.4048 -2.04% 2.04% [53] 

Al3Zr 0.4080 +0.75% 0.75% [53-55] 

Al3Hf 0.4048 -0.04% 0.04% [53] 

Group 5 transition elements 

Al3V 0.3870 -4.44% 4.44% [56] 

Al3Nb 0.4110 +1.49% 1.49% [57] 

2.52.52.52.5    Stable and Stable and Stable and Stable and MMMMetaetaetaeta----stable stable stable stable CCCCrystal rystal rystal rystal SSSStructures of tructures of tructures of tructures of TTTTransition Metal Aluminidesransition Metal Aluminidesransition Metal Aluminidesransition Metal Aluminides    

Many transition metal trialumides form with the meta-stable L12 structure when the 

alloy isothermally aged from the supersaturated solid solution. These fine L12 

precipitates not only yield excellent strength, but also they are thermally stable because 

they are fully coherent with the matrix. However, if they are over-aged, or if they are 

aged at a higher than optimum temperature, they will transform to the complex 

tetragonal D022 or D023structure (see Fig. 9). The D022and D023 precipitates are 

semi-coherent with the aluminum matrix. As a result, the coherency strengthening of 

the alloy will diminish when these precipitates form at the expense of the L12 

precipitates. And most importantly, the loss of coherency between the precipitate and 

the matrix accelerates Ostwald Ripening of the precipitate; as a consequence, the alloy 

will lose nearly all its precipitation strengthening effect. 

When the transition metal trialminide precipitates are aged at a temperature that is 

higher than a critical temperature, they will quickly transform from the meta-stable L12 
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structure to the complex tetragonal structure. As may be seen in Table 5, different 

transition metal trialminides have different critical conversion temperatures because of 

their different Gibbs free energy, diffusivity, and coherency energy. The transition metal 

trialminide that has the higher conversion temperature is the more thermally stable one; 

therefore the conversion temperature is the upper-limit of the aging temperature. Table 

5 shows that Al3V0.875Zr0.15 has the highest conversion temperature while Al3Sc has the 

lowest. There are two reasons for this: first, the diffusivity of vanadium in the aluminum 

matrix is the lowest among all the transition metals while that of scandium is the 

highest (see Table 3) and second, the misfit between Al3Sc and aluminum is relatively 

large while the misfit between Al3V0.875Zr0.15 and aluminum is nearly zero[37] (see Table 

4). 

 

 (a) (b) (c) 

Fig.9.Fig.9.Fig.9.Fig.9.(a) The L12 crystal structure,(b) The D022 crystal structure and 

(c) TheD023Crystal structure. 
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Table 5Table 5Table 5Table 5....Conversion temperature and stable structure of transition metal trialumindes. 

Phase 
Meta-stable 

structure 

Conversion 

temperature 

Stable 

structure 
Reference 

Al3Sc L12 350ºC 26 facets L12 [33] 

Al3Zr L12 >500ºC 
Fan or rod 

shape D023 

[32] 

[34] 

Al3Sc0.6Zr0.4 L12 500ºC 
Rod shape 

D023 
[35] 

Al3V0.875Zr0.15 L12 600ºC 
Rod shape 

D023 
[33] 

2.6 2.6 2.6 2.6     Alloying Alloying Alloying Alloying Zirconium Trialuminide (Zirconium Trialuminide (Zirconium Trialuminide (Zirconium Trialuminide (AlAlAlAl3333ZrZrZrZr)with)with)with)with    Other Other Other Other TTTTransition ransition ransition ransition MMMMetaletaletaletalssss    

As mentioned earlier, aluminum alloys that contain Al3Sc and Al3Zrare among the most 

promising alloys for high temperature applications; and therefore a large number of 

studies have been devoted to investigating the potential of alloying the Al3Zr and Al3Sc 

precipitates in these alloys with other transition elements while retaining the L12 

structure. Some of these studies are listed in Table 6. 

Basically, there are three motivations behind alloying Al3Zr and Al3Sc with other 

transition metals. These are; (1) Al3Sc has excellent properties at high temperature; 

however, it is too expensive. Therefore, substituting Sc with another element may 

decrease the cost of the alloy[35-42]. (2) The misfit between the precipitate and the 

matrix is an important parameter in precipitation hardening. Therefore, some 

researchers[37] tried to alloy the Al3Zr and Al3Sc precipitates with other transition 

metal(s) in order to decrease the misfit, and thus increase the thermal stability of the 

precipitate. Others [44, 49] believed that a larger coherent misfit can enhance the 

creep resistance of the alloy and so they tried to increase the misfit by alloying the 

precipitate. (3) In Ostwald Ripening the large precipitates grow even larger at the 

expense of the smaller precipitates. Researchers at U.C. Berkeley successfully made the 

size of the Al3Sc precipitates uniform by alloying the precipitate with Li and Zr, and thus 

they managed to improve the thermal stability of the alloy[43]. 

Among all these alloyed Al3M precipitates, Al3ZrxV1-x is the most interesting, mainly 
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because of the low diffusivity of vanadium in aluminum, and the low misfit between 

Al3ZrxV1-x particles and aluminum, which make alloys that contain these precipitates 

thermally stable. Moreover, vanadium can substitute for a large fraction of the 

zirconium (as high as 87.5%); and the liquidus temperature of the vanadium-aluminum 

system is considerably lower than that of other transition metal-aluminum systems. 

