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Abstract

Code transformation is widely used in programming. Most Idpees are
familiar with using a preprocessor to perform syntactiangformations (symbol
substitution and macro expansion). However, it is oftenessary to perform more
complex transformations using semantic informationaost in the source code.

In this thesis, we developed EXTRACT, a general-purpose tradsformation
language. Using EXTRACT, it is possible to specify, in adodar and extensible
manner, a variety of transformations on Java code ssclnsertion, removal, and
restructuring. In support of this, we also developed JRathth language for identifying
portions of Java source code. Combined, these two tleche® make it possible to
identify source code that is to be transformed and tpenify how that code is to be
transformed.

We evaluate our technology using three case studiepeangme qualifier which
transforms Java class names into fully-qualified clem®es; a contract checker which
enforces pre- and post-conditions across behavioral gedjtyand a code obfuscator
which mangles the names of a class’s methods ands f&lch that they cannot be

understood by a human, without breaking the semantic mooitéhe class.
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Conventions

The following formatting conventions are used:

code

type names

URLs

Figure 1: Formatting Conventions
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Chapter 1
Introduction

Code transformation is widely used in programming. Thstmommon example
is using a preprocessor that performs symbol substitutidnnaacro expansion. This
form of code transformation is often based on syntadiecsformations; for example, C
code is transformed into more C code through string sutish. There are domains,
however, where code transformations are complex aedrdbulting target language
differs from the source language. An example of thishes Java Remote Method
Invocation (RMI) compiler that generates stub and skelaetlasses from Interface
Definition Language (IDL) specifications [27].

In our application domain, we need to instrument Javaesalsy adding callbacks
at the beginning and end of each method. The resultisgedahave an active interface
[17]. These classes form the basis for component aaaptenonitoring and validation,
and it allows users to create Embedded Code Senso8).(EEG ECS is probethat can
emit events when an object is instantiated, a cldebude is accessed, a user-specified
assertion fails, a reflective method invocation ocooirgn exception is thrown.

The Active Interface Development Environment (AIDE)nler was developed
as a prototype for the DARPA DASADA (Dynamic Assemldy $ystems Adaptability,
Dependability, and Assurance) project [CITE — Peter GAIIDE takes a Java source file
and instruments each class in the file. Each clasgade to implement thedaptable
interface (as well as thetaticAdaptable interface, if the class contains static
methods) by adding the necessary methods and appropeldee firhese interfaces allow

adapters to be attached to instrumented objects. Thimaakacode is added at the
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beginning and end of each method. When each methodead,aébn adapter is attached
to the object, the adapterimvokeCallback method is called. The arguments to this
method provide the signature of the instrumented methedsalues of the instrumented
method’s parameters, and a reference to the instruchebject containing the method.
Similar callback code is added before each return statea® an after hook. The
callback code (i.einvokeCallback) in the attached adapter can be used to monitor the
execution of the instrumented class’s methods. ThéamMlcode also allows for the

adapter to modify the parameters sent to the metho@lhaswthe value being returned.
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Figure 2: Embedded Code Sensors



For the DASADA project, an infrastructure was developed ifgtrumenting
running systems with probes and passing the data gathered fnphbies to gauges [15].
The gauges can then collect, collate, filter, and aggeethat data to provide system
level measurements of the system’s operation. Thé@daASADA is to improve a
system’s responsiveness and robustness by dynamicallyyzeng system level
measurements to determine any modifications, adaptatiomecanfigurations [1]. The
callbacks inserted by the AIDE compiler are used to gemenants. These events are
broadcast on an Internet-scale bus (SIENA — Scalafilernet Event Notification
Architectures [28]). External gauges can then subscooilthet SIENA event stream and
monitor the information sent out by the probes. Thisrmftion is then used to decide
whether and how the monitored application must be recoefigiand then coordinate
lower-level effectors to implement the actual recgumfation [1].

Applications can subscribe to the event streams faaréety of monitoring
purposes. SoftViz [24] provides program-flow visualization Isplaying, either in real-
time or from a captured event stream, which methodsalexidn a probed application.
Other applications might monitor the event streamspfatterns of behavior. Certain
patterns signify the failure of a given component, highl loa a given component, or a
variety of other conditions. This enables monitoring a@apibns to dynamically
reconfigure the target application.

There are a variety of ways in which probes can besdddd into an application.
Method calls can be intercepted by the runtime environmefty a DLL, executable
code or Java byte-code can be instrumented, or semafticnation can be used to

insert probes directly into the source code. The Atbmpiler was designed to perform



the latter method of embedding probes. In its prototype, f&tBDE was a Java grammar
(for JavaCC [21]) that emitted the probe code when pipeogriate points were reached
during the parsing of a source file. This proved to becdiffto modify and maintain.
The technology also required multiple passes to psaitescode.

AIDE represents a specific type of code transformatiamely, the insertion of
probe code at the beginning and end of certain methodswewer, other types of code
transformations can be useful in the development atohgeof code. For example, code
transformations can be used to perform refactoring, egeerchecking, and code
obfuscation.

This thesis presents the EXTRACEXensible Transformationand Compiler
Technology) language and its supporting libraries. Using EXORit is possible to
specify, in a modular and extensible manner, a varietyaasformations on Java code.
While the version of EXTRACT developed in this projectimsited to Java code, it is
possible to extend it to be used with other languages. héssstalso presents JPath, a
path language for Java source code. JPath provides a nsschéomi EXTRACT
modules to identify code to be transformed. We alssgmtethe supporting JPath
interpreter libraries and EXTRACT compiler.

The remainder of this paper is organized as follows: lap@r 2, we examine
related work. In Chapter 3, we discuss the design coasioles for EXTRACT. In
Chapter 4, we introduce JPath and show how it can betasedate portions of Java
code for the purpose of transformation. In Chapter 5, i@duce the EXTRACT

language and describe how it is used to specify code traraions. In Chapter 6 and



beyond, we evaluate the EXTRACT technology and presas¢ studies on how it

performs.



Chapter 2
Related Work

AIDE Compiler

As discussed in Chapter 1, the Active Interface Deve@p Environment
(AIDE) was developed as a prototype Java preprocessahédoDARPA DASADA
project. It served a limited purpose in that it onlyrmstented classes so that they would
implement a given interface and added code at the begianthgnd of certain methods.
The code transformations that it performed were lidhite scope, and proved to be
difficult to modify and maintain. This is due to thetfébat the transformations were
embedded in a JavaCC grammar.

The transformations that AIDE performs can be viewegecific instances of a
more general set of transformations. We envisionednaddagy that was capable of not
only inserting code, but also inserting, deleting, and uetring code. To this end, we

developed EXTRACT.

XSL Transformations

The Extensible Markup Language (XML) allows users to defim@r own
markup tags for storing structured data. Using either a Daduhype Definition (DTD)
or an XML Schema, users can define how markup in a doducosforming to such a
specification must appear. However, different uselisingvitably define different tags
and structures for similar data. For instance, théoviahg two XML documents

represent the same information but are defined using eliffexchemas:

<?xml version="1.0"7>



<product title="Component Based Software Engineering: Putting the Pieces
Together” id="0201794854">

<author name="George T. Heineman”>

<author name="william T. Councill”>

</product>

<?xml version="1.0"7>

<book>

<title>Component Based Software Engineering: Putting the Pieces Together
</title>

<author>George T. Heineman </author>

<author>william T. Councill </author>

<isbn>0201794854</1isbn>

</book>

To a human reader, it is easy to see the mapping betiieetwo document types.
However, a mechanism is needed to programmaticalhsfvan documents from one
type to another. XSL Transformations (XSLT) perforns tiaisk.

The XSLT specification [7] defines an XML-based language éxpressing
transformation rules from one class of XML documentinother. An XSLT stylesheet
can describe transformations from XML to arbitrary t#eased formats. The source
document is parsed and a parse tree conforming to the Dot@bgect Model (DOM)
[10] is produced. The XSLT stylesheet then uses the Xflih Language (XPath) [9] to
identify portions of the DOM tree which correspond to ot of the original document.
The stylesheet then contains rules for emitting &ited text based on the portion of the
DOM tree. Schema transformations are described inTX8k implementing an
exemplar of the target schema in terms of its deltas fthe source [5]. Thus,
interoperability between disparate document types cachieved.

EXTRACT uses a similar approach to transforming Java.céddava source file
is parsed into an Abstract Syntax Tree (AST). An RACT module then uses JPath (a
Java path language similar to XPath; see Chapter 4 falsjletaidentify portions of the

Java code. The module then specifies how to trandfeaihportion of code.



Byte-Code Instrumentation

As an alternative to transforming Java source codg,pbssible to transform the
compiled byte-code. This section will examine a numldeapproaches to byte-code
instrumentation.

