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Abstract

This thesis examines the Mordell-Weil group for application in cryptography. This

approach has recently been proposed by Gerhard Frey. The use of the Mordell-Weil

group for discrete logarithm schemes is a variant of elliptic curve cryptosystems. We

extended the original idea by Frey with the goal of a performance improvement. The

arithmetic complexity using the Mordell-Weil group will be compared to ordinary

elliptic curve cryptosystems. The main goals of this thesis are (1) to investigate

the algorithmic complexity of Mordell-Weil cryptosystems relative to elliptic curve

cryptosystems; (2) the appropriate selection of the group parameters for a successful

adaptation to different platforms; (3) a C++ library which makes it possible to

easily use this algebra for cryptographic systems based on groups; and (4) to obtain

software performance measures for the new cryptosystem. Point multiplication, the

crucial operation for elliptic curve cryptosystems, is more than 20% less complex

in the Mordell-Weil group than in an ordinary elliptic curve while preserving the

same level of security. We show how to further improve the system such that it is

particularly suited to 32-bit and 16-bit hardware platforms. The speed-up of the

Mordell-Weil group approach comes at the cost of a slightly larger bit-size that is

needed to represent a curve point and a more costly curve generation.
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Chapter 1

Introduction

1.1 Motivation

Since elliptic curves were introduced by Koblitz [9] and Miller [18] the use of el-

liptic curves in public-key cryptography has become more and more important in

practice. Public-key systems are based on one-way functions which are by defi-

nition relatively easy to compute, but computationally infeasible to reverse. The

most popular systems use one-way functions based on integer factorization and the

discrete logarithm problem (DLP). The integer factorization problem is based on

the difficulty to factor a large integer number into its prime factors. An example

for a public-key system based on this method is the popular RSA system. The

discrete logarithm problem will be described later in this thesis. Systems based on

the DLP require an abelian group. The points on an elliptic curve generate such

an abelian group, which seems to be of advantage for crytographic purposes. The

same level of security can be obtained by using elliptic curves with a smaller key

length compared to RSA and DLP systems over finite fields, which results in smaller

memory and processor requirements. For instance, a key length of 173 bits for an
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elliptic curve cryptosystem is believed to be security equivalent to an RSA system

with 1024 bits [2]. This is advantageous for applications with restricted resources

like smart cards and embedded systems such as personal digital assistants. Frey

and Naumann [21] suggested recently a new group derived from elliptic curves, the

Mordell-Weil group. While point multiplication methods in elliptic curves consist

of doubling and addition steps, the properties of the Mordell-Weil group allow to

use the Frobenius map to decrease the number of doublings. Hence, if this group is

used for public-key systems based on the DLP there is a potential for an increased

performance compared to elliptic curve cryptosystems. The Mordell-Weil group will

be the main topic of this thesis.

1.2 Thesis Outline

This thesis is organized as follows. Chapter 2 gives an overview of the existing

research. Chapter 3 introduces the theory behind this thesis, a new group proposed

by Frey and Naumann [21] which is derived from elliptic curves and can improve the

benefits of elliptic curves. Chapter 4 describes our extension of their work. Chapter

5 shows the arithmetic of general elliptic curves and proposes efficient arithmetic for

the Mordell-Weil group and discusses implementation issues. Chapter 6 describes

the algorithmic complexity of different point multiplication methods for ordinary

elliptic curves and the Mordell-Weil group and compares them. In Chapter 7 an

example is given.
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Chapter 2

Previous Work

2.1 Cryptography Based on Finite Groups

This section gives a quick survey of public-key systems based on the discrete log-

arithm problem (DLP). A more detailed description can be found in [17] and [22].

We assume that G is a finite abelian group with #G elements which is cyclic, i.e.,

generated by an element g such that G = 〈g〉. To derive a cyclic group G from an

arbitrary one O we select an element g ∈ O of large order, where the order of an

element g is the smallest positive number e such that ge = 1. We use the subgroup

which is generated by g, G = 〈g〉, as the cyclic group for the cryptographic system.

The number of elements in the group G is called the order of G and it is equal to e.

An important example is points on an elliptic curve. For our purpose it is important

that the group operation can be efficiently implemented, while computing discrete

logarithms in this group is computationally impossible with current technology and

algorithms. The DLP is as follows: Given g and b ∈ G find the smallest positive

integer x such that gx = b. The element x exists since G is cyclic and g is a gen-

erator. Someone who can solve the DLP can also break the system, therefore this
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problem must be computationally infeasible. As an example of how to use the DLP

for a public-key system, we will give a short description of the Diffie-Hellman key

exchange protocol. There are also digital signature methods based on the DLP, e.g.,

the Digital Signature Algorithm (DSA).

Assume Alice and Bob want to share a secret integer, but their only way to

communicate is over an insecure connection. This integer can be used as a secret

key for a conventional cryptosystem in subsequent communication sessions. Alice

and Bob (and any intruder) know the group G and an element g ∈ G of large known

order. Now Alice and Bob do the following:

Algorithm 1 Diffie-Hellman key exchange
1: Alice generates a random integer xA ∈ {1, . . . , #G − 1} and sends Bob the

element gxA .
2: Bob generates a random integer xB ∈ {1, . . . , #G − 1} and sends Alice the

element gxB .
3: Alice computes (gxB)xA = gxAxB .
4: Likewise, Bob computes (gxA)xB = gxAxB .

It can easily be seen that a third person, who can eavesdrop on the channel,

knows G, g, gxA , gxB and who can solve the DLP, can also recover gxAxB . Again,

solving the DLP means computing xA or xB from G, g, gxA and gxB . It is believed for

most groups in use in cryptography recovering the Diffie-Hellman key and solving

the DLP are equivalent. However, if there is a fast way to solve the DLP in G,

then the cryptosystems based on it are not secure. Today, discrete logarithms in

finite fields can be found in sub-exponential time, using the index-calculus method

as described in [17].
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2.2 Elliptic Curve Cryptosystems

In the previous section we discussed how to use algebraic groups for cryptosystems.

Now we look at the special case of an elliptic curve as “our group of choice” for the

DLP. The DLP for elliptic curves is usually denoted as ECDLP. An introduction to

elliptic curves in cryptography can be found in [2], a comprehensive introduction to

the theoretical background in [25].

An elliptic curve is the set of zeros of a cubic polynomial in two variables over

some field, for our purposes some finite field Fq. A finite field Fq, where q = pn

with p prime and n ∈ N, has q elements. If n > 1 we call Fq an extension field or

Galois field. The elements of Fp, where p prime, can be denoted by {0, . . . , p−1}, the

elements of the field Fpn can be denoted by degree n−1 polynomials with coefficients

from Fp. Arithmetic can be done by usual polynomial addition and multiplication

with subsequent reduction modulo an irreducible polynomial. A comprehensive

introduction to finite fields can be found in [15]. More details are also provided in

Section 5.1.

2.2.1 General Elliptic Curves

We can write an elliptic curve as

E : Y 2 + a1XY + a3Y = X3 + a2X2 + a4X + a6

with ai ∈ Fp and call this the affine version of the Weierstrass equation. If Fp has

characteristic char(Fp) 6= 2, 3 this can be simplified to

E : Y 2 = X3 + aX + b (2.1)
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where a, b ∈ Fp for which 4a3 +27b2 6= 0 mod p. Equation (2.1) is said to be in short

Weierstrass form. If the coefficients a and b are elements of Fp we denote the elliptic

curve by E|Fp. The points on the elliptic curve are points of the closure
⋃

n∈N Fpn

which solve the equation. If we define the points over Fq with q = pn and n ∈ N we

say that all solutions (x, y) ∈ Fq
2 are Fq-rational. All Fq-rational points including

an additional point O at infinity form an abelian group which is denoted by E(Fq).

Note that groups groups are often written with multiplication as group operation.

However, for elliptic curves it is more customary to write them additively. To add

two points P = (xP , yP ) ∈ E(Fp) and Q = (xQ, yQ) ∈ E(Fp) we do the following:

if xP 6= xQ we set

λ =
yQ − yP

xQ − xP
(2.2)

and if xP = xQ, yP 6= 0 we set

λ =
3xP

2 + a
2yP

(2.3)

if R = (xR, yR) = P +Q 6= 0, then xR and yR are given by the formula

xR = λ2 − xP − xQ (2.4)

yR = (xP − xR)λ− yP (2.5)

Furthermore we use the group law for inversion

−P = (xP ,−yP )

6



Multiplication of a point by a scalar is done as repeated addition

k · P = P + . . . + P
︸ ︷︷ ︸

k times

This operation is called scalar multiplication or point multiplication and is the ad-

ditive equivalent of exponentiation appearing in the previous section.

In this group operations can be efficiently calculated but the DLP is believed to

be hard to solve. Compared to other public-key systems, systems based on elliptic

curves need smaller key sizes for the same security level. Furthermore, there is no

sub exponential algorithm known to solve the DLP in elliptic curve groups. The

best known method, Pollard’s rho method [17], needs O(
√

K) steps, where K is the

number of elements (points) of the elliptic curve group. The Mordell-Weil group

is a subset of general elliptic curve groups. Therefore, all encryption and signature

algorithms that are available for elliptic curves are also applicable to the Mordell-

Weil group, e.g., the Diffie-Hellman key exchange for elliptic curves and the Elliptic

Curve Digital Signature Algorithm (ECDSA) [8].

2.2.2 Special Elliptic Curves

After general elliptic curves were introduced into cryptography there were several

proposals to use special types of curves. Supersingular curves have the advantage

that the group order, i.e., the number of points, can be easily calculated. However,

there is a polynomial time reduction of the ECDLP on E(Fq) to the DLP in Fql for

some small integer l. This is the MOV attack [16]. Therefore this type of curves is

not recommended for cryptographic purposes.

