
Machine Learning for Reliable Communication and Improved
Tracking of Dynamical Systems

by

Kirty Prabhakar Vedula

A Thesis

Submitted to the Faculty

of the

WORCESTER POLYTECHNIC INSTITUTE

In partial fulfillment of the requirements for the

Degree of Doctor of Philosophy

in

Electrical and Computer Engineering

by

October 2020

APPROVED:

Professor D. Richard Brown III, Major Advisor, Department of ECE, WPI

Professor Randy Paffenroth, Department of Mathematics, Department of Computer
Science, and Data Science Program, WPI

Professor Ziming Zhang, Department of ECE, WPI

© 2020
Kirty Prabhakar Vedula

ALL RIGHTS RESERVED.

Abstract

Reliable communication systems and optimal tracking of dynamic systems are subjects

that have been studied for several decades. In recent years, however, there is a renewed

interest in these subjects from the perspective of machine learning. This dissertation

applies machine learning techniques to develop new insights and specific algorithms for

two important problems: (i) achieving reliable communications in noisy channels using

autoencoders and (ii) improving tracking of dynamical systems using machine learning.

The first problem considers a joint coding and modulation scheme for an end to-end

communication system design using an autoencoder architecture in short blocklength

regime. Unlike the classical approach of separately designing error correction codes and

modulation schemes for a given channel, the approach here is to learn an optimal map-

ping directly from messages to channel inputs while simultaneously learning an optimal

mapping directly from channel outputs to estimated messages. Additive white Gaussian

noise (AWGN) channels are considered first and the performance of the autoencoder is

compared against various coding and modulation schemes for linear block codes. An anal-

ysis on conditional block error rate is presented with interesting insights on the geometry

of the codewords generated by the autoencoder. For AWGN channels, numerical results

show that the autoencoder can achieve better block error rate (BLER) performance than

BPSK modulated Hamming codes with maximum likelihood decoding.

We extend it to other non-canonical channels which have no-known good codes such

as Bernoulli-Gaussian Impulsive Noise (BGIN) channel. A family of autoencoders is

developed for different probabilistic parameters in BGIN channels. Numerical results

show the autoencoder achieves uniformly better BLER performance than conventional

block codes. The proposed architecture is general and can be modified for comparison

against other block coding schemes and higher-order modulations.

The second problem considers tracking dynamical systems under parametric mismatch

and model switching. The Kalman filter (KF) is the optimal state estimator for linear

and Gaussian dynamic systems. Optimality of the KF, however, requires exact knowledge

of covariances and the system dynamics. Otherwise, the KF will be “mismatched” and,

consequently, the state estimates and predictions will not be optimal. We develop a

machine learning approach to accurately predict the dynamic states without knowledge

of the system dynamics or noise statistics. Considering an application of oscillator phase

predictions, we demonstrate that the machine learning approach achieves performance

close to optimal irrespective of the amount of parametric mismatch.

Then, model switching is considered in the context of (i) maneuvering target-tracking

and (ii) tracking dynamical systems over Gilbert-Elliott Channels. An Interacting Mul-

tiple Model (IMM) is a commonly used state estimator that utilizes hypotheses from a

filter bank of KFs instead of a single KF to handle changeable and uncertain maneuvering

movements. We develop an alternate machine learning method using a Temporal Convo-

lutional Network (TCN) to demonstrate better stability robustness to model switching.

We also develop a hybrid model, Autoencoder Interacting Multiple Model (AEIMM)

filter, as an extension to Autoencoder Kalman Filter (AEKF). AEIMM embeds an IMM

within an autoencoder framework to learn measurements and their associated measure-

ment covariances for multiple dynamic models. We demonstrate that AEIMM outper-

forms state-of-the-art maneuvering target-tracking algorithms such as IMM and machine

learning models like Long-Short Term Memory Networks.

Acknowledgements

First, I would like to express my sincere appreciation and gratitude to my Ph.D.

advisor, Prof. Rick Brown for his support, guidance, enthusiasm and encouragement

throughout my graduate studies and research progress. His attention to detail, clarity of

thought and way of elucidating abstract concepts is beyond comparison.

I would like to thank Prof. Randy Paffenroth for teaching an amazing course on

unsupervised learning and for sparking a life-long fascination for the subject. I would

like to thank you for promptly agreeing to be my collaborator and for sharing your

vision of research, your continuous encouragement and invaluable feedback throughout

my Ph.D. at WPI.

I would also like to thank my collaborators Matthew Weiss, Arick Grootveld, Prof.

Andrew Klein. I would also like to thank Prof. Paffenroth and Prof. Zhang for serving

as members of my Ph.D. committee and providing valuable feedback on my thesis and

defense.

I would like to thank my wife, best friend (and my illustrator) Anoosha Papireddy

for her infinite love, support and encouragement. Thank you for pushing me to be my

best and for being my everyday inspiration! I could not have done this without you.

I would also like to thank my younger brother Sanketh Vedula, a Ph.D. candidate at

Technion - Israel Institute of Technology for introducing me to deep learning, medical

imaging, finance and for all the valuable and insightful discussions over all these years. I

wish him the very best for his Ph.D.

I would like to express my deep gratitude to my parents. Their constant belief in me

throughout my life paved my path and helped me strive and work hard to reach greater

heights.

I thank my in-laws for providing their moral support. I would also like to thank my

cousins and friends for making this journey a smooth sailing. I am grateful for every little

help that I was provided on my way up.

I deeply appreciate opportunities that I received through my internships with Philips

Research and Witricity. I give my sincere thanks to Francois Vignon and Jun-Seob

Shin from Philips and Karl Twelker from Witricity for their valuable discussions, for

challenging my growth as a team player and an independent researcher.

Biography

Kirty Vedula was born on June 26, 1990 in Hyderabad, India. He grew up in Vi-

jayawada, India finishing his schooling leading to a Bachelors of Technology in Electron-

ics and Communication Engineering at Amrita University in Coimbatore. In 2012, he

received an admission for graduate studies from Rutgers University and completed his

Masters of Science in Electrical and Computer Engineering in 2014.

After an internship at Mathworks and working at a Silicon Valley startup for a few

months, he joined the doctoral program at Worcester Polytechnic Institute in Fall 2015.

As a Ph.D. candidate in the Electrical and Computer Engineering, Kirty worked on

several projects funded by DARPA and NSF, all under the supervision of his advisor and

mentor Prof. Donald Richard Brown III. In addition to teaching assistantships, Kirty

also worked as an intern in R&D teams at Philips Research and Witricity in the summer

of 2017 and 2019 respectively.

His current work aims at bridging traditional techniques and machine learning al-

gorithms with a focus on communication and tracking systems. His research interests

are in wireless communication, machine learning, reinforcement learning and dynamical

systems.

Kirty joins the Qualcomm Wireless R&D team in November 2020 and hopes to con-

tinue to make significant contributions to wireless communication and machine learning.

Contents

1 Introduction 2

1.1 Problem Statement . 2

1.2 Relevant Prior Work . 3

1.2.1 Machine Learning . 3

1.2.2 Communication Systems . 6

1.2.3 Tracking Dynamical Systems . 8

1.3 Overview of the Dissertation . 10

1.3.1 Part I: Machine Learning for Communication Systems 11

1.3.2 Part II: Machine Learning for Dynamical Systems 12

1.4 Publications . 14

2 Background: Communication Systems and Dynamical Systems 16

2.1 Communication Systems . 17

2.1.1 Channel Coding . 17

2.1.2 Energy and Power of Codewords 19

2.1.3 Hamming Code . 20

2.1.4 Optimal Symbol Detection . 21

2.1.5 Finite Blocklength Coding Bounds 23

2.1.6 Signal Constellations . 25

2.1.7 Constellation Shaping . 29

2.1.8 Types of Energy Constraints . 30

2.2 Dynamical Systems . 34

2.2.1 Kalman Filter . 36

2.2.2 Least Squares . 39

2.2.3 Discrete-time Algebraic Riccati Equation 40

2.2.4 Interacting Multiple Model . 41

I Machine Learning for Reliable Communication 44

3 Joint Coding and Modulation in Additive White Gaussian Noise

Channels 45

3.1 Key Contributions . 46

3.2 System Model . 47

3.2.1 One-hot Encoding . 48

3.2.2 Transmitter . 49

3.2.3 Power Constraints . 49

3.2.4 Block AWGN Channel . 50

3.2.5 Receiver . 51

3.2.6 Intuition . 51

3.3 Training the Autoencoder . 53

3.4 Higher-Order Modulations . 55

3.5 Efficient Parameterizations for Block Codes in AWGN channel 55

3.5.1 Linear Block Coding and Modulation is Simply an Embedding . . 56

3.5.2 Receiver as a Matched Filter . 57

3.6 Results for AWGN Channels . 58

3.6.1 (2,4,2) Autoencoder . 58

3.6.2 (7,4,7) Autoencoder . 60

3.6.3 Conditional BLER for a (7,4,7) Autoencoder 62

3.6.4 (15,11,15) Autoencoder . 63

3.6.5 Conditional BLER for a (15,11,15) Autoencoder 65

ii

3.6.6 Higher-order Modulations with Extended Golay codes 67

3.7 Conclusion . 68

4 Joint Coding and Modulation in Non-AWGN Channels 86

4.1 Key Contributions . 87

4.2 Block BGIN Channel . 87

4.3 Traditional Methods to Mitigate Noise in BGIN channel 89

4.4 Autoencoder for BGIN Channels . 90

4.5 Results . 91

4.6 Conclusion . 93

4.6.1 Next Steps . 94

II Machine Learning for Tracking Dynamical Systems 96

5 Oscillator Phase Predictions 97

5.1 Key Contributions . 98

5.2 System Model . 98

5.3 Machine Learning Problem Formulation 101

5.4 Methodology . 102

5.5 Bounded Loss Function . 103

5.6 Numerical Results . 104

5.7 Conclusion and Next Steps . 107

6 Manuevering Target Tracking 110

6.1 Key Contributions . 112

6.2 System Model . 113

6.2.1 Constant Velocity Model . 115

6.2.2 Coordinated Turn Model . 115

6.3 Machine Learning Algorithms . 117

iii

6.3.1 Temporal Convolutional Networks 117

6.3.2 Test Protocol . 118

6.3.3 Results . 119

6.4 Hybrid Algorithms . 123

6.4.1 Autoencoder Kalman Filter . 123

6.4.2 Domain Randomization . 125

6.4.3 Autoencoder Interacting Multiple Model 126

6.4.4 Test Protocol . 129

6.4.5 Results . 131

6.5 Conclusion . 132

7 Tracking Dynamical Processes on Gilbert-Elliott Channels 136

7.1 Key Contributions . 137

7.2 System Model . 138

7.2.1 Gilbert-Elliott Channel . 139

7.3 Results . 140

7.4 Conclusion . 143

8 Conclusion and Future Work 146

8.1 Machine Learning for Reliable Communication 146

8.2 Machine Learning for Improved Tracking of Dynamical Systems 147

iv

List of Figures

1.1 A fresh perspective on communication and tracking systems using machine

learning. 3

1.2 Model and algorithmic deficit. 5

1.3 Hybrid models in Chapter 6. 14

2.1 Traditional block-by-block approach for a communication system. 18

2.2 Working example for an end-to-end traditional communication system. . 19

2.3 An example of a 4-PAM constellation. 27

2.4 Symbol constellations X for 16-QAM. 28

2.5 Symbol constellations X for 8-PSK. 29

2.6 Energy constraints on a codebook for linear block codes. 31

2.7 Example of per-element energy constraint. 32

2.8 Example for a per-codeword energy constraint. 33

2.9 Example for a per-codebook energy constraint. 34

2.10 One iteration of Kalman Filter for a linear dynamical model. 38

2.11 Block diagram of a single step of the IMM algorithm for two models. . . 42

3.1 An autoencoder for an end-to-end communication system. 47

3.2 A simple schematic for an autoencoder. 52

3.3 An autoencoder for an end-to-end communication system with transmitter

replaced by an embedding. 56

3.4 An autoencoder for an end-to-end communication system with transmitter

replaced by an embedding, receiver replaced by a matched filter. 58

3.5 Constellations for (M,n) = (16, 2) generated by an autoencoder. Every

random initialization in the top row gives correspondingly a different con-

stellation in the bottom row. 70

3.6 Comparison with non-standard QAM constellations [65]. We see that the

constellations in 3.5 resemble the triangular and optimum constellations

here. 71

3.7 Symbol error rate for (M,n) = (16, 2) from Eb/N0 = 0 to Eb/N0 = 12. . . 71

3.8 Training and validation accuracy curve for (7, 4, 7) autoencoder. 72

3.9 Histogram of pairwise Euclidean distances for Hamming (7, 4) BPSK-

modulated codewords and autoencoder (7, 4, 7) learned codewords. 73

3.10 BLER of the trained (7, 4, 7) autoencoder and BPSK-modulated Hamming

(7, 4) in an AWGN(Eb/N0) channel. Random coding union (RCU), meta-

converse, and normal approximation bounds are also plotted. 74

3.11 BLER for each codeword of the trained (7, 4, 7) autoencoder and BPSK-

modulated Hamming (7, 4) in an AWGN(Eb/N0) channel. 75

3.12 BLER for each codeword (sorted) of the trained (7, 4, 7) autoencoder and

BPSK-modulated Hamming (7, 4) in an AWGN(Eb/N0) channel. 76

3.13 Cumulative sum for codeword 9 with the trained (7, 4, 7) autoencoder and

BPSK-modulated Hamming (7, 4) in an AWGN(Eb/N0) channel. 77

3.14 Training and validation accuracy curve for (15, 11, 15) autoencoder. . . . 78

3.15 Histogram of pairwise Euclidean distances for Hamming (15, 11) BPSK-

modulated codewords and autoencoder (15, 11, 15) learned codewords. . . 79

3.16 BLER of the trained (15, 11, 15) autoencoder and BPSK-modulated Ham-

ming (15, 11) in an AWGN(Eb/N0) channel. Random coding union (RCU),

metaconverse, and normal approximation bounds are also plotted. . . . 80

3.17 BLER for each codeword of the trained (15, 11, 15) autoencoder and BPSK-

modulated Hamming (15, 11) in an AWGN(Eb/N0) channel. 81

vi

3.18 BLER for each codeword (sorted) of the trained (15, 11, 15) autoencoder

and BPSK-modulated Hamming (15, 11) in an AWGN(Eb/N0) channel. . 82

3.19 Cumulative Sum for codeword 849 with the trained (15, 11, 15) autoen-

coder and BPSK-modulated Hamming (15, 11) in an AWGN(Eb/N0). . . 83

3.20 Zoomed-out version of the cumulative sum for the first 20 distances (15, 11, 15)

autoencoder. 84

3.21 AWGN channel block error rate comparison of higher-order-modulated ex-

tended Golay (24, 12) with hard decision and soft decision decoding and

the corresponding trained autoencoder. 85

4.1 Bernoulli-Gaussian Impulsive Noise (BGIN) channel. 88

4.2 Example: A codeword passing through a BGIN Channel. 89

4.3 Demonstration of clipping and blanking approaches for a BGIN channel. 90

4.4 Training and validation accuracy curve for BGIN(3dB,−7dB, 0.1) autoen-

coder. 91

4.5 BLER comparison of the family of trained (7, 4, 7) autoencoders with

BPSK-modulated Hamming (7, 4) in BGIN(3dB,−7dB, pb) channels. . . . 92

4.6 BLER comparison of the family of trained (15, 11, 15) autoencoders with

BPSK-modulated Hamming (15, 11) in BGIN(3dB,−7dB, pb) channels. . 94

5.1 Schematic for a two-state model. 99

5.2 Effect of q1 mismatch on the KF and the CNN performances. 106

5.3 Effect of q2 mismatch on the KF and the CNN performances. 107

5.4 Effect of r mismatch on the KF and the CNN performances. 108

6.1 Example of a trajectory with Constant Velocity (CV) and Coordinated

Turn (CT) modes. 111

6.2 Schematic of a Temporal Convolutional Network with a series of residual

blocks with increasing dilation followed by a fully connected layer. 118

vii

6.3 Root Mean-Square Prediction Error During CT-to-CV transitions. RMSE

values in table computed over discrete time values 0 ≤ k ≤ 25. 121

6.4 Root Mean-Square Prediction Error During CV-to-CT transitions. RMSE

values in table computed over discrete time values 0 ≤ k ≤ 25. 122

6.5 The Autoencoder Kalman Filter (AEKF). 124

6.6 Domain randomization for polynomials [3]. 127

6.7 Block diagram for the Autoencoder Interacting Multiple Model (AEIMM)

filter. 128

6.8 Sample simulated two-turn flight path with Gaussian noise. 130

6.9 Turn segment from a Gaussian noise test set sample trial. Here the (a)

Kalman Filter, (b) IMMKF, and (c) LSTM estimates have large MSE

values and generally, are less smooth than the (d) AEKF and (e) AEIMM

estimates. 135

7.1 Two-state Markov chain model switching in the Gilbert-Elliott channel . 141

7.2 Gilbert-Elliott mode 0 mean squared prediction error. 144

7.3 Gilbert-Elliott Mode 1 (“bad channel”) prediction error, averaged over

5,000 realizations. 145

viii

List of Tables

2.1 Notation for Kalman Filter. 36

3.1 An example demonstrating one-hot encoding. 48

3.2 Functional mapping fθ for different linear block codes. 55

3.3 All channels: Number of parameters with Embedding. 57

3.4 AWGN channel: Number of parameters with an embedding and matched

filter. 57

3.5 Pairwise Euclidean distance statistics for (M,n) = (16, 2) from Eb/N0 = 0

to Eb/N0 = 5.5. 60

3.6 BPSK-modulated Hamming (7, 4) codewords and the learned (7, 4, 7) au-

toencoder codewords, both with E = 7. 61

3.7 Pairwise Euclidean distance statistics for BPSK-modulated Hamming (7, 4)

and (7, 4, 7) autoencoders with E = 7. 62

3.8 Pairwise Euclidean distance statistics for BPSK-modulated Hamming (15, 11)

and (15, 11, 15) autoencoders with E = 15. 64

3.9 First 15 elements of row 849 of confusion matrix (sorted) for a (15, 11, 15)

autoencoder. 66

3.10 Pairwise Euclidean distance statistics for Golay (24, 12) codes and the

corresponding autoencoders. 68

5.1 The CNN architecture used for solving oscillator phase predictions problem.104

5.2 Typical parameters for numerical results. 105

6.1 Maneuvering target prediction RMSE (in meters). 120

6.2 Single turn test MSE results. 132

7.1 Gilbert-Elliott channel prediction MSE. 142

x

1

Chapter 1

Introduction

In this chapter, we briefly introduce the problems discussed in this dissertation and

provide motivation to study them. Section 1.2 discusses the relevant prior art for this

dissertation. In Section 1.3, we list the chapter-wise contributions and overview of this

dissertation and list the publications in Section 1.4.

1.1 Problem Statement

Reliable communication systems and optimal tracking of dynamical systems have been

studied for several decades. However, in recent years, there is a renewed interest in these

subjects from the perspective of Machine Learning (ML).

The unifying theme in this dissertation is ML as shown in Figure 1.1. ML plays a

useful role in settings where there is either a model deficit or algorithmic deficit [1]. We

consider algorithmic deficit in this dissertation and use ML to

1. improve end-to-end communication systems with Additive White Gaussian Noise

(AWGN) channel and a few non-AWGN channels with no known good codes,

2. improve tracking in situations where the Kalman Filter (KF) is not optimal. We

consider cases with parametric and model mismatch and discuss three applications

- oscillator phase predictions, tracking in Gilbert-Elliott channels and maneuvering

Communication Systems Dynamical Systems

Machine Learning

 4:40

 4:40

Figure 1.1: A fresh perspective on communication and tracking systems using machine
learning.

target tracking - to address different issues and demonstrate the advantages of ML

over traditional methods using numerical examples.

1.2 Relevant Prior Work

In this section, we discuss details on specific problems considered in this dissertation and

review the most relevant prior work.

1.2.1 Machine Learning

Traditional algorithmic signal processing models involve solving numerical optimization

which typically entails longer iterations to converge. Incorporating domain knowledge

into the ML architectures could potentially expedite the training process and convergence

3

and mainly improves the performance of the model. Techniques such as deep unfolding

algorithms [2] and other hybrid models [3], [4] are gaining traction. Future communication

and tracking systems will involve these deployments and it is slowly leading into the zone

of federated learning [5], where devices make autonomous decisions while also interacting

with other devices [6]. Furthermore, this improves energy-efficiency and longevity of the

devices.

Deep Learning methods had a breakthrough in the ImageNet challenge in the early

2010s after a period of AI Winter. AlexNet architecture was the seed for the resurgence in

deep learning [7]. With an improved hardware technology using graphics processing unit

(GPU) architectures, the training speed increased and also, the amount of training data.

In 2017, deep learning methods were first introduced in the context of communication

systems [8] and dynamical systems [9]. More details on these are provided in Chapters 2

and 4.

Neural networks are generally used to approximate other functions by selecting the

parameters to minimize the approximation error. In particular, fully-connected feed-

forward networks are capable of approximating any continuous function arbitrarily well by

utilizing a large but finite number of parameters. This can describe many real-world tasks,

e.g. classification of objects on a image [10], transcription of a spoken sentence [11] or

translation of a written sequence [12]. The approximation power of deep neural networks

is the reason for their current success in a variety of different applications.

ML based solutions are increasingly being applied to solve complex signal process-

ing tasks such as massive Multiple-Input Multiple-Output (MIMO) channel estimation

and detection [13], beamforming, Forward Error Correction (FEC) decoding [1], solving

partial differential equations [14]. We envision such model-driven approaches might have

significant influence in future 6G networks with immense performance gains and ease of

implementation.

We can use ML approaches as an alternative to the standard engineering design when

there is justification for its suitability, scalability and other advantages [15]. This is

4

usually determined case-by-case whether we have a model or an algorithmic deficit [1].

• Model Deficit: This happens when there are no existing mathematical models

due to insufficient domain knowledge, making a conventional model-based design

inapplicable.

• Algorithmic Deficit: This happens when a well-defined mathematical model is

available, but the existing algorithms optimized on the basis of such model are (i)

either too complex to be implemented for the given application or (ii) the search

space to find an optimal algorithm is too large.

Model? Algorithm?
Too

Complex?

Data?

Use a

simple

algorithm

Use

Machine

Learning

yes

no
no

yes

no

yes

yes

no

Figure 1.2: Model and algorithmic deficit.

We have three possible scenarios in this context as shown in the flowchart in Figure 1.2

1. where we do not have a good model.

2. where the model exists, but the algorithm is not easily computable.

3. where we know the model and algorithm, but the algorithm is too complex.

In addition to model and algorithmic deficit, we have few more motivational factors to

use ML to solve communication system and tracking problems such as:

1. Limiting functional block-structure: A traditional system operates as a chain

of blocks in which each block is optimized for its performance. However, in an ML-

based approach, we have an end-to-end optimized system that considers all blocks

5

implicitly and designs a model to minimize the overall loss. We see this in action

in Chapter 2.

2. Potential for Online Learning: ML methods can provide flexibility and re-

configurability since the training and testing phases are separate. It also provides

scope for online learning methods such as meta learning and active learning which

3. Hardware-friendly Computation: Matrix inversion is computationally expen-

sive, and also causes numerical instabilities. With GPUs, it is possible to imple-

ment matrix multiplication with similar complexity as multiplication.

1.2.2 Communication Systems

Communication systems have traditionally been designed by considering each block, i.e.,

channel encoding, modulation, demodulation, and channel decoding, separately [16]. For

example, coding theorists typically design error correction codes by abstracting and lump-

ing the effects of modulation, physical channel impairments, and demodulation into an

“effective channel” with certain statistical properties. Similarly, communication theo-

rists typically ignore error correction coding and develop efficient and robust modulation

schemes to overcome physical channel impairments. This approach has been successful,

especially for longer blocklength codes in AWGN channels, but is also known to not

necessarily be optimal in other settings.

More recently, researchers have considered the use of an unsupervised learning frame-

work called autoencoders for jointly designing coding and modulation schemes to overcome

channel impairments [8], [17]. Generally speaking, autoencoders can be used to find a

low-dimensional representation of the input while facilitating reconstruction at the output

with minimal error [18].

Autoencoders have been successfully applied for end-to-end communication system

design in the binary-input additive white Gaussian noise (bi-AWGN) channel [19]–[22].

More recently, autoencoders have been used to automate the discovery of decoding algo-

6

rithms for channels that do not have known good codes, e.g., the feedback channel [1].

This work demonstrates the strong generalization capability of classical algorithms like

Viterbi and Bahl, Cocke, Jelinek and Raviv (BCJR) on convolutional and turbo codes,

with near-optimal performance on AWGN channels. The adaptability and flexibility of

neural networks allow them to operate in situations where some simplifying assump-

tions of standard coding, modulation, demodulation and decoding techniques are not

fulfilled [12]. We focus on algorithmic deficit - the situation when the model is under-

stood, but solutions are difficult to find in a large search space in this chapter.

Joint channel coding and modulation was first proposed in the context of trellis coded

modulation and constellation shaping [23] and more recently in probabilistic amplitude

shaping [24] for low-density parity-check codes. We tackle this from an ML standpoint

in Chapter 3.

Impulsive noise is considered the main cause for burst errors in data transmission

which causes temporary loss in signal. It is prevalent in interference from machines or

any other kind of electronic devices, which are sources of random and high power noise

[25]. It is non-stationary and comprises of irregular pulses of short duration and energy

spikes with random amplitude and spectral content [26].

This can be characterized by the occurrence of large noise samples, which results in a

heavy-tailed distribution. Due to their non-stationary nature and high peak power, they

can significantly degrade the performance and reliability of communication systems [27],

[28]. In this case, a single Gaussian noise model is not correct and many distributions

such as Bernoulli-Gaussian model, Middleton Class A, B and Symmetric Alpha Stable

(SαS) distributions are more suitable to model these impulsive channels. The Bernoulli-

Gaussian model has been widely applied on impulsive noises.

Currently, little is known about channel coding in this setting [29]. In fact, soft

decision decoding, while optimal in the AWGN channel, can perform worse than hard

decision decoding in impulsive noise channels. This has led to the development of impul-

sive noise mitigation techniques such as blanking and clipping [30]–[32]. This is handled

7

in Chapter 4.

1.2.3 Tracking Dynamical Systems

Modeling dynamic random processes is essential in applications like oscillator phase syn-

chronization, channel state prediction, flight tracking, autonomous driving and robotics.

State-space models are commonly used for tracking targets over the state observation

sequences at each step as originating from internal states of the system [33].

Alternative approaches have been proposed for dealing with these scenarios like condi-

tional random fields, conditional state space models [34]. However, they are model-driven

and heavy-handed in their implementation.

Deep learning has been successfully applied in numerous tasks in signal processing such

as automatic speech recognition, audio denoising, and audio source separation. Convo-

lutional Neural Networks (CNNs) have shown success in tasks ranging from detection,

segmentation and object recognition [12]. More recently, deep learning approaches are

being used in conjunction with KFs, specifically related to Kalman smoother [35], [36],

discriminative state estimators [9]. Inspired by the success of these methods, we propose

a few deep learning based approaches for predicting dynamic random processes. In this

dissertation, we consider three settings:

1. Oscillator Phase Predictions: Oscillator stability has been traditionally char-

acterized by the Allan variance and stochastic models originally developed for high

precision, high cost sources such as atomic clocks. Knowledge of model parameters

allows development of tracking and prediction techniques which enable accurate

prediction of and compensation for oscillator drift.

The KF [37] provides the minimum mean squared error solution to linear system

when the process under observation is completely represented by the state model.

