
 i

Social Distance and

Contact Tracing Dashboard

A Major Qualifying Project Submitted to the Faculty of

WORCESTER POLYTECHNIC INSTITUTE

In partial fulfillment of the requirements for the

Degree of Bachelor of Science

Written by

Vivek Wong

Xiaoyue Lyu

Yezi Chen

Advised by

Professor Xinming Huang

September 4, 2020

 ii

Abstract

During the global COVID-19 pandemic, the Centers for Disease Control and Prevention

(CDC) suggested people keep six-feet distancing from each other to prevent the spreading of the

virus. Collaborating with Amphenol TCS, the team created a contact tracing dashboard to

monitor the close contacts among employees in a manufacturing facility. In addition to providing

statistical summaries, the dashboard has the ability to trace the people who have had frequency

and lengthy contacts with someone if he or she is tested positive. It also includes an API for

receiving data directly from the hubs of the ultrawide-band contact sensors.

 iii

Acknowledgements

 We would like to thank our sponsor Amphenol TCS for sponsoring the project and

providing us with such great opportunities. We would like to thank Richard Schneider, Senior

Executive of Amphenol TCS, for trusting us and making the project possible. We would like to

express our sincere gratitude to Jack St. Hilaire, Terry Gelbart, David Mutton and Aaron Gough

for supporting us. We would also like to thank Professor Xinming Huang for advising the team.

 iv

Table of Contents

Abstract ii

Acknowledgements iii

Table of Contents iv

List of Illustrations vi

1. Introduction 1

2. Background 3
2.1 COVID-19 3

2.1.1 Coronavirus Outbreak 3
2.1.2 Symptoms and How it Spreads 4
2.1.3 Social Distancing 4

2.2 Indoor Positioning and Tracking 5
2.2.1 Bluetooth Beacon Technique 5
2.2.2 UWB Technique 6

2.3 Equipments for Indoor Localization and Tracking 7
2.3.1 DWM1001 8
2.3.2 Woxu UWB Wristband Tag UT-206 8

2.4 Existing Web Apps to Monitor and Analyze Social Distancing 9
2.4.1 Ubudu 9
2.4.2 Sormas 10

2.5 Frontend 14
2.6 Backend 15
2.7 About the Sponsor Amphenol TCS 17

3. Methodology 18
3.1 Simulation Program 18
3.2 Database 21
3.3 Web Application 23

3.3.1 Introduction 23
3.3.2 Objectives and Expectations 23
3.3.3 Initial Architecture and Tech Stack 25
3.3.4 User Authentication 28
3.3.5 Permission Control 32
3.3.6 File Uploading 34

 v

3.3.6.1 Store Files in Local File System 35
3.3.6.2 Store Files in Amazon S3 37

3.3.7 Contacts Page 38
3.3.8 Devices Page 43

4. Results 46

5. Future Work 49

Bibliography 51

 vi

List of Illustrations

Figure 2.1 Woxu UWB Wristband Tag UT-206 8
Figure 2.2 The Screenshot of Ubudu Dashboard 9
Figure 2.3 Sormas 10
Figure 2.4 Sormas Dashboard 11
Figure 2.5 Sormas Contact Dashboard 12
Figure 2.6 Sormas Case Directory 13
Figure 2.7 Create New Case 14
Figure 3.1 Simulation Plot 19
Figure 3.2 Simulation Program 20
Figure 3.3 Raw Sample Contact Info 21
Figure 3.4 .cvs Contact Info 22
Figure 3.5 Sample Device IDs and Battery Level 22
Figure 3.6 Initial Architecture of the Web Application 25
Figure 3.7 Sequelize Function to connect to PostgreSQL 27
Figure 3.8 Hash Password 29
Figure 3.9 Global Variables to Contain Messages 30
Figure 3.10 Check User-Filled Fields of the Registration Page 30
Figure 3.11 Format Error Message 31
Figure 3.12 Includes Messages in the Page 31
Figure 3.13 Handle User Login 32
Figure 3.14 Permission Control Page 32
Figure 3.15 Permission Type 34
Figure 3.16 Bulk Add Data to Contact Table 34
Figure 3.17 Upload File with Multer 35
Figure 3.18 Extract Date from Date Sheet and Convert it to JSON 36
Figure 3.19 Delete Uploaded File 36
Figure 3.20 Setup for Amazon S3 Service and Multer 37
Figure 3.21 Create Readable Stream and Convert to JSON 38
Figure 3.22 Render Data to the Contacts Page 39
Figure 3.23 Insert Page-Specific Elements 40
Figure 3.24 Renders Data on Contacts Page 40
Figure 3.25 Setup for DataTables 41
Figure 3.26 Filter Form on Contacts Page 41
Figure 3.27 Autofill Program 42

 vii

Figure 3.28 Fetch and Send Filtered Data to the Frontend 43
Figure 4.1 Contacts Page 46
Figure 4.2 Devices Page 47

 1

1. Introduction

 Since the first report of respiratory illness due to a novel coronavirus in December 2019,

the outbreak of COVID-19 has impacted 188 countries and territories, including the United

States1 (JHU CSSE, September 2020). The National Centers for Disease Control and Prevention

(CDC) has activated its Emergency Response System and published relevant announcements to

notify people to stay at home and keep a social distance. According to the data from Statista, the

number of COVID-19 cases worldwide has reached 22 million and the number of cases in the

U.S. has reached 5,656,204 as of August 19, 2020 (Statista, August 2020).

 To prepare for lifting the coronavirus lockdown, our project sponsor Amphenol TCS

aims to keep the employees’ health as the priority when their manufacturing facilities reopen for

production. Thus, they would like to track and record the employees’ close contacts during

working hours. If an employee is tested positive for COVID, the human resource manager can

trace a list of people that were in close contact with him/her and only ask them to self-quarantine

for health concerns.

To be more specific, Amphenol TCS would like the team to develop a web application to

display a contact tracing dashboard that helps managers control the spread of COVID-19 in the

factory. In Amphenol TCS, a hardware engineer group has already worked on building wearable

devices based on ultra-wideband wireless localization technology. In collaboration with

Amphenol TCS hardware team, this project aims to build a web app for illustrating the data

received from the devices and analyzing those data in a user-friendly manner.

1 https://gisanddata.maps.arcgis.com/apps/opsdashboard/index.html#/bda7594740fd40299423467b48e9ecf6

 2

 The project objectives are:

1. To build a web application that would allow a manager to conduct contact tracing;

2. To allow the user to enter the device ID of an infected person, set parameters such as

distance, duration, and timeframe, and return a list of close contact device IDs;

3. To ensure the organization, storage, and security of data from devices;

4. The web application also shows if the wearable sensor devices are working properly.

 3

2. Background

 This chapter reviews the coronavirus outbreak and the policies that have been attempted to

prevent the spread of the virus. Next, it explains the effectiveness of social distancing, and how it

protects people from the global pandemic. After that, several indoor positioning techniques and

the hardware devices used in this project are discussed. Other existing dashboards are also

reviewed as references and the terminology used in this project is explained. This chapter is

concluded by introducing our project sponsor Amphenol TCS.