Anomalous curves were introduced as they are particularly able to resist the

MOV attack. For anomalous curves the number of points equals the number of
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elements in the underlying field, i.e., #E(Fq) = q. However, an attack in linear

time was also found [26]. Thus, they are no longer used for cryptographic purposes.

A recent attack on elliptic curves uses the Weil descent [4]. The attack weakens

systems that define curves over composite fields with characteristic 2 or 3, i.e., fields

Fpk , k = n ·m, p = 2, 3. It is unclear at the time of writing how the Weil descent

may weaken other elliptic curve cryptosystems.

Koblitz curves were introduced in [11]. They use the group of Fpd-rational points,

E(Fpd), of a curve defined over Fp, for p relatively small. This is of particular interest

if p = 2. Since the multiplication in Koblitz curves can be done using the theory

of complex multiplication (CM), they have better performance than general elliptic

curves. Furthermore, there is no attack known with complexity substantially better

than the general Pollard’s rho.

2.2.3 Standardization Efforts

Elliptic curve cryptosystems have been recently introduced in various standards

bodies. The National Institute of Standards and Technology (NIST) published

recommended ellipitic curves for Federal government use in May 1999 [20]. NIST

also included elliptic curves in the Digital Signature Standard (DSS) [19]. They are

also being incorporated in several other standards, such as ISO and SSL. Another

example is the IEEE P1363 standard [7] which includes elliptic curve cryptosystems.

We used this document as foundation for our software implementation.
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Chapter 3

Background: The Mordell-Weil

Group for Cryptographic Purposes

To increase the performance and enhance the security of elliptic curves Frey and

Naumann [21] proposed the use of the Mordell-Weil group for cryptographic pur-

poses. In this chapter we will give a brief overview of their idea.

Assume a finite field Fp with p prime and p ≡ 4, 7 mod 9 and an elliptic curve

E|Fp. Using the first isomorphism theorem for groups [3] we can find almost always

an isomorphism

E(Fp)×A(Fp) ∼= W(Fp) (3.1)

where

W(Fp) ∼= E(Fp3) (3.2)

We call W the Weil restriction and A the Mordell-Weil group. W and A are unique

for each E. This identifies uniquely a group

A(Fp) := {P ∈ E(Fp3) | Trace(P) = O} (3.3)
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The Trace of P can be expressed as

Trace(P) = (π2 + π + 1)(P)

where π denotes the Frobenius map acting on a point P = (x, y). The Frobenius

map is an endomorphism in E(Fq) for curves E|Fp with q = pn

π : E(Fq) → E(Fq)

defined by

π : (x, y) 7→ (xp, yp)

Example 1 Let E : Y 2 = X3 + 5X + 6 be defined over F7. Then #E(F7) = 4

and #E(F73) = 364. Because of (3.1) and (3.2) we obtain #A(F7) = 364
4 = 91 =

7 · 13. Therefore A(F7) has two subgroups with group order 7 and 13, respective. A

generating element of A(F7) is given by Q = (x2 + 2x + 1, 3x2 + 6x + 3), where the

field polynomial is given by f(x) = x3 + 5x2 + x + 3.

If we apply the Frobenius map to a point Q we use the notation π(Q), or π if we are

inside of the endomorphism ring End(〈P)〉). If we apply the Frobenius map i-times

to the same point Q we write this as πi(Q) and πi, respective. Note that the trace

maps a point P to a point Q = Trace(P) = π2(P) + π(P) + P . We now restrict

our attention to the group A(Fp). Most statements that were made earlier about

general elliptic curves are also true for the Mordell-Weil group since it is a subgroup

of an elliptic curve. The group A(Fp) should satisfy the following conditions:

1. There must be an efficient group operation in A(Fp).

2. One should be able to compute #A(Fp) and with high probability there exists

10



a subgroup with large prime order. Otherwise we can use the Pohlig-Hellman

method [17] to significantly decrease the complexity to break the DLP.

3. The key length of the Mordell-Weil group should be similar in length to the

key size of an elliptic curve group that offers the same level of security.

4. There has to be a base point of large order which can be found. This point is

used as a generator for the cyclic subgroup to be used.

As will be shown later the number of elements of E(Fp2) or E(Fp′) with p′ ≈ p2 and

A(Fp) are similar. Using today’s knowledge about attacking the elliptic curve DLP

this means that these groups are security equivalent. Therefore we will compare the

Mordell-Weil group A(Fp) to the elliptic curve group E(Fp2). In the following we

will discuss these items and then generalize the idea of Frey and Naumann.

3.1 The Order of the Mordell-Weil Group A(Fp)

We require the order of the Mordell-Weil group to be large enough such that an

attack will fail. Pollard’s rho algorithm needs about
√

#A steps to solve the DLP

in a group of order #A [17]. The Pohlig-Hellman method [17] reduces this to the

square root of the largest prime factor of #A. Therefore #A must contain a large

prime factor, i.e., there has to be a subgroup of large prime order. We calculate the

order by using the Hasse-Weil theorem, which is stated as follows:

Theorem 1 (Hasse-Weil) The number of points on an elliptic curve E(Fq) satis-

fies

q − 2
√

q < #E(Fq) < q + 2
√

q

�
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In the following we will we say that #E(Fq) ≈ q. Let t be the trace defined by

#E(Fq) = 1 + q − t. (3.4)

Let α be the complex number which satisfies

α2 − tα + p = 0 (3.5)

Let ᾱ be the complex conjugate of α. We call α the Weil number. We know that

E(Fp)×A(Fp) ∼= W(Fp) andW(Fp) ∼= E(Fp3). Using the zeta function [2] we obtain

#A(Fp) =
#W(Fp)
#E(Fp)

=
(1− α3)(1− ᾱ3)
(1− α)(1− ᾱ)

≈ p3

p
= p2 (3.6)

3.2 Calculating in the Mordell-Weil Group A(Fp)

In this section we show how to calculate in A(Fp) and compare this to calculating in

E(Fp2). An elliptic curve addition over a field Fpn needs about log2(pn) = n2 log2(p)

elementary operations since we need an inversion, multiplications, and additions

over Fpn as described in formulas (2.2) – (2.5). The complexity of these operations

are described in [12]. Hence, if we have two points P ,Q ∈ A(Fp) ⊂ E(Fp3) we can

perform an elliptic curve addition with 9 log2(p) operations. To add two points on an

elliptic curve E(Fp2), which has similar security, we need only 4 log2(p) operations.

The point multiplication k·P is the core operation in elliptic curve cryptosystems.

To calculate the multiple of a point k · P ∈ E(Fp2), P ∈ E(Fp2), k an integer, we

use the double-and-add method [17]. On average this method requires log(k) point

doubles and 1
2 log(k) point additions. Algorithm 2 summarizes this method.

If we choose P ∈ E(Fp2), then k ≈ p2 and we need log(p2) + 1
2 log(p2) = 3 log(p)
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Algorithm 2 Binary double-and-add method
INPUT: A non-negative integer k and an elliptic point P ∈ E(Fp).
OUTPUT: The elliptic point k · P ∈ E(Fp).
1: Let (kl−1kl−2 . . . k1k0)2 be the binary representation of k, where the most signif-

icant bit kl−1 is 1.
2: R← O
3: S ← P
4: for i = 0 to l − 1 do
5: if ki = 1 then
6: R← R+ S
7: end if
8: S ← 2 S
9: end for

10: Return R

elliptic curve group operations over Fp2 . Using the same method for a point P ∈

A(Fp) and k ≈ p2 is obviously much slower as the group operation requires arith-

metic in Fp3 . To calculate in the Mordell-Weil group a slightly different approach

may be used. First, we describe the background. Let q = ord(P) be prime. Then

define

C := min
{

q
t + p

,
p− 1

gcd(p− 1, t + 1)

}

(3.7)

with t being the trace of E(Fp) as defined in (3.4). Note that q ≈ p2, t + p ≈ p, and

in order for C to be large we require gcd(p − 1, t + 1) to be small. Now we use a

map

φ : Z2 → End(〈P〉)

via

φ : (λ0, λ1) 7→ λ0 id + λ1π

where π denotes the Frobenius map, and id the identity map. It can be shown

that there are at least C2 endomorphisms of this form in End(〈P〉). Let X :=
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{(λ0, λ1) | 0 ≤ λi < C} ⊂ Z2. We know from (3.3) that

π2 + π + 1 = 0 in End(〈P〉) (3.8)

Furthermore we know the characteristic polynomial of π [2] is

π2 − tπ + p = 0 in End(〈P〉) (3.9)

where t is the trace of the curve as defined in (3.4). Then we show:

Proposition 1 (Naumann and Frey [21]) The restriction of φ to X is one-to-

one.

Proof. Let be (λ0, λ1), (λ′0, λ
′
1) ∈ X with

λ0 + λ1π = λ′0 + λ′1π in End(〈P〉)

Then for αi := λi − λ′i

α0 + α1π = 0 with |αi| < C (3.10)

By subtracting (3.9) from (3.8) we obtain

(t + 1)π = p− 1

Multiplying 3.10 with (t + 1) and using (t + 1)π = p− 1 we get

(t + 1)α0 + (p− 1)α1 = 0 in End(〈P〉)

It is known that the endomorphism ring End((〈P〉) is isomorphic to Fq as ring via

f(k) = k · id(P), k = 0, . . . q− 1. Since |αi| < q
t+p we see that the former equation is
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also true in Z

(t + 1)α0 + (p− 1)α1 = 0 in Z

This is true if αi = 0 or if α0 divisible by p−1
gcd(p−1, t+1) and α1 divisible by t+1

gcd(p−1, t+1) .