However, its success relies on the knowledge of the system models. When the

models are unknown or partially known, it is hard to determine the covariances of

8

the process and measurement noises [38].

This can happen when we do not have high-end oscillators for tracking. The tradi-

tional model-based approach does not adapt to the inherent parametric mismatch.

We approach this from a machine learning point-of-view and develop methods that

can solve this problem.

2. Maneuvering Target Tracking: Target tracking is used in many practical ap-

plications to accurately track objects with trajectories that have significant po-

sition derivatives of several orders. When not detected and compensated, the

maneuvers can degrade the performance of the tracker and might lead to filter

divergence [39]. A Kalman Filter (KF), or its non-linear variants such as Ex-

tended Kalman Filter (EKF) or particle filter, is commonly employed for tracking

maneuvering targets [40].

Accurate tracking is possible only when we model the target motion appropriately.

Some common dynamic models are constant velocity (CV) model and a coordi-

nated turn (CT) model [41]. However, a single model is not always adequate to

accurately describe the target’s motion. In an Interacting Multiple Model (IMM)

filter, two or more models are considered, and the model inaccuracy is addressed

by facilitating an interaction between them for different modes at the beginning

of each filter cycle [39]. These are weighed accordingly by the conditional prob-

abilities of switching between model modes. However, the IMM is a heuristic

algorithm designed to yield a good performance only within the class of a fixed

structure algorithms. It is not known to be generally optimal and does not guaran-

tee robust performance and may give unsatisfactory results for particular scenarios

such as nonlinear target dynamics during a turn [42] and sudden starts and stops

of maneuvers such as model switching [43].

We consider this problem of tracking maneuvering targets and approach it in two

ways

(a) Hybrid Algorithms: Developing algorithms that assist Kalman filters and

9

IMMs in tracking and predicting states. We demonstrate a dominance of

hybrid models over traditional model-based methods and time-series fore-

casting methods such as LSTMs.

(b) Machine Learning Algorithms: Developing algorithms that replace Kalman

filters. We specifically resort to a temporal convolutional network (TCN)

here.

3. Tracking Dynamical Processes on Gilbert-Elliott Channels: Switching dy-

namical processes can be seen as an extension of hidden Markov models (HMMs)

in which each HMM state, or mode, is associated with a dynamical process. Ex-

isting methods for learning switching processes rely on fixing the number of HMM

modes [39]. We consider a time-varying linear state-space system, typically driven

by a discrete Markov chain. Such systems are typically used to describe system dy-

namics subject to sudden shifts or modal changes governed by stochastic switching.

They are modeled as an ensemble dynamical system where the modes of operation

are governed by a Markov chain [44]. While the transition probabilities between

the modes are often assumed to be known, the exact location of the jumps is not

guaranteed to be known.

We consider an application that demonstrates this: channel tracking for Gilbert-

Elliott channels [45] and apply a TCN to handle model switching in Chapter 7.

1.3 Overview of the Dissertation

This section gives an overview of the dissertation and details the chapter-wise contribu-

tions starting with Chapter 3 to 7. Chapter 2 provides the necessary background for this

dissertation and reviews digital communication systems and dynamical systems. The

main body of this dissertation is divided into two parts:

10

1.3.1 Part I: Machine Learning for Communication Systems

Chapter 3

Chapter 3 introduces an arbitrary autoencoder architecture for joint channel coding and

modulation for an end-to-end digital communication system in AWGN channels. This is

compared against various coding schemes such as Hamming and Golay codes with mod-

ulations with Phase Shift Keying (PSK) such as Binary PSK (BPSK), Quadrature PSK

(QPSK), 8-PSK and Quadrature Amplitude Modulations (QAM) such as 16-QAM and

64-QAM.We also delve further into conditional block error rate for Hamming(7, 4)+BPSK

and Hamming(15, 11)+BPSK to gather new insights about the geometry of the codewords

generated by the autoencoder. Here are the contributions:

1. We discover that the transmitter side of the autoencoder can just be an embedding

and for AWGN channels, the receiver side can just be a matched filter. This can

improve training speed, reduce model size and increase the overall efficiency of

block codes. It also helps us to solve an end-to-end optimization problem for

longer blocklength codes.

2. We also discover a parsimonious matched-filter based receiver architecture for

AWGN channels with efficient parameterizations for linear block codes that re-

duces the number of paramaters.

3. We discover that minimum distance is not a good predictor of BLER. The codes

learned by autoencoder have worse minimum distance than classic codes with

similar modulations, but they perform better because most of the codewords have

better distance properties.

4. We discover that we need to train at an SNR with sufficient numbers of block

errors. Otherwise, the training will be slowed down. However, if we train at one

SNR, the code will work at all SNRs. Hence, there is no need to have a family of

codes for different SNRs.

5. We discover that training at different SNRs may lead to different codes. This is

11

not because different codes are better at different SNRs, but because the objec-

tive function is multimodal and we converge to local maxima for each random

initialization.

6. We present a detailed analysis on conditional block error rates for linear block codes

and present insights on the geometry of autoencoders and answer the question on

how have an edge over a typical decoding approach.

Chapter 4

Chapter 4 extends our autoencoder-based approach to other non-canonical channels such

as Bernoulli-Gaussian Impulsive Noise (BGIN) channel for the coding and modulation

schemes considered in Chapter 3. Here are the contributions:

1. We propose a family of autoencoders rather than employing heuristic techniques

in impulsive noise channels to minimize the BLER.

2. We also discover a parsimonious architecture for BGIN channels with efficient

parameterizations for linear block codes that reduces the number of parameters.

3. Numerical results show that the trained autoencoder uniformly outperforms classi-

cal block codes with BPSK modulation in the BGIN channel even when impulsive

noise mitigation techniques such as blanking and clipping are employed.

1.3.2 Part II: Machine Learning for Dynamical Systems

Chapter 5

Chapter 5 introduces the oscillator phase prediction problem under parametric mismatch.

We propose alternative solutions based on ML and compare it with Riccati equation

and least squares fit. Numerical results show that by using a CNN, we can achieve a

performance similar to steady state. Here are the contributions:

1. We formulate a dynamical system as a time-series forecasting problem and design

and develop data-driven approach to predict dynamic random processes where we

12

use state observations to predict the next internal state.

2. We show a proof-of-concept demonstration with oscillator phase predictions and

study the performance of a Kalman filter that uses mismatched parameters to

better understand the sensitivities of the Kalman filter to parameter mismatches.

3. We use a circular mean-squared-error loss function to predict phases as opposed

to a regular mean squared error function.

Chapter 6

Chapter 6 focuses on tracking with Kalman filter model switching and considers a specific

application: maneuvering target tracking, where the target switches between a linear

constant velocity mode and a nonlinear coordinated turn mode. We develop neural

network algorithms that dynamically adapt to maneuvering target tracking. Here are the

contributions:

1. We propose an alternate approach using a Temporal Convolutional Network (TCN)

and demonstrate its performance with numerical results.

2. We also propose a surrogate hybrid model by appending autoencoders with Kalman

filter, specifically introducing Autoencoder Interacting Multiple Model (AEIMM)

and demonstrate its performance with numerical results.

3. We apply domain randomization for designing a robust learning model and avoid

overfitting.

4. We show numerical demonstrations of AEIMM outperforming both model-based

and learning-based approaches for the system model 6.2.

Chapter 7

Chapter 7 focuses on tracking with Kalman filter model switching and considers a different

application: a Gilbert-Elliott burst noise communication channel that switches between

two different modes, each modeled as a linear system. Here are the contributions:

13

Kalman Filter (KF)

Extended Kalman Filter

Riccati Equation

Least Squares Fit

Interacting Multiple

 Model (IMM)

Convolutional Neural

 Networks

Long-short Term Memory

Neural Networks

Autoencoder(AE)

AE-KF

AE-IMM

AE-KF

AE-IMM

Figure 1.3: Hybrid models in Chapter 6.

1. Numerical simulations demonstrate that a TCN, which is considered in Chapter 6,

outperforms classical tracking methods.

2. We discover that the TCN tends to identify a mode switch faster than an IMM and

that, in some cases, the TCN can perform almost as well as an omniscient Kalman

filter with perfect knowledge of the current mode of the dynamical system.

This is followed by a conclusion and a discussion of potential research for both parts

of the dissertation.

1.4 Publications

1. A. Grootveld, K. Vedula, V. Bugayev, L. Lackey, D.R. Brown III, and A.G. Klein.

Tracking of Dynamical Processes with Model SwitchingUsing Temporal Convolu-

tional Networks. Submitted to the 2021 IEEE Aerospace Conference (AERO-

CONF 2021), Big Sky, Montana, Mar 6-13, 2021. In review.

2. K. Vedula, M.L. Weiss, R.C. Paffenroth, J.R. Uzarski, D.R. Brown III Maneu-

vering Target Tracking using Autoencoder Interacting Multiple Model Filter, 54th

Asilomar Conference on Signals, Systems, and Computers, Pacific Grove, CA,

14

November 3-6, 2020.

3. K. Vedula, R.C. Paffenroth, and D.R. Brown III. Joint Coding and Modulation in

the Ultra-Short Blocklength Regime for Bernoulli-Gaussian Impulsive Noise Chan-

nels Using Autoencoders, 45th International Conference on Acoustics, Speech, and

Signal Processing (ICASSP 2020). Barcelona, Spain, May 4-8, 2020.

4. K. Vedula, D.R. Brown III Deep Learning for Predicting Dynamic Random Pro-

cesses with Parametric Mismatch, Technical Report, June, 2018.

5. J. McNeill, S. Razavi, K. Vedula, and D.R. Brown III. Experimental Character-

ization of Oscillator Stability for Carrier Phase Synchronization. Proceedings of

the 2017 IEEE International Instrumentation and Measurement Technology Con-

ference (I2MTC), Torino, Italy, May 22-25, 2017.

15

Chapter 2

Background: Communication

Systems and Dynamical Systems

In this chapter, we provide the required background on communication systems and

dynamical systems. The ideas discussed in this chapter are used in parts I and II of this

dissertation. We divide this chapter into two parts:

1. Section 2.1 provides the relevant background information on traditional commu-

nication systems. We compare our machine learning approaches against some tra-

ditional techniques like hard decision and soft decision decoding and asymptotic

finite blocklength coding bounds. We also briefly discuss different kinds of modu-

lations such as Pulse Amplitude Modulation, Phase Shift Keying and Quadrature

Amplitude Modulation.

2. Section 2.2 discusses the basics of dynamical systems and presents a few methods

to solve for optimal solutions such as Kalman filter, least squares fit, discrete-time

Riccati equation and Interacting multiple model.

2.1 Communication Systems

We introduce channel coding in Section 2.1.1, energy and power constraints in Sec-

tion 2.1.2. Then, we discuss about Hamming codes and signal detection techniques such

as hard decision and soft decision decoding. Then, we discuss finite blocklength coding

bounds in Section 2.1.5. Section 2.1.6 briefly discusses different kinds of modulation.

Finally, in Section 2.1.2, we discuss different kinds of energy constraints.

Figure 2.1 shows a traditional approach for a typical communication system that

wishes to send a message from point A to B. Each communication system block is opti-

mized individually for a different functionality. The classical approach at the transmitter

is to provide a block of k bits at the input of the channel encoder, map these bits to an

n-bit codeword, and then map this codeword to m real-valued symbols for transmission

through the channel. This is done by upsampling and pulse shaping. The channel can add

various kinds of impairments such as additive or multiplicative noise. Similarly, at the re-

ceiver, the noisy symbols are first filtered and synchronized so that they are aligned with

the transmitted symbol. Then they are demodulated and channel decoding is performed

either on the soft demodulator outputs or on the hard decisions from the demodulator.

We briefly detail each step in the following sections. For a detailed treatment, we refer

the reader to a standard communication systems textbook [16].

2.1.1 Channel Coding

Source coding is used for compression and removing the redundancy from sources, such

as compressing into JPEG pictures. However, we also need channel coding to add redun-

dancy to a message to make it more robust against noise and reliably communicate to

the receiver. This provides large gains in system efficiency. For a binary code, the code

rate R is defined as

R =
k

n
(2.1)

17

Transmitter

Receiver

Channel

Source

Destination
Source

Decoding

Channel

 Coding
Modulation

Demod-

ulation

Channel

Decoding

Source

Coding

Figure 2.1: Traditional block-by-block approach for a communication system.

where n is the number of bits in the codeword, and k is the number of bits in the message.

As an example, we can take a repeat code which takes a 1-bit message u ∈ {0, 1}and

maps it to codeword of length 5 by repeating the message bit. This gives a binary

codeword 00000, 11111. The code rate for this is R = 1
5
.

As in Figure 2.2,our goal is to send a message - in this case, 1001 to the destination.

To make sure that the message would reach correctly, we send each bit thrice. This is

called repetition coding, and it is one of the simplest forms of channel coding. If 1 is the

message, 111 is the codeword. Similarly, if we list all the codewords for all the possible

messages, we get a codebook. We also use terms like embedding and constellation to mean

the same concept. The process of modulation turns into a cosine wave, where 1 would be

represented by a sinusoidal wave with a positive magnitude, 0 would be represented by

a sinusodial wave with a negative magnitude. Typically, when we add Gaussian noise to

the vector that goes through the channel, it makes it blurry. That is, it puts the symbol

on a point cloud and modulates it onto a BPSK constellation i.e. we modulate it to a

sinusoidal wave with +1, another sinusoidal wave with −1 as magnitude and adds noise

to it. If we compare the sent and received codewords - we see that only 3 out of 4 bits

arrived properly in one block, and there is an error in one bit, hence error in the block.

18

Transmitter

Receiver

Channel

Source

Destination
Source

Decoding

Channel

 Coding
Modulation

Demod-

ulation

Channel

Decoding

Source

Coding

1110000001111001

codewordmessage

101001011111

demodulated

codeword

101 001 011 1111011

-1 -0.5 0 0.5 1

In-Phase

-1

-0.5

0

0.5

1

Q
u

a
d

ra
tu

re

decoded

message

(full-entropy)

-1.5 -1 -0.5 0 0.5 1 1.5
-1.5

-1

-0.5

0

0.5

1

1.5

In-Phase

Q
u

a
d

ra
tu

re

111 000 000 111

data stream

1-1

Figure 2.2: Working example for an end-to-end traditional communication system.

So the block error rate (BLER) is 1/4. Similarly, if we look at the sequence on the whole,

we only lose a bit - so the bit error rate (BER) is 1/16.

2.1.2 Energy and Power of Codewords

The signal-to-noise ratio (SNR) of communication system can be defined in terms of the

energy per information bit Eb, and the average energy per transmitted symbol Es.

The modulator in a standard digital communication system takes k bits of information

(binary symbols) and maps to a set of corresponding waveforms sm(t), 1 ≤ m ≤ M,M =

2k. Let Em be the energy of the waveform sm(t). Now, the average signal energy is given

by

Es =
M∑

i=1

pmEm (2.2)

where pm indicates the probability of the mth signal. Assuming all messages are

19

equiprobable, we can set pm = 1/M . Then,

Es =
1

M

M∑

i=1

Em (2.3)

The average energy for transmission of one bit of information, or average energy per

bit, when the signals are equiprobable is given by

Eb =
Es

log2 M
(2.4)

If a communication system is transmitting an average energy of Eb per bit, and it

takes T seconds to transmit this average energy, then the average power sent by the

transmitter [16] is given by

P =
Eb
T

= REb (2.5)

where R is the code rate of the signal.

2.1.3 Hamming Code

Hamming codes were one of the earliest block codes used to detect errors in the calcula-

tions of the relay-based computers at the time. They are characterized by the structure

(n, k) = (2n− 1, 2n− 1−m) where m = 2, 3, They can detect up to all combinations

of 2 or fewer errors within a block. For example, the (7, 4) binary Hamming Code has

n = 7, M = 16, and dmin = 3. The code can be defined in terms of a Venn diagram show-

ing three partially overlapping sets. Each of the seven subregions represent a code bit

and the three circles represent even parity constraints. Any single error can be corrected

by observing each bit error gives a unique pattern of parity violations. The codewords

20

can be listed as follows:

0000000 0100110 1000011 1100101

0001111 0101001 1001100 1101010

0010101 0110011 1010110 1110000

0011010 0111100 1011001 1111111

(2.6)

2.1.4 Optimal Symbol Detection

Let H0, H1, . . . , Hm−1 be m different hypotheses associated with a random observation

Y . The probability of a hypothesis before the observation, Pr(Hi), is called the a priori

probability. For each hypothesis, the connection with Y is defined by the observation

probability Pr(Y = y |Hi). The goal is to choose a decision functionD(y) which minimizes

the decision error probability for any observation. This is equivalent to maximizing the

probability that the decision is correct. If Y = y, then the probability that hypothesis

Hi is correct is given by its a posteriori probability Pr(Hi |Y = y). Therefore, one finds

that the optimal choice is the maximum a posteriori probability (MAP) decision rule.

Hard Decision Decoding

Hard Decision Decoding sets a threshold on the received signal and decodes each bit by

considering it as 1 or 0. Suppose a BPSK signal is transmitted through our discrete-time

AWGN channel model. The detector must decide whether a 0 or 1 was transmitted. So,

the decision region D(y) is

D(y) =







0 if y ≥ 0

1 if y < 0

. (2.7)

This detector is optimal if 0s and 1s are transmitted with equal probability. In general,

if the code bits are transmitted over an AWGN channel using BPSK followed by a hard-

21

decision detector, then we have

Pr(Y = y |Hi) = Q

(√

2Es
N0

)

= Q

(√

2REb
N0

)

. (2.8)

which we can use to make fair comparisons between coding systems with different rates.

Soft Decision Decoding

Soft Decision Decoding determines the maximum likelihood estimate by computing the

correlations on the signal. We consider the decision function

D(y) = arg max
i∈{0,...,m−1}

Pr(Hi |Y = y). (2.9)

and compute the probabilities with Bayes’ rule using the a priori probabilities and obser-

vation probabilities. This gives

Pr (Hi|Y = y) =
Pr(Hi) Pr(Y = y|Hi)

∑m−1
j=0 Pr(Hj) Pr(Y = y|Hj)

. (2.10)

The denominator of this expression is the same for all i, the MAP rule can be simplified

to

D(y) = arg max
i∈{0,...,m−1}

Pr(Hi) Pr(Y = y|Hi). (2.11)

We can also define a maximum likelihood (ML) decision rule

D(y) = arg max
i∈{0,...,m−1}

Pr(Y = y|Hi), (2.12)

which ignores the a priori probability. When all the hypotheses have the same a priori

probability, ML and MAP are identical.

Now, for a system which transmits BPSK over an AWGN channel, let H0 be the hy-

pothesis that 0 was sent and H1 be the hypothesis that 1 was sent. For binary hypothesis

22

problems, the MAP decision rule can be written as

Pr(H0) Pr(Y = y|H0)
H0

≷
H1

Pr(H0) Pr(Y = y|H0), (2.13)

If Pr(H0) = 1− p and Pr(H1) = p, then one can substitute to rewrite this as

(1− p)
1√
2πσ2

e−(y−1)2/(2σ2)
H0

≷
H1

p
1√
2πσ2

e−(y+1)2/(2σ2) ⇒ y
H0

≷
H1

σ2

2
ln

p

1− p
. (2.14)

2.1.5 Finite Blocklength Coding Bounds

A theoretical analysis of the interplay between block-error probability, communication

rate, and block size is required in some applications. Hence, nonasymptotic achievability

and converse bounds on the maximum coding rate for several channel models that are

relevant for wireless communication systems, such as the AWGN channel and the Rayleigh

block-fading channel. In our case, we want to compare the performance of the autoencoder

approach with the finite blocklength coding bounds.

In this section, we briefly review some of these finite length bounds. They will serve

as benchmark curves on the codes designed by the autoencoder. We also consider the

converse and achievability bounds on block error rate (BLER) based on finite-blocklength

information theory to benchmark the Hamming codes considered here and to characterize

the maximum code rate achievable for a given blocklength. First, we introduce Shannon’s

sphere packing bound (SPB) [46].

Sphere Packing Bound

Shannon introduces the sphere packing argument that a randomly picked Voronoi cell

does not exhibit a better probability of error than a circular cone of the same solid angle.

This claim is based on propositions stating that among the cones of a given solid angle,

the circular one provides the lowest probability of error and it is best to share the total

solid angle evenly between all Voronoi cells [46].

23

This helps us to evaluate the performance limits of block codes over an AWGN channel

by providing a lower bound on the block error rate for any code whose codewords lie on a

spherical shell. Typically, during detection, an error occurs if the received sequence falls

outside the Voronoi region on the plane of detection that corresponds to the transmitted

signal point.

However, sphere packing bound just assumes that the signals have equal energy and

does not take into account of their modulation. Tighter bounds such as Gallager’s random

coding bound (RCB) and random coding union bound (RCU) are built upon this for

quantifying the sub-optimality of error-correcting codes associated with their decoding

algorithms.

Random Coding Union Bound

The achievability bounds are based on the random-coding union bound (RCU) [47] that

denotes the upper bound on the average probability of error attained by an arbitrary

codebook using a maximum likelihood decoder. This can be obtained by analyzing the

average behavior of random coding and maximum-likelihood decoding.

Normal Approximation

We also consider a normal approximation on BLER based on the Berry-Esseen theorem

by calculating the channel SNR 2REb/N0 and then computing the dispersion

V =
2REb/N0(2 + 2REb/N0)

2(1 + 2REb/N0)
2 (2.15)

and then, for n is the codeword length and R is the code rate, the probability of error

for the normal approximation comes to

Pe = Q

(√

n(C −R)

V log2 e+
log2 n

n

)

(2.16)

24

Metaconverse Bound

The metaconverse bound is based on the metaconverse theorem [48] in channel coding,

where one of the M equiprobable messages is sent through the channel with a codebook.

Since there is a codeword for each message, the input distribution induces a new distri-

bution at the encoder and an estimate of an input distribution at the decoder. Posing

this as an M -ary hypothesis testing problem, the meta-converse bounds gives a lower

bound on BLER. It provides a simultaneous generalization for previously known con-

verse bounds in the literature and yields the best converse bound known for channels

without feedback [49].

2.1.6 Signal Constellations

After forward error correction encoding, the bits are mapped to constellation symbols.

An M -ary constellation is a set of M points that are used for the pulse shaping. The

number M of points is usually chosen as a power of two. Once a channel model has

been defined, the next step is choosing how to transmit digital data through the channel.

Modulation converts a string of bits into a signal suitable for transmission over a commu-

nication channel. Demodulation transforms the information symbols are extracted from

the received signal.

Modulating to a high-frequency carrier allows two independent signals to be modu-

lated onto the same carrier frequency - one onto the sine wave and the other onto the

cosine wave. This allows us to treat the transmitted value xn and received value yn as

points in 2-dimensional space. The set X of possible transmitted points in 2-dimensional

space is called the symbol constellation or symbol embedding or a symbol codebook.

Constellations are typically defined by choosing the set of channel input values X ,

and then choosing the mapping function M : U → X . These are represented by complex

numbers C and the constellation is a subset X ⊂ C. Likewise, the transmitted symbol is

xn ∈ C and the received value is Yn ∈ C.

25

Since we are transmitting complex signals, the noise term zn consists of two i.i.d.

Gaussian random variables, one in each direction. The joint probability distribution is

given by

p(y(re)n , y(im)
n) =

(
1√
2πσ2

e
−
(

y
(re)
n −x

(re)
n

)2
/(2σ2)

)(
1√
2πσ2

e
−
(

y
(im)
n −x

(im)
n

)2
/(2σ2)

)

(2.17)

=
1

2πσ2
e−|yn−xn|

2/(2σ2). (2.18)

So, the probability of receiving a yn value is simply a function of its Euclidean distance
√

|yn − xn|
2
from the actual transmitted symbol. This leads to a geometric characteri-

zation of the optimal decision regions for the detector.

We now discuss three kinds of modulation schemes which give distinct constellations.

Pulse Amplitude Modulation

Pulse amplitude modulation (PAM) embeds data in the amplitude of a single waveform

u(t) = uφ(t). We can segment the data into blocks of k bits and each block is mapped

into one of 2k = M possible real numbers within the constellation set

A =

{

−d(M − 1)

2
, . . . ,−d

2
,
d

2
, . . . ,

d(M − 1)

2

}

. (2.19)

where d is the distance between adjacent points. The sent message is recovered by taking

the inner product of u(t) with the basis element φ(t),

u = 〈u(t), φ(t)〉 =
∫

R

u(t)φ∗(t)dt, (2.20)

Generalizing to an M -PAM system where x ∈ {(−M + 1)c, . . . ,−c, c, . . . , (M − 1)c}.

Each x is has a different amount of energy and is also associated with log2 M bits. We

26

−3 −2 −1 0 1 2 3

00 01 11 10

Figure 2.3: An example of a 4-PAM constellation.

can compute the average energy per symbol as

Es =
1

M

∑

m∈M

c2m2 =
c2(M2 − 1)

3
(2.21)

where M = {−M + 1,−M + 3, . . . ,−1, 1, . . . ,M − 3,M − 1}. The energy per bit then

follows as

Eb =
Es

log2 M
=

c2(M2 − 1)

3 log2M
=

c2(4k − 1)

3k
. (2.22)

Given Eb and M (or k), we can find c so that the M -PAM constellation is scaled

properly and has the correct Eb. Different symbols have different energies, but they are

transmitted with equal probability. c is chosen so that the average energy per symbol is

Es = kEb. Roughly speaking, for large PAM constellations, the energy consumption per

bit doubles with every additional bit. Figure 2.3 shows an example constellation.

For 4-PAM, we use four symbols X = {−3,−1, 1, 3}. Typically, we center them

around 0 to minimize the transmitted energy. The decision function is

D(y) =







00 if y < −2

01 if − 2 ≤ y < 0

10 if 0 ≤ y < 2

11 if y ≥ 2

. (2.23)

Quadrature Amplitude Modulation

QAM modulates baseband waveforms with sinusoid carriers. The in-phase cos(2πfct)

and quadrature sin(2πfct) components of the bandpass signal correspond to the real and

27

Figure 2.4: Symbol constellations X for 16-QAM.

imaginary parts of the baseband waveform. The standard QAM constellation with 16

points (known as 16-QAM) is given by

X =
{
a+ bi

∣
∣ a, b ∈ {−3,−1, 1, 3}

}
⊂ C. (2.24)

The average energy of this constellation is given by

Es =
1

16

∑

a,b∈{−3,−1,1,3}

(a2 + b2) (2.25)

=
8

16

∑

a∈{−3,−1,1,3}

a2 (2.26)

= 10. (2.27)

28

Figure 2.5: Symbol constellations X for 8-PSK.

Phase Shift Keying

PSK maps the constellation points to be equally spaced around a circle as shown in

Figure 2.5. For M points, we have

X =
{
e2πik/M

∣
∣ k ∈ {0, 1, . . . ,M − 1}

}
⊂ C. (2.28)

where the data is embedded in the sinusoidal phase θ.

2.1.7 Constellation Shaping

We also consider constellation shaping in this disseration in the context of per-codebook

energy constraint imposed on the autoencoder. Constellation shaping describes the opti-

mization of a modulation format with equidistant and equiprobable signal points towards

some shape that is tailored to the transmission channel. Geometric shaping optimizes

the location of constellation points. However, a few alternate approaches exist in the

literature namely:

29

• Adaptive modulation and coding (AMC): This is widely employed in modern

wireless communication systems to improve the transmission efficiency by adjusting

the transmission rate according to channel conditions. It can provide very efficient

use of channel resources especially over fading channels [50].