2.1 COVID-19

2.1.1 Coronavirus Outbreak

 Since the first cases of individuals with pneumonia of unknown cause were reported by the

World Health Organization (WHO) China National Office in late December 2019 (WHO, 2020),

more than 11 million people worldwide have been infected with coronavirus disease (COVID-19)

as of this report on July 6, 2020 (worldometer.info, 2020). On January 21, 2020, the first case of

COVID-19 in the United States was identified in Washington State. On March 26, the U.S. became

the country with the most confirmed coronavirus cases. In response to the rapid spread of the virus,

on March 23, the governor of Washington Jay Inslee issued a statewide stay-at-home order to

extend at least two weeks. Two weeks later, more stringent prohibitions were imposed and the

stay-at-home order was extended to last at least to May 31 (O’Sullivan, 2020). Similar prohibitions

have been enacted in other U.S. states as well as in countries in Europe (Schnirring, 2020).

 4

2.1.2 Symptoms and How it Spreads

 At first, no one had antidotes for the novel coronavirus. Thus, everyone was at the risk of

catching and spreading it. The virus can be transmitted through droplets after coughing or sneezing

and can be taken in by people nearby through noses, mouses, and eyes (cdc.gov, 2020). Evidence

also proves that the virus can live in the air for 30 minutes and on the surface from hours to days.

The average time interval between the first infection and the first appearance of symptoms is 5

days but is also dependent on various factors. Some people may be infected but do not show any

symptoms for 3 weeks or longer (WHO, 2020). Some initial symptoms include dry cough, sore

throat, shortness of breath, and fever. Symptoms get more severe when the virus enters the lower

respiratory system. COVID-19 can be deadly to the elderly people, while 80% of the cases are

mild to moderate and people recover in one or two weeks.

2.1.3 Social Distancing

 To reduce the spread of coronavirus, the U.S. government implements various types of

social distancing measures. Though researchers have proven the effectiveness of restrictive social

distancing measures such as isolation and quarantine (Nussbaumer-Streit et al., 2020), these

measures are also economically disruptive in a time that most of the businesses and non-essential

retail stores have to close due to the restrictions. Thinking against the idea that quarantine and

business closures are a “tradeoff” between public health and economic health, many employers

reopen their businesses, and employees are also going back to workplaces. However, the pandemic

is not over yet. People inevitably need to interact with their co-workers, clients, and many other

individuals in their day-to-day life at work, yet these simple interactions violating social distancing

principals expose individuals to a higher risk of being infected by the virus. In the wake of this

 5

contagious virus, how to maintain an effective physical distance among people in workplaces,

therefore, has become an urgent issue.

2.2 Indoor Positioning and Tracking

To monitor contacts among employees at the workplace, an indoor positioning and tracking

system are required. Compared to outdoor navigation techniques such as Global Positioning

System (GPS) and cellular localization, indoor positioning is still a frontier area. In an indoor

environment, the position of an object can be localized through Bluetooth Beacons, Ultra-

Wideband, Wi-Fi, cameras, etc. Generally, cameras are suitable for motion detection and accurate

positioning. Under certain circumstances where the position of thousands of employees needs to

be detected and recorded, however, calculating the distance between people in every frame of

camera view will add unnecessary complexity to the project. Moreover, camera-based techniques

may cause privacy concerns. Wi-Fi localization is also not the ideal solution for the project. As the

Wi-Fi signals may be absorbed or reflected by the walls and equipment in the factories, the strength

of the Wi-Fi signal at the certain spot in the room is unproportional to the distance from that spot

to the signal receiver. As a result, the distance between the spot and the receiver cannot be

accurately measured by Wi-Fi sensors. Considering that precise distance is required for keeping

social distance, large measurement errors in distance are not acceptable in this project.

2.2.1 Bluetooth Beacon Technique

Bluetooth Beacon technique, also known as low-energy-bluetooth Beacon technique, is

used for indoor navigation. Similar to a lighthouse, Beacon is a wireless device that sends low-

energy-bluetooth signals to the devices within its range. Unlike classic bluetooth, bluetooth low

 6

energy (BLE) remains in sleep mode before a connection is initialized, therefore it consumes less

power (Li, 2015). As the beacon sends data only, it will have no access to the information stored

in the receivers, which protects the privacy of the receivers.

Since BLE Beacon can work without the Internet connection, it can stand alone without

deploying other communication means to transmit or receive signals between two or more devices.

Nowadays, some Beacons are connected to other communication techniques for remote update or

sending the data package. More importantly, BLE Beacon measures Received Signal Strength

Indicator (RSSI), which is required by the line of sight from the devices’ antenna, to detect the

distance between two objects. However, as the signal sent by Bluetooth Low Energy can be

absorbed by the human body and other obstacles. The error margin of Bluetooth is from 2m to 5m

(Dahlgren & Mahmood, 2014). To improve the precision, multiple Beacons should be employed

with triangulation technique.

Beacon is power-efficient, and its battery life is relatively long. Based on the functions and

customer requirements, Beacon sensors are produced in many sizes. If the range of the Beacon is

far, it requires more power. If its range is seven meters, its duration is six months. If its range is

two meters, it can last for two years. Its frequency of sending the package also influences the power

consumption.

2.2.2 UWB Technique

 Ultra Wideband (UWB) is a small-range wireless technology that covers a wide operational

frequency band. Impulse ratio, the traditional UWB, was invented in the war time. In February

2002, the Federal Communication Commission (FCC) released an amendment (IEEE 802.15.4a)

and specified the regulations of UWB transmission and reception. Later, Multi-band OFDM

(MBOA) and Direct Sequence UWB (DS-UWB) were invented. However, it is still one of the

 7

superior techniques in the wireless communication area that has not been widely used in consumer

applications until recent years. The UWB wireless sensor is expected to consume little power and

to be relatively energy-efficient.

UWB can be used for accurate indoor positioning. UWB has the operation frequency from

3.4 G to 10.6 GHz. As it has a lot of spectra, no less than 500MHz, it can send fast impulse. Since

the UWB communication system can reach several GBps, it has been employed for high data rate

local transfer such as wireless USB. Similar to radar, UWB can measure the time taken for a signal

to travel through a medium, also known as Time of flight (ToF), and localize the UWB sensor with

high accuracy. Thus, it is more accurate than the Bluetooth.

UWB has a low possibility of interception (LPI) and low possibility of detection (LPD).

As we mentioned before, UWB has a wide operational frequency band, from 3.4 G to 10.6 GHz.