Since we chose αi < C it follows that

α0 = α1 = 0

�

As described in [21] we introduce a new point multiplication method. We define

(λ0, λ1) · Q := φ(λ0, λ1)(Q) = λ0Q + λ1π(Q). Note that the endomorphism ring

End(〈P〉) is isomorphic to Fq where the later one is considered as a ring. Therefore

π(Q) = x·Q and hence λ0Q+λ1π(Q) = (λ0+x λ1)Q. If C ≈ p, i.e., gcd(p−1, t+1)

small, we can replace the operation k ·P by by the new point multiplication method

without losing security. Algorithm 3 shows how this can be done via a modified

double-and-add method.

Note that S = (2iP , π(2iP),−π2(2iP)) at the end of iteration i and 2iP +

π(2iP) = −π2(2iP). Since the application of the Frobenius map has negligible cost

as described later, the calculation of S = (S1, S2, S3) is done by

1. S1 ← S1 + S1

2. S2 ← π(S1)

3. S3 ← −π(S2)

Assuming that λi ≈ p, on average there are 3
4 point additions and 1 point doubling in

each iteration, altogether 3
4 log(p)+ log(p) = 7

4 log(p) elliptic curve group operations

over Fp3 . Chapter 5 and 6 present more sophisticated point multiplication methods

and analyze their complexity.
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Algorithm 3 Basic double-and-add method for the Mordell-Weil group
INPUT: A tuple (λ0, λ1) of non-negative integers and an elliptic point P ∈ A(Fp).
OUTPUT: The elliptic point (λ0, λ1) · P = λ0 · P + λ1 · π(P) ∈ A(Fp)
.
1: Let (λi,l−1λi,l−2 . . . λi,1λi,0)2 be the binary representation of λi, where the most

significant bit λi,l−1 equals 1 for i = 0 and i = 1.
2: R = O
3: S ← (S1, S2, S3) = (P , πP ,−π2P)
4: for i = 0 to l − 1 do
5: if λ0,i = 1 and λ1,i = 1 then
6: R← R+ S3

7: else if λ0,i = 1 and λ1,i = 0 then
8: R ← R+ S1

9: else if λ0,i = 0 and λ1,i = 1 then
10: R ← R+ S2

11: end if
12: S ← S + S = (S1 + S1, S2 + S2, S3 + S3)
13: end for
14: Return R

The new point multiplication method shares an important characteristic with

scalar multiplication. In particular,

(λ0, λ1) · (λ′0, λ′1) · P = (λ′0, λ
′
1) · (λ0, λ1) · P

Note that this is required by the Diffie-Hellman key exchange protocol. The secret

key for this protocol is a pair (λ0, λ1) instead of a scalar k. For a signature scheme

like ECDSA we have to be able to compute (λ′0, λ
′
1) for given (λ0, λ1) such that

(λ′0, λ
′
1)(λ0, λ1)P = P though. This cannot be done efficiently yet.

3.3 Key Length and Security

After looking at algebraic properties of the Mordell-Weil group we now consider its

significance for cryptosystems. We define the key length as the bit length of a private
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key. The private key is an integer in the order of the number of elements of the

group. As a measure of security we use the average number of steps for a successful

attack, i.e., the complexity of the attack. As described before the best known attack

needs about
√

#G steps to break the system, where #G is the number of elements

of the group G. Let us first consider the group E(Fp). The elements of E(Fp)

are the points on E and therefore the best attack will take on average
√

#E(Fp)

steps. According to the Hasse-Weil Theorem #E(Fp) ≈ p, thus the attack will take

about
√

p steps. The private key is an integer in the order of p and it is specified

by dlog(p)e bits. To represent a public key, i.e., a point on E(Fp) we need the X

coordinate and the sign of the Y coordinate, therefore we need dlog(p)e+ 1 bits.

Now we compare the elliptic curve E(Fp2) to the Mordell-Weil group A(Fp).

Both have approximately p2 elements, i.e., a successful attack will take on average

p steps in both cases. The private key is in the order of magnitude of p2 and has a

length of d2 log(p)e bits. Note that in the second case the private key is a 2-tuple

(λ0, λ1) with 0 ≤ λi < C, where C ≈ p as defined in (3.7).

We compare now the bit length of the public keys which are group elements. In

the first case an element of E(Fp2) can be represented as a value X ∈ Fp2 together

with an additional bit for the sign of Y . Therefore we get a length of 2 dlog(p)e+ 1

bits. In the second case we can represent an element of A(Fp) as a value X ∈ Fp3

and an additional bit for the sign, thus we need 3 dlog(p)e+1 bits. However, we can

shorten this according to Frey and Naumann [21]. Let X be an element of order

9 which generates the extension Fp3 ⊃ Fp. This is equivalent to the requirement

p ≡ 4, 7 mod 9, or interpreted in a different way, 9 is a divisor of the order of Fp3 ,

p3 − 1, but not a divisor of p − 1. Let µ := X3 ∈ Fp. We can denote the curve

17



function as

A : 3x0
4 + (6a− 18µx1x2)x0

2 + (12b + 12(µx1
3 + µ2x2

3))x0 − (a + 3µx1x2)2 = 0

The values a and b are the coefficients of the curve in short Weierstrass form. Then

A is an irreducible polynomial in Fp(x1, x2)[x0] with xi ∈ Fp, and we can encode a

point P ∈ A(Fp) by a vector

(x1, x2, v)

where 1 ≤ v ≤ 4 determines the number of the zero of A in x0 using a fixed

ordering of the zeroes. Then we have a key length of 2 dlog(p)e + 2, which, when

compared to the first case, has the same security with only one more bit. However,

the transformation

P = (x, y) ∈ A(Fp) ↔ (x1, x2, v)

requires the factorization of a degree 4 polynomial over Fp, which is expensive.

Therefore we use the traditional point representation.

Note that since the Mordell-Weil group does not contain the elliptic curve E(Fp)

which we used to construct it, i.e., E(Fp) 6⊂ A(Fp), it seems that there are less

possibilities for an attack and therefore A(Fp) might be more secure than an elliptic

curve E(Fp2).

3.4 Computing a Base Point

Assume we have a Mordell-Weil group A(Fp). For our purposes we need a cyclic

group, i.e., a group which is generated by one element. This element g, which is

called primitive element or generator, generates the group G = 〈g〉. Note that the

order of this element has to be a large prime. To find a point P = (xP , yP ) on an
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elliptic curve E(Fp) we just choose a value xP ∈ Fp at random and use it in the

curve equation to calculate f(xP ). According to the Hasse-Weil Theorem [25] f(xP )

is a quadratic residue with probability of about 50%, i.e., there exists a yP ∈ Fp

with yP
2 = f(xP ). Actually, if f(xP ) 6= 0 we find no or two solutions. If we find

two solutions we have to take one of them and check the order. If this search fails,

we just select another random xP and try it again until we find a point P of large

order.

To obtain a point in the Mordell-Weil group we do the following. First we have

to find a point P ∈ E(Fp3)−E(Fp),P 6= O as described in the previous paragraph.

Then we calculate the point

Q := P − π(P)

where π is the Frobenius map. The point Q is obviously an element in E(Fp3).

Furthermore we get Trace(Q) = Trace(P − π(P)) = (π2 + π + 1)(P − π(P)) =

π2(P) + π(P) +P − π3(P)− π2(P)− π(P) = P − π3(P) = O, therefore Q ∈ A(Fp)

as desired. Since we chose P /∈ E(Fp) we assure that Q 6= O. At the end we have

to check whether our point has a large order by using (3.6). We repeat this process

until we achieve a point of sufficiently large order. Every point in the Mordell-Weil

group can be chosen by using this method as we show in the following proposition

which extends the work of Frey and Naumann.

Proposition 2 Let Q ∈ A(Fp), Q 6= O, with π2(Q) + π(Q) +Q = O. Let π(Q) =

x · Q for some x ∈ N and (1 − x) y ≡ 1 mod q where q = ord(Q), q prime.

Furthermore let R ∈ E(Fp) with r = ord(R). Then P = y ·Q+ i ·R, i ∈ N, satisfies

Q = P − π(P).

Proof.

P − π(P) = y · Q+ i · R − π(y · Q+ i · R) = y · Q − y · π(Q) + i · R − i · π(R)
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= y(1− x)Q+ i · R − i · π(R) = Q

�

Note that there are at least r points Pi = y Q + i R, 0 ≤ i < r that are mapped

on Q. By choosing an appropriate point R with large order r ≈ p we can conclude

that finding points Q ∈ A(Fp) using the above described method is almost random.
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Chapter 4

The Mordell-Weil Group over

Higher Extension Degrees

Frey and Naumann considered an extension of degree 3 for the Mordell-Weil group,

i.e., A(Fp) ⊂ E(Fp3). We now extend this to higher extension degrees which bears

computational advantages as will be shown later. First we define the Mordell-Weil

group for extension degree d:

A(Fpd) := {P ∈ E(Fpd) | Trace(P) = O}

The Trace of P for degree d is defined as

Trace(P) =
d−1
∑

i=0

πi(P)

where π(P) denotes the Frobenius map acting on a point P . For convenience we

define that π0 = id. We require the degree d of the extension to be a prime,

otherwise an attack based on the Weil descent [4] may be applicable. Note that

E(Fp) 6⊂ A(Fpd) which might be a security advantage.
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Almost always there exists an isomorphism E(Fp) × A(Fpd) ∼= W(Fp) with

W(Fp) ∼= E(Fpd) because of the first isomorphism theorem [21]. The order of the

Mordell-Weil group for arbitrary extension degree is calculated according to (3.6):

#A(Fpd) =
#W(Fp)
#E(Fp)

=
(1− αd)(1− ᾱd)
(1− α)(1− ᾱ)

where α is the Weil number. Since W(Fp) ∼= E(Fpd) we obtain

#A(Fpd) ≈ pd

p
= pd−1 for any d

A base point can also be found in the same manner as before, i.e., by choosing a

point P ∈ E(Fpd) − E(Fp),P 6= O, and computing Q := P − π(P). Proposition 2

extends easily to the general case.

