
 1

Grail to the Thief
An Interactive Audio Adventure

Interactive Media and Game Development

A Major Qualifying Project Report

submitted to the faculty of

WORCESTER POLYTECHNIC INSTITUTE

by Anthony Russo and DJ White

Advisors: Brian Moriarty, Keith Zizza

MQP MBJ 1300

 2

Abstract

 Grail to the Thief: An Interactive Audio Adventure is an Interactive Media and Game

Development Major Qualifying Project at Worcester Polytechnic Institute. The purpose of the

project was to create an immersive, engaging game playable by the visually impaired, together

with tools to enable future developers to make such games. The completed project features

polished dialogue and music, all originally recorded and mastered specifically for the project. A

Psychological Sciences major was also brought on to the team to assure that our experience goals

were being met.

Acknowledgments

 We would like to graciously thank our advisors on the project, Professors Brian Moriarty

and Keith Zizza, for helping us sort through the design, inspiration, audio development, and

production of our game and tool. Without them, the product would not have been nearly as

successful as it turned out.

 We would also like to thank Greg Moore, WPI Psychological Sciences major, whose

invaluable testing of the game resulted in a greatly improved project.

 3

Contents

Abstract ... 2

Acknowledgments ... 2

Introduction ... 5

Initial design... 7

Inspiration ... 7

Key Experience .. 7

Initial Ideas .. 8

Inform .. 8

Writing ... 11

Brainstorming .. 11

Characters ... 11

Setting ... 12

Plot and Puzzle Design .. 13

Initial Testing (Inform) ... 17

Switching to Twine and Web Audio ... 19

Decision to Switch ... 19

Accessibility and Simplicity .. 20

Tech ... 21

Post-Switch: On the Right Track .. 23

Story .. 23

Audio ... 23

Tech ... 27

Release as a Tool ... 29

Accessibility ... 31

Final Testing ... 31

Conclusion ... 34

References ... 34

Appendices .. 35

A. Post-Play Survey .. 35

B. Twine API ... 39

C. XMind story layout .. 43

 4

Table of Figures

Figure 1: Sample Inform extension code ... 9
Figure 2: Brainstorming ideas on a whiteboard .. 14
Figure 3: Sample XMind outline .. 15
Figure 4: Programming in Inform .. 16
Figure 5: An example of what the collected data from playing the game in Inform looked like. 17
Figure 6: A section of the game in the Twine layout. .. 19
Figure 7: Peter Lepper recording in the sound lab .. 24
Figure 8: Organization of Sounds ... 25
Figure 9: Common desktop layout for sound editing .. 26
Figure 10: Release Web site at TwineAudio.com .. 30
Figure 11: A volunteer playing the game without onscreen text .. 32
Figure 12: A graph demonstrating enjoyment of the variables on a seven-point scale .. 33

 5

Introduction

 The idea for this project stemmed from Anthony’s IQP Project Creating Video Games for

the Visually Impaired (coauthored by Steven Vandal and Neal Sacks). The paper was an analysis

of the current games for the visually impaired that exist today, the technology that can be utilized

to make games for the blind, and interviews with students at Perkins School for the Blind in

Lancaster, Massachusetts, dealing with what they want in accessible games.

 The paper made some key points, such as the advances in technology that could be used

to make games for the visually impaired, as well as critical analysis of the mostly dated games

that the blind had available to them. The paper closed with a quote the expresses the main

problem with games for the visually impaired:

 “While the technology exists today to make impressive games for the visually impaired,

no one has taken it upon themselves to take this advanced technology and make a fun, accessible

game.”

During the interviews at Perkins, students from their teens to their twenties were

interviewed about what games they had played, what they enjoyed about those games, and what

they would like to see in future accessible games. The group was varied and dynamic, having

different opinions on what games were fun and which were not, what makes a good game, and

how games should be developed. However, they all agreed on three main points about games for

the visually impaired.

 6

First, they wanted better designed and produced accessible games. The games currently

available to the visually impaired were nowhere near the quality or polish of those for the

sighted. They were also quite dated; most were over ten years old.

Second, they made a point of not wanting to hear any synthesized computer voices, such

as screen readers, in their games. Synthesized voice is a staple in their everyday lives, being

heard whenever they use a computer. They associated screen readers with monotonous tasks and

schoolwork, not fun and play.

Finally, and perhaps most important, the students wanted more games. Titles built to be

accessible to the blind are few and far between, leading them to adapt to playing games that do

not even have the visually impaired in mind. They all enjoy video games, but do not have nearly

enough to choose from and want a better, wider selection. [1]

 7

Initial design

Inspiration

Initially, the Interactive Audio Adventure concentrated on audio, and treated its medium

like a black box. It took in sound, and returned sound, requiring only a microphone and speakers.