The carrier frequency of cellular is at about 2.1 GHz; the carrier frequency of Bluetooth is at 2.4

GHz; Wi-Fi is at either 2.4 GHz or 5 GHz (Pahlavan, 2005). Therefore, the signals sent by UWB

will only be interfered with 5G Wi-Fi. This problem can also be solved by modulation and coding.

2.3 Equipments for Indoor Localization and Tracking

In this project, our sponsor Amphenol TCS decides to apply UWB technique to monitor

the close contact among employees. As UWB is more accurate for indoor positioning than BLE,

the distance between employees can be measured more precisely. This section introduces the

wearable devices we used in the project for indoor localization, their functionalities, and their

specifications.

 8

2.3.1 DWM1001

DWM1001 is an IEEE 802.15.4 UWB implementation produced by Decawave based on

Decawave's DW1000 Ultra Wideband transceiver IC. It integrates UWB, Bluetooth antenna, RF

circuitry, Nordic Semiconductor nRF52832 and a three-axis motion detector. It can localize the

object within 5 cm precision. It supports data rates at 110kps, 850kps, 6.8Mbps. It is power-

efficient that its optimised current consumption for low power sleep mode is less than 15µA. Its

supply voltage ranges between 2.8V to 3.6V. It can cover a 100 meter line-of-sight region. Its high

immunity to multipath fading also allows it to work in high-fading areas.

2.3.2 Woxu UWB Wristband Tag UT-206

Produced by Nanjing Woxu Wireless Co. Ltd, UT-206 is the wristband tag built on the

chip of DWM 1001. It is shown in Figure 2.1. Using 802.15.4a UWB technique, the tag can be

used to localize an object or a person to the accuracy within 5 cm. It is also able to be detected in

a range up to 100m. It contains a 600mAH lithium battery and is able to vibrate for alert function.

Displayed in one of the sample videos, the wristband tag can be set to vibrate when the distance

between two people is less than 2m to remind people to keep social distance.

Figure 2.1 Woxu UWB Wristband Tag UT-2062

2 https://www.decawave.com/woxu-wireless-company-ltd/

 9

2.4 Existing Web Apps to Monitor and Analyze Social Distancing

 Besides the equipment has been selected for social distance measurement, a web

application is required as a dashboard that can fulfill the social distance monitoring task

requirements at Amphenol. Currently, there are some existing contact tracing web apps in the

market. We will briefly review two apps, Ubudu and sormas, that we can use as references when

building our own web app.

2.4.1 Ubudu

Figure 2.2 The Screenshot of Ubudu Dashboard3

Ubudu is a real-time location system that can display the real-time location of a device and

replay its trajectory in the past. To activate the tracking system, users need to enter access tokens

3 https://traject.ubudu.com/#/

 10

by name and venue. Then the real-time location of the device will show on the map. If users would

like to replay the trajectories, they can click the second icon ‘replay trajectories’ on the top row

and enter some values to change the setting. Besides, users can also label the devices with some

external information.

2.4.2 Sormas

Figure 2.3 Sormas4

 Sormas is a web application published by Helmholtz Zentrum für Infektionsforschung for

disease prevention, disease detection, and outbreak response. Before accessing the data, users can

choose the corresponding identification to login in. Those with higher authorities can access more

complete data, edit the reported events if something was not recorded properly and generate a

report before the public are permitted to read it.

4 https://sormasorg.helmholtz-hzi.de/sormas-demo.html

 11

 After logging in as supervisors, users are able to access several functions, which include

tasks, cases, contacts, events, samples, reports and etc. The home page illustrates the surveillance

dashboard and contact tracing dashboard, as shown in Figure 2.4. The data are listed in the table

and the diagram for the processed data on the right enables users to compare the number of cases

of each disease.

Figure 2.4 Sormas Dashboard

 12

Figure 2.5 Sormas Contact Dashboard

In terms of the contact dashboard, people who are suspected to have contact with the

target are grouped as either confirmed or unconfirmed as shown in Figure 2.5. If someone is

unconfirmed, more follow-ups are available. The information on the dashboard is updated on a

daily basis. It also allows users to see the trend of each disease.

 13

Figure 2.6 Sormas Case Directory

Next is the case directory, shown in Figure 2.6. Click the tab “cases” in the left column.

The case directory records the case ID, the ID of a suspected person, their case classification,

outcome of case, and investigation status. Users can filter out certain cases within a specific time

period or find the status of a specific person by entering the corresponding information. New

cases can be created on the top-right corner. Users can also export all the cases to a .csv file, if

they need to read the data or analyze the data offline. New cases can be created on the top-right

corner. Contact Directory is similar to case directory. It records the contact between two people

and categorizes people by the contact type they had with the target person.

In conclusion, Sormas system is a complete platform to record suspected people who may

have disease and record their contact with others in a country. However, it seems that all data

have to be entered manually as shown in Figure 2.7

 14

Figure 2.7 Create New Case

2.5 Frontend

 In software development, frontend is the part that clients can view and interact with.

Basically, it consists of the graphical user interface (GUI) and the command line. The frontend

elements include the navigating menus, texts, graphs, videos and the website designs.

Frontend is written by markup and web languages, such as Hyper Text Markup Language

(HTML), Cascading Style Sheets (CSS) and JavaScript. HTML is used to define the basic format

and contents. Assisting HTML, CSS can control layout, colors and fonts and JavaScript can read

input and respond correspondingly.

 15

2.6 Backend

Backend, also known as server-side, is how any application or a set of applications connect

to the Internet and to service client requests. Generally, we use the word “backend” to refer to

databases, web servers, and the applications. The relevant background knowledge about the

backend is reviewed below.

2.6.1 Database

Database is a set of structured data stored in a computer. Commonly, a database

management system (DBMS) is used to access databases, manipulate data and organize the

representations of data.

There are four major DBMS types, hierarchical DBMS, network DBMS, relational DBMS

and object oriented relational DBMS. Hierarchical DBMS is the most traditional type. Its structure

is like a tree. The upper layer represents the parent layer, and the lower layer represents the child

layer. Each child only has one parent. As its structure is simple and little variety can be provided,

it is rarely used to support complex databases. Compared to hierarchical DBMS, Network DBMS

offers more flexibility. It allows a child to have multiple parents. The third type, also known as the

most widely used type of DBMS, is the relational DBMS (RDBMS). Typically, data is stored in

two dimensions, columns and rows. It is loosely linked regardless of where in the hierarchy.

Structured Query Language (SQL) is created for this purpose. SQL is the standard programming

language to build a relational database that allows the update and retrieval of structured data. Some

extension versions of SQL include mySQL, Oracle, Microsoft SQL server, and Sybase. The fourth

type is object oriented relational DBMS. Besides the advantage of RDBMS, it bridges the gap

between relational databases and the object-oriented modeling techniques used in programming

 16

languages, such as Java and C language. Its flexibility leaves developers more space to extend data

models and to custom their own data types and methods with attributes. PostgreSQL is an example

of object oriented relational DBMS.