To accelerate point multiplication in the Mordell-Weil group with d = 3 we

replaced the usual point multiplication by a multiplication with a tuple (λ0, λ1)

defined via (λ0, λ1) · P := λ0P +λ1π(P). We use the same idea for higher extension

degrees. Let

φ : Zd−1 → End(〈P〉)

via

φ : (λ0, . . . , λd−2) 7→
d−2
∑

i=0

λiπi (4.1)

We define the new scalar multiplication as (λ0, . . . , λd−2)·Q := φ(λ0, . . . , λd−2)(Q) =
∑d−2

i=0 λiπi(Q). First one has to check that we do not lose security, i.e., that we can

find large C such that φ is injective for 0 ≤ λi < C. If we can find C ≈ p then we

would get an effective key space of size pd−1. We show this for d = 5.

Definition 1 Let A(Fp5) be the Mordell-Weil group defined over Fp5 and P ∈

A(Fp5) with q = ord(P). Let f = p2−p(1+t+t2)+1 and g = p(1+2t)−1−t−t2−t3
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where t is the trace of E(Fp). Then C is p-limited if the following is true:

(i) t > 0

(ii) f > 0 and g > 0

(iii) g, f , gp + tf and gtp + pf + ft2 are pairwise coprime

(iv) C ≤ q
g+gp+gtp+f+ft+fp+ft2

(v) C ≤ gtp+pf+ft2

g+f+gp+tf

(vi) C ≤ f
1+p

(vii) C ≤ g
1+t

(viii) C ≤ p

�

Note that (viii) follows immediately from (vi) and (i).

Proposition 3 Let C be p-limited as defined in Definition 1 for P ∈ A(Fp5). Let

X := {(λ0, λ1, λ2, λ3) | 0 ≤ λi < C} ⊂ Z4.

Then the restriction of φ to X is injective.

Proof. Let (i)–(viii) denote the conditions for p-limited C as stated in Definition 1.

We know that

π4 + π3 + π2 + π + 1 = 0 in End(〈P〉)

and

π2 − tπ + p = 0 in End(〈P〉) (4.2)

Multiplying (4.2) by π2 + π(1 + t) + (1− p + t + t2) and subtracting it from the first
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equation we obtain

−π(p(2t + 1)− t3 − t2 − t− 1) + p2 − p(t2 + t + 1) + 1 = 0

Let g = p(2t + 1)− t3 − t2 − t− 1 and f = p2 − p(t2 + t + 1) + 1. Then we write

gπ = f

Let (λ0, λ1, λ2, λ3), (λ′0, λ
′
1, λ

′
2, λ

′
3) ∈ X with

λ0 + λ1π + λ2π2 + λ3π3 = λ′0 + λ′1π + λ′2π
2 + λ′3π

3

Then for αi := λi − λ′i

α0 + α1π + α2π2 + α3π3 = 0 with |αi| < C

We shorten this using (4.2) to

α0 + α2p + α3tp + π(α1 + α2t + α3p + α3t2) = 0 in End(〈P〉)

and substitute π

g(α0 + α2p + α3tp) + f(α1 + α2t + α3p + α3t2) = 0 in End(〈P〉)

Because of (iv) the previous equation is also true in Z.

g(α0 + α2p + α3tp) + f(α1 + α2t + α3p + α3t2) = 0 in Z
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We obtain

α0g + α1f + α2(gp + tf) + α3(gtp + pf + ft2) = 0

Since we assume (iii) there are no common divisors. We have to show that besides

the trivial solution all solution involve at least one αi that is not smaller than C.

Choosing |α3| > 0 yields that one of |α0|, |α1| or |α2| has to be larger or equal to C

because of (v). Therefore we assume α3 = 0. The equation

α0g + α1f + α2(gp + af) = 0

can be written as

g(α0 + α2p) + f(α1 + tα2) = 0

All possible solutions satisfy

α0 + α2p = ±fd

and

α1 + tα2 = ∓gd

where d is an arbitrary integer. If d 6= 0 then |α0|, |α1| or |α2| has to be larger or

equal to C because of (vi) and (vii). If d = 0 then |α0| = |α2p|. Because of (viii)

that is not possible. Therefore αi = 0 is the only solution. �

The proposition shows that an appropriate curve parameter choice yields C ≈ p

and hence a key space of p4. We have to select the curve carefully. The trace t

must be positive and small, and g, f , gp + tf and gtp + pf + ft2 must be pairwise

coprime. However, other choices might not compromise the security of the system.

In practice one might choose parameters such that g, f , gp + tf and gtp + pf + ft2

have a pairwise small greatest common divisor. A curve with negative trace that is
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close to 0 might also not weaken the system. The curve E(Fpd) ⊃ A(Fpd) has to be

resistant to any known attack, and there must be a cyclic subgroup of large prime

order in A(Fpd). Using the LiDIA package [14] we found reasonable curves quickly.

An example is given in Chapter 7. Now we can speed up the multiplication using

Algorithm 4 to calculate (λ0, . . . , λd−2) · P .

Algorithm 4 Point multiplication for higher extension degrees
INPUT: A d− 1 tuple (λ0, . . . , λd−2) of non-negative integers and an elliptic curve
point P ∈ A(Fpd).
OUTPUT: The elliptic point (λ0, . . . , λd−2) · P ∈ A(Fpd).
1: Let (λi,l−1λi,l−2 . . . λi,1λi,0)2 be the binary representation of λi where the most

significant bit λi,l−1 is 1 for any i.
2: R← O
3: S ← P
4: for i = 0 to l − 1 do
5: T ← S
6: for j = 0 to d− 2 do
7: if λj,i = 1 then
8: R← R+ T
9: end if

10: if j 6= d− 2 then
11: T ← π(T )
12: end if
13: end for
14: S ← 2S
15: end for
16: Return R

The advantage of higher extension degrees are clear. We save point doublings

and decrease the overhead when doing point arithmetic in E(Fpd). For example, let

p ≈ 280 and p′ ≈ 240. A point multiplication in A(Fp3) requires 80 point doublings

in E(Fp3) with p3 ≈ 240. One point multiplication in A(Fp′5) requires only 40

point doublings in E(Fp′5) with p′5 ≈ 200. Furthermore it seems that a point

multiplication in A(Fp′5) can be done faster than in E(Fp′4). A thorough analysis

of the complexity is carried out in Chapter 6.
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We would like to stress the implications of using a Mordell-Weil group with

higher extension degree. First, since the group order is approximately pd−1, the bit

length of the base field is by a factor d− 1 shorter than an ECC with similar group

order. For instance, for d = 5, a prime field with a bit length of about 40 bits would

provide a cyclic group for a DL system with an approximate order of 2160. Second,

the private key is not a single integer any more but a d− 1 tuple of integers, where

every integer has approximately log(p) bits. For example, for d = 5 and a desired

group order of about 2160, the private key would consist of four integers λ0, · · · , λ3,

where each integers has a bit length of about 40 bits.
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Chapter 5

Arithmetic

When looking at elliptic curves there are several important issues which affect the

speed of an implementation:

• choice of the underlying field

• choice elliptic curve parameters

• method of point representation

• choice of algorithms for point operations

All of the above items have to be considered carefully since they are crucial for

performance and security. In the following we discuss these points and explain their

importance for the Mordell-Weil group.

5.1 The Underlying Field

Elliptic curves are defined over an underlying field. For cryptographic purposes

this field is finite. Usually there are two types of field to choose from: binary or
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prime fields. For the Mordell-Weil group we use an extension field with large prime

characteristic.

As mentioned before we define the Mordell-Weil group A(Fpd) to be a subset

of E(Fpd) where p and d are primes. To add two points in the Mordell-Weil group

we do arithmetic in the underlying field Fpd . Therefore fast field arithmetic is cru-

cial for efficient elliptic curve implementations. One possibility to speed-up elliptic

curve cryptosystems is to choose the underlying field with advantageous properties,

e.g., one can choose the field of integers modulo a Mersenne prime, since modular

reduction is particularly efficient in that case [13]. The following lemma is the basis

for arithmetic in a finite field. All facts in this section are from [15].

Lemma 1 Let f(X) ∈ Zp[X] be an irreducible polynomial of degree m. Then

Zp[X]/(f(X)) is a finite field of order pm. Addition and multiplication of poly-

nomials is performed modulo f(X).

5.1.1 Element Representation

A commonly used representation for the elements of a finite field is a polynomial

basis representation. Each element of the finite field Fpd is represented by a polyno-

mial P (X) of degree at most d− 1. The coefficients are elements of Fp. To optimize

computation in the underlying field we choose the field polynomial f(X) to be a

binomial of the form Xd − µ with µ ∈ Fp as proposed in [1]. We choose X to be an

element of order d2 that generates the extension Fpd ⊃ Fp. Therefore µd = 1. This

is equivalent to choosing

p ≡ id + 1 mod d2 for i = 1, . . . , d− 1 (5.1)
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For example, for d = 3 we choose p ≡ 4, 7 mod 9, and for d = 5 we use p ≡

6, 11, 16, 21 mod 25. This choice ensures that the Frobenius map can be computed

efficiently as described later. To find such a µ we use the following lemma:

Lemma 2 Let G be a group. If the order of a ∈ G is t, then the order of ak is

t/ gcd(t, k).