It was envisioned as working on iPhone, and would feel like having a conversation on

speakerphone.

This concept was similar to early phone games such as Hardbody Hospital, essentially

“radio dramas” where a player could make a handful of choices over the course of an episode.

Our project aimed to keep that spirit, while opening up the experience. Instead of a branching

script, the game was to act more like a parser-driven text adventure. It would feature a

conversational AI agent, driven by commands that would be executed in the game world.

Key Experience

 Our key experience goal was to completely immerse the player into the game world

through audio. We would tell a coherent and engaging story, using only dialogue, sound effects,

ambience and music.

 This experience was designed to be completely accessible to the blind. By accessible, we

mean that a person playing the game without any visuals can always be fully aware what is

happening in the story, while maintaining a sense of personal control.

 8

Initial Ideas

As the project came together, it was decided that iPhone was not a viable platform. The

game required a framework in which to build the game first, and that limited the engines to

Frotz, an open-source interactive fiction interpreter for iOS. However, we also required speech

recognition. The only candidate technology was Dragon SDK from Nuance, which would have

to be interfaced with Frotz. Unfortunately, there didn’t seem to be a simple way to play sounds

on iOS from the interactive fiction story file.

Inform

The problem was solved by dropping the platform restriction. If the interactive fiction

template remained, but stayed on Windows where it originated, it would be much easier to add

audio input and playback. We settled on the Inform 7 interactive fiction engine because it would

allow us to create an easy-to-distribute audio extension that others could use.

Creating the extension for Inform meant working in its unique language, IF7. This proved

to be unexpectedly difficult. Many basic functions needed by our extension were only available

in other extensions, and these were often not fully functional. It would also require users to

install all of the required extensions along with ours.

 9

Figure 1: Sample Inform extension code

Timers, necessary for delaying and queuing sounds, were a particular hurdle. The

available timers could only be set once, and could perform only a single action when it reached

zero. Thus, setting multiple sounds to play with a delay required very detailed fine-tuning of

timers, some that would have to start at the conclusion of others or wait for the length of a sound.

Functions like playing a list of sounds or stopping upcoming sounds would likely not have been

feasible at all.

Another major issue was the ability to play multiple sounds at the same time. The number

of available tracks was limited to about a dozen. While not unworkable, this was far from ideal.

Writing the actual game code for Inform was a hassle. The program has its own scripting

language, supposedly based on natural English syntax. It seemed quite foreign to us. We often

encountered errors for not writing things in the proper “English” syntax that most of the time,

because what we were doing was so complex, did not resemble English at all. To its credit, the

 10

language does handle story-related items, settings, variables, and characters very well, and this

was useful in outlining the game. Characters were able to freely move throughout the world,

revisiting areas that they had already seen. However, this free movement allowed players to

backtrack and hear audio that they had probably already heard. Such repetition would break the

immersive environment that we were trying to create.

Inform posed a particular problem with dialogue. It was extremely difficult to script

conversations between the player and a non-player character, because Inform gives the player the

ability to say anything at any time. This led to a lot of “I don’t understand what you said”

responses. While it was possible to get through these conversations, it would require a lot of trial

and error from the player.

The blind accessibility in this initial design seemed solid. Virtually all visually impaired

people have learned the locations of keys on a keyboard through haptic feedback on the keys,

Braille or some other touch-based indicator. Impaired players could readily input all commands

by typing. We also considered the ambitious idea, time allowing, of making the game have input

through voice commands, either through Google Voice or some other speech recognition

software.

 11

Writing

Brainstorming

 Brainstorming began almost immediately for the plot of the game. The group was

familiar with graphic adventure game design and tropes, all being fans of games such as Maniac

Mansion II: Day of the Tentacle, Grim Fandango, and Telltale’s Walking Dead. We also took it

upon ourselves to play our way through a few classic text adventures, such as Zork and The

Hitchhiker’s Guide to the Galaxy.

 When brainstorming, we all agreed that a short, funny game would be the best idea for

the project. Comedy has a history of lending itself to adventure games, appearing in many of the

above titles. It was also very familiar to the group, and practical to write in the small amount of

time we had to build the game (keeping in mind that for every line of dialogue we wrote, we

needed to later record, master, and implement).

 DJ is a fan of time travel fiction, which quickly led to the idea of a thief traveling through

time, stealing things. We tied this into previous real-world knowledge by having the thief steal

precious artifacts that have disappeared throughout history because this character traveled back

in time and stole it. For our game, we settled on the Holy Grail.

Characters

 Characters would be the most difficult part of our story. Because the game was

completely audio based, most of the writing would be in characters interacting in conversations.

Not only did this mean we had to write a lot of dialogue, but we had to create strong, interesting

characters that were entertaining and believable.