2.6.2 Web Servers

 A web server is a hardware or software that satisfies client requests on the World Wide

Web (WWW). Briefly, it stores websites, processes data and delivers pages to users. Web servers

can be built from scratch, but most often we deploy as a service by the cloud providers, such as

Heroku, Microsoft Azure, Google Cloud Platform (GCP) and Amazon Web Services.

 Suggested by our sponsor and advisor, Amazon Web Services (AWS) and Heroku are

preferred because of its popularity and convenience. Amazon Web Services provides a cloud-

computing platform and APIs to individuals, developers, companies and the government. To be

more specific, it provides AWS Elastic Beanstalk (Platform as a Service/PaaS), Amazon Simple

Storage Service (AWS S3), Relational Database (AWS RDS), AWS Lambda (a serverless

computing service), and other services. For developers, the monthly charge starts from $29; for

business, the monthly charge starts from $100. The price can be higher than the minimum cost and

may increase based on the usage.

 Heroku is a cloud platform supporting deploying, scaling and delivering the apps. It

supports Node.js, Ruby, Java, PHP, Python, Go, Scala and Clojure. It uses AWS, so it is more

expensive than AWS. Some functions provided by Heroku can be used to replace AWS Elastic

Beanstalk, AWS S3 and AWS RDS. However, it is more user-friendly and suitable for beginners

to start with.

 17

2.7 About the Sponsor Amphenol TCS

Amphenol TCS (ATCS), founded in 1968 as a division of Teradyne, Inc. and acquired by

Amphenol Corporation in December 2005, is a global leader in high-speed, high-density

connection systems. The company designs and manufactures connectors and backplane systems

for application in networking, communications, storage, and computer markets. Amphenol TCS

has a facility located in Nashua, New Hampshire. Our project is therefore subjected to the relevant

policies in the State of New Hampshire.

 18

3. Methodology

The chapter explains the technical methodology in detail. In each section, we briefly

describe what the team did, how the team achieved it and what platform, code or packages are

used.

3.1 Simulation Program

In order to evaluate the functionality of our program, we would need test data from the

UWB contact tracing devices that were still in development by our project sponsor. Thus, before

the real data are provided, a simulation program is required to fill in the database for running and

testing the web app. We use Java to simulate the random movement of employees within a given

area. If a person is within 6 feet of another person, that is defined as a close contact. The relevant

data of the contact is collected.

Shown in Figure 3.1, the program scatters 50 workers on a hypothetical 500-by-500

square feet factory floor with random x and y coordinates. For every time step (1 second) in the

simulator, each worker will move towards a random angle, 0 to 359 degrees, with a displacement

of 0 to 4 feet. During each time step, the simulator also checks for close contacts. Once a worker

comes within six feet of another worker, both of them will be added to the list of the active close

contact. The simulator then creates a new case of close contact, which contains two device IDs,

the current time, date, duration of the contact (in seconds) and battery life. The duration of the

contact will be updated, as long as the two people are still in close contact. By the end of the

contact, the latest data will be sent to the database. The people will be removed from the list of

active close contacts.

 19

Figure 3.1 Simulation Plot

The simulation utilizes Entity Boundary Control (EBC) design. In the EBC design, actors

or participants interact with the given boundary, and then the controllers send the information

from the boundaries to the entities. The boundary is the screen. The actors will interact with the

buttons on the panel, which will trigger methods in the simulation to run. In this case, we see the

buttons act as our boundary, and then our controllers would tell the entities, the employees, to

call some sort of function to move a step.

 20

Figure 3.2 Simulation Program

According to the EBC design, the simulation program is split into 4 main parts, the

connect, the controller, the model and the view. First of all, the connect package sets up a

connection to the database. When new employees are added or a close contact is detected, the

relevant data will be sent to the database directly. In addition, the purpose of our controller is to

allow the program to take the actions of the user and invoke function calls of the base entities. As

we only have two buttons, two controllers is sufficient. Furthermore, the model package holds all

the low-level entities. Our lower-level entities consist of CloseContact.java, Location.java and

Worker.java. Location.java has the function that allows employees to move. Each employee’s

location is defined by two integers, an x value and a y value. The system picks a random

direction and a random speed, and then uses trigonomic functions to calculate the new location

based on the given direction and magnitude. CloseContact.java is an object that has the employee

IDs, the time the contact began, the time the contact ended and the duration of the contact.

 21

Worker.java has the employee ID, a list of all closed and open close contacts and a position.

Finally, a model entity ties all of the functions together. It has an integer that counts how many

seconds in the simulation it is, list of workers. The model has a function that increments time.

Everytime the function is called, it evokes each worker to move. After that, it checks to see

which workers are within six feet of each other. If there are any workers within six feet, it either

adds a new close contact to that worker’s list of close contacts or extends the duration to an

unclosed close contact.

3.2 Database

Regarding the database, we use SQL to create two tables to store the attributes of close

contacts and status of the devices. The initial data in the database were produced from the

simulators or are assigned with random value manually. After we received an excel sheet from

Amphenol, those data are replaced with the simulated data. Later, the managers can upload

the .csv file on the web pages to update the database. More information about how the database

is connected to the web application is discussed in Chapter 3.2.6.

Figure 3.3 Raw Sample Contact Info

The first table lists the case ID, date, reporting device ID, battery level, contact time and

contact duration. The raw sample data we received from Woxu is shown in Figure 3.3. The raw

date format is written in YYYY/MM/DD, and the reporting time is written in HH:MM:SS based

 22

on a 24-hour format.

 The raw data can be converted from .xlsx to .csv, if necessary. The date format will be

converted to US standard date format MM/DD/YYYY and the “second” in contact time will be

ignored.

Figure 3.4 .cvs Contact Info

The other table lists the device IDs and corresponding battery level. A fully charged

device will have 100% battery level, and a device that is completely out of power will have 0%

battery level. While testing, the device ID and battery level are inserted manually, shown in

Figure 3.5. Some of the devices have high battery levels, while the others have relatively low

battery levels. As 20% is the boundary to distinguish whether the device needed to be charged.

We have both the values slightly higher than it and the values slightly less than 20%.

Figure 3.5 Sample Device IDs and Battery Level

 23

3.3 Web Application

3.3.1 Introduction

 This section is dedicated to introduce the Dashboard we designed for Amphenol. First,

we share the reasons that made us decide to design this web application; we discuss the

company’s requirements and expectations, and how we settled on the initial structure of the app.

Then we introduce main features of the application by showing how they work as well as

explaining how they are implemented behind the scene. To make technical content more

straightforward and tangible, we use plenty of code snippets borrowed directly from the source

code to show exactly how we wrote the code to perform certain tasks. By doing so, we ensure we

have covered all the features in the web application. And this also lets anyone who needs to work

with this program in the future have a better understanding of our work. We conclude by

comparing the company’s expectations, our initial structure, and the final product we delivered.