Suppose p and d are given with d|p − 1, d2 6 |p − 1 and d2|pd − 1. First we search

for a primitive element a ∈ Fp of order p− 1. This is easy since there are Φ(p− 1)

elements of order p − 1 where Φ is the Euler function. Since d2 divides pd − 1, we

can calculate µ = ak with k = (p− 1)/d. The binomial Xd− µ is irreducible due to

the following theorem:

Theorem 2 Let t ≥ 2 be an integer and µ ∈ F∗p. Then the binomial X t − µ is

irreducible in Fp[X] if and only if the following two conditions are satisfied: (i) each

prime factor of t divides the order e of µ in F∗p, but not (p− 1)/e; (ii) p ≡ 1 mod 4

if t ≡ 0 mod 4.

Since t = e, d2 6 |p− 1 and (5.1) the binomial Xd − µ is irreducible.

5.1.2 Field Arithmetic in Fpd

In a field there is addition, subtraction and multiplication defined for all elements,

and every element except the zero element has a multiplicative inverse. Since the

field elements are represented by polynomials the field operations can be imple-

mented as polynomial operations with modular reduction afterwards. To add two

elements A(X) ∈ Fpd and B(X) ∈ Fpd the following is done

A(X) +F B(X) = (A(X) +P B(X)) mod f(X)
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where +F is the field addition, +P the usual polynomial addition and f(x) the field

polynomial. Field multiplication is done similarly:

A(X) ·F B(X) = (A(X) ·P B(X)) mod f(X)

Inversion can be done using the extended Euclidean algorithm or Fermat’s little

theorem.

5.2 Elliptic Curve Parameters

The security of an elliptic curve cryptosystem depends on the parameters of the

elliptic curve. Therefore we have to choose the elliptic curve in such a way that the

cryptosystem is not vulnerable against any known attacks. For the Mordell-Weil

group we have to ensure further properties.

The Mordell-Weil group is defined over an elliptic curve E(Fp). The curve should

be non-supersingular and non-anomalous. Furthermore it must be resistant to the

MOV attack [16]. The same has to be true for E(Fpd). Methods to check a curve

for these properties can be found in [7]. The Mordell-Weil group is subject to the

further requirement that the function φ which is used for the point multiplication

be injective. For extension degree 5 we require the greatest common divisors of f ,

g, gp+ tf and gtp+pf +ft2 to be pairwise small as described in Proposition 3. For

degree 3 the gcd(p− 1, t− 1) has to be small.

For cryptographic purposes we are calculating in a cyclic subgroup of large order

of the Mordell-Weil group. The Mordell-Weil group has to be chosen in such a way

that there exists such a subgroup, i.e., that #A(Fpd) has a large prime factor.
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5.3 Elliptic Curve Point Representation

The points on an elliptic curve can be represented in affine and projective coordi-

nates. When using affine coordinates we write a finite point on an elliptic curve

E(Fq) as P = (x, y) with x, y ∈ Fq. We can represent the same point in projective

coordinates. There are multiple types of projective coordinates. In standard pro-

jective coordinates the projective point (X, Y, Z), Z 6= 0, corresponds to the affine

point (X/Z, Y/Z). We will instead use Jacobian projective coordinates where the

projective point (X,Y, Z), Z 6= 0, corresponds to the affine point (X/Z2, Y/Z3). The

projective coordinates of a point are not unique because (X,Y, Z) = (λ2X, λ3Y, λZ)

for every nonzero λ ∈ Fq, i.e., each “point” in projective 2-space represents a line

in affine 3-space. The point at infinity in the affine space is represented by the Z-

plane, i.e., the projective coordinates of the point at infinity O are (λ2, λ3, 0), where

λ 6= 0. The conversion from affine to projective coordinates can easily be done by

(x, y) 7→ (X, Y, Z) where

X = x, Y = y, Z = 1 for finite points

Using projective point coordinates for point addition and doubling saves divisions

at the cost of more multiplications in Fq. This may speed-up the system when

inversions in Fq are expensive. For an introduction to algebraic geometry, see [3].

5.4 Basic Functions

5.4.1 The Frobenius Map

The Frobenius map π acts on a point P = (x, y) ∈ E(Fp3) in such a way that

π(P) = (xp, yp). First we consider the case d = 3. In polynomial basis representation
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x can be represented as a2X2 + a1X + a0, with ai ∈ Fp. Let f(X) be the field

polynomial with f(X) = X3 − µ as described in Subsection 5.1.1. Then xp =

(a2X2 + a1X + a0)p ≡ a2X2p + a1Xp + a0 mod f(X) [15]. We get

xp =











a2X8 + a1X4 + a0 ≡ a2µ2X2 + a1µX + a0 mod f(X) if p ≡ 4 mod 9

a2X5 + a1X7 + a0 ≡ a2µX2 + a1µ2X + a0 mod f(X) if p ≡ 7 mod 9

Note that X3 = µ and X9 = µ3 = 1, i.e., X is a 9-th root of unity and 9 divides

the group order p3 − 1. The Frobenius map for a y coordinate y = b2X2 + b1X + b0

is exactly the same. Therefore we can obtain the “Frobenius of a point P” by two

field multiplications for each coordinate of P.

If we choose extension degree 5 for the Mordell-Weil group, the Frobenius map

can be computed in the same manner. Since we chose µ = X5 and µ5 = X25 = 1,

we achieve

xp =



































a4µ4X4 + a3µ3X3 + a2µ2X2 + a1µX + a0 if p ≡ 6 mod 25

a4µ3X4 + a3µX3 + a2µ4X2 + a1µ2X + a0 if p ≡ 11 mod 25

a4µ2X4 + a3µ4X3 + a2µX2 + a1µ3X + a0 if p ≡ 16 mod 25

a4µX4 + a3µ2X3 + a2µ3X2 + a1µ4X + a0 if p ≡ 21 mod 25

As before X is a 25-th root of unity and 25 divides the group order p5 − 1.

5.4.2 Point Addition

Point addition and doubling are crucial for most point multiplication methods. Al-

gorithm 5 performs a point addition of two distinct points that are given in projective

coordinates. It is the projective version of the affine point addition as described in

Section 2.2.1.
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Algorithm 5 Projective point addition [7]
INPUT: An elliptic curve point P0 = (X0, Y0, Z0) ∈ E(Fp) and P1 = (X1, Y1, Z1) ∈
E(Fp) with P0 6= P1,P0,P1 6= O. The curve E(Fp) is defined by y2 = x3 + ax +
b mod p.
OUTPUT: The elliptic curve point P0+P1 = (X2, Y2, Z2) ∈ E(Fp)
1: U0 ← X0Z2

1
2: S0 ← Y0Z3

1
3: U1 ← X1Z2

0
4: S1 ← Y1Z3

0
5: W ← U0 − U1

6: R ← S0 − S1

7: T ← U0 + U1

8: M ← S0 + S1

9: Z2 ← Z0Z1W
10: X2 ← R2 − TW 2

11: V ← TW 2 − 2X2

12: 2Y2 ← V R−MW 3

13: Return (X2, Y2, Z2)

This algorithm requires 16 field multiplications in the underlying field and 7

temporary variables [7]. To subtract two elliptic points we use the simple point

inversion:

P2 = P0 −P1 = P0 + (−P1)

where

−P = −(X,Y, Z) = (X,−Y, Z)

5.4.3 Point Doubling

Given P, the point doubling function computes the elliptic curve point 2P. This is

equivalent to adding a point to itself. Algorithm 6 requires 10 field multiplications

in the underlying field and 5 temporary variables [7]. The algorithm is the projective

version of the affine point doubling as described in Section 2.2.1.
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Algorithm 6 Projective point doubling [7]
INPUT: An elliptic curve point P = (X1, Y1, Z1) ∈ E(Fp),P 6= O. The curve
E(Fp) is defined by y2 = x3 + ax + b mod p.
OUTPUT: The elliptic curve point 2P = (X2, Y2, Z2) ∈ E(Fp).
1: M ← 3X2

1 + aZ4
1

2: Z2 ← 2Y1Z1

3: S ← 4X1Y 2
1

4: X2 ← M2 − 2S
5: T ← 8Y 4

1
6: Y2 ← M(S −X2)− T
7: Return (X2, Y2, Z2)

5.5 Point Multiplication

5.5.1 Basic Point Multiplication Methods

There are two basic multiplication methods: right-to-left and left-to-right multipli-

cation. Algorithm 7 and 8 describe these methods for base 2 representation. The

algorithms can easily be generalized for arbitrary base m where m is a power of 2.

Note that step 8 in Algorithm 7 need not be executed in the last iteration.

