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Abstract 
 

Code transformation is widely used in programming.  Most developers are 

familiar with using a preprocessor to perform syntactic transformations (symbol 

substitution and macro expansion).  However, it is often necessary to perform more 

complex transformations using semantic information contained in the source code. 

In this thesis, we developed EXTRACT; a general-purpose code transformation 

language.  Using EXTRACT, it is possible to specify, in a modular and extensible 

manner, a variety of transformations on Java code such as insertion, removal, and 

restructuring.  In support of this, we also developed JPath, a path language for identifying 

portions of Java source code.  Combined, these two technologies make it possible to 

identify source code that is to be transformed and then specify how that code is to be 

transformed. 

We evaluate our technology using three case studies: a type name qualifier which 

transforms Java class names into fully-qualified class names; a contract checker which 

enforces pre- and post-conditions across behavioral subtypes; and a code obfuscator 

which mangles the names of a class’s methods and fields such that they cannot be 

understood by a human, without breaking the semantic content of the class. 
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Chapter 1 
Introduction 

 

Code transformation is widely used in programming.  The most common example 

is using a preprocessor that performs symbol substitution and macro expansion.  This 

form of code transformation is often based on syntactic transformations; for example, C 

code is transformed into more C code through string substitution.  There are domains, 

however, where code transformations are complex and the resulting target language 

differs from the source language.  An example of this is the Java Remote Method 

Invocation (RMI) compiler that generates stub and skeleton classes from Interface 

Definition Language (IDL) specifications [27]. 

In our application domain, we need to instrument Java classes by adding callbacks 

at the beginning and end of each method.  The resulting classes have an active interface 

[17].  These classes form the basis for component adaptation, monitoring and validation, 

and it allows users to create Embedded Code Sensors (ECS).  An ECS is a probe that can 

emit events when an object is instantiated, a class attribute is accessed, a user-specified 

assertion fails, a reflective method invocation occurs, or an exception is thrown. 

The Active Interface Development Environment (AIDE) compiler was developed 

as a prototype for the DARPA DASADA (Dynamic Assembly for Systems Adaptability, 

Dependability, and Assurance) project [CITE – Peter Gill].  AIDE takes a Java source file 

and instruments each class in the file.  Each class is made to implement the ��
��
��� 

interface (as well as the ��
�����
��
��� interface, if the class contains static 

methods) by adding the necessary methods and appropriate fields.  These interfaces allow 

adapters to be attached to instrumented objects.  Then, callback code is added at the 
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beginning and end of each method.  When each method is called, if an adapter is attached 

to the object, the adapter’s �������
���
�� method is called.  The arguments to this 

method provide the signature of the instrumented method, the values of the instrumented 

method’s parameters, and a reference to the instrumented object containing the method.  

Similar callback code is added before each return statement as an after hook.  The 

callback code (i.e., �������
���
��) in the attached adapter can be used to monitor the 

execution of the instrumented class’s methods.  The callback code also allows for the 

adapter to modify the parameters sent to the method as well as the value being returned. 

Event Bus

Object (Adaptable)

Adapter

ECS

ECS

ECS

ECS

Callback

Callback

Callback

Callback

Callback

Callback

invokeCallback
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Figure 2: Embedded Code Sensors 
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For the DASADA project, an infrastructure was developed for instrumenting 

running systems with probes and passing the data gathered by the probes to gauges [15].  

The gauges can then collect, collate, filter, and aggregate that data to provide system 

level measurements of the system’s operation.  The goal of DASADA is to improve a 

system’s responsiveness and robustness by dynamically analyzing system level 

measurements to determine any modifications, adaptations, or reconfigurations [1].  The 

callbacks inserted by the AIDE compiler are used to generate events.  These events are 

broadcast on an Internet-scale bus (SIENA – Scalable Internet Event Notification 

Architectures [28]).  External gauges can then subscribe to the SIENA event stream and 

monitor the information sent out by the probes.  This information is then used to decide 

whether and how the monitored application must be reconfigured, and then coordinate 

lower-level effectors to implement the actual reconfiguration [1]. 

Applications can subscribe to the event streams for a variety of monitoring 

purposes.  SoftViz [24] provides program-flow visualization by displaying, either in real-

time or from a captured event stream, which methods are called in a probed application.  

Other applications might monitor the event streams for patterns of behavior.  Certain 

patterns signify the failure of a given component, high load on a given component, or a 

variety of other conditions.  This enables monitoring applications to dynamically 

reconfigure the target application. 

There are a variety of ways in which probes can be embedded into an application.  

Method calls can be intercepted by the runtime environment or by a DLL, executable 

code or Java byte-code can be instrumented, or semantic information can be used to 

insert probes directly into the source code.  The AIDE compiler was designed to perform 
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the latter method of embedding probes.  In its prototype form, AIDE was a Java grammar 

(for JavaCC [21]) that emitted the probe code when the appropriate points were reached 

during the parsing of a source file.  This proved to be difficult to modify and maintain.  

The technology also required multiple passes to process the code. 

AIDE represents a specific type of code transformation; namely, the insertion of 

probe code at the beginning and end of certain methods.   However, other types of code 

transformations can be useful in the development and testing of code.  For example, code 

transformations can be used to perform refactoring, coverage checking, and code 

obfuscation. 

This thesis presents the EXTRACT (Extensible Transformation and Compiler 

Technology) language and its supporting libraries.  Using EXTRACT it is possible to 

specify, in a modular and extensible manner, a variety of transformations on Java code.  

While the version of EXTRACT developed in this project is limited to Java code, it is 

possible to extend it to be used with other languages.  This thesis also presents JPath, a 

path language for Java source code.  JPath provides a mechanism for EXTRACT 

modules to identify code to be transformed.  We also present the supporting JPath 

interpreter libraries and EXTRACT compiler. 

The remainder of this paper is organized as follows:  In Chapter 2, we examine 

related work.  In Chapter 3, we discuss the design considerations for EXTRACT.  In 

Chapter 4, we introduce JPath and show how it can be used to locate portions of Java 

code for the purpose of transformation.  In Chapter 5, we introduce the EXTRACT 

language and describe how it is used to specify code transformations.  In Chapter 6 and 
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beyond, we evaluate the EXTRACT technology and present case studies on how it 

performs. 
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Chapter 2 
Related Work 

AIDE Compiler 

As discussed in Chapter 1, the Active Interface Development Environment 

(AIDE) was developed as a prototype Java preprocessor for the DARPA DASADA 

project.  It served a limited purpose in that it only instrumented classes so that they would 

implement a given interface and added code at the beginning and end of certain methods.  

The code transformations that it performed were limited in scope, and proved to be 

difficult to modify and maintain.  This is due to the fact that the transformations were 

embedded in a JavaCC grammar. 

The transformations that AIDE performs can be viewed as specific instances of a 

more general set of transformations.  We envisioned a technology that was capable of not 

only inserting code, but also inserting, deleting, and restructuring code.  To this end, we 

developed EXTRACT. 

XSL Transformations 

The Extensible Markup Language (XML) allows users to define their own 

markup tags for storing structured data.  Using either a Document Type Definition (DTD) 

or an XML Schema, users can define how markup in a document conforming to such a 

specification must appear.  However, different users will inevitably define different tags 

and structures for similar data.  For instance, the following two XML documents 

represent the same information but are defined using different schemas: 

�����
����������� ��!
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To a human reader, it is easy to see the mapping between the two document types.  

However, a mechanism is needed to programmatically transform documents from one 

type to another.  XSL Transformations (XSLT) perform this task. 

The XSLT specification [7] defines an XML-based language for expressing 

transformation rules from one class of XML document to another.  An XSLT stylesheet 

can describe transformations from XML to arbitrary text-based formats.  The source 

document is parsed and a parse tree conforming to the Document Object Model (DOM) 

[10] is produced.  The XSLT stylesheet then uses the XML Path Language (XPath) [9] to 

identify portions of the DOM tree which correspond to portions of the original document.  