ProbeMeister [26], also developed under the DASADA prpjeapports the
dynamic insertion of probe code into Java byte-codebd’code is self-contained and
can be inserted into code dynamically at any point duriegagiplication’s execution.
Probes can be inserted while the application is running, ande inserted into byte-
code that is executing remotely. The probes then ertat black to ProbeMeister for
viewing. This sort of byte-code manipulation requires sophigtd support from the
virtual machine, as found in the Java Development KikjJD4.

Javassist [6][20] is a load-time reflective system Java. It provides a class
library for editing byte-code from within a Java appiica, enabling applications to
define a new class at runtime and to modify a classvfilen it is loaded by the JVM (if
used with a customized class loader).

Addistant [31] transforms byte-code at load time. lak@es the distributed
execution of Java software that was originally develofmedun on a single virtual
machine. No source code modifications are necessacan Imodify Swing applications
so the GUI executes on the local machine while the okshe application executes
remotely.

Two other technologies, Java-MaC [23] and Java PatibEsr [16] perform
byte-code instrumentation for runtime verification of aawapplications. Both

technologies insert probes into Java byte-code which eraitts that are interpreted by



an outside application that performs the verificationA high level, state-based
specification of the behavior of the monitored applicatie given to the verifying
application. The verifying application then infers stansitions from the events that
are emitted and compares them to the correspondingispgon. When the application
behaves differently than the specification, a warningroors are reported back to the

user.

Visitor Design Pattern

Portions of this paper make reference to the Visitorgepattern [14]. This
section reviews the Visitor pattern and how it is usBgaders familiar with this design
pattern can skip this section.

As described in [14], the Visitor design pattern represantoperation to be
performed on the elements of an object structure.loMvalthe developer to define a new
operation without changing the classes of the elen@mt&hich it operates. Given a
complex structure of objects (elements) whose intedavary, it is possible to define
operations on that structure that depend on the condeste being operated on. Rather
than define these operations in the element classeschwiwould scatter the
implementation of an operation across a number d&éreifit classes, the Visitor design
pattern allows the developer to define an operationsingle Visitor object which visits
each element and performs the operation. To add aperation, one simply defines a
new Visitor class. The visitor implements each of@nadeclared by the visitor, and
each operation implements a fragment of the algordiefimed for the corresponding

class of object in the structure.



The figures below show UML diagrams for the class stimecof the Visitor

design pattern and the sequence of calls made betweelethents and the visitors.

Visitor
Client

+VisitConcreteElementA(e : ConcreteElementA)
+VisitConcreteElementB(e : ConcreteElementB)

1

ConcreteVisitorl ConcreteVisitor2
+VisitConcreteElementA(e : ConcreteElementA) +VisitConcreteElementA(e : ConcreteElementA)
+VisitConcreteElementB(e : ConcreteElementB) +VisitConcreteElementB(e : ConcreteElementB)

Element

ObjectStructure  o—————

+Accept(v : Visitor)

ConcreteElementA ConcreteElementB

+Accept(v : Visitor) +Accept(v : Visitor)

+OperationA() +OperationB()
v->VisitConcreteElementA(this) v->VisitConcreteElementB(this)

Figure 3: Visitor Design Pattern Object Structure (from [14])
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anObjectStructure aConcreteElementA aConcreteElementB aConcreteVisitor

! |

Accept(aVisitor)

»

VisitConcreteElementA(aConcreteElementA)

OperationA()

A

Accept(aVisitor)

VisitConcreteElementB(aConcreteElementB)

OperationB()

A

: T

Figure 4: Visitor Design Patter n Sequence Diagram (from [14])
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Chapter 3
Design Considerations

Component Adapters

In [17], a mechanism for adapting software components isrided. When
assembling a system from reusable software compornbatdeveloper needs to locate a
component that matches the functionality and interfabas are needed. Often, a
component does not exactly match a particular needereidre it is necessary for
developers to be able to adapt the behavior of a component.

Consequently, software components can have two acesf one for the
behavior of the component, and one to adapt that behasvioeeded. A component’s
interface defines more than a syntactic descriptioneofitthod invocations accepted by
a component; it can define methods to invoke, eventsrid ard receive, or complex
access protocols [17]. An active interface, introducedlL, [decides whether to take
action when a method is called, an event is announcealpomtocol executes. Interface
requests occur in two phases: the “before-phase” which ®geiar to any execution of
the request, and the “after-phase” which occurs oncedhganent has completed the
execution of the request. Active interfaces allow fioe specification of callback
functions to be invoked during these phases, allowing dajsareto augment, replace, or
deny a client request [17].

The ADAPT Project [1] defined a set of Java interfacGsamely
edu.wpi.cs.adapt.Adaptable and edu.wpi.cs.adapt.StaticAdaptable) that
provide a component or class with an active interfadéiese interfaces allow for

callback methods to be installed that augment, replacéeny a client request on a

12



component or object. The callbacks are invoked in biedofe-phase” when the method
is first called and in the “after-phase” when the mdtisoabout to return.

In order for an object to be adaptable in the manner, ceeésrno be present at
the beginning and end of each method that calls the chllbethod and takes the
appropriate action as signaled by the callback methodileW is possible to have the
developer insert this code when writing the class, preferable that this process be
automated. Code that achieves this functionality fiteraplate, and can be inserted
programmatically. The Active Interface DevelopmEntvironment (AIDE) instruments
a class and its methods in this manner. The clasade to implement thadaptable
andstaticAdaptable interfaces and the necessary callback code is insettegach

method.

The AIDE Prototype Compiler

The original AIDE compiler was developed using a JavaCC ¢fainmar that
parses a Java source file and reproduces the code asga $redefined lines of Java
code (i.e., the callback invocation code and the interfag@dementation code) are
inserted when the compiler reaches specific pointekengrammar (e.g., when a method
is entered). Code is inserted at the beginning of eathocheand before each return
statement (or at the end of a void method). Classhas are added to the end of the
class definition to store the component adapter. Tagsdb declared to implement the
Adaptable interface, and accessor methods for the componentesidapt added at the

end of the class definition.
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The technology also requires multiple passes to prabessode. Specifically,
after callbacks often result in unreachable statemeftse figure below shows how
various methods would be instrumented using AIDE. Note imstrumenting method
m2 results in dead code. Thus, the second stage of the édimpiler usegavac to
compile the source code produced by the first stage, ararthe output for dead code or

unreachable statement errors, and then removes theliaffecode.

int m1() { —- int m1() {

return 12; before_ml_callback(Q);
} after_ml_callbackQ);
return 12;
3
int m2@¢int x) { =————- int m2(int x) {
if (x < 0) before_m2_callback();
return 9; if (x < 0) {
else after_m2_callback(Q);
return 10; return 9;
} } else {
after_m2_callback(Q);
return 10;
3

// dead code!
arter_m2_callback();

}
void m3(Q) { - v0id m3() {
dox(Q); before_m3_callback();
} doxQ;
after_m3_callback(Q);
}

Figure 5 - Sample AIDE Transfor mations
There are a number of problems with this approach. ,Fa#it code
transformations (here, only insertions) are explicitlytten in the parser code. This
makes maintenance of, and modifications to, the iedezbde difficult as it is scattered

throughout the grammar. Second, general-purpose code nestrgids difficult if not

14



impossible considering just the syntax. Code insertioas be performed, but
modifications to existing code would require significarifot. Third, since all
transformations are embedded in the parser, it is imMpess detect whether multiple
transformations are incompatible. Fourth, the secondpitation stage is required
because only the syntax was considered during transformatiomust be possible to

transform correct code in a single transformatioaseh

Approaches to Code Transformation

Various approaches can be taken to programmatically insttuiaga classes. If
the source code is available, the code itself can beifiedbdto accomplish the
instrumentation. If the source code is unavailable, cbmpiled byte-code must be
manipulated to instrument the code.

Byte-code instrumentation can be performed either pigorun-time by an
external application or at run-time by the class loadEne latter requires sophisticated
virtual machine support, as found in J2SE 1.4 [18]. The bytetadfshe beginning of a
method can be retrieved from the class file. Froerehthe appropriate byte-code
implementing the probe can be inserted. While tools efist programmatically
manipulating byte-code (see the previous chapter), someinmettation applications
may require that the byte-code be disassembled and addtyzietermine the location of
the probe. For instance, to insert a probe at the eadnethod, program flow analysis is
needed to determine all exit points of the method [26].

Source-code instrumentation resolves some problems faondyte-code

instrumentation. Java source code can be parsed irdbsaract syntax tree (AST) and

15



then manipulated using graph rewriting techniques [12]. IfAB& data model is
mutable, transformation can be performed on the tredf #sid exported into a file.
Searching for the appropriate location to insert probesmgplified by the additional

syntactic information contained in the AST.