Algorithm 7 Right-to-left binary multiplication [17]
INPUT: An integer k and an elliptic point P ∈ E(Fp).
OUTPUT: The elliptic curve point k · P ∈ E(Fp).
1: Let (kl−1kl−2 . . . k1k0)2 be the binary representation of k where the most signif-

icant bit kl−1 equals 1.
2: R← O
3: S ← P
4: for i = 0 to l − 1 do
5: if ki = 1 then
6: R← R+ S
7: end if
8: S ← 2S
9: end for

10: Return R

On average both algorithms need l doublings and 1/2 l additions where l =

log(p). However, in Algorithm 8, Step 6 is always done for P. This can give a
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Algorithm 8 Left-to-right binary multiplication [17]
INPUT: An integer k and an elliptic point P ∈ E(Fp).
OUTPUT: The elliptic curve point k · P ∈ E(Fp).
1: Let (kl−1kl−2 . . . k1k0)2 be the binary representation of k where the most signif-

icant bit kl−1 equals 1.
2: R← O
3: for i = l − 1 down to 0 do
4: R ← 2R
5: if ki = 1 then
6: R← R+ P
7: end if
8: end for
9: Return R

speed-up if P is known.

5.5.2 Addition-Subtraction Method

The addition-subtraction method is recommended for point multiplication in the

IEEE P1363 standard [7]. The idea of the addition-subtraction method is to write

the scalar k in such a form that the number of non-zero entries is small. One

popular approach is to write k as k =
∑

ki2i with ki ∈ {−1, 0, 1}, such that no two

consecutive coefficients are non-zero. This is called the nonadjacent form (NAF)

of k and is unique for every positive integer k. Moreover, the NAF of k has the

smallest number of nonzero coefficients of any signed binary expansion of k [5]. For

example, the NAF of k = 156 = (10011100)2 is (10100–100)NAF . On average only

1/3 of the coefficients are nonzero. Thus, Algorithm 9 needs on average l doublings

and l/3 additions, where l = log(p), to perform a point multiplication.

5.5.3 Addition-Subtraction Method for the Mordell-Weil Group

The new point multiplication for the Mordell-Weil group was described in Sec-

tion 3.2. We attempt to speed up this version by using the addition-subtraction

36



Algorithm 9 Addition-Subtraction method [7]
INPUT: An integer k and an elliptic curve point P ∈ E(Fp).
OUTPUT: The elliptic curve point k · P ∈ E(Fp).
1: if k = 0 then
2: Return O
3: end if
4: if k < 0 then
5: S ← −P and n ← −k
6: else
7: S ← P and n ← k
8: end if
9: Let (hl−1hl−2 . . . h1h0)2 be the binary representation of 3n, where the most sig-

nificant bit hl−1 is 1.
10: Let (nl−1nl−2 . . . n1n0)2 be the binary representation of n.
11: R← S
12: for i = l − 2 down to 1 do
13: R← 2R
14: if hi = 1 and ni = 0 then
15: R ← R+ S
16: end if
17: if hi = 0 and ni = 1 then
18: R← R− S
19: end if
20: end for
21: Return R
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method as described in Section 5.5.2. Algorithm 10 describes how to compute

(λ0, . . . , λd−2) · P , where this product is defined as in (4.1). The point addition-

subtraction step is applied for each λi (steps 8–13). However, the point doubling

step is only done once for all λ′is (step 18). The other point doublings are obtained

through the Frobenius map (step 15), which is computationally far more efficient.

Algorithm 10 Addition-Subtraction method for the Mordell-Weil group
INPUT: An elliptic curve point P = (Xp, Yp, Zp) ∈ A(Fpd) and a tuple
(λ0, . . . , λd−2) of non-negative integers.
OUTPUT: The elliptic curve point (λ0, . . . , λd−2) ·P ∈ A(Fpd).
1: Let (hi,l−1hi,l−2 . . . hi,1hi,0)2 be the binary representation of 3λi.
2: Let (λi,l−1λi,l−2 . . . λi,1λi,0)2 be the binary representation of λi.
3: S ← P
4: R← O
5: for i = 1 to l − 1 do
6: T ← S
7: for j = 0 to d− 2 do
8: if hj,i = 1 and λj,i = 0 then
9: R← R+ T

10: end if
11: if hj,i = 0 and λj,i = 1 then
12: R ← R− T
13: end if
14: if j 6= d− 1 then
15: T ← π(T )
16: end if
17: end for
18: S = 2S
19: end for
20: Return R

On average the algorithm needs l point doublings and 1
3(d− 1)l additions where

l = log(p). For d = 3 this is only a small improvement compared to Algorithm 3. For

higher extension degrees we need less point doublings and continue to do arithmetic

over the smaller field Fp. Let us compare the cases d = 3 and d = 5. For d = 3

let p ≈ 280 and for d = 5 let p′ ≈ 240. A point multiplication in A(Fp3) requires
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80 point doublings in E(Fp3) with p3 ≈ 2240. One point multiplication in A(Fp′5)

requires only 40 point doublings in E(Fp′5) with p′5 ≈ 2200. The number of point

additions stays the same.

5.5.4 Window Methods

An overview of the available window methods for elliptic curve cryptosystems is

given in [2]. To compute k · P window methods process more than one bit of the

scalar k per iteration, thus saving additions. However, they require precomputations.

Algorithm 11 presents one of the fastest point multiplication methods for general

elliptic curves, the sliding window method. Instead of a fixed window size the

window is variable.

Using sliding windows has an effect equivalent to using fixed windows one bit

larger, but without increasing the precomputation cost [2]. Therefore on average we

need 2w−1−1 additions and 1 doubling for the precomputation, l doublings and l
w+1

additions where l = log(p). The sliding window method cannot easily be applied to

the Mordell-Weil group. However, we can use a combination of a window method

and simultaneous multiple exponentiation [17]. The core idea of Algorithm 12 is to

step through all λi’s simultaneously and hence reduce the number of point additions.

Note that the precomputations require only 2w−1− 1 additions using the Frobenius

map.

Using this method, a scalar multiplication can be done on average using 2d−2−1

point additions for the precomputation, and l − l/2d−1 additions and l doublings

where l = log(p). For degree d = 5 this is slightly faster than the addition-

subtraction method for the Mordell-Weil group, but requires more memory storage.
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Algorithm 11 Sliding window method [2]
INPUT: A window width w, an integer k and an elliptic curve point P ∈ E(Fp).
OUTPUT: The elliptic curve point k · P ∈ E(Fp).
1: Let (kl−1kl−2 . . . k1k0)2 be the binary representation of k where the most signif-

icant bit kl−1 is 1.
2: P1 ← P
3: P2 ← 2P
4: for i = 1 to 2w−1 − 1 do
5: P2i+1 ← P2i−1 + P2

6: end for
7: j ← l − 1
8: Q ← O
9: while j ≥ 0 do

10: if kj = 0 then
11: Q ← 2Q
12: j ← j − 1
13: else
14: Let t be the least integer such that j − t + 1 ≤ w and kt = 1
15: hj ← (kjkj−1 . . . kt)2

16: Q ← 2j−t+1 · Q+ Phj

17: j ← t− 1
18: end if
19: end while
20: Return Q

Algorithm 12 Window method for the Mordell-Weil group
INPUT: An elliptic curve point P = (Xp, Yp, Zp) ∈ A(Fpd) and a tuple
(λ0, . . . , λd−2) of non-negative integers. The window size is w = d− 1.
OUTPUT: The elliptic curve point (λ0, . . . , λd−2) ·P ∈ A(Fpd).
1: Let (λi,l−1λi,l−2 . . . λi,1λi,0)2 be the binary representation of λi.
2: Precompute Pj ←

∑

jiπiP for 0 < j < 2w, where (jw−1, jw−2, . . . , j0)2 is the
binary representation of j.

3: Q ← O
4: for j = l − 1 down to 0 do
5: Q ← 2Q
6: i ← λ0,j + 2 λ1,j + . . . + 2w−1 λw−1,j

7: if i 6= 0 then
8: Q ← Q+ Pi

9: end if
10: end for
11: Return Q
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5.5.5 Precomputation of Points

In the previous algorithms we saved operations while calculating in the Mordell-Weil

group by saving doubling steps. For example, let us compare E(Fq4) to A(Fq5); Note

that both groups have roughly the same cardinality. We need log(q4) = 4 log(q)

doublings in the first case, but only log(q) doublings in the second case.

The doublings are applied to a base point P that in some applications usually

does not change. For example, when using the Diffie-Hellman key exchange pro-

tocol one can use a fixed base point P and calculate k · P where k is the secret

key to obtain the public key. To accelerate the operation, certain multiples of P

can be precomputed. This is done as described in Algorithm 13 [6]. We define

[aw−1, . . . , a0]P :=
∑w−1

i=0 ai2id ·P where d = dl/we, l the bit-length of p and ai ∈ Z2.

Algorithm 13 Point multiplication using precomputed points [6]
INPUT: An elliptic curve point P ∈ E(Fp) and an integer k.
OUTPUT: The elliptic curve point k · P ∈ E(Fp).
1: Precompute [aw−1, . . . , a0]P ∀(aw−1, . . . , a0) ∈ Zw

2 .
2: Write k = Kw−1 . . . K0, where each Kj is a bit string of length d. If necessary,

pad k on the left with 0’s. Let Kj
i denote the i-th bit of Kj.

3: R ← O.
4: for i = d− 1 down to 0 do
5: R ← 2R.
6: R← R+ [Kw−1

i , . . . , K0
i ]P.

7: end for
8: Return R

This method requires d = dl/we point doublings and additions. To apply pre-

computed points to the Mordell-Weil group we use Algorithm 12. The precom-

putation step is done only once though. The window can have a size that is a

multiple of d− 1. If w = c (d− 1) is the window size a window covers the operand

bits (λi,0, . . . , λi,d−2; λi−1,0, . . . , λi−1,d−2; . . . ; λi−c+1,0, . . . , λi−c+1,d−2). The algorith-

mic complexity is similar to the complexity of Algorithm 13, but point arithmetic
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is done over a larger underlying field. However, protocols do not only use fixed

point scalar multiplication. For example, the second step in the Diffie-Hellman key

exchange protocol requires the multiplication of the private key with a public key

that is not fixed.
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Chapter 6

Algorithmic Complexity

In this section we compare the algorithmic complexity of the different methods for

point multiplication in general elliptic curve cryptosystems (ECC) and the Mordell-

Weil group. We compare the curves in such a way that the level of security, i.e., the

average number of steps required to solve the DLP are similar.