Though the basic structure is set up and we enjoy the overall process of designing and

implementing the application, some features have not been implemented successfully by the end

of this project. Partly this is due to the time limit of a seven-week project, and there are also

occasions that we are not able to find competent solutions. For each of these unfinished parts, we

share our recommendation on possible implementation and why we believe this specific feature

is important for the application.

3.3.2 Objectives and Expectations

This project aims to produce a contact tracing dashboard for human resource managers in

a manufacturing facility. During the project, we communicated with Amphenol and read the

 24

documents from them. Based on their requirements, the web application should: (1) allow a

manager to conduct contact tracing; (2) provide analytics for case tracking and other services;

and (3) assure data security and monitor the wearable devices’ working status.

 First of all, the application should be able to display the close contacts of people within a

day. Due to safety and privacy concerns, devices will not record the location of each employee.

Instead, it records the event of close contacts that are closer than 6 feet between two employees.

The information obtained from the devices include the time when two individuals meet, the

duration of each contact, and how many times they meet in total within the day; any information

regarding the distance or location is unattainable. Therefore, the primary objective of our web

application is to display all the close contact events captured by the devices. Each record is

generated with a unique case ID, the device ID of the reporting device, the device ID of the

contact device, the date and time, as well as the duration.

 In addition to generating and displaying data, the dashboard should support analytical

purposes as well. According to the discussion within our sponsor, analytics features range from

the basic filtering and sorting to diagrams and more advanced data visualizations. The total

contact duration and times within a day can be summarized and calculated from the raw contact

case data. For example, if person A and person B meet at 9:30 am and the contact lasts for 5

minutes, meet at 12:00 pm and the contact lasts for 10 minutes, and meet at 4:00 pm and the

contact lasts for 3 minutes, the dashboard should display all three cases and conclude that they

have met three times and the overall duration is 18 minutes for that day.

Furthermore, the application should take security into account. One key consideration of

Amphenol is their employees’ privacy. Thus, we decide not to include any data involved in the

actual contact distance, specific location, or any other employees’ personal information when

 25

displaying data on the web application. Instead, their names are replaced by their device IDs. In

addition to privacy, accuracy of data is also critical. In order to assure all the data on the

application is accurate, we need to assure the devices are working properly.

Besides the explicit requirements from the company, some implicit functionalities should

be fulfilled. For instance, the web application should be deployed to a cloud server that allows

users to access it on the Internet; all the data should be stored in a database; before the hardware

team provides us with actual data, a simulator is required to generate test data for the web

application to test its features.

3.3.3 Initial Architecture and Tech Stack

 After lining out all the requirements of the web application, we come up with the initial

outline of the application and tech stacks we plan to use.

Figure 3.6 Initial Architecture of the Web Application

 26

 As shown in Figure 3.6, we group all the requirements into small chunks and assign each

chunk to a dedicated web page. By doing so, the general structure becomes clear to us, and it

also makes tracing the progress of development and debugging easy.

 In terms of tech stack, we use HTML/CSS and JavaScript when developing the frontend

of our application. To make the design process easier, we also make use of Bootstrap, one of the

most popular CSS frameworks, and EJS, an template engine used to render HTML content. In

addition to the framework, we also write our own CSS file to customize our web application to

cater to needs specific to our project. For the backend, we use Node.js. Although Python is also a

handy tool when it comes to web development and is gaining a lot of popularity over the past

few years, Node.js, as a JavaScript runtime engine, allows us to avoid dealing with different

semantics and syntax of different languages as we have already been working on the frontend

using JavaScript. Node.js also has a huge variety of packages that assist programmers to perform

certain tasks without writing code from scratch and a very reliable package manager, npm. These

powerful tools prevent us from reinventing the wheel and focus on designing and implementing

exciting features for our web application instead. During the process of development, we utilize

several handy JavaScript packages to accelerate the progress and make our program more robust.

The details will be covered when we introduce the specific lines of code.

 To build a web application, simply knowing how to generate a website to display content

is not enough, we also need a database to store the data. At first, we chose SQLite, an open

source database that implements most of the SQL standards. However, in the middle of

development, we decided to abandon SQLite and migrate all the existing work to a similar

database, PostgreSQL. Though doing so means to drop all the previous effort we have put into

working with SQLite, we had to make this decision since SQLite does not support cloud service

 27

as all of the data in it is stored in files, similar to Microsoft Excel Worksheet. It was acceptable

when we were only accessing the web application from our local machines. However, since we

want to deploy the web to a cloud platform to let people use it on the internet, we need to

populate our database to a cloud service. Though migrating the whole database to a completely

new database service sounds daunting, the actual process is quite simple, which is partially

thanks to another tool we use, Sequelize. Sequelize is an Object-Relational Mapping (ORM)

programming technique that is promise-based and specific to Node.js. This technique is used for

converting data between incompatible type systems using object-oriented programming

languages, and Sequelize supports both SQLite and PostgreSQL. Therefore, in our case, at first

we set up data models using Sequelize and used Sequelize to connect to SQLite local server, then

we migrate to PostgreSQL, as shown in Figure 3.7. We only need to change the dialect option to

PostgreSQL and pass username and password used to access the PostgreSQL to the function, and

any other work such as transforming data tables to adjust the new database will be taken care by

Sequelize.

Figure 3.7 Sequelize Function to connect to PostgreSQL

 28

In addition to SQLite and PostgreSQL, Sequelize also supports other mainstream

database services such as MySQL, MariaDB, etc. This makes it easy for our sponsor if they

decide to change database service in the future. As the basic setup is similar to what is included

in the code snippet above, any other language-specific instructions can be found in its official

documentation (sequelize.org, 2020).

Above is the basic tech stack we choose to use to build our web application. There are

more frameworks and packages used, and we will introduce them when we cover specific

features of the application with the corresponding code snippets.

3.3.4 User Authentication

 User authentication pages, including the user registration page and login page, are the

first feature we implemented. According to the information from the company, the web

application is mostly used by only internal employees, yet we still decide to ask users to go

through identity verification every time when they access the content of the application. We

believe it is wise to separate the public from the content of the application and to protect

employees’ privacy. In addition to this, even for internal employees, we still want the company

to be able to control who are allowed to access certain content of the website, such as the

information related to the employees and devices, and who are trusted to perform certain

operations, such as adding and modifying data stored in the database.

 In terms of techniques, we use Passport.js, authentication middleware for Node.js, to

handle authentication requests. Passport.js is known for its modularity and supporting a

comprehensive set of strategies, which are different methods of authentication packaged into

independent modules. With the help of Passport.js, handling users’ login requests can be

 29

achieved with only a couple lines of code. But before heading to the login page, we need to set

up the environment for Passport.js in our program.

