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Abstract 
The goal of this project is to design and implement a pedestrian detection 

and avoidance solution for indoor robots. The team utilized a TurtleBot robot 
running ROS, with onboard sensors of RealSense Camera and Velodyne Lidar. 
The robot system is able to maneuver autonomously in an indoor environment, 
recognizing pedestrians and automatically generating new routes to avoid the 
moving pedestrians.  The team conducted a number of experiments to evaluate 
the functionality and reliability of the prototype system. The project will create 
a safer environment for human robot interactions. 
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1 Introduction 

1.1 Problems Defined 
Today an increasing number of manual jobs are, completely or partially, 

replaced by robots such as the mobile robots at Amazon’s fulfillment centers. 
After each warehouse receives online orders, robots are programmed to pick up 
ordered products from designated locations and move them to the distribution 
stations. As the robots move at high speed within the warehouse, there is a major 
safe concern that the robots may hit workers. The project aims to enhance the 
functionality of these robots by allowing them to detect and subsequently avoid 
collision with pedestrians. 

 

1.2 Project Statement 
The goal of this project is to implement pedestrian detection and 

avoidance on an indoor robot, conduct the test on the prototype and provide 
recommendations.  

 

1.3 Summary 
As an experimental prototype, the team uses a TurtleBot2 to imitate a 

warehouse robot and test it in the hallways to simulate the real environment in 
the warehouse. The focus of this project is to test the functionality of sensors, 
TurtleBot and algorithms involved in pedestrian and detection and avoidance.  

 

1.4 Additional Requirements 
 This is an interdisciplinary MQP project. Chapters 1 through 7 are the 
main report. Chapter 8 is to meet the additional requirements in computer 
science. Chapter 9 is to meet the additional requirements in mechanical 
engineering. 
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2 Background 
2.1 Current Status of Warehouse Robots 

This section introduces the warehouse robots employed at Amazon 
fulfillment centers, the corresponding international regulations, and the existing 
safety measures to prevent incidents occurring on human associates.  
 

2.1.1 Warehouse Robots in Amazon Fulfillment Centers 

As a leader of warehouse robots, Amazon Robotics has developed 
autonomous robots that could work collaboratively with humans since 2012. In 
2019, out of 175 fulfillment centers with working warehouse robots were built 
globally, 26 centers achieved the collaboration of humans and robots [1]. The 
majority of warehouse robots in the centers are autonomous mobile robots called 
“drive units,” which are 2 feet by 2.5 feet in dimension. By scanning 2D 
barcodes located on the floor, “drive units” calculates an efficient path to carry 
the required pallets to humans by moving horizontally or vertically [2]. 
 

2.1.2 Safety Standards of Warehouse Robots 

According to ISO, the International Organization for Standardization, 
collaborative robotics was defined as the autonomous robots that “share the 
same workspace with humans.” Therefore, the robot units that work 
collaboratively with humans in fulfillment centers ensemble this definition. In 
ISO/TS 15066 established in 2016, safety requirements for collaborative 
robotics were explicitly presented. Multiple measurements were considered, 
including limitations of power and force applied to humans, the maximum speed 
of robots, the minimum separation distance between robots and humans, and 
avoidance of protrusions utilized on robot bodies [3].  
 

2.1.3 Current Approach to Improve Safety of Associates 

To improve the associates’ safety when working with robots, Amazon 
Robotics created the “Robotic Tech Vest,” a wearable technology that allowed 
the robots to avoid collisions by recognizing the associates, calculating their 
movements, and keeping distance [4]. However, as a critical concern in the 
collaboration of associates and robots, the safety of associates requires more 
attention. According to Raz Osman, a Senior Health and Safety Manager at 
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Amazon, vision technology would possibly be implemented to lower the risks 
of collisions and injuries [5]. 

 

2.2 Sensors 

“Sensing and intelligent perception in robotic applications are crucial 

because many essential features greatly depend on the performance of sensors 
that provide critical data to these systems.” [6] In this project, the ability to detect 
the environment, the ability to locate itself in the map, the ability to follow the 
path generated by algorithms are all closely related to the sensors.  
 

2.2.1 LiDAR 

“LiDAR,” the acronym of Light Detection and Ranging, is a range 
measurement approach with pulsed lasers [7]. Lidar uses electromagnetic waves 
in the optical and infrared wavelengths. It is an active sensor, sending out an 
electromagnetic wave and receiving the reflected signal. It uses a much shorter 
wavelength compared to microwave radar, which results in higher angular 
resolution and better accuracy [8]. In robotics, this sensor provides real-time data 
for map generation, object monitoring and detection, and localization. 
 

2.2.2 Camera 

Camera is one of the most wide-known sensors nowadays because of its 
inexpensive price and versatile fields of implementation. In robotics, cameras 
are broadly used for object recognition and depth sensing. In pedestrian 
avoidance of robots, for example, camera provides inputs for human detection 
and distance estimation, facilitating the robot to avoid collisions with pedestrians.  

 

2.3 Algorithm 
“Algorithm is the procedure for addressing the task as operationalized: 

steps for aggregating those assigned values efficiently or making the matches 
rapidly” [9]. For pedestrian avoidance, a path-planning algorithm is needed for 
the robot to reach the destination; an object recognition algorithm is needed to 
identify the pedestrians; an obstacle avoidance algorithm is needed to navigate 
around the obstacle. 
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2.3.1 Path Planning Algorithm 

Path planning algorithms generate a geometric path, from an initial to a 
final point, passing through pre-defined waypoints, either in the joint space or in 
the operating space of the robot, while trajectory-planning algorithms take a 
given geometric path and endow it with the time information [10]. There are 
multiple popular path planning algorithms for robot navigation such as Dijkstra, 
A*, and greedy algorithms. 

 

2.3.2 Object Recognition Algorithm 

“In computer vision, deep learning based object recognition models have 
become more and more influential in recent years” [11]. Object recognition 
allows a robot to analyze and classify designated objects through the images 
from the camera. The speed and accuracy of this algorithm affects the ability of 
pedestrian avoidance of a robot. 

 

2.3.3 Object Avoidance Algorithm 

Obstacle avoidance is one of the essential tasks in local path planning, 
which guarantees human and vehicle safety. Though multiple theoretical 
approaches are brought up from different researchers, most of which failed to 
perform accurately in real systems. In robotics, an object avoidance algorithm 
includes object recognition, detouring path generation, and new navigation path 
update [12]. 

 
2.4 Existing Robots with Similar Functionality 

In the field of autonomous mobile robotics, researchers have developed 
multiple collision-free navigation approaches. Therefore, various types of 
robotics contain the pedestrian avoidance functionality as a rudimentary basic 
[13]. Commercial robotics such as Spot from BostonDynamics can avoid 
obstacles in 360 degrees with its stereo cameras [14]; robot vacuum cleaner 
Roborock S6 MaxV applies machine learning technology to recognize and avoid 
obstacles [15]. Vehicles such as Audi A8 and Tesla Model 3 contain collision 
avoidance system to detect the surrounding traffic and assist drivers to take 
proper reactions [16][17]. ABB provides collision detection option in its 
controller software, RobotWare, for certain industrial robotics to protect both 
the robot and its work pieces [18]. 
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3 Methodology 
3.1 System Overview 
 

 
  

Figure 3.1:  System layout of the project 

  

This project consists of pathfinding, perception for pedestrian detection, 

and navigation for obstacle avoidance. These sections are mutually dependent, 

and the overview of the system is shown in Figure 3.1.   

 

3.2 Design Specification 

3.2.1 Robot 
The first aspect that required consideration was the size of the robot. Since 

this project was targeting for the warehouse, a robot with similar size was 
preferred. Secondly, the robot needed to be easily programmable, thus a robot 
system with high quality open-source SDKs and many open-source software 
were preferred. The robot chosen at last was the TurtleBot2.  
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TurtleBot is a low-cost, personal robot kit with open-source software. The 
TurtleBot kit consists of a mobile base that is 14 inches by 14 inches in 
dimension, 2D/3D distance sensor, laptop computer or SBC (Single Board 
Computer), and the TurtleBot hardware mounting kit. In addition to the 
TurtleBot kit, users can download the TurtleBot SDK from the ROS wiki. The 
core technology from TurtleBot is SLAM and Navigation. TurtleBot can run 
SLAM algorithms to build a map and then move around using the included 
resources. Moreover, it is convenient for the team to test the robot because it can 
be controlled remotely from a laptop. 

 

3.2.2 Mother Board 

For the central information processor, a compact and power-efficient board 
was preferred, though it was not expected to complete heavy computation. The 
team selected the existing Jetson TX2 processor platform that was available in 
the lab.  

Jetson TX2 is an embedded Artificial Intelligence (AI) computing device 
developed by Nvidia Corporation. It contains professional Graphics Processing 
Units (GPU) with 256 NVIDIA CUDA cores and 32GB of onboard storage. TX2 
supports the power modes of 7.5W or 15W, for users to configure and apply [19]. 