 

Table 6.Table 6.Table 6.Table 6.Alloying elements in Al3Sc and Al3Zr trialuminides. 

Trialuminide Alloying elements Reference 

Al3Sc 

Zr [35–42] 

Si [47] 

La elements 

Tb [48] 

Ho [48] 

Tm [48] 

Lu [48] 

Gd [44] 

Yb [44] 

Li, Zr [43] 

Zr, Hf [46] 

Al3Zr 

V [33, 51, 51] 

Ti [45, 50] 

Er [49] 

Sc [35–42] 

Sc, Hf [46] 

2.7 2.7 2.7 2.7     ManufacturManufacturManufacturManufacturinginginging    IssuesIssuesIssuesIssues    

The equilibrium form of the majority of the transition metal trialuminides forms by a 

peritectic reaction and the precipitate that forms is often coarse, incoherent with the 

aluminum matrix, and adds little strength to the alloy. Thus, formation of the 
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equilibrium trialuminides must be suppressed. The most effective and practical way to 

suppress formation of the equilibrium trialuminides is to quench the melt from the 

holding temperature at a fast enough cooling rate so as to prevent nucleation and 

growth of the stable trialuminides and end up with a super-saturated solid solution of 

the transition metals in α-aluminum. In essence, it is necessary to eliminate the 

homogenization step of the typical precipitation hardening heat treatment. 

 

Fig. 10.Fig. 10.Fig. 10.Fig. 10.The Al-rich corner of a typical Al-M (M=transition metal) phase diagram. 

Fig. 10 shows the Al-rich corner of a typical Al-M (M = transition metal) phase diagram. 

The liquidus line of the Al3M phase is quite steep, which makes attempts to suppress 

formation of the stable Al3M almost impossible. The energy barrier to forming the 

equilibrium Al3M phase0∆�jk%lm 3is related to the under-cooling of the melt (ΔT) by [58] 

∆�jk%lm � J
∆n� (13) 

As Fig.10 shows, for a melt with concentration Q` (whereQ` F Q6) that is quenched into 

the (L + Al3M) region of the phase diagram, the under-cooling &∆o' is quite large, and 
hence the energy barrier to nucleation of the Al3M phase0∆�jk%lm 3 is small. The 
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Volmer-Weber theory [58] relates the homogenous nucleation rate (I) of theAl3M phase 

to the energy barrier to nucleation, ∆�jk%lm  

                                               q � ro\[p  N ∆�s
tuvwn" exp {N ∆�u|%}m

tuvwn~ (14) 

where O�is the Boltzmann constant, and ∆�� is the free energy of activation for the 

short-range diffusion of a mole of atoms or molecules moving a fraction of an atomic 

distance across an interface to join a new lattice. Fig. 11 shows the process of 

nucleation of the Al3M phase during continuous cooling based on Eq. (14). The change 

in the number of Al3M nuclei with time follows an S-shape curve, and whenM � Mm, the 

number of nuclei is almost zero. Therefore, there is a critical cooling rate at which 

nucleation of the equilibrium Al3M phase could be avoided.  

 

Fig.Fig.Fig.Fig.11.11.11.11. Schematic representation of the nucleation of the Al3Mphase from the melt. 

2.82.82.82.8        The AlThe AlThe AlThe Al----Zr Zr Zr Zr SystemSystemSystemSystem    

Fig.12 shows the Al-rich corner of the Al-Zr phase diagram [22]. The maximum solubility 

of Zr in α-Al is 0.08 at % (0.28 wt %) at 667ºC, but even if all that zirconium is dissolved 

into α-Al at 667ºC, only about 0.3% volume fraction of Al3Zr particles will precipitate 

after aging.According to the Ashby-Orowan theory, such a small amount contributes 

Time � 
�m 

Slow cooling rate 
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insignificantly to precipitation hardening the alloy. 

 

Fig.12.Fig.12.Fig.12.Fig.12. The Al rich corner of the aluminum-zirconiumphase diagram. 

However, if the Al-Zr alloy is quenched very fast, the solubility of zirconium in α-Al could 

be doubled. Ryum [59] solutionized 0.5 wt% zirconium into α-Al by quenching the melt 

into a copper chilled mold. Similarly, Knipling [60] quenched a small amount (7 g) 

Al-0.65Zr into a chilled crucible that produced a cooling rate of 10-100ºC/s and 

obtained a supersaturated solid solution. Upon aging at 375ºC for 24 hrs, the 

precipitate that formed added about 500MPa to the strength of the alloy. However, if 

the amount of zirconium exceeds 0.8 wt%, the primary Al3Zr phase cannot be 

suppressed by conventional quenching processes. [61] 

2.2.2.2.9999    The AlThe AlThe AlThe Al----V and AlV and AlV and AlV and Al----ZrZrZrZr----V SystemV SystemV SystemV Systemssss    

Comparison of Fig. 12 to Fig. 13 shows that the curvature of the liquidus line of the Al-V 

system is gentler than that of the Al-Zr system; and at 800ºC, aluminum can dissolve 
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only 0.2 at.% zirconium while as much as 0.4 at.% vanadium can be dissolved at this 

temperature. Moreover, for the same amount of zirconium and vanadium dissolved in 

separate aluminum melts, the critical cooling rate needed to suppress the formation of 

primary Al3V is significantly slower than that needed to suppress the formation of 

primary Al3Zr. Hence, if zirconium is substituted by vanadium to form the mixed 

transition metal aluminide Al3(Zr,V), then the critical cooling rate to suppress the 

formation of Al3(Zr,V) primary phase would be between that needed to suppress the 

formation of primary Al3V and primary Al3Zr. 