The stylesheet then contains rules for emitting formatted text based on the portion of the 

DOM tree.  Schema transformations are described in XSLT by implementing an 

exemplar of the target schema in terms of its deltas from the source [5].  Thus, 

interoperability between disparate document types can be achieved. 

EXTRACT uses a similar approach to transforming Java code.  A Java source file 

is parsed into an Abstract Syntax Tree (AST).  An EXTRACT module then uses JPath (a 

Java path language similar to XPath; see Chapter 4 for details) to identify portions of the 

Java code.  The module then specifies how to transform that portion of code. 
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Byte-Code Instrumentation 

As an alternative to transforming Java source code, it is possible to transform the 

compiled byte-code.  This section will examine a number of approaches to byte-code 

instrumentation. 

ProbeMeister [26], also developed under the DASADA project, supports the 

dynamic insertion of probe code into Java byte-code.  Probe code is self-contained and 

can be inserted into code dynamically at any point during the application’s execution.  

Probes can be inserted while the application is running, and can be inserted into byte-

code that is executing remotely.  The probes then emit data back to ProbeMeister for 

viewing.  This sort of byte-code manipulation requires sophisticated support from the 

virtual machine, as found in the Java Development Kit (JDK) 1.4. 

Javassist [6][20] is a load-time reflective system for Java.  It provides a class 

library for editing byte-code from within a Java application, enabling applications to 

define a new class at runtime and to modify a class file when it is loaded by the JVM (if 

used with a customized class loader). 

Addistant [31] transforms byte-code at load time.  It enables the distributed 

execution of Java software that was originally developed to run on a single virtual 

machine.  No source code modifications are necessary.  It can modify Swing applications 

so the GUI executes on the local machine while the rest of the application executes 

remotely. 

 Two other technologies, Java-MaC [23] and Java PathExplorer [16] perform 

byte-code instrumentation for runtime verification of Java applications.  Both 

technologies insert probes into Java byte-code which emit events that are interpreted by 
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an outside application that performs the verification.  A high level, state-based 

specification of the behavior of the monitored application is given to the verifying 

application.  The verifying application then infers state transitions from the events that 

are emitted and compares them to the corresponding specification.  When the application 

behaves differently than the specification, a warning or errors are reported back to the 

user. 

Visitor Design Pattern 

Portions of this paper make reference to the Visitor design pattern [14].  This 

section reviews the Visitor pattern and how it is used.  Readers familiar with this design 

pattern can skip this section. 

As described in [14], the Visitor design pattern represents an operation to be 

performed on the elements of an object structure.  It allows the developer to define a new 

operation without changing the classes of the elements on which it operates.  Given a 

complex structure of objects (elements) whose interfaces vary, it is possible to define 

operations on that structure that depend on the concrete class being operated on.  Rather 

than define these operations in the element classes, which would scatter the 

implementation of an operation across a number of different classes, the Visitor design 

pattern allows the developer to define an operation in a single Visitor object which visits 

each element and performs the operation.  To add a new operation, one simply defines a 

new Visitor class.  The visitor implements each operation declared by the visitor, and 

each operation implements a fragment of the algorithm defined for the corresponding 

class of object in the structure. 
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The figures below show UML diagrams for the class structure of the Visitor 

design pattern and the sequence of calls made between the elements and the visitors. 

Visitor

+VisitConcreteElementA(e : ConcreteElementA)
+VisitConcreteElementB(e : ConcreteElementB)

ConcreteVisitor1

+VisitConcreteElementA(e : ConcreteElementA)
+VisitConcreteElementB(e : ConcreteElementB)

ConcreteVisitor2

+VisitConcreteElementA(e : ConcreteElementA)
+VisitConcreteElementB(e : ConcreteElementB)

ObjectStructure
Element

+Accept(v : Visitor)

ConcreteElementA

+Accept(v : Visitor)
+OperationA()

ConcreteElementB

+Accept(v : Visitor)
+OperationB()

v->VisitConcreteElementA(this) v->VisitConcreteElementB(this)

Client

 

Figure 3: Visitor Design Pattern Object Structure (from [14]) 
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anObjectStructure aConcreteElementA aConcreteElementB aConcreteVisitor

Accept(aVisitor)
VisitConcreteElementA(aConcreteElementA)

VisitConcreteElementB(aConcreteElementB)

OperationA()

Accept(aVisitor)

OperationB()

 

Figure 4: Visitor Design Pattern Sequence Diagram (from [14]) 
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Chapter 3 
Design Considerations 

Component Adapters 

In [17], a mechanism for adapting software components is described.  When 

assembling a system from reusable software components, the developer needs to locate a 

component that matches the functionality and interfaces that are needed.  Often, a 

component does not exactly match a particular need.  Therefore it is necessary for 

developers to be able to adapt the behavior of a component. 

 Consequently, software components can have two interfaces; one for the 

behavior of the component, and one to adapt that behavior as needed.  A component’s 

interface defines more than a syntactic description of the method invocations accepted by 

a component; it can define methods to invoke, events to send and receive, or complex 

access protocols [17].  An active interface, introduced in [17], decides whether to take 

action when a method is called, an event is announced, or a protocol executes.  Interface 

requests occur in two phases: the “before-phase” which occurs prior to any execution of 

the request, and the “after-phase” which occurs once the component has completed the 

execution of the request.  Active interfaces allow for the specification of callback 

functions to be invoked during these phases, allowing a developer to augment, replace, or 

deny a client request [17]. 

The ADAPT Project [1] defined a set of Java interfaces (namely 

��"�%������
�
�����
��
��� and ��"�%������
�
�����
�����
��
���) that 

provide a component or class with an active interface.  These interfaces allow for 

callback methods to be installed that augment, replace, or deny a client request on a 
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component or object.  The callbacks are invoked in the “before-phase” when the method 

is first called and in the “after-phase” when the method is about to return. 

In order for an object to be adaptable in the manner, code needs to be present at 

the beginning and end of each method that calls the callback method and takes the 

appropriate action as signaled by the callback method.  While it is possible to have the 

developer insert this code when writing the class, it is preferable that this process be 

automated.  Code that achieves this functionality fits a template, and can be inserted 

programmatically.  The Active Interface Development Environment (AIDE) instruments 

a class and its methods in this manner.  The class is made to implement the ��
��
��� 

and ��
�����
��
��� interfaces and the necessary callback code is inserted into each 

method. 

The AIDE Prototype Compiler 

The original AIDE compiler was developed using a JavaCC [21] grammar that 

parses a Java source file and reproduces the code as a string.  Predefined lines of Java 

code (i.e., the callback invocation code and the interface implementation code) are 

inserted when the compiler reaches specific points in the grammar (e.g., when a method 

is entered).  Code is inserted at the beginning of each method and before each return 

statement (or at the end of a void method).  Class variables are added to the end of the 

class definition to store the component adapter.  The class is declared to implement the 

��
��
��� interface, and accessor methods for the component adapter are added at the 

end of the class definition. 
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The technology also requires multiple passes to process the code.  Specifically, 

after callbacks often result in unreachable statements.  The figure below shows how 

various methods would be instrumented using AIDE.  Note how instrumenting method 

m2 results in dead code.  Thus, the second stage of the AIDE compiler uses 	
�
� to 

compile the source code produced by the first stage, examines the output for dead code or 

unreachable statement errors, and then removes the offending code. 
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Figure 5 - Sample AIDE Transformations 

There are a number of problems with this approach.  First, all code 

transformations (here, only insertions) are explicitly written in the parser code.  This 

makes maintenance of, and modifications to, the inserted code difficult as it is scattered 

throughout the grammar.  Second, general-purpose code restructuring is difficult if not 
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impossible considering just the syntax.  Code insertions can be performed, but 

modifications to existing code would require significant effort.  Third, since all 

transformations are embedded in the parser, it is impossible to detect whether multiple 

transformations are incompatible.  Fourth, the second compilation stage is required 

because only the syntax was considered during transformation.  It must be possible to 

transform correct code in a single transformation phase. 