 

3.2.3 Camera 
Camera was the primary input device on the robot for pedestrian detection. 

For requirement, the camera must have a depth sensing function because the 
distance between pedestrian and the robot was necessary for performing 
avoidance. The camera chosen for this project was the Intel RealSense camera 
D435i. 

The main advantage of this model is the depth vision, which is crucial for 
position calculation. This camera owns a wide field of the view with 86 degrees 
by 57 degrees, which supports versatile applications such as “robotics and 
augmented/virtual reality” within the range of 10 meters. Moreover, with Inertial 
Measurement Unit (IMU) involved, this camera can fulfill the applications with 
better depth awareness in motion. This unit is especially helpful during SLAM 
and tracking application by improving point-cloud alignment in this project [20]. 

 



7 
 

  
 

3.2.4 LiDAR 

LiDAR was the primary input for robot localization. Since the team 
preferred a low-cost, lightweight yet efficient LiDAR, the model Velodyne 
Puck-16 was chosen. 

Velodyne Puck-16 LiDAR is a real-time depth sensor that can detect three-
dimensional distance comprehensively. With a long detection range of 100 
meters and a featherweight body of 830 grams, this compact sensor serves a 
broad field of view with 360 degrees horizontally and 30 degrees vertically, with 
15 degrees up and down [21]. 

 

3.2.5 Path Finding Algorithm 

A path finding algorithm was necessary to ensure the time efficiency in 
robot navigation. Existing shortest path algorithms were mostly similar, such 
that they all yielded the correct path towards the destination. Despite low time 
complexity, this algorithm must be convenient to implement for robot systems; 
hence the team chose A* as the path finding algorithm. 

A* is implemented in versatile fields. This algorithm combines the property 
of Dijkstra’s Algorithm, “favoring vertices that are close to the starting point,” 
and Greedy Best-First-Search, “favoring vertices that are close to the goal.” 
Therefore, it plans and optimizes the path ahead of the movement of robot [22]. 

 

3.2.6 Object Recognition Model 

After obtaining information from the camera, the system needed to 
recognize the images. A computer vision algorithm was needed. A pre-trained 
model readily to be integrated with the robot system was preferred in this project. 
The pre-trained model chosen was YOLO.  

YOLO is an efficient neural network for object detection on a full image. 
This network divides the image into regions and predicts bounding boxes and 
probabilities for each region. These bounding boxes are weighted by the 
predicted probabilities. YOLO has several advantages over classifier-based 
systems. It looks at the whole image so its predictions are informed by global 
context in the image. It also makes predictions using a single neural network 
unlike systems like R-CNN which generates thousands of candidates first 
followed by a classifier. This makes YOLO extremely fast, which is more than 

1000x faster than R-CNN and 100x faster than Fast R-CNN [23].  

 



8 
 

  
 

3.2.7 Object Avoidance Algorithm 

Once a pedestrian was detected and classified by the robot, the system 
needed to react to it dynamically. However, adopting an existing object 
avoidance algorithm from sources was not viable because nearly all the existing 
methods required different sensors that this robot did not contain. Thus, a simple 
object avoidance algorithm was designed. This algorithm took the human 
position as input. It created another layer in RViz based on the 3-dimensional 
coordinates generated by the algorithms.  Then it marked the position of the 
pedestrian in the map. 
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4 Simulation 
Simulation plays an essential role in this project by providing an 

opportunity to verify the feasibility of the objectives. It additionally helps the 
team to understand how the TurtleBot senses and operates visually. 
 

4.1 Simulation Platform 
Before testing on the real robot, an attempt to simulate the robot and its 

environment virtually on a computer was made using ROS on the Ubuntu system. 
The simulation platforms used were Stage and Gazebo. 

 

4.1.1 Ubuntu System 

Ubuntu develops and maintains a cross-platform, open-source operating 
system based on Debian, where Debian is a volunteer project that has developed 
and maintained a GNU/Linux operating system for well over a decade. The 
focuses of the Ubuntu system are release quality, enterprise security updates and 
leadership in key platform capabilities for integration, security and usability. 

 

4.1.2 ROS 

ROS is the acronym of the Robot Operating System. This “flexible 
framework of writing robot software” was built to simplify tasks for users. By 
creating tools, libraries, and conventions under the same platform, the 
complexity of connecting various robotic platforms after using each feature 
provided will now be lessened [24]. Throughout the distribution releases 
published by ROS, different versions are primarily targeted for various 
platforms. For example, the twelfth distribution release, ROS Melodic Morenia, 
was targeted at Linux Ubuntu 18.04 [25]. Moreover, ROS supports a wide range 
of robot hardware, including TurtleBot2 [26].  

There are approximately more than 3000 packages in the ROS ecosystem, 
contributed from the ROS maintenance teams and the public. The core 
components of ROS include communications infrastructure, which provides 
inter-process communication at the low level; robot-specific libraries, such as 
Robot Geometry Library and Robot Description Language; and tools, such as 
Command-Line Tools and Rviz, which provides “three-dimensional 
visualization of many sensor data types and any URDF-described robot” [27].  



10 
 

  
 

4.1.3 Stage 

Stage is a robot simulator. It provides a virtual world populated by mobile 
robots, sensors, and various objects for the robots to sense and manipulate. Stage 
provides several sensors and actuator models, including sonar or infrared rangers, 
scanning laser rangefinder, color-blob tracking, fiducial tracking, bumpers, 
grippers, and mobile robot bases odometry for global localization. 

 

4.1.4 Gazebo 

Gazebo 3D simulator allows users to “rapidly test algorithms, design robots, 
perform regression testing, and train AI systems using realistic scenarios” [28]. 
To implement Gazebo simulator with ROS, the package named 
gazebo_ros_pkgs is required. This package utilizes ROS messages and services 
to perform simulations in Gazebo [29]. 

 

4.2 Simulation: Stage 

4.2.1 Simulation Objectives 

 The first simulation goal was relatively simple: performing a 2D 
simulation on the software Stage, particularly for map recognition and path 
planning, as Table 4.1 shown below. A map with perfect information was given 
to the robot. This preliminary simulation did not include the detection of local 
obstacles or random pedestrians.  

 Table 4.1: Aspect and achievement for Stage simulation 

 The preliminary simulation laid the ground for adding more features that 
were complex later, such as non-static objects and imported object locations. 

 

4.2.2 Simulation System layout 

The overall system layout for this simulation is shown in Figure 4.1.  

Aspects Achievements 

Map recognition Able to transfer.png file into map 

Path Planning Able to path planning with known map 
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Figure 4.1:  System layout for Stage simulation 

Specifically, the system only required a starting point and an end point as 
inputs.  Users only needed to specify the endpoint to drive the robot. The A* 
algorithm also took the map and obstacle information to generate the route 
automatically, then the chassis would be driven in the simulated environment 
with chassis data in TurtleBot SDKs.  

 

4.2.3 Simulation Summary 

The first step needed was map recognition to let the robot know what 
environment it was in. An image was given to be used as a map for the robot to 
navigate (see Figure 4.2).  

 
Figure 4.2: The map for Stage simulation 
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Then it allowed the simulator to generate a map as shown below in Figure 
4.3 that was recognizable for the robot in Stage simulator. Now the robot could 
be controlled via RViz, as shown in Figure 4.4. 

 

Figure 4.3: 2D simulation in the Stage simulator 

 

Figure 4.4: RViz control panel for the simulation 
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Our initial plan was to use the algorithm A* for path planning, included 
in the package Navfn. However, after the installation of Navfn, which included 
both A* and Dijkstra, it appeared that A* was not working; the developer of 
Navfn has stopped updating the package. Consequently, a new package, 
global_planner, was found, which contains various algorithms, including 
Dijkstra and A*. This version of A* was working, hence it was adopted.  

 

4.3 Simulation: Gazebo 

4.3.1 Simulation Objectives 

The second simulation objective was to perform an upgraded version of the 
first simulation: a 3D simulation on Gazebo Simulator. In addition, for this 
simulation, a map input was not included. The robot needed to explore the local 
environment and generate a map on its own. Moreover, the environment was 
designed to be more challenging as random pedestrians and local obstacles were 
added. The overall objectives are shown in Table 4.2. 

Table 4.2: Aspects and achievements for Gazebo simulation 

Aspects Achievements 

Object Detection Able to recognize obstacle 

Object Reaction Able to react correctly to the object 

Exploring Able to drive and explore in unknown area 

SLAM Generate map while moving 
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4.3.2 Simulation System layout 

The overall system layout for this simulation is shown in Figure 4.5.  

 

Figure 4.5: System layout for Gazebo simulation 

In addition to the preliminary system, the new system added two features 
including trajectory planning and local obstacle avoidance, which utilized the 
information from local/ global sensing. The robot in the simulator would 
generate a path from user input, and then maneuver following the path. The 
system could generate a new path when it encountered a new local obstacle, and 
then follow the updated path on the movement.  