• Minimum energy coding (MEC): This maps the messages to codewords such

that the average codeword energy is minimized under asymmetric modulation as-

sumption. Here, channel symbols with smaller energy are mapped to 0 leading to

a reduced energy dissipation because transmitting 0 requires less energy than 1.

Codeword weights and original message-codeword mappings are chosen such that

the expected code weight is minimized at the cost of increased codeword length [51].

• Probabilistic Amplitude Shaping (PAS): This modifies the probability of the

constellation symbols, which remain on a square grid. Classic PS schemes are for

example based on many-to-one mappings, trellis shaping, and shell mapping [52].

2.1.8 Types of Energy Constraints

Normalization can be enforced in a number of ways such as putting the constraint on

mean amplitude, mean power, maximum power, or other similar constraint, yielding

quite different results for each in some cases. This can also be done on a per-symbol or

per-batch level. Here, we consider three possible kinds of energy constraints.

A codebook C ∈ RM×M is a map from the set C. The codewords of the block code

represented by the matrix C are in the rows of C, i.e.,

C =









c1

...

cM









=









c1,1 . . . c1,M
...

cM,1 . . . cM,M









(2.29)

where the codeword ci ∈ R1×M .

Assuming the same value of E in all three cases, note that each constraint is succes-

30

sively less restrictive. In other words, satisfying the per-element energy constraint au-

tomatically satisfies the per-codeword and per-codebook constraints. Satisfying the per-

codeword energy constraint automatically satisfies the per-codebook energy constraint,

but may not satisfy the per-element energy constraint. This is also depicted in the Venn

diagram in Figure 2.6.

Per-codebook:

Per-codeword:

Per-element:

∑M
i=1 aia

⊤
i ≤ E

aia
⊤
i ≤ E

M
∀i

a2i,j ≤ E
nM

∀i, j

Figure 2.6: Energy constraints on a codebook for linear block codes.

Per-element energy constraint

We can impose a constraint on each individual element as shown in equation

c2i,j ≤
E
M2

(2.30)

for all i, j. This restricts every element in the codebook to have the same energy. This

is typically observed in a Quadrature Phase Shift Keying (QPSK) modulation where all

31

elements are required to have energy 1. This is shown in Figure 2.7.

-1 -0.5 0 0.5 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Figure 2.7: Example of per-element energy constraint.

Per-codeword energy constraint

Alternatively, we can impose a constraint on each codeword as shown in equation

cic
⊤
i ≤ E

M
(2.31)

for all i.

Here, each codeword is free to choose a point on the circle, but it is restricted to lie

on that circle. 8-PSK modulation is an example of per-codeword energy constraint. This

is shown in Figure 2.8.

Per-codebook energy constraint

With this kind of constraint, we have the freedom to map the channel symbol with

smaller energy cost to 0 symbol. The per-codebook energy constraint is equivalent to an

32

-1 -0.5 0 0.5 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Figure 2.8: Example for a per-codeword energy constraint.

average-codeword energy constraint since

M∑

i=1

cic
⊤
i ≤ E ⇔ 1

M

M∑

i=1

cic
⊤
i

︸ ︷︷ ︸

average codeword energy

≤ E
M

(2.32)

M∑

i=1

cic
⊤
i ≤ E (2.33)

A standard QAM constellation is a good example for per-codebook energy constraint,

as shown in Figure 2.9.

The per-codebook energy is equal to the squared Frobenius norm, i.e.,

M∑

i=1

cic
⊤
i = ‖C‖2F ≤ E (2.34)

hence, given any non-zero matrix C, we can scale it to satisfy the per-codebook energy

constraint by computing

C̄ =

√
E

‖C‖F
C. (2.35)

We finish the discussion on the ideas pertaining to Part I. These ideas will be used in

33

-3 -2 -1 0 1 2 3
-3

-2

-1

0

1

2

3

In-Phase

Q
u

a
d

ra
tu

re

Figure 2.9: Example for a per-codebook energy constraint.

Chapters 3 and 4. We now move on to ideas pertaining to Part II of the dissertation.

2.2 Dynamical Systems

In this section, we start with introducing the notion of state, observations and tracking.

In Section 2.2.1, we discuss the steps involved in determining the optimal estimates and

predictions using a Kalman Filter. Then, we discuss other techniques like least squares

fit in Section 2.2.2 and discrete-time Riccati equation in Section 2.2.3. Then, we consider

a situation with model switching and discuss the implementation details of an interacting

multiple model (IMM) filter in Section 2.2.4.

A state is a set of measured and estimated target parameters. A track is a state

trajectory estimated from a set of measurements that are assumed to be from the same

target. Tracking involves processing of noise-corrupted observations obtained from a

target in order to maintain an estimate of its current state.

For example, in a position tracking application, the position and velocity of the tar-

get could be the states. We aim to estimate/predict these states from a set of noisy

34

measurements. There are many other problems that require us to estimate dynamic

or time-varying parameters, such as stock market price prediction and communication

systems.

We first need to develop a general dynamic model to observe how these time-varying

parameters are evolving over time as well as how the observations are generated from

state parameters.

We start with a generic dynamical system model in discrete-time with time-steps of

k.

x[k + 1] = Fx[k] +Gu[k] + v[k] (2.36)

with v[k] ∼ N (0,Q) where Q is the discrete process noise covariance. The discrete-time

observation equation is given by

y[k] = Hx[k] + w[k] (2.37)

with w[k] ∼ N (0,R).

Intuitively, the process noise represents our lack of knowledge about the system dy-

namics. The larger the process noise, the smaller will be our trust on the state equation.

The measurement noise represents the imperfections in acquiring the data. The larger

the measurement noise, the smaller will be our trust on the measurements.

In these types of dynamical systems, x[k] is completely determined by the earlier state

x[l], l ≤ k with the corresponding inputs. The state at time l gives the details on what

happened prior to time l if we know x[l]. The estimation problem of state x[l] of the

system from measurements y[0], . . . , y[k] can be divided in three distinct problems:

• Filtering: Estimation of x[l] from noisy measurements with k = l

• Prediction: Estimation of x[l] from [y1, . . . , yk] with l > k

• Smoothing: Estimation of x[l] from [y1, . . . , yk] with l < k

Traditionally, dynamical systems were handled by Kalman Filter, Extended Kalman

35

Variable Meaning

F State transition matrix
x̂ Estimated state
G Input matrix
u Input
H Observation matrix
y Measurements
Q Process noise covariance matrix
K Kalman gain matrix
R Measurement noise covariance matrix

Table 2.1: Notation for Kalman Filter.

Filter and Interacting Multiple Model. They are well-studied in literature. Hence, we

briefly describe the main ideas. Further details can be found in [4], [53]–[56].

2.2.1 Kalman Filter

The Kalman filter (KF) [37] is a basic tool in analyzing stochastic linear systems and

provides the minimum mean squared error solution to a linear system when the process

under observation is completely represented by the state model. However, its success

relies on the knowledge of the system model. When the models are unknown or partially

known, it is hard to determine the covariances of the process and measurement noises [38].

This can typically happen during model switching which is governed by Markov chain

based probability transition matrices, as demonstrated in Chapter 7

Kalman Filter starts with an initial mean and covariance equal to the true mean and

covariance of the initial state distribution µ[0] = x̂[0| − 1] and Σ[0] = Σ[0| − 1], assuming

a Gaussian distributed initial state x[0] ∼ N (µ[0],Σ[0]). The recursive process starts

with k = 0 and for each iteration, we have

x̂[k|k − 1] = F [k]x̂[k − 1|k − 1] (Predicted State Estimate) (2.38)

Σ[k|k − 1] = F [k]Σ[k − 1|k − 1]F⊤[k] +G[k]Q[k]G⊤[k] (Predicted Covariance)

(2.39)

36

K[k] = Σ[k|k − 1]H⊤[k]



HΣ[k|k − 1]H⊤[k] + r[k]
︸ ︷︷ ︸

Residual Covariance





−1

(Kalman Gain)

(2.40)

x̂[k|k] = x̂[k|k − 1] +K[k]




y[k]−Hx̂[k|k − 1]
︸ ︷︷ ︸

Residual/Innovation




 (Estimated State) (2.41)

Q[k] = I −K[k]H (2.42)

Σ[k|k] = Q[k]Σ[k|k − 1]Q⊤[k] +K[k]R[k]K⊤[k] (Est. Covariance) (2.43)

(2.38) represents the a priori state estimate (estimating the state before having seen the

actual measurement) of x̂[k|k − 1] at discrete-time k. Σ[k|k] and Σ[k|k − 1] in (2.39)

and (2.43) denote the one-step prediction error estimation and the next prediction error

covariance matrices (ECM), also known as a priori estimate covariance. They also contain

the innovation and innovation covariance terms. An innovation is simply the difference

between the actual measurement and the a priori estimate, mapped into the measurement

space. (2.40) is the Kalman Gain, which weights the innovation’s contribution to the final

state estimate. Kalman gain K is “proportional” to the covariance between the state

prediction error and the innovation and is “inversely proportional” to the innovation

covariance. Lastly, equations (2.41) and (2.43) are the a posteriori state estimate and a

posteriori estimate covariance respectively.

Figure 2.2.1 depicts these steps sequentially. At each time step, the state vector x[k] is

propagated to the new state estimation x[k+1] by multiplication with the constant state

transition matrix F . The state vector x[k + 1] is additionally influenced by the control

input vector u[k + 1] multiplied by the input matrix G, and the process noise vector of

the system v[k + 1]. The system state cannot be measured directly. The measurement

vector y[k] consists of the information contained within the state vector y[k] multiplied

by the measurement matrix H , and the additional measurement noise w[k].

Kalman Filter is versatile and can be used for for widely varying environments by

37

Inputs

States

Measurements

u[k − 1] u[k] u[k + 1]

v[k − 1] G v[k] G v[k + 1] G

· · · x[k − 1] F x[k] F x[k + 1] · · ·

w[k − 1] H w[k] H w[k + 1] H

y[k − 1] y[k] y[k + 1]

Figure 2.10: One iteration of Kalman Filter for a linear dynamical model.

38

changing a few parameters. It automatically handles missed detections and non-uniform

sampling intervals. However, we need the state and measurement models to be linear,

and the statistics for the measurement noise have to be accurately known and should

follow a zero-mean Gaussian distribution. It is also computationally intensive compared

to fixed-gain filters.

A major caveat for the KF is that in order to obtain an optimal state estimate, the

KF requires exact knowledge of the system model as well as the process noise and mea-

surement noise parameters. The performance of the KF degrades if there are mismatches

between the true dynamical system and the assumed model; this topic has received signif-

icant attention in the literature and numerous approaches have been proposed to mitigate

this degradation.

2.2.2 Least Squares

While least squares is a well-known technique, we briefly review it here because it as an

example of a “data-driven” estimator that does not require knowledge of the underlying

dynamical system model, though it does require training data containing a collection of

known state variables and the corresponding observations. In the steady state, a Kalman

filter predictor can be written in the form

x̂[k + 1|k] = a0y[k] + a1y[k − 1] + a2y[k − 2] + . . . (2.44)

where, if the dynamics and noise parameters are all known, the {ai} coefficients can

all be computed as functions of the steady state prediction and estimation covariances.

These are all, consequently, functions of the steady state Kalman gain. This results in a

stable IIR filter that resembles a Kalman filter, and it can be approximated by truncating

the number of terms so that

x̂[k + 1|k] ≈ a0y[k] + a1y[k − 1] + · · ·+ aLy[k − L] (2.45)

39

where L + 1 is the number of terms in the truncated sequence. Thus, the problem

is to find {a0, . . . , aL} to minimize the mean squared prediction error without requiring

knowledge of the dynamics or noise parameters. Given enough y[k] observations, this can

be accomplished using least squares on the linear system of equations









x̂[k]

...

x̂[k −M]









︸ ︷︷ ︸

,X̂

=









y[k − 1] . . . y[k − L− 1]

...
. . .

...

y[k −M − 1] . . . y[k − L−M − 1]









︸ ︷︷ ︸

,Y









a0
...

aL









︸ ︷︷ ︸

,a

(2.46)

which for M ≥ L can be solved as a standard least squares problem, i.e.,

aLS = (Y ⊤Y)−1Y ⊤X̂. (2.47)

2.2.3 Discrete-time Algebraic Riccati Equation

The Discrete-time Algebraic Riccati Equation (DARE) considers a Kalman filter at steady

state and helps us better understand its sensitivities. We assume that we have a time-

invariant system with F [n] ≈ F ,G[n] ≈ G,H [n] ≈ H and the means of process and

measurement noise covariance matrices Q = R = 0. Additionally, we assume that

F ,H is completely observable and F ,D⊤ is completely controllable, where Q = D⊤D.

Under these conditions, the covariance matrices and the Kalman gain will converge to a

steady state. Now, the one-step-ahead (prediction) error covariance matrix P provides

the asymptotic performance bounds using DARE. The steady-state prediction covariance

matrix P is given by

P = F
[
P−PHT (HPHT +R)−1HP

]
F T +Q (2.48)

40

Using this, the steady-state estimation covariance S is calculated just after observation

as

S = P−PHT (HPHT +R)−1HP (2.49)

The error covariance matrix can be calculated offline and updated independently of the

rest of the model. DARE is typically used as a baseline in determining the optimality of

tracking and prediction algorithms. We see its application in Chapters 5 and 7.

2.2.4 Interacting Multiple Model

Capturing the correct model dynamics with a single Kalman Filter can be problematic

in situations where the state being estimated exhibits multiple dynamic modes. Unlike

the prior estimators which do not give any special consideration to the switching nature

of the model, the IMM filter [40] is a suboptimal estimator designed specifically for

dynamical systems with model switching. The IMM falls into the class of estimators that

use multiple filter models, typically with one matched to each of the N modes of the

system. Other approaches in this class include, for example, the Generalized Pseudo-

Bayesian (GPB) methods [39]. In such approaches, minimizing computation becomes

very important due to the exponentially increasing number of state hypothesis. The

IMM effectively combines hypotheses from multiple filter models in a computationally

efficient manner, and is therefore widely used in practice for state estimation in dynamical

systems with model switching.

The model inaccuracy is addressed by facilitating an interaction between them for

different modes at the beginning of each filter cycle. These are weighed accordingly

by the conditional probabilities of switching between model modes. We summarize the

algorithm briefly here and direct the reader to [39] for a detailed treatment. Figure 2.11

presents the steps for a single iteration of the IMMKF.

The IMM estimates the blended states and covariances iteratively at each step by

combining the initial conditions, states, and their associated covariances according to the

41

Mixing

Mode

Probability

Calculation

Output

Estimate

Calculation

KF-1

KF-2

Mixing

Probability

Calculation

. . .

. . .

. . .

. . .

. . .

. . .

. . .

{µ1
k−1, µ

2
k−1}

x̂[k − 1]1

x̂[k − 1]2

Σ[k − 1]1

Σ[k − 1]2

x̂[k − 1]01

Σ̂[k − 1]01

yk

x̂[k − 1]02

Σ̂[k − 1]02

x̂[k]1

Σ̂[k]1

x̂[k]2

Σ̂[k]2

{µ1
k, µ

2
k}

x̂[k]
Σ̂[k]

Figure 2.11: Block diagram of a single step of the IMM algorithm for two models.

mode transition probabilities. Denote the state estimate at time k−1 of the filter matched

to the ith mode as x(i)[k − 1|k − 1] and its corresponding covariance Σ(i)[k− 1|k− 1] for

i ∈ 1, . . . , N , then each step of the IMM filter performs the following:

1. Calculate

• mixing probabilities {µi|j[k − 1|k − 1]}Ni,j=1,

• mixed estimates {x̂(0i)[k − 1|k − 1]}Ni=1,

• covariances {Σ(0i)[k − 1|k − 1]}Ni=1.

2. Using each of the N mode-matched models, calculate predicted estimates x̂(i)[k|k−

1] and covariances from mixed estimates in the previous step for ith model, i ∈

1, . . . , N .

3. Calculate updated estimates x̂(i)[k|k] and covariances from the predicted estimates

for ith model, i ∈ 1, . . . , N and calculate the updated mode probabilities µi[k].

4. Calculate the output state estimate and covariance estimates. The overall output

42

state estimate is computed as

x̂[k|k] =
N∑

i=1

x̂(i)[k|k]µi[k]. (2.50)

While the traditional IMM as outlined above outputs state estimates, it can also be

used to output state predictions. By using the assumption that the predicted mode

probabilities at time k+1 given knowledge up through time k are equal to the estimated

mode probabilities at time k, i.e., that µi[k+1|k] ≈ µi[k] as in [57], the overall predicted

state can be computed via

x̂[k + 1|k] =
N∑

i=1

x̂(i)[k + 1|k]µi[k + 1|k]

≈
N∑

i=1

x̂(i)[k + 1|k]µi[k].

However, the IMM is a heuristic algorithm designed to yield a good performance only

within the class of a fixed structure algorithms. It is not known to be generally optimal

and does not guarantee robust performance. An IMM may give unsatisfactory results for

particular scenarios such as nonlinear target dynamics during a turn and sudden starts

and stops of maneuvers in model switching.

We finish the discussion on the ideas pertaining to Part II. These ideas will be used

in Chapters 5, 6 and 7. Now, we divide this dissertation into two parts, discussing the

results for communication systems in Part I and dynamical systems in Part II.

43

Part I

Machine Learning for Reliable

Communication

Chapter 3

Joint Coding and Modulation in

Additive White Gaussian Noise

Channels

In this chapter, we consider the question of what can be gained by jointly designing

channel coding and modulation schemes with a focus on the short blocklength regime

with a small number of input bits per message. Here, we focus on linear block codes in

Additive White Gaussian Noise (AWGN) channels. This restriction is motivated by their

simplicity and performance. This regime is also of contemporary interest due to Internet

of Things (IoT) devices often transmitting only infrequent and short messages with low

latency requirements [58].

The focus in this chapter is on comparisons to BPSK-modulated Hamming codes

where (n, k) = (2ℓ − 1, 2ℓ − 1 − ℓ) for ℓ = 3, 4, . . . and m = n. For fair comparisons,

the autoencoder uses parameters (n, k,m) identical to those of the conventional coding

and modulation scheme and is subject to the same per-block total energy constraint as

conventional coding and modulation.

3.1 Key Contributions

The contributions in this chapter are:

1. We provide steps to simplify the autoencoder model, improve the training speed

and reduce parameters in autoencoders. This is detailed in Section 3.5.

• The transmitter part of the autoencoder can be a simple lookup table for

linear block codes. This is applicable to all channels with linear block codes.

• For AWGN channels, the receiver part of the autoencoder can be replaced by

either a matched filter or a posterior probability function when we know the

model.

2. We discover that the training of autoencoders should be done at SNRs with suffi-

cient numbers of block errors. Otherwise, the training will be slowed down. If we

train at one such SNR, the autoencoder finds a code that will work at all SNRs.

There is no need to have a family of codes for different SNRs. This is detailed in

Section 3.3.

3. We find improved different sets of QAM constellations because training at different

SNRs may lead to different codes and since, the objective function is multi-modal

and we can converge to local maxima.

4. We find surprising results in AWGN channels since the minimum distance is not a

good predictor of block error rate. The codes learned by autoencoders have worse

minimum distance than classical codes with binary phase-shift-keying (BPSK)

modulation, but perform better because most of the codewords have better dis-

tance properties. This is detailed in Section 3.6.5. We found codes with

• same performance as Hamming+BPSK but with a different structure.

• better performance than Hamming+BPSK with a structure with worse min-

imum distance properties.

Additionally, in Section 3.2, we discuss several aspects of an autoencoder-based com-

munication system, followed by designing efficient parameterizations for linear block codes

46

in AWGN channels in Section 3.5. We provide details on training the autoencoder in

Section 3.3. In Section 3.6, we look at results for Hamming (2, 4), (7, 4), (15, 11) and

higher-order modulations for Golay codes. We finally discuss and summarize findings in

Section 3.7.

3.2 System Model

We assume the point-to-point communication system model with M = 2k distinct mes-

sages and design the encoder and decoder similar to [8], [17], [59] as shown in Figure 3.2.

q

O
n
e-
h
ot
-E
n
co
d
in
g

s

fθT

C
on

st
ra
in
t

g

p

hθR

Im
p
ai
rm

en
t

se y

O
n
e-
h
ot

D
ec
o
d
in
g

q̂

Transmitter ReceiverChannel

RM Rn Rn RM

Figure 3.1: An autoencoder for an end-to-end communication system.

The classical approach at the transmitter is to provide a block of k bits at the input of

the channel encoder, map these bits to an n-bit codeword, and then map this codeword to

n real-valued symbols for transmission through the channel. Similarly, at the receiver, the

noisy symbols are first demodulated and channel decoding is performed either on the soft

demodulator outputs or on the hard decisions from the demodulator. The autoencoder

considered here lumps the coding and modulation functions into fθ : {0, 1}k 7→ Rn, the

memoryless channel function into g : Rn 7→ Rn, and the demodulation and decoding

functions into hθ : Rn 7→ {0, 1}k. The subscript θ indicates that these functions have

parameters that we can adapt and learn to achieve a certain goal, e.g., minimizing the

BLER.

47

We design the encoder and decoder similar to [8], [17] as shown in Figure 3.2. The

transmitter seeks to communicate message q ∈ {1, . . . ,M} to the receiver. The message

is first mapped using a one-hot-encoding scheme to s = 1q where 1q ∈ RM is a standard

basis vector with qth element equal to one and all other elements equal to zero. Let

Q = ∪M
q=11q ⊂ RM . The transmitter neural network then generates a channel input

se = fθ(s) where fθ : Q 7→ Rn and where θ represents the weight vectors and biases.

The channel input se is then sent through a mapping y = g(se) with g : Rn 7→ Rn

where a per-codeword energy constraint is imposed and an impairment (typically noise)

is applied. The receiver then applies the transformation hθ : Rn 7→ RM to compute a

posterior probability vector p ∈ RM of all possible messages q ∈ {1, . . . ,M} given y. The

decoded message q̂ is simply the index of the maximum element of p. The autoencoder

is trained end-to-end to minimize the categorical cross-entropy loss function L between

s and p with respect to θ.

We now describe each component in the block diagram.

3.2.1 One-hot Encoding

One hot encoding is a process by which categorical variables are converted into a form that

could help a machine learning algorithm to correctly classify into categories. Table 3.1

describes an example of one-hot encoding for a given set of colors red, yellow, green. We

can map the set in a way that there exists only one color in each row. Now, this row

uniquely represents the color and can easily be mapped back to it. We apply the same

Table 3.1: An example demonstrating one-hot encoding.
Color

Red
Red
Blue
Green
Blue

Red Blue Green

1 0 0
1 0 0
0 1 0
0 0 1
0 1 0

concept on M = 2k messages.

48

While one-hot encoding works well with nominal data and eliminates any issue of

higher categorical values influencing data, it can create very high dimensional encodings

depending on the number of categorical features you have and the number of categories

per feature. This can become problematic not only in smaller datasets but also potentially

in larger datasets as well.

3.2.2 Transmitter

The transmitter lumps the encoder and modulator together and seeks to communicate a

message q ∈ {1, . . . ,M} to the receiver. The message is first mapped using a one-hot-

encoding scheme to s = 1q where 1q ∈ RM is a standard basis vector with qth element

equal to one and all other elements equal to zero. Let Q = ∪M
q=11q ⊂ RM . The coding

and modulation functions are into fθT : {0, 1}k 7→ Rn. The transmitter neural network

then generates a channel input se = fθT (s) where fθT : Q 7→ Rn and where θT represents

the weight vectors and biases. A constellation of m complex dimensions is learned by

choosing the output of the encoder network and input of the decoder network to hold

n = 2m real dimensions.

3.2.3 Power Constraints

The channel input se is sent through a mapping y = g(se) with g : Rn 7→ Rn where a

constraint is imposed on the signal constellation. This is to ensure that the signals are not

being mapped too far from each other. Without any constraints on W , an autoencoder

will learn to make the codewords very large and drive the BLER to zero for any typical

additive noise distribution.

Hence, any reasonable formulation of an autoencoder for an additive noise channel

needs to apply a constraint to the embedding matrix W .

• Per-element energy constraint: w2
i,j ≤ E

nM
for all i, j.

• Per-codeword energy constraint: wiw
⊤
i ≤ E

M
for all i.

49

• Per-codebook energy constraint:
∑M

i=1 wiw
⊤
i ≤ E .

Assuming the same value of E in all three cases, note that each constraint is succes-

sively less restrictive. In other words, satisfying the per-element energy constraint au-

tomatically satisfies the per-codeword and per-codebook constraints. Satisfying the per-

codeword energy constraint automatically satisfies the per-codebook energy constraint,

but may not satisfy the per-element energy constraint.

Also note that the per-codebook energy constraint is equivalent to an average code-

word energy constraint since

M∑

i=1

wiw
⊤
i ≤ E ⇔ 1

M

M∑

i=1

wiw
⊤
i

︸ ︷︷ ︸

average codeword energy

≤ E
M

(3.1)

Finally, note that the per-codebook energy is equal to the squared Frobenius norm, i.e.,

M∑

i=1

wiw
⊤
i = ‖W ‖2F ≤ E (3.2)

hence, given any non-zero matrix W , we can scale it to satisfy the per-codebook energy

constraint by computing

W̄ =

√
E

‖W ‖F
W . (3.3)

3.2.4 Block AWGN Channel

We define a memoryless channel function into g : Rn 7→ Rn. Note that g subsumes both

channel and constraint. The channel does not have any trainable parameters and just

acts like a stochastic transformation of the input.

In this chapter, we consider a block AWGN channel which defines a mapping from

Rn → Rn

Y = g(X) = X +Z (3.4)

where X ∈ X n and Z ∼ N (0, σ2In) and n is the number of real symbols. In is an

50

identity matrix of dimension n× n.

For binary phase-shift-keying (BPSK) modulated symbols, X = {−√Ec,+
√Ec} where

Ec = kEb/n is the energy per bit of the modulated coded signal and Eb is the energy per

information bit. Such a channel can be compactly represented as AWGN(Eb/N0) where

Eb/N0 is the SNR of the AWGN channel.

The model in (3.4) has been studied in detail for decades and used as a benchmark to

understand and model various practical communication scenarios. The channel capacity

for AWGN channels is achieved by a codebook with Gaussian signaling. However, for

practical implementations, such a codebook is not feasible because of its complexity and

storage constraints.

The AWGN channel with BPSK inputs is used as a model for studying digital com-

munication schemes as noise sources are additive and independent of each other and when

added together, it can be approximated by a zero-mean Gaussian random variable accord-

ing to Central Limit Theorem. More details on phase-shift-keying and other modulation

schemes are given in Section 2.1.6.

3.2.5 Receiver

The receiver applies the transformation hθR : Rn 7→ RM to compute a posterior proba-

bility vector p ∈ RM of all possible messages q ∈ {1, . . . ,M} given y. The demodulation

and decoding functions into hθR : Rn 7→ {0, 1}k. The decoded message q̂ is simply the

index of the maximum element of p.

3.2.6 Intuition

We use the term autoencoders throughout this dissertation. An autoencoder refers to a

neural network architecture which is trained to replicate its input to its output [60], [61].

This is done in two stages as shown in Figure 3.2.6: an encoder, which compresses its

input to a lower dimension vector and a decoder that seeks to replicate the original input

51

from this lower dimensional non-linear manifold. Autoencoders are symmetrical in that

the encoding layer is mimicked in the decoding layer as an inverted version of the encoding

layer. They are typically used in non-linear dimensionality reduction, data-denoising and

compression.

x Encoder z Decoder x̂

Figure 3.2: A simple schematic for an autoencoder.