6.1 Basic Functions

The Frobenius map is crucial for the point multiplication in the Mordell-Weil group.

As described in Section 5.4.1 the Frobenius of a point P can be calculated with few

multiplications in the underlying prime field. Let P = (X, Y, Z) with X,Y, Z ∈ Fpd .

As shown in Subsection 5.4.1 the Frobenius of P can be calculated cheaply with

d− 1 multiplications over Fp for each coordinate, i.e., with 3(d− 1) multiplications

for one point. Table 6.1 summarizes the results. Note that the field multiplications

are done over the subfield Fp and not Fpd . One field multiplication over Fp3 needs

roughly 9 multiplications over the subfield Fp while one field multiplication over

Fp′5 needs around 25 multiplications over Fp′ . This shows that the cost to apply the

Frobenius map can be neglected.

43



E(Fp3) E(Fp′5)
# mult. 6 over Fp 12 over Fp′

Table 6.1: Field multiplications to compute the Frobenius map.

Point addition (Alg. 5) Point doubling (Alg. 6)
# mult. 16 10

Table 6.2: Complexity of elementary point operations over Fpd .

The basic point operations for all point multiplication methods are point addition

and point doubling. By considering the algorithms in the Sections 5.4.2 and 5.4.3 we

count the number of multiplications in the underlying field Fpd for one point addition

and one point doubling, respective. To simplify the following calculations we assume

that squaring and general multiplication are similar in complexity over Fpd . We need

16 field multiplications for one point addition and 10 field multiplications for one

point doubling. Table 6.2 summarizes the results.

6.2 Point Multiplication in E(Fq)

This section describes the complexity of the point multiplication methods as de-

scribed in Section 5.5 for general elliptic curves E(Fpd). To keep it simple we ex-

press the complexity of the algorithms over p. Therefore we assume q ≈ pd where q

and p are prime. Table 6.3 is organized as follows: The columns describe the point

multiplication methods. These are the addition-subtraction method and the sliding

window method for general elliptic curves. The rows describe the number of opera-

tions needed. The first two rows describe the number of point additions and point

doublings for one scalar multiplication. The next row counts the number of field

multiplications over Fpd for the point multiplication. Therefore the number of point
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Add.-Subt. Sliding Window
(Alg. 9) (Alg. 11)

# point add. d/3 log(p) 2w−1 − 1 + d
w+1 log(p)

# point doubl. d log(p) d log(p) + 1
# field mult. 151

3d log(p) 16 · 2w−1 − 6 + ( 16
w+1d + 10d) log(p)

# elem. oper. 151
3 log3(p)d3 (16 · 2w−1 − 6 + ( 16

w+1d + 10d) log(p))d2 log2(p)

Table 6.3: Complexity of point multiplication over E(Fq) where q ≈ pd.

additions is multiplied by 16, the number of point doublings by 10 and the result is

accumulated. The last row approximates the number of elementary operations, i.e.,

the overall complexity. Therefore we assume that one field multiplication over Fpd

has square complexity, i.e., (d log(p))2.

The sliding window method is better than the addition-subtraction method. It

could be improved furthermore by precomputing the points in affine coordinates and

then using a mixed point addition method to add a projective and affine point. To

keep the algorithmic complexity calculation simply we do not use mixed coordinates

since the difference is small.

6.3 Point Multiplication in A(Fpd)

The results in this section are for arbitrary extension degrees of the Mordell-Weil

group. Table 6.4 describes the complexity for one point multiplication in A(Fpd).

The remainder of this chapter analyzes the complexity for general elliptic curves

and Mordell-Weil group with extension degree 2 and 3, and 4 and 5 respectively.

From now on we fix p, p′ and q such that p ≈ √
q and p′ ≈ 4

√
q, with p, p′ and q

prime. To keep it simple we always express the complexity of the algorithms over p.

As an example we chose q ≈ 2163, p ≈ 282 and p′ ≈ 241. Specifically, we will compare

the complexity of one point multiplication in E(Fq), A(Fp3) and A(Fp′5). Note that
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Addition-Subtraction (Alg. 10) Window Method (Alg. 12)
# point add. 1/3(d− 1) log(p) log(p)(1 + 1/2d−1) + 2d−2 − 1
# point doubl. log(p) log(p)
# field mult. 16

3 d log(p) + 14
3 log(p) 26 log(p) + 16 log(p)

2d−1

+16 2d−2 − 16
# elem. oper. (16

3 d log(p) + 14
3 log(p))d2 log2(p) (26 log(p) + 16 log(p)

2d−1

+16 2d−2 − 16)d2 log2(p)

Table 6.4: Complexity of point multiplication over A(Fpd).

Addition-Subtraction (Alg. 9) Sliding Window (Alg. 11)
# point add. 2/3 log(p) 7 + 2/5log(p)
# point doubl. 2 log(p) 1 + 2 log(p)
# field mult. 302

3 log(p) 122 + 262
5 log(p)

# elem. oper. 1222
3 log3(p) (488 + 1053

5 log(p)) log2(p)

Table 6.5: Complexity of point multiplication over E(Fq) where q ≈ p2.

all these curves provide the same level of security which is often considered to be

security equivalent to an RSA system with 1024-bit key lengths.

6.4 Point Multiplication in E(Fq), A(Fp3) and A(Fp′5)

We first compare the algorithmic complexity of E(Fq) and A(Fp3). Table 6.5 de-

scribes it for E(Fq). For our implementations we used the sliding window method

with w = 4.

Table 6.6 shows the complexity for the Mordell-Weil group with extension degree

3. There are two basic methods for the Mordell-Weil group A(Fp3). The first one is

only applicable to extension degree 3 while the second one is always available.

Table 6.7 describes the complexity for A(Fp′5) which is also security equivalent

to the previous groups. One can see that the window method is slightly faster for

our example of p ≈ 282.
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Basic (Alg. 3) Basic (Alg. 4) Addition-Subtraction (Alg. 10)
# point add. 3/4 log(p) log(p) 2/3 log(p)
# point doubl. log(p) log(p) log(p)
# field mult. 22 log(p) 26 log(p) 202

3 log(p)
# elem. oper. 198 log3(p) 234 log3(p) 186 log3(p)

Table 6.6: Complexity of point multiplication over A(Fp3).

Addition-Subtraction (Alg. 10) Window Method (Alg. 12)
# point add. 4/3 log(p′) log(p′)(1− 1/16) + 7

≈ 2/3 log(p) ≈ 1/2 log(p)(1− 1/16) + 7
# point doubl. log(p′) ≈ 1/2 log(p) log(p′) ≈ 1/2 log(p)
# field mult. 311

3 log(p′) 25 log(p′) + 112
≈ 152

3 log(p) ≈ 121
2 log(p) + 112

# elem. oper. 7831
3 log3(p′) (625 log(p′) + 2800) log2(p′)

≈ 98 log3(p) ≈ (781
8 log(p) + 700) log2(p)

Table 6.7: Complexity of point multiplication over A(Fp′5) where p′5 ≈ √
p.

6.5 Comparison between Elliptic Curves and the

Mordell-Weil Group

The previous sections gave a detailed analysis of the complexity of one point mul-

tiplication in a general elliptic curve and the Mordell-Weil group. All groups we

looked at have a similar private key length. By assuming q ≈ p2 ≈ p′4, where

q, p and p′ prime, the groups E(Fq), A(Fp3) and A(Fp′5) all have an effective pri-

vate key length of log(q) ≈ 2 log(p) binary bits. We saw that the sliding window

method is the fastest method for elliptic curves, while for the Mordell-Weil group

the addition-subtraction and window method are both efficient. Therefore the cost

for one point multiplication is (1053
5 log(p)+488) log2(p) elementary operations com-

pared to 98 log3(p) and (781
8 log(p)+700) log2(p), respective. Assuming q ≈ 2163, i.e.,

p ≈ 282 the computation of a public key using the window method in the Mordell-
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Weil group is computationally about 22% more efficient than in the elliptic curve

case. In cases where the sliding window method is not applicable for ECC, e.g., due

to memory constraints, and the addition-subtraction method is used for ECC point

multiplication, the Mordell-Weil group is more than 20% more efficient.

A logical extension of the work presented here is to choose an extension degree

of 7 for the Mordell-Weil group. In this case, we can choose p′′ such that p′′6 ≈ 2163,

i.e., p′′ ≈ 227. Note that for degree d = 7 the addition-subtraction method is more

efficient than the window method. Using the complexity formula in Table 6.4 for

the addition-subtraction method with these values of p′′ and d, we obtain that one

point multiplication needs around 77 log3(p) elementary operations. This would be

an improvement of 31% compared to general elliptic curves and 37% if precom-

putation is not applicable. Furthermore a base field of this kind would be a very

promising match for 32-bit hardware platforms, so that actual performance improve-

ments might be significantly higher. However, one would have to prove that higher

extension degrees yield appropriate groups which do not result in a loss of security,

similar to the result shown in Proposition 3.
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Chapter 7

Implementation Results

We implemented the Mordell-Weil group using the C++ library LiDIA [14]. The

timing measurements confirm the results of the complexity analysis. Since LiDIA is

not optimized for a special hardware or a particular choice of the underlying field

the absolute time values are relatively slow though. We chose primes p, p′ and q in

such a way, that we get a private key size of around 163 bits, i.e., we chose q ≈ 2163,

p ≈ √
q ≈ 282 and p′ ≈ 4

√
q ≈ 241. This is often considered to be roughly security

equivalent to an RSA system with 1024-bit key length.