Approaches to Code Transformation 

Various approaches can be taken to programmatically instrument Java classes.  If 

the source code is available, the code itself can be modified to accomplish the 

instrumentation.  If the source code is unavailable, the compiled byte-code must be 

manipulated to instrument the code. 

Byte-code instrumentation can be performed either prior to run-time by an 

external application or at run-time by the class loader.  The latter requires sophisticated 

virtual machine support, as found in J2SE 1.4 [18].  The byte offset of the beginning of a 

method can be retrieved from the class file.  From there, the appropriate byte-code 

implementing the probe can be inserted.  While tools exist for programmatically 

manipulating byte-code (see the previous chapter), some instrumentation applications 

may require that the byte-code be disassembled and analyzed to determine the location of 

the probe.  For instance, to insert a probe at the end of a method, program flow analysis is 

needed to determine all exit points of the method [26]. 

Source-code instrumentation resolves some problems found in byte-code 

instrumentation.  Java source code can be parsed into an abstract syntax tree (AST) and 
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then manipulated using graph rewriting techniques [12].  If the AST data model is 

mutable, transformation can be performed on the tree itself and exported into a file.  

Searching for the appropriate location to insert probes is simplified by the additional 

syntactic information contained in the AST. 

Requirements for EXTRACT 

The limitations of the prototype AIDE compiler, described above, lead us to a 

number of requirements for EXTRACT, a general-purpose code transformation system.  

First, an AST grammar and library are required for the target language.  This project 

focused only on the Java language, but we expect that EXTRACT could be extended 

easily for use with a variety of other languages.  To implement arbitrary transformation 

on an AST, an appropriate AST class library was required.  After evaluating a number of 

AST libraries [4][19][20][22][25][30], we decided to implement EXTRACT using the 

OpenJava [25] metaobject protocol (MOP).  OpenJava was chosen because it creates a 

mutable AST on which transformations can be performed.  Furthermore, we can simplify 

the process of inserting code by using their library to parse code fragments into their 

appropriate AST subtrees.  Rather than having to explicitly build AST subtrees for 

inserted portions of code, OpenJava provides a way to convert arbitrary strings into the 

correct AST subtrees that are then ready to insert into the main tree. 

The OpenJava MOP was originally used as an extension system for the Java 

language.  It allows developers to extend Java, write code using the extended language, 

and then define ways to transform that code back into standard Java.  Consequently, it 

provides a parser which creates a mutable AST.  The AST allows a variety of 
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transformation, most importantly insertion and deletion.  Using these facilities, it is 

possible to implement our entire range of transformations.  The AST provided by 

OpenJava has built-in support for the Visitor design pattern [14], which simplifies 

traversal code. 
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Chapter 4 
JPath – A Path Language for Java Source Code 

Introduction 

As discussed in previous sections, the OpenJava library provides a mechanism for 

parsing Java source code into an abstract syntax tree (AST).  EXTRACT processes all 

transformations over the AST.  For EXTRACT scripts to be compact and provide a basis 

for analysis, a mechanism is needed to identify portions of the AST.  To accomplish this 

we designed JPath, a path language for navigating through and identifying portions of 

Java source code. 

JPath was inspired by XPath, a language designed to address parts of XML 

documents [9].  XML documents are parsed into an AST conforming to the Document 

Object Model (DOM) [10].  XPath provides a mechanism for addressing nodes in the 

DOM tree and provides functionality for a variety of XML technologies, including XSL 

Transformations [7]. 

Paths in JPath are stated as hierarchical path expressions, for example: 

3
3�3=3�


Paths are given as a sequence of steps from either the root (i.e., an absolute path) or from 

some location in the tree (i.e., a relative path).  Paths can also contain wildcards which 

may appear at any point in the JPath expression except at the rightmost end.  This ensures 

that JPath expressions evaluate to a homogeneously typed set of nodes. 

 A JPath expression is evaluated relative to a context node to yield a node set.  

This node set, which can contain zero or more nodes, represents the portions of the AST 

that match the JPath expression.  Each matched node in the node set is associated with a 
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concrete path from the root of the AST to that node.  This path can be retrieved in an 

EXTRACT script and used to derive further context for the selected node.  Additionally, 

individual steps in a JPath expression can be enclosed in parentheses.  When a match is 

found, the nodes along the concrete path that correspond to the steps in parentheses are 

accessible as sub-matches.  This is similar to Perl’s use of parentheses in regular 

expressions. 

To illustrate how JPath works, we present a simple example.  Consider the 

following trivial Java class: 

�"����
��
��
����������
6




�"����
��
���
����
�
��4�����'>?

�'�5
6






��������"���������4@�����A
%������58




9


9


A source file (�����������	
�
), containing the class declaration above, is then 

parsed into an OpenJava AST.  The resulting AST, used for our JPath examples, is shown 

in Figure 6: AST for �����������	
�
. 
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Location Paths 

A JPath location path is expressed as a sequence of one or more location steps, 

separated by a ‘3’ character.  A ‘3’ character alone denotes the root node of the Java 

source code (i.e., the ������
����H���).  Thus, any JPath beginning with a ‘3’ 

character is an absolute path; all other path expressions are considered to be relative.  

Each location step corresponds to a class in the AST hierarchy (e.g., ������
����H��� 

or D��*��I���
�
����).  JPath also allows wildcards (‘=’ and ‘�’ characters) to be 

used in place of any location step (except the last).  The ‘�’ wildcard matches all children 

of the context node.  The ‘=’ wildcard matches the context node and all of its descendants 

(i.e., zero or more steps from the context node).  

Each location step selects a set of nodes relative to a context node.  An initial 

sequence of steps is composed with a succeeding step in the following manner.  The 

initial sequence of steps selects a set of nodes, in document order, relative to a context 

node.  Each node in that set is used as a context node for the following step.  The sets of 

nodes selected from this step are then unioned together and used as context nodes for the 

next step. 

This is best illustrated by an example.  Consider the following JPath expression 

(to be evaluated on �����������	
�
): 

3=3��
��I���
�
����3D�����I���
�
����J���3D��*��I���
�
����


The first character in the JPath expression is a ‘3’, so the context node is the root of the 

AST (i.e., the ������
����H���).  The first step is a ‘=’; we select the context node 

and its entire sub-tree.  Each node in the selection is used in turn as the context node for 

the following step.  Because this is an ordinary location step, we examine the children of 
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each of the context nodes and select those whose type matches the step 

(��
��I���
�
����).   This will select the only ��
��I���
�
���� in the tree.  

That ��
��I���
�
���� is then used as the context node for the next step, selecting its 

only child of type D�����I���
�
����J���.  Finally, the selected 

D�����I���
�
����J��� is used as the context node for the last step which selects 

the D��*��I���
�
���� child.  Note that the JPath expression: 

3=3D��*��I���
�
���� would select the same set of nodes. 