 12

We decided to make our main character, time-traveling thief Hank Krang, rather crass

and unintelligent. This would give the player the unusual experience of controlling a personality

they are probably not used to expressing: immature and extremely rude, with little common

sense. We hoped this would lessen the anxiety of making immoral decisions, such as lying and

cheating. For character reference, we looked to 1980s film villains, such as Johnny Lawrence

from The Karate Kid and Biff Tannen from the Back to the Future franchise.

Hank’s sidekick, TEDI (short for Time Excursion Digital Interface), is a hyper-intelligent

supercomputer time machine. We envisioned TEDI as a watch and earpiece worn by Hank, so

that only he can hear him. TEDI has no way to escape from Hank or resist his will, and is not

happy about accompanying him through time. He is an excellent foil for Hank, being both

intelligent and highly moral, qualities Hank obviously lacks. The back and forth, love-hate

relationship between TEDI and Hank is the basis for much of the comedy. The inspiration for

TEDI comes from several characters in other fiction, including Marvin from The Hitchhikers

Guide to the Galaxy, KIT from the television series Knight Rider, and especially the personal

computer from the cartoon Courage the Cowardly Dog.

We also had to create several secondary characters for Hank and TEDI to encounter.

Unfortunately, we only had access to a small number of voice actors, so we kept this in mind

when writing their dialogue.

Setting

 We decided to set the game in medieval England, giving the game a fantasy feeling. This

would place the characters in a environment that the entire group was familiar with, so

 13

simulating it in sound would be less difficult. Anthony had sound libraries for fantasy

environments that he built for previous IMGD classes, making production easier.

Plot and Puzzle Design

 The plot of the game revolves around Hank trying to steal the Holy Grail from Camelot.

However, in order for the King to even allow him to view it, he must prove himself worthy

through valiant actions, such as saving a princess, rescuing a child, and slaying a monster.

Unfortunately, there have been very few problems in Camelot, so Hank must create his own

problems through lying and trickery. In the end, Hank steals the Grail and returns home to sell it.

 We named the game Episode 1: Grail to the Thief to suggest that the story had room for

expansion. If the game proved popular, we could send Hank to more adventures in other time

periods.

Because the game was planned as a text adventure, we wrote the game in a branching

narrative, meaning that players were given choices that they could make that affected their story

when comparing to other players experiences. We also wanted the player to be able to complete

the three tasks in any order, which required us to take into account freedom of movement while

writing.

 14

Figure 2: Brainstorming ideas on a whiteboard

To write the story, we first outlined everything on a whiteboard in section based nodes.

This gave us the ability to sit back and look at how our game flowed, in what order tasks could

be completed, see how many assets we had as far as characters and environments, and determine

if the project was scoped well. After writing it all down, we took pictures of our outline, and

cleaned it up in a mind mapping software called XMind, which gave us insight into the length

and tone of dialogue and events.

 15

Figure 3: Sample XMind outline

After XMind, Anthony began implementing the story directly in the Inform engine. While

writing, he took into account how the player would react to certain environments, coming up

with as many responses as he could for all of the inputs he thought a player would be likely to try

in a given situation. Dialogue was written prefaced by the speaker’s name, and sound effects and

ambient sounds were surrounded by parenthesis. This not only established environments for non-

 16

listeners, but also served as a reminder for which sounds would be required later. He also edited

all predetermined states to be prefaced with the robotic character’s name, TEDI, so that generic

responses were spoken to the player by the computer, and not out of thin air by an impersonal

narrator.

Figure 4: Programming in Inform

 17

Initial Testing (Inform)

 Greg began testing the game as soon as we had a working demo in Inform without any

sounds, to see if players would enjoy the narrative and the dialogue. This testing proved essential

to our project, because it showed us a number of important mistakes we were making.

 Greg reported high scores in things such as frustration, how confused the testers were,

and how difficult the game was, and extremely low scores in enjoyment, humor and engagement.

Through analysis of the play through scripts, which Greg collected from every player, we were

able to conclude as a group that players were not enjoying the game because they could type in

literally anything as a command, leaving the affordances too ambiguous.

Figure 5: An example of what the collected data from playing the game in Inform
looked like.

 18

 There is a certain skill set that goes along with playing a text adventure, such as knowing

which words and syntaxes are likely to successfully communicate the action you want to

perform. For example, players who typed commands such as “Have Hank walk to the town”

were being too verbose for the Inform parser to understand what they meant. An experienced

player would know that the simple imperative “Go to town” is sufficient. However, our target

audience is not generally familiar with text adventure conventions, so this form of gameplay

would not work for the project we were trying to make. It became obvious that drastic changes

needed to be made to the design, and quickly (it was already the end of B-Term when this came

up).