 

4.3.3 Simulation summary 

After accomplishing basic functionalities in the Stage simulation, this 
project moved on to the second simulation with more complex features, which 
presented a more realistic situation with pedestrians and obstacles. Gazebo 
allows robots to explore in a 3-D environment, which is practically similar to the 
real-world situations.  
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The first step was importing a gazebo.world file that set up the 3D 
environment for the robot. The gazebo.world file included playground.world, a 
file creating random obstacles and the robot. The robot would first perform 
gmapping, during which the robot would walk around, collect topographic 
information via camera, and transform learned information into a 2D map. 

In the actual simulation, the robot was controlled by keyboards when 
exploring its environment. Through the camera, every image was transformed 
into a complete 2D map of the surrounding. Then the 2D map was exported into 
RViz, in which everything about the simulation could be manually controlled.  

Therefore, the set objects were successfully achieved in this phase of the 
project: the robot could explore around an unknown area and transform 
everything it saw in the 3D world into a 2D map. The robot could detect and 
react to objects according to the map it generated.  

For local obstacle detection, since local obstacle location was generated 
from an actual camera and human detection algorithm, it was not possible to 
simulate in the gazebo virtual environment. The local obstacles in the simulation 
were placed as several dummy points randomly generated based on the robot’s 
position. The actual integration of human detection algorithm and local path 
planning were validated in the phase of on-site testing. 
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5 Coding and Testing 
          The integration of each component, testing of existing ROS packages and 
custom-written code consist mainly of two sections: TurtleBot and sensors. The 
following sections detail the coding process, individual testing, and integration 
testing for TurtleBot and sensors. 

 

5.1 TurtleBot 
There were two significant coding and testing parts of TurtleBot, 

including bringing up the TurtleBot and navigating from a start location to the 
desired location.      

 

5.1.1 TurtleBot Coding 

A ROS package called turtlebot_bringup was required to launch. It 
offered roslaunch scripts to start the functionality of the TurtleBot base. To be 
more specific, the base launch file called minimal.launch was utilized to start 
some essential nodes such as kobuki_node, robot_state_ publisher, and robot_ 
pose_ekf. There was mainly a robot model difference between the default setup 
of TurtleBot and that of the real one, so the default robot model was modified 
according to the real robot model. Notice that the sensors and control boards 
were different.  

 

Figure 5.1:  Default (left) and actual (right) TurtleBot models          
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           As shown in Figure 5.1, the left model was the default TurtleBot model, 
while the right one was our actual robot model. Essentially, a default camera 
Microsoft Kinect camera supported by two poles was removed. Two poles were 
moved and attached to the top hexagon stack. They could support a rectangle 
plate used as a base to mount lidar and camera. The URDF files of lidar and 
camera were found online and integrated into minimal.launch file. There were 
several coordinate adjustments of these components after measuring their 
position. Ideally, using this modified launch file could start the TurtleBot and 
show the correct robot model in RViz.  

The other ROS package that the team integrated and modified was called 
turtlebot_navigation. This package had a wide variety of functions, including 
costmap, local planner, global planner, map server, etc. The team decided to use 
A* algorithm to make path planning. However, by default, the global planner 
uses a package called Navfn, which created a path plan using Dijkstra’s 
algorithm. There was a new version of the Navfn package called global_planner, 
which utilized the more reliable A* algorithm to generate a path by solving the 
optimization problem. For some launch files, they would find the defined 
parameters when they launch. Therefore, the modifications were completed on 
the parameters that defined what navigation package and path planning 
algorithm needed to be used. 

 

Figure 5.2: Default (left) and actual (right) navigation algorithms         

As shown in Figure 5.2, after setting the new parameter, the global planner 
could access the global_planner package's nodes and topics. In addition to the 
global planner, the costmap had adjustable parameters such as frame, update 
frequency, and transform tolerance. These parameters could be modified as 
needed when testing the navigation for the robot.      
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5.1.2 TurtleBot Testing 

The first step was to power Jetson TX2 and the kobuki base of TurtleBot. 
A power bank powered the Jetson TX2 while the kobuki base was using its 
designated battery. After pressing their buttons, the green lights indicated the 
base and Jetson TX2 are on.  

The second step was to launch the kobuki base. When running the 
modified minimal.launch in the terminal, the terminal showed that the kobuki 
was detected and launched successfully. At the same time, a tinkle was made by 
the kobuki base. 

Before testing the navigation, an initial testing of the kobuki base was 
conducted by using keyboard teleoperation. The keyboard teleoperation was a 
basic ROS package that allows people to remote control TurtleBot through the 
keyboard. After launching the keyboard teleoperation file, TurtleBot could move 
and rotate based on the key pressed. 

 

Figure 5.3: Remote control of TurtleBot through keyboard 

        The keys “i” and “,” were used to command TurtleBot to move forward and 
backward; keys“j” and “l” were used to turn TurtleBot to left and right, and key 
“k” was to stop TurtleBot. As shown in Figure 5.3, a team member was 
teleoperating TurtleBot to move forward on the second floor of Atwater Kent 
Laboratories. 
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5.2 Sensors 
        There were two primary coding and testing parts for the lidar, including 
launching the lidar and using the data from the lidar to build the floor map and 
localize the robot. For the camera, in addition to the launch file for initializing 
the camera, the launch files for human detection and map layer were also 
required. 

 

5.2.1 Lidar Coding 

To launch the lidar to generate the sensor data, the ROS package called 
veloydne_pointcloud was utilized. This package provided ROS nodelets and 
sensor_msgs/PointCould2 messages. However, since the gmapping package 
only created the map from sensor_msgs/LaserScan messages, a package called 
pointcloud_to_laserscan was required. This package offered a ROS node which 
took a pointcloud2 message and converted it to a 2D laser scan message. 
        Another way was found on how to generate the sensor_msgs/LaserScan 
messages. The velogyne_laserscan node could convert a ring of a Velodyne 
pointcloud2 to a sensor_msgs/LaserScan message and published it. It was 
noticed that some users reported the issues of the velogyne_laserscan node. A 
testing was done to see whether this node works better than 
pointcloud_to_laserscan node or not. 
        Lidar was responsible for Adaptive Monte Carlo Localization (AMCL) 
when a map was given. A ROS package called amcl was included in the launch 
file. This package took three required messages, including a laser-based map, 
laser scans and transform messages, and an optional message called initalpose 
produced the estimated pose of the robot on the map. The map would be built 
from gmapping, and the laser scans were generated from either 
pointcloud_to_laserscan node or velodyne_laserscan node. 
           

5.2.2 Lidar Testing 

The first step was to power and launch the kobuki base. Then, a gmapping 
node and a laserscan node were launched to build the map. Packages such as 
velodyne_laserscan and pointcloud_to_laserscan were tested individually. 
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Figure 5.4:  TurtleBot was building map in garage 

An initial testing of building the map was done in a garage. TurtleBot was 
placed in an area enclosed by the cardboard (see Figure 5.4). The team remotely 
drove the TurtleBot to scan the surroundings.  

    

Figure 5.5:  The map created by pointcloud_to_laserscan (left) and velodyne_laserscan 
(right) 

As shown in Figure 5.5, the gmapping built two maps by using 
pointcloud_to_laserscan node and velodyne_laserscan node, respectively. The 
lidar could do a 360-degree scanning, so two maps were built in 30 seconds. 
Using pointclould_to_laserscan node could build a more distinct map, so later 
on, building the map relied on pointclould_to_laserscan node. 

A further testing was conducted on the second floor of Atwater Kent 
Laboratories (AK lab). The goal was to build the floor map using the lidar. 
Following the same steps as taken during the initial testing, the team obtained  
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the building floor map (see Figure 5.6). TurtleBot started from the position 
marked in red, moved around the floor, and finally returned to the starting 
position.  

 

Figure 5.6. The second floor map of AK lab  

        After obtaining a static map, TurtleBot could navigate from a start position 
to a request position. AMCL would help TurtleBot to localize the robot. Since 
the tests of AMCL and navigation could be done together, a combined test is 
outlined in Section 5.3.  
 

5.2.3 Camera Coding   

The primary function of the camera in this project was to detect humans. 
The first step was to launch the RealSense Camera D435i. A ROS package called 
realsens2_camera was used to launch the RealSense Camera and publish the 
topics. Some settings of the RealSense Camera, such as image width, height, and 
frames per second, were modified. This would be discussed later in section 7.  

The next step was to use YOLO to detect humans. An existing ROS 
package called YOLO ROS was developed for object detection using camera 
images. Although this pre-trained YOLO ROS could detect different objects, in 
this project, the team were only interested in pedestrian detection. Therefore, the 

. 
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object detection class was modified to focus on detecting humans only. To 
access the data from RealSense Camera, YOLO's default subscriber was 
changed from /camera/rgb/image_raw to /camera/color/image_raw.   

Moreover, the implementation of human detection capability was not 
sufficient since the robot needs to know not only a person's existence but also 
the exact location of a person for collision avoidance. Thus, a new ROS package 
called coordinate_map was written to use the depth information and point cloud 
data generated by the RealSense Camera to calculate the person's location in the 
world coordinate with respect to the camera.  