 

Fig.13.Fig.13.Fig.13.Fig.13. The Al rich corner of the aluminum-vanadium phase diagram. 

Zedalis [37]cast an Al-0.4V-0.1Zr (wt%) alloy in a copper mold and used Select Area 

Diffraction to show that vanadium substituted for 85 at.% of zirconium in the L12 

precipitates that formed after aging. Also Chen [62, 63] cast a variety of high 

concentration vanadium and zirconium alloys by melt spinning; and precipitated a high 

concentration of meta-stable L12 particles in the alloys by aging at 425ºC. Moreover, 

both Zedalis and Chen showed that the Al3(Zr,V) co-precipitate exhibits better thermal 
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stability than the Al3Zr precipitate. 

The ternary phase diagrams of the Al-Zr-V system aid inproducing L12 precipitates in 

this system. Basically, there are two requirements to get L12precipitates: 

(1) All the zirconium and vanadium must be dissolved into the liquid aluminum and 

form a super-saturated solid solution upon freezing. As Fig. 14 shows, the 

maximum solubility of vanadium plus zirconium is about 5 at.% at 1100ºC, and 

the ratio of vanadium to zirconium at this point is 2.5. But since the typical 

pouring temperature for foundry casting is much lower than 1100ºC (about 

780ºC), and since typical cooling rates during foundry casting are slow, then the 

practical amount of zirconium plus vanadium must be significantly less than 5 

at.% 

(2) The tendency to form L12 precipitates depends to a large extent on how steep 

the solvus line of the system is. A steeper solvus line equates to a higher 

tendency to form a metastable L12precipitate. Fig.15 shows that only trace 

amounts of zirconium or vanadium dissolve in aluminum at 477ºC, and thus the 

driving force to precipitate metastable particles is high.  
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Fig.14.Fig.14.Fig.14.Fig.14. Isothermal ternary phase diagram of the Al-Zr-V system at 1100ºC. 

 

Fig.15.Fig.15.Fig.15.Fig.15. Isothermal ternary phase diagram of the Al-Zr-V at 477ºC. 
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2.2.2.2.10 10 10 10     EffectEffectEffectEffect    of Siof Siof Siof Silicon licon licon licon and and and and Ironon PrecipitationIronon PrecipitationIronon PrecipitationIronon Precipitation    of Transition Metal Aluminides in of Transition Metal Aluminides in of Transition Metal Aluminides in of Transition Metal Aluminides in 

AluminumAluminumAluminumAluminum    

Adding silicon and iron to an Al-Zr alloy accelerates the precipitation rate of Al3Zr [64, 

65]. Hori et al. [65] investigated the precipitation behavior of Al3Zr with transmission 

electron microscopy (TEM) and with resistivity measurements and concluded that 

silicon provides nucleation sites for the continuous precipitation of Al3Zr. Takeshi [65] 

suggested that adding iron to an Al-Zr alloy slightly accelerates the precipitation of Al3Zr, 

while adding silicon more significantly accelerates it. The most significant effect occurs 

at temperatures 50-100K below the temperature at which the maximum amount of 

zirconium precipitates in the Al-Zr-Fe and Al-Zr-Si alloys. 
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3.3.3.3.    ApparatusApparatusApparatusApparatuseseseses    and Procedureand Procedureand Procedureand Proceduressss    

3.13.13.13.1    DesignDesignDesignDesign    of the of the of the of the MoldMoldMoldMold    used in Measuring the Critical Cooling Rateused in Measuring the Critical Cooling Rateused in Measuring the Critical Cooling Rateused in Measuring the Critical Cooling Rate    

The driving force to precipitate primary transition metal aluminides in aluminum is 

quite large[54]. Therefore, a very high cooling rate is necessary in order to suppress 

their nucleation. In order to quantify the critical cooling rate necessary to suppress the 

formation of primary Al3Zr and Al3(Zr,V) in Al-Zr, Al-Zr-V alloys, a mold was designed and 

manufactured to quench the alloys at various cooling rates. The mold was designed to 

meet two requirements:(1)It provides a cooling rate gradient along the length of the 

mold; and (2) the fastest cooling rate is about 100ºC/s, which is in the range of cooling 

rates typical of high pressure die casting aluminum alloys. In order to meet these 

requirements, the cone-shaped mold shown schematically in Fig.16 was designed. The 

total capacity of the mold is 200 cm3, which corresponds to about 540 grams of 

aluminum. The mold was machined from brass because brass has high thermal 

conductivity and good machinablity. During casting, the mold is immersed in room 

temperature water(up to its rim) in order to further enhance heat extraction from the 

solidifying metal. The solidification simulation software MAGMASOFT was used to 

simulate the solidification process in the mold. As shown in Fig.17 the melt begins to 

solidify at the bottom of the mold and solidification progresses towards the top. The 

results of the simulation also show that the cooling rate1 ranges along the central axis 

of the ingot from 114°C/s at the bottom to about 20°C/s at the top, which prove that 

the mold meets the requirements. 