Location Predicates 

The location steps described above are limited in that only the node type can be 

used in selection.  JPath provides the option of using location predicates that allow for 

further refining of node selections for a given step.  Any location step can have one or 

more location predicates, contained in square brackets.  Location predicates can refer to a 

set of attributes specific to a given node type.  For example, the JPath expression: 

D��*��I���
�
����



selects all method declarations that are children of the context node.  We can select all 

public method declarations using the following expression with a location predicate: 

D��*��I���
�
����>BD���$����
����
���
@�"�����?�


Note that attributes are identified by the ‘B’ character preceding their name.  Attributes 

evaluate to either scalar values (i.e., integers or strings) or list values (i.e., arrays or lists 

of scalar values).  Consequently, equality (��, �, ��, !, !�) and list containment 

(“����
���”) operators are provided.  Regular expression matching is provided using 

the “�
��*��” operator.  Location predicates can be combined using “�EI” and “KF”.  
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Thus, we can further refine our selection to public and protected methods with a boolean 

or: 

D��*��I���
�
����>BD���$����
����
���
@�"�����
�EI

























BE
��
��
@�
���?


Figure 6: AST for �����������	
�
 gives the attribute values for the node types shown.  

Consult the documentation for a complete list of attributes and their descriptions. 

When a location predicate follows a list type (e.g., ��
������J���),  the 

predicate can be used to select an element from the list.  For example, 

��
������J���>;? selects the 3rd element in the statement list. 

Evaluating JPath Expressions 

Each step in a JPath expression is checked to ensure that it corresponds to a valid 

OpenJava class name, but no effort is made to ensure a logical ordering.  In other words, 

JPath expressions must be syntactically correct but not semantically correct.  Thus, a 

JPath expression such as: 

L$��
������3������
����H���


is considered syntactically correct, even though it is impossible for an if-statement to 

have a compilation unit as its child.  In this case, the expression would evaluate to an 

empty node set. 

Steps in the path expression are evaluated in a left-to-right order.  Given a context 

node, we consider only the sub-tree of the AST rooted at that node.  For a location step 

containing a type name, each child of the context node is examined; if its type matches 

the location step’s type name, this node is considered a match.  For a location step 

containing a wildcard, the appropriate descendant nodes are selected.  The resulting node 
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set is then filtered by the location predicate to yield the final set of matches for that step.  

Each node in the set of matches is used as the context node for the next step in the 

expression.  These resulting node sets are unioned together and used as the context nodes 

for the next step, and so on until the end of the expression is reached.  The resulting node 

set corresponds to all nodes matching the entire JPath expression.  (Note: Pseudo-code 

for the selection algorithm is shown in the next section.) 

To illustrate this, consider the following JPath selection statement: 

������4�������E���A









@�����3=3����#>����#?3�����>�����?3=3����I>����I?�5


This is equivalent to: 

������4������4������4������4�������E���A






























@������5A























@=3����#>����#?�5A
















@�����>�����?�5A









@=3����I>����I?�5


Note that the ������45 function, as presented here, returns a node set.  Thus, the context 

node (i.e., the first argument) to the function can be either a node or a node set.  If a node 

set is provided as the context node, the JPath expression is evaluated relative to each node 

in the set.  The union of the nodes selected from each evaluation of the JPath expression 

across the node set is returned.   

The resulting node set can be iterated through or accessed using an index.  Each 

node in the resulting node set has a corresponding concrete path that from the root of the 

AST to the selected node.  The concrete path can be examined to extract context.  

Furthermore, any nodes matching sub-expressions (contained in parentheses in the JPath 

expression) can be accessed as sub-matches.  This also allows for the retrieval of 
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contextual data.  The type of the nodes in the resulting node set will be the same as the 

type name specified in the last (rightmost) location step in the JPath expression. 

Implementation of the JPath Evaluation Engine 

JPath Visitors 

The ��"�%������	�
�* package provides a parser and parse-tree classes for 

the JPath language.  Given the JPath grammar, a JavaCC grammar was produced.  Then, 

Java TreeBuilder [18] was used to produce AST classes for the JPath language (one for 

each grammatical production) and a JavaCC parser that builds a JPath AST from a string. 

As with the OpenJava AST library, the JPath parse tree library supports the visitor 

pattern.  Consequently, we can use visitors to interpret JPath expressions.  A JPath visitor 

object (J��
����)
�*&�
� in Figure 7: JPath Selection Pseudo-code.) traverses the 

expression tree in a depth-first manner, sending messages to an object implementing 

)
�*&�
�"
��� when the various selection elements are encountered.  The 

)
�*&�
�"
��� modifies the selection when these messages are received using 

OpenJava visitor objects (described in the next section). 
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Figure 7: JPath Selection Pseudo-code. 

If the J��
����)
�*&�
�
visitor encounters an �����"��J��
����)
�*, it 

notifies the )
�*&�
�"
���.  The )
�*&�
�"
���
then discards the current context 

node set and selects the root of the AST.  When the J��
����)
�*&�
� visitor 
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encounters a J��
��������, it notifies the )
�*&�
�"
���
 that a step has been 

encountered and whether it is a back-reference (��'������4�����
�5).  The 

J��
����)
�*&�
�
then visits the E���+���, and notifies the )
�*&�
�"
���
to 

select children of the context nodes, depending on the node type or wildcard specified 

(����������*������45, �������"�����45, �������*������4�����'5).  If a 

)�����
�� is present, it is evaluated using a separate predicate visitor.  This visitor 

translates attribute names into methods to be invoked on a source-tree node to retrieve the 

attribute’s value.  This filters the source-tree nodes selected by the J��
��������. 

OpenJava Visitors 

As discussed in previous sections, the OpenJava library contains support for the 

visitor design pattern.  The KM)
�*&�
�"
��� controls a set of OpenJava visitors.  

Since expressions are evaluated relative to a context node, we can search from a context 

node using that node’s �*������������45 method (calls 
�����45 from the visitor 

pattern on each child). By default, the visitor does not recurse through the entire tree.  

Rather, only the children of the context node are considered.  However, if the visitor is 

searching for the ‘=’ wildcard, it will recurse through the entire sub-tree.  

In the visitor design pattern, the Visitor class has �����45
methods for each 

type in the object structure.  Thus, an OpenJava visitor would define �����45
methods 

for each AST class.  For the purposes of searching, however, it suffices to have a generic 

��������45
 method that takes as an argument the base class for the AST (i.e., 

)
���+���) that is called by the individual �����45
methods.  A candidate for a 

match is found when its class name (as retrieved by the '����
��45
 method in 

	
�
��
�'�K�	���) matches the name provided in the location step. 
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The set of candidate matches are then filtered using the location predicate, if one 

exists.  A mapping exists between attribute names accessible in the location filter and 

methods used to retrieve those attributes from the OpenJava AST objects.  If the location 

predicate evaluates to a true value, the candidate match is considered a match.  

Otherwise, it is discarded. 

Pseudo code for the selection algorithm is presented in Figure 7: JPath Selection 

Pseudo-code. 
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Chapter 5 
The EXTRACT Language 

Introduction 

The EXTRACT (Extensible Transformation and Compiler Technology) language 

allows developers to define transformations in a modular and extensible manner.  This 

chapter introduces the EXTRACT language and describes how it is used.  Throughout 

this chapter, we will examine a simple example to illustrate how EXTRACT can be used.  

This example, called &�������������, adds an exception to the throws clause of 

methods in a Java source file. 

EXTRACT Modules 

Transformations are expressed as EXTRACT modules.  Modules are named and 

are defined in a file corresponding to the module’s name.  A module is comprised of an 

execution block, a set of transformations, and a set of properties.  The execution block 

traverses the AST, identifies contextual information contained in the AST, and calls 

transforms.  Transformations define modifications to the AST.  Properties represent data 

that is collected or generated by the module and exposed for external use.  Modules can 

also have Java implementation files that provide Java code to support the 

transformations.  Each of these parts is discussed in turn later on in this section. 

An EXTRACT module is compiled into Java code by the &���
��� compiler.  

