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Abstract 

Robotic construction can drastically improve the efficiency and safety of 
construction. However, current robotic construction methods are limited by the types of 
structures robots can build and the ability for multiple robots to work collaboratively to 
build structures. This project creates an autonomous collective construction system in 
which two types of robots cooperate: construction robots and smart scaffolding robots. 
The latter robot type integrates electronics into building materials to create intelligent 
structures and allows for dynamic reassembling of existing components. In addition, we 
present a novel multi-robot collaborative building algorithm that showcases construction 
both with real and simulated robots.  
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Introduction 

Contemporary issues related to urbanization, lack of adequate housing, and a 
need for building in adverse environments are increasing the demand for innovations in 
construction. Currently, 55% of the world’s population resides in urban areas. This 
figure is predicted to increase to 68% by 2050, with most of this demand needed by 
developing countries.1 Additionally, there are nearly 360,000 construction job openings 
left to be fulfilled by July 2019 according to the U.S. Bureau of Labor Statistics.2 It is 
estimated that 3 billion people will require housing that has yet to be built by 2030, 
which implies that 96,000 housing units will need to be built everyday.3 Advances in 
automated construction can address the demands needed to solve such problems.4 The 
automation of construction can also address the safety of workers, especially in 
hazardous environments where construction may be difficult or impossible. Examples 
such as building temporary shelters for hurricanes, containment zones for nuclear 
accidents, as well as extraterrestrial habitats for Mars motivate the need for automated 
construction as a solution.4  

Multi-robot systems are a solution that can achieve automated construction at 
scales much larger than the robots themselves. The challenge of using large multi-robot 
systems is how to control them to achieve high-level construction goals. A subset of 
multi-robot systems is swarm intelligence, which uses algorithms designed to achieve 
complex construction behaviors by implementing simple agent-level rules for each 
robot. Swarm intelligence provides a few key benefits that make automated construction 
efficient. Many robots can work in parallel, which can create a more efficient 
construction method. Such systems can also be designed to be flexible by designing the 
robot to be able to use teamwork to achieve harder tasks. A swarm is also 
decentralized, which creates a more robust automated construction solution that has 
very few or no single points of failure.  

Collective robotic construction is a relatively new subset of research that still has 
fundamental unanswered questions before it can be implemented as a realistic solution. 
Even though small-scale demonstrations show the potential of using decentralized 
swarm construction robots, it is unclear how a system with simple local interaction rules 
produces the collective emergent behaviour and how these principles can be used to 
design a robust and adaptive multi-robot system that will be able to carry out automated 
construction.4  

The success of swarm intelligence as an effective method for construction is 
most evident in nature. Termite colonies can become “superorganisms” where a million 
insects are able to construct structures several meters high. Such examples in nature 
occur in a decentralized setting and make use of stigmergic coordination, which is 
defined as individual decisions are made based on local interactions as well as 
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feedback from the environment.4  
Swarm construction robot platforms have demonstrated in a laboratory setting 

that a team of robots can create predefined structures made from blocks as seen in 
Figure 1.5 Furthermore, this capability is enabled only by local agent sensing and 
decision making. Such structures are much larger than the individual robots 
demonstrating the effectiveness of construction by swarm robots. Inspiration from 
termites has also been used to further research how concepts such as pheromones and 
stigmergic coordination can enable local interactions and environmental feedback for 
the robots. This research can yield results on how to coordinate many robots. 

  

Figure 1: TERMES System demonstrates multiple robots building a structure using 
hardware and in simulation 

Despite these successes with robotic construction, actual buildings and 
structures used in society are much more complex than the resultant structures built 
using current swarm robot construction platforms. Research still needs to be conducted 
to answer questions about how roboticists will: 

(1) Produce robust algorithms that achieve desired emergent goals and are scalable 
to any number of robots 

(2) Enable robots to use information provided by the structure to inform decisions 
regarding its construction 

(3) Design robots for improved manipulation of and mobility over three-dimensional 
structures 

The intent of this project is to explore such questions through the development of 
a robust and versatile swarm robot construction platform. The proposed swarm robot 
platform uses more capable serial linkage “inchworm” robots that can place blocks for 
three-dimensional construction as well as traverse over these structures. Furthermore, 
these blocks are designed to be “smart” so that they can interact with other blocks and 
determine the current status of the structure. This capability allows robots to localize on 
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the structure as well as receive feedback from the structure itself. A decentralized 
construction algorithm makes use of these hardware capabilities to coordinate a swarm 
of robots in constructing a predefined structure implemented by a user.  
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Related Work 
This section presents relevant research where multi-robot systems are used to 

build structures, including an overview of construction platforms, smart structures and 
construction algorithms. 
 
Robot Construction Platforms 

The TERMES multi-robot construction system was developed by researchers at 
Harvard University as a platform for research into collective construction systems. The 
TERMES system takes in a high-level representation of a structure, and creates rules 
for simple climbing robots to follow during construction.7 This system is an example of a 
decentralized system where robots use local information and implicit coordination to 
successfully create a structure much larger than themselves. The design of the 
TERMES system was strongly influenced by a desire to produce simple robots, 
manufacture cheap blocks, and create structures under the influence of gravity. The 
goal of the TERMES system is to create predetermined structures, and is a remarkable 
example of a successful implementation of a decentralized system; robots perform 
actions individually and coordinate their actions implicitly through the manipulation of 
their shared environment. Despite this accomplishment, the TERMES system is limited 
in the types of structures that it can create due to the physical implementation of the 
robots and blocks. Blocks must be supported directly by the ground, or by a stack of 
blocks, not allowing for any unsupported overhanging structures. Due to limitations in 
how the robots can traverse the structure, intermediate configurations of the structure 
are required during the building process. Robots cannot travel down narrow corridors, or 
place blocks between two adjacent blocks. Inappropriate intermediate configurations 
can cause a deadlock in the creation of the final structure. As a result, admissible 
structures for the system are limited to single-path additive structures. This class of 
structure requires that a nonbranching path P can be drawn which satisfies the following 
criteria: 
 

(1) The path P has an entry and exit along the perimeter of the structure 
(2) The path P visits each block placement site exactly once 
(3) The height change along path P does not vary by more than one unit per 

site 
(4) No site along path P is flanked on opposite sides by two previously visited 

sites 
(5) No site along path P is flanked on opposite sides by sites with desired 

stack height more than two blocks higher than its own.  
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The physical implementation of the construction system enables branching and 
merging path structures to be created in addition to single-path additive structures; 
however, future work into compiler design for this class of structure is required. As a 
result, the TERMES system is currently limited to single-path additive structures that 
satisfy the five admissible structure criteria specified above. The limitation in the classes 
of structures that the TERMES system can construct is largely due to the physical 
capabilities of the robots and blocks used to assemble the structure. One of the major 
considerations for the robot and block design presented in this work is to minimize 
limitations that hinder the variety of structures that the TERMES collective construction 
system can produce.  

One example of a construction system with few limitations on the classes of 
structures than can be assembled is the Bipedal Isotropic Lattice Locomoting Explorer 
(BILL-E) system proposed by the NASA Ames Research Center.5 The BILL-E system is 
a robotic platform designed to navigate a modular lattice structure. The system takes 
inspiration from multi-degree of freedom (DOF) industrial robots that are mounted to 
X-Y gantry systems to enable larger build areas. This system establishes an 
environment composed of cuboct lattice elements, and presents a multi-DOF robot arm 
with end effectors to attach to its environment. The design for the robot was driven by 
functional requirements for its ability to move in its three-dimensional isotropic lattice 
environment. The functional requirements for its operation are listed below: 

 
(1) Robot shall be able to traverse linearly (X, Y or Z) 
(2) Robot shall be able to turn and traverse in the direction orthogonal to the 

first direction (X to Y, Y to Z, X to Z) 
(3) Robot shall be able to turn 

up/down concave and 
convex corners 

(4) Robot shall be able to step 
up/down a level (+/- Z) 

 
In addition to prioritizing effective 

navigation of three-dimensional 
structures, the system includes 
fault-tolerant end effectors to improve 
the probability of success in navigation. 
Through a working prototype, the 
BILL-E system demonstrated the ability 
to effectively satisfy its navigation 
requirements, and hold and place lattice 

9 



 

elements. Due to the focus on three-dimensional locomotion in its functional 
requirements, the BILL-E robot and block design is an example of the physical 
implementation of a modular construction system with few restrictions on the types of 
structures it can produce. The robot and block design presented in this work will take 
inspiration from the BILL-E system to achieve versatility in the classes of structures that 
it can produce. The physical implementation of such a system and a strong focus on 
collective construction will enable the creation of structures that will improve upon the 
capabilities of the TERMES collective construction system.  
 
Smart Structures 

Another major aspect of robotic construction involves the coordination and 
communication of robots, as swarm teams must work in tandem to coordinate the 
building of a structure. While this communication is often established between robots, a 
different area of research involves robot-to-structure communication, in which the 
structure itself consists of one or more intelligent agents. This means that robots can 
directly interface with the structure itself in addition to other robots. This allows for 
services and calculations to be computed offline of the robots and instead be computed 
by the structure. Having an intelligent structure also establishes a communication 
medium where robotic agents can relay certain information between other agents.  

The multi-robot construction platform known as the Swarm Robotics Construction 
System (SRoCS) uses Near Field Communication (NFC) and computer vision to 
establish an interface between the robots and building materials (smart blocks) through 
stigmergy. This system allows robots to determine and update the status of the smart 
building blocks within the structure. The SRoCS platform is capable of adapting its 
structures to different environments without the need of a predefined structure. The 
SRoCS platform is an example on how blocks that convey information about the 
structure allow for a more capable system.  
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Figure 2: SRoCS Stigmergic Blocks6  

 
Through NFC, the manipulator updates the status of the block when placed on 

the structure, creating a manipulator-to-block connection. NFC is successful in the 
SRoCS system because it allows for robot-to-block communication without the need of 
a physical connection. SRoCS developers mention the possibility of developing 
block-to-block communication as an alternative means of communication.  

The SRoCS platform also uses LEDs on the smart blocks as a means of indirect 
robot to robot communication. The status of each block is updated through NFC by the 
robot as the structure develops. Since the SRoCS system is a stigmergic system, the 
LED color for the seed block, or the first placed block, informs the robots to initiate 
construction surrounding this block. As the structure evolves, each block is updated by 
the robot (through NFC) in relation to the structure; this construction is known as 
qualitative stigmergy. The advantage of having a structure be aware of its current 
configuration is that it can communicate what is missing to the worker robots. 