                                                             
1
The cooling rate (δ) is defined as the average cooling rate between 800°C and the temperature at the end of 

solidification, oR�� so that 
δ � i``X1nU��X

�  (15) 

In Eq. (15) oR�� can be identified from temperature – time curves and � is the time between 800°C and oR�� . 
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Fig.16.Fig.16.Fig.16.Fig.16. Dimensions of the mold. 
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(b) 

Fig. 17.Fig. 17.Fig. 17.Fig. 17.Resultsof the computer simulations (a) temperature distribution in the solidifying 

ingot, and (b) cooling rate along the central axis of the mold. 

The cooling rates were measured along the central axis of the mold. For this purpose, 

commercially pure aluminum was heated to 1000°C and then cast into the brass mold. 

Five thermocouples were placed at locations 1mm, 13mm, 25mm, 39mm, and 45mm 

away from the bottom of the mold. The temperature–time curves were recorded during 

solidification of the aluminum and plotted as shown in Fig.18. Two regions can be 

identified in these temperature–time curves. The first starts at the liquidus temperature 

of the alloy and extends to the end of solidification. The liquidus temperature varies with 

the composition of the alloys, but is typically in the range 760°C to 820°C[18-23]. The 

end of solidification may be determined from the temperature–time curves where the 

end of the plateau indicates the end of the transformation from liquid to solid. The 

average cooling rate during this stage (δ) is given by Eq.15. Fig.19 shows that δ 

decreases exponentially from 90°C/s at the bottom of the ingot to 4°C/s at the top.  
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The second region in the temperature–time curves extends from the end of 

solidification to room temperature. The average cooling rate during this region is 

defined as δ’ . Unlike δ, δ’ changes only slightly with location along the central axis of the 

mold and is about 3.5°C/s. The first region of temperature–time curves is significant to 

the precipitation of the primary Al3M phases, while the second region is not because of 

the low diffusivity of the transition metals in aluminum at the lower temperatures which 

are characteristic of the second region [24-28]. 

 

Fig.18.Fig.18.Fig.18.Fig.18.Measured temperature–time curves at different locations  

along the central axis of the mold. 

400

450

500

550

600

650

700

750

800

850

900

25 50 75 100 125 150

T
e

m
p

e
ra

tu
re

 (
 

C
)

Time (seconds)

1 mm1 mm
13 mm

25 mm
39 mm

45 mm



29 

 

 

Fig.19.Fig.19.Fig.19.Fig.19. Measured average cooling rates along the central axis of the ingot. 

3.2 3.2 3.2 3.2     Design of the Mold used in Measuring Tensile PropertiesDesign of the Mold used in Measuring Tensile PropertiesDesign of the Mold used in Measuring Tensile PropertiesDesign of the Mold used in Measuring Tensile Properties    

A water-chilled mold shown schematically in Fig.20 was designed to produce samples 

for measuring tensile properties. The mold is made of copper to achieve a high cooling 

rate. Five water channels are drilled in the mold walls to enhance heat extraction from 

the ingot. The shape of the cast ingot is a disk 0.5 inches in height and 2 inches in 

diameter, which can then be machine to yield standard tensile test samples. The 

average cooling rate in an ingot cast in this mold was measured at 3 locations along the 

thickness of the ingot and was found to be 160°C/s at the top, 60°C/s at the middle, 

and 28°C/s at bottom. 
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Fig.20.Fig.20.Fig.20.Fig.20. Schematic representation of the water

for tensile property measurements.

Fig.Fig.Fig.Fig.    21.21.21.21.Measured average cooling rate 
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3.33.33.33.3    Melt Preparation, Melt Preparation, Melt Preparation, Melt Preparation, Casting, Heat TreCasting, Heat TreCasting, Heat TreCasting, Heat Treatmentatmentatmentatment,,,,    and Microstructure and Microstructure and Microstructure and Microstructure 

CharacterizationCharacterizationCharacterizationCharacterization    

3.3.13.3.13.3.13.3.1    Melt Preparation and CastingMelt Preparation and CastingMelt Preparation and CastingMelt Preparation and Casting – Alloys with the chemical compositions shown in 

Table 7 were prepared by induction melting. The alloys were prepared from Al-65%V master 

alloy, 99% purity K2ZrF9 salt, 99% purity silicon, and 99.99% purity aluminum. The Al-65V 

master alloy was pre-ground into ¼ mesh (6.3mm sieve opening). 

Table 7.Table 7.Table 7.Table 7.Chemical compositions of the alloys. 

Alloy # Zr (wt.%) V (wt.%) Si (wt.%) Al (wt.%) 

1 0.6 0 <0.01 Balance 

2 0.1 0.4 <0.01 Balance 

3 0.1 0.4 0.2 Balance 

4 0.15 0.6 <0.01 Balance 

5 0.15 0.6 0.2 Balance 

The melting and holding temperature of the alloys was 800°C, which is high enough to 

ensure that all the zirconium and vanadium melted and dissolved in the aluminum. 