The generated Java source, along with the Java implementation file, is then compiled 
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using 	
�
�.  The module can then be executed to transform a set of Java files using 

&���
��.  This process is outlined in Figure 8: EXTRACT Module Compilation.   
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Figure 8: EXTRACT Module Compilation 

Now, we will examine the different parts of an EXTRACT module.  As concepts 

are introduced, we will build up the &������������� example until we have a fully-

functional version.  We begin by defining a module, named &�������������, in a file 

named &����������������: 
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In the code fragment above, we define the name of the module 

(��"�%����������
�����
������&�������������).  Note the naming 

convention; we use a fully-qualified class name for the module.  The file 

(&����������������) is placed in the same subdirectory (e.g., 

��"3%��3��3����
��3��
�����3) as a Java source file would be placed. 

EXTRACT provides package and class importing facilities similar to Java.  For 

example, if a module uses 	
�
�"����G����� and 	
�
�"����&�"���
����, we 

can add an import statement at the beginning of the module file (prior to the module 

declaration).  Thus, we can add the following import statements: 

������
	
�
�"����G�����8


������
	
�
�"����&�"���
����8


Or, we can import the entire package: 

������
	
�
�"����=8



Execution Blocks 

Execution blocks traverse a Java source file, identify contextual information 

necessary to perform transformations, and apply transformations to modify the Java 

source file.  Execution blocks also define parameters for the module.  These parameters 

must be passed to the module prior to execution.  In this example, we need to pass the 

module the name of the exception type that is to be added.  Each module can define at 

most one execution block.  If a module extends another module (as will be seen in later 

examples), the execution block may be inherited from the base module and therefore 

omitted. 
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As described above, the &������������� adds an exception to the throws 

clause of methods in a Java file.  In order to accomplish this, we need to locate the 

method declarations in the Java source code.  In this case, we do not need to identify any 

additional contextual information.  We simply need to select each of the method 

declarations in the source code and apply a transform to each of them.  This is shown in 

the code fragment (which appears in the module body) below: 

 

The execution block must have the same as the module (without the package 

name prefix).  Required arguments for the module are specified in the parenthesis 

following the module name (here, �����'
���������+���). 

An execution block specifies how portions of the AST are selected and when 

transformation are to be applied.  In the example above, we use a Select statement to 

select all of the method declarations in the AST.  Select statements in EXTRACT use the 

following syntax: 
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�
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�
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The �����+�
��$��� function applies the transform specified in the first argument on 

the remaining arguments.  Here, we apply the ���&�������� transform (defined below) 

on each selected ���*��. 

In our example, the �����+�
��$��� function is called for each method 

selected by the selection statement.  If the selection statement were to return an empty 

result (i.e., if there are no D��*��I���
�
����� specified in the source file) the code 

in the second set of braces would be executed. 

The execution block defined in the &������������� example is quite simple.  

We perform a selection and apply a transform to each selected element.  Execution 

blocks can be more complex, however, as will be seen in later examples.  Multiple 

selection statements can be present in an execution block; they can be executed 

sequentially or in a nested manner (i.e., perform one selection and then for each selected 

element, perform another selection). 

Execution blocks do not necessarily need to call transformations, either.  In later 

examples, we present modules that simply collect information about a Java source file.  

In this case, the execution block performs a series of selections and saves the appropriate 

data in the module’s properties (discussed below).  

Transformation Declarations 

Transformation declarations define how a transformation is performed and on 

what data the transformation can be performed on.  Transformation declarations also 

define a set of parameters for the transform.  These parameters are passed to the 

transformation when it is applied.  In this example, we need to pass the transformation 

the name of the exception type that is to be added. 
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As we saw above, the &������������� execution block calls the 

�����+�
��$��� function as follows: 

�����+�
��$���4���&��������4���������+���5A
���*��58


where ���������+��� is a �����' and ���*�� is a D��*��I���
�
����.  

Consequently, we would define the ���&�������� transformation (placed in the 

module body) as follows: 

 

Thus, when we call the �����+�
��$��� function as shown above, the 

following actions occur: 

• The ���&�������� transform is instantiated, using the ���������+��� String 

as a parameter. 

• The transform is then applied to the D��*��I���
�
���� ���*��. 

The ���&�������� transform defines one transform block (i.e., for a 

D��*��I���
�
���� named ��).  It is possible to define multiple transform blocks 

within a single transform.  For example, if we wanted to allow ���&�������� to work 

on ������"����I���
�
����� as well as D��*��I���
�
�����, we would do the 

following: 

 

Note that it is also possible to define transform blocks that take more than one 

parameter.  Thus, it is possible to state our AddException transform as follows: 
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To apply this transform, we would use the following code: 

�����+�
��$���4���&��������,4
5A
���*��A
���������+���58


While these two approaches achieve the same result, we will use the first approach in our 

example. 

The ���&�������� transform uses two API calls: 2������G
�"� and 

���+�J���.  2������G
�"� retrieves an attribute from a given AST node.  Here, we 

call 2������G
�"�4��A
@+*��%��5 (where �� is a D��*��I���
�
����).  This 

retrieves the throws clause for the method declaration.  The attribute value that is 

returned is a list.  Consequently, the ���+�J��� function adds the specified value (here, 

���������+���) to the list at the specified position (here, the index of -1 represents the 

end of the list). 

At this point, we have a fully functional &������������� module.  The 

complete code for this module is shown below: 
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Module Properties 

Modules can collect data during the course of execution and expose that data to 

external use.  This is accomplished using properties, which are defined within the module 

body.  The syntax for defining properties is as follows: 

 

Thus, we can define import the set of properties from another module (using the import 

statement) and we can define our own set of properties.  Modules support a 

'��)������� and a ���)������� operation for retrieving and storing property values. 

For example, consider a module which collects the names of classes within a Java 

source file.  We would define a property called ��
���� that would be stored as a 

G�����.  Then, in the execution block, we would simply record the name of each class 

that is selected.  The code for this example is shown below: 
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Here, we define a G����� property called ��
����.  The execution block first 

ensures that the property is initialized.   Then, it saves a reference to the property, 

modifies the property within the selection, and finally saves the property.  This is done 

via the property methods defined in the Module base class (which all Modules extend): 

• '��)�������4�����'
��������E
��5
(
K�	���


• ���)�������4�����'
��������E
��A
K�	���
��������G
�"�5
(
����


EXTRACT also provides a set of convenience methods for accessing the 

properties.  These methods are named “'��7��������E
��” and 

“���7��������E
��”.  Thus, the ��
��E
����������� module would have the 

following methods generated for it: 

• '��7��
����45
(
G�����


• ���7��
����4G�����
�
�"�5
(
����


These methods simply call the '��)������� and ���)������� methods; however, 

they cast the return value and parameter respectively to the correct type. 
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We could then define another module that has the same properties as the 

��
��E
����������� using an import statement, as shown below: 

 

The resulting module would have the same properties as ��
��E
�����������, as 

well as the same accessor methods for those properties. 

Implementation Classes 

Modules can define Java implementation classes that provide Java code to support 

the module.  This is done to simplify EXTRACT modules, allowing developers to call 

arbitrary Java code from a module.  Every module has a default implementation that is 

generated by &���
���.  Developers can then modify the default implementation, 

adding whatever functionality is deemed necessary.  The implementation class, whose 

name is the module’s name followed by “7����”, must define an ���� method and a 

������� method.  These methods are called automatically by the module when it loads 

the implementation and when the module is finalized, respectively. 

The module can access any public fields and call any public methods provided by 

the implementation class.  The implementation class is instantiated within the module’s 

constructor (which is generated by &���
���), and retain a reference to the 

implementation object named “����”.   Thus, an method named $�� contained in the 

implementation can be accessed via �����$��45 from anywhere in the module’s 

execution block or transforms. 
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The &������������� example does not require any extra functionality in the 

module’s implementation.  Consequently, it is sufficient to use the default 

implementation (&�������������7����) that is provided by the &���
��� compiler.  