 19

Switching to Twine and Web Audio

Decision to Switch

 After deciding that our basic design had to change, we started looking for options. One

possibility was the hyperlink-based adventure game engine Twine. At the time, Twine was

rapidly growing in popularity, and games were popping up everywhere. Twine runs in a browser,

allowing players to run it without having to download anything.

 Branching narratives written in Twine are node-based, with only a few choices available

at each decision point. We determined that adapting our story options to a few key choices would

be fairly simple.

Figure 6: A section of the game in the Twine layout.

 20

 As for audio, the Web Audio API, a JavaScript-based audio API for browsers, seemed

like the best choice. Since Twine is also JavaScript-based, the two engines could be readily

merged, resulting in an easy-to-use system to control sounds through the use of Twine macros.

 The switch to Twine also greatly simplified the problem of producing audio assets. With

Inform, we would need to create literally thousands of responses to various actions that might be

tried by the player, whether or not they had any relevance to the game. With Twine, we would

only have to produce the audio required by a limited set of choices and responses.

Accessibility and Simplicity

We brainstormed various ways for a sight-impaired player to input their choices. We

considering using Google Speech, Google’s speech recognition software, but the primitive state

of the technology discouraged us. Then we realized that, because all available choices were

explicitly listed after each response, they could be sequentially numbered, and the numbers read

aloud by the narrator, allowing sight-impaired players to specify a choice by touching a single

key.

We also decided that we had to give the player the ability to listen to a scene more than

once, in case they missed a crucial line of dialogue. This was implemented by using the space

bar to repeat the most recently played passage.

The driving factors in the decision to switch to Twine were that it made the game more

accessible and easier to build. The time lost due to changing engines was minimal compared to

the time gained by abandoning the challenges of Inform. There was little chance that we could

have achieved the depth in Inform that we could find in Twine.

 21

Tech

 With the Web Audio API, the functions that Inform had made difficult, or not available at

all, became almost trivial. The change to HTML and JavaScript meant that we also gained a host

of new capabilities. The most important of these was timers, which were necessary for a variety

of functions.

Timers, as many as needed, could be set to repeat or fire once, and they could all be

saved to be edited later. A queue of sounds could be played by creating a series of timers, each

one adding to the length of the previous. The saving of timers also allowed us to deal with the

possibility of players rushing the screen and moving on before a scene was finished. By simply

telling each scene to first wipe any playing or queued sound, we were able to solve a problem

that likely could not have been fixed in the Inform version.

Here is a list of all audio capabilities added to Twine with our extension:

• Playing sounds with the ability to

o Set the volume

o Loop

o Start after a set delay in milliseconds

• Play a sound and fade it out to a variable volume at a variable time

• Crossfade between two sounds with the same parameters

 22

• Play a queue of sounds in order with a delay

• Play a list of sounds in random order with a delay

• Create a collection of any of the above actions, and associate them with a button press

In addition, any number of sounds may be played concurrently (there are memory issues

with large numbers, but they become a cacophony well before that), and sounds may be tagged

as ambient or single-time sounds. Single-time sounds, whether they are playing or not, can be

wiped out with the previously mentioned stop function which would not have been possible in

Inform.

With all of that information, it becomes fairly clear that much more could be done. The

option present in simply playing a sound could be applied to any other function, or crossfading

could be applied to a queue. Again, this is a return of the issue of readability. At some point

macros could, even optionally, use too many parameters to be inviting to novice developers. By

keeping things simpler, these developers are not scared off by the number of options they have,

and those that notice the capabilities and have a desire to mix and match functions are free to do

so. They might even look into Web Audio itself, and see that it still holds potential. There are a

number of other functions it provides that are unnecessary for most applications, but would be

relatively simple to implement, even to pass from Twine.

 23

Post-Switch: On the Right Track

Story

 Now that we were on the right track as far as initial game design, we still had to adapt our

narrative from Inform to Twine. Anthony continued writing the game with freedom of movement

in mind. DJ realized that the node-based Twine engine largely eliminated the need to backtrack

to areas already visited, and that players could always be nudged to complete puzzles in those

areas. This meant that the game now needed no repeating audio, which was the number one

immersion-breaker we were trying to avoid. This redesign also led to the player being unable to

make useless moves, streamlining the narrative in a way that communicated our story in a much

more natural way, giving it the flow of a film, television program, or novel. This is something

that has been lacking in the “open narrative” games that we have seen in recent years.

Audio

 Though recording had been happening for some time before the switch to Twine, the

workload of audio production facing us became extremely apparent as the game started to take

shape through sound.