To assist with the localization of the robotic manipulator with respect to the 
structure (building blocks), the SRoCS platform uses AprilTag barcodes. These passive 
components allow the robot to use computer vision to find blocks and determine their 
position in their environment. 6  
 
Swarm Construction Algorithms 

A major aspect of robotic construction is the algorithm used to build a structure. 
The instructions on what, how, and where to place components of the structure can 
come from centralized or decentralized components and involve varying degrees of 
intelligence and knowledge of the overall structure by the robots.  
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The TERMES robots implements an algorithm where, after a user provides a 
high-level representation of the structure as an input, an offline compiler converts the 
structure to a “structpath.” A “structpath” is a path that the TERMES robots will follow to 
build the structure. Each robot acquires a block from the supply, then climbs onto the 
existing structure to traverse the “structpath” and place the block. Because of the nature 
of the “structpath,” when multiple robots are involved in construction, the robots traverse 
on the same path and thus need to be able to detect each other and perform collision 
avoidance as appropriate. This method provides a simple and effective way to build a 
structure. However, since a robot would need to traverse the existing structure to build 
the next block, the robots might not necessarily be travelling in the most optimal path 
and thus increases the cost of construction. Furthermore, while the TERMES robots can 
replace missing blocks that are along the "structpath," this algorithm does not provide a 
way to detect or replace a damaged block that was built previously and no longer on the 
"structpath."7  

Another inspiration of the building algorithm comes from stigmergy in nature. 
Instead of having a building plan to guide the constructions like humans, ants use 
pheromones to leave signals on building materials as a set of instructions for their 
peers. The pheromones determine the building activity locally and thus guide the shape 
of the structure. Because the release of pheromones is based on environment 
conditions such as humidity and temperature, the shape of the structure that ants build 
is not predetermined. As a result, if this algorithm was adapted to a robotic construction 
system, modifications would need to be made to the algorithm so the system could 
produce a predetermined structure in a controlled fashion.8  

In the previous work done on this project, instead of applying intelligence to the 
construction robots, intelligence was integrated into the structure by adding removable 
smart blocks to the building. The smart blocks would act as distributed hubs that detect 
nearby connected building blocks and give out instructions for local construction robots 
to follow. These construction robots were designed to perform simple tasks, and their 
only capabilities were traversing on top of blocks and picking and placing blocks. The 
introduction of the smart blocks allow the construction to be distributed, modular, and 
robust as the robots can be added to and removed from the structure without causing 
issues to the construction. However, this previous work was only done in 
two-dimensions and introduces new challenges as the smart blocks would need to be 
able to detect basic building blocks around them and keep track of their relative location 
to the overall structure. 
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Design Requirements 
The overarching goal of this project is to create a system utilizing a centralized 

computer, swarm construction robots, and “smart” building blocks to autonomously 
assemble predetermined structures. To achieve this goal we defined design 
requirements for the systems as a whole and unique requirements for the system’s 
individual parts. This section will discuss these requirements and how they were 
determined.  
 
System Requirements  

 To measure the initial success of this project, the primary objective of the system 
is to create a solid 4x4x4 cube shaped structure built with smart building blocks. Being 
able to build a cube will show that this system can discretize and assemble a structure 
in a three-dimensional work space. Additionally, this will demonstrate that the system 
can create a self-supporting structure. 

Another requirement of the system is that any building blocks removed from the 
structure shall be detected and, if desired, replaced. This requirement was chosen to 
show a real-life application of the system. Components of architectural structures can 
be removed or damaged during assembly. Natural disasters can also damage 
structures well after they are completed. If the system can mend incompletions in the 
structure, it will demonstrate that it can autonomously build and maintain a structure 
without human interaction. 

The final system requirement is that the system must allow for the assembly of a 
structure by multiple robots. The use of multiple robots will allow for the structures to be 
assembled quicker and more efficiently than with a single robot. Additionally, the use of 
multiple robots will allow for the development and analysis of various swarm 
construction algorithms. 

The following sections discuss the sub-system requirements that allow for the 
fulfillment of the system level requirements.  
 
Robot Requirements 

In order to fulfill the system level objectives, the construction robot will be able to 
navigate the structures it assembles. The robot will be capable of traversing linearly (X, 
Y, or Z), turning in order to traverse in orthogonal directions, turning up/down concave 
and convex corners, and able to step up/down a level as shown in the Figure 3 below. 
The robot’s ability to navigate the structure will be dependent on the robot’s size, 
weight, motor torque, and support reactions. The robot’s ability to traverse the structure 
will allow for the construction of a variety of three-dimensional structures.  
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Figure 3: Diagram from BILL-E report showing navigation conditions6 

 
In addition to the physical ability to navigate the structure, it is also desired for the 

robot, rather than a central server, to possess the ability to compute its navigation so 
that the robots can be kept as decentralized as possible. The robot shall algorithmically 
plan paths to navigate the structure. Path planning will allow the robot to navigate the 
structure efficiently. Also, path planning will prevent the robot from attempting to 
navigate to parts of the structure that are physically impossible for the robot to navigate 
to, such as a block face that is surrounded by other blocks in every direction. 
Additionally, the robot shall be able to locomote by controlling the position of its joints. 
Controlling the joints of the robot will require the calculation of its inverse kinematics as 
well as exploring its physical limitations.  

In order for the robot to plan its path about the structure, it will need to be aware 
of the current configuration of the structure as well as its position and orientation within 
the reference frame of the structure. To obtain this information, the robot shall be able to 
communicate with the smart structure. If each block is able to store its relative position 
within the structure, it can then share that information with the robot. The structure will 
also share its current configuration with the robot so that the robots can determine what 
is left to build/replace within the structure. 

To fulfill the requirement of navigating and assembling a three-dimensional 
structure, the robot shall be able to latch onto and transport blocks. Latching onto blocks 
will allow the robot to pick up blocks, place blocks, and latch onto the structures it 
assembles. Picking up and placing blocks are required for adding blocks to a structure. 
Transporting blocks will allow the robot to move blocks where they are needed to 
complete the structure. A unique end effector will be necessary to achieve these 
requirements. 
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Structure Requirements 
The structure of the system shall be made of individual interlocking cubes, 

containing a microprocessor, referred to as “smart blocks.” In order to build 
three-dimensional structures, all six sides of the smart blocks shall allow for mechanical 
interlocking with other smart blocks and at least five sides for the robot’s end effector. 
The sixth side of the block will be the opposite gender as the other 5 sides, allowing for 
block-to-block connections. The mechanical interlocking shall be strong enough to 
support the 4x4x4 cube structure described in the system requirements. In addition to 
mechanical interlocking, the smart blocks shall be able to communicate. Through this 
communication, the blocks shall be able to share data involving the position of each 
block and the construction of the structure. This data and electronic connection shall 
also be shared with the robot. The smart blocks and the electronic components therein 
shall be powered independently of the robot, but may share a single power source for 
the structure as a whole. 
 
Centralized Computer 

The centralized computer shall be able to discretize a structure into a structure 
that can be assembled using smart building blocks. Additionally, the centralized 
computer shall be able to divide the discrete structure into multiple sectors. These 
sectors will identify the work area for a single robot or a collaborating group of robots. 
The centralized system shall transmit the discretized and sectored structure to all the 
robots. After this data has been received by the robots, the centralized computer shall 
halt communication with the system, allowing the remaining robots and smart blocks to 
become decentralized. This is so the robots have to interact with only a single interface 
on the structure to receive instructions to begin construction. Afterwards, the robots will 
make decisions in a decentralized fashion.  
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Design Overview 

 
Figure 4: Image of inchworm robot gripping onto block. 

 
The construction robot designed for this system is a 5 degrees of freedom (DoF) 

inchworm robot capable of building a variety of structures from block elements and 
traversing the structure in the X, Y and Z directions (Figure 4). As seen in Figure 5, the 
robot is able to traverse concave and convex corners as well rotate about its wrist joints 
in order to change directions. The robot uses specialized end effectors to attach to 
blocks and walk on the structure. This also allows the robot to manipulate a block and 
install it onto the structure.  

 
Figure 5: Render of multiple robots changing planes in order to build a structure. 
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The electromechanical design of the robot includes an enclosure for essential 
electronic components, and use of strain relief elements ensures reliable connections 
between links. The robot houses a high speed microcontroller that allows for low latency 
communication and real-time low-level control. The established control packets allow for 
comprehensive and expandable high-level communication to the low-level controller.  

The smart blocks used to assemble the structure contain both electrical and 
mechanical elements (Figure 6). Six custom printed circuit boards (PCBs) contain near 
field communication (NFC) capabilities in order to convey information within the 
structure and to communicate with the construction robots. Wired power connections on 
the bottom face of the block enable the block to receive power from the rest of the 
structure. A gendered mating interface uses dowel pins and a single bolt to establish 
strong connections with surrounding elements. Dowel pins act to absorb reaction forces 
within the structure, as well as to align the block during placement. Construction robots 
use the same mating mechanism to traverse the structure and interact with their 
surroundings.  

  
Figure 6: A close-up view of a smart block, showing PCBs and mating interface. 

 
The main algorithm developed for the purposes of this project is the collaborative 

construction algorithm. This algorithm divides structures into different divisions or 
regions that robots will claim as their own. A partial ordering is established between 
each of these regions, which represents the order in which regions must be built. Due to 
the partial ordering, regions with the same order can be built in parallel. Robots work 
together by passing (referred to as ferrying) blocks to other robots to limit the amount of 
traversal needed to acquire new blocks, move the blocks to the desired location, and 
place the block in its next location.  
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Figure 7: Empire State Building built in custom simulator (left), robot placing blocks 

(right) 
 

Additional tools were developed for this project and are described in the following 
sections. These include a custom simulator, several tools used to create, edit and view 
the structures the robots will build, an online dashboard used to monitor the progress of 
the swarm as well as individual robots, and a desktop GUI used for controlling and 
debugging the robots.  
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Methodology 
This section presents the research that has been accomplished to achieve the 

functional requirements as described in the previous section.  
 

Comparison and Selection of Inchworm Design 

The robot system was designed so that it has increased mobility and 
manipulability compared to previous robot solutions used to enable swarm construction 
such as Termes and Bill-E. An increase in robot mobility is defined as versatility in its 
ability to traverse complex 3D structures. Furthermore, the robot will have increased 
manipulability, which is defined as the ability to latch onto a block, transport a block to 
any location on the structure, and place it in the structure in any orientation.  

Multiple mechanical system designs were reviewed that would be able to fulfill 
the robot requirements. These designs are briefly discussed.  

A. A mobile, wall climbing robot such as the Disney VertiGo9 robot uses two 360º 
tiltable propellers that produce thrust angled against gravity and the wall. Robots 
similar to this design could traverse vertical walls and could be integrated with a 
block placement mechanism. 

B. Aerial vehicles such as drones have been used in previous research as a method 
for autonomous construction10. Flying drones have increased mobility and can 
place blocks in many orientations using a simple end effector. 

C. A quadrupedal robot with grasping end effectors similar in concept to the Jet 
Propulsion Laboratory rock climbing robot LEMUR11 would have increased 
stability allowing it to traverse over more complex surfaces including vertical, 
overhanging and inverted angles.11 This also enables the robot to place blocks 
into the structure in many orientations. 

D. A simple ground-based mobile robot would be able to traverse most surfaces that 
are parallel to the ground and further climb up horizontal planes like the TERMES 
platform12. A simple four bar mechanism can be implemented to place blocks in 
front of the robot. 

E. A bipedal inchworm robot with grasping end effectors can have abilities similar to 
the quadrupedal robot allowing it to traverse any part of the structure as seen in 
the Bill-E platform13. An inchworm with only one gripper attached can be 
considered as a robot arm which allows for increased abilities to manipulate and 
place blocks. 

Though the designs presented can traverse structures as well as transport and 
place blocks, other considerations such as ease of control, mechanical simplicity, cost, 
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and power consumption were examined as well. A Pugh diagram that ranks these 
categories for each design is shown in Ttable 1.  

 
Table 1: A Pugh diagram comparing the qualities of each design idea to a standard. 

Weightings are used to determine the best alternative.  
 