An autoencoder is a composition of two parametric functions, an encoder fθT and a

decoder hθR , with the aim of reproducing the input vector at the output. The parameter

vector θ = {θT , θR} holds all trainable variables. The subscript θ indicates that these

functions have parameters that we can adapt and learn to achieve a certain goal, e.g.,

minimizing the block error rate.

• The transmitter has to learn a meaningful representation of the input vector, which

when provided to the decoder, holds enough information for replication of the input

vector. To this end, the transmitter learns a higher order constellation where the

symbols align themselves in an optimal constellation geometry.

• The receiver learns decision boundaries in between the impaired symbols performing

like a maximum likelihood detector for the received signals.

The expectation is taken over each training batch. Since each message only holds a single

non-zero value, the inner summation over M requires only one evaluation. The average

of the cross-entropy over all samples is computed and through them an estimate of the

gradient with respect to the parameters of the model.

52

3.3 Training the Autoencoder

We take the following factors into account when we train the autoencoder.

• Batch Size: Large training batch size leads to slower convergence but better final

performance, and a small training batch size leads to faster convergence but worse

final performance.

• Training SNR: In our tests, we observed that the adaptation rate of the au-

toencoder is highly dependent on the training SNR. It is important to set Eb/N0

such that the autoencoder observes frequent examples of correctly and incorrectly

decoded blocks. This facilitates the training process. Training at high SNRs,

e.g., Eb/N0 = 8.5 dB, does not provide enough examples of block errors and adapta-

tion is slow in this setting. Similarly, training at a very low SNR like Eb/N0 = −3 dB

limits the number of examples of correctly decoded blocks and results in slow adap-

tation.

• Activation Function: The network is trained using the Adam optimizer [62]

The best trade-off between convergence speed, computation time and performance is

achieved by starting the training process with smaller training batch size and increasing

it after initial convergence.

Following up from Section 3.2.3, there are two ways to normalize the codebook:

1. Fixing the Noise Variance: If we assume a setting where the noise variance is

fixed and we want to vary the per-codebook norm constraint so that the system

has the correct Eb/N0, this would be how to do it:

(a) Given Eb/N0 in dB, first convert it to the actual ratio not in dB. We call this

γ.

(b) We can then assume N0 = 2 so that the noise has unit variance in each

dimension, which gives us Eb = 2γ.

(c) Compute Es = kEb. This is what we want the average symbol energy to be.

(d) The total codebook energy is then just E = MEs.

53

In other words, given γ and assuming N0 = 2 so that we have unit variance AWGN

in each dimension, the total codebook energy is then

E = 2Mkγ (3.5)

and hence the per-codebook energy constraint on the embedding matrix can be

expressed as

‖W ‖2F ≤ 2Mkγ. (3.6)

This norm constraint should be applied after the embedding and the training

should be done with unit variance noise in each dimension.

2. Fixing the Norm Constraint: If we assume a setting where the norm constraint

is fixed (which implies a fixed value for Eb) and we want to vary N0 so that the

system has the correct Eb/N0, this would be how to do it:

(a) Given Eb/N0 in dB, first convert it to the actual ratio not in dB. We call this

γ.

(b) We are also given E , the fixed per-codebook energy constraint. This is

arbitrary, but we probably don’t want to make it too small to avoid losing

precision.

(c) Compute Es = E/M (average energy per symbol).

(d) Compute Eb = Es/k = E
Mk

(average energy per bit).

(e) Solve for N0 = Eb/γ = E
Mkγ

.

This fixed per-codebook energy constraint of E should be applied after the embed-

ding by scaling the embedding matrix to have a Frobenius norm equal to E . This

scaling is always the same. The training should be done with noise drawn from

N (0, N0

2
I), where N0 is calculated as discussed above, based on the SNR in γ and

the per-codebook norm constraint E .

54

3.4 Higher-Order Modulations

Different order modulations allow us to send more bits per symbol and thus achieve

higher throughputs and better spectral efficiencies. However, better SNRs are needed to

overcome any interference and maintain a certain BLER. Table 3.2 lists several standard

higher-order modulation schemes for which each 24-bit codeword can be mapped to an

integer number of symbols.

Table 3.2: Functional mapping fθ for different linear block codes.
Modulation Hamming(7,4) Extended Golay(24,12)

BPSK f : {0, 1}4 7→ R7 f : {0, 1}12 7→ R24

QPSK — f : {0, 1}12 7→ C12

8-PSK — f : {0, 1}12 7→ C8

16-QAM — f : {0, 1}12 7→ C6

64-QAM — f : {0, 1}12 7→ C4

256-QAM — f : {0, 1}12 7→ C3

3.5 Efficient Parameterizations for Block Codes in

AWGN channel

In this section, we look at three different ways of designing effective parameterizations

for linear block codes in AWGN channels.

1. Embedding to replace Linear Block Coding

2. Matched Filter to replace the receiver.

3. Optimum receiver solvable by closed-form gradient descent.

If we assume a one-hot encoded message vector x ∈ RM and a “codebook” or con-

stellation matrix W ∈ Rn×M , the output of an AWGN channel can be written as

y = Wx+ n (3.7)

where n ∈ Rn is the additive white Gaussian noise.

55

3.5.1 Linear Block Coding and Modulation is Simply an Em-

bedding

We can envision linear block coding as a lower dimensional embedding, mapping integers

to vectors , i.e., essentially a lookup table that returns columns. The input symbols go

through this layer followed by dense layers that turns positive integers to dense vectors

of fixed size.

An embedding W ∈ RM×n is a map from the set S containing M = 2k one-hot

encoded vectors to a lower dimensional representation in Rn typically with n ≪ M . The

codewords of the block code are represented by columns of the embedding matrix W :

W =

[

w1 . . . wM

]

=









w1,1 . . . w1,M

...

wn,1 . . . wn,M









(3.8)

where the codeword wi ∈ R1×n. Now, W is trainable like the weight matrix of a dense

neural network layer. This is a more efficient implementation of a dense layer with one

hot encoded inputs. This is depicted in Figure 3.3.

Embedding

Matrix

q

O
n
e-
h
ot

E
n
co
d
in
g

s

fθT = W

C
on

st
ra
in
t

g

p

hθR

Im
p
ai
rm

en
t

se y

O
n
e-
h
ot

D
ec
o
d
in
g

q̂

Transmitter ReceiverChannel

RM Rn Rn RM

Figure 3.3: An autoencoder for an end-to-end communication system with transmitter
replaced by an embedding.

This implementation reduces the number of parameters by 2x compared to few stan-

dard results [8], [63], [64]. The details are shown in Table 3.3. By making the transmitter

56

an embedding (or a linear layer with weights and no bias terms), we can have a simpler

model with lesser number of parameters.

Table 3.3: All channels: Number of parameters with Embedding.
Layer(Output Dim.) (M,n) (16,2) (16,7) (2048,15)

Input (M) 0 0 0 0
Embedding (n) Mn 32 112 30720
Constraint (n) 0 0 0 0
Channel (n) 0 0 0 0
Dense-ReLU (M) Mn+M 48 128 32768
Dense-softmax (M) M2 +M 272 272 4196352
Total parameters M2 + 2M(n+ 1) 352 512 4259840
Total parameters [8] 626 791 8456207
Total parameters [63] 1170 1335 16848911
Total parameters [64] 33056 33146 ≈ 222

3.5.2 Receiver as a Matched Filter

For an AWGN channel, we do not necessarily need to have an adaptive receiver. The

receiver can copy the embedding matrix and perform matched filtering and pick the

largest product. Now, the adaptation is only on the embedding matrix. Then, the

receiver uses a transposed version of the embedding matrix and picks the maximum

value. Figure 3.5.2 shows this modification with an connection from embedding layer to

matched filter.

Table 3.4: AWGN channel: Number of parameters with an embedding and matched filter.
Layer(Output Dim.) (M,n) (16,2) (16,7) (2048,15)

Input (M) 0 0 0 0
Embedding (n) Mn 32 112 30720
Constraint (n) 0 0 0 0
Channel (n) 0 0 0 0
Matched Filter (MF) + argmax (M) 0 0 0 0
Total parameters Mn 32 112 30720
Total parameters [8] 626 791 8456207
Total parameters [63] 1170 1335 16848911
Total parameters [64] 33056 33146 ≈ 222

This implementation reduces the number of parameters many-fold compared to few

57

Matched

Filtering

Embedding

Matrix

q

O
n
e-
h
ot

E
n
co
d
in
g

s

fθT = W

C
on

st
ra
in
t

g

p

hθR = WH

Im
p
ai
rm

en
t

se y

O
n
e-
h
ot

D
ec
o
d
in
g

q̂

Transmitter ReceiverChannel

RM Rn Rn RM

Figure 3.4: An autoencoder for an end-to-end communication system with transmitter
replaced by an embedding, receiver replaced by a matched filter.

standard results [8], [63], [64]. The details are shown in Table 3.5.2. We now design an

optimum receiver for AWGN channels.

3.6 Results for AWGN Channels

While the proposed autoencoder structure in Figure 3.5.2 is general and can be applied

to any (n, k,m) linear block code for AWGN channels, we pick the values of n, k,m such

that they can be compared to a few classical linear block codes such as Hamming or

Golay codes.

3.6.1 (2,4,2) Autoencoder

Quadrature amplitude modulation (QAM) is widely employed to transmit more than one

bit per modulation symbol as discussed in Section 2.1.6. The most common QAM signal

constellations are QPSK and 16, 64 and 256-QAM, which carry 2, 4, 6 and 8 bits per sym-

bol, respectively. In this section, we design a 16-QAM constellation using autoencoders.

With conventional QAM, the signal space is partitioned into rectangular decision

regions mainly because of the advantage that we can use binary data more effectively.

However, it is well known that a two-dimensional regular tiling with hexagons is the most

58

efficient packing in terms of compactness [65]. H-QAM maximizes the minimum distance

between signals in the constellation and thus minimizes the symbol error probability for a

given average signal energy as well as the peak-to-average power ratio, which is important

for OFDM systems. Similarly, there are other optimal constellations such as triangular,

pentagonal and hexagonal QAM.

However, these techniques cannot fully utilize the gains possible with H-QAM only

when the size of the signal constellation is small as it sometimes requires using a binary-

input and ternary-output (BITO) code at the transmitter and reverse the procedure at the

receiver [66]. Thus, current H-QAM solutions alone cannot provide sufficient performance

improvement for wireless communication systems, although it has been adopted in optical

systems. Similarly, there are limitations with other approaches as well.

In this section, we plan to impose a per-codebook energy constraint on the codewords

and try to understand the solutions learned by the autoencoder. Since a standard 16-

QAM follows a per-codebook energy constraint, we impose the same on the autoencoder.

Figure 3.5 illustrates the learned 16-point constellations with random intializations.

Each random initialization gives a different constellation, each one non-rectangular near-

optimally packed 16-QAM is achieved for (2,4) as shown in Figure 3.7.

We can observe in Figure 3.6.1 that there are atleast 3 optimal non-standard constella-

tions which could be more optimal than a standard constellation. It takes a message index

in 1, ..., 16 and maps it into interesting constellations that look like H-QAM, θ-QAM [65].

This gives us hope that the autoencoder can find mappings that result in low BLER.

The autoencoder is performing geometric shaping (GS) of the constellations here. While

probabilistic shaping imposes a non-uniform distribution on a set of equidistant con-

stellation points, GS employs a uniform distribution on non-equidistant constellation

points [20].

It is also to be noted that the autoencoder converges to different constellations corre-

sponding to different maxima of the multimodal objective function as shown in Table 3.5.

This is interesting since only one of these constellations is actually optimal for AWGN.

59

The optimal learned constellation has better BLER than a standard QAM as shown in

Figure 3.7.

Table 3.5: Pairwise Euclidean distance statistics for (M,n) = (16, 2) from Eb/N0 = 0 to
Eb/N0 = 5.5.

Eb/N0 Min Mean Max

0.0 0.497 1.905 3.583

0.5 0.481 1.902 3.733

1.0 0.510 1.907 3.554

1.5 0.648 1.905 3.718

2.0 0.683 1.910 3.515

2.5 0.755 1.911 3.525

3.0 0.776 1.912 3.525

3.5 0.806 1.913 3.488

4.0 0.803 1.914 3.514

4.5 0.833 1.914 3.494

5.0 0.846 1.915 3.480

Hence, our autoencoder can design non-standard QAMs. Following this, we can ap-

proach constellation design from a new angle with the following steps:

• Get a family of autoencoders for different random initialization.

• Learn from autoencoders about the optimal constellations and pick the best con-

stellation.

• Design geometrical objects mathematically

3.6.2 (7,4,7) Autoencoder

Now, we take an example where we set n = 7, k = 4 and choose a BPSK modulation.

We trained a fully connected autoencoder with following training parameters:

• Number of Examples: 106

• Number of Epochs: 100

• Training SNR: 3.0 dB

• Batch Size: 1000

60

and Figure 3.8 shows the corresponding training and validation accuracy curve. We can

notice that the accuracy reaches a steady-state value around 0.97. It means that out of

100 blocks we send, 97 of them get correctly classified.

With the model defined as in Figure 3.5.2, we only need 16× 7 = 112 parameters and

the training takes about three seconds per epoch. It makes it possible to generate a linear

block code for Hamming (7, 4) within five minutes. However, due to the mathematical

formulation of the elements in the autoencoder as described in Section 3.2, the codewords

generated have different geometrical properties than a conventional Hamming (7, 4) code.

Here, we apply a per-codeword energy constraint as discussed in Section 2.1.2. Ta-

ble 3.6 compares the learned autoencoder codebook (in yellow) to a (7, 4) Hamming code

with BPSK modulation [67] (in blue), both with a total energy per encoded block (or

per codeword) set to E = 7. We can observe that the learned codewords have the same

total per-codeword or per-block energy as conventional BPSK-modulated (7, 4) Hamming

codes, but the elements of each learned codeword are not constant modulus.

Table 3.6: BPSK-modulated Hamming (7, 4) codewords and the learned (7, 4, 7) autoen-
coder codewords, both with E = 7.

BPSK+Hamming(7, 4)
-1 -1 -1 -1 -1 -1 -1
-1 -1 -1 1 -1 1 1
-1 -1 1 -1 1 1 1
-1 -1 1 1 1 -1 -1
-1 1 -1 -1 1 1 -1
-1 1 -1 1 1 -1 1
-1 1 1 -1 -1 -1 1
-1 1 1 1 -1 1 -1
1 -1 -1 -1 1 -1 1
1 -1 -1 1 1 1 -1
1 -1 1 -1 -1 1 -1
1 -1 1 1 -1 -1 1
1 1 -1 -1 -1 1 1
1 1 -1 1 -1 -1 -1
1 1 1 -1 1 -1 -1
1 1 1 1 1 1 1

Learned Codebook - Autoencoder(7, 4)
0.60 0.37 1.30 -0.68 -1.15 0.40 1.69
0.89 -0.32 -0.06 -1.66 -1.57 -0.82 -0.43
-1.40 -0.58 -0.88 0.58 0.65 -0.54 -1.70
0.71 -0.93 -1.92 0.08 0.13 1.22 -0.64
-1.50 -0.44 1.44 -1.41 0.14 -0.61 -0.29
-0.17 -0.99 0.01 -0.29 1.90 -1.16 0.98
-1.59 0.21 -0.99 -0.47 -0.68 -1.48 0.76
-0.29 0.68 1.71 0.46 0.19 -1.00 -1.51
-0.66 0.40 -1.19 1.68 0.68 0.37 1.25
0.10 1.41 -1.46 -0.67 -1.15 0.92 0.48
1.79 -0.60 0.92 1.10 0.72 0.37 0.84
0.88 1.83 -0.05 0.33 0.57 -1.29 0.88
0.68 -0.78 1.08 0.04 -0.91 1.39 -1.42
-0.64 -1.97 -0.54 -0.30 -0.81 0.68 1.10
-0.97 -0.79 0.72 0.28 1.27 1.79 0.11
-1.79 0.23 0.41 0.87 -1.53 0.69 -0.03

Table 3.7 shows the pairwise Euclidean distance statistics of conventional Hamming

BPSK-modulated codewords and of the autoencoder learned codewords in Table 3.6. We

61

can observe that, although the codewords learned by the autoencoder do not exhibit

the structure of the BPSK-modulated Hamming (7, 4) code, the distance statistics of

the autoencoder are essentially identical to those of the Hamming code. Also note that

the learned codewords are not unique, i.e., retraining will result in different learned

codewords. Nevertheless, in each test, the distance statistics after training were always

consistent with those in Table 3.7.

Table 3.7: Pairwise Euclidean distance statistics for BPSK-modulated Hamming (7, 4)
and (7, 4, 7) autoencoders with E = 7.

Scheme Min Mean Max

Hamming (7, 4) with BPSK 3.464 3.836 5.292
(7, 4, 7) Autoencoder 3.429 3.836 5.289

We can see from Figure 3.9 that the codebook learned by the autoencoder has similar

distance statistics to the BPSK-modulated Hamming (7, 4) code and it outperforms a

BPSK-modulated Hamming (7, 4) code with hard decision decoding (HDD) and is similar

to a BPSK-modulated Hamming (7, 4) code with soft decision decoding (SDD).

Figure 3.10 plots the achieved BLER of the (7, 4, 7) autoencoder in AWGN chan-

nels. The BLER of BPSK-modulated Hamming (7, 4) codes and several finite-blocklength

bounds (theoretical RCU [47] and metaconverse [48]) along with the normal approxima-

tion [68] are also plotted for comparison. More details about these are presented in Sec-

tion 2.1.5. In this case, the BLER performance of the autoencoder is essentially identical

to a BPSK-modulated Hamming (7, 4) code with soft decision or maximum likelihood

decoding.

3.6.3 Conditional BLER for a (7,4,7) Autoencoder

In this section, we delve deeper to understand the geometry of the codewords generated by

autoencoder. We take each message independently and send each of the 16 codewords 107

times to the autoencoder and the soft decision decoder at Eb/N0 = 3.0 dB to understand

how each noisy symbol gets classified as the right codeword. Thereby, we populate

62

the confusion matrix between the sent and the received codewords to understand the

occurrence of misclassifications for a given codeword. Figure 3.11 shows the pairwise

distances between the sent and received codewords for the autoencoder and the Hamming

code.

Figure 3.12 shows the sorted pairwise distances between the sent and received code-

words. We can see that the distances for SDD are closer to its overall BLER as compared

to autoencoder which has more variation. Since we tested only with 107 samples, the

red dots are slightly shifted away from the HBLER line. They would reach HBLER

asymptotically.

To understand the progression of block errors, we take a codeword, 9 here, and con-

sider the cumulative sum of the elements in the row that reaches the minimum pairwise

Euclidean distance with (7, 4, 7) autoencoder. In this case, code word 9 achieves this min-

imum. We can see from figure 3.13 that the distance statistics for this word are similar

for the autoencoder and the soft-decision-decoder.

This way of analyzing conditional BLER gives us insights into why an autoencoder

performs as well as a classical coding and modulation scheme.

3.6.4 (15,11,15) Autoencoder

In this subsection, we consider a higher order constellation with 2048 messages getting

mapped into 15 symbols. We continue to consider BPSK modulation here, so n = m = 15.

Similar to Section 3.6.2, we trained a fully connected autoencoder with following

training parameters:

• Number of Examples: 105

• Number of Epochs: 100

• Training SNR: 3.0 dB

• Batch Size: 1000

and Figure 3.8 shows the corresponding training and validation accuracy curve. We can

63

notice that the accuracy reaches a steady-state value around 0.57. It means that out of

100 blocks we send, 57 of them get correctly classified.

We use the model defined as in Figure 3.5.2 and apply a per-codeword energy con-

straint as discussed in Section 2.1.2. Then, we would only need 15×11 = 165 parameters

and the training takes about five seconds per epoch. As we have seen in the (7, 4, 7)

Autoencoder case, the codewords generated by (15, 11, 15) Autoencoder has different

geometrical properties than a conventional Hamming (15, 11) code.

Since it is hard to reproduce all 2048 codewords as in Table 3.6, we consider pairwise

Euclidean distance statistics. It is to be noted that the learned codewords have the

same total per-codeword or per-block energy as conventional BPSK-modulated (15, 11)

Hamming codes, but the elements of each learned codeword are not constant modulus.

Nevertheless, in each test, the distance statistics after training were always consistent

with those in Table 3.8.

Table 3.8: Pairwise Euclidean distance statistics for BPSK-modulated Hamming (15, 11)
and (15, 11, 15) autoencoders with E = 15.

Scheme Min Mean Max

Hamming (15, 11) with BPSK 3.464 5.430 7.746
(15, 11, 15) Autoencoder 3.277 5.431 7.609

We observed that the autoencoder quickly converged to codewords with mean distance

identical to BPSK-modulated (15, 11) Hamming codes, whereas the minimum distance

was much slower to converge. The results shown in Table 3.8 were achieved after training

on 2×107 examples for 150 epochs (other training parameters same as previous example).

We can see from Figure 3.15 that the codebook learned by the autoencoder has similar

distance statistics to the BPSK-modulated Hamming (7, 4) code and it outperforms a

BPSK-modulated Hamming (7, 4) code with hard decision decoding (HDD) and is similar

to a BPSK-modulated Hamming (7, 4) code with soft decision decoding (SDD).

Figure 3.16 plots the achieved BLER of the (15, 11, 15) autoencoder in AWGN chan-

nels along with the BLER of BPSK-modulated Hamming (15, 11) code and the finite-

64

blocklength bounds and approximations. Somewhat surprisingly, in light of the au-

toencoder’s worse minimum distance statistic in Table 3.8, the achieved BLER of the

(15, 11, 15) autoencoder is approximately 0.5 dB better than that of the conventional

BPSK-modulated Hamming (15, 11) code with soft decision (maximum likelihood) de-

coding.

3.6.5 Conditional BLER for a (15,11,15) Autoencoder

Following a similar approach described in Section 3.6.3, we send each of the 2048 code-

words 5× 105 times to the autoencoder and the soft decision decoder at Eb/N0 = 3 dB to

understand how each noisy symbol gets classified as the right codeword. Then, we pop-

ulate the confusion matrix between the sent and the received codewords to understand

the occurrence of misclassifications for a given codeword.

Figure 3.17 shows the pairwise distances between the sent and received codewords

for the autoencoder and the Hamming code and Figure 3.18 shows the sorted pairwise

distances between the sent and received codewords. We can see that, similar to the

(7, 4) case, the pairwise distances for SDD are closer to its overall BLER as compared to

autoencoder which has more variation.

We consider the cumulative sum of the elements in the row that reaches the minimum

pairwise Euclidean distance with (15, 11, 15) autoencoder. In this case, code word 849

achieves this minimum 3.277. We can see from Figure 3.19 that the individual distance

statistics for this word for the autoencoder are much lower than that of the soft-decision-

decoder.

We observe that the distance mapping for Hamming (15, 11) is sparser than that of

the autoencoder. The most interesting part occurs with the first few distances as seen

in Figure 3.6.5, the first four distances for the SDD are smaller than the autoencoder,

which resulted in the autoencoder having a lower minimum pairwise distance statistic.

This is shown in Table 3.9. Additional inspection of the conditional BLER for each

65

BPSK+Hamming(15,11) Autoencoder(15,11,15)

588 788
586 705
573 645
571 626
565 566
564 562
563 556
560 526
555 465
553 458
545 432
545 431
544 406
544 403
543 380

Table 3.9: First 15 elements of row 849 of confusion matrix (sorted) for a (15, 11, 15)
autoencoder.

learned codeword shows that the autoencoder learned an asymmetric code in the sense

that certain codewords had worse conditional BLER and other codewords had better

conditional BLER than the unconditional BLER. This is in contrast to Hamming codes

with BPSK modulation where each codeword has a conditional BLER matching the

unconditional BLER due to symmetry. By finding more codewords with good conditional

BLER , the autoencoder can outperform Hamming codes with BPSK modulation in terms

of unconditional BLER. This could possibly be the reason why the autoencoder approach

beats the soft decision decoder method by 0.5 dB.

This comes at the cost of a small number of codewords with worse conditional BLER.

As we can see cumulative distributive function from Figure 3.6.5, the autoencoder has

worse codeword distances for 10 codewords and then the soft-decision-decoding curve

takes over.

Additionally, we can observe that for Hamming (7, 4), the bounds are loose and the

curves for HDD and SDD and the autoencoder fall between the bounds. However, for a

longer blocklength code like Hamming (15, 11), the bounds become tighter. Specifically,

we can observe that the HDD curve falls beyond the RCU bound and normal approxi-

66

mation, and the SDD and the autoencoder curves align closely to the RCU bound and

normal approximation.

3.6.6 Higher-order Modulations with Extended Golay codes

To consider joint modulation and coding with higher-order modulation schemes, this

section considers the extended Golay (24, 12) code [69]. The basic approach for the au-

toencoder in this case is essentially identical to the approach discussed in Section 3.2,

except the autoencoder is designed to produce pairs of real-valued channel inputs corre-

sponding to the complex symbols of a modulated signal.

For example, when designing an autoencoder to compare against 16-QAM-modulated

extended Golay(24, 12), the autoencoder fθ function is designed to produce an output,

i.e., a channel input, of dimension R12, which contains I and Q symbols of dimension R6

each.

As discussed in Section 2.1.2, the autoencoder was trained to meet a per-codebook

energy constraint, consistent with conventionally coded and modulated system at each

modulation order. It is trained separately for each modulation order at 3.0 dB Eb/N0 and

is tested for Eb/N0 varying from 0 dB to 10 dB.

Figure 3.21 presents BLER results for the trained autoencoder-based joint modulation

and coding scheme against the Golay (24, 12) code with several different modulation or-

ders with both hard decision and soft decision decoding. As seen in the BPSK-modulated

Hamming (7, 4) results, the autoencoder outperforms hard decision decoding and achieves

performance close to soft decision decoding. In fact, the autoencoder appears to slightly

outperform soft decision decoding with 8-PSK, 16-QAM, and 64-QAM modulation with

an extended Golay (24, 12) code. These results show strong generalization as the training

was performed at a single Eb/N0 while the testing was performed over a wide range of

Eb/N0s. These simulations were conducted with 12 × 105 examples in the training and

test datasets over 100 epochs. With more data and longer training, it is possible to see

67

further improvement in the autoencoder performance.

Table 3.10 provides some statistics on the pairwise Euclidean distances between the

message vectors for BPSK, QPSK, 8-PSK modulated Golay (24, 12) codes and the corre-

sponding autoencoders. As observed in Table 3.10, the autoencoder statistics are similar

to those of the Golay (24, 12) codes. Similar to Hamming codes, the Golay codes produce

constant-modulus codewords upto 8-PSK modulation whereas the autoencoder only sat-

isfies a per-codeword energy constraint and is not constrained to learn constant modulus

codewords.

Table 3.10: Pairwise Euclidean distance statistics for Golay (24, 12) codes and the corre-
sponding autoencoders.

Modulation Scheme Min Mean Max

BPSK Golay (24, 12) 5.6569 6.8919 9.7980

Autoencoder (24R, 12) 4.0177 6.5488 9.1863

QPSK Golay (24, 12) 4.0000 4.8733 6.9282

Autoencoder (12C, 12) 2.8962 4.6265 6.4538

8-PSK Golay (24, 12) 2.1648 3.9675 5.4458

Autoencoder (8C, 12) 2.0918 3.8160 5.5537

16-QAM Golay (24, 12) 1.7889 3.4151 5.6569

Autoencoder (6C, 12) 1.4595 3.2637 5.0779

64-QAM Golay (24, 12) 0.8729 2.7647 5.4336

Autoencoder (4C, 12) 0.7960 2.7362 4.4232

3.7 Conclusion

We propose a new data-driven approach to wireless system design using machine learning.