Requirements for EXTRACT

The limitations of the prototype AIDE compiler, descriksdabve, lead us to a
number of requirements for EXTRACT, a general-purpose t@ihsformation system.
First, an AST grammar and library are required for tdrget language. This project
focused only on the Java language, but we expect that EXTR®QId be extended
easily for use with a variety of other languages. Tolement arbitrary transformation
on an AST, an appropriate AST class library was requidfter evaluating a number of
AST libraries [4][19][20][22][25][30], we decided to implemenXERACT using the
OpenJava [25] metaobject protocol (MOP). OpenJava wa®rcHmause it creates a
mutable AST on which transformations can be perforntadthermore, we can simplify
the process of inserting code by using their library togpamle fragments into their
appropriate AST subtrees. Rather than having to edplibuild AST subtrees for
inserted portions of code, OpenJava provides a way teegoarbitrary strings into the
correct AST subtrees that are then ready to instrtthe main tree.

The OpenJava MOP was originally used as an extensidansyfer the Java
language. It allows developers to extend Java, write asolg the extended language,
and then define ways to transform that code back taedard Java. Consequently, it

provides a parser which creates a mutable AST. The A®Wsla variety of

16



transformation, most importantly insertion and deletiobsing these facilities, it is
possible to implement our entire range of transforonati The AST provided by
OpenJava has built-in support for the Visitor design pat{éd], which simplifies

traversal code.
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Chapter 4
JPath — A Path Language for Java Source Code

Introduction

As discussed in previous sections, the OpenJava lipramdes a mechanism for
parsing Java source code into an abstract syntax tree).(ASXTRACT processes all
transformations over the AST. For EXTRACT scriptd&ocompact and provide a basis
for analysis, a mechanism is needed to identify portidrire AST. To accomplish this
we designed JPath, a path language for navigating throuwgldantifying portions of
Java source code.

JPath was inspired by XPath, a language designed to addréssopa¢ML
documents [9]. XML documents are parsed into an AST comfigrho the Document
Object Model (DOM) [10]. XPath provides a mechanismdddressing nodes in the
DOM tree and provides functionality for a variety of KNeechnologies, including XSL
Transformations [7].

Paths in JPath are stated as hierarchical path expreskio example:

/a/b/*/c

Paths are given as a sequence of steps from eitheydh@.e., an absolute path) or from
some location in the tree (i.e., a relative path)th$aan also contain wildcards which
may appear at any point in the JPath expression excea aghtmost end. This ensures
that JPath expressions evaluate to a homogeneouslysgpetinodes.

A JPath expression is evaluated relative to a comede to yield a node set.
This node set, which can contain zero or more nodesgems the portions of the AST

that match the JPath expression. Each matched nake mode set is associated with a

18



concrete path from the root of the AST to that nodéis path can be retrieved in an
EXTRACT script and used to derive further context far $klected node. Additionally,
individual steps in a JPath expression can be enclogeareémtheses. When a match is
found, the nodes along the concrete path that corredpotie steps in parentheses are
accessible as sub-matches. This is similar to Pedes of parentheses in regular
expressions.

To illustrate how JPath works, we present a simple elampConsider the

following trivial Java class:

public class Helloworld {
public static void main(String[] args) {

System.out.printin(“Hello, world.”);

}

A source file @elloworld.java), containing the class declaration above, is then
parsed into an OpenJava AST. The resulting AST, usemlifofPath examples, is shown

in Figure 6: AST foHe11lowor1d. java.
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CompilationUnit

@pacakge =
"edu.wpi.cs.extract.examples"

L‘ ClassDeclarationList

ClassDeclaration

package edu.wpi.cs.extract.examples;
public class Helloworld {
public static void main(String[] args) {
System.out.printin("Hello, world.");
}
}

public class Helloworld {

@vodifiers = "public" _
@Name = "Helloworld"
@superclass = ""

}

public static void main(String[] args) {
System.out.printin("Hello, world.");
}

ModifierList

MemberDeclarationList

MethodDeclaration
@Modifiers = "public static"

public static void main(string[] args) {
System.out.printin("Hello, world.");

4

@Name = "main"
@ReturnType =

"void"

{ ModifierList

| | TypeName
@Name =

"void"

—| ParameterList

}

Ii string[] args

Parameter
@Typespecifier = "string[]"
@variable = "args"
ModifierList |l <blank> |
. st
@Name = "String[]"

—| StatementList

L{ ExpressionStatement

F44444444474——>+System.out.print]n("He11o, world.");

MethodCall
@Name = "println"
@RrReferenceType =

Variable

System.out

ExpressionList

"Hello, world."

L‘ Literal

Figure 6: AST for Helloworld.java
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Location Paths

A JPath location path is expressed as a sequence afranere location steps,
separated by a/* character. A/’ character alone denotes the root node of the Java
source code (i.e., theompilationunit). Thus, any JPath beginning with A" °
character is an absolute path; all other path expressice considered to be relative.
Each location step corresponds to a class in the ASarbier (e.g.Compilationunit
or Methodbeclaration). JPath also allows wildcards*{‘and ‘.’ characters) to be
used in place of any location step (except the lastg ‘Thwildcard matches all children
of the context node. Thé&"wildcard matches the context node and all of its dedasts
(i.e., zero or more steps from the context node).

Each location step selects a set of nodes relativae ¢dontext node. An initial
sequence of steps is composed with a succeeding step falldveéng manner. The
initial sequence of steps selects a set of nodes, in doturnder, relative to a context
node. Each node in that set is used as a context notlefllowing step. The sets of
nodes selected from this step are then unioned togmtbdensed as context nodes for the
next step.

This is best illustrated by an example. Consider tHeviiig JPath expression

(to be evaluated ome1loworld. java):

/*/ClassDeclaration/MemberbDeclarationList/Methodbeclaration

The first character in the JPath expression i§,asb the context node is the root of the
AST (i.e., theCompiTlationunit). The first step is a**; we select the context node
and its entire sub-tree. Each node in the selectiarsed in turn as the context node for

the following step. Because this is an ordinary locasiep, we examine the children of
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each of the context nodes and select those whose typ&ches the step
(Classbeclaration). This will select the onlcTassbeclaration in the tree.
ThatClassbDeclaration is then used as the context node for the next steptiaglés
only child of type MemberbeclarationList. Finally, the selected
MemberDeclarationList is used as the context node for the last step whiattsel
the MethodDeclaration child. Note that the JPath expression:

/*/MethodDecTaration would select the same set of nodes.

Location Predicates

The location steps described above are limited in thigtthe node type can be
used in selection. JPath provides the option of usingtitot predicates that allow for
further refining of node selections for a given step. Amation step can have one or
more location predicates, contained in square bracketsation predicates can refer to a

set of attributes specific to a given node type. Fomgia, the JPath expression:
MethodDeclaration

selects all method declarations that are children ottmext node. We can select all

public method declarations using the following expression avidcation predicate:
MethodDecTlaration[@odifiers contains “public”].

Note that attributes are identified by ti@ tharacter preceding their name. Attributes
evaluate to either scalar values (i.e., integersrongs) or list values (i.e., arrays or lists
of scalar values). Consequently, equaliy,(<, <=, >, >=) and list containment
(“contains”) operators are provided. Regular expression matchipgorgided using

the ‘matches” operator. Location predicates can be combined using™and “OR”.
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Thus, we can further refine our selection to public andeptetd methods with a boolean

or:

MethodDecTlaration[@odifiers contains “public” AND
@GName == “main”]

Figure 6: AST foHellowor1d. java gives the attribute values for the node types shown.
Consult the documentation for a complete list offaites and their descriptions.

When a location predicate follows a list type (egtatementList), the
predicate can be used to select an element from the IlidFor example,

StatementList[3] selects the'8element in the statement list.

Evaluating JPath Expressions

Each step in a JPath expression is checked to ensurié ¢brresponds to a valid
OpenJava class name, but no effort is made to ensaggcallordering. In other words,
JPath expressions must be syntactically correct butsemantically correct. Thus, a

JPath expression such as:
IfStatement/Compilationunit

is considered syntactically correct, even though impossible for an if-statement to
have a compilation unit as its child. In this case, ¢Rkpression would evaluate to an
empty node set.

Steps in the path expression are evaluated in a lefttiv-order. Given a context
node, we consider only the sub-tree of the AST rootedaatnode. For a location step
containing a type name, each child of the context noéaamined; if its type matches
the location step’s type name, this node is considerathtgh. For a location step

containing a wildcard, the appropriate descendant nodeslactese The resulting node
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set is then filtered by the location predicate to yteklfinal set of matches for that step.
Each node in the set of matches is used as the camteet for the next step in the
expression. These resulting node sets are unioned ¢o@etth used as the context nodes
for the next step, and so on until the end of theesgion is reached. The resulting node
set corresponds to all nodes matching the entire JPptession. (Note: Pseudo-code
for the selection algorithm is shown in the next isec)

To illustrate this, consider the following JPath selecttatement:

select(contextNode,
“typeA/*/typeB[predB]/typeC[predC]/*/typeD[predbd]”)

This is equivalent to:

select(select(select(select(contextNode,
“typeA”),
“*/typeB[predB]”),
“typeC[predC]™),
“*/typeD[predD]”)

Note that theselect () function, as presented here, returns a node set. fheuspntext
node (i.e., the first argument) to the function careibiger a node or a node set. If a node
set is provided as the context node, the JPath expnasavaluated relative to each node
in the set. The union of the nodes selected from eaahation of the JPath expression
across the node set is returned.