Later examples will show how to provide extra functionality in the implementation. 

Extensibility 

EXTRACT modules are extensible via inheritance.  Thus, we can define a module 

that extends another module.  In the specialized module, we can choose to override the 

execution block and/or any portion of a transform.  To illustrate how to extend 

EXTRACT modules, we will extend our &������������� example.  In the example 

thus far, we add the specified exception type to the throws clause of each method in a 

Java source file.  In this section, we will create a +����&������������� module that 

extends the &������������� module.  In the +����&�������������, we examine 

the exception type already being thrown by each method and add our new exception type 

only if its superclass exception is not already being thrown. 

To extend the functionality of the &�������������, it is only necessary to 

override the transform.  The execution block, which selects all of the method declarations 

in the source file can remain as it is in the superclass.  If we wanted to modify how the 

method declarations were selected (e.g., to select only public methods), we would need to 

override the execution block as well. 

The source code for the +����&������������� is listed below: 
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Note the use of the ������� clause in the module declaration.  This specifies which 

module this module extends.  We override the ���&�������� transform to add the if-

statement shown above.  If the ����
����"�����
�� method (which must be provided 

by the implementation) returns false, we perform the transform specified in the 

superclass.  Note that the implementation (+����&�������������7����) must 

provide a method with the following signature: �"����
 �����
�


����
����"�����
��4����G
�"�
 �*��%�J���A
 �����'
 ���������+���5.  

This method, omitted for space, can then use Java reflection to see if the exception 

specified by ���������+��� has a superclass that is specified in the �*��%�J���. 

Main Modules 

The modules shown in the examples thus far are simple: one module performs the 

entire transformation.  As transformations become more complex, as seen in the case 

studies discussed below, it becomes necessary to have multiple modules act together.  For 

instance, we may want to take multiple passes over a set of source files.  The first pass 

can collect information from the set of source files, and then the second pass can use that 

information to perform the transform.  A mechanism is needed to chain multiple modules 

together like this.  This is accomplished using a main module. 
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When a single module is executed, it is instantiated and then run on each of a set 

of source files.  The transformed source files are then written back out to disk.  However, 

it is often desirable to have more fine-grained control over how the module is executed. 

A main module uses the same syntax as an ordinary module.  However, there is 

no execution block, no properties, and no transforms defined.  A single main execution 

block is specified instead.  The syntax of this is as follows: 

 

Consider our ExceptionAdder example.  It would be sufficient to execute the 

module simply using Extract (the execution process is described in depth in a later 

section).  This would be accomplished using the following command line: 

	
�

P	
�
&���
���	
�
��"�%����������
�����
������&�������������
&��������E
��

NN
��"���Q����



 

where &��������E
�� is the name of the exception to add, and ��"���Q���� is a list 

of source files to transform.  However, we could define a main module to accomplish 

this: 

 

This is a simple example that mimics how Extract would execute the 

ExceptionAdder module.  However, this allows for more complex processing by 

transformations.  For examples of this, see the case studies below. 
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Module Compilation 

This section explains how EXTRACT modules are compiled into Java code.  All 

modules (except main modules) extend the ��"�%����������
���D��"�� class, 

summarized below.  The ���)
�
� method saves the arguments passed to the execution 

block of the module in a protected object variable.  Values for the arguments are passed 

in as an array of K�	����.  If the array of K�	���� is not of the correct size, or is any of 

the objects are not of the expected type, an L��
���)
�
�&�������� is thrown.  The 

execution block is translated and placed in the body of the ����"�� method. 

 

Main modules implement the ��"�%����������
���D
��D��"�� interface.  

This only defines the �
�� method: 

 

To illustrate the compilation process, we will examine the code that is generated 

by compiling our &������������� example.  The code for the ExceptionAdder module 

(ExceptionAdder.xm) is shown below: 
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This translates into the following Java code: 
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The constructor for the module class creates and saves the implementation 

instance, as well as calls the implementation’s ���� method.  Similarly, the module’s 

$��
��O� method calls the implementation’s ������� method.  The module’s sole 

parameter (�����'
���������+���) is a protected field.  It is set in the ���)
�
�� 

method.  Note how ���)
�
�� determines whether the parameters are correct.  The 

execution block is translated into proper Java code and inserted as the body of the 

����"�� method.  It begins by ensuring that the module was initialized with the correct 

parameters.  If the module was not properly initialized, an L��
�����
��&�������� is 

thrown. 

Transforms are translated into static inner classes belonging to the module.  This 

allows for the transform to be extensible.  Transforms implement the 

��"�%����������
���+�
��$��� interface.  The ���&�������� transform takes a 

�����' argument called ���������+���.  This is passed to the constructor of the 

transform object and is saved in a protected field. 

Each transform block is translated into a method named transform.  The 

parameters to this method correspond to the types given at the beginning of the transform 

block.  As stated above, a transform declaration can define multiple transform blocks.  

Each transform block corresponds to a transform method whose parameter types match 

the transform block’s type. 

Note that the �����+�
��$���, ���+�J���, and 2������G
�"� functions 

that are called in the EXTRACT module are translated into the appropriate Java method 

calls.  �����+�
��$��� expands into a series of statements which instantiate the 

transform class and call the transform method.  ���+�J��� translates to the 



 46 

&���
���)L�
��+�J��� method and 2������G
�"� translates to 

M)
�*�)L�'������G
�"�. 

Module Execution 

Modules are executed using the edu.wpi.cs.extract.Extract class.  This class can 

be run from the command-line using the following syntax: 

	
�

��"�%����������
���&���
��
>N�
�"��"�7���?
���"��
>���"��7
�'�?
NN
$����


 

When executing, the following steps are performed.  First, the module is loaded (using 

	
�
��
�'���
���$��E
��).  Next, the source files (specified by $����) are parsed 

and ASTs are constructed. 

If the module being executed is a main module, the �
�� method is called with 

���"��7
�'� and the parsed source files as arguments.  If the module being executed is 

not a main module, ���)
�
�� is called with ���"��7
�'� as arguments, then 

����"�� is called for each of the parsed source files. 

After the module has executed, the transformed source files are saved out to disk.  

If an output directory is specified (using the P� option), the source files are written to that 

directory.  Otherwise, the source files are written to the ��
��$����� sub-directory of 

the current directory (which is created if it does not exist).  If the transformed files are 

part of a package, the appropriate package directories are created. 

In order to keep EXTRACT modules simple, they do not have any exception 

handling capabilities.  If an exception occurs during the execution of an EXTRACT 

module, the module is considered to have failed and processing stops for the given source 

file.  Execution continues on the next file. 



 47 

Chapter 6 
Evaluation 
 

To evaluate EXTRACT, we chose three case studies.  The following three 

chapters examine these case studies.  In our first case study, we developed a type 

qualifier.  In Java code, developers often import classes and packages, allowing them to 

use short names instead of fully-qualified class names (e.g., G����� instead of 

	
�
�"����G�����).  It is necessary for certain transformations and certain types of 

source code analysis to have fully-qualified names.  Therefore, we developed the type 

qualifier module. 

In our second case study, we developed a behavioral contract checker, based on 

the work of Findler, et al [13].  In [13], the authors present a mechanism for performing 

run-time checks on pre- and post-condition contracts.  The authors discuss constructing a 

special compiler that would add the appropriate contract-checking byte code to already-

compiled Java code.  However, it is not clear that this implementation was completed, 

and the publication is two years old.  We were able to develop a contract checker using 

EXTRACT that inserts the contract-checking code into Java source code. 