 For the sake of simplicity, we choose the local strategy that is the most widely-used

option for websites. The majority of code used in our program is directly borrowed from the

official documentation of Passport.js and is organized in a single file called Passport.js under the

folder config in source code.

During the registration process, we always want to avoid storing plain text passwords,

thus after the user fills out their email address and password, we use bcrypt.js to hash the user’s

password before adding the user’s information into the database.

Figure 3.8 Hash Password

 In addition to hashing passwords, the user authentication program is also responsible for

checking if the user is using proper and unique email addresses when registering and the length

of password is longer than 6 characters. If the user fails to meet any of these requirements, an

alert will pop up. To do this, we first set up JavaScript Global Variables to make sure the

messages we want to send are accessible anywhere in the application. Then, the program checks

 30

each of the user-filled fields on the registration page and pushes error messages to the global

variable when it detects any violations.

Figure 3.9 Global Variables to Contain Messages

Figure 3.10 Check User-Filled Fields of the Registration Page

 31

Figure 3.11 Format Error Message

To display the error message, we use the template engine EJS to render the error message

to the page and format it in consistent with other content on that page. To do this, first we need to

format the error message. As shown in Figure 3.11, this piece of code represents how to use a

template engine to display various messages. The appearance of the message is defined by the

HTML code, and the content of the messages is only determined as the program runs, in our

case, when the program checks what is inside in the global variable named errors on line 2. As

the program goes through each message in errors, every message is independent from each

other, which allows us to display multiple messages at the same time and each has different

content yet in a consistent format.

Figure 3.12 Includes Messages in the Page

Finally, we can insert this one line of code (shown in Figure 3.12) to anywhere we want

to see the error messages. The same process also applies to any future usage of errors and

success messages in our web application.

 32

 Much simpler than registering a new user, the login program omits all the validation

checks except for making sure the email and password entered by the user matches the user’s

registered email address and password. As passwords are hashed before storing, we need to

deharsh before we can compare. The whole process is basically doing the opposite of hashing a

password, and in our case, Password.js provides that function.

Figure 3.13 Handle User Login

3.3.5 Permission Control

Figure 3.14 Permission Control Page

 33

 In addition to basic user authentication, we also need to control users’ authority to

perform certain tasks within the application, especially when it comes to adding or modifying

data in the database (See Chapter 3.3.6 File Uploading), Therefore, we decide to implement

another layer of authentication to let the administrator control other users’ access permissions. In

order to achieve this goal, we add one extra column in the database where we store the USER

table to keep track of each user’s access rights. As shown in Figure 3.14, there are five access

permissions, each of which is independent from others and corresponds with one function of the

application. The permission is attached to each user once they register successfully and their

record is stored into the database. By default, all permissions are set to be false, which means the

user does not have access to the corresponding functionality, with only one exception. The user

who registers with the email address ‘test@dev.com’ is set to be the administrator and is able to

edit other users’ permissions in the permission control page. With this ability, the administrator

is able to edit all the access permissions for other users. In addition to permissioncontrol, there

are four other types of permissions. The addcontacts controls the ability to add contacts data to

the database by uploading data file; adddevices, similar to addcontacts, controls the ability to add

devices data to the database; updatedevices controls the ability to edit the status of existing

devices; registerdevices controls the ability to register new devices and add it to the database. All

five permissions are independent from others.

 34

Figure 3.15 Permission Type

3.3.6 File Uploading

 At the beginning of our web application design process, the company mentions that the

data captured by devices are generally stored in the format of data sheets. To avoid wasting time

manually entering data row one by one, they want a way to bulk upload all the data from the

sheet to the database. Therefore, we implement the features that take user-uploaded files, extract

data and add them to the corresponding database. To do this, first we need to allow users to

upload files in the application and make sure the application is able to accept the file. Then, the

application converts the file into the desired format. Finally, we add the data into the database.

Fortunately, Sequelize can add data in JSON (JavaScript Object Notation) format into the

database directly, thus we only need to focus on the first two steps, taking the files as input and

converting them into JSON.

Figure 3.16 Bulk Add Data to Contact Table

 35

During the early development when our application is solely running on the local

machines, we store user-uploaded files in a local folder, and then the program fetches the files

and converts the data into JSON. However, when we decide to deploy the application to Heroku,

we notice that all files uploaded to Heroku server are deleted due to its ephemeral file system. To

resolve this problem, we follow the official suggestion (Heroku, 2020) and use Amazon S3

(Amazon Simple Storage Service) instead. In the following two sections, we introduce separately

how we implement file uploading features with both local file systems and Amazon S3.

3.3.6.1 Store Files in Local File System

 For this method, we first accept files uploaded by users. We accept both .xlsx or .xls files

and .csv files. No matter what format users use, they only need to upload it on the Upload Page.

To get the file, we use a JavaScript third-party package named multer using the following lines

of code. It sets multer up to take the file as well as tells it where we want to store the file. Then,

we include multer as middleware in where we want to use the file, and the file can be found in

req.file. Note that in this case we set the storage destination as ./uploads/, which indicates it is

somewhere in our local file system.

Figure 3.17 Upload File with Multer

 36

 Then inside the router, the program reads the data from the recently uploaded files, and

converts them into JSON. In this step, we handle files of .csv format and .xlsx or .xls format

separately. In both cases, JSON data will be stored in the variable named JSONdata, and will be

ready to be added to the database using Sequelize.

Figure 3.18 Extract Date from Date Sheet and Convert it to JSON

 At this stage, data has been extracted from the data sheets and added to the database, yet

the files uploaded by users are still in the local storage. To clean it up, this line of code deletes

the files from the file system since we don’t need them anymore.

Figure 3.19 Delete Uploaded File

 37

3.3.6.2 Store Files in Amazon S3

 Similar to uploading to the local file system, we use multer to accept user-uploaded files.

After that, instead of saving files in local storage, we upload the file to a S3 bucket. As shown in

Figure 3.20, we set up Amazon S3, so that our program has access to its service, and then we set

the storage destination to S3 service in multer upload method.

Figure 3.20 Setup for Amazon S3 Service and Multer

Note that when files are uploaded to S3 bucket, their extension names will be omitted by

default. By setting contentType and key in the multer storage method, we make sure S3 knows

the type of uploaded files by extracting extension name from the user uploaded files and

appending it to the file name when uploading it to S3.

 Though saving user-uploaded files is straightforward, it becomes a bit tricky when we try

to get the file from S3 and convert it into JSON. Since we cannot use local file systems, we have

to work with streaming data instead of extracting data from the file. After several failed attempts,

we realize streaming Excel data is much harder to handle than .csv data. Therefore, in our

 38

application, we only implement how to convert streaming .csv data to JSON. For data stored in

Excel format, we write an Amazon Lambda function that converts any uploaded Excel

spreadsheet to .csv format before it is stored into our S3 bucket.