 As far as recording dialogue, we were lucky to have both the equipment and the actors

available to us for free. Two WPI students, Sasha Abdurazak and Peter Lepper, were extremely

generous in the amount of time they were willing to commit to the project. Several hundred lines

of dialogue were recorded, all in the audio suite on campus. We captured vocal performances

using the Zoom H2 microphone, attached atop a microphone stand, and using several

 24

soundproofing items like wall mounted foams and stand shields. Also, we invested in a pop filter

to insure the highest quality audio, avoiding plosives and distortion wherever possible.

Figure 7: Peter Lepper recording in the sound lab

 While recording, we really let the actors make the characters their own, developing

interesting, fun personalities. Anthony directed the recording sessions, coaching the actors

through the tone and volume of their dialogue, allowing several takes and letting them improvise

whatever they wanted, within reason.

 As far as organizing sounds, Anthony created Excel sheets that outlined the take number,

which character was reading the line, what line in what scene it was, the quality of the take, and

 25

whether it was a candidate to go in the final game. All sounds were organized in folders that

corresponded to their particular Twine node, and split up to later be put together in Audacity

audio program, after being exported through compressors, equalizers, pitch shifters, and other

filters in Apple Logic Pro 9, a professional audio program.

Figure 8: Organization of Sounds

 26

Figure 9: Common desktop layout for sound editing

 Anthony had several libraries of sound effects left over from previous audio classes,

which proved to be invaluable to the sound design of the project. Foley recording (the capture of

practical sound effects, such as footsteps) were recorded in the audio suite with the Zoom H2.

Music was created in Logic, using both sound loops and virtual instruments, resulting in a

completely original score for the game.

 Audio was prepared in two sections: a pre-mixed or “baked” version of what would play

whenever the player entered a Twine node, and an ambient track that could run through multiple

nodes. While the baked single-play tracks were relatively straightforward to make, ambient

tracks had to be smoothly looped to avoid distracting the player from the story experience.

 27

 To minimize loading times, all audio was exported in the .ogg file format, shrinking the

original .wav files to a tenth of their original size without noticeable quality loss.

Tech

In the end, one of the greatest technical boons to the project was the Web Audio API.

With Inform, sounds had to be played using system calls made in IF7, which meant using

rudimentary timers and cumbersome library extensions so that more than a single sound could be

played at once. While we eventually got it all working, it wasn’t nearly as flexible or extensible

as Web Audio proved to be.

With Web Audio, we were free to use any resource the browser could. The basic

functions that Inform required extensions to even attempt were solved by using few JavaScript

functions. We were also able to tackle issues that we never even attempted to solve in Inform.

Twine cut down on our development time and left our tool room to grow.

Usability was an important consideration when creating new functions for the Twine

audio engine. Since Twine is intended to be used by very inexperienced developers, we

intentionally kept the functions and their options to a minimum.

The reason that the Web Audio engine was designed separate from the Twine extension

is to ensure its readability. By simply adding to Twine’s built-in macros, we make sure that the

extension only slightly increases the difficulty level of using it versus Twine alone. Since the

source of the engine is kept separate, these developers can look at the options given to them by

the extension without worrying about the details of how the actions are performed. At the same

 28

time, any experienced developer that wishes to add functionality to the engine will find it easy to

do so.

Despite the separation, the engine is not intended for use beyond Twine. This is due to

two issues related to the design of Twine. First, all parameters sent from Twine to the Web

Audio engine are passed as strings. This means that for any non-utility function called from

Twine, all parameters must first be checked for data type and converted as necessary.

The second limitation in Twine is the number of parameters that can be passed.

JavaScript is capable of handling variable numbers of parameters, and therefore could

conceivably create a list of infinite sounds to play in a queue. Twine, on the other hand, must

manually pass each parameter from the macro call to the engine. For this reason, the limit on

queuing is fifty sounds, more than enough for most applications. This sacrifices some of the

readability of the engine, but we were not as concerned with readability there.

These issues, when compared with the roadblocks faced in Inform, were relatively trivial.

Twine led to the desire to make the tool useable for users with a wide variety of skill levels, but

it also ensured that this was simple, without preventing ambitious users from adding to the

engine’s functionality. In Inform, adding to the engine would have required skills even the most

advanced users might not possess.

 29

Release as a Tool

When releasing to the public, there were a few additional factors beyond the basic

guidelines for the Interactive Audio Adventure. The first was ensuring accessibility to the

visually impaired. Twine’s use of hyperlinks means that the player must click to advance. This is

technically accessible, since it’s safe to assume that the player can use a screen reader if

necessary. However, this is far from ideal, as mentioned in Creating Video Games for the

Visually Impaired. Because of this, we created a set of functions to bind links to number key

presses, allowing a visually impaired player to keep their hands in one place on the keyboard.

However, we recognized that this approach was not a universal desire. Many Twine

developers who may want to create a story with sound may not be worried about accessibility.