The team chose to further develop the inchworm design, as the analysis of the 
Pugh diagram showed that it features good mobility over a structure as well as 
manipulability of blocks. A five degree of freedom robot would be able to traverse over 
almost all block structures in any plane and orientation. The increased degree of 
freedom allows the robot to easily pick up blocks and place them into structures at any 
position and orientation in its workspace. Furthermore, the capability of an inchworm 
does not compromise other important factors previously presented making it an optimal 
robot system for swarm construction. The design of a 5-degree-of-freedom inchworm 
robot is presented to accomplish goals specified in this project. 
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Mechanical Design 

This section presents the mechanical design of the robot. 
Mechanical Requirements 

The mechanical design of the robot is heavily influenced by the previously stated 
robot requirements. From these requirements, we can summarize the requirements 
most pertinent to the mechanical design of the construction robot and smart blocks: 

1. Navigation Requirements for Construction Robot 
a. Robot shall be able to traverse linearly in X, Y or Z directions 
b. Robot shall be able to turn orthogonal to its current direction  
c. Robot shall be able to turn up and down concave and convex corners 
d. Robot shall be able to step up and down a staircase 

2. Torque Requirements 
a. Joint torque must support robot during fully extended, worst case instance 

i. This should be supported by static and dynamic analysis 
b. Joint torque must support weight of robot and block during traversal 

3. End Effector Requirements 
a. Shall establish robot-structure connection to support robot 

i. This connection shall be strong enough to handle static loading 
and dynamic motion of robot 

b. Shall install blocks into the structure 
c. Shall enable reliable engagement with structure 

4. Geometrical Constraints 
a. Robot shall be able to traverse corridors with a width of one block unit 
b. Robot shall be able to place blocks in between existing blocks 

5. Manufacturing Constraints 
a. Robot shall be easily manufactured to produce large swarms 
b. Robot should be easily constructed using consumer off-the-shelf (COTS) 

components as well as 3D printed materials 
6. Block Elements 

a. Robot shall be able to manipulate block elements 
b. Robot shall be able to install block elements in the structure 

7. Other Considerations 
a. The end effector design will be modular to support future development 

 
Calculation of Linkage Lengths for Inchworm 

Linkage length analysis is critical for ensuring the robot is capable of fulfilling all 
of the functional requirements listed above for motion on the 3D structure. The BILL-E 
NASA research paper5 presents an analysis of all required motion positions, and 
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identifies that the convex corner motion requires longer link lengths than all other robot 
motions.5 As a result, fulfilling this motion condition will ensure that the robot has 
sufficient reach to fulfill all other motion requirements. Not only is it necessary to 
traverse convex corners, but in doing so the robot must leave vacant mounting locations 
within its reach. This will ensure that the robot does not become deadlocked at the 
convex corner condition.  

 
Figure 8: Example robot configuration 

 
For a given unit block length ℓ, it would be ideal to make the lengths of links A, B, 

C, and D as short as possible to minimize the torque requirement for the robot. In order 
to simplify construction algorithms and control models for the robot, the linkage lengths 
will be symmetric with respect to the middle joint of the robot. This means that links A 
and D will be equivalent and links B and C will be as well. As a result of this assumption, 
only two independent variables must be determined as a function of the unit block 
length ℓ. Looking at Figure 8, it is clear that the absolute minimum length of the 
inchworm 2A+2B is 3ℓ, in which case links A and D will be zero, and links B and C will 
be 3/2ℓ. From a design standpoint it is impossible to have links A and D be identically 
equal to zero, and introduces some of the rationale behind link assumptions. It is 
assumed that the length of links A and D will be some factor of the overall unit block 
length. It is also assumed for the sake of this analysis, this factor C will be 1 < C < 2. 
This assumption is made based on considerations for the block storage mechanism and 
the physical implementation of the rotary joints in links A and D, which will be discussed 
later.  

In addition to traversing over a block on each side of the convex corner, the 
linkage lengths also depend on the mating process between the structure and robot. 
Many of the hardware attachment schemes currently seen in modular 
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self-reconfigurable (MSR) robotic platforms require a perpendicular mating motion as 
part of their normal operation. Any comparable requirements for the end effectors will 
need to be considered when calculating linkage lengths. With this perpendicular mating 
motion in mind, an imaginary linkage “m” can be created in order to ensure that the 
linkage lengths are long enough to accommodate perpendicular insertion. The limit as 
m approaches zero represents the insertion of the robot into the block’s mating 
interface, and will be an important constraint for motion control.  

Based on the previously mentioned constraints, in order to minimize the length of 
links B and C, and therefore the overall torque required as the joints, the selected 
values of B and C would be such that the joint is intersecting the corner of the convex 
motion condition. In reality, some space will be necessary around the joint in order to 
provide for motors, bearings, gears, sensors, or other components necessary for the 
rotation of the joint. To account for this, an imaginary linkage “p” is established for 
connecting the second robot joint with the convex corner. This linkage p describes a 
necessary clearance from the corner due to space limitations, and for the time being is 
set to a value of ℓ/2. As the details of the design are refined, it may be possible that the 
necessary value for P can be decreased, therefore decreasing overall robot length as 
well. A diagram is shown below in Figure 9:  

 
Figure 9: Diagram used in linkage lengths analysis 

 
 

The team generated the vector loop equations shown below based on the top 
and bottom linkage loops. The team developed a MATLAB script to solve this series of 
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equations by writing the outputs 𝛳3, 𝛳4, and B in terms of the inputs A, P, and M. The 
results are listed in table 2 below as functions of the unit block length, ℓ. 
 
Loop 1: 

x-axis: b1 cos(𝛳3) - p cos(𝛳7) - (3/2)ℓ = 0 
y-axis: a + b1 sin(𝛳3) - p sin(𝛳7)  = 0 

Loop 2: 
x-axis: p cos(𝛳7) + b2 cos(𝛳3) + c cos(𝛳4) - d - m = 0 
y-axis: p sin(𝛳7) + b2 sin(𝛳3) + c sin(𝛳4) + (3/2)ℓ = 0 

 

Inputs Outputs 

Link A, Link D 1.375ℓ Link B, Link C 2.144ℓ 

Mating Distance M 0.25 Angle 𝛳3 -28.29o 

Corner Clearance P 0.5ℓ Angle 𝛳4 -60.08o 

Table 2: Results of linkage lengths analysis 
 
Selection of Unit Length 

Based on the analysis presented above, the relationship between the unit length, 
ℓ, and the total length of the robot can be described by the following equation:  

.038ℓLtot = 7  
While the relationship is linear, the selection of unit length has large implications 

for the total robot length, and therefore the joint torque requirement. To get a rough idea 
for the relationship between unit length and joint torque, we can create an approximate 
mathematical model. If we assume that the center of mass for each link is centered 
within the link, and that the mass of each link grows linearly with an increase in length, 
then the relationship between unit length and total length can be described by the 
following, where A represents a constant describing the relationship between link length 
and link weight: 

.236Aℓτ 1 = 7 2  
This simple model suggests that the relationship between torque and unit length 

will not be linear, and that the selection of unit length will have a considerable influence 
on joint torque, and therefore motor selection. Based on budget considerations and a 
thorough review of available customer off-the-shelf (COTS) gear motor options, the 
team decided that standard form factor servos would be used.  
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Based on the size of standard form factor servos, the team created an initial 
prototype that was scaled according to a length of 3 inches. Preliminary testing of the 
robot validated that this unit length was large enough to enable the robot to fully enclose 
the electronic and electromechanical components necessary for operation. A static 
torque analysis of the prototype construction robot  confirmed that standard form factor 
servos have the necessary torque for successful operation. Following successful tests 
with this prototype, a unit length of 3 inches was defined for the block and the final 
robot. More information about the first iteration robot design is documented in Appendix 
A.  
 
Final Inchworm Robot Design 

Design Method 

In order to design a robot to meet the specified design requirements, the team 
utilized an iterative design process to design the mechanical system. This process 
enabled different mechanical and electronic subsystems to be proven and improved for 
each iteration. Furthermore, this allowed for early testing of the entire system. As shown 
in Figure 10, the team manufactured and evaluated two distinct design iterations before 
the final iteration. Improvements in the design for manufacturing, selection of final 
motors and the gripping end effector design were some of the lessons learned from this 
design process. The discussion of the first and second iteration of the robot are found in 
Appendix A.  

 
Figure 10: Progression of Robot Design 

 
The final inchworm robot mechanical design is presented in Figure 11 and 

successfully meets all the stated design requirements. This is a 5-degree-of-freedom 
(DoF) inchworm robot capable of building a variety of structures from block elements 
and traversing the structure in the X, Y and Z directions. The end effectors enable it to 
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manipulate the block and install it into a structure. Lastly, the profile of the robot is less 
than the 3 inch width of a block which allows it to travel in channels. 

 

 
Figure 11: Inchworm robot system 

Robot Links 
 The lengths of the links are derived from the link length analysis with a block unit 

length of 3 inches. These lengths are called out in Figure 11. The team ultimately chose 
a cantilevered link design to allow for simple assembly of links, and to minimize the 
number of parts in accordance with design for manufacture and assembly (DFMA) 
principles.  The joints have bearing support for each shaft to minimize deflection of the 
robot. Link 3 and Link 4 house the system electronics and are protected by removable 
casings. Link 2 and Link 5 are the wrist links for the robot. These links have a modular 
interface that allows for an easy installation of any end effector design. As seen in 
Figure 12, two shoulder bolts extend from the wrist onto which the end effector can 
clamp. 
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Figure 12: Close-up view of wrist joint, showing shoulder bolt interface 

Robot Joints 
In order to produce a simple manufacturable swarm robot, the team decided that 

a consumer off-the-shelf (COTS) motor selection would be desirable to actuate each 
joint of the inchworm. When researching available COTS gear motor options for small 
range of motion, high precision applications, it became clear that most products use a 
spur or planetary transmission powered by a brushed or brushless DC motor. Many of 
the available options were quite expensive, especially considering the team’s desire to 
build multiple construction robots. One observation from our research was that the 
market for standard form factor servo motors is highly competitive, and there are many 
offerings with comparable torque ratings within the same size constraints. The use of 
standard form factor servos would enable an open source robot design, enabling others 
to build construction robots and easily expand the size of the swarm. For these reasons, 
the team decided that standard form factor servo motors would be used for joint motors. 
The JX PDI-HV5932mg 30 kg-cm servo was selected for the inchworm robot actuator. 
This servo provides a safety factor of 1.5 based on the worst dynamical joint torque that 
was determined in the dynamical model and analysis of the robot. These actuators were 
modified to incorporate high resolution absolute position magnetic encoders. The back 
casing of a motor was removed and a shaft with a magnet head was installed on the 
back of the output shaft. An encoder was mounted right over the magnet and testing 
showed the encoder was able to output the position of the shaft without any interference 
from the operating motor. This simple assembly is an easy modification to an existing 
servo motor and provides a compact motor and encoder system as seen in Figure 13.  
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Figure 13: Servo mount and encoder for robot joints 

Final End Effector Design 
The end effector is the hardware interface used by the robot to latch onto the 

structure and building blocks. It is important that the end effector is robust so that it can 
endure many mating cycles, and simple so that it is feasible to manufacture many 
robots and building blocks. The end effector design consists of four dowel pins 
surrounding a central 4-40 bolt. The end effector also contains a subsystem for 
installing blocks into the structure. An allen key interface is used to transmit torque from 
the robot to the block’s mounting interface.  