Figure 3.21 Create Readable Stream and Convert to JSON

To convert the .csv file in S3 bucket to JSON data, as shown in Figure 3.21, first we need

to check if the file is in .csv format. If not, an error message pops up (refer to Chapter 3.3.4 User

Authentication for how req.flash works). Next, we generate a readable stream from data in

the .csv file and convert it to JSON data. Note that this time we use async/await in the router, that

is because conversion takes time and we don’t want the program to proceed before the

conversion is finished. Similar to the previous section, JSONdata is where we store JSON data

which is ready to be added to the database.

3.3.7 Contacts Page

 On the Contacts Page, we display all the close contacts information. All data are fetched

from the database, so first we need to figure out how to request data from the database and how

 39

to render the data on the web page. In other words, how to let the backend program communicate

with the frontend web page.

 With the help of Node.js and Sequelize, the first task is straightforward. As shown in

Figure 3.22, we ask Sequelize to find all the instances in CONTACT table, and then we let

Node.js render the Contacts Page for us and send all the contacts data as an array to that page so

that these data are accessible when the page is ready. Note that we also specify the layout for the

Contacts Page.

Figure 3.22 Render Data to the Contacts Page
For the sake of uniformity, we use the same layout for all the pages of our web application.

In layoutB.ejs, we define the elements that we want each web page to have in common; after that,

we use the code in Figure 3.23 to tell the program where to place elements in each page. For

example, in terms of Contacts Page, <%- body %> will be replaced by elements in contacts.ejs.

This is a feature provided by EJS, and with the help of it, we can maintain uniformity across the

website while avoiding repetitive code.

 40

Figure 3.23 Insert Page-Specific Elements
 The next task is to develop the frontend program that renders data from the backend to

the web page. This task is also made easy by EJS. Since it allows us to write JavaScript code

inside of HTML, as shown in Figure 3.24, we go through each element in the data array sent

from the backend using JavaScript method, then set how we want to display these data using

HTML elements, and finally EJS renders them on the web page.

Figure 3.24 Renders Data on Contacts Page

 In addition to simply displaying all the data in the database to the web page, we also want

our application to have basic filters and sorting functions. In terms of sorting, there are already

many third-party packages that have added it to HTML tables. In our case, we use an open-

source JavaScript library called Data Tables that sorting functions come with it by default. Setup

of it is very straightforward by including files and several lines of code provided by its

 41

documentation, it will automatically turn the plain HTML tables to more professional-looking

data tables. Other than sorting, several filters are implemented to allow users to display certain

kinds of close contacts. For example, users can choose to see close contacts of certain devices,

the contacts that happened within a certain time period, as well as the contacts that last for a

certain period of time.

Figure 3.25 Setup for DataTables

In these cases, we do not send all the data from the database to the frontend. Instead, we

filter out unnecessary data in the backend program and only send data that meets the user’s

requirements. Thus, the frontend program remains the same since all the filtering has been taken

care of by the backend.

 On the Contacts Page, we add several input fields as filters. Users can fill in the form to

specify how they want the data to be filtered. In addition to manually filling all the fields, blank

fields will be filled in with default values, if users press Enter before entering any values.

Figure 3.26 Filter Form on Contacts Page

 42

For Reporting Tag and Contact Tag, the default value is set to be all, meaning the

returned data includes close contacts captured by all the devices. The default value for Duration

is 15 minutes since according to the U.S. CDC, a close contact is defined as a contact within 6

feet and lasts for at least 15 minutes (US CDC, 2020). The following is the JavaScript code that

implements the autofill in the frontend program.

Figure 3.27 Autofill Program

 After users fill out the form and click Apply Filter, data will be sent to the backend as a

data array. Data will be double checked to make sure all fields have been filled in. Then we use

Sequelize to fetch the data that meets the user’s requirement. Similar to displaying all the data,

Contacts Page will be re-rendered, and filtered data will be sent to the page.

 43

Figure 3.28 Fetch and Send Filtered Data to the Frontend

3.3.8 Devices Page

Similar to the Contacts Page, Devices Page displays all the data stored in the database

and supports sorting functions that come with the Data Tables library, but it does not have filters

 44

as the size and complexity of devices data is much smaller than that of close contacts data. In

addition to displaying data, Devices Page allows users to register new devices manually, which is

similar to uploading .csv files of device data on Upload Page but only adding one device at a

time. To register new devices, first click on the ADD button on Devices Page. After users fill out

the form and click Submit, the data will be sent to the backend program and will be stored into

the database if the registering Device ID has not been registered previously.

On the Devices Page, users can also click any Device ID to see detailed information of

that device. The information includes status (active, malfunctioning, low batter, etc.), battery

level, etc.

When a device is added to the database, default values for its status and battery level are

set to be ‘active’ and ‘100%’, respectively. When users refresh the page, the backend program

will look for the device’s ID in the CONTACT table and update each device’s status by. If the

corresponding device has one more more new close contacts uploaded, the device’s status will be

updated based on the most recent close contact. By doing so, device information is ensured to be

up-to-date whenever the page is open.

 45

Figure 3.29 Update Device Battery Level Based On Close Contacts Data

 46

4. Results

 The team successfully developed the web app that fulfills most of the objectives proposed

by our sponsor. It allows managers to conduct contact traces and assure wearable devices are

working properly. The web app also provides data analytics for asset tracking and other services.

 Regarding the contact tracing function, users can access all the close contact information

on Contacts Page, including the device IDs, reporting time and duration. Shown in Figure 4.1, all

results can be sorted and filtered based on users’ requirements. All the filter functions have

default values. Thus, users can enter the least information. Users can also enter the relevant

information in the search textbox to find the specific cases. At the bottom of the page, the

number of cases is presented that may help users roughly evaluate the overall situation.

Figure 4.1 Contacts Page

 Similar to the Contact Page, the Devices Page shows all the device information, including

the Device ID, battery percentage and status, shown in Figure 4.2. The battery level is

automatically updated with the database. Users can check what devices need to be charged by

 47

entering Low Battery in the search bar. When the battery percentage of the devices drops to 20%

or lower, its status will shift from active to low battery. The malfunctioning status is prepared in

advance. As the team can only access the battery level to check whether the devices are working

properly, more details about how to define the malfunctioning status can be answered by the

hardware team. In addition, if the owner of the devices changes, the admin can edit its

ownership manually.

Figure 4.2 Devices Page

 There are some changes of the specifications during this MQP project. Initially, the

contact tracing dashboard should illustrate the specific routines of the users and the distance

between users when they meet. However, location information is removed in order to protect

employees’ privacy. Without the location information, the hotspots are unknown, so the hotspots

figure is omitted. All the contacts recorded are the close contacts within six feet. Moreover, we

are not completely sure about how often the contacts data will be uploaded. Information from the

sponsor indicates that the devices will be collected for charging at the end of each day and the

 48

contacts data will be uploaded by then. This decision may be changed during their actual

deployment. Without the real-time data, it is harder to tell whether a device is offline.