The final implementation was to update the person's location on the map. 
This would let the path planner know the existence and location of the person. 
Based on the given person's location, the path planner could create a new path 
to avoid the person. The costmap consisted of several layers, such as the obstacle 
and inflation layer. The idea was that a new layer used for merely displaying the 
person's information could be added to the map. Therefore, a new ROS plugin 
was coded to read the position information from coordinate_map and project the 
position information into the new costmap layer, then display the person 
dynamically on the map based on the person's calculated location. Within this 
layer, a marker was used to display the person as a dark square on the map. 
    

5.2.4 Camera Testing 

         The RealSense Camera was connected to the Jetson TX2 installed on the 
robot. Running the camera and YOLO launch file was able to launch the camera 
and detect the person. A window was popping on. Within the window, the 
camera's real-time image was shown, and a bounding box indicated the person's 
position.       
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Figure 5.7:  The testing of YOLO detection 

 

        As shown in Figure 5.7, a tester was standing closely in front of the camera. 
Even though the camera only captured the lower part of the body, YOLO could 
still detect the person successfully.  

 

Figure 5.8:  The coordinate of two people 

        The next part was to test if the program could give precise location 
information of the person. The launch file was running to calculate the 
coordinate of the person. As a human was detected, a pop-up window drew a 

X 

Y 
Z 
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line to indicate the center axis of the person and displayed three numbers in 
parentheses. As shown in Figure 5.8, two testers crouched in front of the camera. 
The program calculated and displayed the coordinate of these two testers. Three 
numbers in the parentheses represented the distance from the camera to the 
person in X, Y, and Z direction, respectively. More tests were carried out to 
verify the correctness of coordinate. For example, the object moved forward and 
backward, leftward and rightward, stood up, and sat down to verify if 
coordinates were changed as expected.  
        After obtaining the location information of the person, the human layer was 
updated to the map. The layer node was launched to display the person on the 
map. Two testers crouched in front of the camera (see Figure 5.8). The map was 
updated, as shown in Figure 5.9. The hexagon was TurtleBot, and two little 
squares represented the locations of two testers. These two squares would be 
constantly updated based on the actual positions of human objects and could be 
erased entirely when the person moved out of the frame.  

 

Figure 5.9:  The costmap of two testers 

 

5.3 Combined Test 
       Followed by the individual test of TurtleBot and sensors, a combined test 
was conducted in the following scenarios listed from easy to hard: 
        The general command for the robot was to navigate from the start position 
to a request location. 

1. On the way to the destination, there were no pedestrians.  
2. On the way to the destination, there was a standing pedestrian. 
3. On the way to the destination, there were two standing pedestrians. 
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4. On the way to the destination, a walking pedestrian is passing by the robot. 
        To make the pedestrian detection and avoidance more convincing, the 
pedestrians were standing or walking in the hallway where the robot was 
navigating towards its target destination. The demonstration video can be 
viewed using this YouTube link:   
https://www.youtube.com/watch?v=6usXNrI7-Fk 
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6 Results 

        Turtlebot was able to generate maps for the surrounding environment, such 
as a garage and the second floor of Atwater Kent Laboratories, using keyboard 
teleoperation, map generation, and localization packages. The map presented 
high clarity for larger objects at the height of LiDAR, whereas lower clarity for 
smaller objects, such as the round tables that are shown as unclearly defined 
circles on the map (Figure 5.6).  
        YOLO could detect humans from parts of the body, such as limbs (Figure 
5.7), or the entire figure (Figure 5.8) when the human was walking, crouching 
or standing. The map could calculate the coordinate and mark humans’ positions 
as squares on the updated map (Figure 5.9). However, the speed of detecting 
humans and updating coordinates was related to various factors, such as 
computer computing capacity, network data bandwidth, people’s moving speed, 
and the camera’s refreshing rate. Therefore, the team often observed short delays 
when refreshing images from the camera or updating humans’ coordinates.  
        Turtlebot could navigate from its current point to a designated point, but 
there existed low possibilities that the navigation algorithm failed to calculate 
the path and aborted the process. When humans were detected, TurtleBot would 
adjust the navigation path to avoid the obstacle updated on the map. In successful 
cases, the robot would generate a new path in the unoccupied spaces, moving 
around or away from the obstacles, and proceed to its goal. TurtleBot could 
successfully reach the goal when there were no pedestrians, or when there were 
multiple standing pedestrians or one walking pedestrian passing by the robot. 
However, the team sometimes observed failure cases caused by unsuccessful 
human detections when testers were standing too close to the camera or moving 
too quickly, due to the time delay for publishing the pedestrian coordinates and 
updating its navigation path.  
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7 Discussion         

Piecing together the whole system raised some unexpected problems. 
This section elaborates on the potential flaws that can be solved by taking 
different approaches, the error exposed during testing, and suggestions for 
future work. 

 

7.1 Improving System Processing Speed 

When launching all components, the system would occasionally terminate 
itself automatically to prevent over-computing due to the multitude of different 
tasks. 

To reduce the work from the computing device, various attempts were 
made: 

1. Change the resolution of the generated image to the minimum value.  For 
RealSense camera, the minimum resolution of the image is 320 * 180. 
However, this may adversely lower the detection accuracy of the YOLO 
algorithm. 

2. Change the FPS of the camera from 20 to 6. 
3. Optimize the architecture of the system by shutting down all unrelated 

branches. 
4. Disable the graphic display for Jetson TX2. 
5. Use another laptop to SSH into it. Launch control panel Rviz on that 

laptop to reduce tasks. 
6. Change to another computer vision model (see section 7.2). 

After a series of different attempts, the speed of the whole system 
increased. In terms of memory usage tracked in the memory manager of the 
processor, a summary of each attempt is shown below. 

● Attempt 1 and 2 were the most effective way to improve memory 
performance, releasing about 60% of memory space from 2 cores. 

● Attempt 3, 4 were not as effective. They barely made any differences in 
the memory managers. 

● Attempt 5 produced some improvements, but they were outweighed by its 
resulting problems. Details will be discussed in detail in section 7.2. 
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● Attempt 6 barely resulted in any changes in the memory managers. 
However, there was not much delay on the control panel RViz anymore. 

The experiment also yielded some warnings and recommendations for 
processing speed: 

● Real-time human detection consumed much computing power. If the 
budget allows, it is recommended to purchase a device with more 
computing power. 

 
7.2 The Choice of Computer Vision Model 

The most power consuming part of the system was the real-time human 
detection model. The model chosen for this project is YOLO. It was a pre-trained 
object-classifying model. Since the system was overloaded with tasks, another 
model called tiny-YOLO was tested as an attempt to improve processing speed. 
The main difference between these two models was that tiny-YOLO did not have 
as many neural network layers as YOLO to process the image taken in, which 
indicated that the tiny-YOLO would have a much faster processing speed. 
Nevertheless, the trade-off was a decrease in accuracy. Rounds of testing with 
tiny-YOLO leaded to the observation that although the processing speed was 
faster than the regular YOLO, the robot failed to detect humans in some cases.  

Even though the tiny-YOLO model only took up 50% of the memory that 
the regular YOLO model used, it could not detect humans when only seeing 
small parts of humans. An attempt to adjust the threshold was made. If the 
threshold was set too high, it would not detect humans unless 90% of the human 
body was revealed in front of the camera. If the threshold was set too low, it 
would think most objects with similar contour were human. 

For the use of computer vision model, a series of recommendations are 
made here: 

1. In this scenario, where the camera was set at a height of 7.5 inches, 
accuracy was more important than processing speed. 

2. If we have more time, training a human detection model is preferred 
because considering solely the capability of human detection could lessen 
the layers in the neural network model. 
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3. The team implemented and tested two additional packages for human 
detection and tracking, “leg_detector” and 
“multiple_object_tracking_lidar,” attempting to compare and check if 
more efficient computer vision or the less computational ability of the 
computer could be achieved. Details for the two additional packages will 
be discussed in section 8. 

 
7.3 The Accuracy of Navigation 

Repeated testing revealed another problem, accuracy of navigation, which 
indicated the coherence between the physical robot navigation and the simulated 
robot navigation on RViz. This test was carried out in two different locations: in 
the garage and at the second floor of an academic building. 

In the garage, the navigation accuracy seemed lower than expected, which 
meant that sometimes when the RViz robot had already reached the destination, 
the actual robot was still about half a meter away, and this half-meter difference 
fluctuated constantly. 

In the building, the navigation accuracy seemed higher than that in the 
garage. A series of observations leaded to a hypothesis that the difference 
between the real-life robot and the RViz robot was proportional to the total 
distance traveled. One possible reason was due to the lidar localization accuracy 
in different building environments. 

This experiment raised the assumption that the robot in real life was 
affected by the nature of the floor. The flooring in the garage was uneven, which 
might result in inconsistent differences. On the contrary, the building floor was 
carpeted. 