Alloys 1 to 5 were poured into the cone-shaped brass mold which was immersed in 

room-temperature water. The pouring temperature was approximately 780°C, which is 

above the liquidus temperature of the alloys. Alloy 2 was also cast in the water-chilled 

copper mold in order to produce ingots that were then machined into standard 

specimens for measuring tensile properties. Alloy 2 was degassed with Ar prior to 

casting in the water-chilled copper mold. 
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3.3.23.3.23.3.23.3.2    Establishing the Critical Cooling RateEstablishing the Critical Cooling RateEstablishing the Critical Cooling RateEstablishing the Critical Cooling Rate – In order to establish the critical cooling 

rate for the Al-0.6Zr and Al-0.4-0.1Zr alloys, samples were extracted from the ingots 

that were cast in the cone-shaped mold at different locations along the central axis of 

the ingot so as to represent different cooling rates. The samples were mounted in 

Bakelite and prepared for metallographic examination using standard procedures. The 

primary Al3M phases present in each sample were then observed by a scanning 

electron microscope (SEM)2 and the fraction of the primary phases were counted by 

means of image analysis software3. 

3.3.33.3.33.3.33.3.3    Heat TreatmentHeat TreatmentHeat TreatmentHeat Treatment, , , , Hardness Measurement,Hardness Measurement,Hardness Measurement,Hardness Measurement,    and Microstructure Characterizationand Microstructure Characterizationand Microstructure Characterizationand Microstructure Characterization 

–Samples were cut from the ingots that were cast in the cone-shaped brass mold from 

the location where the cooling rate was 85°C/s. These samples were aged in a box 

furnace according to the schedule shown in Table 8. Evolution of the Al3Zr and Al3(ZrxV1-x) 

precipitates during aging was monitored by a measuring the Vickers microhardness of 

the specimens, and by transmission electron microscopy4.The Vickers microhardness 

measurements were performed at room temperature with a load of 200g and a dwell 

time of 5 seconds on samples that were prepared by standard metallographic 

techniques. For characterizing the samples with conventional transmission electron 

microscopy, foils were prepared by mechanical grinding sections of the samples to a 

thickness of about 70µm. Discs with 3 mm diameter were then punched from these 

foils and thinned to perforation by twin-jet electropolishing at 20V DC with a 25 vol.% 

solution of nitric acid in methanol at -20°C. Samples for High Resolution TEM were 

prepared by the focused ion beam (FIB) technique. The samples had an area of 

approximately 1µm ×××× 3µm and were thinned to 20nm thickness. 

 

 

 

                                                             
2 Model JEOL 7000, JEOL USA, Inc., Dearborn Road, Peabody, MA 01960. 

3Image-J software. 

4 JOEL TEM 2010F and JOEL TEM 100CX, JEOL USA, Inc., Dearborn Road, Peabody, MA 01960. 
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Table 8.Table 8.Table 8.Table 8.    Aging schedule. 

Alloy Aging Schedule 

1 400°C, and 450°C isothermal aging 

2 400°C isothermal aging, 1 hour at 500°C +12 hours at 
400°C 

3 400°C isothermal aging 

4 400°C isothermal aging 

5 400°C isothermal aging 

3.3.43.3.43.3.43.3.4    Elevated Temperature TElevated Temperature TElevated Temperature TElevated Temperature Tensile ensile ensile ensile Property MeasurementsProperty MeasurementsProperty MeasurementsProperty Measurements– Ingots made from 

alloy2 by casting in the water-chilled copper mold were machined to produce ASTM 

standard size tensile specimens for high temperature tensile property measurements. 

The shape and dimensions of specimens are shown in Fig. 22. 

 

Fig.22.Fig.22.Fig.22.Fig.22. Schematic representation of the specimens used to measure tensile properties. 

The elevated temperature tensile property measurements were conducted according to 

the parameters shown in Table 9. In addition, the tensile properties of commercial 

purity aluminum were measured at 300°C to provide a base line for comparison. 

Table 9.Table 9.Table 9.Table 9.Parameters for measuring the tensile properties of alloy 2. 

Aging Parameters No. of Samples Test Temperature 

1hour at 500°C +12 hours at 400°C 3 300°C 

18 hours at 400°C 3 300°C 

1” 

2” 

3/16” 
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4. Results4. Results4. Results4. Results    and Discussionand Discussionand Discussionand Discussion    

4.14.14.14.1    The The The The Effect of Cooling Rate on the Volume Percent ofEffect of Cooling Rate on the Volume Percent ofEffect of Cooling Rate on the Volume Percent ofEffect of Cooling Rate on the Volume Percent ofthe the the the PrimaryPrimaryPrimaryPrimary    AlAlAlAl3333M M M M PhasePhasePhasePhase    

4.1.1 The Binary Al-Zr System 

The Primary Al3Zr phase was detected by SEM in the Back Scattered Imaging Mode. 