End Effector Motor Selection 
Because the robot and block use the same mating system, the power 

requirements for the end effector motors are quite similar. The motor used to power the 
subsystems was selected based on two functional requirements: 

(1) Enable the end effector to mate with the structure in two seconds 
(2) Torque the end effector screw to 5.5 in-lbs 

Based on considerations for cost, weight, and simplicity, a brushed DC motor 
was selected for this application. In order to satisfy these requirements, the required 
motor power was calculated in order to attach the end effector to the structure in two 
seconds. For this calculation a free running torque of 2.0 in-lb was assumed. 

ower τ  P =  × ω = 2.0 in bs[ − l × 1
12

f t
in] × 2π  0 .125 [ × 1 thread

revolution × 4 in
threads × 0 in

second]  
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ower 28.8 .25 WP =  f t−lbs
second = 5  
 

Within the class of DC brushed motors that will be considered for this application 
only 370, 380, and 395 size brushed DC motors satisfy the power and weight 
requirements. Within this list, a calculation was performed to identify the minimum 
required gear reduction that will satisfy the stall torque requirement of 5.5 in-lbs. Using 
this gear ratio, the peak efficiency torque and RPM were calculated to determine if each 
of the motor-gearbox combinations would exceed 600 RPM at 2.0 in-lbs. The RF370 
was selected as the ideal motor for this application, as it is the lightest motor that 
satisfies all selection criteria and functional requirements. Furthermore, RF370 motors 
are commonly found in servo form factors with built in spur gear transmissions. This 
means that a servo of “standard” form factor can be used to actuate the end effectors.  

Motor 
PE 

Torque 
(in-lb) 

Speed 
(RPM) 

Stall 
Torque 
(in-lbs) 

Ratio @ Stall 
PE 

Torque 
(in-lbs) 

PE 
Speed 
(RPM) 

Fast 
Enough? 

Enough 
T@ PE? 

FF050 0.01375 11320 0.058 135.18 1.86 83.74 Bad Good 

RC280 0.0425 8980 0.253 31.04 1.32 289.30 Bad Good 

RF370 0.0625 13730 0.312 25.19 1.57 544.99 Good Good 

RS380 0.12 13890 0.719 10.92 1.31 1271.72 Good Good 

RS395 0.1625 13110 1.041 7.55 1.23 1736.33 Good Good 

Structural Analysis 

The end effector design is inspired by modular self-reconfigurable (MSR) system 
attachment mechanisms currently seen in the literature.14 One example of this is the 
CoBold bonding mechanism shown in Figure 14. This design has experimentally 
demonstrated strong mounting connections, and has large tolerances for alignment. 
Specifically, testing has shown that the mechanism is capable of sustaining 5 kN of 
tensile load before failure, and is capable of successful mating despite lateral 
misalignments of up to 5mm and angular offsets of up to 20o.  

Both of these attributes are important in this application. Furthermore, the CoBold 
system utilizes dowel pins for alignment, and to transmit forces between mating 
surfaces12. No input power is required to maintain connections, and the design has 
exhibited good durability. The CoBold mating design is currently being used by several 
research projects, namely SYMBRION and REPLICATOR14.  
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Figure 14: CoBoLD bonding mechanism for MSR robot applications14  

 
Despite these advantages, the CoBoLD mating mechanism primarily utilizes 

CNC fabrication techniques, and has considerable material costs. Due to the nature of 
the project, ease of manufacturability and low cost are important traits for the end 
effector mating mechanism. While the CoBoLD bonding mechanism has great potential 
for creating strong connections, it has considerable mechanical complexity. For these 
reasons, a new mating mechanism will be presented which features strong mating 
connections and low cost. This design attempts to distribute shear and normal loads on 
different elements, much like the CoBoLD bonding mechanism, while attempting to 
create a simpler docking system. 
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Figure 15: End Effector CAD Render 

 
The final end effector design consists of a flat disk with four, 0.500” dowel pins 

integrated into the surface. These dowel pins are intended to absorb the shear loads 
acting on the robot-structure interface. In addition to supporting shear loads, the dowel 
pins also serve the purpose of aligning the end effector with the reference frame of the 
structure being built. A single 4-40 fastener absorbs the normal load acting on the 
interface. This ensures that the overall connection is capable of sustaining the support 
force reactions that are required to keep the robot in equilibrium on the structure. Based 
on the dynamic model of the robot, the maximum torque acting at the robot to wall 
interface was calculated to be 22.75 in-lb during fast acceleration movements. This 
means that during a worst case scenario, the 4-40 fastener is subjected to a 15.2 lb 
force, which is well within the proof load of an SAE Grade 8 4-40 fastener15.  

In order for the dowel pins to align the end effector, the bolt mechanism requires 
compliance when first mating with the structure. This compliance is achieved through 
the use of a light spring. Before the end effector engages with the structure, both the 
dowel pins and the bolt protrude from the flat bottom of the end effector. When the robot 
begins the mating process, the dowel pins are inserted into the holes on the structure, 
and the bolt is compressed into the end effector. The spring provides a small force to 
ensure that the bolt catches on the first female thread of the structure. The robot then 
rotates the 4-40 bolt until the proper torque is achieved. A cross section view of the end 
effector showing the spring loaded screw mechanism is shown below in Figure 16.  
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Figure 16: Cross section of end effector 

 

Dynamic Model and Analysis 
The dynamical behavior of the inchworm robot was modeled using the 

Lagrangian method and derived from the ball and stick model shown in Figure 17. The 
total mass of each link and the center of mass position was determined from the CAD 
model. The resulting equations were separated into the respective inertia-mass, 
centripetal-coriolis and gravity matrix. The gravity matrix was simplified into a system of 
equations that can be used for gravity compensation for the robot as shown in Appendix 
A. 
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Figure 17: Dynamic Model Ball and Stick Diagram 

The team calculated the dynamic torques for each joint for a worst case scenario 
by applying a positive velocity and acceleration on each joint while in the configuration 
shown in Figure 18. For this calculation, it was assumed the joints would travel 90 
degrees in 3 seconds and the max acceleration would be determined from a trapezoidal 
velocity profile. Therefore the worst case dynamic torque was calculated to be 17.5 
kg-cm. This information is useful in selecting the torque rating that the joint motors must 
have.  

 

 
Figure 18: Worst Case Configuration for Dynamical Model Analysis 

Final Block Design 
The building blocks presented in this project must be capable of sustaining the 

reaction forces necessary to maintain the robot’s equilibrium in all static positions. The 
difficult aspect of designing this modular construction system is establishing a robust 
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interface between blocks that is capable of sustaining loads during the construction and 
later use of the structure. The primary mechanical functional requirement of the 
construction blocks is to sustain the normal and shear force acting on each of the six 
sides of the block. This functional requirement shifts the focus away from the block itself 
and more towards the interface that joins blocks together. Other functional requirements 
include interfaces to facilitate communication between the robot and blocks, mating 
geometries to ensure successful mating and demating cycles between the robot and 
blocks, and a block interface that enables symmetric, reversible connections on all six 
sides of the block. 

The basic block design features a 90o symmetric gendered connection, with 
female interface geometries on five of the six sides of the block. As a result, a block is 
only capable of actively attaching to another block through its one male connection. A 
structure created using these blocks will have large numbers of block interfaces with no 
mating geometry (female to female sides in contact), making it a highly anisotropic 
building material. The development of blocks capable of connecting on all sides would 
allow for the creation of stronger structures, and would enable the development of more 
advanced building algorithms. Such a block would need to allow the robot to selectively 
deactivate connections on some, or all sides. The mechanical complexities associated 
with this concept are beyond the scope of this work, and are left to future research in 
the field of swarm construction systems. While this design imposes weaknesses in the 
strength of the final structure and places a large importance on block orientation, the 
male to female interface presented in this design is anticipated to be strong. 
Experimental investigation of the strength of the mating mechanism is left to future 
works. Dowel pins are used to sustain shear loads acting on the male to female 
interface plane, while a single bolt is used to establish a preload between the male and 
female interfaces. A single spur gear train enables the construction robot to install 
blocks in the structure. Construction robots access an allen key interface within a dowel 
pin hole on the top surface of the block. 24 diametral pitch (DP) gears transmit torque to 
the central screw assembly, which is spring loaded in the same way as the end effector 
design. Cavities connect each side of the block to provide pathways for electrical 
connections to be made. A cross section view showing the gear train, spring loaded 
screw assembly, and passageways between PCBs is shown in Figure 19.  
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Figure 19: Cross Section of Final Block Design 

 
Inchworm Environment Design 

In order to test the robot’s ability to traverse complex structures, the team created 
a small test platform. This environment contains all of the critical surface environments 
that the robot must traverse to be considered a success. A flat section enables testing 
of the robot’s ability to traverse on level ground. A set of stairs, a concave corner, and a 
convex corner enable testing of the robot’s ability to traverse in three dimensional 
space. A CAD rendering is shown in Figure 20. 

 
Figure 20: CAD model of Robot Environment 
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Electrical Design  

The 3D Swarm Construction system consists of two types of robots that work 
collaboratively to build structures. The first type, the inchworm robot, must be able to 
traverse, latch, and communicate with the structure. The second type, the smart 
structure, must be able to communicate information such as the position and status of 
each block. Figure 21 demonstrates the high level system architecture between the 
smart structure and the inchworms onboard system.  

For the inchworm robot, a high speed microcontroller and low latency 
communication interface are required to allow for real-time control and communication. 
A bi-directional communication protocol must be established between the robot’s 
microcontroller and Linux system to receive its desired configuration and report the 
robot's information. In Figure 21 the bidirectional communication is represented by the 
thick arrow labeled “Robot Data” and “Desired Position and End Effector Control”.  

Building with NFC-enabled smart blocks allows for the creation of smart 
structures. The smart blocks can recognize when a block has been added or removed 
from the structure. Using this technology, the structure can convey its status to the 
robots in real-time and can provide localization for each robot. In Figure 21, the blue 
blocks represent the smart structure components. 

The following electrical section focuses on the electromechanical components 
and low-level design of two types of robots in this system. 

 
Figure 21: Inchworm robots high-level system diagram  
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Smart Structure 
Making the 3D structure “smart” enables the system to verify the structure’s 

configuration dynamically and convey the position of the inchworm robot within 3D 
space. It also reduces the robot’s electrical complexity by offloading processing tasks 
such as localization within the 3D space and communication between inchworm robots 
on the status of the structure. It is important to notice that structures as part of this 
system are predefined. Furthermore, as a novelty of this robotic system, the structure 
will be the medium over which communication between robots and the smart blocks will 
occur. 

System Architecture 
The smart structure is built using two types of smart blocks: home blocks and 

smart blocks. The concept for smart block communication requires every smart block to 
be identical, except for one “home block” as seen in Figure 22. The home block is the 
first block placed, either by a human or by a robot. The home block stores the initial 
reference frame for the structure and is powered by an external power source. The 
home block contains the same communication capabilities as the smart blocks, and 
uses its external power sources to supply power to the entire structure. The first smart 
block is placed so that it is connected to the home block; this smart block is positioned 
at location (0,0,0). The home block will then communicate the reference frame to the 
smart block as well as communicate to the smart block that its position is (0,0,0). Every 
subsequently placed block communicates with the block(s) it is attached to and receives 
its position and reference frame. The position of each block added to the structure is 
propagated through the structure to the home block as seen in Figure 22. The home 
block stores the layout of the structure and communicates the layout to the robot(s) 
every time the structure is changed. Each block in the structure also periodically verifies 
that none of its surrounding blocks have been removed by sending a heartbeat 
throughout the structure. If a block is removed, this information is shared in the same 
way as an added block. 
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Figure 22: Smart structure message transfer depiction 

 
The key processing tasks that the smart structure offers to this robotic system are as 
follows: 

1. Structure Status - Adding blocks dynamically updates the high-level 
system of the structures current configuration.  

2. Heartbeat Protocol - Identifies if a block is missing by updating the 
high-level system on the structure’s current configuration form the 
previous configuration. 

3. Robot Position - The inchworm robot and high-level code can request the 
position of each robot in respect to the structure. This enables for the 
localization of each robotic inchworm with the 3D space.  