For instance, most Twine stories leave links in the middle of pages, rather than a list at the end

like a choose-your-own-ending book. This might not work well with a numbering system. As a

result, we kept this aspect of the extension separate, effectively creating two extensions. The

releases are packaged both with and without the key-press extension.

Another important factor in releasing the tool was applying it to a wide range of skill

levels. The main release is designed to work much like Twine itself, with a collection of added

abilities. The actual audio controls are handled elsewhere, by the audio engine. For many

developers, this should be enough. For others, though, we provided a direct link to the engine’s

source. We also made it clear where the engine is included in the extension, and how to

substitute one’s own version instead of the default location.

Finally, the method of packaging caters to a final subset of developers. Rather than taking

the source of Twine and creating a new version that includes the audio controls, we decided to

 30

create the controls in a passage in a Twine story file. This way, the controls are visible for those

who want to edit them, and for those that want to add sounds to an existing story, the process is

as simple as copying the passages in the desired release into the existing story.

Altogether, the release comes in two forms, with the engine source code available

separately. This ensures that Twine stories using it may be existing or new, and fully blind-

accessible or not. Developers may choose to look at the sources for the extensions, or never

consider them. They may decide to edit them, or change the engine itself and use a new version.

Nearly every aspect of these tools is transparent and available to make sure that as many

developers as possible can use them to create more audio adventures.

Figure 10: Release Web site at TwineAudio.com

 31

Accessibility

 Grail to the Thief is completely blind accessible. However, there were some developer

limitations that we would like to see addressed in the future if people decide to expand on our

engine. These are, notably, that audio input would be really helpful and interesting, as well as

combining the numbered input we utilized and giving an option to speak those numbers.

 Also, because it depends on the Web Audio API, the game currently only works in

Webkit-based browsers such as Chrome and Safari. However, Web Audio has now been

officially adopted as part of the HTML5 standard, and should soon be available on all major

browsers. Mozilla has already announced its intention to support it with Firefox.

Final Testing

 Greg continued to test the game throughout the production process, constantly trying new

iterations of the design. A total of 111 volunteers (55 male, 56 female) played the game, and

were randomly assigned one of three variables to test with. They either played the game only

seeing text on the screen, only hearing audio, or both seeing the test and hearing the audio. Each

participant played the game for five minutes, filled out a survey (included below), and gave their

opinions on their experience. Greg also saved their transcripts of their play-throughs for further

evaluation.

 32

Figure 11: A volunteer playing the game without onscreen text

 The results we saw with the Twine version of the game were the opposite of the Inform

version. High scores were assigned to engagement, enjoyment, story and sound, and low scores

given to frustration, confusion and game difficulty. Several participants wrote in the comment

section of their survey that they would like to continue playing it because they were genuinely

having fun, which was one of our primary goals.

 Interestingly, players who took the time to listen to the audio and not look at the text

thought the story flowed more smoothly, suggesting that this game would be enjoyed by the

blind. Unfortunately, due to logistic and legal issues, we were not able to perform formal tests

 33

with actual blind participants. However, Anthony sent the game over to the Perkins School, and

anecdotal feedback has been highly positive.

Figure 12: A graph demonstrating enjoyment of the variables on a seven-point
scale

 34

Conclusion

 Not only did the group create a game for the visually impaired that is completely

accessible, but also we rigorously tested and iterated on our design to ensure that the game was

immersive, enjoyable, and what every game should be, fun. Also, on our journey, we created a

tool to help other create games for the visually impaired and released it to the public for free,

hoping to promote awareness and get other developers to create their own blind accessible

games.

References

1. Russo, Anthony, Neal Sacks, and Steven Vandal. "Creating Video Games for the
Visually Impaired." WPI Publishing. WPI, May 2012. Web. 22 Apr. 2013.