The resulting node set can be iterated through or actessay an index. Each
node in the resulting node set has a corresponding cermga#t that from the root of the
AST to the selected node. The concrete path can baime@ to extract context.
Furthermore, any nodes matching sub-expressions (coniaipegentheses in the JPath

expression) can be accessed as sub-matches. Thisallmes for the retrieval of
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contextual data. The type of the nodes in the resuitire set will be the same as the

type name specified in the last (rightmost) locatie@p st the JPath expression.

Implementation of the JPath Evaluation Engine

JPath Visitors

The edu.wpi.cs.jpath package provides a parser and parse-tree classes for
the JPath language. Given the JPath grammar, a Java@ihgr was produced. Then,
Java TreeBuilder [18] was used to produce AST classadidodPath language (one for
each grammatical production) and a JavaCC parser thds buiPath AST from a string.

As with the OpenJava AST library, the JPath parselifbeary supports the visitor
pattern. Consequently, we can use visitors to intedbtath expressions. A JPath visitor
object LocationPathEval in Figure 7: JPath Selection Pseudo-code.) traverses the
expression tree in a depth-first manner, sending messagas object implementing
PatheEvaluator when the various selection elements are encountereche T
PatheEvaluator modifies the selection when these messages arevedceising

OpenJava visitor objects (described in the next section).
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JPathAPI.select(NodeSet context, JPath pathExpr)

— N

oJpPathEvaluator implements PathEvaluator LocationPathEval
Visits Openjava AST and maintains current Visits parsed JPath expressions
selection

protected boolean paren = false;
protected NodeSet selection;
LocationPatheval(PathEvaluator eval) {

oJrpathEvaluator(NodeSet context) { this.eval = eval;
selection = context; }
}
void visit(AbsoluteLocationPath n) {
void isAbsoluterath() { eval.isAbsoluterPath();
selection = findASTRoot(); visitchildren(Q);
} }
void beginstep(boolean isParen) { void visit(ParenLocationStep n) {
// currently not implemented paren = true;
} visitchildren(Q);
paren = false;
void evalpPredicate(Predicate pred) { }
NodeSet toRemove = new NodeSet();
for each node in selection { void visit(LocationStep n) {
if (pred evaluates to false for node) { eval.beginstep(paren);
toRemove.add(node) ; visitchildren(Q);
}
} if (predicate exists) {
remove all toRemove from selection; eval.evalPredicate(predicate);
} }
}
void selectAllchildren() {
NodeSet newSelection = new NodeSet(); void visit(NodeType n) {
for each node in selection { if (is dot wildcard) {
newSelection.add(node.getchildren()); eval.selectAl1children(Q);
}
selection = newSelection; else if (is star wildcard) {
} eval.selectSubtree(Q);
}
void selectSubtree() { else {
NodeSet newSelection = new NodeSet(); eval.selectchildren(node type name);
for each node in selection { }
newSelection.add(node.getSubtree()); }
}
selection = newSelection;
}

void selectcChildren(String typename) {
NodeSet newSelection = new NodeSet();
for each node in selection {
newSelection.add(
node.getChildrenofType(typename));
}
selection = newSelection;

}

NodeSet getSelection()
{ return selection; }

Figure 7: JPath Selection Pseudo-code.

If the LocationPathEval visitor encounters anbsoluteLocationPath, it
notifies thepathEvaluator. ThePathEvaluator then discards the current context

node set and selects the root of the AST. WhenLtheationPathEval visitor

26



encounters @ocationStep, it notifies thepathEvaluator that a step has been
encountered and whether it is a back-referengeginstep(boolean)). The
LocationPathEval then visits theNodeType, and notifies theeathEvaluator to
select children of the context nodes, depending on tde type or wildcard specified
(selectAl1children(), selectSubtree(), selectChildren(String)). If a
Predicate is present, it is evaluated using a separate predicatervisthis visitor
translates attribute names into methods to be invokedsouirce-tree node to retrieve the

attribute’s value. This filters the source-tree no@dscsed by thé ocationStep.

OpenJava Visitors

As discussed in previous sections, the OpenJava libratginsrsupport for the
visitor design pattern. TheJpathEvaluator controls a set of OpenJava visitors.
Since expressions are evaluated relative to a contebet, mee can search from a context
node using that nodeshildrenAccept() method (callaccept() from the visitor
pattern on each child). By default, the visitor does eotrse through the entire tree.
Rather, only the children of the context node are demsd. However, if the visitor is
searching for the** wildcard, it will recurse through the entire sub-tree

In the visitor design pattern, the Visitor class kdasit() methods for each
type in the object structure. Thus, an OpenJava visitoldagefinevisit() methods
for each AST class. For the purposes of searching, yeywit suffices to have a generic
visitAl1() method that takes as an argument the base class 0A3f (i.e.,
ParseTree) that is called by the individualisit() methods. A candidate for a
match is found when its class name (as retrieved bygdmlass() method in

java.lang.0Object) matches the name provided in the location step.
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The set of candidate matches are then filtered usedptiation predicate, if one
exists. A mapping exists between attribute names abteessithe location filter and
methods used to retrieve those attributes from the OpeARivabjects. If the location
predicate evaluates to a true value, the candidate hmatcconsidered a match.
Otherwise, it is discarded.

Pseudo code for the selection algorithm is presentedgurd-i7: JPath Selection

Pseudo-code.
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Chapter 5
The EXTRACT Language

Introduction

The EXTRACT (Extensible Transformation and Compilechnology) language
allows developers to define transformations in a modahar extensible manner. This
chapter introduces the EXTRACT language and describes hmswugted. Throughout
this chapter, we will examine a simple example to itatst how EXTRACT can be used.
This example, callekxceptionAdder, adds an exception to the throws clause of

methods in a Java source file.

EXTRACT Modules

Transformations are expressed as EXTRACT modules. Msduk named and
are defined in a file corresponding to the module’s namanodule is comprised of an
execution block, a set of transformations, and a seraperties. The execution block
traverses the AST, identifies contextual informati@mtained in the AST, and calls
transforms. Transformations define modificationshie® AST. Properties represent data
that is collected or generated by the module and exposexktienmal use. Modules can
also have Java implementation files that provide Jaeale to support the
transformations. Each of these parts is discussednriater on in this section.

An EXTRACT module is compiled into Java code by &hetractC compiler.

The generated Java source, along with the Java implatieenfile, is then compiled
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using javac. The module can then be executed to transform afs#va files using

Extract. This process is outlined in Figure 8: EXTRACT Module @dation.

EXTRACT Module Module Implementation
ExceptionAdder.xm ExceptionAdder_impl.java

ExtractcC

EXTRACT Module Properties Interface
ExceptionAdder.java ExceptionAdder_props.java

javac javac javac

Compiled EXTRACT Compiled Properties Compiled Module
Module Interface Implementation
ExceptionAdder.class ExceptionAdder_props.class  ExceptionAdder_impl.class

Figure 8: EXTRACT Module Compilation

Now, we will examine the different parts of an EXTRAGwodule. As concepts
are introduced, we will build up thexceptionAdder example until we have a fully-
functional version. We begin by defining a module, namedeptionAdder, in a file

namedexceptionAdder. xm:

module edu.wpi.cs.extract.examples.ExceptionAdder {
// the module body (execution block, transforms, and properties)
// will be defined here
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In the code fragment above, we define the name of thdule
(edu.wpi.cs.extract.examples.ExceptionAdder). Note the naming
convention; we use a fully-qualified class name for thmdule. The file
(ExceptionAdder.xm) is placed in the same subdirectory (e.g.,
edu/wpi/cs/extract/examples/) as a Java source file would be placed.
EXTRACT provides package and class importing facilitiesilamo Java. For
example, if a module usemva.util.vector andjava.util.Enumeration, we
can add an import statement at the beginning of the mdikil¢orior to the module

declaration). Thus, we can add the following imporestents:

import java.util.vector;

import java.util.Enumeration;
Or, we can import the entire package:

import java.util.*;

Execution Blocks

Execution blocks traverse a Java source file, idertdytextual information
necessary to perform transformations, and apply tremstons to modify the Java
source file. Execution blocks also define parametershimmodule. These parameters
must be passed to the module prior to execution. Inettasnple, we need to pass the
module the name of the exception type that is to becdddach module can define at
most one execution block. If a module extends anotleeluta (as will be seen in later
examples), the execution block may be inherited frombdee module and therefore

omitted.
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As described above, thexceptionAdder adds an exception to the throws
clause of methods in a Java file. In order to accaipihis, we need to locate the
method declarations in the Java source code. In thés ea& do not need to identify any
additional contextual information. We simply need tdedeeach of the method
declarations in the source code and apply a transformdo & them. This is shown in

the code fragment (which appears in the module body) below

ExceptionAdder (String exceptionType) { )
:: MethodDeclaration method = Select("/*/Methodbeclaration”) {
ApplyTransform(AddException(exceptionType), method);

~
-

The execution block must have the same as the moditlkeo(w the package
name prefix). Required arguments for the module are fggbdn the parenthesis
following the module name (heretring exceptionType).