Smart Blocks and Home Block Final Design 
When considering the physical interaction of the smart blocks, it was concluded 

that a genderless electrical communication protocol would be desirable for the 
application. Using a genderless connection maintains the mechanical simplicity of the 
smart blocks. NFC was chosen for the communication protocol of the final iteration of 
smart blocks. The use of NFC permits communication between any of the five female 
block faces, enabling communication between parts of the structure where mechanical 
interfaces do not exist.  

The foundation of the NFC smart blocks is the NXP PN532/C1 NFC controller16. 
This controller is connected to a Microchip ATmega328P microcontroller17. The 
PN532/C1 is capable of running in six different operating modes including peer-to-peer, 
card emulation, and card reader modes. The NFC-based smart block consists of six 
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NFC antennas, one for each block face, connected to one PN532/C1 controller via a 
radio frequency multiplexer. Two PN532/C1 controllers communicate over NFC while 
one chip is in card emulation mode and one is in card reader mode. To receive 
messages, the PN532/C1 is put into card emulation mode and the multiplexers are used 
to poll each block face for an incoming message. To send a message, the PN532/C1 is 
put into card reader mode and the message is relayed to the PN532/C1. The 
microcontroller keeps the PN532/C1 in card reader mode until the message 
transmission has been confirmed. 

The multi-directional nature of the NFC smart block communication allows the 
opportunity for several message propagation protocols to be used to transmit messages 
back to the home block. One method of transmitting messages to the home block is 
transmitting along known paths to the home block. Another method for transmitting 
messages is using a flooding algorithm. With a flooding algorithm, a block sending a 
message would transmit the message to all of the blocks touching its six faces. Blocks 
receiving a message would also propagate the received message in all directions as 
well. If a block receives a message it has previously received, it ignores the message to 
prevent messages from endlessly propagating throughout the structure. The flooding 
method ensures that as long as there is a path, a message will eventually propagate to 
the home block. To simplify the smart block communication protocol, the known-path 
method is implemented. 
 
Inchworm Robot 

 
Figure 23: Final Inchworm robot sliced view of electromechanical components 
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Electromechanical Components  

Microcontroller 

The inchworm robot has five joints that require five individual motors, encoders, 
and PID controllers. Each joint consists of a closed loop system with feedback provided 
by one 14-bit I2C encoder and a motor controller to provide an input to the system. 
Each end effector contains two motors controlled by a PWM pin, a hall effect sensor, 
and an NFC tag. Due to the high amount of electromechanical components and the 
requirement of real-time control, the Teensy 3.6 microcontroller was chosen. Its 180 
MHz processor with 22 PWM output pins and I2C bus capability allows it to control all 
the electromechanical components in real-time (within the given deadlines). The high 
speed USB port allows for fast exchange of packets through serial between the 
high-level code and low-level code systems. Furthermore, the Teensy’s small form 
factor (62.3mm x 18.0 mm) allows it to fit within the inchworm’s links along with wires 
and additional components.  

Encoders 

The accuracy tests performed with the first iteration of the robot showed that 
servo motor’s built-in position controllers do not meet the level of precision and 
accuracy required for this system. The built-in position controllers were unable to reach 
the accuracy per degree needed to properly align the end effectors with the alignment 
holes on the smart blocks. To reliably build a structure, the robot must be able to 
repeatedly insert its end effectors into the smart blocks. To increase the accuracy of the 
robot’s joint angles, AS5048B encoders18 were added to each joint of the robot. The 
AS5048B encoders provide a 14-bit joint angle measurement with a ~0.02 degree 
resolution for each joint. The AS5048B encoders operate on an I2C bus. To make each 
encoder individually addressable, the AS5048B Arduino library is used to permanently 
assign each joint encoder a unique I2C address. The existing AMS AS5048 Arduino 
library provides functions to read the encoder angles and zero the encoders position 
when initialized. Additionally, the AMS AS5048 will notify the user if any I2C errors 
occur while attempting to read a joint angle from an encoder.  

Motor Drivers and Battery Eliminator Circuits 

A torque test performed with the first and second iteration robot showed that the 
stall torque on each motor would require a peak current of ~3 Amp at stall and a 
continuous current of ~2.6 Amps during peak nominal operation. To provide the power 
required by the motors, the TB9051FTG Single Brushed DC Motor Drivers19 were 
incorporated into each of the robot’s joints.The joint motors require a 9 V input which is 
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within the 4.5-28 V output range of the TB9051FTG. These motor controllers allow for a 
2.6 Amps of continuous current and a peak current of 5 Amps providing the proper 
amount of current to each joint. The TB9051FTG has two wiring configurations that 
operate at distinct frequencies; the truth tables documenting these modes can be seen 
in Appendix B. The first configuration uses two 20kHz operational PWM inputs for 
controlling the motor’s direction and speed. The second configuration uses one PWM 
input to control the motor’s speed along with two digital inputs to control the motor’s 
direction. For the first version of the inchworm, the second configuration of the 
TB9051FTG was chosen as it fit the limited amount of PWM pins on the ATmega328P. 
This configuration presented a lot of issues since, with this H-bridge style motor 
controller, using a PWM signal to trigger the enable line limits the frequency of the PWM 
signal being applied. Because the inchworm robot requires a fast control loop at each 
joint, the first wiring configuration method was chosen. This allowed each motor 
controller to update the direction and speed for real-time control of the inchworm. The 
wiring configuration of the TB9051FTG is demonstrated in Figure 24.  
 

 
Figure 24: TB9051FTG motor controller and BEC wiring schematic  

 
To provide the joint motors with a regulated power source, two high power 

battery eliminator circuits (BECs) were added to the electrical system. These BECs 
convert the 12 V input voltage from a DC power supply to a 9 V output that is within the 
operating range of the joint motors. The Castle Creation (CC) 10A peak 25V max input 
SBEC where chosen as they allow for an adjustable supply of 4.8V to 9V with a 
maximum continuous current of 7 Amps and a peak of 10 Amps as seen in Table 3. 
These BECs expand the inchworm’s powering capability as they allow the robot to use 
high power rated lithium batteries to safely provide power to the electromechanical 
components when not operated through an external power supply.  

 

Power 
Component 

Max Voltage Input 
(V) 

Voltage Output 
(V) 

Peak Current 
Output (A) 

Continuous 
Current Output(A) 

Wall Adapter 100-240 12 10 7 

CC SBEC 25 4.8-9 10 7 

Table 3: Final inchworm robot system power calculations 
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Power System Requirements 
The final inchworm robot can be powered using a wall adapter or a battery pack. 

For the final iteration of the robot, a wall power supply connected to the CC BECs 
mentioned in the previous section provides more than enough power (120 W) to the 
electronic components of the robot. The final system uses a continuous source of power 
to eliminate power limitations when developing and tuning the inchworm robot as this 
requires long periods of time. 

If a battery is added to the robot, additional electrical components must be added 
to support the monitoring of the battery of each robot and the performance based on the 
battery levels. Additionally, the required joint torque for the mechanical design has not 
been verified with the additional volume and weight associated with the use of a battery. 
The power calculations for the final robot are shown in Table 4. These calculations 
demonstrate that the robot requires a 12 V Li-Po battery with a capacity of ~5092 mAh. 
This was made with the assumption that the depth of discharge of the battery is 50% 
and the battery transfer efficiency is 99%. 
 

 
Table 4: Final inchworm robot system power calculations 

 

Embedded Systems 

PID Controller 

The controller used to adjust the speed and position of the joint motors on the 
robot is a Proportional, Integral, Derivative (PID) controller as seen in Figure 25. This 
system was designed in tandem with the serial communication packet defined in the 
serial communication section below. Each joint motor has its own PID controller. The 
PID controller works by comparing the desired joint angle to the actual joint angle being 
read by the encoder.  
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The inchworm robot has two distinct configurations, dependent on which end 
effector is gripping the structure. When the robot is gripping an object in one orientation, 
one joint is supporting the weight of the robot while the other is supporting a small link. 
This configuration switches when the opposite end effector is gripped to an anchored 
object, in this case when an end effector is engaged to the structure. To account for 
these two scenarios, the joint motors are initiated with two sets of control parameters 
and have a function to switch the two sets instantly. The result of this control scheme in 
addition to the 14-bit encoders is more robust and more configurable than the built-in 
servo controllers. 

 
Figure 25: PID controller diagram 

 

Serial Communication 

A 44-byte control packet is used to communicate the five angles for each joint, 
the gripper states, the actuation of the gripper, and the actuation of the allen key as 
seen in Figure 26. The 44-byte packet is composed of five sets of 8-byte angle 
sub-packets for each joint control. The sets for the joint angles are structured as follows: 
the first byte is either a negative (-) or a zero (+) to establish the sign of the angle given. 
The next six bytes are the angles’ floating point values with two decimal precision.The 
last byte, represented by underscore “_” is only placed for better readability of the 
position angles sent for each joint. This format was chosen to simplify the interpretation 
of the angles within the embedded code, as they can be converted from chars to floats 
using the standard C++ function atoi(). The last set of four bytes of the packet is for the 
selection and control of the gripper mechanism and allen-key mechanism. For the allen 
key, the first byte is to select the allen key mechanism and the second byte is to select 
the state. The state can either be engaging the block or disengaging the block. The third 
byte selects the gripper to be used and the fourth byte the state, either engage or 
disengage.  
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Figure 26: 44-byte Inchworm robot control packet breakdown 

 

The packet sent through serial is decomposed and organized into the five joint 
motor objects, two gripper variables, and two allen-key variables. Figure 27 
demonstrates how the packet received by the inchworm robot is parsed by a 44-byte 
serial buffer. This serial buffer then fills an 8-byte temporary buffer that is then 
converted into a signed integer. The last four bytes of the packet are used placed into 
two gripper variables and two allen-key variables. This enables the robot to read the 
serial packet properly and control the inchworm robot with a run time loop of 5 ms. 

 

 
Figure 27: Serial buffer control packet organization 
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Wiring 
A reliable connection between links is essential to the robot because of the 

robot’s high degree of mobility. In the preliminary iterations of the robot, the motion of 
the robot caused strain on the wires. This strain caused the I2C connection bus to 
momentarily lose connection from the microcontroller. This leads to two behaviors of the 
low-level system: the whole system hangs, or the reading of the encoders is corrupted. 
These erroneous behaviours forced the robot to reach unwanted configurations that 
could ultimately damage the inchworm. To relieve the strain of the wire connections 
between the links, cable glands were incorporated to the final inchworm design. Cable 
glands are used in industry to adequately enclose cables therefore providing no wire 
movement within the links when the robot reaches challenging configurations. This 
ensures that the robot can reach any position without forcing unpredicted movements of 
the joints.  

Figure 28 demonstrates the full wiring diagram of the inchworm. The space 
required on each link determined the distribution of the electromechanical components. 
As seen in the figure, the C-link houses all the power components as these 
components’ form factors fit the links’ dimensions. The B-link allows for more 
components to be housed as it has the most space provided.  

 

 
Figure 28: Final inchworm robot complete wiring diagram  
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Software Design 
 

Control of the inchworm robot requires special consideration in terms of motion 
planning and path planning. The inchworm must be constrained in its movements to 
place and lift blocks correctly using the inchworm’s placement mechanism, while at the 
same time being able to navigate the structure using the inchworm’s gripper. 
Furthermore, control of the order in which blocks are placed when building the structure 
is a major component of the robot’s building algorithm.  

Note that this paper uses the term “motion planning” with regards to the physical 
control of the robot, such as setting the joint angles, while “path planning” is used to 
consider the position and orientation of the entire robot with respect to the rest of the 
structure. 