In our third case study, we developed a code obfuscator.  It is not difficult to 

decompile Java byte code back into source code.  There are many situations, however, 

where this would not be desirable.  Code obfuscation allows a developer to take a set of 

Java source files and mangle different symbols (e.g., method or variable names) so they 

are meaningless to someone who would decompile the code. 
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Chapter 7 
Case Study: Type Qualifier 
 

Our first case study is a type qualifier.  When writing Java code, developers often 

use import statements to avoid having to use fully-qualified type names in the code.  For 

example, importing 	
�
�"����G����� or 	
�
�"����= allows the developer to use 

the Vector class without the “	
�
�"����” prefix.  While this is convenient for the 

developer, it somewhat complicates the analysis of source code.  It is often useful to 

translate type names into fully-qualified names for the purpose of transformation. 

In order to accomplish this, we need to take a two-pass approach.  First, we 

process all of the source files to register all of the classes defined therein.  Given each 

source file, we can retrieve the package name of that file and the names of all of the 

classes defined in that file.  In the second pass, we examine each file, record its import 

statements, and then resolve each type name to a fully qualified type name. 

We begin by defining a main module that controls the execution of the two 

passes: 
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On the first pass, we execute the J��
���
��F�'����
��� module over all of the 

source files.  This registers all classes defined in the source files being processed with 

their fully-qualified names.  On the second pass, we execute the +���F������� module 

over all of the source files.  This uses the information from the 

J��
���
��F�'����
��� and import statements to resolve type names. 

We define a set of properties, in a module called IClassRegistry: 
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This provides a hashtable which maps from a short class name (e.g., �����') to a fully-

qualified class name (e.g., 	
�
��
�'������').  Our J��
���
��F�'����
��� 

imports this set of properties: 
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This module is relatively simple.  First, we ensure that our property is properly 

initialized.  Next, we add the Java primitive types to the name resolution hashtable.  

J��
���
��F�'����
������J��
���
��F�'����
������J��
���
��F�'����
������J��
���
��F�'����
������






������
	
�
�"�����
�*�
���8



���"��
��"�%����������
�����
������S"
��$����J��
���
��F�'����
���
6





����������
6


 33
%�
�������
�*��
�����$
��


 33
�
�*�
���
�
��F����"����8


 ������
L��
��F�'�����8





9







J��
���
��F�'����
���
45
6


 33
�
��
�"��
�*�
�
��F����"����
��������
��
�����
��O��


 �$
4'��)�������4C�
��F����"����C5
��
�"��5
6


 



���)�������4C�
��F����"����CA
��%
�
�*�
���4558


 9




 33
��
�
�*�
��������


 �
�*�
���
�
���
�
'��7�
��F����"����458




 33
���������
�����


 �
�����"�4C�����
�CA
C�����
�C58


 �
�����"�4C����CA
C����C58


 �
�����"�4C�*
�CA
C�*
�C58


 �
�����"�4C�*���CAC�*���C58


 �
�����"�4C���CA
C���C58


 �
�����"�4C���'CA
C���'C58


 �
�����"�4C$��
�CA
C$��
�C58


 �
�����"�4C��"���CA
C��"���C58


 �
�����"�4C����CA
C����C58




 33
�*��
$���T�
�
��
'�
�
��


 �����'
�
��
'�E
��
�
�"��8




 33
������
�*�
������
����
"���


 ((
������
����H���
�"
�
������4C3C5
6


 



33
'��
�*�
�
��
'�
�
��


 



��
�
�G
�"�
��'
�
2������G
�"�4�"A
C)
��
'�C5���
�
�G
�"�458




 



33
�$
�*�
�
��
'�
�
��
������A
�
��
��


 



�$
4:��'���E"��455
6


 
 �
��
'�E
��
�
��'��������'458


 



9


 9
6
9




 33
������

��
��
��
����
�
�����


 ((
��
��I���
�
����
��
�
������4C3=3��
��I���
�
����C5
6


 



33
�
��
�*�
��
��
�
��


 



�����'
��
��E
��
�
2������G
�"�4��A












































CE
��C5���
�
�G
�"�45��������'458




 



33
�
�
�*�
��
��
�
��
��
��T�
$"���NS"
��$���
�
��


 



�$
4�
��
'�E
��
:�
�"��5
6


 
 �
�����"�4��
��E
��A
�
��
'�E
��
R
C�C
R
��
��E
��58


 



9




 9
6
9




 33
�
��
�*�
��������


 ���7�
��F����"����4�
���58





9

9




 52 

Then, we select the compilation unit and retrieve the package name.  If one exists, it is 

saved; otherwise, we assume the default package.  Finally, we select each of the class 

declarations in this file and register them in the name resolution hashtable using the 

package name for the file. 

On the second pass, we execute the +���F������� module.  Code for the 

+���F������� is found below: 
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The +���F������� requires a reference to an L��
��F�'�����7����� 

object.  Recall that the J��
���
��F�'����
��� contains properties of this type; 

specifically, it provides the name resolution hashtable.  The +���F������� creates two 

local objects; a Vector for on-demand imports (e.g., 	
�
�"����=), and a hashtable for 
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class imports (i.e., ������ 	
�
�"����G����� would place the following pair in the 

hashtable: G����� N! 	
�
�"����G�����).  We then add the default on-demand 

import of 	
�
��
�'�=.  Next, we examine the declared imports of the compilation 

unit.  If the import statement ends with a “�=”, we add it to the on-demand imports.  

Otherwise, it is a class import and we add it to the hashtable. 

Once we are done processing the imports, we send the implementation a reference 

to the import vector and hashtable as well as the L��
��F�'�����7����� object.  

Finally, we select all +���E
��� in the source file.  We then use the implementation to 

resolve the name to a fully-qualified name (the implementation class has been omitted for 

space) and use the �"�����"��+���E
�� transform to replace the original +���E
�� 

with a fully-qualified +���E
��.  

In the implementation class (+���F�������7����), we use Java reflection to 

resolve type names.  The only weakness to this approach is that it requires that all source 

files that are being transformed are already compiled. 
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Chapter 8 
Case Study: Behavioral Contract Checking 
 

In the paper Behavioral Contracts and Behavioral Subtyping [13], Findler, et al, 

present a mechanism for performing run-time checks on pre- and post-condition 

contracts.  Contracts are stated after method declarations as follows (example from [13]): 

�����$
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L
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9


9


A contract compiler generates classes to enforce contracts on interface methods and 

generates wrapper methods to enforce contracts on class methods (this process is 

described in more detail below).  The implementation described by the authors augments 

���
�� files generated for each interface with information that will insert the appropriate 

byte-code into all classes that implement that interface. 

The effort described by the authors in [13] includes constructing a special 

compiler to add the appropriate support code to implement each contract condition, and 

then modifying byte-code so that the contract checking code is called.  It is not clear that 

this implementation was completed, and the publication is two years old. 

To demonstrate the benefits of using EXTRACT, we have implemented a contract 

checking system analogous to the system presented in [13] using only the EXTRACT 

system.  Our intent is to show that the effort required to implement this system in 

EXTRACT is considerably less than the effort described by the authors of [13]. 
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The Behavioral Subtyping Condition 

Behavioral subtyping ensures that all objects of a subtype preserve all of the 

original type’s invariants.  Thus, objects of a subtype are substitutable for objects of a 

supertype without any effect on the program’s observable behavior.  When evaluating 

pre- and post-conditions, care must be taken to ensure that contracts are enforced.  The 

authors of [13] point out that all previous contract checkers for Java fail to handle the 

behavioral subtyping condition correctly.  Simply put, for a given method the subtype’s 

pre-condition may be stricter than the base type’s and the subtype’s post-condition may 

be less strict that the base type’s.  The figures below (taken from [13]) describe the 

behavioral subtyping condition and how contracts need to be checked. 
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Figure 9: The Behavioral Subtyping Condition 
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Figure 10: The Behavioral Subtyping Condition, Generalized to Multiple Inheritance 
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Given a method with pre- and post-conditions, checker methods are generated 

which perform the condition check.  Since the conditions rely on the context in which a 

method is called, a checker method is generated for each context that the method can be 

called in.  For instance, a method � in class � which implements interface L can be called 

from objects of type � or L.  Consequently two checker methods, �7� and �7L, are 

generated. 