For this observation, a series of recommendations are made: 

1. It is essential to pay attention to the differences between the real-life robot 
and the robot in the control panel. The differences will keep increasing as 
time goes on. 

2. Synchronizing the robot's location in real-life and the corresponding robot 
in RViz periodically is preferred for long-term work. 
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8 Additional Packages for Human Detection 
and Tracking 

 Two other packages for human detection and tracking were implemented 
and tested to compare with the darknet_ros package utilized in two aspects: the 
efficiency of human detection and tracking, and the delay caused by algorithm 
calculation and processing. 

 
8.1 Background 

In this section, the team introduces the two ROS packages used for human 
detection and tracking. 

 

8.1.1 leg_detector 
 This package subscribes to laser scans as a topic, calculates the possible 
laser scans as legs, and potentially pairs the legs to show as a person. One of the 
package’s published topics, “visualization_marker,” can be used in RViz to 
show the detected legs and persons. Both markers of legs and persons are 
presented as spheres inside RViz, while persons’ markers appear larger than 
legs’. 
 Three of the vital parameters provided for users to adjust are: 

● connection_threshold: maximum meters of separation for lasers to be 
considered as a group 

● min_points_per_group: minimum points in a laser scan group 
● leg_reliability_limit: minimum reliability to consider input as a leg [30]. 

 

8.1.2 multiple_object_tracking_lidar 
 This package subscribes point-cloud as the topic, extracts the possible 
clusters of person or objects, and tracks through Kalman Filters. The published 
topic “viz” provides a marker array with cubes in different colors for users to 
visualize inside RViz. Since six objects will be tracked at once, the cubes will 
be presented at the origin point if fewer objects are tracked in RViz [31]. 

 
8.2 Implementation 

Implementation of the Gazebo simulation environment and RViz  
visualization are discussed in this section.  
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8.2.1 Gazebo Simulation Environment 
 The environment was built with multiple human-like animated models. 
Each animated model was created to walk between two designated points 
repeatedly. The walking speed of the animated models can be changed by 
controlling the time for each walking segment.  
 TurtleBot Model was added with a simulated LiDAR, Velodyne VLP-16 
sensor, that was able to publish a topic containing information of point-cloud.   

 

Figure 8.1: TurtleBot model 

 

8.2.2 RViz Visualization 
 RViz was used to present point-cloud laser scans from the simulated 
LiDAR and show the markers published from human detection and tracking 
ROS packages. Laser scans were generated by transforming point-cloud with 
pointcloud_to_laserscan ROS package.  
 

 

Figure 8.2: RViz Visualization with point-cloud of animated models 
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Figure 8.3: RViz Visualization with laser scans of animated models 

 
8.3 Testing 

During testing, various parameters and limitations were changed to 
achieve better detection results and tracking for both packages. For 
leg_detector, parameters were revised when launching the node; for 
multiple_object_tracking_lidar, parameters and limitations were revised inside 
its “main.cpp” file. 

 

8.3.1 leg_detector 
 With the default parameter settings, leg_detector was able to detect legs 
and attempt to pair legs into a person when the model was within approximately 
1.8 meters away from the TurtleBot, measuring with the built-in tool in RViz.  

 

Figure 8.4: RViz(right) simulation of leg_detector: farthest distance of detection with 
default parameters 
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 By lowering the value of min_points_per_group, leg_reliability_limit, 
and increasing connection_threshold, it was able to detect legs and potentially 
pair legs to persons within approximately 5.3 meters away from the TurtleBot, 
measuring with the built-in tool in RViz. 

 

Figure 8.5: Gazebo(left) and RViz(right) simulation of leg_detector: farthest distance of 
detection with changed parameters 

The optional input topic called people_tracker_filter was not utilized since 
this topic should be published from a face detection algorithm that was not 
implemented in this testing. 

 

8.3.2 multiple_object_tracking_lidar 
It was difficult to track the animated models if the default package version 

was utilized as all markers appeared to move quickly and randomly in RViz. It 
was able to detect some animated models for a short time but failed to track them 
consistently. 

 

Figure 8.6: RViz simulation of multiple_object_tracking_lidar: two models out of four 
detected, other markers scattered 
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The team improved the accuracy of detection and tracking on animated 
models by adding a limitation of centroids calculated from extracted clusters. 
The cluster could only be tracked if the centroids’ x and y distances are smaller 
than 10 meters. Additionally, parameters used in cluster extraction functions 
were adjusted by increasing the cluster tolerance and broadening the limitation 
of cluster size in point-cloud. It resulted in a faster detection and a more stable 
pattern of tracking. 

 

Figure 8.7: RViz(right) simulation of multiple_object_tracking_lidar: successful detection 
and tracking of four animated models, markers without detection target at the origin 

If the limitations of the maximum cluster size were adjusted too high, 
detection would fail, and markers would present at the origin all together. 
Therefore, the ideal distance for the animated models to be detected and tracked 
within the limitation of cluster size ranged approximately from 3 meters to 10 
meters. 

 

Figure 8.8: Gazebo(left) and RViz(right) simulation of multiple_object_tracking_lidar: 
failed detection and tracking of two animated models with large maximum cluster size 

 

8.3.3 Running Both Packages Simultaneously 
 When running both packages simultaneously, leg_detector was able to 
detect models closer to the TurtleBot, and multiple_object_tracking_lidar was 
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able to detect models further to the Turtlebot by controlling each parameter. 
However, overlaps in detection were observed, which increased the complexity. 

 

Figure 8.9: RViz of running simultaneously: Successful complement in distance 

 

Figure 8.10: RViz of running simultaneously: Overlap in bottom two models’ detection, 
having sphere and cube on the same model 

 
8.4 Result 

Both ROS packages were able to detect and track the animated models,  
and their accuracy can both be adjusted with the parameters discussed in section 
8.3. With the built-in simulation environment, both packages can run together to 
complement the limitation of distance with some overlaps (Figure 8.10). 
 The package darknet_ros uses images from the camera, which has limited 
degree of view, but the two packages we tested used the data from LiDAR with 
360 degree of view (Figure 8.2). Therefore, leg_detector and 
multiple_object_tracking_lidar can detect a much larger area than darknet_ros. 
Additionally, these two packages had fewer requirements for the computing 
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device. Both packages were tested on a laptop with Nvidia Quadro P1000 
smoothly, while darknet_ros failed to process in real-time because the laptop 
appeared to be frozen. However, darknet_ros had a higher accuracy in human 
detection when the target was more than 10 meters away. 

 
8.5 Discussion 

8.5.1 Parameter Changes in leg_detector 
 Since the simulation environment contained only animated models, a 
higher detection possibility with longer distance away from the sensor could be 
achieved by varying the parameters as described in Section 8.3. However, in the 
real environment, objects with similar appearances in laser scans such as chairs 
or shelves might confuse the leg_detector. Therefore, the parameters would have 
to be adjusted accordingly. The parameter fixed_frame in leg_detector should 
be changed according to the relative frame name that the user’s robot contains. 
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9 Enable the Camera to Rotate to Detect 
Pedestrian  

 The following section outlines a mechanical design to resolve a problem 
encountered during the testing.  

 

9.1 Problem Statement and Design Objectives 

 During the testing, a human detection problem was found. To be specific, 
the TurtleBot could only detect the pedestrians and update the path to avoid them 
when the TurtleBot was facing the pedestrians. It was observed that when the 
TurtleBot was passing a pedestrian, the camera could not detect the pedestrian 
since the camera was  mounted on the robot with the viewing angle fixed, which 
led to the limited field of view. Therefore, the path planner would not recognize 
the pedestrian on the side as an object to avoid. If the destination is on the same 
side of the pedestrian, the new shortest path generated by the A star path planner 
may cause the TurtleBot to hit the pedestrian. Hence, it was needed to design a 
way to rotate the camera. This function could enable the camera to detect 
pedestrians who are outside the field of view of the fixed camera and thus lower 
the possibility of collision with pedestrians. 

 

9.2 Nomenclature 

Table 1 details the variables used throughout this section of the report to 
develop the design. 

Table 9.1:  Nomenclature 

Variable Meaning Variable Meaning 

h Euclidean Distance from the 
from a Robot to a Pedestrian (m) 

a Vertical Distance from a Robot to a 
Pedestrian (m) 

r Horizontal Distance from a 
Robot to a Pedestrian (m) 

𝜃  Angle (degree) 

I Moment of Inertia (kg ·cm2) m Mass of Camera (kg) 

L Width of Camera (m) VR , VP Velocity (m/s) 

𝜏 Torque (kg ·cm2 /s2) 𝛼 Angular Acceleration (rad/s2)  
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9.3 Known Parameters 

Table 2 summarizes parameters obtained from the official datasheet of 
Intel RealSense Camera D435 that have been used in the design. 

Table 9.2: Specification of Intel Realsense Camera D435 [32] 

 
 From Table 2, the camera's mass m is 72 grams and width L is 90 mm, 
which were used to determine the moment of inertia of the camera. In addition, 
the camera’s horizontal field of view is 91.2 degrees, which was used to 
determine the required rotational speed for the camera to detect a moving 
pedestrian.  