  
Control Algorithms 

To simplify the control of the robot, the inchworm design can be considered a 
standard three degree of freedom robot arm. While the robot is a dual end effector 
design, only one end effector will need to move at a time. As such, the end effector that 
is not moving can be considered a fixed base. 

The final software iteration determined the appropriate angles needed to reach 
specified locations by transforming the target end effector position and orientation from 
a global reference frame to a local reference frame and used a geometric approach to 
calculate the inverse kinematics. A quintic trajectory planner was also integrated to 
provide smooth motion from point to point. 

In order to have the robot achieve a point to point motion in its workspace and 
avoid collisions, Cartesian trajectory planning was implemented. The trajectory is 
defined by setting waypoints. The first waypoint is a point some offset above the face 
the end effector is currently connected to. This is done so that the end effector detaches 
from the block correctly, in a motion perpendicular to the face. The next set of waypoints 
is determined by using the A* algorithm to search through the open space. This is done 
so that in constrained environments, the robot end effector can path plan around 
obstacles. This acts as a simple and local collision avoidance system. The number of 
waypoints generated is determined by the complexity of the environment. For example, 
in Figure 29, no obstacles are blocking the end effector; as such, only a second 
waypoint is generated. The final waypoint is the block face itself that the end effector will 
be attaching to. For each of these waypoints, a quintic trajectory planner is used so that 
an incremental motion is achieved in reaching each of these waypoints. Accordingly, 
while there are three main waypoints in the trajectory shown below, there are many 
intermediate waypoints defined between each main waypoint.  
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Figure 29: Waypoints defined for robot trajectory 

 
Robot Navigation 
 To navigate the structure and reach any location/block within the structure, a 
pathfinding algorithm was created. When pathfinding, the position of the robot is 
considered a point with respect to the end effector closer towards the desired goal. This 
allows the actual path planning and inching movement of the robot (shown in Figure 30) 
to be effectively separated from one another. The path planning algorithm provides a list 
of nodes to traverse, and the motion controller of the robot determines how to actually 
traverse the returned locations. The robot will move the forward-facing end effector to 
the first location returned. If the distance between the forward and rear end effector is 
larger than a certain threshold, the rear end effector will move to the previous location of 
the forwards end effector. A simple analogy is if a person stands with one foot in front of 
the other and moves the forward foot even more forwards, the rear foot can then be 
moved to the original position of the forward foot in order to provide balance. In the 
event that the distance between the two feet or two end effectors is quite small, the 
person/robot will deem this step unnecessary and continue moving the forward end 
effector. Not only does this simplify path planning by allowing the robot to be considered 
as a single point, but it also allows the robot to move in an inchworm fashion as desired. 
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Figure 30: Demonstration of inchworm motion of the robot  

 
A novel algorithm was implemented to account for the requirement that the robot 

needs to be able to navigate on the faces of the blocks of a structure to reach a target 
face. This algorithm was named Face* as it is an evolution of the A* algorithm. For each 
block in the structure, instead of exploring each block as a node, the Face* considers all 
available faces of a block as nodes and uses the Manhattan distance between faces to 
calculate cost. Since the robot will traverse the structure in an inching fashion, the Face* 
algorithm assumes that the back end effector will reach the last face that the front end 
effector was at and only plans a path for the front end effector. In order to return a valid 
path that the robot can physically maneuver and reduce the steps that the robot 
performs to reach a target, the Face* algorithm models each step as two types: (1) a 
step that results in different orientations between the end effectors; (2) a step that 
results in the same orientations between the end effectors. For the first type of step, 
because the robot needs to bend to reach the new orientation, the reach of the robot is 
limited and thus a smaller search distance is applied for this type of step. For the 
second type of step, since the robot is trying to reach the same orientation, the reach of 
the robot is further than the first type of step and thus a bigger search distance is 
applied. Since the distance and orientation that that front end effector can reach depend 
on the back end effector, the Face* algorithm filters the faces that it considers based on 
the orientation of the back end effector. For instance, if the back end effector is on the 
“top“ face, the “bottom” face will not be considered. The Face* algorithm then executes 
until either all available faces are explored or the target face is reached. 
 
Visualization of Robot Motion 

In order to visualize the motion of the robot, a custom simulator was developed. 
Existing simulators and visualization tools such as Gazebo and MATLAB Simscape 
Multibody were considered but were ultimately deemed ill-equipped or unnecessarily 
challenging to program for viewing the motion of the robot. Because it was decided that 
ROS was not going to be used as well due to the large overhead and complexity of 
Gazebo, Gazebo was excluded. Most other simulators including MATLAB were 
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excluded as they were not designed to display long simulations and or they required a 
lot of custom code that would be much simpler to implement from scratch rather than 
integrating it with existing simulators through plugins. Furthermore, it was determined 
that simulating multiple robots would require specialized code as most of the considered 
simulators were not directly created for displaying multiple robots, while a solution 
created from scratch could be tailored to simulate multiple robots.  

The simulator was built using the Visualization Tool Kit (VTK), where it reads in 
STL files for the various 3D objects and creates transforms between them to control 
their movement. A sample simulation of the robot can be found in Figure 31, where the 
front and back end effectors are highlighted in red and purple (other links are in blue), 
the structure is colored as green, the path the robot is taking is highlighted in blue, and 
the trajectory the robot is taking is comprised of the red dots surrounding the robot.  
 

 
Figure 31: Demonstration of the robot (iteration 2) in simulation  

 
The simulator is scaled correctly to map the angles used in the simulation to the 

actual robot. Currently, the simulator is capable of showing the motion of a single robot, 
the structure, the desired trajectory of a robot, the path the robot is taking to navigate 
the structure, and the robot placing a block. Future improvements will be made to the 
simulation including increased support for multiple robots as well as real-time 
visualization of the robot motion.  

Because the simulation only shows the motion of the robots and not the 
individual parameters or metadata, a control dashboard was created as shown in the 
following picture to both visualize and control various features of all of the robots as well 
as the structure itself.  
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Figure 32: Demonstration of the user interface of control dashboard 

 
The dashboard, created using React.js and shown in Figure 32, allows users to 

select between multiple robots and the structure itself to view information specific to the 
selected robot/structure, including the current angles of the robot, the number of blocks 
that have been placed, the position of the robot relative to the home block, and the 
battery life of the robot. This tool will help in debugging multiple robots quickly, as well 
as will allow for an aesthetic controller for manipulating the different robots. The 
dashboard communicates with the robots and structure using Pusher, a cloud-based 
publisher-subscriber. Pusher was chosen due to its widespread use for the Internet of 
Things (IoT) and its simplicity. Because it was developed for IoT, Pusher is lightweight 
and does not cause any issues of large overhead with either the robot or structure. The 
publisher-subscriber architecture was chosen so that neither the robots nor the structure 
have to wait for the dashboard to connect or update. They can publish their information 
to channels (queues) in the cloud, and the dashboard will subscribe to the channels and 
read from them as soon as it is able to.  
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Control and Debugging of Robots 
In order to test individual robots and ensure their capability to run the main code, 

a graphical user interface (GUI) was developed. This GUI allows for both high and 
low-level control of the robots. It was coded using ElectronJS and allows for a desktop 
application to be installed for all operating systems. This means the GUI can be 
downloaded without any additional setup. For the high-level code, users can upload 
predefined paths to the robots as well as adjust certain parameters such as the delay 
between each robot motion and toggling the use of the grippers, as shown in Figure 33.  

 
Figure 33: Robot controller GUI high-level interface 

 
For the low-level code, users can easily create the custom packets that are used 

to communicate with the embedded code, as shown in Figure 34. A home button resets 
the robot to its home position. The low-level code interface also includes a serial 
monitor that allows users to see the output of the embedded code on the 
microcontroller. This is meant to entirely replace the Arduino IDE and serial monitor.  
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Figure 34: Robot controller GUI low-level interface 

 
A third feature shown in Figure 35 is provided that allows users to take notes and 
open/save files. This is useful when recording angles and pin numbers used on the 
microcontrollers.  
 

 
Figure 35: Robot controller GUI note-taking feature 

 
Building Structure Template Creation 

For the robot to build something useful with the structure, the robot must first 
have some idea of what the final structure should look like. As such, the robot must 
store the “blueprint” of the structure or a schematic which it can use to determine what 
blocks it still needs to place. 

To create the blueprints that are required to build structures, two main tools were 
developed. The first was modeled after the game Minecraft; users are placed into a 
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voxelized environment where they are able to add or remove blocks, as shown in Figure 
36. Using the arrow keys, users are able to move around the environment and create 
the blueprints they desire. For more resources about actually using the software, 
consult the existing documentation. In addition to creating blueprints from scratch, a 
second tool was developed that allows users to upload an obj file, a file produced by 
CAD software. By making use of some existing voxelization tools, the uploaded obj file 
can be voxelized; users can adjust the density and size of the voxels to make the 
blueprint as they wish. Afterward, the voxelized structure is converted to the format 
used by the Swarm Construction system.  
 

 
Figure 36: (From left to right) The blueprint creation tool, a voxelized Empire State 

building which was created using the aforementioned software.  

System Architecture 
The architecture of this system (shown in Figure 37) consists of three main 

software entities: the structure itself, the simulator, and the robots, which for this section 
will be considered as a single entity. Each entity involves multiple threads to achieve 
task parallelization and work efficiency. For example, robots listen for updates on a 
separate thread from their main controllers in order to always be able to receive updates 
from the structure. As a distributed system, each entity must be capable of managing its 
state, carrying out external behaviors, and communicating with the other entities in the 
system. 
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Figure 37: Software architecture diagram 

Messaging Protocols 
For messaging between entities, the ZeroMQ library was employed. This library 

was chosen because it is lightweight, simple, and communicates without a central 
broker. Other messaging libraries and protocols were considered such as Mosquito 
(MQTT) and RabbitMQ, but they were ultimately decided against because of their 
dependency on a centralized broker that manages all messages. While for this iteration 
of the project having a centralized message broker is not problematic, a desire to make 
the system more decentralized and therefore less reliant on any other entity invoked the 
use of ZeroMQ.  

ZeroMQ connects over TCP. For now, having the system on the same network is 
easy and available. In the future, this messaging should be replaced with 
communication through the smart blocks, where messages are actually sent through the 
structure rather than over TCP. 
 
The messages that are sent between the entities are as follows: 
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Robot Messaging 
All robots send out heartbeats to the structure in order to indicate their status as being 
alive. Part of the heartbeat includes where the robot currently believes it is on the 
structure. Robots also send updates regarding their current tasks, such as the 
completion of a task such as placing a block or reaching a point. If the simulator is to be 
used, robots send simulation updates to the simulator, where the messages involve the 
position and configuration of the robot and its angles.  
 

Structure Messaging 
The structure receives all heartbeats from the robots and uses it to determine which 
robots are currently alive and working. If a robot disconnects (stops sending 
heartbeats), the structure will use the Lazy Pirate Heartbeat paradigm, where it will 
attempt to message the robot at increasing time durations. Hopefully, the robot will 
come back online, and if it does not, the structure will notify users (human operators)  of 
the robot failure. The robot also monitors for the heartbeat of the simulator (if the 
simulator is being used) and will notify users in the event of a simulator failure. In 
addition to heartbeats, the structure sends tasks to all of the robots and listens for 
replies such as robots completing and or acknowledging a given task.  
 