Because the atomic number of zirconium is much higher than that of aluminum, the 

primary phase can be clearly distinguished by the Z-contrast in Back Scattered Imaging 

Mode. Fig.23 shows the typical morphologies of the primary Al3Zr phase. The volume of 

an individual particle of primary Al3Zr phase is estimated to be around 7µm. As Fig.24 

shows, more of the primary phase precipitate formed in samples cooled at different 

cooling rates. While SEM pictures cannot be used to give accurate calculations of the 

volume fraction of these irregularly-shaped precipitates because of their lack of 3-D 

information, the average area fraction of the primary phase0*A�%M&�'&� � �>, �, \�. '3as 
a function of cooling rate (δ) can be calculated from SEM pictures; and it is given by 

                                                              *A�%M&�' � RA�%M&�'
RA�%M&��`X/�' (16) 

In Eq. (16),\A�%M&�' is the area fraction of the primary phase in samples cooled at 

cooling rate δ; and \A�%M&� � 0X/�' is the area fraction of primary phase in samples 

solidified extremely slowly – i.e., samples in which nearly all the transition elements 

precipitated as primary phase. Considering that the driving force to precipitate the 

primary phase is very high in the Al-0.6Zr system, it is reasonable to assume that nearly 

all the zirconium precipitates as primary Al3Zr when the cooling rate is 10°C/s. Hence, 

the average area fraction of the primary phase in the case of Al3Zr can be given by 

                                                             *A�%Z�&�' � RA�%Z�&�'
RA�%Z�&��(`X/�' (17) 

Fig.25 shows the variation of the area fraction of primary Al3Zr with cooling rate. The 

area fraction of primary Al3Zris nearly zero at an average cooling rate of 95°C/s and a 

large amount of primary Al3Zr is present at lower average cooling rates, which indicates 

that Al-0.6Zr alloy is a supersaturated solid solution only when it is quenched with a 

cooling rate that is higher than 95°C/s. 
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Fig.23.Fig.23.Fig.23.Fig.23.    Morphologies of the primary Al3Zr phase in Al-Zr alloys. 
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 (a) (b) 

 

 (c) 

Fig.24.Fig.24.Fig.24.Fig.24. Backscattered SEM images of the Al3Zr primary phase in samples cooled with 

different cooling rates. (a) 80°C/s, (b) 45°C/s, and (c) 10°C/s. 
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Fig.25.Fig.25.Fig.25.Fig.25.    Variation of the area fraction of primary Al3Zr with cooling rate. 

4.1.2 The Ternary Al-Zr-V System 

The same method used with the binary Al-Zr system is applied to analyze Al-0.4V-0.1Zr, 

Al-0.4V-0.1Zr-0.2Si, Al-0.6V-0.15Zr and Al-0.6V-0.15Zr-0.2Si alloys. The EDS and SEM 

image shown in Fig.26 indicate that the primary phase that forms in ternary Al-Zr-V 

alloys is Al3(Zr,V) co-precipitate with a polygonal morphology. Fig. 27 shows the variation 

of the area fraction of primary Al3(Zr,V) with cooling rate. The critical cooling rate of the 

Al-0.4V-0.1Zr alloy is 35°C/s, which is lower than that of the Al-0.6Zr alloy. Moreover, 

the combined mole fraction of vanadium and zirconium in the Al-0.4V-0.1Zr alloy is 

higher than the mole fraction of zirconium in the Al-0.6Zr alloy. Therefore it can be 

deduced that substituting vanadium for zirconium suppresses the formation of Al3M 

primary precipitates. However, when the concentration of vanadium is 0.6 wt%, a higher 

cooling rate (> 85°C/s) is necessary to suppress formation of the primary phase. Also, it 

can be seen from Fig. 26 that adding Si to these alloys accelerates precipitation of the 

primary phase. 
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Fig. 26.Fig. 26.Fig. 26.Fig. 26.    (a) SEM image

(b)EDS 
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(a) 

 

(b) 

image of a primary particle in Al-0.4V-0.1Zr alloy, and 

(b)EDS of the particle shown in (a). 
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(d) 

 

Fig.2Fig.2Fig.2Fig.27777....    Variation of the area fraction of primary Al3(Zr,V) with cooling rate in (a) 

Al-0.4V-0.1Zr alloy, (b) Al-0.4V-0.1Zr-0.2Si alloy, (c)Al-0.6V-0.15Zr alloy, and 

(d)Al-0.6V-0.15Zr-0.2Si alloy. 

As the Volmer-Weber theory (59) predicts, nucleation rate (Nhom) is related to 

undercooling (ΔT) by 

                                                         ��	H � *̀ Q`exp &N j
&∆n'�' (18) 

where *̀  is a complex function that depends on the vibration frequency of the atoms, 

the activation energy for diffusion in the liquid, and the average surface area of the 

critical nucleus. The value of f0is estimated to be ~1011, Co is typically considered a 

constant and its value is ~1029 atoms/m3, and r � (�DT��% nW�
=� �

. 

As Eq.(18) indicates, higher undercooling results in faster nucleation rate. The slope of 

the liquidus in the Al-V binary system at the Al-rich corner is gentler than that of the 

Al-Zr binary system; and the difference between the liquidus and solidus temperatures 

of Al-0.6Zr (0.18 at.% Zr) is 159°C. For the Al-0.4V (0.18 at.%V), it is only 69°C. 