An execution block specifies how portions of the AST seéected and when
transformation are to be applied. In the example @bosxe use a Select statement to
select all of the method declarations in the ASTle@estatements in EXTRACT use the

following syntax:

: SelectionType elementName = Select([contextNode,] JPath_expression)

// code here is executed for each elementName in the selection

// code here is executed if the Select statement returns an empty result

S e e L

Thus, the set of alMethodDeclarations are selected (using the JPath expression
“/*/MethodDeclaration”). Since no context node is specified in the select
statement, the root of the AST (tbempilationunit) is used. Then, for each element

in the selection (in our exampleethod), the following statement is executed:
ApplyTransform(Addexception(exceptionType), method);
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The ApplyTransform function applies the transform specified in the firgfuanent on
the remaining arguments. Here, we applyatidException transform (defined below)
on each selectenethod.

In our example, theapplyTransform function is called for each method
selected by the selection statement. If the selestiat@ment were to return an empty
result (i.e., if there are neethodDeclarations specified in the source file) the code
in the second set of braces would be executed.

The execution block defined in tiExceptionAdder example is quite simple.
We perform a selection and apply a transform to esadbcted element. Execution
blocks can be more complex, however, as will be seelater examples. Multiple
selection statements can be present in an executiolk; blbey can be executed
sequentially or in a nested manner (i.e., perform oleets@n and then for each selected
element, perform another selection).

Execution blocks do not necessarily need to call tram&foons, either. In later
examples, we present modules that simply collect mmédion about a Java source file.
In this case, the execution block performs a seriesle€Bons and saves the appropriate

data in the module’s properties (discussed below).

Transformation Declarations

Transformation declarations define how a transformats performed and on
what data the transformation can be performed onansformation declarations also
define a set of parameters for the transform. Thesanmders are passed to the
transformation when it is applied. In this example, need to pass the transformation

the name of the exception type that is to be added.
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As we saw above, theExceptionAdder execution block calls the

ApplyTransform function as follows:
ApplyTransform(AddeException(exceptionType), method);

where exceptionType is a String and method is a MethodbDeclaration.
Consequently, we would define theddeException transformation (placed in the

module body) as follows:

transform AddeException (String exceptionType) {
(MethodDeclaration md) { )
AddToList(GetAttrvalue(md, “Throws”), exceptionType, -1);
}

Thus, when we call the\pplyTransform function as shown above, the
following actions occur:

» TheAddException transform is instantiated, using tegeceptionType String
as a parameter.
» The transform is then applied to thethodDeclaration method.

The AddeException transform defines one transform block (i.e., for a
MethodDeclaration namedmd). It is possible to define multiple transform blocks
within a single transform. For example, if we wanteétow AddException to work
on ConstructorDeclarations as well aMethodDeclarations, we would do the

following:

transform AddException (String exceptionType) {
(Me;?odDec1aration md) {

(ConstructorbDeclaration cd) {

}

Note that it is also possible to define transform blottied take more than one
parameter. Thus, it is possible to state our AddExceptamsform as follows:
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transform AddeException2 ( ) { ]
(MethodbDeclaration md, String exceptionType) {
// this is the same as in AddException

To apply this transform, we would use the following code:
ApplyTransform(Addexception2( ), method, exceptionType);

While these two approaches achieve the same resultjlinese the first approach in our
example.

The AddException transform uses two API callsGetAttrvalue and
AddToList. GetAttrvalue retrieves an attribute from a given AST node. Here, we
call GetAttrvalue(md, “Throws”) (wheremd is aMethodDeclaration). This
retrieves the throws clause for the method declaratidine attribute value that is
returned is a list. Consequently, thedToL1ist function adds the specified value (here,
exceptionType) to the list at the specified position (here, the xhde-1 represents the
end of the list).

At this point, we have a fully functionaixceptionAdder module. The

complete code for this module is shown below:

module edu.wpi.cs.extract.examples.ExceptionAdder {

ExceptionAdder (String exceptionType) { )

:: MethodDeclaration method = Select("/*/MethodDeclaration”) {
ApplyTransform(AddeException(exceptionType), method);

Iy
{1

}

transform AddException (String exceptionType) {

(MethodDeclaration md) {
AddToList(GetAttrvalue(md, “Throws”), exceptionType, -1);
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Module Properties

Modules can collect data during the course of execution gmoise that data to
external use. This is accomplished using properties, vanedefined within the module

body. The syntax for defining properties is as follows:

module Name {
properties {
[ import module [, module 1* ; ]*
[ Type Name; ]*

/] ...
}

Thus, we can define import the set of properties fronthenanodule (using the import
statement) and we can define our own set of propertiéddodules support a
getProperty and asetProperty operation for retrieving and storing property values.
For example, consider a module which collects the nafhelasses within a Java
source file. We would define a property calletlasses that would be stored as a
Vector. Then, in the execution block, we would simply recdrel hame of each class

that is selected. The code for this example is sHoslow:
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module edu.wpi.cs.examples.ClassNameCollector {
properties {
Vector classes;

ClassNamecCollector ( ) {
// get the property
Vector classes = (Vector) getProperty(“classes”);

// make sure it is initialized
if (classes == null) {
classes = new Vector();

// select all class declarations
:: Classbeclaration cd = Select("/*/Classbeclaration”) {
// get the class name
String name = GetAttrvalue(cd, “Name”).scalarvalue().toString(Q);
// and add it to the classes vector
classes.addElement(name);

FL}

// save the property
setProperty(“classes”, classes);

Here, we define &ector property calledclasses. The execution block first
ensures that the property is initialized.  Then, itesaa reference to the property,
modifies the property within the selection, and finaves the property. This is done
via the property methods defined in the Module base aldssl{ all Modules extend):

e getProperty(String propertyName) : Object
e setProperty(String propertyName, Object propertyvalue) : void

EXTRACT also provides a set of convenience methods faessing the
properties. These methods are namedget”propertyName” and
“set_propertyName”. Thus, theClassNameCollector module would have the
following methods generated for it:

e get_classes() : vector
« set_classes(vector value) : void

These methods simply call tigetProperty and setProperty methods; however,

they cast the return value and parameter respectivéigtoorrect type.
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We could then define another module that has the samgenies as the

ClassNamecCollector using an import statement, as shown below:

module AnotherModule {
properties { .
import edu.wpi.cs.extract.examples.ClassNameCollector;

The resulting module would have the same propertieslassNameCollector, as

well as the same accessor methods for those properties

Implementation Classes

Modules can define Java implementation classes thatderdava code to support
the module. This is done to simplify EXTRACT moduledpvaing developers to call
arbitrary Java code from a module. Every module hadakiemplementation that is
generated byextractC. Developers can then modify the default implemeomati
adding whatever functionality is deemed necessary. ifiplementation class, whose
name is the module’s name followed hyithp1”, must define aninit method and a
dispose method. These methods are called automatically byntddle when it loads
the implementation and when the module is finalizespheetively.

The module can access any public fields and call any puietibods provided by
the implementation class. The implementation ciasastantiated within the module’s
constructor (which is generated bgxtractC), and retain a reference to the
implementation object namedtip1”. Thus, an method nameftbo contained in the
implementation can be accessed viapl.foo() from anywhere in the module’s

execution block or transforms.
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The ExceptionAdder example does not require any extra functionality in the
module’s implementation. Consequently, it is suffitieto use the default
implementation ExceptionAdder_imp1) that is provided by thextractC compiler.

Later examples will show how to provide extra funcaiity in the implementation.

Extensibility

EXTRACT modules are extensible via inheritance. Thescan define a module
that extends another module. In the specialized mode;an choose to override the
execution block and/or any portion of a transform. Tasttate how to extend
EXTRACT modules, we will extend owrxceptionAdder example. In the example
thus far, we add the specified exception type to the thadausse of each method in a
Java source file. In this section, we will createypedExceptionAdder module that
extends theexceptionAdder module. In therypedExceptionAdder, we examine
the exception type already being thrown by each metho@ddshdur new exception type
only if its superclass exception is not already beimngvth.