 Employees’ privacy and information security are also one of the highest priorities. First

of all, there are several levels of permission for different people. Admins have the highest

permission who can edit the permission of other users, upload csv files to the database and edit

on the ownership of the devices. Only users who register and get the permission from admins can

access the web application. Otherwise, they will be blocked out. Meanwhile, users will be logged

out automatically if they close the window or do not respond for a long time. Second of all, all

the data are stored on the reliable cloud services, AWS. The ownership of the accounts will be

transferred to the developers who will continue the development of the Dashboard web

application. Finally, employees’ names are not present on the website. Managers will have a

local excel file to store the employees’ name and their corresponding device ID.

 49

5. Future Work

 This chapter provides some recommendations for further development of the web

application. We compare the company’s expectations, our initial structure, and the final product

we delivered. Though the basic structure is set up and we enjoy the overall process of designing

and implementing the application, some features have not been implemented successfully by the

end of this project. Partly this is due to the time limit of a seven-week project, and there are also

situations where we are not able to find a good solution to meet certain design specifications. For

each of these unfinished parts, we share our thinking on possible implementation and why we

believe this specific feature is important for the application.

 First, the data visualization implemented in our web application is very basic. For now,

on the Statistics Page, we only include one chart that represents the number of close contacts for

each day within a week. To provide a more comprehensive view of what is going on in the

building in terms of close contacts and social distancing for users, more charts and advanced data

visualization should be implemented in the future.

 In addition to more diagrams, according to what we learned from the company, they also

want the web application to be able to push notifications and send emails to users when one close

contact has lasted for more than 15 minutes. This feature allows people to be aware of all the

violations of social distancing that occur in the building. In terms of pushing notification, one

possible solution is to utilize the flash session that we used on User Authentication Page as well

as when users attempt to perform certain tasks that they are not allowed to on Upload Page and

Devices Page. In this case, when new contacts data is being added to the database, the

application can go through all the newly-added contacts data and push the notification when it

finds the duration of any of the contacts is longer than 15 minutes. However, since close contact

 50

information is not being added to the database and displayed on the website simultaneously when

the contact occurs, users only receive the notifications when the data is uploaded to the website;

the delay of sending the notification caused by the delay of updating contacts data may

undermine individuals' abilities to protect themselves from contacting people who have had

prolonged close contacts.

 Besides, what we learned from Amphenol is that the wearable devices will be collected

by the end of the day and get disinfected and charged. According to what we heard from Woxu,

the wearable devices can work for several months without charging. In case of the

malfunctioning and low battery of the devices, the list of low-battery devices can be displayed on

the homepage and updated each morning before the devices are distributed to employees.

Furthermore, a “delete” function may be useful. Currently, the website is mainly used to

display the contacts and the information of devices, which can be enough to assist managers to

make some decisions. If managers would like to edit the history manually or would like to delete

the history before certain dates, a “delete” function will provide more flexibility.

Last but not least, as the web application we developed as a prototype, the structure of the

web applications has been set up successfully. There are still many aspects that can be

improved. For instance, the security can be improved to better protect the information collected

by devices.

 51

Bibliography

Dahlgren, E.; Mahmood, H. Evaluation of Indoor Positioning Based on Bluetooth Smart

Technology. Master’s Thesis, Department of Computer Science and Engineering,

Chalmers University of Technology, Department of Computer Science and Engineering,

Göteborg, Sweden, June 2014.

Jianyong, Z., Haiyong, L., Zili, C., & Zhaohui, L. (2014). RSSI based Bluetooth low energy

indoor positioning. 2014 International Conference on Indoor Positioning and Indoor

Navigation (IPIN). doi:10.1109/ipin.2014.7275525

Li, Xin, et al. “A Bluetooth/PDR Integration Algorithm for an Indoor Positioning System.”

Sensors, vol. 15, no. 10, 2015, pp. 24862–24885., doi:10.3390/s151024862.

Nussbaumer-Streit, B., Mayr, V., Dobrescu, L. A., Chapman, A., Persad, E., Klerings, I.,

O’Sullivan, Joseph. “Gov. Inslee Extends Washington State's Coronavirus Stay-Home Order

through May 4.” The Seattle Times, The Seattle Times Company, 2 Apr. 2020,

www.seattletimes.com/seattle-news/politics/gov-inslee-extends-washington-states-

coronavirus-stay-home-order-through-end-of-may-4/.

Pahlavan, Kaveh, and Allen H. Levesque. Wireless Information Networks. John Wiley,

2005.

Pahlavan, K., et al. “Indoor Geolocation Science and Technology.” IEEE Communications

Magazine, vol. 40, no. 2, 2002, pp. 112–118., doi:10.1109/35.983917.

 52

Qureshi, Umair Mujtaba, et al. “Evaluating the Implications of Varying Bluetooth Low Energy

(BLE) Transmission Power Levels on Wireless Indoor Localization Accuracy and

Precision.” Sensors, vol. 19, no. 15, 2019, p. 3282., doi:10.3390/s19153282.

Schnirring L. (2020, March 6). France orders lockdown to slow COVID-19 spread. CIDRAP

 News. Center for Infectious Disease Research and Policy. Retrieved from

http://www.cidrap.umn.edu/news-perspective/2020/03/france-orders-lockdown-slow-covid-19-

spread

“Symptoms of Coronavirus.” Centers for Disease Control and Prevention, Centers for Disease

Control and Prevention, Retrieved from www.cdc.gov/coronavirus/2019-ncov/symptoms-

testing/symptoms.html.

Systems Science and Engineering (CSSE) at Johns Hopkins University. (2020, September).

COVID-19 Dashboard by the Center for Systems Science and Engineering (CSSE) at

Johns Hopkins University (JHU). Retrieved from

https://gisanddata.maps.arcgis.com/apps/opsdashboard/index.html#/bda7594740fd40299

423467b48e9ecf6

Using AWS S3 to Store Static Assets and File Uploads: Heroku Dev Center. Retrieved from

https://devcenter.heroku.com/articles/s3.

Wagner, G., Christof, C., Zachariah, C. & Gartlehner, G. (2020). Quarantine alone or in

combination with other public health measures to control COVID-19: a rapid review.

Retrieved from

 53

https://www.cochranelibrary.com/cdsr/doi/10.1002/14651858.CD013574/information#C

D013574-sec-0063

Zhou, Yuan, et al. “Ultra Low-Power UWB-RFID System for Precise Location-Aware

Applications.” 2012 IEEE Wireless Communications and Networking Conference

Workshops (WCNCW), 2012, doi:10.1109/wcncw.2012.6215480.