Within this work, we demonstrate that end-to-end deep neural network based learning

can be adapted effectively for physical layer radio systems to achieve state of the art

levels of performance in numerous scenarios.

First, we discussed the background and fundamental tools used. Then, we considered

AWGN channels and formulated efficient parameterizations for linear block codes. Then,

68

we consider three cases in Hamming codes: (2, 4), (7, 4), (15, 11) and show the nuances in

how they work and present an in-depth analysis of why they work well.

There is a lot of scope for improvement especially in the following directions:

1. We can consider channels with memory, e.g., Markov-Gaussian models

2. We can reduce training workload with domain adaptation and transfer learning

3. There are a lot of interesting directions in leveraging autoencoders to perform on

• structural interference/jamming channels

• Rayleigh block fading channels

• deletion channels

• real channel data obtained from USRPs

69

-1.5 -1 -0.5 0 0.5 1 1.5

I

-1.5

-1

-0.5

0

0.5

1

1.5
Q

-1.5 -1 -0.5 0 0.5 1 1.5

I

-1.5

-1

-0.5

0

0.5

1

1.5

Q

-1.5 -1 -0.5 0 0.5 1 1.5

I

-1.5

-1

-0.5

0

0.5

1

1.5

Q

-1.5 -1 -0.5 0 0.5 1 1.5

I

-1.5

-1

-0.5

0

0.5

1

1.5

Q

-1.5 -1 -0.5 0 0.5 1 1.5

I

-1.5

-1

-0.5

0

0.5

1

1.5

Q

-1.5 -1 -0.5 0 0.5 1 1.5

I

-1.5

-1

-0.5

0

0.5

1

1.5

Q

-1.5 -1 -0.5 0 0.5 1 1.5

I

-1.5

-1

-0.5

0

0.5

1

1.5

Q

-1.5 -1 -0.5 0 0.5 1 1.

5

I

-1.5

-1

-0.5

0

0.5

1

1.5

Q

Random Initializations (Random Embeddings)

Learned Constellations (Learned Embeddings)

Figure 3.5: Constellations for (M,n) = (16, 2) generated by an autoencoder. Every random initialization in the top row gives
correspondingly a different constellation in the bottom row.

70

Figure 3.6: Comparison with non-standard QAM constellations [65]. We see that the
constellations in 3.5 resemble the triangular and optimum constellations here.

0 2 4 6 8 10 12

Eb/N0 dB

10
-4

10
-3

10
-2

10
-1

10
0

sy
m

b
o

l e
rr

o
r

ra
te

 (
S

E
R

)

standard 16-QAM

optimal 16-QAM

learned constellation

Figure 3.7: Symbol error rate for (M,n) = (16, 2) from Eb/N0 = 0 to Eb/N0 = 12.

71

0 5 10 15 20 25 30 35 40 45 50

Epochs

0.75

0.8

0.85

0.9

0.95

1

A
cc

u
ra

cy

Train Accuracy

Validation Accuracy

Figure 3.8: Training and validation accuracy curve for (7, 4, 7) autoencoder.

72

Figure 3.9: Histogram of pairwise Euclidean distances for Hamming (7, 4) BPSK-
modulated codewords and autoencoder (7, 4, 7) learned codewords.

73

0 1 2 3 4 5 6 7 8 9 10

Eb/N0 dB

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

B
lo

ck
 E

rr
o

r
R

a
te

(7,4) Hamming HDD (sim)

(7,4) Hamming HDD (theory)

(7,4) Hamming SDD (sim)

(7,4) Autoencoder (sim)

RCU Bound (theory)

Normal Approximation (theory)

Metaconverse Bound (theory)

Figure 3.10: BLER of the trained (7, 4, 7) autoencoder and BPSK-modulated Hamming
(7, 4) in an AWGN(Eb/N0) channel. Random coding union (RCU), metaconverse, and
normal approximation bounds are also plotted.

74

0 2 4 6 8 10 12 14 16

i

0.029

0.0295

0.03

0.0305

0.031

0.0315

B
L

E
R

AE-BLER

HBLER

overall HBLER

overall AE BLER

For each codeword (unsorted)

Figure 3.11: BLER for each codeword of the trained (7, 4, 7) autoencoder and BPSK-
modulated Hamming (7, 4) in an AWGN(Eb/N0) channel.

75

0 2 4 6 8 10 12 14 16

i

0.029

0.0295

0.03

0.0305

0.031

0.0315

B
L

E
R

AE-BLER

HBLER

overall HBLER

overall AE BLER

For each codeword (sorted)

Figure 3.12: BLER for each codeword (sorted) of the trained (7, 4, 7) autoencoder and
BPSK-modulated Hamming (7, 4) in an AWGN(Eb/N0) channel.

76

0 2 4 6 8 10 12 14 16

i

0

0.5

1

1.5

2

2.5

3

3.5

B
L

E
R

10
5

Cumulative Sum AE for codeword 9

Cumulative Sum SDD for codeword 9

Figure 3.13: Cumulative sum for codeword 9 with the trained (7, 4, 7) autoencoder and
BPSK-modulated Hamming (7, 4) in an AWGN(Eb/N0) channel.

77

0 5 10 15 20 25 30 35 40 45 50

Epochs

0.6

0.65

0.7

0.75

0.8

0.85

0.9

A
c
c
u
ra

c
y

Train Accuracy

Validation Accuracy

Figure 3.14: Training and validation accuracy curve for (15, 11, 15) autoencoder.

78

Figure 3.15: Histogram of pairwise Euclidean distances for Hamming (15, 11) BPSK-
modulated codewords and autoencoder (15, 11, 15) learned codewords.

79

0 1 2 3 4 5 6 7 8 9 10

Eb/N0 dB

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

B
lo

ck
 E

rr
o

r
R

a
te

(15,11) Hamming HDD (sim)

(15,11) Hamming HDD (theory)

(15,11) Hamming SDD (sim)

(15,11) Autoencoder (sim)

RCU Bound (theory)

Normal Approximation (theory)

Metaconverse Bound (theory)

Figure 3.16: BLER of the trained (15, 11, 15) autoencoder and BPSK-modulated Ham-
ming (15, 11) in an AWGN(Eb/N0) channel. Random coding union (RCU), metaconverse,
and normal approximation bounds are also plotted.

80

0 200 400 600 800 1000 1200 1400 1600 1800 2000

i

0.036

0.038

0.04

0.042

0.044

0.046

0.048

0.05

0.052

0.054

0.056

B
L

E
R

AE-BLER

HBLER

overall HBLER

overall AE BLER

Figure 3.17: BLER for each codeword of the trained (15, 11, 15) autoencoder and BPSK-
modulated Hamming (15, 11) in an AWGN(Eb/N0) channel.

81

0 200 400 600 800 1000 1200 1400 1600 1800 2000

i

0.036

0.038

0.04

0.042

0.044

0.046

0.048

0.05

0.052

0.054

0.056

B
L

E
R

AE-BLER

HBLER

overall HBLER

overall AE BLER

Figure 3.18: BLER for each codeword (sorted) of the trained (15, 11, 15) autoencoder
and BPSK-modulated Hamming (15, 11) in an AWGN(Eb/N0) channel.

82

0 500 1000 1500 2000 2500

i

0

0.5

1

1.5

2

2.5

3

B
L

E
R

10
4

Cumulative Sum AE for codeword 958

Cumulative Sum SDD for codeword 958

Figure 3.19: Cumulative Sum for codeword 849 with the trained (15, 11, 15) autoencoder
and BPSK-modulated Hamming (15, 11) in an AWGN(Eb/N0).

83

0 2 4 6 8 10 12 14 16 18 20

i

0

2000

4000

6000

8000

10000

12000

C
u

m
u

la
ti

v
e

 S
u

m

Cumulative Sum AE for codeword 849

Cumulative Sum SDD for codeword 849

Figure 3.20: Zoomed-out version of the cumulative sum for the first 20 distances
(15, 11, 15) autoencoder.

84

0 1 2 3 4 5 6 7 8 9 10

Eb/N0 dB

10 -4

10 -3

10 -2

10 -1

10 0

B
lo

ck
 E

rr
o

r
R

a
te

BPSK Golay (24,12) HDD

QPSK Golay (24,12) HDD

8PSK Golay (24,12) HDD

16QAM Golay (24,12) HDD

64QAM Golay (24,12) HDD

BPSK Golay (24,12) SDD

QPSK Golay (24,12) SDD

8PSK Golay (24,12) SDD

16QAM Golay (24,12) SDD

64QAM Golay (24,12) SDD

Autoencoder (24,12)

Autoencoder (12,12)

Autoencoder (8,12)

Autoencoder (6,12)

Autoencoder (4,12)

Figure 3.21: AWGN channel block error rate comparison of higher-order-modulated ex-
tended Golay (24, 12) with hard decision and soft decision decoding and the corresponding
trained autoencoder.

85

Chapter 4

Joint Coding and Modulation in

Non-AWGN Channels

In this chapter, we tackle a non-standard communication model, a BGIN channel which

has no-known good codewords. We apply ideas from [8], [17], [19]–[22] toward the devel-

opment of new codes for the BGIN channel which, to the best of our knowledge, has not

been studied in this context.

Impulsive noise is characterized by non-stationary large noise samples that signifi-

cantly degrade the performance and reliability of communication systems [27], [28]. Since

a single Gaussian noise model is not correct and many distributions such as BGIN chan-

nel model, Middleton Class A, B and Symmetric Alpha Stable (SαS) distributions are

developed.

We consider a BGIN channel that is widely applied on impulsive noises. In fact,

soft decision decoding, while optimal in the AWGN channel, can perform worse than

hard decision decoding in impulsive noise channels. This has led to the development of

impulsive noise mitigation techniques such as blanking and clipping [30]–[32].

4.1 Key Contributions

In this context, the contributions in this chapter are:

1. Training and developing a family of autoencoders for a given probability distribu-

tion in impulsive noise channels to minimize block error rate.

2. Demonstration using numerical examples with Hamming (7, 4) and (15, 11) codes

with BPSK modulation that the family of autoencoders approach beats both tra-

ditional and heuristic approaches.

4.2 Block BGIN Channel

We consider a Bernoulli-Gaussian version of Middleton Class-A noise model with two

channels: good and bad, both Gaussian. We assume that the true channel is good, and

it is being corrupted by a bad channel with a probability pb. However, the state with

impulse noise does not necessarily need to have a Gaussian distribution. For the states

with impulse noise, the impulse noise variance is decided by the probability of entering

that state.

The block BGIN channel can be represented by

Y = g(X) = X + (Im −B)Z0 +BZ1 (4.1)

where X ∈ Xm, Z0 ∼ N (0, σ2
0Im), Z1 ∼ N (0, σ2

1Im) and B = diag(b1, . . . , bm) where bi

are i.i.d. Bernoulli random variables with bi = 1 with probability pb and bi = 0 otherwise.

In typical impulsive noise channels we assume σ2
1 ≫ σ2

0 such that pb represents the

probability of the occurrence of high variance impulsive noise for a given channel input.

Such a channel can be compactly represented as BGIN(Eb/N0, Eb/N1, pb) where Eb/N0

is the SNR when the noise has low variance, Eb/N1 is the SNR when the noise has high

variance, and pb is the probability the high noise variance channel. This is shown in

Figure 4.1.

87

N (0, σg
2)

N (0, σb
2)

outputinput

good channel

bad channel

1− pb

pb

Figure 4.1: Bernoulli-Gaussian Impulsive Noise (BGIN) channel.

In a BGIN channel, if we have a codeword 0110101 for example, it can either propagate

through a good or a bad channel with a pre-determined pb. We have a few possibilities

for this as shown in Figure 4.2.

1. If pb = 1/7, one out of seven codewords is randomly sent to the bad channel and

others are sent to the good channel i.e. we do not know what bit is being sent.

2. When the same codeword is sent with pb = 3/7 in two instances, we do not get

the same output since the choice of what bits get sent to the good/bad channel is

made randomly.

3. As the probability pb increases, there are more chances of entering the bad channel.

This channel is not a straightforward additive noise variation as it picks elements from

codewords randomly and operates on them. So, traditional decoding schemes for AWGN

channels such as hard decision and soft decision decoding will not work in this case.

88

0 1 1 0 1 0 1
Good

Channel

Bad

Channel

Example Codeword BGIN Channel

0 1 1 0 1 0 1

0 1 1 0 1 0 1

0 1 1 0 1 0 1

0 1 1 0 1 0 1

0 1 1 0 1 0 1

Outputs after Choosing

0 1 1 0 1 0 1

0 1 1 0 1 0 1

0 1 1 0 1 0 1

0 1 1 0 1 0 1

pb = 1/7

pb = 3/7

pb = 3/7

pb = 4/7

pb = 6/7

Figure 4.2: Example: A codeword passing through a BGIN Channel.

4.3 Traditional Methods to Mitigate Noise in BGIN

channel

A common approach for mitigating the effects of impulsive noise is to use clipping or

blanking before demodulation [70]. With clipping, the received signal is limited to a

clipping threshold, i.e.,

yclipped =







y |y| < Tc

sign(y)Tc |y| ≥ Tc

where Tc is the clipping threshold. Similarly, with blanking, the received signal is set to

zero if it exceeds a threshold, i.e.,

yblanked =







y |y| < Tb

0 |y| ≥ Tb

where Tb is the blanking threshold. Figure 4.3 shows a demonstration of clipping and

blanking methods on an impulsive noise channel. We see that the clipping approach clips

the value above the threshold (red dashed line) to be equal to the threshold. Blanking

sets the values that cross the threshold to 0.

89

0 5 10 15 20 25 30 35 40 45 50
-5

0

5

Signal with BGIN(3dB,-7dB,0.5)

0 5 10 15 20 25 30 35 40 45 50
-2

0

2
Blanked Signal with threshold = mean(|signal|)

0 5 10 15 20 25 30 35 40 45 50
-2

0

2
Clipped Signal with threshold = mean(|signal|)

Figure 4.3: Demonstration of clipping and blanking approaches for a BGIN channel.

4.4 Autoencoder for BGIN Channels

In this section, we take a similar approach used in Section 3.6 and apply it to BGIN

channels. The main difference here is that the autoencoder is trained separately on each

Bernoulli-Gaussian probability pb ∈ {0, 0.1, . . . , 1}. This results in a family of learned

autoencoders indexed by pb. The training parameters are otherwise identical to those in

Section 3.6.2. The training and validation accuracies are shown in Figure 4.4 for pb= 0.1.

Here is a training example for BGIN(3dB,−7dB, pb) for M = 24,m = 7

• Family of Autoencoders : Train on each pb for pb ∈ {0, 0.1, . . . , 1}.

• Parameters : 50 epochs, Adam optimizer, learning rate = 10−3, batch size = 256

90

0 5 10 15 20 25 30 35 40 45 50

Epochs

0.6

0.65

0.7

0.75

0.8

0.85

0.9
A

c
c
u
ra

c
y

Train Accuracy

Validation Accuracy

Figure 4.4: Training and validation accuracy curve for BGIN(3dB,−7dB, 0.1) autoen-
coder.

4.5 Results

Figure 4.5 plots the achieved BLER of the family of trained (7, 4, 7) autoencoders in

BGIN(3dB,−7dB, pb) channels. The BLER of BPSK-modulated Hamming (7, 4) codes

with various combinations of hard decisions, soft decisions, blanking, and clipping are

also plotted for comparison. The clipping and blanking thresholds were set to Tc =

Tb = mean(|yk|). In this example, the autoencoder uniformly outperforms conventional

coding and modulation, with or without clipping or blanking. The cyan and magenta

lines represent the AWGN performance of (7, 4) Hamming codes with BPSK modulation

(corresponding to pb = 0 and pb = 1). When pb = 0, channel symbols are always sent

through the AWGN(7dB) channel (the less noisy channel). When pb = 1, channel symbols

are always sent through the AWGN(−3dB) channel (the more noisy channel). Observe

91

that the autoencoder is more robust than hard and soft decision decoding, even with

clipping or blanking, at all values of pb. This is because the autoencoder is trained to

minimize the BLER at each value of pb. Blanking erases both the impulsive noise and

the useful signal on the selected samples. Clipping tends to perform better than blanking

since it is similar to performing hard decisions.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

probability of high variance noise (p
b

)

10
-1

10
0

b
lo

ck
 e

rr
o

r
ra

te
 (

B
L

E
R

)

H(7,4) BPSK: HDD in AWGN at EbN0 = 3dB

H(7,4) BPSK: SDD in AWGN at EbN0 = 3dB

H(7,4) BPSK: HDD in AWGN at EbN0 = -7dB

H(7,4) BPSK: SDD in AWGN at EbN0 = -7dB

H(7,4) BPSK: HDD in BGIN(3dB,-7dB,pb)

H(7,4) BPSK: SDD in BGIN(3dB,-7dB,pb)

H(7,4) BPSK: SDD with clipping in BGIN(3dB,-7dB,pb)

H(7,4) BPSK: SDD with blanking in BGIN(3dB,-7dB,pb)

(7,4,7) Autoencoder

Figure 4.5: BLER comparison of the family of trained (7, 4, 7) autoencoders with BPSK-
modulated Hamming (7, 4) in BGIN(3dB,−7dB, pb) channels.

Similarly, Figure 4.6 shows the BLER performance of the family of trained (15, 11, 15)

autoencoders in comparison with BPSK-modulated (15, 11) Hamming codes in the im-

pulsive channel BGIN(3dB,−7dB, pb). Again, the achieved BLER of the autoencoder

uniformly outperforms conventional coding and modulation with and without clipping

92

and blanking with

Tc = Tb = mean(|yk|).

This example shows that, even with longer blocklength codes, an autoencoder trained

to minimize the BLER in impulsive noise is more robust than the conventional methods

at all values of pb. The training was done on 5 × 106 examples and the parameters are

otherwise identical to those of the (15, 11, 15) autoencoder.

As a function of probability of impulsive noise where the low-noise-variance channel

has Eb/N0 = 3 dB and the high-noise-variance channel has Eb/N0 = −7 dB. The probabil-

ities pb = 0 and pb = 1 indicate that the channel is AWGN with Eb/N0 = 3 dB and Eb/N0

= −7 dB respectively. We can also observe that hard decision decoding fares better than

soft decision decoding as when the probability of switching is around 0.5 as it makes

more sense to use hard-decisions on the received signal than use a matched filter. beats

both hard decision and soft decision curves as it learns the joint coding and modulation

at any given probability. In these cases, impulse noise will introduce a penalty in the

performance as compared to pure Gaussian noise.

With a lower threshold Tb, the blanking algorithm is more likely to delete samples

with large amplitude which are in fact not affected by impulsive noise. However, both

approaches are dependent on their threshold values. To be consistent, we set both Tb and

Tc to be equal to mean(|yk|),

4.6 Conclusion

Numerical results show that the trained autoencoder uniformly outperforms classical

block codes with BPSK modulation in the BGIN channel even when impulsive noise

mitigation techniques such as blanking and clipping are employed. The proposed archi-

tecture is general and can be modified for comparison against other block coding schemes

93

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

probability of high variance noise (p
b

)

10
-1

10
0

b
lo

ck
 e

rr
o

r
ra

te
 (

B
L

E
R

)

H(15,11) BPSK: HDD in AWGN at EbN0 = 3dB

H(15,11) BPSK: SDD in AWGN at EbN0 = 3dB

H(15,11) BPSK: HDD in AWGN at EbN0 = -7dB

H(15,11) BPSK: SDD in AWGN at EbN0 = -7dB

H(15,11) BPSK: HDD in BGIN(3dB,-7dB,pb)

H(15,11) BPSK: SDD in BGIN(3dB,-7dB,pb)

H(15,11) BPSK: SDD with clipping in BGIN(3dB,-7dB,pb)

H(15,11) BPSK: SDD with blanking in BGIN(3dB,-7dB,pb)

(15,11,15) Autoencoder

Figure 4.6: BLER comparison of the family of trained (15, 11, 15) autoencoders with
BPSK-modulated Hamming (15, 11) in BGIN(3dB,−7dB, pb) channels.

and higher-order modulations.

We also demonstrate that linear block codes generated by the autoencoder have better

BLER than traditional methods for impulsive noise channels

4.6.1 Next Steps

For digital communication systems which use error control codes, this BGIN model is

too simplistic since it fails to capture the noise memory. It can be extended to include

the effect of the noise memory which, as it will be seen, affects the performance of digital

communication systems that use error control codes. The extension used here assumes

that memory keeps the noise, for a multiple of L (the memory length), in either the

94

background state (weak noise) or in the impulsive state (strong noise). We start thus

defining an BGIN with memory (ABGNM) with four parameters

In a modulation scheme with memory, the mapping is from the set of the current

k bits and the past (L − 1)k bits to the set of possible M = 2k messages. Parameter

L is called the constraint length of modulation. The case of L = 1 corresponds to a

memoryless modulation scheme.

95

Part II

Machine Learning for Tracking

Dynamical Systems

Chapter 5

Oscillator Phase Predictions

Characterization and modeling of clock oscillator stability is important for many appli-

cations requiring an accurate time and/or frequency reference. Oscillator stability has

been traditionally characterized by the Allan variance and stochastic models originally

developed for high precision, high cost sources such as atomic clocks. Knowledge of model

parameters allows development of tracking and prediction techniques which enable accu-

rate prediction of and compensation for oscillator drift.

The Kalman Filter [37] provides the minimum mean squared error solution to linear

system when the process under observation is completely represented by the state model.

However, its success relies on the knowledge of the system models. When the models are

unknown or partially known, it is hard to determine the covariances of the process and

measurement noises [38]. This can happen when we do not have high-end oscillators for

tracking. The traditional model-based approach does not adapt to the inherent paramet-

ric mismatch. So, we approach this from a machine learning point-of-view and develop

methods that can solve this problem.

This chapter focuses on this application after considering a general dynamical system

and developing a machine learning based approach to tackle parametric mismatch.

5.1 Key Contributions

In this context, the contributions are:

1. We formulate a dynamical system as a time-series forecasting problem and design

and develop data-driven one-dimensional CNN-based approach to predict dynamic

random processes. We use state observations to predict the next internal state.

2. We show a proof-of-concept demonstration with oscillator phase predictions. Here,

[q1, q2] are the actual short-term and long-term stabilities of the oscillators and r

is the measurement noise parameter. We study the performance of a Kalman filter

that uses mismatched parameters [q′1, q
′
2, r

′] to better understand the sensitivities

of the Kalman filter to parameter mismatches.

3. We use a circular mean-squared-error loss function to predict phases.

4. We use numerical examples to compare performance of machine learning approach

using steady-state analysis as a reference for the optimal behavior of the Kalman

filter and to compare our results

We demonstrate that our method, unlike traditional KF based methods, is robust to

parametric mismatches by comparing the error covariances.

5.2 System Model

We consider a general framework for dynamical systems here. Under a fairly general

discrete-time framework, the system state and measurement evolve according to

x[k + 1] = f(k, x[k], v[k])

y[k] = h(k, x[k], w[k])

where x[k] is the state vector, y[k] is the measurement vector, v[k] is the random process

noise, w[k] is the random measurement noise, f(·) is a family of N vector functions

98

describing the state dynamics during mode θk, h(·) is a family of N vector functions

describing the measurement dynamics, and θk ∈ {0, 1, . . . , N − 1} denotes the stochastic

mode in effect during the sample period ending at discrete time k. If, in addition, the

system is linear, it admits the state space realization

x[k + 1] = F [k]x[k] + v[k] (5.1)

y[k] = H [k]x[k] + w[k] (5.2)

where the non-linear functions f(·) and h(·) are replaced by the matrices F [k] and H [k].

When the process and measurement noises can be modeled as Gaussian random processes,

we assume they are distributed as v[k] ∼ N (0,Q) and w[k] ∼ N (0,R), respectively, with

Q and R as the corresponding covariance matrices. The process noise covariance is

Q = diag(q1
2, . . . , qN

2).

We study the effect of parametric mismatch in a two-state oscillator tracking system.

From [71], the state of the oscillator for a two-state model can be written as x(t) =
[

x1(t) x2(t)

]⊤

where x1(t) is the time offset in seconds and x2(t) is the rate or frequency

offset. This can be seen in Figure 5.1.

+ξ2(t)

ẋ2(t)

∫
dt

x2(t) ẋ1(t)

∫
dt

x1(t)

ξ1(t)

Figure 5.1: Schematic for a two-state model.

99

The continuous-time dynamics follow as

ẋ(t) =






0 1

0 0




 x(t) + ξ(t) (5.3)

with ξ(t) ∼ N (0,Q) and process noise covariance Q = diag(q1
2, q2

2) where q1 and q2 are

the short-term and long-term stabilities of the oscillators.

The corresponding discrete-time dynamics are

x[k + 1] =






1 T

0 1






︸ ︷︷ ︸

F

x[k] + u[k] (5.4)

with u[k] ∼ N (0,Q(T)) and the discrete process noise covariance

Q(T) = q21






T 0

0 0




+ q22






T 3

3
T 2

2

T 2

2
T




 (5.5)

The discrete-time observation equation is given by

y[k] =

[

1 0

]

︸ ︷︷ ︸

H

x[k] + w[k] (5.6)

with w[k] ∼ N (0, r) and the sample period T . Here, the three parameters (q1, q2, r) de-

scribe the statistics of the dynamics of this system. To better understand the sensitivities

of KF at steady state, the results are also checked with its steady state performance using

the standard Riccati equation method.

The KF estimates and predicts the unwrapped phase naturally. However, the wrapped

phase measurements can only correctly detect a phase change from one cycle to the next

that is less than π [72]. The measurement for phases φk and φ1 is mink(2πk + φ1 − φk)

where k ∈ Z.

100

5.3 Machine Learning Problem Formulation

In this section, we take a quick detour to discuss a typical problem formulation for a

supervised learning problem. We discuss the ideas of features, labels, loss function and

activation functions here.

Assuming a supervised learning scenario with input space X , an output space Y and

a training set T that includes N training examples T = {(x1, y1), . . . , (xN , yN)} where

xi ∈ X is the feature vector and yi ∈ Y is its label. A learning algorithm tries to find a

function fθ so that for each feature vector in X will be correspond with a value in Y . In

order to measure the fitting of the function with the training data, a loss function L is

defined. For training example (xi, yi), the loss of predicting value ŷ is L(yi, ŷ).

If we consider a neural network model with a weight matrix W , bias vector b and

a feature set matrix X, the linear output units produce a vector ŷ = W⊤X + b. To

find the best approximation fθ of some function, we can formulate our problem to the

standard form yields

min
θ

1

m

m∑

t=1

1

2
‖ ŷ − y ‖2 (5.7)

subject to ‖ W ‖2 6 ǫ, (5.8)

and some of the commonly used activation functions are

• Sigmoid:

σ(x) =
1

1 + e−x
(5.9)

• Tanh

tanh(x) = 2σ(2x)− 1 (5.10)

• Rectified Linear Unit (ReLU)

f(x) = max(0, x) (5.11)

101

• Maxout:

f(wTx+ b) = max(w1
Tx+ b1, w2

Tx+ b2) (5.12)

• Softmax:

f(x) =
ex

∑n
j=1 e

x
j

(5.13)

5.4 Methodology

We study the performance of a Kalman filter that uses parameters [q′1, q
′
2, r

′]. When these

parameters match the actual parameters of the system, we know the Kalman filter gener-

ates MMSE estimates and predictions and we can solve for the steady-state performance

of the Kalman filter using standard Riccati equation methods. When the Kalman filter

uses different parameters, however, there will be some loss of performance. We would

like to better understand the sensitivities of the Kalman filter to parameter mismatches.