To extend the functionality of theExceptionAdder, it is only necessary to
override the transform. The execution block, whichcdslall of the method declarations
in the source file can remain as it is in the supercldssre wanted to modify how the
method declarations were selected (e.g., to select ohlicpuethods), we would need to
override the execution block as well.

The source code for theypedExceptionAdder is listed below:
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module edu.wpi.cs.extract.examples.TypedExceptionAdder
extends edu.wpi.cs.extract.examples.ExceptionAdder

transform AddException (String exceptionType) {
(MethodbDeclaration md) {
if (!impl.containsSuperclass(GetAttrvalue(md, “Throws”),
‘ exceptionType))

super.transform(md) ;

Note the use of thextends clause in the module declaration. This specifies which
module this module extends. We override AldelException transform to add the if-
statement shown above. If thentainsSuperclass method (which must be provided
by the implementation) returns false, we perform thensform specified in the
superclass. Note that the implementationypedeExceptionAdder_impl) must
provide a method with the following signature:public boolean
containsSuperclass(Attrvalue throwsList, String exceptionType).
This method, omitted for space, can then use Java tiefleto see if the exception

specified byexceptionType has a superclass that is specified inttheowsL1i st.

Main Modules

The modules shown in the examples thus far are simpéemodule performs the
entire transformation. As transformations becomeentmmplex, as seen in the case
studies discussed below, it becomes necessary to hdwelenmodules act together. For
instance, we may want to take multiple passes over af seturce files. The first pass
can collect information from the set of source filasd then the second pass can use that
information to perform the transform. A mechanismegded to chain multiple modules

together like this. This is accomplished using a main neodul
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When a single module is executed, it is instantiated faewl tun on each of a set
of source files. The transformed source files ae@ thritten back out to disk. However,
it is often desirable to have more fine-grained contvel diow the module is executed.

A main module uses the same syntax as an ordinary emodddwever, there is
no execution block, no properties, and no transforms akfie single main execution

block is specified instead. The syntax of this is agest

module MainModuleName {
main(String[] args, SourceFile[] files) {

}

}

Consider our ExceptionAdder example. It would be sufficinexecute the
module simply using Extract (the execution process isritbest in depth in a later

section). This would be accomplished using the followingroand line:

java -jar Extract.jar edu.wpi.cs.extract.examples.ExceptionAdder ExceptionName
-- SourceFiles

whereExceptionName is the name of the exception to add, andrceFiles is a list
of source files to transform. However, we could mefa main module to accomplish

this:

module edu.wpi.cs.extract.examples.ExceptionAdderMain {
main(String[] args, SourceFile[] files) {
ExceptionAdder module = new ExceptionAdder();
module.setParams(args);

for (int i = 0; i < files.length; i++) {
module.execute(files[i]);

This is a simple example that mimics how Extract dowxecute the
ExceptionAdder module. However, this allows for more plem processing by

transformations. For examples of this, see the stagkes below.
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Module Compilation

This section explains how EXTRACT modules are compited Java code. All
modules (except main modules) extend #uu.wpi.cs.extract.Module class,
summarized below. TheetParam method saves the arguments passed to the execution
block of the module in a protected object variable. Vafoeshe arguments are passed
in as an array adbjects. If the array obbjects is not of the correct size, or is any of
the objects are not of the expected typeImawvalidParamexception is thrown. The

execution block is translated and placed in the bodyexdxlecute method.

package edu.wpi.cs.extract;

public abstract class Module {
public void setParam(Object[] args) throws InvalidParameException;
public void execute(SourceFile src) throws Exception;
public void setProperty(String name, Object value);
public Object getProperty(String name);

Main modules implement thedu.wpi.cs.extract.MainModule interface.

This only defines theain method:

package edu.wpi.cs.extract;

public interface MainModule { ) )
void main(string[] args, SourceFile[] files) throws Exception;

To illustrate the compilation process, we will exaethe code that is generated
by compiling ourexceptionAdder example. The code for the ExceptionAdder module

(ExceptionAdder.xm) is shown below:
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module edu.wpi.cs.extract.examples.ExceptionAdder {

ExceptionAdder (String exceptionType) { )

:: MethodDeclaration method = Select(/*/MethodDeclaration”) {
ApplyTransform(AddeException(exceptionType), method);

Iy
{1

}

transform AddException (String exceptionType) {

(MethodbDeclaration md) {
AddToList(GetAttrvalue(md, “Throws”), exceptionType, -1);

This translates into the following Java code:
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package edu.wpi.cs.extract.examples;

import edu.wpi.cs.jpath.*;
import edu.wpi.cs.extract.*;
import openjava.ptree.¥*;
import java.util.Iterator;

public class ExceptionAdder extends Module implements ExceptionAdder_props {
protected ExceptionAdder_impl impl;

public ExceptionAdder() {
impl = new ExceptionAdder_impl1(Q);
impl.initQ;

protected void finalize() throws Throwable {
impl.dispose();
super.finalize(Q);

protected String exceptionType;
protected boolean initialized = false;

public void setParams( Object[] args ) throws InvalidParamException {
if (args.length != 1) {
throw new InvalidParameException();

}

if (!(args[0] instanceof String)) {
throw new InvalidParameException();

} else { )
exceptionType = (String) args[0];

initialized = true;
3
public void execute( SourceFile src ) throws Exception {
if (linitialized) {
throw new InvalidStateException( "Module not initialized" );
Selection sell = JPathAPI.select( src.getCompilationunit(),
"/*/MethodDeclaration" );
Iterator itl = sell.iterator(Q);
if (litl.hasNext()) {

}
while (itl.hasNext()) {
MethodDeclaration method = (MethodDeclaration) 1itl.next();

AddException transform =

new AddException( exceptionType );
transform.transform( method );

}
public static class AddeException implements Transform {
protected String exceptionType;
public AddException( String exceptionType ) {
this.exceptionType = exceptionType;
pubTlic void transform( MethodDeclaration md ) throws ModuleException

ExtractAPI.addToList( JPathAPI.getAttrvalue( md, "Throws" ),
exceptionType, -1 );

44




The constructor for the module class creates and sdneesntplementation
instance, as well as calls the implementatioims t method. Similarly, the module’s
finalize method calls the implementationdsispose method. The module’s sole
parameter{tring exceptionType) is a protected field. It is set in tk@tParams
method. Note howsetParams determines whether the parameters are correct. The
execution block is translated into proper Java code and edsed the body of the
execute method. It begins by ensuring that the module was ling with the correct
parameters. If the module was not properly initialjznInvalidStateException is
thrown.

Transforms are translated into static inner classlesg|g to the module. This
allows for the transform to be extensible. Trans®r implement the
edu.wpi.cs.extract.Transform interface. ThexddException transform takes a
String argument callecexceptionType. This is passed to the constructor of the
transform object and is saved in a protected field.

Each transform block is translated into a method nammadsform. The
parameters to this method correspond to the types givée Aeginning of the transform
block. As stated above, a transform declaration camelehultiple transform blocks.
Each transform block corresponds to a transform methumbevparameter types match
the transform block’s type.

Note that theApplyTransform, AddToList, and GetAttrvalue functions
that are called in the EXTRACT module are translated ihe appropriate Java method
calls. ApplyTransform expands into a series of statements which instantiee

transform class and call the transform methoddddToList translates to the
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ExtractAPI.addToList method and GetAttrvalue translates to

JPathAPI.getAttrvalue.

Module Execution

Modules are executed using the edu.wpi.cs.extract.Extrass.clThis class can

be run from the command-line using the following syntax:

java edu.wpi.cs.extract.Extract [-o output_dir] module [module_args] -- files

When executing, the following steps are performed. Rinst,module is loaded (using
java.lang.Class.forName). Next, the source files (specified byles) are parsed
and ASTs are constructed.

If the module being executed is a main module,ntirén method is called with
module_args and the parsed source files as arguments. If the mbdung executed is
not a main modulesetParams is called withmodule_args as arguments, then
execute is called for each of the parsed source files.

After the module has executed, the transformed souesedie saved out to disk.
If an output directory is specified (using the option), the source files are written to that
directory. Otherwise, the source files are writtenhte transformed sub-directory of
the current directory (which is created if it does nastg. If the transformed files are
part of a package, the appropriate package directories atectre

In order to keep EXTRACT modules simple, they do notehamy exception
handling capabilities. If an exception occurs during thecai@n of an EXTRACT
module, the module is considered to have failed and procedsipg for the given source

file. Execution continues on the next file.
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Chapter 6
Evaluation

To evaluate EXTRACT, we chose three case studies. fal@ving three
chapters examine these case studies. In our first stagy, we developed a type
qualifier. In Java code, developers often import claaselspackages, allowing them to
use short names instead of fully-qualified class nameg., (@ector instead of
java.util.vector). It is necessary for certain transformations aedam types of
source code analysis to have fully-qualified names. refbee, we developed the type
gualifier module.