In these checker methods, we first evaluate the method’s pre-condition in the 

context of the appropriate class (i.e., �7�
would check m’s pre-condition in class �; �7L


would check m’s pre-condition in interface L).  If the pre-condition fails, the calling class 

is blamed and the program exits. 

Hierarchy checking methods are generated for all interface and class methods.  

The new methods are directly inserted into classes.  Checker classes, containing the 

hierarchy checking methods, are generated for interfaces.  After the pre-condition 

described above is performed, the pre-condition checking recursively traverses the class 

and interface hierarchy to see if the behavioral subtyping implication holds.  If it does 

not, the hierarchy is malformed; the hierarchy is blamed for the contract failure and the 

program exits. 

Next, the original method is called.  In the examples presented in [13], none of the 

methods being checked return a value; all are of type void.  The mechanism presented 

does not lend itself easily to the checking of return values.  This reduces the power of the 

post-condition checking facility. 
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After the original method is called, we evaluate the method’s post-condition in the 

context of the appropriate class.  If the post-condition fails, the declaring class (which 

contains the method) is blamed and the program exits. 

Finally, the post-condition checking recursively traverses the class and interface 

hierarchy, in the same order as it did in the pre-condition checking, to see if the 

behavioral subtyping implication holds.  If it does not, the hierarchy is malformed; the 

hierarchy is blamed for the contract failure and the program exits. 

In order for the contract checking code to be called, all method calls must be 

transformed to reflect the context that it is being called by.  For instance, consider a 

method � in class � which implements interface L.  If � is called from an object of type �, 

the call should now be �7�; likewise, if � is called from an object of type L, the call 

should now be �7L. 

 

As described above, [13] states pre- and post-conditions after a method 

declaration.  This is not desirable, however, because the resulting code will not compile 

under a standard Java compiler.  For our purposes, we embed the pre- and post-conditions 

in the Javadoc comment for that method (under the B��� and B���� tag).   This can 

contain any arbitrary Java code; however, return values of a method unfortunately cannot 

be accessed by the post-condition. 

The EXTRACT modules to perform the necessary transformations progress as 

follows.  First, we collect all pre- and post-conditions from the methods’ Javadoc 

comments.  If no condition is defined, we assume it to be ��"�.  Next, we generate the 

necessary checker code.  Checker methods are generated for classes and checker classes 
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are generated for interfaces.  After that, type analysis, similar to that done by the code 

obfuscator, is performed.  This allows us to determine under what context a method is 

being called (i.e., the type of the object that the method is being called on).  We then 

transform each method call to reflect this context. 

 

This case study was implemented in less than a week using EXTRACT 

technology.  As stated above, after two years, the implementation promised in [13] has 

yet to be seen.  Our implementation was accomplished using five modules containing a 

total of four transforms. 
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Chapter 9 
Case Study: Code Obfuscator 

 

Java byte code is easily decompiled.  The 	
�
� utility that is included in the 

Java Development Kit translates Java byte code into Java assembly code.  Other software 

exists that decompiles Java byte code into Java source code that is almost identical to the 

original code.  There are many situations where this is undesirable. 

Our code obfuscator addresses this issue.  It takes a Java class and mangles its 

method and field names.   The resulting code is almost impossible for a human to 

understand, yet it maintains the semantic content of the original code.  Only method 

names that can be mangled are; methods that are required by an external interface (e.g., 


�����)��$����� in 	
�
�
%��������������J�������) are not changed. 

Execution of the code obfuscator proceeds as follows.  First, the set of package 

names contained in the processed source files is recorded.  Next, all interfaces and classes 

are processed to determine which methods are in scope and can be changed.   Methods 

that are not part of an external interface or superclass cannot be obfuscated because this 

would break the inheritance hierarchy. 

Before completing the obfuscation, it is necessary to generate a symbol table for 

the Java source files being processed.  While EXTRACT does not support this directly, 

the underlying OpenJava library does.  Thus, a symbol table is created allowing us to 

perform Java type analysis on the AST. 

Finally, we obfuscate the code.  First, all method calls are selected.  We use the 

symbol table information to determine the type of the object that the method is being 

called on.  Using the scope analysis performed in the first step of the obfuscator, we 
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determine whether to obfuscate this call.  After that, we examine all of the class and 

interface declarations being processed.  Here, we rename the original method declarations 

to the new obfuscated names, again using the earlier scope analysis. 

The code obfuscator is being developed by Professor George Heineman, this 

project’s advisor.  It is in its final stages of development, and should be available very 

soon.  Preliminary evaluations show that the obfuscator works properly under all test 

cases chosen thus far.  It has been used to obfuscate a number of large Java applications, 

including the EXTRACT software itself.  
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Chapter 10 
Conclusion 
 

Having developed EXTRACT and then using it to create the case studies 

described above, we have made a number of observations regarding the technology and 

how it can be improved.  This chapter discusses these observations and examines areas 

for future work. 

First, the AST generated by OpenJava does not contain symbol table information.  

This is often useful, as seen in the contract checker and code obfuscator.  However, type 

analysis is not always necessary and would cause an unnecessary performance penalty for 

transformations that do not need it.  The code necessary to perform type analysis on an 

OpenJava AST was written for the contract checker and code obfuscator.  In the future, it 

is possible to add this code to the EXTRACT library. 

EXTRACT is closely tied to OpenJava.  If the underlying AST library was 

completely abstracted, it would be possible to apply EXTRACT to languages other than 

Java.  However, exposing the OpenJava library allows developers to write more 

sophisticated transforms. 

JPath expressions, like regular expressions, are limited in their expressiveness.  

Often times, a more expressive mechanism for selection AST nodes would be useful.  For 

instance, consider a Java source file that contains inner or anonymous classes.  

Evaluating a JPath expression to select all class declarations (i.e., 

3=3��
��I���
�
����) would select all classes in the file without easily being able to 

determine which are inner or anonymous classes.  The selection mechanism used by 

EXTRACT is arbitrary; another can be developed and used in its place. 
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JPath allows for analysis of selections, and thus analysis of modules.  One can 

examine a JPath expression and determine what parts of the source tree will be modified.  

Using this information, it is possible to determine if and when two modules will conflict.  

For instance, consider one module that changes all for-loops to while-loops, and another 

module that removes all method bodies to create an interface.  Obviously, these two 

modules conflict.  Knowing this, it is possible to determine a partial ordering of modules. 

 

This thesis has presented technology that allows for the creation of arbitrary 

transformations on Java code.  We begin with a library (OpenJava) which parses Java 

source code and generates an AST.  Given the AST, we provide JPath as a mechanism for 

determining which parts of the AST are to be transformed.  On top of this technology, we 

provide EXTRACT as a means of expressing transformations on the AST. 

A number of supporting libraries and programs have been developed.  The 

EXTRACT compiler (&���
���) translated EXTRACT code into Java code.  The 

EXTRACT API provides an interface to the code fragment parsing facilities provided by 

OpenJava, and provides a number of tree modification routines for use in modules.  The 

JPath API provides facilities to evaluate JPath expressions, retrieve attribute data from an 

OpenJava AST, and wraps various types of attribute data in scalar and list values. 

Finally, we present three case studies to demonstrate the effectiveness of 

EXTRACT.  In our type name qualifier, we developed a standard transformation that is 

often a prerequisite for other transformations.  We provided an implementation for the 

behavioral contract checking mechanism presented in [13].  Finally, our code obfuscator 
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transforms entire Java applications, making method and field names unreadable to a 

human while maintaining the semantic content of the code. 
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