As a first step toward understanding parametric sensitivities, we will assume two of

the three parameters to be correct and run the Kalman filter on synthesized data with

the remaining third parameter incorrectly chosen. We will let the Kalman filter converge

and then compute the Monte-Carlo one-step prediction and estimation covariances. Note

that the Monte-Carlo results will be different from the Kalman filter error covariance

matrices due to the parameter mismatch. The Monte-Carlo results describe the actual

prediction and estimation performance of the Kalman filter.

The covariance update with parameters [q′1, q
′
2, r

′] is given as

Σ[k + 1 | k] = F (T)Σ[k | k]F⊤ +Q′(T) (5.14)

with

Q′(T) = ω2
0(q

′
1)

2






T 0

0 0




+ ω2

0(q
′
2)

2






T 3

3
T 2

2

T 2

2
T




 . (5.15)

We specify a “mismatch factor” γ corresponding to the ratio of the Kalman filter param-

102

eter to the actual parameter governing the state dynamics. For the oscillator stability

parameters q1 and q2, we have

γ =
(q′i)

2

q2i
(5.16)

When r is the mismatched parameter, we have γ = r′

r
.

5.5 Bounded Loss Function

Neural networks (NNs) are universal function approximations over finite intervals [73].

This is important in our setting since the states get integrated with white noises at each

step and are not going to be on a finite interval. Hence, we enforce a bounded-input

bounded-output type of behavior on the data by wrapping the values around bounds

(−B,B). There are a few other approaches like differencing, scaling and normalizing,

but they cannot be applied in this particular scenario because

• Differencing - This creates correlations between successive samples in the data,

which will not allow fair comparison with KF because if we set it up to track

differences, the process noise and the measurement noise would be individually

temporally correlated.

• Scaling - For unbounded data and targets, we cannot use a constant scale for

training and testing as they are contiguous and might have different scale of values.

• Normalizing - Normalizing is straightforward, but denormalizing needs information

on the mean and standard deviation for each training example

Hence, we circularly wrap the data and targets to (−B,B) [74]. This will require a

customized loss function to compute the mean squared error since if the NN guesses the

target to be B − ǫ and the true target is −B + ǫ, these values are close on the circle and

the wrapped error is 2ǫ. We consider this in Section 5.6 where we have an oscillator phase

prediction problem where wrapping occurs naturally. Table 5.1 shows the architecture of

the convolutional neural network used for training.

103

Table 5.1: The CNN architecture used for solving oscillator phase predictions problem.
Layer Input Size Output Size Activation

Input (5, 1) (5, 1) ReLU
Conv-1D (5, 1) (5, 20) ReLU
Conv-1D (5, 20) (5, 15) ReLU
Conv-1D (5, 15) (5, 10) ReLU
Conv-1D (5, 10) (5, 5) ReLU
Conv-1D (5, 5) (5, 1) ReLU

Concatenate [(5, 1), (5, 1)] (5, 2)
Flatten (5, 2) (10, 1)
Output (10, 1) 1 Linear

For the loss function, when the observations are M units apart, the wrapped phase

change estimate is added to the number of rotations to form the wrapped error estimate.

The weights and biases are denoted by W , b, and the number of measurements by N .

Also considering the wrapping, we have the loss function as a circular mean squared error

function between the predicted and estimated states

L(x, x̂) = min
k

1

N

N∑

n=1

‖x̂t(n)− xt(n)± k ∗ 2π‖22 k ∈ Z. (5.17)

5.6 Numerical Results

This section presents the numerical results outlining the performance of obtaining the

Kalman filter predictions and the evaluation of the CNN implementation. The estimated

prediction variances are compared to the variances provided by the KF error covariance

matrices.

We select Adam as the optimizer with with initial learning rate lr = 0.001 and β1 =

0.9, β2 = 0.999 [75]. We use rectified linear units (ReLU) [76] as the activation function

for each convolutional layer and a linear activation function for the final layer. Table 5.2

shows the typical mismatch parameters used.

We assume two of the three parameters to be correct and run the KF and the CNN on

the synthesized data with the remaining third parameter incorrectly chosen. All of the

104

Table 5.2: Typical parameters for numerical results.
Parameter Mismatch Range Units Meaning

q1 10−2 − 102 sec oscillator short-term stability
q2 10−2 − 102 1/sec oscillator long-term stability
r 10−2 − 102 nanosec2 time offset meas. noise variance

simulations results shown below assume: sample size T = 1, nominal q1 = 1, q2 = 1 and

r = 1. The Kalman filter is run with the unwrapped measurements and the CNN is run

with the wrapped measurements to ensure the bounded-input bounded-output condition.

The results from the KF were averaged over 2 × 104 runs and the final predictions

and estimates were then subtracted from the final states to form Monte-Carlo estimates

of the prediction and estimation covariances, respectively. We let the KF converge and

then compute the Monte-Carlo one-step prediction and estimation covariances. For the

parametric mismatch cases, the Monte-Carlo results will be different from the KF error

covariance matrices.

For the CNN approach, we train on a sequence of 2× 104 wrapped phase noise mea-

surements in radians and validate the results. After training, the weights of the neural

network are fixed and are used for testing, for which we consider a new dataset containing

1000 measurements, each of length 200. We run the KF with different mismatched param-

eters and compare its results with the CNN. The train RMSE is calculated using (5.17)

as 2.1.

Figures 5.2, 5.3 and 5.4 show the effect of q21, q
2
2 and r parameter mismatch on the KF

and the CNN performances. For all figures, the dashed black lines show the performance

with no parametric mismatch and were obtained from solving the discrete-time algebraic

Riccati equation. The dashed red lines shows the training RMSE for the CNN for each

type of mismatch. In the case of no mismatch, KF performs slightly better than CNN as

KF is optimal when it has full knowledge of the model, measurement and noise covariance.

We can see that while the mismatches degrade the perfomance of KF, they have no effect

on the CNN model.

105

10
-2

10
-1

10
0

10
1

10
2

q
1

 mismatch factor

2

2.5

3

3.5

4

4.5
R

M
S

 P
re

d
ic

ti
o

n
 E

rr
o

r

RMS prediction error of KF predictions

(Monte Carlo - with mismatch)

RMS prediction error of CNN predictions

(Monte Carlo - with mismatch)

RMS prediction error of CNN predictions

with least Squares fit

RMS prediction error of KF predictions

at steady state (Riccati equation - no mismatch)

Figure 5.2: Effect of q1 mismatch on the KF and the CNN performances.

The result from Figure 5.2 shows that the KF is sensitive to parametric mismatch of

the q1 parameter, especially if the parameter is underestimated. These results suggest

that overestimation of the q1 parameter also degrades performance, but the effect is not

as severe as underestimation of q1 by the same factor. However, the performance of the

trained CNN is consistent over all the q1 mismatches.

The result from Figure 5.3 suggests that there is almost no penalty in underestimation

of the q2 parameter by two orders of magnitude (or perhaps even more). Hence, for

practical implementations with some parametric uncertainty, it may make sense to bias

our estimates of the q2 parameter toward zero. The trained CNN performs consistently

again despite any mismatches.

The result from Figure 5.4 show that the filter is particularly sensitive to overestima-

106

10
-2

10
-1

10
0

10
1

10
2

q
2

 mismatch factor

2

2.5

3

3.5

4

4.5
R

M
S

 P
re

d
ic

ti
o

n
 E

rr
o

r

RMS prediction error of KF predictions

(Monte Carlo - with mismatch)

RMS prediction error of CNN predictions

(Monte Carlo - with mismatch)

RMS prediction error of CNN predictions

with least Squares fit

RMS prediction error of KF predictions

at steady state (Riccati equation - no mismatch)

Figure 5.3: Effect of q2 mismatch on the KF and the CNN performances.

tion of the r parameter but is less sensitive to underestimation of this parameter. The

trained CNN performs consistently again despite any mismatches.

5.7 Conclusion and Next Steps

We studied the performance of the Kalman filter with mismatched noise covariances here.

We devise a deep learning based approach for tackling the mismatched cases. We take

an example of oscillator phase predictions where CNNs improve the performance of the

phase predictions as compared to Kalman filter in the mismatched cases.

The trained model generalizes well over a large number of test samples. We demon-

strate that our method, unlike traditional KF based methods, is robust to model mis-

107

10
-2

10
-1

10
0

10
1

10
2

r mismatch factor

2

2.5

3

3.5

4

4.5
R

M
S

 P
re

d
ic

ti
o

n
 E

rr
o

r

RMS prediction error of KF predictions

(Monte Carlo - with mismatch)

RMS prediction error of CNN predictions

(Monte Carlo - with mismatch)

RMS prediction error of CNN predictions

with least Squares fit

RMS prediction error of KF predictions

at steady state (Riccati equation - no mismatch)

Figure 5.4: Effect of r mismatch on the KF and the CNN performances.

matches by comparing the error covariances. Furthermore, we use steady-state analysis

as a reference for the optimal behavior of the Kalman filter and to compare our results.

The proposed approach is general and can be applied to a wide variety of dynamic

random process. This will leads to biased estimates of the AR coefficients. Prediction

algorithms that are robust to these kind of model mismatches can assist in building

advanced tracking methods where the exact model and parameters are inaccurate.

There are many directions that we can extend this work in exploring few other mis-

match cases where Kalman filter fails to reach an optimum solution like model mismatch,

non-linearities, non-Gaussian and dimension mismatch. We could also consider few other

deep learning prediction models like auto-encoders and Gated Recurrent Units. There are

reinforcement learning based approaches like model-based, where we estimate the system

108

model from observations and solve it with reinforcement learning and model-free, where

we learn the policy directly without estimating the system model. There are also few

techniques where these two approaches can be alternated [77]. It would be interesting

to consider these approaches to arrive at a general framework for predicting dynamic

random processes.

109

Chapter 6

Manuevering Target Tracking

(Co-written with Matthew. L. Weiss and Prof. Randy Paffenroth of Worcester

Polytechnic Institute and Arick Grootveld, Leah Lackey, Vlad I. Bugayev, Andrew G.

Klein, Department of Engineering and Design, Western Washington University,

Bellingham, WA 98225)

Kalman filter (KF) comes with a caveat that we need to know all the parameters such

as process and measurement noise covariances. Here, in the context of KF, we have four

such possible situations:

1. when we do not know the model exactly

2. when we know the model but we do not have the right parameters for the model

3. when we assume a linear model, but the actual model is non-linear

4. when we know the model, but it keeps changing over time - that is, for example, if

we keep switching from one model to another. This is called model switching and

we consider this situation here.

We consider the tracking maneuvering targets application in this chapter. Maneuver-

ing targets are difficult to model due to inherent model switching and changes in dynamic

behavior. Sharp maneuvers are especially challenging to handle [78].

For example, a turn should be accounted for as a separate mode with its own turn

rate process noise. Lets consider an example trajectory of a flight, as shown in Figure 6,

0 2000 4000 6000 8000 10000 12000

X Position (m)

-5000

-4000

-3000

-2000

-1000

0

1000

2000

3000

4000
Y

 P
o

s
it
io

n
 (

m
)

Constant Velocity

Coordinated Turn

Figure 6.1: Example of a trajectory with Constant Velocity (CV) and Coordinated Turn
(CT) modes.

that starts from (0, 0) and moves along in x-axis. We know what mode we are in, KF

knows the model and parameters for the constant velocity model and it optimally tracks

the CV portion. Then we switch to CT or coordinated turn mode. Now, Kalman filter

shifts to a new mode called the CT mode. Now, within the CT mode, KF knows the

model and can optimally track the angular velocity and other states in this mode. Then,

when we switch back to CV mode, KF needs to shift to CV mode again. Since, we do

not know when the target is maneuvering, the performance of the KF degrades with a

model-based approach.

We typically resort to heuristic methods such as an Interacting Multiple Model (IMM)

which accounts for these modes and model switching and computes an average estimate

iteratively using multiple filter models to account for varying target behavior. However,

for more sophisticated targets, such as those guided by feedback control systems are more

111

difficult to model [39]. An IMM is prone to clutter, is not known to be generally optimal

and does not offer any guarantees of robust performance.

Our primary goal in this chapter is to use machine learning to help solve this problem

and overcome the limitations of the IMM. We approach this problem in two different

ways.

1. Temporal Convolutional Networks (TCN) based approach: We propose a data-

driven TCN [79] to predict dynamic random processes under model switching

scenarios. TCNs use dilated convolutions to increase the receptive field of the net-

work. They are more memory efficient than recurrent networks due to the shared

convolution architecture which allows long sequences to be processes in parallel.

In RNNs, the input sequences are processed sequentially, which results in higher

computation time. However, TCNs are trained with the standard backpropagation

algorithm, hence avoiding the gradient problems of the backpropagation-through-

time algorithm used in RNNs. Here, we use a TCN with measurements as inputs

and predicted states as outputs.

2. Hybrid models such as Autoencoder Kalman Filter and Autoencoder Interacting

Multiple Model : The AEIMM places an Interacting Multiple Model Kalman Filter

in the latent layer of a deep autoencoder. The IMM is similar to a standard

Kalman Filter except now there is a bank of Kalman Filters, where the output of

the IMM is a statistical weighting of the Kalman Filters. Similar to replacing a

standard Kalman Filter with IMM for maneuvering target tracking, the transition

from AEKF [4] to AEIMM is a natural extension. These models outperform model-

based approaches like KF and IMM and learning based approaches like LSTMs.

6.1 Key Contributions

In this context, the contributions are:

1. We apply TCNs to predict states of dynamical systems with model switching.

112

We demonstrate that the TCN achieves a better mean-squared prediction error

compared to classical algorithms such as IMM and least squares.

2. We start by developing an Autoencoder Interacting Multiple Model (AEIMM).

We demonstrate that merging an autoencoder with IMM allows the AEIMM to

be effectively used even in the context where the theoretical conditions for opti-

mality of the Kalman Filter (KF) and IMM are not met. This is an extension of

Autoencoder Kalman Filter (AEKF) [3]. This is further discussed in Section 6.4

3. We apply domain randomization for designing a robust learning model and avoid

overfitting. This is discussed in Section 6.4.2.

4. Numerical demonstration of AEIMM outperforming model-based and learning-

based approaches for the system model in Section 6.2. This is presented in the

results in Section 6.4.5

6.2 System Model

We consider a framework for dynamical systems that undergo switching in time among

several modes or sub-systems. Such dynamical systems have a long history in control

theory, and are sometimes referred to as “jump systems” [80]. Under a fairly general

discrete-time framework, the system state and measurement evolve according to

x[k + 1] = fθk(k, x[k], v[k])

y[k] = hθk(k, x[k], w[k])

where x[k] is the state vector, y[k] is the measurement vector, v[k] is the random process

noise, w[k] is the random measurement noise, fθk(·) is a family of N vector functions

describing the state dynamics during mode θk, hθk(·) is a family of N vector functions

describing the measurement dynamics, and θk ∈ {0, 1, . . . , N − 1} denotes the stochastic

mode in effect during the sample period ending at discrete time k. We assume throughout

113

that the current mode θk in effect is not known, though the statistics of the random process

may be known.

Under certain assumptions about the model dynamics and the stochastic switching,

several important special cases of this system model emerge. When the switching process

θk can be described by a Markov chain with time-invariant transition matrix P , so-called

Markov Jump Systems arise [81]. If, in addition, the system is linear, the system is called

a Markov Jump Linear System (MJLS) [44] and it admits the state space realization

x[k + 1] = Fθk [k]x[k] + v[k] (6.1)

y[k] = Hθk [k]x[k] + w[k] (6.2)

where the non-linear functions fθk(·) and hθk(·) are replaced by the matrices Fθk [k] and

Hθk [k]. When the the process and measurement noises can be modeled as Gaussian

random processes, we assume they are distributed as v[k] ∼ N (0,Q) and w[k] ∼ N (0,R),

respectively, with Q and R as the corresponding covariance matrices. Again, while we

assume that the mode θk in effect at time k is not known, at times we will assume

knowledge of the transition matrix P that completely characterizes the statistics of the

underlying Markov chain.

We consider a specific application within this class of switching systems in this chapter:

tracking maneuvering targets that switch between a near constant velocity mode and a

coordinated turn mode.

In maneuvering target tracking, the primary objective is using noisy measurements of a

moving object (acquired, for example, via radar) to estimate or predict state trajectories.

The body of literature concerned with dynamical models of target tracking is rich, and

there are numerous models for describing the dynamics of target motion (see [82] for a

comprehensive survey). Target motions generally fall into two classes: non-maneuvering

and maneuvering. A non-maneuvering motion is uniform motion at a nearly constant

velocity, whereas a maneuvering motion is most any other motion. Here, we consider

114

a popular discrete-time maneuvering target tracking model [39] that switches between

N = 2 such modes. Specifically, we assume that the target is either in a CV mode or in

a CT mode. Moreover, we again assume that the switching dynamics are described by a

two-state Markov chain so that the mode switching model shown in Figure 7.1 applies to

this application, as well. While the model for CV mode turns out to be linear, the CT

mode obeys a nonlinear model. We now describe the dynamical model for each of the

two modes for state dimension compatibility when switching between modes.

6.2.1 Constant Velocity Model

The model for CV mode has four states x[k] = [ξ[k] ξ̇[k] η[k] η̇[k]]⊤ with ξ and η denoting

Cartesian coordinates in the horizontal plane, and ξ̇ and η̇ denoting the velocity. The

model for operation in CT mode is linear and is described by

x[k] =












1 T 0 0

0 1 0 0

0 0 1 T

0 0 0 1












x[k − 1] +












1
2
T 2 0

T 0

0 1
2
T 2

0 Ω[k]












v[k] (6.3)

with v[k] ∼ N (0,Q) as in [39]. The process noise here serves to model turbulence or

other non-idealities. Because the CT model below has five states, it is common to append

a fifth state to this model that is always zero.

6.2.2 Coordinated Turn Model

The coordinated turn (CT) model has nearly constant speed and turns at a constant rate.

It adds a fifth state to the CV model and is defined as x[k] = [ξ[k] ξ̇[k] η[k] η̇[k] Ω[k]]⊤

115

where Ω[k] denotes the turn rate. The CT model is nonlinear and can be written as

x[k] =















1 sin(Ω[k]T)
Ω[k]

0 −1−cos(Ω[k]T)
Ω[k]

0

0 cos(Ω[k]T) 0 − sin(Ω[k]T) 0

0 1−cos(Ω[k]T)
Ω[k]

1 sin(Ω[k]T)
Ω[k]

0

0 sin(Ω[k]T) 0 cos(Ω[k]T) 0

0 0 0 0 1















x[k − 1]

+















1
2
T 2 0 0

T 0 0

0 1
2
T 2 0

0 T 0

0 0 T















v[k].

(6.4)

Because the matrix multiplying x[k − 1] in the above equation is a nonlinear function

of one of the state variables, Ω[k], it is clear that this is a nonlinear model. Because

the turn rate Ω[k] is a state variable, we assume that it is an unknown parameter to be

estimated. In models where the turn rate is known, however, this CT model reduces to

a linear system.

The model for the measurement y[k] in both CT mode as well as the CV mode (with

an appended fifth zero state, as mentioned above) is given by

y[k] =






1 0 0 0 0

0 0 1 0 0




x[k] + w[k]

where w[k] ∼ N (0,R). That is, the measurement consists of noisy observations of the

Cartesian coordinates of the target.

116

6.3 Machine Learning Algorithms

6.3.1 Temporal Convolutional Networks

CNN comprise of a sequence of convolutional layers that act as a series of filter banks

learning their weights by computing the convolution between the sliding filter and the

data, as the filter moves across the data. This helps to learn repeating patterns in data,

which updates the weight matrix at each step. This also helps the network to improve

local connectivity and learn long-term relationships in noisy data. They are especially

advantageous in terms of weight sharing which reduces the number of connections and

parameters in a network and the fact that each filter can look for a particular entity or

pattern within the entire image which adds ability to translate about weights learned

from one area of image to other areas.

While CNNs have shown great promise as an effective machine learning architecture,

particularly in image recognition applications [83], they have been recently used as tempo-

ral convolutional networks [79] for time-series modeling and sequence prediction problems.

TCNs have demonstrated state-of-the-art performance over a wide range of prediction ap-

plications, including weather prediction [84], traffic prediction [85], audio [86], and action

segmentation [87].

TCNs are generally used in one of two configurations: (i) for sequence estimation

where the output sequence is the same length as the input sequence, just as with RNNs,

or (ii) for autoregressive prediction of samples at some time in the future, which is typ-

ically accomplished by adding a fully connected layer to the output of the sequence

prediction. We consider the latter configuration and the corresponding architecture is

shown in Figure 6.2.

Essentially, a TCN employs a series of connected residual blocks consisting of 1D

fully-convolutional networks (FCNs) [88] where the convolutions are chosen to be causal,

primarily through appropriate choice of zero-padding, and dilation [87]. In TCNs, di-

117

Figure 6.2: Schematic of a Temporal Convolutional Network with a series of residual
blocks with increasing dilation followed by a fully connected layer.

lation takes the place of “pooling” which is commonly used in more traditional CNN

architectures, and it allows the TCN to have a large receptive field.

A TCN can accept a multi-dimensional input sequence (i.e. a matrix). In the two

applications considered in Chapter 7 – Gilbert-Elliott channel prediction and maneuvering

target tracking – the input vectors are two-dimensional as shown in Figure 6.2. The

specific TCN implementation that we consider is the implementation described in [79].

6.3.2 Test Protocol

For our simulations, Mode 0 was chosen to be the CV model described by (6.3), while

Mode 1 was chosen to be the CT model described by (6.4). The CV-to-CT and CT-to-

CV transition probabilities were selected as p01 = p10 = 0.01, and the remaining system

parameters were selected to be T = 1 sec, Q = I2, R = 576 · I2 where I2 is a 2× 2 identity

matrix. The initial speed of the target was normally distributed with a mean of 120 m/s

and a standard deviation of 30 m/s. The magnitude of the initial turn rate at the start of

each turn was normally distributed with a mean of 4 rad/sec and a standard deviation of

1 rad/sec, and with left and right turns being equally likely; thus, Ω[k] at the start of each

118

turn has a folded Gaussian distribution. We perform 4 × 104 Monte-Carlo simulations

with 103 samples to ensure a consistent performance across multiple mode transitions.

The network is trained on 4 × 106 samples with 774,302 parameters comprised of

1,302 bias terms and 773,000 network weights. Additional details concerning other TCN

hyperparameters can be found in the code repository [89]. For each prediction, the TCN

was provided the two Cartesian coordinates of the 20 most recent noisy observations of the

target, and thus the input was from R20×2. Just prior to the TCN input, the coordinate

system of every input was translated so that each length-20 input sequence terminated at

the origin; at the TCN output, this translation was reversed to put the outputs back on

the original coordinate system. The reason for this translation is that data pre-processing

has been shown to improve the performance of machine learning systems, particularly

when the pre-processing serves to limit the inputs and outputs to a narrower or more

balanced range of values.

6.3.3 Results

We now present the simulated performance of the TCN when used for prediction. The

performance of the TCN is compared to the IMM, LS, and a “Genie Kalman Filter”

(GKF) which is a time-varying KF with perfect knowledge of the current mode θk. When

the current mode θk is known and the mode dynamics are linear, the system reduces to

a standard linear time-varying dynamical model for which the KF is optimal. Hence, for

linear mode dynamics, the MSE of the Genie KF establishes a lower bound by which

other algorithms can be compared. We report the average prediction RMSE in Table 6.1,

where the RMSE is computed only over the two Cartesian coordinate states of the target

as

RMSE =

√

E[(ξ − ξ̂)2 + (η − η̂)2]

119

The performance of the algorithm is evaluated similar to the Gilbert-Elliott scenario. Any

samples occurring 25 samples or fewer after a mode transition are defined as as being

in a “transition regime”. The CV and CT mode performance in the table indicates an

average RMSE only over those time slots which are not in a transition regime, i.e., where

no transition occurred within the previous 25 time slots.

Here, however, the GKF is additionally provided knowledge of the current turn rate

Ω[k] (i.e., the fifth element in the state vector). With this knowledge, the CT model in

(6.4) becomes a time-varying linearmodel and thus the GKF is the optimal estimator. We

note that providing this additional information to the GKF may result in its prediction

MSE being a rather loose lower bound for CT mode operation.

Table 6.1: Maneuvering target prediction RMSE (in meters).
With Only Only
mode mode 0 mode 1

switching (CV) (CT)

Genie KF 19.5 19.4 19.6
IMM 28.0 20.0 24.8
TCN 25.4 20.6 25.9

The results in Table 6.1 show that the prediction RMSE for the GKF, IMM, and

TCN are all quite close during CV mode, suggesting that both schemes are achieving

near-optimal RMSE performance. During CT mode, the GKF lower bound is likely

rather loose, as knowledge of the true turn rate provides it a considerable advantage

during this mode; however, the prediction RMSEs for IMM and TCN are again rather

comparable during this mode, with IMM prediction RMSE being just slightly lower than

the TCN. As for the case with switching, overall the TCN has lower prediction RMSE

than the IMM. This is largely due to the superior RMSE performance of the TCN during

CV-to-CT transitions, as we will now show.

Figures 6.3 and 6.4 depict the prediction RMSE values before and during the tran-

sitions from time steps 0 through 25. While the TCN exhibits a slightly higher RMSE

than the IMM during the transition from CT mode to CV mode in Figure 6.3, the TCN

120

has significantly lower RMSE when transitioning from CV mode to CT mode as shown

in Figure 6.4. For the chosen transition probabilities and with the definition of a mode

“transition” as lasting 25 samples, the target spent 38.5% of its time in the CV mode,

38.5% in CT mode, and 11.5% in each of the two types of mode transitions.

-5 0 5 10 15 20 25

discrete time index

0

10

20

30

40

50

60

70

80

R
M

S
E

 (
m

e
te

rs
)

IMM

TCN

GKF

RMSE

TCN 29.2
IMM 28.4

Genie KF 19.7

Figure 6.3: Root Mean-Square Prediction Error During CT-to-CV transitions. RMSE
values in table computed over discrete time values 0 ≤ k ≤ 25.

In summary, while the TCN is actually slightly inferior to the IMM in terms of pre-

diction RMSE during long stretches of CV and/or CT modes as well as during transitions

from CT-to-CV mode, the ability of the TCN-based approach to more quickly recognize

that the target has entered CT mode leads, overall, to a performance advantage over the

IMM.

121

-5 0 5 10 15 20 25

discrete time index

0

10

20

30

40

50

60

70

80

R
M

S
E

 (
m

e
te

rs
)

IMM

TCN

GKF

RMSE

TCN 33.1
IMM 51.4

Genie KF 19.5

Figure 6.4: Root Mean-Square Prediction Error During CV-to-CT transitions. RMSE
values in table computed over discrete time values 0 ≤ k ≤ 25.

122

6.4 Hybrid Algorithms

We now consider hybrid algorithms where we combine deep learning methods with tradi-

tional methods. When combined with well-known mathematical models such as the KF

or IMM, certain design and training issues can be addressed in the Kalman Filter itself,

where the decision was informed by the Kalman Filter’s well-known theoretical basis. At

the same time, the computational power of deep learning allows a hybrid model such as

the AEKF to outperform a traditional Kalman Filter [3].

Autoencoders are a class of unsupervised deep learning algorithms often used for

dimensionality reduction. They have been successfully applied for end-to-end commu-

nication system design in channels with Gaussian and non-Gaussian noise [59] and for

object tracking applications [90]. The combination of autoencoders with AEKF/AEIMM

merges the computational power of deep learning with the theoretical understanding of

a simple and elegant linear system. Neural networks lack mathematical principles that

could be useful in guiding training. We first consider AEKF and then present AEIMM

as an extension of AEKF.