 
9.4 Design Assumptions 
Following assumptions have been made in developing the design:  

●  The constant moving speed VR of TurtleBot is 0.6 m/s and VP of the 
pedestrian is 1.4 m/s. 
 The moving direction of TurtleBot and pedestrians is opposite. 

●  The horizontal distance r between TurtleBot and pedestrian is 0.5 meter. 
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●  The moment of inertia other than camera and turntable is negligible. 
●  The camera is a slender rod and the turntable is a flat plate. 

 
9.5 Design Schematic and Justification 

 In this section, a solution to the problem and justification are provided 
based on the previously stated assumptions and known values.

 

Figure 9.1:  The Schematic of Pedestrian Detection 

 Based on Figure 9.1, equations can be derived as shown in the 
following: 
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𝑑𝜃

𝑑𝑡
=

𝑐𝑜𝑠 (𝜃)

𝑟

𝑑𝑎

𝑑𝑡
  (1)   

 Based on assumptions and known parameter, two parameters can be 
obtained as the following: 

1. 𝜃 is the complementary angle of the half horizontal field of view. 

𝜃 = 90 −
1

2
× 91.2 =  44.4 𝑑𝑒𝑔𝑠  

2.  is the relative speed between TurtleBot and pedestrian. 

𝑑𝑎

𝑑𝑡
= 𝑉 + 𝑉 = 1.4 + 0.6 = 2.0 𝑚/𝑠 

Therefore, the required rotational speed for camera to detect a moving 
pedestrian is: 

 
𝑑𝜃

𝑑𝑡
=

𝑐𝑜𝑠 (44.4°)

0.5
⋅ 2 = 2.04 𝑟𝑎𝑑/𝑠 = 19.5 𝑟𝑝𝑚 (2) 

 
 Furthermore, the maximum angular acceleration of the camera and the 
torque required to rotate the camera were calculated:  
 

𝑑𝜃

𝑑𝑡
=

𝑐𝑜𝑠 (𝜃)

𝑟

𝑑𝑎

𝑑𝑡
 

𝑑 𝜃

𝑑𝑡  
=

𝑑

𝑑𝑡

𝑐𝑜𝑠 (𝜃)

𝑟

𝑑𝑎

𝑑𝜃
 

𝑑 𝜃

𝑑𝑡  
=

1

𝑟

𝑑 𝑎

𝑑𝑡  
⋅ 𝑐𝑜𝑠 (𝜃)  + (−2) ⋅

𝑑𝑎

𝑑𝑡
⋅ 𝑐𝑜𝑠(𝜃) ⋅ 𝑠𝑖𝑛(𝜃) ⋅

𝑑𝜃

𝑑𝑡
 

𝑑 𝜃

𝑑𝑡  
=

1

𝑟
0 + (−2) ⋅

𝑑𝑎

𝑑𝑡
⋅ 𝑐𝑜𝑠(𝜃) ⋅ 𝑠𝑖𝑛(𝜃) ⋅

𝑐𝑜𝑠 (𝜃)

𝑟

𝑑𝑎

𝑑𝑡
  

𝑑 𝜃

𝑑𝑡  
= (−2) ⋅

1

𝑟  
⋅

𝑑𝑎

𝑑𝑡
⋅ 𝑐𝑜𝑠  (𝜃) ⋅ 𝑠𝑖𝑛(𝜃) 

𝑑 𝜃

𝑑𝑡  
= 2 ⋅

1

0.5 
⋅ 2 ⋅ 0.325 

𝑑 𝜃

𝑑𝑡  
= 10. 4 𝑟𝑎𝑑/ 𝑠  

 According to assumption, the camera is considered as a slender rod and 
the turntable as a flat square plate which would have moment of inertia Ic and It 

as respectively shown below: 
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𝐼𝑐 =
1

12
⋅ 𝑚 ⋅ 𝐿  

𝐼 =
1

12
⋅

72

1000
⋅

90

10
= 0.486 𝑘𝑔 ⋅ 𝑐𝑚  

𝐼𝑡 =
1

6
⋅ 𝑚 ⋅ 𝑎  

𝐼 =
1

6
⋅

30

1000
⋅

76.2

10
= 0.290 𝑘𝑔 ⋅ 𝑐𝑚  

𝐼 = 𝐼 + 𝐼 = 0.776 𝑘𝑔 ⋅ 𝑐𝑚  
𝜏 = 𝐼 ⋅ 𝛼 = 0.776 ⋅ 10.4 = 8.07 𝑘𝑔 ⋅ 𝑐𝑚 ⋅ 𝑠   (3) 

 From (2) and (3), the required rotational speed is 19.5 𝑟𝑝𝑚  and the 

maximum torque required during the rotation of the camera is 8.07 𝑘𝑔 ⋅ 𝑐𝑚2 ⋅

𝑠−2. Based on the calculated rotational speed and torque, in the next section, a 
suitable motor and gearbox were selected in order to rotate the camera. 

 
9.6 Motor Selection and Gearbox Design 

 The selected motor is a Pololu metal gearmotor. This motor consists of a 
12 V brushed DC motor combined with a 99:1 metal gearbox [33]. It also 
provides a quadrature encoder on the motor shaft, which can be used to control 
the output rotational speed of the motor. 

 

Figure 9.2:  The Pololu Motor Performance Curve 
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 Figure 9.2 is a MATLAB generated performance curve of the selected 
motor showing the no load and stall performance. The justification was made 
under the assumption that the efficiency of the motor was maximized.  
 The maximum efficiency of the motor is 0.215 and the corresponding 
torque is about 38 oz-in. Then, the rotational speed at max efficiency, gear ratio 
of gearbox and actual output were calculated as shown below. 
 

𝑀𝑎𝑥 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 𝑡𝑜𝑟𝑞𝑢𝑒 =  38 𝑜𝑧 ⋅ 𝑖𝑛 =  2.7 𝑘𝑔 ⋅ 𝑐𝑚 ⋅ 𝑠  
  =  38 ÷ 165 =  23% 𝑠𝑡𝑎𝑙𝑙 𝑡𝑜𝑟𝑞𝑢𝑒 

𝑀𝑎𝑥 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝑠𝑝𝑒𝑒𝑑 =  (1 −  0.23)  ∗  76 𝑟𝑝𝑚 =  59 𝑟𝑝𝑚 
𝐺𝑒𝑎𝑟 𝑟𝑎𝑡𝑖𝑜 =  𝑊𝑖𝑛 / 𝑊𝑜𝑢𝑡 =  59 𝑟𝑝𝑚 ÷  19.5 𝑟𝑝𝑚 =  3  

𝐴𝑐𝑢𝑡𝑎𝑙 𝑜𝑢𝑡𝑝𝑢𝑡 𝑡𝑜𝑟𝑞𝑢𝑒  =  2.7  𝑘𝑔 ⋅ 𝑐𝑚 ⋅ 𝑠  ∗  3  
   =  8.1 𝑘𝑔 ⋅ 𝑐𝑚 ⋅ 𝑠  

𝐴𝑐𝑢𝑡𝑎𝑙 𝑜𝑢𝑡𝑝𝑢𝑡 𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝑠𝑝𝑒𝑒𝑑 =  59 𝑟𝑝𝑚 ÷ 3 = 19.7 𝑟𝑝𝑚 
 

 The calculated gear ratio of the gearbox is three. Both actual output torque 
and rotational speed is enough to spin the camera to detect the pedestrians.  

 
9.7 Camera Turntable Assembly CAD Design 

 With the specific model of motor being selected based on calculation, a 
housing for the motor, a holder for camera, and a turning structure are designed 
using SolidWorks. The isometric view of the design is shown below in Figure 
9.3. Additionally, to better appreciate the design, a section view of the design is 
also shown in Figure 9.4. 
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Figure 9.3:  Isometric view of camera turntable assembly 

 

 

 Figure 9.4:  Section view of the assembly 

 The overall design goal is an assembly which can steadily and smoothly 
rotate the camera to different angles with a high rate of acceleration, driven by 
a motor. To accomplish the design goal, the component breakdown is introduced 
below. 

 As shown in Table 9.3 and Figure 9.5, the design consists of seven 
components. 
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Table 9.3:  The List of Components in the Assembly  

Number shown on drawing Parts Name 

1 Camera Holder 

2 Gear-Holder Linkage 

3 Turntable 

4 Bevel Gear System 

5 Camera 

6 Transfer Case 

7 Motor 

 

 

Figure 9.5:  Seven components in the design 

Camera holder 

 The design requirement of the camera holder is to lock the camera in place 
at a rapid acceleration. The included tripod in the box with the camera uses a 
friction pad and a 1/4”-20 screw to lock the camera. However, based on the 
experience with the included tripod, its design failed to secure the camera in 
place at rapid acceleration, so an improved design is needed. 
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Figure 9.6:  Design of a camera holder 

 One more detail to notice is that the D435i camera generated lots of heat 
during operation, and there are arrays of ventilation holes for passive convective 
cooling.  Thus, ventilation holes were designed on the camera holder so that  hot 
air  from the bottom of the camera can move freely. The camera holder was also 
lifted with sloped legs to avoid blocking the field of view of the camera. The 
camera holder was bolted onto the turntable with four #8-32 screws in each leg 
for securing. 