Simulator Messaging 
The simulator does not send out any messages but only listens to incoming messages 
from the robots. The robots will send their base configuration, angle configuration, as 
well as if they are holding a block to the simulator, which is then able to simulate the 
configuration of the robot.  
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Figure 38: Architecture showing use of threads for each application 

Robot Intelligence 
 

Planning Execution 
In order to build any structure in a collaborative and decentralized manner, the 

robots must be able to make decisions for themselves as to the actions they should be 
taking. As such, utilizing a traditional planning execution controller such as a state 
machine could become complicated to program, debug, and visualize. As the behaviors 
that the robot must exhibit become more complex, a state machine would become much 
more complex where states give rise to other states, fail to deal with hierarchical 
commands effectively, and fail to handle dynamic behaviors. As such, a behavior tree is 
used as the core component for exhibiting robot behaviors. A behavior tree creates a 
control scheme which is easy to visualize and understand as behaviors can be 
represented graphically as trees. It creates a well-understood hierarchy of behaviors 
that is much more responsive to changes in an environment than a state machine, and 
it can handle dynamic behaviors much more easily, as behaviors can be added, 
modified, or removed by simply adding, modifying, or removing subtrees from the main 
behavior tree. The main subtrees within the robot behavior trees involve the behaviors 
of receiving updates from the structure, waiting (do nothing), moving to a specified 
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location, and building divisions. Each of these subtrees is comprised of subtrees itself 
that involve things such as picking up blocks, pathfinding, and placing blocks. Note that 
the behaviors are executed in terms of top to bottom, left to right. As shown in Figure 
39, this means that receiving updates and waiting are given the highest priority for the 
robot, such that if the robot is in the middle of building and is told to wait, it will switch to 
waiting.  
 

 
Figure 39: Behavior tree used by all of the robots 

Constraint Satisfaction Solver 
To give the robots the concept of gravity, a backtracking constraint satisfaction 

solver was employed. This is used to solve constraint problems regarding the removal 
of blocks. For example, the robots should be able to figure out that if it is to say move 
blocks stacked in a tower, it must remove the blocks starting at the top and move its 
way down to the bottom. Grabbing a block at the bottom when there are blocks on top 
of it would cause the tower to fall. While the blocks could be selected by simply ordering 
their locations (i.e. remove the blocks with the highest z coordinate value first), the 
solver is used to create a framework for more complicated interactions where the 
solutions may not be as easy as ordering and may instead require planning and 
constraint-based scheduling.  
 
Collaborative Construction 
 

In order to explain the collaborative construction building algorithm outlined in 
this section, a concrete example will be shown in italics font in order to aptly explain 
how each component works. Look for the italic sections to see the algorithm in practice. 
A simple flowchart that explains the main features of the algorithms can be found in 
Figure 40: 
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Figure 40: Diagram showing collaborative construction algorithm pipeline 

 
The building algorithm was created with several assumptions in mind. The first is 

that the inchworm robots can move blocks around much faster than they can inch. For 
example, if the inchworms act like traditional fixed-based robot arms, they can swing 
around faster than it would take to move the robot base to a new location. The second 
assumption is that new blocks will be introduced by a human operator at a single 
location. This location, known as the feeding location, is where new blocks will be set 
down by a human for the robots to take and place. The final assumption is that 
decentralization should be added in future iterations, and as such, each iteration the 
building algorithm involves increasing decentralization. 

In order to capitalize on the main assumption that robots are much faster at 
moving blocks rather than inching, the building algorithm limits inching. Rather than 
having robots travel all the way to each block, grab it, move to the block’s desired 
location and place it, the robots instead seek to pass off the blocks to the robot that is 
closest to the desired location, hence “collaborative building.” An analogy of the desired 
behavior is as follows. Imagine a line of people is attempting to put out a fire. The 
person at the beginning of the line has a bucket filled with water that can help put the 
fire out. Taking a step with the water bucket invokes some cost, namely that the bucket 
of water could fall or water can fall out of the bucket. In this scenario, the best action is 
to then pass the bucket of water to the next person standing in line, who will pass it to 
the next person, and so on, until the person at the end of the line who is closest to the 
fire will extinguish the flame. Note that, as in the scenarios, robots are not prohibited 
from inching. If a robot must inch in order to reach the desired destination, the robot will 
do so. Nevertheless, the algorithm should limit as much as possible the need for 
inching. The act of passing off blocks to other robots is labeled as “ferrying.” Therefore, 
the two main behaviors of the robots are either ferrying blocks, where blocks are passed 
from one robot to the next, or placing blocks, where blocks are actually placed 
according to the building blueprint in their permanent location. 
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It should also be noted that a main area where the aforementioned analogy fails 
is the description of people passing water directly into the hands of the next person in 
line. This strategy would not work well for the robots as it would require the robots to 
grab the blocks from each other in the air, which is not a trivial task, as well as it expects 
that the receiving robot is currently available. If the receiving robot is not available to 
actually receive the blocks, the distributing (ferrying) robot would have to wait for the 
receiving robot to become available. Instead of handing off directly, the ferrying robots 
set the blocks down near the receiving robots. When the receiving robots are available, 
they can then take the received blocks and perform some other action with them (either 
ferry them to another robot or use them to build).  
 
Division Creation  

Once the home block receives the blueprint, it then divides the structure into 
divisions. Divisions represent an area where a robot is expected to either build or work 
(pass along blocks). For example, in a cube structure that is 8x8x8 block units in size, a 
division may be of size 4x4x2 block units, or 32 blocks total. 

The size of a division involves several hyperparameters that can be tuned to 
produce better results. For example, if divisions are made too wide, then a robot will 
have to cover more area to ferry blocks in. This means the robot will inch more and is 
therefore not a good division size. Tuning these hyperparameters is something that is 
currently done manually for each structure, but it could be improved in the future 
through various optimization algorithms and artificial intelligence such as genetic 
algorithms.  

For the recurring concrete example, as shown in Figure 41, a single layer of the 
desired structure is shown. Note how the smart blocks (shown on the left) are grouped 
together into divisions (shown on the right) of 3x3 blocks. While this is only shown for a 
single layer, this process is repeated for all layers of the structure. 

 
Figure 41: Demonstration of division creation 
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When seen in the simulator, a structure such as the plane in Figure 42 can be 

broken into the following divisions. 
 

 
Figure 42: Demonstration of creating four divisions within a plane 

 

Robot Dispersal 
Based on the number of robots, the robots are sent to disperse themselves in all 

of the available divisions. Once the robots have dispersed themselves on the existing 
structure, the structure begins sending out information about the next layer to build. 
Robot dispersal happens in the following fashion. For all divisions that are currently 
being worked on, the robots will calculate their distances to the centroid of each 
division. Each robot will then return the location of the closest centroid to it, or in other 
words, the location of the centroid that it would have to move the least in order to reach. 
Once each robot has offered its first choice in locations, the structure will then select the 
largest distance (the robot whose minimum distance to a centroid is the greatest 
amongst all of the robots), and assign the robot with that distance that division. This 
process is repeated until all robots have been assigned a division.  
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This is done to ensure that robots will not have to travel far to reach a division. The 
division each robot is assigned should require the least amount of inching to reach 
across all the robots. While this algorithm is currently calculated by the structure, it is 
expected to be made more decentralized for the final iteration, as described more 
below.  
 

Building Layer by Layer 
The structure is built layer by layer in order to have the same constraints as a 3D 

printer. Blocks must be placed at the bottom in order to support the blocks above. For 
each layer, the home block runs a wavefront algorithm through the divisions in order to 
determine the path each set of blocks should take to build each division. The starting 
location of each path is the feeding location, the location from which new blocks are 
introduced into the system. For the purposes of this project, a human operator manually 
sets down blocks at the feeding location for robots to grab. Robots must receive blocks 
at the feeding location and ferry them to the division where they are meant to be placed. 
The divisions are ordered according to their distance from the feeding location (really by 
running the wavefront algorithm). Note that while the wavefront algorithm is used to 
search for paths between divisions, the Face* algorithm is still used locally by the robots 
themselves to navigate within divisions. In essence, this establishes a partial ordering 
between the divisions.  

For the recurring concrete example, the feeding location occurs at division 1. 
From this division, the wavefront algorithm is run in order to order all divisions based on 
their location from the feeding location. Note how division 2 (with a value of 2) is ahead 
of division 9 (with a value of 5).  

61 



 

 
Figure 43: Wavefront algorithm is performed for each division in level 

 
At this point, the robots will be added to the structure. For this example, four robots 
have been manually placed in divisions 1, 2, 5, and 4. Note that the status of the 
division is denoted as either empty (no blocks placed yet), CW (claimed and waiting 
meaning a robot is currently waiting in the division), filled (blocks have been ferried in 
division), and done (division has been built).  

 
Figure 44: Robots have been added to the building algorithm example 
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These nodes are then used to populate two main priority queues that both the home 
block and robots iterate over. The first queue is the goal queue, which represents all of 
the divisions that are currently being built. In the first iteration of the algorithm, only two 
divisions are built at a time. The second queue is the “nodes-to-visit” queue. For each 
node in the goal queue, the path through all of the divisions from the feeding location to 
that division is determined. These paths are then merged into a single path. For 
example, both paths will start with the feeding location as the first division that must be 
visited; this division, however, should only show up once in the queue. Through the 
process of merging, divisions that are common to both paths are noted. The robots that 
claim these divisions must know that they need to ferry twice as many blocks, as that 
division is not in the path of just one goal node but both goal nodes.  

For the recurring concrete example, two divisions are removed from the list of 
divisions that need to be built as shown in Figure 45. To keep the example simpler, it is 
assumed that the first division is already built (this assumption is purely to simplify the 
example and does not change how the algorithm works). The first two divisions 
removed are 2 and 4, and are added to the goal nodes priority queue (GPQ). For each 
division in the GPQ, the path is found from the feeding location (division 1). Note that 
the path is not recalculated, it is simply the path found from running the wavefront 
algorithm previously. Because the paths to divisions 2 and 4 share a common division 
of division 1, the path is flattened such that division 1 only appears in the intermediate 
nodes priority queue (IPQ) once. This step is important so that the robot is division 1 
knows that it must ferry blocks to the robots in divisions 2 and 4, not just division 2 or 4. 
In other words, it must ferry twice as many blocks in order to ferry to both divisions at 
the same time.  
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Figure 45: Populating the queues to begin the building algorithm 
 
Once the nodes-to-visit queue has been populated, the robots iteratively pop off as 
many nodes in the queue as there are robots. Each robot will then begin exhibiting the 
behavior needed by that node (division).  

Initially, all robots except the robot whose division includes the feeding location 
will exhibit the waiting behavior.  

For the recurring concrete example, the robots first begin popping off the 
divisions from the IPQ until there are none left as shown in Figure 46. Because there is 
only 1 division (division 1) in the IPQ, the robots then move to remove divisions from the 
GPQ until there are none left. Because there are only three divisions in the queues but 
four robots, one robot will maintain its waiting status.  

 
Figure 46: Example of robots claiming divisions from the building queues 

 
In the simulation, this division claiming is shown in Figure 47. 
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Figure 47: Example of robots claiming divisions in simulation 

 
 

The robot whose division includes the feeding location will begin by ferrying the 
blocks to the other robots. The robot knows how many blocks to ferry by checking the 
number of blocks of each goal division. Furthermore, it knows where to place each 
block for another robot to grab by checking the next points in the global path and then 
placing the blocks biased towards that location. For example, if the next two divisions 
the robot is ferrying for are to the front and right of the current divisions, the robot will 
ferry blocks biased towards the front and right locations of its division, such that it is 
easier for the next robots to grab.  

The ferry locations are determined specifically by biasing towards the direction of 
the other divisions (front, left, back, right), and then placing blocks furthest away to 
closer. A minimum distance threshold is set so that the robot does not ferry blocks too 
close to itself. Note that this could be dangerous when another robot comes to grab the 
ferried blocks; at this point, the other robot could crash into the robot that was just 
ferrying. Once the minimum threshold has been surpassed and there are still more 
blocks to ferry, the robot will then repeat the process at a level higher, or in other words, 
the robot will begin stacking blocks on top of the blocks it just ferried.  