 35

Appendices

A. Post-Play Survey

1. I would continue playing this game if I had the opportunity to.

1 2 3 4 5 6 7

Strongly Disagree Strongly Agree

2. I had a lot of fun playing this game.

1 2 3 4 5 6 7

Strongly Disagree Strongly Agree

3. I was engaged while I was playing this game.

1 2 3 4 5 6 7

Strongly Disagree Strongly Agree

4. I was immersed in this game while I was playing it.

1 2 3 4 5 6 7

Strongly Disagree Strongly Agree

5. I felt frustrated while I was playing this game.

1 2 3 4 5 6 7

Strongly Disagree Strongly Agree

 36

6. My mind wandered to topics unrelated to the game while I was playing it.

 1 2 3 4 5 6 7

Strongly Disagree Strongly Agree

7. I found the story in this game engaging.

1 2 3 4 5 6 7

Strongly Disagree Strongly Agree

8. I found the story in this game humorous.

1 2 3 4 5 6 7

Strongly Disagree Strongly Agree

9. The choices I made in the game affected the story in the way that I wanted it to.

1 2 3 4 5 6 7

Strongly Disagree Strongly Agree

10. The events and challenges in the game flowed naturally together.

1 2 3 4 5 6 7

Strongly Disagree Strongly Agree

11. The puzzles and challenges in the game were too difficult.

1 2 3 4 5 6 7

Strongly Disagree Strongly Agree

 37

12. The storyline of the game flowed naturally, was easy to follow, and was engaging.

1 2 3 4 5 6 7

Strongly Disagree Strongly Agree

13. Only answer if you heard sound while playing the game: The sounds matched the scenarios
in the game.

1 2 3 4 5 6 7

Strongly Disagree Strongly Agree

14. Only answer if you heard sound while playing the game: The sounds in the game were
realistic.

1 2 3 4 5 6 7

Strongly Disagree Strongly Agree

15. Only answer if you heard sound while playing the game: The audio of the game added a
great deal to my enjoyment when playing the game.

1 2 3 4 5 6 7

Strongly Disagree Strongly Agree

16. How often do you play video games?

 1 2 3 4 5 6 7

 Never Very Often

 38

16. Approximately how many hours per week do you play video games?

17. If you were to play a video game, what genres of video games would you play? (Circle all
that apply and rank in order of preference)

-Action -Adventure -Facebook/Online -Fighting

-Mobile/Phone -Music -Multiplayer -Puzzle

-Racing -Role-playing -Simulation -Strategy

-Shooter -Sports -Massively Multiplayer Online

-Other: ___

18. What is your gender?

Male Female

19. What is your class year?

Freshmen Sophomore Junior Senior Graduate

20. Do you have any other comments about this game?

 39

B. Twine API

/*********************************

WAIT! Be sure that you set (NUMBER OF SOUNDS) to the correct number. This
tells the audio engine when it's okay to continue on and start the game. Take
note though: This won't make sure that the engine waits until every sound has
loaded, just that they have been attempted. The sound is counted regardless
of whether a sound is successfully loaded or not.

The game still starts on the passage titled "Start", but this is just a
landing pad: it can say whatever you want or nothing at all. After a moment,
the engine will move the game along to another page, this one titled
"Loading". Once all sounds have loaded (or failed to load), the game will
automatically move on to the new start, titled "Start_Game".

Okay, on to how to set up the engine in Twine passages:

Step 1: Call <<InitMacro>>before any other macro, on the passage titled
"Loading".

Step 2: Call all the <<AddMacro [Sound_Name]
['/File_Path/File_Name.ogg']>>without the brackets. [Sound_Name] is whatever
you want to refer to sound as. The filepath can be local or explicit,
JavaScript isn't picky. Another note here: Twine won't understand if you
have a space in any of these names (or anywhere else), so stick to
underscores and the like.

Step 3: Call all the <<LoadMacro [Sound_Name]>>. You only need the name now,
not the path. This loads the sound into memory, so it can definitely take
some time for a lot of sounds, or a few long ones.

All of this should be done in the passage named "Loading". You can simply put
the <<InitMacro>>, followed by a block of <<AddMacro>>s, followed by a block
of <<LoadMacro>>s. However, anything else must come in another passage.

The real start passage is now called "Start_Game". (If you'd like, you can
change this just below, in InitMacro).

Now that our engine is started, and we have all our sounds, we can use them:

Step 1: At the start of any passage, call <<StopOnceMacro>>. This will stop
ANY sounds that is not ambient, so a player clicking rapidly will still only
hear the current passage.

Step 2: Also at the start of any passage, but unrelated to the previous, call
<<ClearRepeatMacro>>. This cleans the list of commands that play when a
player presses the repeat button (or the spacebar).

Step 3: Whenever you play a sound in any way, if you want it to be repeated,
call
<<AddRepeatMacro [Macro_Name] [Macro_Paramaters] ... >>. It's a good idea to
add the repeat to the list when the sound plays. That way, they will be in
the same order in the repeat list as the first time they play.

 40

Here is a list of all macros with descriptions (type all parameters without
the brackets):

 <<InitMacro>>

Starts the audio engine (Creates the AudioContext). Call this before anything
else.

 <<AddMacro [Sound_Name] ['/Filepath/File_Name.ogg']>>

Adds [Sound_Name] to the list of all sounds. After being added, the sound can
just be referred to as [Sound_Name].

Example: <<AddMacro horse_gallop '/horse_galloping.wav'>>

 <<LoadMacro [Sound_Name]>>

Loads [Sound_Name] into memory to play it later.

Example: <<LoadMacro horse_gallop>>

 <<StopOnceMacro>>

Stops all sounds intended to play once. Any sound not labeled as "ambient" is
assumed to only play on its own passage. This should be placed at the start
of every passage, to keep sounds from piling up.