Therefore the substitution of vanadium for zirconium lowers the critical cooling rate 

needed to suppress formation of the primary phases. 
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4.2. 4.2. 4.2. 4.2. Isothermal Isothermal Isothermal Isothermal Heat Treatment of Binary AlHeat Treatment of Binary AlHeat Treatment of Binary AlHeat Treatment of Binary Al----Zr and Ternary AlZr and Ternary AlZr and Ternary AlZr and Ternary Al----ZrZrZrZr----V AlloysV AlloysV AlloysV Alloys    

4.2.1  The Binary Al-Zr Alloy 

The variation in Vickers microhardness of anAl-0.6Zr sample that has been quenched 

at90°C/s is shown in Fig.28. As mentioned earlier, with a cooling rate of 90°C/s, the 

Al-0.6Zr alloy is a supersaturated solid solution. Fig.28shows that this supersaturated 

solid solution is age-hardenable at 400°C and 450°C, which is in agreement with other 

works (61). The Al-0.6Zr supersaturated solid solution reaches its peak hardness of 41 

HV200after aging for 12 hours at 450°C, after that time, the hardness begins to 

decrease. When aged at 400°C, the Vickers hardness of the alloy continues to increase 

steadily with time up to 24 hours, at which time aging was discontinued.  

Fig. 29 is a composite plot that shows the hardness of the Al-0.6Zr alloy as a function of 

cooling rate. As mentioned earlier, the lower cooling rates result in higher fractions of 

the primary phase which does not contribute to precipitation hardening. When the 

cooling rate is about 10°C/s, the hardness of the alloy is 27 HV200, and the alloy does 

not respond to aging, which implies that at this cooling rate nearly all the zirconium 

content of the alloy is in the primary phase.  

 

Fig.2Fig.2Fig.2Fig.28888....    Variation of the hardness of optimally-quenched Al3Zr alloy  

with aging temperature and time. 
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Fig.2Fig.2Fig.2Fig.29999....    Variation of the hardness of Al
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Variation of the hardness of Al3Zr alloy cooling rate, 

aging temperature and time. 

Zr-V Alloys 

The Vickers microhardness of alloys 2, 3, and 5 is shown in Fig.

isothermally aged alloys were quenched with a cooling rate of 90°C/s

the maximum microhardness of Al-0.4V-0.1Zr is 39 HV200 and it

for 18 hours. The peak hardness of Al-0.4V-0.1Zr

ieved by aging at 400°C for only 12 hours. Despite that only about 

zirconium used to make the Al-0.6V-0.15Zr

aluminum to form a supersaturated solid solution when

alloy exhibited remarkably high micorhardness when

C for 24 hours (60 HV200) and the hardness remained constant

36 hours, upon which time the experiment was stopped

30 40 50 60 70 80 90

Cooling rate (°°°°C/s)

450°C 3hrs

450°C 6hrs

450°C 12hrs

450°C 24hrs

 

Zr alloy cooling rate,  

Fig. 30. All these 

C/s. As seen in Fig. 
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Fig.Fig.Fig.Fig.30303030....    Variation of the hardness of optimally-quenchedAl-0.4V-0.1Zr, 

Al-0.4V-0.1Zr-0.2Si, and Al-0.6V-0.15Zr-0.2Si alloyswith aging temperature and time. 

4.2.3 Thermal Stability of Al-0.4V-0.1Zr Alloy 

A sample of alloy Al-0.4V-0.1Zr that was optimally-quenched and aged at 400°C for 12 

hour swas soaked at 300°C in order to assess the thermal stability of the Al3(Zr,V) 

precipitates. The result is shown in Fig.27 as a plot of Vickers hardness vs. time at 

300°C. It is clear that the Vickers hardness remain sconstant at 39 HV200up to 100 

hours, at which time the experiment was discontinued. Alloy Al-0.4V-0.1Zr is stable and 

may be used in applications that require thermal stability at temperatures up to 300°C. 
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Fig.Fig.Fig.Fig.31313131.... Variation of the Vickers hardness of alloy Al-0.4V-0.1Zr (optimally-quenched and 

aged at 400°C for 12 hours)with exposure time to 300°C temperature. 

4.34.34.34.3    Morphology Morphology Morphology Morphology and Crystal Structure and Crystal Structure and Crystal Structure and Crystal Structure of The Alof The Alof The Alof The Al3333(Zr,V) Precipitates(Zr,V) Precipitates(Zr,V) Precipitates(Zr,V) Precipitates    

Figs. 32 and 33show TEM and HRTEM micrographs of the Al3(Zr,V) precipitates. The 

image in Fig. 32 is from a sample of alloy Al-0.4V-0.1Zr that was aged for 1 hour at 

500°C followed by 12 hours at 400°C. The mean radius of the precipitate particles is 

about 7nms. Fig. 33 is from a sample of alloy Al-0.6V-0.15Zr-0.2Si that was aged for 12 

hours at 400°C. The mean radius of the Al3(Zr,V) precipitate particles is about 1nm. The 

Al3(Zr,V) precipitates are uniformly dispersed in both alloys. However, the radius of the 

precipitates in Al-0.4V-0.1Zr is much larger than that in Al-0.6V-0.15Zr-0.2Si because 

the Al-0.4V-0.1Zr alloy was pre-age at 500°C, which accelerated coarsening of the 

precipitates. In both the Al-0.6V-0.15Zr-0.2Si alloy and the Al-0.4V-0.1Zr alloy the 

precipitate particles are coherent with the aluminum matrix. In producing the image in 

Fig. 32, the sample was tilted to two beam condition; under this imaging condition, 

coherent phases exhibit the characteristic Ashby-Brown strain contrast. Fig. 32shows 

thatnot only are the precipitates fully coherent with the aluminum matrix, but they have 

matching lattice parameters. 
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Fig.Fig.Fig.Fig.    32323232....    TEM pictures of L12-structure of Al3(Zr,V) precipitates in Al-0.4V-0.1Zr alloy. The 

sample was tilted to the [110] zone axis. 