In our second case study, we developed a behavioral cbntracker, based on
the work of Findler, et al [13]. In [13], the authors présemechanism for performing
run-time checks on pre- and post-condition contractse athhors discuss constructing a
special compiler that would add the appropriate contrackaing byte code to already-
compiled Java code. However, it is not clear tha itlhplementation was completed,
and the publication is two years old. We were ableeteldp a contract checker using
EXTRACT that inserts the contract-checking code iaeaJsource code.

In our third case study, we developed a code obfuscator. nitiglifficult to
decompile Java byte code back into source code. Thermany situations, however,
where this would not be desirable. Code obfuscatiomvallm developer to take a set of
Java source files and mangle different symbols (engthod or variable names) so they

are meaningless to someone who would decompile the code.
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Chapter 7
Case Study: Type Qualifier

Our first case study is a type qualifier. When writing Jax@e, developers often
use import statements to avoid having to use fully-qualifipe tyames in the code. For
example, importingiava.util.vector or java.util.* allows the developer to use
the Vector class without thejdva.util.” prefix. While this is convenient for the
developer, it somewhat complicates the analysis ofceonode. It is often useful to
translate type names into fully-qualified names forpghigose of transformation.

In order to accomplish this, we need to take a two-pasoagpr First, we
process all of the source files to register all of ¢lzesses defined therein. Given each
source file, we can retrieve the package name offilleand the names of all of the
classes defined in that file. In the second pass, weiegagach file, record its import
statements, and then resolve each type name to abalified type name.

We begin by defining a main module that controls the elamtuf the two

passes:
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Main.xm

module edu.wpi.cs.extract.examples.qualifier.main {
main(String[] args, SourceFile[] files) {
// first, register all types contained in the sources being
// processed

// create a local class registrator ]
LocalClassRegistrator Tcr = new LocalClassRegistrator();

// initialize it
lcr.setParams(new Object[0]);

// run the registrator on each of the files
for (int i = 0; i < files.length; i++) {
) Tcr.execute(files[i]);

System.out.println("LocalClassRegistrator done.");

// second, resolve type names using the local names found
// $bove and the import statements at the beginning of each
// file

// create a type resolver
TypeResolver tr = new TypeResolver();

// requires an IClassRegistry_props as a parameter
Object[] params = { lcr };

// set the parameters
tr.setParams(params);

// run the resolver on each of the files
for (int i = 0; i < files.length; i++) {
) tr.execute(files[i]);

System.out.println("TypeResolver done.");
System.out.printin("mMain done.");

On the first pass, we execute thecalClassRegistrator module over all of the
source files. This registers all classes defined insthece files being processed with
their fully-qualified names. On the second pass, wewtgdbeTypeResolver module
over all of the source files. This uses the infornmatidrom the
LocalClassRegistrator and import statements to resolve type names.

We define a set of properties, in a module called IClegsRYy:
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IClassRegistry.xm

module edu.wpi.cs.extract.examples.qualifier.IClassRegistry {
properties {

* Provides a mapping from a class name (e.g., String) to a
i/fu11y—qua1ified class name (e.g., java.lang.String).

java.util.Hashtable nameResolution;

This provides a hashtable which maps from a short class (@.g.String) to a fully-
gualified class name (e.gjava.lang.String). Our LocalClassRegistrator

imports this set of properties:
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LocalClassRegistrator.xm
import java.util.Hashtable;

module edu.wpi.cs.extract.examples.qualifier.LocalClassRegistrator {
properties {
// we provide this interface
// Hashtable nameResolution;
import IClassRegistry;

LocalClassRegistrator () {
// make sure the nameResolution property is initialized
if (getProperty('"nameResolution") == nu%]) {
setProperty(''nameResolution", new Hashtable());

// load the property
Hashtable table = get_nameResolution();

// ?rimitive types
table.put("boolean", "boolean");
table.put("byte", "byte");
table.put('char", ;
table.put("short","short");
table.put("int", "int");
table.put("Tong", "long");
table.put("float", "float");
table.put("double", "double");
table.put("void", "void");

// this file's package name
String packageName = null;

// select the compilation unit

:: Compilationunit cu = Select("/") {

// ?et the package name

Scalarvalue pkg = GetAttrvalue(cu, "Package").scalarvalue(Q);

// if the package name exists, save it
if (Ipkg.isNullQ)) {
packageName = pkg.toString(Q);

3
P A}

// select all class declarations
:: Classbeclaration cd = Select("/*/Classbeclaration") {
// save the class name
String className = GetAttrvalue(cd,
"Name") .scalarvalue() .toString(Q);

// map the class name to it's fully-qualified name
if (packageName != null) {
table.put(className, packageName +

+ className);

IR

// save the ?roperty
set_nameResolution(table);

This module is relatively simple. First, we ensuret tbar property is properly

initialized. Next, we add the Java primitive types te tiame resolution hashtable.
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Then, we select the compilation unit and retrievephekage name. If one exists, it is
saved; otherwise, we assume the default package.llyFwa select each of the class
declarations in this file and register them in the naaswlution hashtable using the
package name for the file.

On the second pass, we execute TiypeResolver module. Code for the

TypeResolver is found below:
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TypeResolver.xm
import java.util.*;

module edu.wpi.cs.extract.examples.qualifier.TypeResolver {
TypeResolver (IClassRegistry_props registry) {
// on-demand imports
Vector odi = new Vvector();
// class imports - maps name -> fq name
Hashtable ci = new Hashtable();

// always import java.lang
odi.addelement("java.lang");

// process the imports
:: Compilationunit cu = Select("/") {
// get the 1ist of imports
Listvalue imports = GetAttrvalue(cu,
"DeclaredImports").Tistvalue(Q);

// loop through the imports
for (int i = 0; i < imports.length(Q); i++) {
String impt = imports.getAt(i).toString(Q;

// if the import ends with a .*, it's an on demand import
if (impt.endswith(".*")) {
odi.addelement(impt.substring(0, impt.lengthQ - 2));

// otherwise, it's a class import
else {
String name = impt.substring(impt.lastIndexof('.') + 1,
impt.length(Q));
ci.put(name, impt);

}
P{l
// ?1ve the implementation the import information
impl.setImports(odi, ci);
impl.setRegistry(registry);
// select type names for the transformation
:: TypeName oldType = Select("/*/TypeName") {
String fqType = impl.resolveName(oldType);
TypeName newType = ExtractAPI.createTypeName(fgType);
épp1yTransform(SubstituteTypeName(), oldType, newType);

}

transform SubstituteTypeName () {
(TypeName oldName, TypeName newName) {
ExtractAPI.replace(oldName, newName);

The TypeResolver requires a reference to anclassRegistry_props
object. Recall that theéocalClassRegistrator contains properties of this type;
specifically, it provides the name resolution hashtalilee TypeResolver creates two
local objects; a Vector for on-demand imports (gjgya.util.*), and a hashtable for
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class imports (i.e.jmport java.util.vector would place the following pair in the
hashtable:vector -> java.util.vector). We then add the default on-demand
import of java.lang.*. Next, we examine the declared imports of the cortipiia
unit. If the import statement ends with a**, we add it to the on-demand imports.
Otherwise, it is a class import and we add it to trshtable.

Once we are done processing the imports, we send fhenmantation a reference
to the import vector and hashtable as well as béassRegistry_props object.
Finally, we select alfypeNames in the source file. We then use the implementation t
resolve the name to a fully-qualified name (the im@atation class has been omitted for
space) and use tlsbstituteTypeName transform to replace the originaypeName
with a fully-qualifiedTypeName.

In the implementation clasgypeResolver_impl), we use Java reflection to
resolve type names. The only weakness to this appmaleat it requires that all source

files that are being transformed are already compiled.

54



Chapter 8
Case Study: Behavioral Contract Checking

In the paper Behavioral Contracts and Behavioral SubtydiBp Findler, et al,
present a mechanism for performing run-time checks on @anel post-condition

contracts. Contracts are stated after method deolasads follows (example from [13]):

interface I {
int m(int a);
@pre { a > 0}
}

A contract compiler generates classes to enforce amistion interface methods and
generates wrapper methods to enforce contracts on wolafisods (this process is
described in more detail below). The implementationmigsd by the authors augments
.class files generated for each interface with informatioat will insert the appropriate
byte-code into all classes that implement that iaterf

The effort described by the authors in [13] includes caoshg a special
compiler to add the appropriate support code to implemeht @adract condition, and
then modifying byte-code so that the contract checkinig ¢e called. It is not clear that
this implementation was completed, and the publicatitvvasyears old.