6.4.1 Autoencoder Kalman Filter

The AEKF [3], [4] is a hybrid autoencoder KF algorithm that places a KF in the latent

layer of a traditional autoencoder, as depicted in Figure 6.5.

Here the measurements, φ, are first transformed by the encoder portion of an autoen-

coder, where each layer of the autoencoder is represented by El. The encoder outputs

two sequences, z[k] and R[k], which are passed to a KF as measurements and associ-

ated measurement covariances. The KF’s state estimate of z[k], represented by ẑ[k], is

then mapped back to the measurement space via the decoder portion, whose layers are

similarly represented by Dl. The final output of the decoder is the state estimate of the

original measurements, φ̂. Note the vertical ellipses represent the number of dimensions

in a layer and horizontal ellipses represent the depth of the encoder and decoder.

123

φ

El

z[k]

R[k]

ẑ[k]

Dl

φ̂

x̂[k|k − 1]

x̂[k|k]

Figure 6.5: The Autoencoder Kalman Filter (AEKF).

A detailed description of the AEKF, along with a comparison to other deep learning-

KF hybrid models, appears in [3], [4]. Here we present a brief overview and some details

on the training of the AEKF. As shown in Figure 6.5, the actual measurements are now

represented by φ, which is mapped via a composition of neural network layers to two

new variables: z[k] and R[k]. These comprise the input measurements and associated

measurement covariance to the KF. The output of the KF, ẑ[k], is then mapped back to

the measurement space via the decoder portion of the AEKF. Here the output, φ̂, is a

filtered version of the original input φ.

Since the encoder and decoder portions of the AEKF are trained via back propagation,

the cost function should compare φ and φ̂ in some way. However, since the actual ground

truth is not known, we train with simulated data where the ground truth is known. In

the context of deep learning, this technique is known as domain randomization [3], [4],

[91].

124

In the context of domain randomization, the loss function for this architecture is

L = min
θ

∑

i

‖φi − φ̂i(φ̂i−1, φ̂i−2, . . .)‖2F (6.5)

where θ represents the parameters learned by encoder and decoder.

We propose to leverage domain randomization as done in [3], [4] which allows train-

ing over a range of parameter values in simulation, thus overcoming the need to have

knowledge of the real-data ground truth to train a deep learning model.

6.4.2 Domain Randomization

Domain randomization is an a priori approach in which the parameters of the dynamics

and/or observations are randomized during training, but the final policy does not explic-

itly perform system identification at test time. Randomization of dynamics parameters in

simulation has been shown to increase generalization ability [92], [93]. Random textures

and colors in the visual input have been used for successful sim-to-real transfer for indoor

navigation [94] and simple manipulation tasks [95], [96].

The main philosophy behind domain randomization is that if there is enough vari-

ability in the simulated model, the real world is just one among the many variations

learned in simulation [3]. So, the goal is to achieve a high enough degree of variability

in simulation. This makes sure that the real world being modeled is present among the

variations. This is possible when the range of parameter randomization is bounded and

informed periodically by domain knowledge. By randomizing training parameters, the

learned model will be robust enough to perform well on test cases whose parameters fall

within the range of the randomized training parameters.

Figure 6.4.2 shows an example of a simulated training curve with bimodal noise. The

smooth line is the ground truth Taylor Polynomial φtrue with the points representing the

ground truth with added noise φnoise. At each training epoch a new simulated curve was

generated and passed to the AEKF. As a result, the AEKF effectively never saw the

125

same curve twice during training. Our use of domain randomization can be thought of as

training a neural network to perform state estimation for increasingly more general fami-

lies of functions in Hilbert Space. It covers a particular parameter space by randomizing

a parameter over its entire domain. Since the data is simulated, access to the ground

truth for training is not problematic.

Domain randomization is appealing in its simplicity, and has performed well in the

literature and in our own experiments. We train deep learning models completely in

simulation which then generalize to real-world data without any further training or pa-

rameter tuning. Instead of training a neural network to learn parameters from a fixed

training set and then generalize to a testing set, we utilize domain randomization to train

a neural network to learn parameters within a specified range of values in simulation. In

some sense, this process can be thought of as learning a covering of a subspace in a

Hilbert Space. However, it implicitly assumes that, given the observed state of the sys-

tem, there exists an action that will produce acceptable behavior over all possible values

of the unknown system identification parameters. This assumption may not hold if the

set of possible test environments is diverse.

6.4.3 Autoencoder Interacting Multiple Model

The AEIMM is conceptually similar to the AEKF in that the KF portion of the AEKF

is replaced by an IMM, as shown in Figure 6.7. Both the AEKF and AEIMM address

the issue of estimating measurement covariances. However, in the case of the AEIMM,

we allow the encoder portion to learn different measurements and their associated mea-

surement covariances for each of the two KFs in the AEIMM, represented by zA, zB and

RA,RB respectively.

The primary motivation for this feature is that learning different measurements and

associated measurement covariances for each KF in the IMM will assist the MDP mixer

in weighting the appropriate KF. This, in turn, will help the IMM weight the system

126

Figure 6.6: Domain randomization for polynomials [3].

127

dynamics appropriately. The multiple encoder outputs are passed to two KFs: KF-CV

and KF-CT, which output x̂A, Σ̂A and x̂B, Σ̂B respectively.

These are then passed into a Markov Decision Process (MDP) mixer that returns

x̂M , Σ̂M . Lastly, x̂M , Σ̂M are

1. passed back to the IMM for the next iteration

2. passed to the decoder, which maps these values to the final output φ̂.

We consider two neural networks here: a neural network that provides noisy states z

with varied noise covariance matrix R to Kalman filters KF-CV and KF-CT and another

neural network at the decoder. We have the outputs from the state space model φ being

sent into the encoder part of the autoencoder. The encoder connects to two Kalman filters

KF-CV and KF-CT that give out x̂A, Σ̂A and x̂B, Σ̂B respectively. These will go into a

MDP mixer that gives out x̂M , Σ̂M . These go into the decoder part of the autoencoder,

another neural network that takes in x̂M , Σ̂M and gives the outputs φ̂. These will be sent

back to KF-CV and KF-CT at each iteration as a feedback.

Nearly

Constant

Velocity

Channel

M
D

P
 M

ix
e
rKF-NCV

KF-CT
Coordinated

Turn

 Model

N
N

 E
n

c
o

d
e
r

N
N

 D
e
c
o

d
e
r

φ

zA

RA

RB

zB

x̂A

Σ̂A

x̂B

Σ̂B

x̂M

Σ̂M

φ̂

Figure 6.7: Block diagram for the Autoencoder Interacting Multiple Model (AEIMM)
filter.

128

We can use the same loss functions that we used in AEKF calculations. From an

autoencoder perspective, we can view the IMM portion as a channel with continuous-

time and discrete-time dynamics. Physically, the encoder portion of the neural network

takes the real space and makes it easier for the IMM in the middle to have better priors.

The decoder portion of the neural network makes sure the results are generalized to the

test sets well.

6.4.4 Test Protocol

We test our approach on simulated flight paths consisting of constant velocity segments

interspersed with coordinated turns. They are based on physical models according to the

kinematics equations for constant linear motion and coordinated turns. A sample flight

path with Gaussian noise is shown in Figure 6.8.

All simulated flight paths begin with constant velocity motion in the horizontal direc-

tion. At each turn, the corresponding turn radii is chosen randomly (within a predefined

range), along with the turn direction (clockwise or counter clockwise). Gaussian and

non-Gaussian noises are then added to these smooth ground truth flight paths. Using

these noisy simulated flight paths, we compare the state estimation capabilities of the

following models: KF, IMM, AEKF, AEIMM and LSTM.

Each model’s state estimation is then compared with the actual ground truth and the

corresponding MSE is reported for each model. In this phase, the ground truth is used

only for model evaluation and does not affect each model’s state estimate in any way.

As the state estimate and ground truth are two dimensional, the MSE is calculated by

taking the Frobenius norm between the state estimate and ground truth.

While we use simulated flight paths to demonstrate the efficacy of the AEIMM, it

should be noted the AEIMM is designed in a general manner to make it applicable to

any application or scenario where an IMM is appropriate.

We also compare our approach with Long-Short Term Memory (LSTM) network here.

129

Figure 6.8: Sample simulated two-turn flight path with Gaussian noise.

130

An LSTM is a type of recurrent neural network (RNN) initially developed to solve the

vanishing gradient problem in RNNs. As they are able to learn long term temporal

dependencies, LSTMs are well suited for time series classification, prediction and state

estimation. They make it easier to model time series problems and learn non-linear

dependencies among multiple inputs, and we do not make certain assumptions that are

made in classical approaches.

Here we present results for single turn flight paths with an initial velocity in the

horizontal direction of 100 m/s, a turn radii uniformly selected between 200 and 300

meters and added Gaussian noise N (0, 20). Each of the three flight segments lasts 100

seconds with a sampling frequency of 10 Hz. The transition probabilities for models

involving the IMM are 0.9 and 0.1.

We compare five models: KF, IMM, LSTM, AEKF and AEIM where

1. the KF and AEKF models consist of CV models with process noise covariance

given by Q = 0.5I.

2. the IMM and AEIMM consist of CV and CT models, both with

vecQ = 0.5I.

The test set consists of 1000 simulated single turn flight paths. For each model, the

reported RMSE is computed by averaging the RMSE on each of the 1000 test paths

computed using the ground truth and state estimates. Results are shown in Table 6.2,

where the MSE ratio is the ratio of each model’s MSE to the KF’s MSE. Here the models,

from highest to lowest MSE, are LSTM, KF, IMM, AEKF and AEIMM.

6.4.5 Results

For visualization, an example of one test trial with the ground truth, noisy simulated

measurements and state estimate is shown in Figure 6.9. For 1000 such simulations, the

average MSE values are shown in Table 6.2.

The state estimation of each model is then compared with the actual ground truth

131

Table 6.2: Single turn test MSE results.
Model MSE MSE Ratio

KF 98.44 1.00
IMM 70.45 0.72
LSTM 357 3.63
AEKF 62.17 0.63
AEIMM 50.48 0.51

and the corresponding MSE is reported for each model. Note that in this phase, the

ground truth is used only for model evaluation and does not affect each model’s state

estimate in any way.

The fact that the IMM shows better performance than the KF is not surprising since

IMM operates on a bank of KFs instead of a single KF. However, both these models show

improvement when combined with a neural network. We can see that against KF, we

have AEKF and AEIMM performing better than their counterparts KF and IMM. We

can also notice that the position MSE for the hybrid models is much smoother than the

traditional or the pure ML models. The KF and IMM have more difficulty estimating

the ground truth on the turn than the AEKF and AEIMM.

Finally, we notice that LSTM is not performing well. We theorize that the LSTM has

trouble on the turns because it is simply looking at history and doesn’t have a dynamical

model based on physics and Taylor expansion like the KF does. Furthermore, in the

KF, the contributions of the a priori estimate and the measurement innovation to the

a posteriori estimate are weighted by the Kalman Gain which might be contributing

towards its better performance.

6.5 Conclusion

The conclusions for this chapter can be divided into two categories:

1. Machine Learning Approach: We applied TCNs to predict states of dynamical

systems with model switching. We demonstrated that the TCN achieves a better

132

mean-squared prediction error compared to classical algorithms such as IMM and

least squares. While the TCN is actually slightly inferior to the IMM in terms

of prediction RMSE during long stretches of CV and/or CT modes as well as

during transitions from CT-to-CV mode, the ability of the TCN-based approach

to more quickly recognize that the target has entered CT mode leads, overall, to

a performance advantage over the IMM.

2. Hybrid Algorithms : We combine the computational power of deep learning with

a theoretically well-established filtering method such as a Kalman filter or an

IMM. We extend the concept of AEKF in this paper and develop a hybrid model

for tracking maneuvering targets. Training the AEIMM on simulated single-turn

flight paths with added Gaussian noise, we show the AEIMM achieves superior

state estimation compared with a standard Kalman Filter, IMMKF, and AEKF.

While we use simulated flight paths to demonstrate the efficacy of the AEIMM, it

should be noted the AEIMM is designed in a general manner to make it applicable

to any application or scenario where an IMM is appropriate e.g. nonlinear target

dynamics, sudden starts/stops of maneuvers.

In this chapter, we restrict to single turns of maneuvering targets. For future research,

it would be interesting to see the performance of TCN and AEIMM on simulated curves

with multiple turns. Possible future directions include investigating the use of TCNs

in other dynamical systems with model switching, such as automotive traffic modeling,

power plant control, wireless energy transfer, and scheduling information transfer in com-

munications channels. Because research on TCNs more broadly is advancing at a fast

pace, further research could also include recently enhancements to the TCN architecture

and training approach.

It would be interesting to perform a rigorous theoretical analysis of AEIMM and

hybrid algorithms in general and bounds on their optimality and limitations. This would

be help answer a few questions such as:

1. If we replace MDP with a neural network and keep the KFs intact, does the neural

133

network mix or augment the outputs from the two KFs?

2. Is it better to use two neural networks on the encoder side, one for each dynamic

model that output zA,RA and zB,RB respectively instead of a single encoder?

Finally, a natural extension to this work would be to compare hybrid approaches

against a TCN and see how they would compare and contrast against each other.

134

Average MSE over

1000 simulations

Model MSE Ratio

===================

KF 98.44 1.00

IMM 70.45 0.72

LSTM 357 3.63

AEKF 62.17 0.63

AEIMM 50.48 0.51

Figure 6.9: Turn segment from a Gaussian noise test set sample trial. Here the (a) Kalman Filter, (b) IMMKF, and (c) LSTM
estimates have large MSE values and generally, are less smooth than the (d) AEKF and (e) AEIMM estimates.

135

Chapter 7

Tracking Dynamical Processes on

Gilbert-Elliott Channels

(Co-written with Arick Grootveld, Leah Lackey, Vlad I. Bugayev, Andrew G. Klein,

Department of Engineering and Design, Western Washington University, Bellingham,

WA 98225)

Channels governed by Markov chains have been studied in the context of communi-

cation channels [97], [98]. A Gilbert-Elliott channel model is useful for simulating burst

noise channels [45], [99] typically prevalent in Wireless Local Area Network specifica-

tions [100]. Similarly, target tracking is used in many practical applications to accurately

track objects with trajectories that have significant position derivatives of several orders.

When not detected and compensated, the maneuvering target can degrade the perfor-

mance of the tracker and might lead to filter divergence. Maneuvering target tracking

estimates or predicts aircraft motion, often by a radar or other detection and ranging

sensor to control its flight path, or direct its movement in accordance with other oper-

ations. For a comprehensive survey of maneuvering target models, we point the reader

to [82].

In practical communication systems, it is often common to have burst noise on the

channel that makes communication using non-adaptive methods ineffective. A simple

but effective model for simulating burst noise in a channel is the Gilbert-Elliott two state

Markov Model [45], which uses a Markov Chain with two states, a good channel state and

a bad channel state - alternatively, mode 0 and mode 1. During the models’ run time,

there is a possibility to transition between the states, depending on the current state of

the model.

We propose a data-driven temporal convolutional network (TCN)-based approach [79]

to predict dynamic random processes under model switching scenarios. TCNs use dilated

convolutions to increase the receptive field of the network. They are more memory ef-

ficient than recurrent networks due to the shared convolution architecture which allows

long sequences to be processes in parallel. In RNNs, the input sequences are processed

sequentially, which results in higher computation time. However, TCNs are trained with

the standard backpropagation algorithm, hence avoiding the gradient problems of the

backpropagation-through-time algorithm used in RNNs. Here, we use a TCN with mea-

surements as inputs and predicted states as outputs.

The trained TCN model generalizes well over a large number of test samples. We

demonstrate that our method, while suboptimal, outperforms other popular suboptimal

state predictors. Furthermore, we use steady-state analysis as a reference for the optimal

behavior of an omniscient Kalman filter and to compare our results. The proposed

approach is sufficiently general that it can be applied to a wide variety of dynamical

systems with model switching.

7.1 Key Contributions

In this context, the contributions are:

1. We apply TCNs to predict states of dynamical systems with model switching.

We demonstrate that the TCN achieves a better mean-squared prediction error

compared to classical algorithms such as IMM and least squares.

2. Numerical demonstration of TCN outperforming both model-based and learning-

137

based approaches for the system model in Section 7.2. This is presented in the

results in Section 7.3

7.2 System Model

Similarly to Chapter 6, we consider a general framework for dynamical systems for model

switching with the system state and measurement evolving according to

x[k + 1] = fθk(k, x[k], v[k])

y[k] = hθk(k, x[k], w[k])

where x[k] is the state vector, y[k] is the measurement vector, v[k] is the random process

noise, w[k] is the random measurement noise, fθk(·) is a family of N vector functions

describing the state dynamics during mode θk, hθk(·) is a family of N vector functions

describing the measurement dynamics, and θk ∈ {0, 1, . . . , N − 1} denotes the stochastic

mode in effect during the sample period ending at discrete time k.

Similar to Chapter 6, we consider a Markov Jump Linear System (MJLS) [44] and it

admits the state space realization

x[k + 1] = Fθk [k]x[k] + v[k] (7.1)

y[k] = Hθk [k]x[k] + w[k] (7.2)

where the non-linear functions fθk(·) and hθk(·) are replaced by the matrices Fθk [k] and

Hθk [k]. When the process and measurement noises can be modeled as Gaussian random

processes, we assume they are distributed as v[k] ∼ N (0,Q) and w[k] ∼ N (0,R), respec-

tively, with Q and R as the corresponding covariance matrices. Again, while we assume

that the mode θk in effect at time k is not known, at times we will assume knowledge

of the transition matrix P that completely characterizes the statistics of the underlying

138

Markov chain.

We now discuss a specific system model for an application within this class of switching

systems: communication through a time-varying Gilbert-Elliott channel which models

switching between two different modes.

7.2.1 Gilbert-Elliott Channel

A Gilbert-Elliott (GE) channel models communication through narrowband channels that

tend to induce burst errors in the received data. Generally, these bursts of contiguous

erroneous symbols arise when the channel makes a jump from a “good” mode to a “bad”

mode. Thus, such a channel model has N = 2 modes where θk = 0 represents the

situation where the system is in the “good” channel mode, and θk = 1 represents the

“bad” channel mode that induces burst errors.

In this paper, the unknown baseband channel gain is assumed to be complex, repre-

senting in-phase and quadrature components. In addition, we assume that the channel

is time-varying according to an autoregressive (AR) process, and the measurement y[k]

represents noisy observations of the complex channel gain. While the channel gain itself

is time-varying, the family of matrices Fθk governing the AR system dynamics for each

mode is assumed to be static in this application. Specifically, the scalar complex channel

gain h[k] at time k is modeled by an mth-order AR process

h[k] =
m∑

j=1

aj,θkh[k − j] + v′[k] (7.3)

where aj,θk denotes the AR parameters of mode θk for j ∈ {1, . . . ,m} and v′[k] is an

i.i.d. zero-mean complex Gaussian scalar process with variance σ2
v . Because Mode 0

represents the “good” channel mode, the AR coefficients aj,0 corresponding to this mode

are expected to lead to more reliable communication than the set of AR coefficients aj,1

corresponding to the “bad” Mode 1. For example, the Mode 0 coefficients might be easier

to estimate or might lead to higher average received signal-to-noise ratio.

139

Putting the AR model in the dynamical systems framework above, this leads to a

MJLS governed by these equations:

x[k + 1] =












a1,θk a2,θk · · · am,θk

0

Im−1
...

0












x[k] + v[k]

y[k] =

[

1 0 · · · 0

]

x[k] + w[k]

where the state vector is defined in terms of the scalar AR process above as x[k] =

[h[k − 1] · · · h[h−m]]⊤ ∈ Cm and Im−1 is the identity matrix of size m− 1. The process

noise is distributed as v[k] ∼ CN (0, Q), though in this case Q is all zeros except for the

top left corner which equals [Q]0,0 = σ2
v , so that process noise is only added to the topmost

state, making the model match the scalar AR process model (7.3). The observation y[k]

is a complex scalar, and the measurement noise is distributed as w[k] ∼ CN (0, σ2
w).

Finally, the statistics of the Markov mode switching are uniquely defined by the initial

state probabilities and the state transition matrix P , as depicted in Figure 7.1, where

the elements of the matrix P are given by pij .

7.3 Results

We now present the simulated performance of the TCN when used for prediction. The

performance of the TCN is compared to the IMM, LS, and a “Genie Kalman Filter”

which is a time-varying KF with perfect knowledge of the current mode θk. When the

current mode θk is known and the mode dynamics are linear, the system reduces to a

standard linear time-varying dynamical model for which the KF is optimal. Hence, for

linear mode dynamics, the MSE of the Genie KF establishes a lower bound by which

other algorithms can be compared.

140

Mode 1Mode 0
p00

p01

p10

p11

Figure 7.1: Two-state Markov chain model switching in the Gilbert-Elliott channel

For our simulations we selected our AR coefficients as

Mode 0 (good) : a1,0 = 0.3, a2,0 = 0.1

Mode 1 (bad) : a1,1 = 1.949, a2,1 = −0.95.

The transition probabilities of the Markov chain that define the mode were set to p00 =

p11 = 0.9995 and p01 = p10 = 0.0005, forming a homogeneous Markov chain. We selected

these parameters so that the probability of switching would be low, such that the model

would stay in either mode for an extended period of time in order to model a burst

noise channel [45]. The Kalman filters matching Mode 0 and Mode 1 are denoted as

“KF0” and “KF1”, respectively. For additional details about our implementation of the

Gilbert-Elliott channel, we refer the reader to the code repository [89].

The TCN used for this problem was designed with a total of 911,882 trainable param-

eters comprising 1,322 bias terms and 910,560 network weights. We trained a TCN on

2× 107 samples to predict a pair of numbers representing the real and imaginary portion

of the complex state of the channel. For each prediction, the TCN was provided an input

containing the 10 most recent complex noisy channel observations. The complex channel

141

observations were split into real and imaginary parts [101] such that, for each prediction,

the TCN used an input from R10×2.

Table 7.1: Gilbert-Elliott channel prediction MSE.
With Only Only
mode mode 0 mode 1

switching (“good”) (“bad”)

Genie KF 0.216 0.106 0.321
KF0 291 0.106 560
KF1 0.427 0.352 0.321

Least Squares 0.409 0.294 0.344
TCN 0.292 0.106 0.322

Results for the Gilbert-Elliott scenario described in Table 7.1 were obtained from

Monte Carlo simulations with 105 output pairs. The results are further broken down into

performance on a model with mode switching and two models without mode switching

(“only mode 0” and “only mode 1”). As expected, KF0 is optimal for a system with

“only mode 0” dynamics and KF1 is optimal for a system with “only mode 1” dynamics,

while both perform badly in a system with mode switching. The Genie KF is optimal in

all cases since it has perfect knowledge of the mode. The TCN is close to optimal in both

cases without mode switching and outperforms all algorithms with switching, achieving

an MSE close to that of the Genie KF. The poor performance of LS under mode 0 can be

explained in by the fact that the LS method is a data driven method that can converge

to Kalman Filter like performance.

It is notable that KF0 has poor performance when making predictions of states gen-

erated under mode 1. The large errors experienced by KF0 under mode 1 are due to

the extreme coefficient mismatch between what KF0 expects and the actual model coeffi-

cients in mode 1. Intuitively, KF0 assumes that the current and previous states will have

a small effect on the next prediction, which is optimal for mode 0 but far from optimal

under mode 1.

As for the LS predictor, with mode switching, LS trains on a combination of mode 0

and mode 1 data. As can be seen from the performance of KF1 and KF0 under the

142

respective mismatch scenarios, a KF with coefficients that align with the higher error

rate model will perform better when model mismatch occurs, compared to a KF with

coefficients more effective under a lower error rate model. Hence, LS finds a model such

that the equivalent KF would perform best across all modes. This will of course result

in performance closer aligned to KF1 than KF0, since the performance of KF0 under

mode 1 is so poor.

Figures 7.2 and 7.3 demonstrate the algorithms’ performance from initialization to

steady state averaged over 5000 Monte Carlo simulations.

Figure 7.2 demonstrates the mean squared prediction error performance for predic-

tions of the first state of the AR process by the TCN, LS, and KF0 for the “only mode 0”

case. These results show that the TCN closely tracks the (optimal) performance of KF0.

Figure 7.3 similarly shows the achieved performance for the “only mode 1” case. In this

case, the TCN mean squared prediction error performance lags approximately one sample

behind the (optimal) performance of KF1. In both of these examples, the TCN achieves

the steady state performance shown by the black dashed “Ricatti line” within a handful

of samples, despite the TCN being initialized with zeros.

7.4 Conclusion

In this chapter, we applied TCNs to predict states of dynamical systems with model

switching. We considered Gilbert-Elliott channel as an example and demonstrated that

the TCN achieves a better mean-squared prediction error compared to classical algo-

rithms. Possible future directions include investigating the use of TCNs in other dy-

namical systems with model switching, such as automotive traffic modeling, power plant

control, wireless energy transfer, and scheduling information transfer in communications

channels. Because research on TCNs more broadly is advancing at a fast pace, further

research could also include recently enhancements to the TCN architecture and training

approach. Additionally, it may be beneficial to compare performance of the TCN to other

143

0 1 2 3 4 5 6 7 8 9 10

discrete time index

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
M

e
a

n
 S

q
u

a
re

d
 P

re
d

ic
ti
o

n
 E

rr
o

r

LS

TCN

KF0

Riccati Line

Figure 7.2: Gilbert-Elliott mode 0 mean squared prediction error.

deep learning architectures to give a more complete performance evaluation.

144

0 1 2 3 4 5 6 7 8 9 10

discrete time index

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

M
e
a
n
 S

q
u
a
re

d
 P

re
d
ic

ti
o
n
 E

rr
o
r

LS

TCN

KF1

Riccati Line

Figure 7.3: Gilbert-Elliott Mode 1 (“bad channel”) prediction error, averaged over 5,000
realizations.

145

Chapter 8

Conclusion and Future Work

8.1 Machine Learning for Reliable Communication

We demonstrate that end-to-end deep neural network based learning can be adapted

effectively for physical layer radio systems to achieve state-of-the-art performance in

numerous scenarios.

First, we considered Additive White Gaussian Noise (AWGN) channels and formu-

lated efficient parameterizations for linear block codes. We discovered that the transmit-

ter side is just an embedding for linear block codes and the receiver side is just a matched

filter for AWGN channels. We demonstrated the performance in three cases in Hamming

codes: (2, 4), (7, 4), (15, 11) and Extended Golay (24, 12) codes and show the nuances in

how they work and present an in-depth analysis of why they work well - specifically, on

how autoencoders depend on overall distance properties, not on minimum distance. We

made improvements on training speed and reducing parameters in autoencoders.

Then, we apply this framework to Bernoulli-Gaussian (BGIN) channels and show

that the trained autoencoder uniformly outperforms classical block codes in the BGIN

channel even when impulsive noise mitigation techniques such as blanking and clipping

are employed. We also propose a parsimonious architecture with Bernoulli probabilities.

For future research, we can consider communicating through channels with memory

such as Gilbert-Elliot channels and consider Markov-Gaussian noise models. We can

further reduce training load with domain adaptation and randomization and transfer

learning. We can consider more channels with model and algorithmic deficit such as

interference channels, Rayleigh block fading channels, deletion channels. Few other di-

rections of research can comprise learning of probabilistic shaping as well as schemes for

multiuser communications, i.e., multiple access and broadcast channels.