 

 (a) (b) 

Fig.Fig.Fig.Fig.33333333....    (a)HRTEM image of Al-0.6V-0.15Zr-0.2Si alloy. (b) higher magnification of the 

image in (a) 

The hardness of heat-treated Al-Zr alloys is negligible if the concentration of zirconium 

in the alloy is below 0.4 wt.%. This is attributed to the limited volume fraction of L12 

precipitates [68]that form with such low concentration of zirconium. However, as 

Fig.30shows, the hardness of Al-Zr-V alloys increases upon aging at 400°C. The 

hardness of aged Al-0.6V-0.15Zr-0.2S alloy is 60 HV200, which is almost three times as 

high as the hardness of the heat-treated Al-0.27Zr alloy [67]. The substitution of 

vanadium for zirconium increases the density of the L12 precipitates, and therefore, as 

Ashby-Orowan theory predicts, it increases the hardness of the alloy.  
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The TEM images in Figs. 32 and 33 show a high volume density of L12 precipitates in 

the matrix of Al-V-Zr alloys after proper heat treatment. Also, Fig. 33 shows that the 

misfit between the Al3(Zr,V) precipitate particles and the α-Al matrix is eliminated when 

the V:Zr atom fraction ratio in the precipitate is 0.875 (the Al3(Zr,V) precipitates in the 

Al-0.6V-0.15Zr-0.2Si alloy are fully coherent with the matrix); for this reason alloy 

Al-0.4V-0.1Zris thermally stable at temperatures up 300°C. 

As Fig. 30shows, adding Si to Al-V-Zr alloys increases the critical cooling rate needed to 

suppress formation of the primary phase. It has been suggested [66]that clusters of a 

primary silicon phase which form during solidification act as heterogeneous nucleation 

sites for the Al3M primary phases, and thus A in Eq. (19) becomes 

r¡R¢ � (�DT��% nW�
=� �

m *&�' (19) 

where *&�' is a function of the contact angle between the liquid and the silicon 
clusters. The value of *&�' is between 0 and 1. Therefore, the critical cooling rate is 
increased with the addition of Si. Also, the silicon clusters are effective in precipitating 

the Al3(Zr,V) L12 partials [64 -65]. This is clear from Fig.26 which shows that the 

hardness of the Al-0.4V-0.1Zr-0.2Si alloy reaches its peak 6 hours earlier than that of 

Al-0.4V-0.1Zr alloy.  

4.44.44.44.4    ElevatedElevatedElevatedElevated    Temperature Tensile Temperature Tensile Temperature Tensile Temperature Tensile PropertiesPropertiesPropertiesProperties    

Fig.34 shows the typical strain-stress curve of the heat-treated alloy 2 and also pure 

aluminum at 300°C. The yield strength of the heat-treated Al-0.4V-0.1Zr alloy is 300% 

higher than that of pure aluminum due to precipitation hardening. And the high 

temperature yield strength is dependent on the aging schedule (Fig. 35). Pre-aging the 

alloy at 500°C causes the precipitates to coarsen, and as the Ashby-Orowan equation 

suggests, the yield strength drops as the mean radius of the precipitates increase. 
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Fig.3Fig.3Fig.3Fig.34444....    Typical stress-strain curves of Al-0.4V-0.1Zr alloys and pure aluminum at 300°C. 

 

FFFFigigigig.3.3.3.35555.... Average yield strength of aged Al-0.4V-0.1Zr and pure aluminum at 300°C. 
  

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

0 1 2 3 4

T
ru

e 
te

n
si

le
 s

tr
es

s 
(k

si
)

True tensile strain

Pure aluminum

Al-0.4V-o.1Zr, Aged: 1 hr at 500°C + 12 hrs at 400°C

1.00

2.88

3.25

0

0.5

1

1.5

2

2.5

3

3.5

4

Pure Aluminum Al-0.4V-0.1Zr 1 hour 
aging at 500C + 12 
hours aging at 400C

Al-0.4V-0.1Zr 18 
hours aging at 400C

T
en

si
le

 y
ie

ld
 s

tr
en

g
th

 (k
si

)
Al-0.4V-o.1Zr, Aged: 18 hrs at 400°C 



49 

 

5.5.5.5.    ConclusionConclusionConclusionConclusionssss    

1. Substituting vanadium for zirconium in aluminum-zirconium alloys significantly 

decreases the critical cooling rate of the alloy. The critical cooling rate of Al-0.6Zr 

and Al-0.4V-0.1Zr alloys are measured to be 90°C/s and 35°C/s respectively. This is 

an important finding since these thermally stable alloys can now be used to 

manufacture components by high pressure die casting. 

2. It has been shown that vanadium co-precipitates with zirconium and aluminum 

upon proper aging and forms spherical, nanosize particles that have the L12 crystal 

structure, and that are fully coherent with the α-aluminum matrix. 

3. The Al3(Zr,V) precipitates are thermally stable up to 300°C and they add about 2 Ksi 

to the yield strength of pure aluminum at 300°C. 
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