Gear-Holder Linkage 

The task of the linkage is to transmit the torque from bevel gear to the 
turntable/camera holder assembly. The linkage is locked with bevel gear using 
a D-shaped key. It is bolted to the turntable with four #4-40 screws in each corner. 

 The linkage is inserted to a hole on the transfer case. For better alignment 
and more stable turning, the linkage is inter-locked by bevel gear, which latter 
was secured by a bearing. Finally, the linkage is also locked with the gear with 
cotter pins for improved security in horizontal direction. 



46 
 

  
 

  

Figure 9.7:  Design of a gear-holder linkage 

Turntable 

 The turntable was chosen to be a part from McMaster-Carr. It is 3” by 3” 
square with balls and lubrication for smoother turning. The part was chosen 
because it has an adequately sized base and a hole in the middle and the hole 
allows a simple linkage design to transmit torque and rotate without complicated 
gearboxes. 

Bevel gear/ bevel pinion 

 The bevel gear was chosen to change the direction of torque 90 degrees, 
with a 3:1 gear ratio. The gear and pinion have a 0.8 module, 20-degree pressure 
angle, and 36 and 12 teeth respectively. The change of direction of transition 
allows a horizontal placement of the motor, for better installation and lower 
overall height. Both gear and pinion have a D-shaped key to lock with respective 
axles and held in place with constraints of transfer case and linkage assembly.   
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Figure 9.8:  Bevel gear system and bearing 

 
9.8 Simulation and Verification 

A motion study was conducted in SolidWork using the Motion Analysis 
toolbox. The input of the motor shaft is given using an expression of angle in the 
time domain. In other words, the angle of the shaft at a given time is given to the 
simulation. A sensor was used to monitor the torque value on the motor shaft, 
which is used to verify the theoretical calculation and feasibility of design. The 
expression of angle in time domain was derived by solving differential equation 
(1), and yielding the expression (4). 

  
𝑑𝜃

𝑑𝑡
=

𝑐𝑜𝑠 (𝜃)

𝑟

𝑑𝑎

𝑑𝑡
(1) 
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𝑠𝑒𝑐 (𝜃)𝑑𝜃 =
1

𝑟

𝑑𝑎

𝑑𝑡
𝑑𝑡 

𝑠𝑒𝑐 (𝜃)𝑑𝜃 =
1

𝑟

𝑑𝑎

𝑑𝑡
𝑑𝑡 

𝑡𝑎𝑛(𝜃) =
1

𝑟

𝑑𝑎

𝑑𝑡
𝑡 + 𝐶 

𝜃 = 𝑡𝑎𝑛 𝑡 + 𝐶 (4) 

 An initial condition is necessary to solve constant c, since an 𝜃 =𝜋/2 is 
unsolvable at any time, so another initial condition is needed. The initial 
condition was solved by assigning the encountering duration, which is the time 
duration the camera took to turn from its initial pose to 𝜃 = 0. The encounter 
duration was set to 5 second, because it gives a good overview of the turning 
process without too much time spent that camera is looking nearly straight ahead. 
It yields a c = 20. Result in the following expression of 𝜃with variable t.  

𝜃 = 𝑡𝑎𝑛−1(4𝑡 + 20) (5) 

 Using the expression (5) as motor position input, setting two gears as solid 
contacting bodies for analyzing gear contact, and applying a gravitational field, 
the simulation setup is completed. 

 
9.9 Result 

 As shown in Figure 9.9, The analyzing result was given by SolidWorks, 
and a calculated result was plotted along with the simulated result. 
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Figure 9.9:  The simulated result from SolidWorks 

Since the force analysis resolution from SolidWorks is limited by 
computational power of the computer, the simulated result is not a smooth line. 
Nevertheless, , consistency with the calculated result is obvious.  

 However, it is noticeable that the peak motor torque was higher in the 
simulated result. One possible reason is simulation accuracy and resolution 
could be improved. Another possible reason is the frictional force between each 
moving part, which is neglected in calculation but simulated in SolidWorks. The 
potential solution could be to add lubrication to the turntable and the linkage to 
minimize the frictional force in the system.  

 Since the speed of rotation of the motor, and hence the turntable, can be 
controlled by PWM signal, the motion analysis is needed to verify whether the 
motor can provide sufficient torque at a certain rpm range with a current draw 
restriction. From the simulated result, the design requirement is met that the 
motor can provide a sufficient torque and turning speed, thus being able to track 
the person in the hypothetical encounter scenario.  
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10 Conclusions 
 The team successfully utilized TurtleBot2 with RealSense Camera and 
Velodyne Lidar to achieve building maps, navigation with existing maps, and 
pedestrian detection and avoidance. The robot could successfully detect a 
walking pedestrian or multiple standing pedestrians and update its navigation 
path accordingly. Problems such as system processing speed and the navigation 
accuracy occurred during the testing and sometimes affected the robot's accuracy. 
Potential solutions such as altering the computer vision models, updating a faster 
computing platform, and adding a spinning platform for the camera to ameliorate 
the robot's achievement were suggested. 
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11 Appendix A  
MATLAB Code for Generating Motor Performance Curve 
function pololuMotorPlotGenAAMv2 
    clc; 
    discreteBins = 500; %We will use this number of bins for plotting and calculating all 
functions such as Torque, speed etc. 
% Input part of the main function 
    StallTorque = input('Please enter the stall torque in oz-inch [17]: '); 
    StallCurrent = input('Please enter the stall current in mA [700]: '); 
    RatedVoltage = input('Please enter the rated voltage in Volts [6]: '); 
    NoLoadCurrent = input('Please enter the free run currennt in mA [40]: '); 
    NoLoadSpeed = input('Please enter the free run speed in RPM [290]: '); 
     
    %Some basic input error checking is here. 
    if or(not(isfloat(StallTorque)), isempty(StallTorque)) 
        StallTorque = 17; 
        fprintf('\nUsing default value for StallTorque'); 
    end 
    if or(not(isfloat(StallCurrent)), isempty(StallCurrent)) 
        StallCurrent = 700; 
        fprintf('\nUsing default value for StallCurrent'); 
    end 
    if or(not(isfloat(RatedVoltage)), isempty(RatedVoltage)) 
        RatedVoltage = 6; 
        fprintf('\nUsing default value for RatedVoltage'); 
    end 
    if or(not(isfloat(NoLoadCurrent)), isempty(NoLoadCurrent)) 
        NoLoadCurrent = 40; 
        fprintf('\nUsing default value for NoLoadCurrent'); 
    end 
    if or(not(isfloat(NoLoadSpeed)), isempty(NoLoadSpeed)) 
        NoLoadSpeed = 290; 
        fprintf('\nUsing default value for NoLoadSpeed'); 
    end 
    % 
     
    %Here we calculate basic stuff to get all the variables and outputs. 
    Resistance = RatedVoltage / (StallCurrent/1000); 
    %Torque line 
    TorqueLine = 0:(StallTorque/discreteBins):StallTorque; 
    %Current Line 
    CurrentLine = NoLoadCurrent:(StallCurrent-NoLoadCurrent)/discreteBins:StallCurrent; 
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    %Speed Line 
    SpeedLine = NoLoadSpeed: (0-NoLoadSpeed)/discreteBins : 0; 
    % Torque Constant in Torque per current is 
    SlopeOfTorqueVsCurrent = (StallCurrent - NoLoadCurrent) / (StallTorque); 
     
     
    %Output Mechanical Power in watts is Torque * Speed * 0.00074 watts 
    OutputPower = 0.00074 * TorqueLine .* SpeedLine; 
    %Input Electrical Power to the motor is Voltage * Current 
    InputPower = CurrentLine * RatedVoltage / 1000; %We are dividing by 1000 as the input 
was in mA and we need power in Watts. 
     