We believe that learning-based optimization of the full physical layer for a point-

to-point link could be completely automated and that this would be one of the key

ingredients of next-generation communication systems.

8.2 Machine Learning for Improved Tracking of Dy-

namical Systems

In this part, we applied machine learning to predict states of dynamical systems under

parametric mismatch and model switching. We propose two different flavors of using

machine learning: to assist Kalman filters, to replace Kalman filters. We present results

for both cases.

We improved the performance under mismatched noise covariances by proposing a

deep learning approach. We demonstrate this in the context of oscillator phase predictions

where CNNs improve the performance of the phase predictions as compared to Kalman

filter in the mismatched cases.

Then, we introduced a new deep learning Kalman filter hybrid framework the Autoen-

coder Interacting Multiple Model, as an extension to the Autoencoder Kalman Filter, to

solve challenging maneuvering target tracking problems. We provide a proof-of-concept

demonstration with simulated flight tracking data and compare it against state-of-the-

art methods in tracking such as the Interacting Multiple Model, traditional deep learning

methods such as Long-Short Term Memory network along with the Autoencoder Kalman

147

Filter.

We also considered Gilbert-Elliott channels and demonstrated that a temporal con-

volutional network (TCN) achieves a better mean-squared prediction error compared to

classical algorithms.

The proposed approach is general and can be applied to a wide variety of dynamic

random process. It would be interesting to perform a rigorous theoretical analysis of

AEIMM and hybrid algorithms in general and know more about the bounds on their

optimality and limitations.

There are many directions that we can extend this work in exploring few other mis-

match cases where Kalman filter fails to reach an optimum solution like non-linearities,

non-Gaussian and dimension mismatch. We could also consider few other deep learning

prediction models like autoencoders and Gated Recurrent Units. There are reinforcement

learning based approaches like model-based, where we estimate the system model from

observations and solve it with reinforcement learning and model-free, where we learn the

policy directly without estimating the system model.

Future directions can also include investigating the use of TCNs in other dynamical

systems with model switching, such as automotive traffic modeling, power plant control,

wireless energy transfer, and scheduling information transfer in communications channels.

We believe that prediction algorithms that are robust to parametric mismatches and

model switching can assist in building advanced tracking methods where the exact model

and parameters are inaccurate.

148

Bibliography

[1] H. Kim, Y. Jiang, S. Kannan, S. Oh, and P. Viswanath, “Deepcode: Feedback

codes via deep learning,” in Advances in Neural Information Processing Systems,

2018, pp. 9458–9468.

[2] A. Balatsoukas-Stimming and C. Studer, “Deep unfolding for communications sys-

tems: A survey and some new directions,” in 2019 IEEE International Workshop

on Signal Processing Systems (SiPS), 2019, pp. 266–271.

[3] M. L. Weiss, R. C. Paffenroth, and J. R. Uzarski, “The autoencoder-kalman filter:

Theory and practice,” in 2019 53rd Asilomar Conference on Signals, Systems, and

Computers, 2019, pp. 2176–2179.

[4] M. Weiss, R. C. Paffenroth, J. R. Whitehill, and J. R. Uzarski, “Deep learning

with domain randomization for optimal filtering,” in 2019 18th IEEE International

Conference On Machine Learning And Applications (ICMLA), 2019, pp. 1779–

1786.

[5] Z. Qin, G. Y. Li, and H. Ye, “Federated learning and wireless communications,”

arXiv preprint arXiv:2005.05265, 2020.

[6] T. Li, A. K. Sahu, A. Talwalkar, and V. Smith, “Federated learning: Challenges,

methods, and future directions,” IEEE Signal Processing Magazine, vol. 37, no. 3,

pp. 50–60, 2020.

[7] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep

convolutional neural networks,” in Advances in Neural Information Processing

Systems 25, F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger, Eds.,

Curran Associates, Inc., 2012, pp. 1097–1105.

[8] T. O’Shea and J. Hoydis, “An introduction to deep learning for the physical layer,”

IEEE Transactions on Cognitive Communications and Networking, vol. 3, no. 4,

pp. 563–575, Dec. 2017, issn: 2332-7731. doi: 10.1109/TCCN.2017.2758370.

[9] T. Haarnoja, A. Ajay, S. Levine, and P. Abbeel, “Backprop kf: Learning dis-

criminative deterministic state estimators,” in Advances in Neural Information

Processing Systems, 2016, pp. 4376–4384.

[10] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” nature, vol. 521, no. 7553,

p. 436, 2015.

[11] J. Schmidhuber, “Deep learning in neural networks: An overview,” Neural net-

works, vol. 61, pp. 85–117, 2015.

[12] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016.

[13] F. A. Aoudia and J. Hoydis, “End-to-End Learning of Communications Systems

Without a Channel Model,” 2018. arXiv: 1804.02276.

[14] L. Ambrogioni, U. Güçlü, E. Maris, and M. van Gerven, “Estimating nonlinear

dynamics with the convnet smoother,” arXiv preprint arXiv:1702.05243, 2017.

[15] S. Cammerer, F. A. Aoudia, S. Dörner, M. Stark, J. Hoydis, and S. Ten Brink,

“Trainable communication systems: Concepts and prototype,” IEEE Transactions

on Communications, 2020.

[16] J. Proakis, Digital Communications, ser. McGraw-Hill series in electrical and com-

puter engineering : communications and signal processing. McGraw-Hill, 2001,

isbn: 9780071181839.

[17] S. Dörner, S. Cammerer, J. Hoydis, and S. t. Brink, “Deep learning based com-

munication over the air,” IEEE Journal of Selected Topics in Signal Processing,

vol. 12, no. 1, pp. 132–143, Feb. 2018, issn: 1941-0484.

https://doi.org/10.1109/TCCN.2017.2758370
https://arxiv.org/abs/1804.02276

[18] P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, and P.-A. Manzagol, “Stacked

denoising autoencoders: Learning useful representations in a deep network with a

local denoising criterion,” Journal of machine learning research, vol. 11, no. 12,

pp. 3371–3408, 2010.

[19] T. J. O’Shea, T. Roy, N. West, and B. C. Hilburn, “Physical layer communications

system design over-the-air using adversarial networks,” in 2018 26th European

Signal Processing Conference (EUSIPCO), IEEE, 2018, pp. 529–532.

[20] F. A. Aoudia and J. Hoydis, “End-to-end learning of communications systems

without a channel model,” in 2018 52nd Asilomar Conference on Signals, Systems,

and Computers, Oct. 2018, pp. 298–303.

[21] D. Gündüz, P. de Kerret, N. D. Sidiropoulos, D. Gesbert, C. R. Murthy, and M.

van der Schaar, “Machine learning in the air,” IEEE Journal on Selected Areas in

Communications, vol. 37, no. 10, pp. 2184–2199, 2019.

[22] A. Felix, S. Cammerer, S. Dörner, J. Hoydis, and S. Ten Brink, “Ofdm-autoencoder

for end-to-end learning of communications systems,” in 2018 IEEE 19th Inter-

national Workshop on Signal Processing Advances in Wireless Communications

(SPAWC), Jun. 2018, pp. 1–5.

[23] G. D. Forney, “Trellis shaping,” IEEE Transactions on Information Theory, vol. 38,

no. 2, pp. 281–300, Mar. 1992, issn: 0018-9448.

[24] G. Böcherer, F. Steiner, and P. Schulte, “Bandwidth efficient and rate-matched

low-density parity-check coded modulation,” IEEE Transactions on Communica-

tions, vol. 63, no. 12, pp. 4651–4665, Dec. 2015, issn: 0090-6778.

[25] R. Pighi, M. Franceschini, G. Ferrari, and R. Raheli, “Fundamental performance

limits of communications systems impaired by impulse noise,” IEEE Trans. on

Comm., vol. 57, no. 1, pp. 171–182, 2009, issn: 00906778.

[26] Z. Mei, M. Johnston, S. Le Goff, and L. Chen, “Error probability analysis of m-qam

on rayleigh fading channels with impulsive noise,” in 2016 IEEE 17th International

Workshop on Signal Processing Advances in Wireless Communications (SPAWC),

Jul. 2016, pp. 1–5. doi: 10.1109/SPAWC.2016.7536755.

[27] T. Shongwey, A. H. Vinck, and H. C. Ferreira, “On impulse noise and its models,”

in Power Line Communications and its Applications (ISPLC), 2014 18th IEEE

International Symposium on, IEEE, 2014, pp. 12–17.

[28] D. Fertonani and G. Colavolpe, “On reliable communications over channels im-

paired by bursty impulse noise,” IEEE Transactions on Communications, vol. 57,

no. 7, pp. 2024–2030, 2009, issn: 00906778. doi: 10.1109/TCOMM.2009.07.070638.

[29] H. Hamad and G. M. Kraidy, “Performance analysis of convolutional codes over

the bernoulli-gaussian impulsive noise channel,” in 2017 15th Canadian Workshop

on Information Theory (CWIT), Jun. 2017, pp. 1–5.

[30] K. M. Rabie and E. Alsusa, “Improving blanking/clipping based impulsive noise

mitigation over powerline channels,” in 2013 IEEE 24th Annual International

Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC),

Sep. 2013, pp. 3413–3417. doi: 10.1109/PIMRC.2013.6666738.

[31] S. Tseng, D. Tseng, T. Tsai, and Y. S. Han, “Robust turbo decoding in single-

carrier systems over memoryless impulse noise channels,” in 2016 International

Conference on Advanced Technologies for Communications (ATC), Oct. 2016,

pp. 344–349.

[32] S. M. Kabir, A. Mirza, and S. A. Sheikh, “Impulsive noise reduction method based

on clipping and adaptive filters in awgn channel,” International Journal of Future

Computer and Communication, vol. 4, no. 5, p. 341, 2015.

https://doi.org/10.1109/SPAWC.2016.7536755
https://doi.org/10.1109/TCOMM.2009.07.070638
https://doi.org/10.1109/PIMRC.2013.6666738

[33] J.-M. Kang, C.-J. Chun, I.-M. Kim, and D. I. Kim, “Channel tracking for wireless

energy transfer: A deep recurrent neural network approach,” arXiv:1812.02986,

2018.

[34] J. D. Lafferty, A. McCallum, and F. C. N. Pereira, “Conditional random fields:

Probabilistic models for segmenting and labeling sequence data,” in Proceedings

of the Eighteenth International Conference on Machine Learning, ser. ICML ’01,

San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2001, pp. 282–289,

isbn: 1-55860-778-1.

[35] L. Ambrogioni, U. Güçlü, E. Maris, and M. van Gerven, “Estimating nonlinear

dynamics with the convnet smoother,” arXiv preprint arXiv:1702.05243, 2017.

[36] R. G. Krishnan, U. Shalit, and D. Sontag, “Deep kalman filters.(2015),” arXiv

preprint arXiv:1511.05121, 2015.

[37] R. E. Kalman, “A new approach to linear filtering and prediction problems,”

Journal of basic Engineering, vol. 82, no. 1, pp. 35–45, 1960.

[38] R. Mehra, “On the identification of variances and adaptive kalman filtering,” IEEE

Transactions on automatic control, vol. 15, no. 2, pp. 175–184, 1970.

[39] Y. Bar-Shalom, X. Rong Li, and T. Kirubarajan, Estimation with Appications to

Tracking and Navigation. Wiley, New York, 2001, p. 584.

[40] H. A. P. Blom and Y. Bar-Shalom, “The interacting multiple model algorithm for

systems with markovian switching coefficients,” IEEE Transactions on Automatic

Control, vol. 33, no. 8, pp. 780–783, 1988.

[41] P. R. Mahapatra and K. Mehrotra, “Mixed coordinate tracking of generalized

maneuvering targets using acceleration and jerk models,” IEEE Transactions on

Aerospace and Electronic Systems, vol. 36, no. 3, pp. 992–1000, 2000.

[42] M. Roth, G. Hendeby, and F. Gustafsson, “Ekf/ukf maneuvering target tracking

using coordinated turn models with polar/cartesian velocity,” in 17th International

Conference on Information Fusion (FUSION), IEEE, 2014, pp. 1–8.

[43] M. E. Farmer, Rein-Lien Hsu, and A. K. Jain, “Interacting multiple model (imm)

kalman filters for robust high speed human motion tracking,” in Object recognition

supported by user interaction for service robots, vol. 2, 2002, 20–23 vol.2.

[44] O. L. V. Costa, M. D. Fragoso, and R. P. Marques, Discrete-time Markov jump

linear systems. Springer Science & Business Media, 2006.

[45] E. N. Gilbert, “Capacity of a burst-noise channel,” Bell system technical journal,

vol. 39, no. 5, pp. 1253–1265, 1960.

[46] C. E. Shannon, “A mathematical theory of communication,” Bell system technical

journal, vol. 27, no. 3, pp. 379–423, 1948.

[47] A. Martinez and A. G. i Fàbregas, “Saddlepoint approximation of random-coding

bounds,” in 2011 Information Theory and Applications Workshop, Feb. 2011,

pp. 1–6.

[48] Y. Polyanskiy, H. V. Poor, and S. Verdu, “Channel coding rate in the finite

blocklength regime,” IEEE Transactions on Information Theory, vol. 56, no. 5,

pp. 2307–2359, May 2010.

[49] Y. Polyanskiy, “Saddle point in the minimax converse for channel coding,” IEEE

Transactions on Information Theory, vol. 59, no. 5, pp. 2576–2595, May 2013.

doi: 10.1109/TIT.2012.2236382.

[50] F. Peng, J. Zhang, and W. E. Ryan, “Adaptive modulation and coding for ieee

802.11 n,” in 2007 IEEE Wireless Communications and Networking Conference,

IEEE, 2007, pp. 656–661.

https://doi.org/10.1109/TIT.2012.2236382

[51] C. Fischione, K. H. Johansson, A. Sangiovanni-Vincentelli, and B. Z. Ares, “Min-

imum energy coding in cdma wireless sensor networks,” IEEE transactions on

wireless communications, vol. 8, no. 2, pp. 985–994, 2009.

[52] T. Fehenberger, A. Alvarado, G. Böcherer, and N. Hanik, “On probabilistic shap-

ing of quadrature amplitude modulation for the nonlinear fiber channel,” Journal

of Lightwave Technology, vol. 34, no. 21, pp. 5063–5073, 2016.

[53] B. D. Anderson and J. B. Moore, Optimal Filtering. Dover Publications, 1979,

p. 368.

[54] R. E. Kalman, “A New Approach to Linear Filtering and Prediction Problems,”

Transactions of the ASME Journal of Basic Engineering, vol. 82, no. Series D,

pp. 35–45, 1960, issn: 0021-9223. doi: 10.1115/1.3662552.

[55] D. Simon, Optimal State Estimation: Kalman, H Infinity, and Nonlinear Ap-

proaches, 1st. Hoboken: Wiley, 2006, p. 552, isbn: 0471708585.

[56] P. A. Ruymgaart, T. T. Soong, and T. S. T., Mathematics of Kalman-Bucy Fil-

tering, 1st. Berlin Heidelberg New York Tokyo: Springer-Verlag, 1985, vol. 136,

p. 170, isbn: 3-540-13508-1.

[57] Y. Zhang, “Hourly traffic forecasts using interacting multiple model (imm) pre-

dictor,” IEEE Signal Processing Letters, vol. 18, no. 10, pp. 607–610, 2011.

[58] M. Sandell and U. Raza, “Application layer coding for iot: Benefits, limitations,

and implementation aspects,” IEEE Systems Journal, vol. 13, no. 1, pp. 554–561,

2018.

[59] K. Vedula, R. Paffenroth, and D. R. Brown, “Joint coding and modulation in

the ultra-short blocklength regime for bernoulli-gaussian impulsive noise channels

using autoencoders,” in ICASSP 2020 - 2020 IEEE International Conference on

Acoustics, Speech and Signal Processing (ICASSP), 2020, pp. 5065–5069.

https://doi.org/10.1115/1.3662552

[60] Y. Bengio, “Learning deep architectures for AI,” Foundations and Trends in Ma-

chine Learning, vol. 2, no. 1, pp. 1–27, 2009, issn: 19358237.

[61] G. E. Hinton* and R. R. Salakhutdinov, “Reducing the Dimensionality of Data

with Neural Networks,” International Encyclopedia of Education, vol. 313, no. July,

pp. 504–507, 2010. doi: 10.1016/B978-0-08-044894-7.00081-6.

[62] D. P. Kingma and J. Ba, Adam: A method for stochastic optimization, 2014. arXiv:

1412.6980 [cs.LG].

[63] M. Sadeghi and E. G. Larsson, “Physical adversarial attacks against end-to-end au-

toencoder communication systems,” IEEE Communications Letters, vol. 23, no. 5,

pp. 847–850, 2019.

[64] N. Wu, X. Wang, B. Lin, and K. Zhang, “A cnn-based end-to-end learning frame-

work toward intelligent communication systems,” IEEE Access, vol. 7, pp. 110 197–

110 204, 2019.

[65] L. Rugini, “Symbol error probability of hexagonal qam,” IEEE communications

letters, vol. 20, no. 8, pp. 1523–1526, 2016.

[66] M. Tanahashi and H. Ochiai, “A multilevel coded modulation approach for hexago-

nal signal constellation,” IEEE Transactions on Wireless Communications, vol. 8,

no. 10, pp. 4993–4997, 2009.

[67] D. J. C. MacKay, Information Theory, Inference & Learning Algorithms. New

York, NY, USA: Cambridge University Press, 2002, isbn: 0521642981.

[68] T. Erseghe, “Coding in the finite-blocklength regime: Bounds based on laplace in-

tegrals and their asymptotic approximations,” IEEE Transactions on Information

Theory, vol. 62, no. 12, pp. 6854–6883, Dec. 2016. doi: 10.1109/TIT.2016.2616900.

[69] S. Lin and D. J. Costello, Error control coding: fundamentals and applications.

Upper Saddle River, NJ: Pearson/Prentice Hall, 2004.

https://doi.org/10.1016/B978-0-08-044894-7.00081-6
https://arxiv.org/abs/1412.6980
https://doi.org/10.1109/TIT.2016.2616900

[70] G. Ndo, P. Siohan, and M. Hamon, “Adaptive noise mitigation in impulsive en-

vironment: Application to power-line communications,” IEEE Transactions on

Power Delivery, vol. 25, no. 2, pp. 647–656, Apr. 2010.

[71] L. Galleani, “A tutorial on the two-state model of the atomic clock noise,”Metrolo-

gia, vol. 45, no. 6, S175, 2008.

[72] M. E. Rasekh, U. Madhow, and R. Mudumbai, “Frequency tracking with inter-

mittent wrapped phase measurement using the rao-blackwellized particle filter,”

in 2014 48th Asilomar Conference on Signals, Systems and Computers, Nov. 2014,

pp. 247–251. doi: 10.1109/ACSSC.2014.7094438.

[73] K. Hornik, “Approximation capabilities of multilayer feedforward networks,” Neu-

ral networks, vol. 4, no. 2, pp. 251–257, 1991.

[74] A. Lee, “Circular data,” WIREs Comput. Stat., vol. 2, no. 4, pp. 477–486, Jul.

2010, issn: 1939-5108.

[75] S. Ruder, “An overview of gradient descent optimization algorithms,” arXiv preprint

arXiv:1609.04747, 2016.

[76] V. Nair and G. E. Hinton, “Rectified linear units improve restricted boltzmann

machines,” in Proceedings of the 27th international conference on machine learning

(ICML-10), 2010, pp. 807–814.

[77] B. Kiumarsi, H. Modares, and F. L. Lewis, Optimal Tracking Control of Uncertain

Systems : On-Policy and Off-Policy Reinforcement Learning Approaches. Elsevier

Inc., 2016, pp. 165–186, isbn: 9780128052464.

[78] R. Visina, “Tracking highly-maneuvering targets and data fusion from imm esti-

mator tracks,” 2019.

[79] S. Bai, J. Z. Kolter, and V. Koltun, “An empirical evaluation of generic convolu-

tional and recurrent networks for sequence modeling,” 2018.

https://doi.org/10.1109/ACSSC.2014.7094438

[80] N. N. Krasovskii and E. A. Lidskii, “Analytical design of controllers in systems

with random attributes,” Automat. Remote Contr., vol. 22, no. 9, pp. 1021–1025,

1961.

[81] P. Zhao, Y. Kang, and Y. Zhao, “A brief tutorial and survey on markovian jump

systems: Stability and control,” IEEE Systems, Man, and Cybernetics Magazine,

vol. 5, no. 2, pp. 37–C3, 2019.

[82] X. R. Li and V. P. Jilkov, “Survey of maneuvering target tracking. part i. dynamic

models,” IEEE Transactions on aerospace and electronic systems, vol. 39, no. 4,

pp. 1333–1364, 2003.

[83] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep

convolutional neural networks,” in Advances in neural information processing sys-

tems, 2012, pp. 1097–1105.

[84] J. Yan, L. Mu, L. Wang, R. Ranjan, and A. Y. Zomaya, “Temporal convolutional

networks for the advance prediction of enso,” Scientific Reports, vol. 10, no. 1,

pp. 1–15, 2020.

[85] W. Zhao, Y. Gao, T. Ji, X. Wan, F. Ye, and G. Bai, “Deep temporal convolutional

networks for short-term traffic flow forecasting,” IEEE Access, vol. 7, pp. 114 496–

114 507, 2019.

[86] A. v. d. Oord, S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N.

Kalchbrenner, A. Senior, and K. Kavukcuoglu, “Wavenet: A generative model for

raw audio,” arXiv preprint arXiv:1609.03499, 2016.

[87] C. Lea, M. D. Flynn, R. Vidal, A. Reiter, and G. D. Hager, “Temporal convolu-

tional networks for action segmentation and detection,” in proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, 2017, pp. 156–165.

[88] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks for semantic

segmentation,” in Proceedings of the IEEE conference on computer vision and

pattern recognition, 2015, pp. 3431–3440.

[89] A. Grootveld et al. (). “Source code used in ‘Tracking of dynamical processes

with model switching using temporal convolutional networks’,” [Online]. Available:

https://github.com/aspectlab/ModelSwitching.

[90] B. Beşbınar and A. A. Alatan, “Visual object tracking with autoencoder repre-

sentations,” in 2016 24th Signal Processing and Communication Application Con-

ference (SIU), 2016, pp. 2041–2044.

[91] J. Tobin, R. Fong, A. Ray, J. Schneider, W. Zaremba, and P. Abbeel, “Domain

randomization for transferring deep neural networks from simulation to the real

world,” in 2017 IEEE/RSJ international conference on intelligent robots and sys-

tems (IROS), IEEE, 2017, pp. 23–30.

[92] R. Antonova, S. Cruciani, C. Smith, and D. Kragic, “Reinforcement learning for

pivoting task,” CoRR, vol. abs/1703.00472, 2017. arXiv: 1703.00472. [Online].

Available: http://arxiv.org/abs/1703.00472.

[93] Y. Zhu, Z. Wang, J. Merel, A. A. Rusu, T. Erez, S. Cabi, S. Tunyasuvunakool,

J. Kramár, R. Hadsell, N. de Freitas, and N. Heess, “Reinforcement and imitation

learning for diverse visuomotor skills,” CoRR, vol. abs/1802.09564, 2018.

[94] F. Sadeghi and S. Levine, “CAD2RL: Real single-image flight without a single real

image,” 2017.

[95] J. Tobin, R. Fong, A. Ray, J. Schneider, W. Zaremba, and P. Abbeel, “Domain

randomization for transferring deep neural networks from simulation to the real

world,” arXiv preprint arXiv:1703.06907, 2017.

https://github.com/aspectlab/ModelSwitching
https://arxiv.org/abs/1703.00472
http://arxiv.org/abs/1703.00472

[96] S. James, A. J. Davison, and E. Johns, “Transferring end-to-end visuomotor con-

trol from simulation to real world for a multi-stage task,” CoRR, vol. abs/1707.02267,

2017.

[97] J. Chakravorty and A. Mahajan, “Structure of optimal strategies for remote es-

timation over gilbert-elliott channel with feedback,” in 2017 IEEE International

Symposium on Information Theory (ISIT), IEEE, 2017, pp. 1272–1276.

[98] X. Ren, J. Wu, K. H. Johansson, G. Shi, and L. Shi, “Infinite horizon optimal trans-

mission power control for remote state estimation over fading channels,” IEEE

Transactions on Automatic Control, vol. 63, no. 1, pp. 85–100, 2017.

[99] E. O. Elliott, “Estimates of error rates for codes on burst-noise channels,” The

Bell System Technical Journal, vol. 42, no. 5, pp. 1977–1997, 1963.

[100] B. P. Crow, I. Widjaja, J. G. Kim, and P. T. Sakai, “Ieee 802.11 wireless local area

networks,” IEEE Communications magazine, vol. 35, no. 9, pp. 116–126, 1997.

[101] N. Taşpinar and M. N. Seyman, “Back propagation neural network approach

for channel estimation in ofdm system,” in 2010 IEEE International Conference

on Wireless Communications, Networking and Information Security, IEEE, 2010,

pp. 265–268.

	Introduction
	Problem Statement
	Relevant Prior Work
	Machine Learning
	Communication Systems
	Tracking Dynamical Systems

	Overview of the Dissertation
	Part I: Machine Learning for Communication Systems
	Part II: Machine Learning for Dynamical Systems

	Publications

	Background: Communication Systems and Dynamical Systems
	Communication Systems
	Channel Coding
	Energy and Power of Codewords
	Hamming Code
	Optimal Symbol Detection
	Finite Blocklength Coding Bounds
	Signal Constellations
	Constellation Shaping
	Types of Energy Constraints

	Dynamical Systems
	Kalman Filter
	Least Squares
	Discrete-time Algebraic Riccati Equation
	Interacting Multiple Model

	I Machine Learning for Reliable Communication
	Joint Coding and Modulation in Additive White Gaussian Noise Channels
	Key Contributions
	System Model
	One-hot Encoding
	Transmitter
	Power Constraints
	Block AWGN Channel
	Receiver
	Intuition

	Training the Autoencoder
	Higher-Order Modulations
	Efficient Parameterizations for Block Codes in AWGN channel
	Linear Block Coding and Modulation is Simply an Embedding
	Receiver as a Matched Filter

	Results for AWGN Channels
	(2,4,2) Autoencoder
	(7,4,7) Autoencoder
	Conditional BLER for a (7,4,7) Autoencoder
	(15,11,15) Autoencoder
	Conditional BLER for a (15,11,15) Autoencoder
	Higher-order Modulations with Extended Golay codes

	Conclusion

	Joint Coding and Modulation in Non-AWGN Channels
	Key Contributions
	Block BGIN Channel
	Traditional Methods to Mitigate Noise in BGIN channel
	Autoencoder for BGIN Channels
	Results
	Conclusion
	Next Steps

	II Machine Learning for Tracking Dynamical Systems
	Oscillator Phase Predictions
	Key Contributions
	System Model
	Machine Learning Problem Formulation
	Methodology
	Bounded Loss Function
	Numerical Results
	Conclusion and Next Steps

	Manuevering Target Tracking
	Key Contributions
	System Model
	Constant Velocity Model
	Coordinated Turn Model

	Machine Learning Algorithms
	Temporal Convolutional Networks
	Test Protocol
	Results

	Hybrid Algorithms
	Autoencoder Kalman Filter
	Domain Randomization
	Autoencoder Interacting Multiple Model
	Test Protocol
	Results

	Conclusion

	Tracking Dynamical Processes on Gilbert-Elliott Channels
	Key Contributions
	System Model
	Gilbert-Elliott Channel

	Results
	Conclusion

	Conclusion and Future Work
	Machine Learning for Reliable Communication
	Machine Learning for Improved Tracking of Dynamical Systems