 <<StopMacro [Sound_Name]>>

Manually stops [Sound_Name], if it is playing. Since most sounds play once,
this is best for ambient sounds.

Example: <<StopMacro horse_gallop>>

 <<PlayMacro [Sound_Name] [Volume] [Loop] [Delay] [Ambient]>>

Plays [Sound_Name]. This gives you the most control over individual sounds.

[Volume] is a number from 0-1, default is 1.

[Loop] is a Boolean, default is false.

[Delay] is a number in seconds, default is 0.

[Ambient] is a Boolean, default is false.

You can play a sound with only the name, but if you want to change a later
parameter, you must enter
everything before it. Anything not labeled ambient is added to a list of
sounds to be played for a single passage, even if it is looping. These will
be stopped if <<StopOnceMacro>>is called.

Example: <<PlayMacro horse_gallop>>assumes <<PlayMacro horse_gallop 1 false 0
false>>

 <<FadeOutMacro [Sound_Name] [Time] [Volume] [Ambient]>>

 41

Plays [Sound_Name], and fades it out. Time is the time from the end to start
fading out. Volume is the target volume.

The sound starts at normal volume (1), so a target of 0.5 is half of the
starting volume.

[Time] is a number in seconds, default is 3.

[Volume] is a number from 0-1, default is 0.5.

[Ambient] is a Boolean, default is false.

You can play a sound with only the name, but if you want to change a later
parameter, you must enter
everything before it.
Example: <<FadeOutMacro horse_gallop>>assumes <<FadeOutMacro horse_gallop 3
0.5 false>>

 <<FadeInMacro [Sound_Name] [Time] [Volume] [Ambient]>>

Plays [Sound_Name], and fades it in. Time is the amount of time to fade in.
Volume is the starting volume. The sound starts at that volume and gradually
reaches normal (1), so a start of 0.5 is half of the volume it will reach.

[Time] is a number in seconds, default is 3.

[Volume] is a number from 0-1, default is 0.5.

[Ambient] is a Boolean, default is false.

You can play a sound with only the name, but if you want to change a later
parameter, you must enter
everything before it.

Example: <<FadeInMacro horse_gallop>>assumes <<FadeInMacro horse_gallop 3 0.5
false>>

 <<CrossfadeMacro [Sound_Name_1] [Sound_Name_2] [Time]
[Volume] [Ambient] >>

Combines the above two macros to crossfade two sounds. The [Sound_Name_1]
will fade out for the length of [Time], and [Sound_Name_2] will fade in for
that time.

[Time] is a number in seconds, default is 3.

[Volume] is a number from 0-1, default is 0.5.

[Ambient] is a Boolean, default is false.

You can play a sound with only the names, but if you want to change a later
parameter, you must enter
everything before it.

Example: <<CrossfadeMacro horse_gallop horse_whinny>>assumes <<FadeInMacro
horse_gallop horse_whinny 3 0.5 false>>

 42

 <<QueueMacro [Delay] [Ambient] [Sound_Names]>>

Plays a list of up to 50 sound names, listed individually. Each sound will
wait for the given [Delay].

[Delay] is a number.

[Ambient] is a Boolean.

Example: <<QueueMacro 0 false horse_gallop horse_whinny dust_cloud>>

 <<RandomMacro [Delay] [Ambient] [Sound_Names]>>

Plays a list of up to 50 sound names randomly. The sounds must be listed
individually. Great for ambient sounds. Each sound will wait for the given
[Delay].

[Delay] is a number.

[Ambient] is a Boolean.

Example: <<RandomMacro 5 true birds_chirping cow_moo rooster_crow>>

 <<AddRepeatMacro [Macro_Name] [Parameters]>>

Adds any of the playing functions above to the Repeat List. The list
preserves the order in which they are added.

Repeat List is the list of functions to call when the player clicks "Repeat
Audio" or presses the space bar.

Example: <<AddRepeatMacro QueueMacro 0 false horse_gallop horse_whinny
dust_cloud>>

 <<ClearRepeatMacro>>

Clears the Repeat List. Like <<ClearOnceMacro>>, this is intended to be
called at the start of every passage.

***/

 43

C. XMind story layout

	Abstract
	Acknowledgments
	Introduction
	Initial design
	Inspiration
	Key Experience
	Initial Ideas
	Inform

	Writing
	Brainstorming
	Characters
	Setting
	Plot and Puzzle Design

	Initial Testing (Inform)
	Switching to Twine and Web Audio
	Decision to Switch
	Accessibility and Simplicity
	Tech

	Post-Switch: On the Right Track
	Story
	Audio
	Tech

	Release as a Tool
	Accessibility

	Final Testing
	Conclusion
	References
	Appendices
	A. Post-Play Survey
	B. Twine API
	C. XMind story layout