7.1 Implementation Parameters

First we selected an elliptic curve and appropriate curve and field parameters. We

chose an example used in [21] and [24]:

E : Y 2 = X3 − 90 · 27−1X + 56 · 27−1
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We choose q ≈ 2163

q = 100000000000000000000060180000000000000000009054201

and p ≈ √
q ≈ 282

p = 10000000000000000000003009

Using LiDIA we obtain the number of points on the elliptic curve as

#E(Fp) = 9999999999998639223372928

and the trace

t = 1 + p−#E(Fp) = 1360776630082

Therefore we obtain the Weil number as described in (3.5)

α = 680388315041 + 2183697751608
√
−2

and by (3.6) the group order of the Mordell-Weil group

#A(Fp3) =
(1− α3)(1− ᾱ3)
(1− α)(1− ᾱ)

= 163 · 613496932515420906542091974550386755050686705059

By (3.7) we obtain

C = 61349693251533742331306

and get the number of different endomorphisms in End(〈P〉) for a point P ∈ A(Fp3)

of maximal prime order as C2 ≈ 2151.

As an example for the Mordell-Weil group of extension degree 5 we used the
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same curve E and chose
√

p′ ≈ 4
√

q ≈ 241

p′ = 3162280535273

According to LiDIA the number of points on the elliptic curve is

#E(Fp′) = 3162280535436

and the trace equals

t = 1 + p′ −#E(Fp′) = −162

|t| is small and the pairwise greatest common divisors of f , g, gp′ + tf and gtp′ +

p′f + ft2 is 2. We obtain the Weil number by using (3.5)

α = −81 + 1257434
√
−2

and the number of points of the Mordell-Weil group

#A(Fp′5) =
(1− α5)(1− ᾱ5)
(1− α)(1− ᾱ)

= 79811 · 1252964674925836672418853211529856042119867851

We found these parameters quickly. A good curve should have a subgroup of

large order though since the size of C depends thereon significantly, as stated in

Propositions 1 and 3. Therefore much effort should be spent to find good curves.

Since this is a problem of elliptic curve generation and not intrinsically related to

the Mordell-Weil group, this issue is not further discussed here.
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time
Fq 0.095
Fp3 0.131
Fp′5 0.159

Table 7.1: Time for a field multiplication in msec.

7.2 Environment

The implementation was done in C++ using the LiDIA library [14]. We imple-

mented the basic point operations based on the P1363 standard. The time mea-

surements were done on a Sun Ultra 5 Workstation with a 333 MHz CPU and 128

MB memory.

7.3 Basic Functions

All elliptic curve point multiplications finally depend on the field multiplication and

the Frobenius map. Table 7.1 shows the result of the time measurements for one

field multiplication. The left column denotes the field, the right one the time for one

multiplication in this field in milliseconds. The field multiplication was provided by

the LiDIA library. Note that a multiplication in a field with high extension degree

is slower than one with small extension degree but same effective operand length.

For example, a multiplication in Fp′4 is more than three times slower than in Fq,

even though both fields have a roughly similar order.

Table 7.2 displays the time for one application of the Frobenius map. It should

be around half the time that is needed for one field multiplication. The LiDIA

library does not allow efficient handling of the involved polynomial coefficients.

Table 7.3 shows the time for one point addition and doubling, respectively. Again

we note that the time for one point operation is affected by the underlying field, i.e.,
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time
A(Fp3) 0.273
A(Fp′5) 0.464

Table 7.2: Time for the Frobenius map in msec.

Point addition (Alg. 5) Point doubling (Alg. 6)
E(Fq) 1.68 1.36
E(Fp3) 2.06 1.55
E(Fp′5) 2.70 2.14

Table 7.3: Time for point addition and doubling in msec.

that higher extension degrees are slower in LiDIA. We want to stress that this is a

property of LiDIA and not necessarily a general characteristic of extension fields.

7.4 Point Multiplication in E(Fq), A(Fp3) and A(Fp′5)

The results in Table 7.4 validate our computations about the complexity in the

previous chapter. One sees that the running time of a point multiplication in the

general elliptic curve is better than in the Mordell-Weil group A(Fp3). However,

one point multiplication in the Mordell-Weil group of degree 5, A(Fq5), has a better

runtime than in the general elliptic curve group.

Basic Addition-Subtraction Sliding Window/
(Alg. 3/Alg. 4) (Alg. 9/10) Window Method

(Alg. 11 / Alg. 12)
E(Fq) - 363.3 313.8
A(Fp3) 351.7 321.3 -
A(Fq5) 372.6 299.4 263.5

Table 7.4: Time for one point multiplication in msec.
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Chapter 8

Summary and Suggestions for

Future Work

In this thesis, a new algebraic group for cryptographic purposes was investigated and

implemented in software. The original idea by Frey and Naumann was restricted to

extension degree 3 which does not bear computational advantages over conventional

ECC. We extended Mordell-Weil cryptosystems to higher extension degrees which

yields a point multiplication that is more efficient than in general elliptic curve

groups. For the case of d = 5, we were able to prove that the Mordell-Weil group

has a sufficient cardinality under certain conditions. We provided new point multi-

plication algorithms for the Mordell-Weil group and a detailed complexity analysis.

The main disadvantage of the Mordell-Weil group is that the length of the public

keys are larger, that point precomputation is not supported efficiently, and that

curve generation is even more constrained than for general elliptic curves. There

are several open research problems related to the Mordell-Weil group:

1. As described the usage of larger extension degrees could speed-up scalar mul-

tiplication considerably. This would be particularly of interest for implemen-
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tations on embedded systems where each operand would fit into one register.

For 16-bit platforms an extension degree of 11 should be investigated. It has

to be proven that this does not result in a lost of security similar as it was

done in Proposition 3.

2. Proposition 3 might be generalized. It would be extremely valuable to find

a proof for a generalization of this proposition for arbitrary extension degree.

For practical purposes it might be enough to repeat the proof for degree 7 and

11.

3. We noted that popular signature schemes are not applicable using the Mordell-

Weil group. Hence it is important to find an efficient signature scheme.

4. Further research could also be done about curve generation. Generation of

elliptic curve is difficult and slow. The generation of Mordell-Weil groups

is even more constrained. Therefore a set of appropriate curves should be

recommended.

5. Our implementation using the LiDIA library is very slow. A more efficient

implementation of the field arithmetic should be done, e.g., using Optimal

Extension Fields [1].
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sis), Department of Mathematics, Universität GHS Essen, Germany, August
1999.

[22] B. Schneier. Applied Cryptography. John Wiley & Sons, 1996.

[23] J.H. Silverman. The Arithmetic of Elliptic Curves. Springer-Verlag, New York,
1986.

[24] J.H. Silverman. Advanced Topics in the Arithmetic of Elliptic Curves. Springer-
Verlag, New York, 1994.

[25] J.H. Silverman and J. Tate. Rational Points on Elliptic Curves. Springer-Verlag,
New York, 1992.

[26] N. Smart. The Discrete Logarithm Problem on Elliptic Curves of Trace one.
Journal of Cryptology, 12(3),193–196, October 1999.

57


	FRONT MATTER
	Abstract
	Preface
	Contents
	List of Tables
	List of Algorithms

	Chapter 1 Introduction
	1.1 Motivation
	1.2 Thesis Outline

	Chapter 2 Previous Work
	2.1 Cryptography Based on Finite Groups
	2.2 Elliptic Curve Cryptosystems
	2.2.1 General Elliptic Curves
	2.2.2 Special Elliptic Curves
	2.2.3 Standardization Efforts


	Chapter 3 Background: The Mordell-Weil Group for Cryptographic Purposes
	3.1 The Order of the Mordell-Weil Group A ( Fp)
	3.2 Calculating in the Mordell-Weil Group A ( Fp)
	3.3 Key Length and Security
	3.4 Computing a Base Point

	Chapter 4 The Mordell-Weil Group over Higher Extension Degrees
	Chapter 5 Arithmetic
	5.1 The Underlying Field
	5.1.1 Element Representation
	5.1.2 Field Arithmetic in Fp d

	5.2 Elliptic Curve Parameters
	5.3 Elliptic Curve Point Representation
	5.4 Basic Functions
	5.4.1 The Frobenius Map
	5.4.2 Point Addition
	5.4.3 Point Doubling

	5.5 Point Multiplication
	5.5.1 Basic Point Multiplication Methods
	5.5.2 Addition-Subtraction Method
	5.5.3 Addition-Subtraction Method for the Mordell-Weil Group
	5.5.4 Window Methods
	5.5.5 Precomputation of Points


	Chapter 6 Algorithmic Complexity
	6.1 Basic Functions
	6.2 Point Multiplication in E( Fq)
	6.3 Point Multiplication in A ( Fp d )
	6.4 Point Multiplication in E( Fq), A ( Fp 3 ) and A ( Fp ' 5 )
	6.5 Comparison between Elliptic Curves and the Mordell-Weil Group

	Chapter 7 Implementation Results
	7.1 Implementation Parameters
	7.2 Environment
	7.3 Basic Functions
	7.4 Point Multiplication in E( Fq), A ( Fp 3 ) and A ( Fp 0 5 )

	Chapter 8 Summary and Suggestions for Future Work
	Bibliography