%Plot part of the functions     
    subplot(2,2,1) 
    [hAx, hLine1, hLine2] = plotyy([0 StallTorque], [NoLoadSpeed 0], [0 StallTorque], 
[NoLoadCurrent StallCurrent]); %This is the TorqueLoad vs. Motor Speed graph 
     
    title('Torque vs. Speed & Torque vs. Current'); 
    xlabel('Torque (oz-in)'); 
    ylabel(hAx(1), 'Speed-RPM'); 
    ylabel(hAx(2), 'Current-mA'); 
     
    %This is the plot of the Output Mechanical power in watts vs. Input 
    %Electrical power in Watts. 
    subplot(2,2,2); 
     
    [h2Ax, h2Line1, h2Line2] = plotyy(TorqueLine, OutputPower, TorqueLine, InputPower); 
    xlabel('Torque (oz-in)'); 
    ylabel(h2Ax(1), 'OutputPower-watts'); 
    ylabel(h2Ax(2), 'InputPower-watts'); 
    title('Torque vs. Output Power & Torque vs. Input Power'); 
     
    %This is the plot of the Power Efficiency of the motor. 
    subplot(2,2,3); 
    PowerEff = OutputPower ./ InputPower; 
    plot(TorqueLine, PowerEff); 
    xlabel('Torque (oz-in)'); 
    ylabel('Power Efficiency -nounit'); 
     
    %Output information part of the function     
    fprintf('\n\n\nSlope of TorqueVsCurrent is %f. The recprocal is %f\n', 
SlopeOfTorqueVsCurrent, (1/SlopeOfTorqueVsCurrent)); 
    %Max Output Power is at 
    [V,I] = max(OutputPower); 
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    fprintf('Maximum output mechanical power is %f(watts).\nThis happens at the Torque 
load of %f(oz-in), with Current %f(mA)\n', OutputPower(I), TorqueLine(I), CurrentLine(I)); 
    fprintf('Resistance of the motor is %f (ohms)\n', Resistance); 
     
end 
 
 
 
 
 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



54 
 

  
 

12 Bibliography 
[1] A. A. Staff, “What robots do (and don't do) at Amazon fulfilment centres,” UK 

About Amazon, 31-Jul-2019. [Online]. Available: 
https://www.aboutamazon.co.uk/amazon-fulfilment/what-robots-do-and-dont-
do-at-amazon-fulfilment-centres. [Accessed: 04-Aug-2020]. 

[2] D. O. Team, “Bots by the numbers: Facts and figures about robotics at 
Amazon,” UK Day One Blog, 14-Jan-2019. [Online]. Available: 
https://blog.aboutamazon.co.uk/bots-by-the-numbers-facts-and-figures-about-
robotics-at-amazon. [Accessed: 05-Aug-2020]. 

[3] M. Lazarte, “Robots and humans can work together with new ISO guidance,” 
ISO, 08-Mar-2016. [Online]. Available: 
https://www.iso.org/news/2016/03/Ref2057.html. [Accessed: 05-Aug-2020]. 

[4] D. O. Team, “Recognising World Day for Safety and Health at Work 2019,” 
UK Day One Blog, 03-May-2019. [Online]. Available: 
https://blog.aboutamazon.co.uk/recognising-world-day-for-safety-and-health-
at-work-2019. [Accessed: 05-Aug-2020]. 

[5] D. O. Team, “Meet Amazon's ergonomics expert, Raz Osman,” UK Day One 
Blog, 28-Nov-2019. [Online]. Available: 
https://blog.aboutamazon.co.uk/working-at-amazon/meet-amazons-
ergonomics-expert-raz-osman. [Accessed: 05-Aug-2020]. 

[6] Mattieu Chevrier, “How sensor data is powering AI in robotics,” TEXAS 
INSTRUMENTS, Jan-2019. [Online]. Available: 
https://www.ti.com/lit/wp/sszy036/sszy036.pdf. [Accessed: 06-Aug-2020]. 

[7] N. O. and A. A. US Department of Commerce, “What is LIDAR,” NOAA's 
National Ocean Service, 01-Oct-2012. [Online]. Available: 
https://oceanservice.noaa.gov/facts/lidar.html. [Accessed: 05-Aug-2020]. 

[8] Paul F. McManamon, “Introduction to LiDAR,” in LiDAR Technologies and 
Systems, 2019. [Online]. Available: 
https://www.spiedigitallibrary.org/eBooks/PM/LiDAR-Technologies-and-
Systems/Chapter1/Introduction-to-LiDAR/10.1117/3.2518254.ch1 

[9] Tarleton Gillespie, “Algorithm” in Digital Keywords, 2016. [Online]. 
Available: https://www.jstor.org/stable/j.ctvct0023?turn_away=true 

[10] Alessandro Gasparetto et al. Path Planning and Trajectory Planning 
Algorithms: A General Overview. DOI: 10.1007/978-3-319-14705-5_1. 
[Online]. Available: 
https://www.researchgate.net/publication/282955967_Path_Planning_and_Traj
ectory_Planning_Algorithms_A_General_Overview 

[11] V. Blanz et al. “Comparison of view-based object recognition algorithms 
using realistic 3D models” in International Conference on Artificial Neural 
Networks, 2005. [Online]. Available: 
https://link.springer.com/chapter/10.1007/3-540-61510-5_45 



55 
 

  
 

[12] Jang-Ho Cho et al. “A Real-Time Obstacle Avoidance Method for 
Autonomous Vehicles Using an Obstacle-Dependent Gaussian Potential 
Field”. Journal of Advanced Transportation, 2018. [Online]. 
Available:  https://www.hindawi.com/journals/jat/2018/5041401/. [Accessed: 
16-Aug-2020]. 

[13] Yutaka Hiroi and Akinori Ito, “A Pedestrian Avoidance Method Considering 
Personal Space for a Guide Robot,” MDPI, Sep-19-2019. [Online]. Available: 
https://www.mdpi.com/2218-6581/8/4/97. [Accessed: 16-Aug-2020]. 

[14] “Technology,” BostonDynamics. [Online]. Available: 
https://www.bostondynamics.com/spot/technology. [Accessed: 16-Aug-2020]. 

[15] “S6 MaxV,” Roborock. [Online]. Available: 
https://us.roborock.com/pages/roborock-s6-maxv. [Accessed: 16-Aug-2020]. 

[16] “Audi adaptive cruise assist,” Audi. [Online]. Available: 
https://www.audiusa.com/models/audi-a8?tile=driver-assistance. [Accessed: 
16-Aug-2020]. 

[17] “Model 3,” Tesla. [Online]. Available: https://www.tesla.com/model3. 
[Accessed: 16-Aug-2020]. 

[18] “Collision Detection,” ABB. [Online]. Available: 
https://library.e.abb.com/public/d4708d0240be2966c125772f00528ca9/Collisi
on%20det%20PR10044EN_R2.pdf. [Accessed: 16-Aug-2020]. 

[19] “Jetson TX2 Module,” NVIDIA Developer, 14-Aug-2019. [Online]. 
Available: https://developer.nvidia.com/embedded/jetson-tx2. [Accessed: 05-
Aug-2020]. 

[20] “Depth Camera D435i,” Intel® RealSense™ Depth and Tracking Cameras, 
16-Jun-2020. [Online]. Available: https://www.intelrealsense.com/depth-
camera-d435i/. [Accessed: 05-Aug-2020]. 

[21] “Velodyne Puck VLP-16 Sensor: LiDAR,” AutonomouStuff. [Online]. 
Available: https://autonomoustuff.com/product/velodyne-puck-vlp-16/. 
[Accessed: 05-Aug-2020]. 

[22] Introduction to A*. [Online]. Available: 
http://theory.stanford.edu/~amitp/GameProgramming/AStarComparison.html. 
[Accessed: 06-Aug-2020]. 

[23]J Redmon and A Farhadi, “YOLOv3: An Incremental Improvement,” 2018. 
[Online]. Available: https://pjreddie.com/publications/ 

[24] “About ROS,” ROS.org. [Online]. Available: https://www.ros.org/about-ros/. 
[Accessed: 05-Aug-2020]. 

[25] “Wiki,” ros.org. [Online]. Available: http://wiki.ros.org/melodic. [Accessed: 
05-Aug-2020]. 

[26] “TurtleBot2,” robots.ros.org. [Online]. Available: 
https://robots.ros.org/turtlebot/. [Accessed: 05-Aug-2020].  

[27] “Core Components,” ROS.org. [Online]. Available: https://www.ros.org/core-
components/#:~:text=In addition to the core,Standard Message Definitions for 
Robots. [Accessed: 05-Aug-2020]. 



56 
 

  
 

[28] Osrf, “Why Gazebo?,” gazebo. [Online]. Available: http://gazebosim.org/. 
[Accessed: 05-Aug-2020]. 

[29] Orff, “ROS overview,” gazebo. [Online]. Available: 
http://gazebosim.org/tutorials?tut=ros_overview. [Accessed: 05-Aug-2020]. 

[30] Caroline Pantofaru, “leg_detector,” ROS.org. [Online]. Available: 
 http://wiki.ros.org/leg_detector. [Accessed: 05-Aug-2020]. 
[31] Praveen Palanisamy, “multi_object_tracking_lidar,” ROS.org. [Online]. 

Available: http://wiki.ros.org/multi_object_tracking_lidar.  
 [Accessed: 05-Aug-2020]. 
[32] “Intel RealSense Depth Camera D400-Series Datasheet.” RealSense 

Technology, Sep-2017. 
[33] “Pololu - 99:1 Metal Gearmotor 25Dx69L mm MP 12V with 48 CPR 

Encoder,” Pololu Robotics & Electronics. [Online]. Available: 
https://www.pololu.com/product/4867. [Accessed: 09-Aug-2020]. 

 
 