To demonstrate the benefits of using EXTRACT, we have im@ifeeed a contract
checking system analogous to the system presented irugir®] only the EXTRACT
system. Our intent is to show that the effort rezpiito implement this system in

EXTRACT is considerably less than the effort describg the authors of [13].
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The Behavioral Subtyping Condition

Behavioral subtyping ensures that all objects of aypebpreserve all of the
original type’s invariants. Thus, objects of a subtype sarbstitutable for objects of a
supertype without any effect on the program’s observablavimh When evaluating
pre- and post-conditions, care must be taken to ensuredhtracts are enforced. The
authors of [13] point out that all previous contract &kes for Java fail to handle the
behavioral subtyping condition correctly. Simply put, dogiven method the subtype’s
pre-condition may be stricter than the base typetstha subtype’s post-condition may
be less strict that the base type’s. The figuresvbétaken from [13]) describe the

behavioral subtyping condition and how contracts nedx tchecked.

Program Conditions
void m(Object x)
C @pre pc(x) Ox : pS(x) = pP(x
‘. @post qS(x) PE(X) = p°(x)

void m(Object x)
D @pre p°(x)
@post g°(x)

Ox : g°(x) = q°(x)

Figure 9: The Behavioral Subtyping Condition

Program Conditions
void m(Object x) void m(Object x)
@pre p°(x) L R @pre p°(x) (Ox: pR(x) = p%(x)) O
@post q°(x) \/ @post g°(x) (Ox 2 pH(x) = p°(x))
void m(Object x)
B @pre p°(x) (Ox: g?(x) = q7(x) O
@post q°(x) (Ox 1 g?(x) = g7(x))

Figure 10: TheBehavioral Subtyping Condition, Generalized to Multiple I nheritance
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Given a method with pre- and post-conditions, checkahoas are generated
which perform the condition check. Since the condgioely on the context in which a
method is called, a checker method is generated for eatéxt that the method can be
called in. For instance, a methedn classC which implements interface can be called
from objects of typeC or I. Consequently two checker methoasC andm_I, are
generated.

In these checker methods, we first evaluate the methwé'ssondition in the
context of the appropriate class (ire.C would check m’s pre-condition in classm_I
would check m’s pre-condition in interfacg. If the pre-condition fails, the calling class
is blamed and the program exits.

Hierarchy checking methods are generated for all interéaw class methods.
The new methods are directly inserted into classebecker classes, containing the
hierarchy checking methods, are generated for interfacAfter the pre-condition
described above is performed, the pre-condition checkinggigely traverses the class
and interface hierarchy to see if the behavioral subtypimdication holds. If it does
not, the hierarchy is malformed; the hierarchy is blafeedhe contract failure and the
program exits.

Next, the original method is called. In the exampiesented in [13], none of the
methods being checked return a value; all are of type vblie mechanism presented
does not lend itself easily to the checking of return \&lukghis reduces the power of the

post-condition checking facility.
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After the original method is called, we evaluate theghmad’s post-condition in the
context of the appropriate class. If the post-condifails, the declaring class (which
contains the method) is blamed and the program exits.

Finally, the post-condition checking recursively travertige class and interface
hierarchy, in the same order as it did in the pre-camdithecking, to see if the
behavioral subtyping implication holds. If it doest,nthe hierarchy is malformed; the
hierarchy is blamed for the contract failure and the prograits.

In order for the contract checking code to be calledmathod calls must be
transformed to reflect the context that it is beimdled by. For instance, consider a
methodm in classC which implements interface. If m is called from an object of typg
the call should now be_c; likewise, ifm is called from an object of type, the call

should now ben_T.

As described above, [13] states pre- and post-conditidtes a method
declaration. This is not desirable, however, becausesthdting code will not compile
under a standard Java compiler. For our purposes, Wwecketine pre- and post-conditions
in the Javadoc comment for that method (under@gwee and@post tag). This can
contain any arbitrary Java code; however, return valtiesytethod unfortunately cannot
be accessed by the post-condition.

The EXTRACT modules to perform the necessary transitions progress as
follows. First, we collect all pre- and post-condigofrom the methods’ Javadoc
comments. If no condition is defined, we assume kidarue. Next, we generate the

necessary checker code. Checker methods are genenatdaises and checker classes
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are generated for interfaces. After that, type arglymilar to that done by the code
obfuscator, is performed. This allows us to determine rumth@t context a method is
being called (i.e., the type of the object that the oektis being called on). We then

transform each method call to reflect this context.

This case study was implemented in less than a week usKIRACT
technology. As stated above, after two years, th@ementation promised in [13] has
yet to be seen. Our implementation was accomplishied) fise modules containing a

total of four transforms.
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Chapter 9
Case Study: Code Obfuscator

Java byte code is easily decompiled. Theap utility that is included in the
Java Development Kit translates Java byte code ata dssembly code. Other software
exists that decompiles Java byte code into Java soodeethat is almost identical to the
original code. There are many situations where thiadesirable.

Our code obfuscator addresses this issue. It takes aclésgaand mangles its
method and field names. The resulting code is almostssipe for a human to
understand, yet it maintains the semantic content ofotiggnal code. Only method
names that can be mangled are; methods that aree@dyy an external interface (e.g.,
actionPerformed in java.awt.event.ActionListener) are not changed.

Execution of the code obfuscator proceeds as follokisst, the set of package
names contained in the processed source files is retoNkext, all interfaces and classes
are processed to determine which methods are in scope i changed. Methods
that are not part of an external interface or supesdasnot be obfuscated because this
would break the inheritance hierarchy.

Before completing the obfuscation, it is necessary teigde a symbol table for
the Java source files being processed. While EXTRACT doesupport this directly,
the underlying OpenJava library does. Thus, a symbol tabtesated allowing us to
perform Java type analysis on the AST.

Finally, we obfuscate the code. First, all methodscaille selected. We use the
symbol table information to determine the type of tigect that the method is being

called on. Using the scope analysis performed in tis¢ $tep of the obfuscator, we
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determine whether to obfuscate this call. After thhe¢ examine all of the class and
interface declarations being processed. Here, we rettemgiginal method declarations
to the new obfuscated names, again using the earlier acapssis.

The code obfuscator is being developed by Professor Georgenidgin this
project’s advisor. It is in its final stages of develgnt, and should be available very
soon. Preliminary evaluations show that the obfuscatwks properly under all test
cases chosen thus far. It has been used to obfusnateler of large Java applications,

including the EXTRACT software itself.
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Chapter 10
Conclusion

Having developed EXTRACT and then using it to create the cisdies
described above, we have made a number of observatgaslireg the technology and
how it can be improved. This chapter discusses thesengaiions and examines areas
for future work.

First, the AST generated by OpenJava does not contain syati® information.
This is often useful, as seen in the contract cheakdrcode obfuscator. However, type
analysis is not always necessary and would cause anassaeg performance penalty for
transformations that do not need it. The code necgessarerform type analysis on an
OpenJava AST was written for the contract checkercade obfuscator. In the future, it
is possible to add this code to the EXTRACT library.

EXTRACT is closely tied to OpenJava. If the underlyin@TAlibrary was
completely abstracted, it would be possible to apply EXTRAO languages other than
Java. However, exposing the OpenJava library allowsldpers to write more
sophisticated transforms.

JPath expressions, like regular expressions, are linmtdteir expressiveness.
Often times, a more expressive mechanism for seled®innodes would be useful. For
instance, consider a Java source file that contains imneanonymous classes.
Evaluating a JPath expression to select all class dgolesa (i.e.,
/*/Classbeclaration) would select all classes in the file without easilingeable to
determine which are inner or anonymous classes. Thetiselenechanism used by

EXTRACT is arbitrary; another can be developed and used piace.
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JPath allows for analysis of selections, and thusyaisabf modules. One can
examine a JPath expression and determine what parts sbtince tree will be modified.
Using this information, it is possible to determinenfiavhen two modules will conflict.
For instance, consider one module that changesratdps to while-loops, and another
module that removes all method bodies to create anfanee Obviously, these two

modules conflict. Knowing this, it is possible to detiexera partial ordering of modules.

This thesis has presented technology that allows forcteation of arbitrary
transformations on Java code. We begin with a lib{@yenJava) which parses Java
source code and generates an AST. Given the AST, welpréPath as a mechanism for
determining which parts of the AST are to be transforn@d.top of this technology, we
provide EXTRACT as a means of expressing transformationisenAST.

A number of supporting libraries and programs have been ajmal The
EXTRACT compiler €xtractC) translated EXTRACT code into Java code. The
EXTRACT API provides an interface to the code fragmmarsing facilities provided by
OpenJava, and provides a number of tree modification exutor use in modules. The
JPath API provides facilities to evaluate JPath exmnessretrieve attribute data from an
OpenJava AST, and wraps various types of attribute datalar and list values.

Finally, we present three case studies to demonstteeeffectiveness of
EXTRACT. In our type name qualifier, we developed adaath transformation that is
often a prerequisite for other transformations. Wevigiexd an implementation for the

behavioral contract checking mechanism presented in [HiBRlly, our code obfuscator

63



transforms entire Java applications, making method #&id hames unreadable to a

human while maintaining the semantic content of tteco
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