Figure 48 shows a division made of 8x8 blocks. The regions marked in red are 
designated as the ferry regions. For this example, the ferry region is of size 2. These 
are the locations that the robots will place blocks so that a robot in another division can 
grab the blocks from this division more easily. If the robots need to place more blocks 
than the number of blocks shown in red, it will then begin stacking the blocks on top of 
one another, repeating the process just at the next level. In this example, the blocks are 
biased towards the top of the division and the right of the division, so that a robot in the 
divisions either to the top or right of the current division can grab the ferried blocks.  
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Figure 48: Ferry regions in a division 

 
This process of ferrying is repeated until the robots reach a division that must be 

built. Divisions are built in a spiral fashion, starting from the center and moving 
outwards. This is done so that after the first block is placed at the center (or near the 
center of the division), the robot can then stand on top of the block that was just placed 
and from there grab new blocks to build. This is done so that the robot can act like a 
fixed-base robot arm and simply swing around in a circular fashion, placing blocks as it 
swings. Of course, depending on the size and shape of the divisions, acting like a 
fixed-base robot arm will not always be possible, so sometimes inching will be required 
to reach/place all blocks. An example of what ferrying looks like in simulation can be 
found in Figure 49.  

 

 
Figure 49: Ferry regions in a division 
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For the recurring concrete example, robot one will stay in division 1 and ferry the 
blocks to divisions 2 and 4 (the goal nodes). Once robot one has finished ferrying the 
blocks for divisions 2 and 4, it will notify the robots in those divisions, robots two and 
three. These robots (because they are at the goal nodes themselves), will begin building 
instead of ferrying. They will take the blocks that were ferried by robot 1 and place them 
in their divisions in a spiral fashion starting at the center and moving outwards. This 
process is illustrated in Figure 50. 

 
Figure 50: Two robots building a division 

 
Once either ferrying or building has been completed, the robots will then disperse 

themselves again. This is to ensure minimal waiting time. Because robots may be in the 
middle of a task and then be asked to disperse themselves, the robots will send the 
current state of their division to the structure. If a robot was interrupted and did not finish 
ferrying or building, the next robot that is assigned to that division will pick up where the 
previous robot left off.  

For the recurring concrete example, a few more divisions are shown for how the 
algorithm works. Once divisions 2 and 4 have been built, two more divisions are added 
to the GPQ based on the build order. In this case, these are divisions 3 and 5. As 
before, the path to each is found starting from the feeding location. These paths are 
merged (common node of one between the two paths) and then added to the IPQ. 
Because the order of divisions 2 and 4 are the same (both with a value of 2), it does not 
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matter which division is placed first in the IPQ, so long as both are placed after lower 
value division division 1 (value of 1).  

 

 
Figure 51: Building algorithm repeats the procedure for the next two divisions 

 
Now that the queues have been populated, the robots begin claiming divisions from the 
queues. Because there are four robots, they will claim four divisions, starting from the 
IPQ and then being claiming divisions from the GPQ. Divisions 1, 2, 4, and 3 are 
claimed by the robots. Using the algorithm described above, the robots redistribute 
themselves based on minimizing the amount of movement needed to reach each 
division as shown in Figure 52. Note that to minimize the amount of inching performed 
by the robots it is more efficient to have robot three move to division 3 despite the fact 
that it is already in division 2. Robot four will then move down to reach division 2. If this 
was not done, robot four would have to inch a much longer distance across the diagonal 
to division 3.  
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Figure 52: Robots claim divisions and then redistribute themselves in a way to minimize 
the amount of inching needed for each robot 

 
Once all robots have distributed themselves, robot one begins ferrying from the 

feeding location for divisions 4 and 2 as shown in Figure 53.  
 

 
Figure 53: Robot one begins ferrying blocks for the next divisions 
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Once robot one finishes ferrying, the next division is removed from the queue as 

shown in Figure 54. Because the IPQ is empty, the next division removed is from the 
GPQ: division 5. Because a new division has been claimed, the robots redistribute 
themselves again. To minimize the amount of inching for each robot, robot one will 
move to division 4 and robot two will move to division 5.  

 

 
Figure 54: Robot one finishes ferrying, the robots redistribute themselves 

 
In these divisions, the robots will continue the process of ferrying and then 

building until the goal nodes have been built. The entire process is performed for all 
divisions in a single layer.  

This building algorithm easily scales to three dimensions by repeating the same 
process for each layer. If the feeding location is kept at the bottom of the structure, the 
robots can perform the same path planning and wavefront ordering up the side of the 
structure, as shown in Figure 55. This algorithm was made to be agnostic to the number 
of robots; it can easily and dynamically be rescaled to the number of robots available. 
Furthermore, it is only impacted by the shape of the structure being built in the sense 
that the ferring behavior will devolve to entail more inching. As such, the structure will 
still be able to be built, it will just take longer than a structure like the cubic structure 
shown in Figure 55.  
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Figure 55: Building algorithm scales to three dimensions 

 
Building Algorithm Proof of Correctness 

A proof of correctness was created for the building algorithm to showcase its 
capabilities to build different structures and its ability to allow collaboration between 
robots. The proof is as follows.  
 
Face* is proven complete 

Face* is a variation of uniform cost search, an algorithm that is already proven to 
be complete. Face* is used to calculate a path from one block, Block A, to another 
block, Block B. If a path exists, then the robot is capable of reaching Block B. Each 
node in the algorithm that is searched is a face of a block. The cost calculated for each 
face is the Manhattan distance from the center of all the faces. The faces that are 
considered are the faces that can actually be reached by some mechanical motion of 
the robot. The possible motions of the robot are shown in Figure 56.  
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Figure 56: Diagram showing navigation conditions of the robot 

 
The algorithm also must take into account the space surrounding the path as it 

searches so that there is enough space for the robot to actually move. For example, 
based on the height of the robot, the robot will not be able to fit inside a cave or 
overhang that is less than five blocks tall. Accordingly, the search graph the algorithm 
uses can be defined as a reachability graph, in that it only considers the faces of blocks 
that the robot can actually reach. Therefore, if Face* returns a path, it is possible for the 
robot to reach the specified location. If Face* does not return a path, then the robot is 
incapable of reaching the specified location.  

Building inside divisions is correct 

Building inside divisions means that blocks are either placed or moved around 
(ferried) inside of divisions. So long as the blocks are placed such that there exists a 
path from the robot’s starting location to where the block is to be placed, building 
structures through the use of divisions is correct. In other words, blocks are always 
placed so that the global connectivity of the structure is maintained, as there must be a 
path that allows the robot to reach the desired location in order to place the block. 

Structures Can Be Built In Parallel 

Based on the way the robots claim divisions to either build or ferry in, a partial 
ordering is established for all available divisions. This partial ordering is determined 
based on each division's distance from the feeding location, the location where a human 
operator introduces new blocks into the system. The partial ordering is used first to 
ensure robots do not collide with one another. After a division has been claimed, other 
robots are not allowed to enter that division. Furthermore, the partial ordering is a 
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means to measure the progress of construction. Divisions that are ranked earlier are 
built before divisions ranked later. As such, even when blocks are ferried within 
already-constructed divisions, the progress of construction can be measured as the 
divisions that have been built no longer have an ordering. This also ensures that Face* 
will return a valid path to each division. Divisions are built in an outwards fashion from 
the feeding location. The ordering ensures that certain divisions are built before others 
so that there always exists a path to each division. In the image shown below, where 
the feeding location is Division 1, Division 1 must be built before Divisions 2 and 4, so 
that there exists a path for the robots to reach Divisions 2 and 4.  

 
The method that the partial ordering is performed allows several divisions to have 

the same ordering. For example, Divisions 2 and 4 have the same ordering, as do 
Divisions 3, 5, and 7. These divisions share the same constraints– the divisions that 
must be built before them. For example, by building Division 2, a path now exists for 
both Division 5 and Division 3. Accordingly, these divisions can be built at the same 
time (parallelized) as robots can use the existing structure to find a path (through Face*) 
to both divisions. It should also be noted that Division 7 shares the same constraint, and 
so it too can be parallelized with Division 5 and Division 3.  

This final theorem proves the correctness of the algorithm. Once all divisions 
have been built the structure is complete.  

The structures that this algorithm is capable of building are any structure that 
maintains global connectivity such that there exists a path to every single block in the 
structure. Furthermore, because the algorithm currently builds in a bottom-up fashion, 
structures that violate bottom constraints cannot be built. For example, overhangs that 
extend both outward and downwards (like the wings of an airplane) cannot be built, as 
they require constructional constraints from above/the side, not from below. In order to 
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build these types of overhangs, support material (like that of a 3D printer) would need to 
be built and later removed to allow these constraints, something described more in 
Future Work.  
 
  

74 



 

Experimental Evaluation 
The results presented in this work will focus on robot specific system level 

achievements relevant to future applications, as well as the achievements of the 
building algorithm.  
 
Robot Evaluation 
Demonstrations 

The ability of the inchworm robot to navigate its environment was evaluated. It 
was experimentally demonstrated that the robot is capable of traversing on flat ground, 
and is capable of manipulating block elements in its environment. The 
electromechanical design of the robot theoretically enables the traversal of other 
obstacles such as staircases, concave, and convex corners. Experimental 
demonstrations of these motions have yet to be completed, and this is one area for 
future work. Evaluation of the robot’s ability to traverse structures is critical to ensuring 
that the construction platform is capable of assembling a wide variety of structures. 
Figure 57 below shows snapshots of the robot during a demonstration. The robot inches 
forward two block units, and moves a block forward by one space. This demonstration 
took 20 seconds to complete, but this can vary largely depending on the software 
parameters used.  

 
Figure 57: Timesteps of robot (Iteration 2) demonstrating control over a block element  
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Smart Blocks Evaluation 
Demonstration 
The smart block system was tested using three PN532-based NFC systems. This 
testing showed the smart blocks can successfully recognize blocks added to the 
structure, assign a new block a location, and notify the homeblock of the addition. This 
system also successfully recognizes when a smart block is removed from the structure. 
 
Collaborative Building Algorithm Evaluation 
Demonstrations 

Through simulation, the building algorithm has been shown to successfully 
provide a means for which robots can build structures in a collaborative fashion. The 
building algorithm was tested for multiple structures including structures resembling 
pyramids, temples, churches, castles, the Empire State Building, and the Star Trek 
Reliant ship, among others (Figure 58). The robots were able to place all blocks as 
required. Unfortunately, we were not able to demonstrate the robot climbing vertically. 
This is due to insufficient time to complete the code necessary to do this and was not 
caused by issues with any of the algorithms developed in this paper.  
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Figure 58: Examples of structures built, robots repairing structure 

 
Speed 

In order to analyze the effectiveness of the building algorithm at reducing the 
time required for construction by adding additional robots, simulations were created 
wherein varying numbers of robots were tasked with building the same structure. Due to 
hardware restrictions (running multiple robots on a single computer can become 
process intensive), simulations were run on a 2015 MacBook Pro with up to four robots 
per experiment. The time measure was the simulation time, which represents the 
number of timesteps of the simulator. The results of one experiment can be found in 
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Figure 59. One robot, two robots, three robots, and four robots were tasked with 
building a 10 block by 10 block plane consisting of 100 blocks. As shown in Figure 59, 
the time significantly decreases when adding additional robots, especially when 
comparing a single robot placing all 100 blocks and four robots placing all 100 blocks. 
This model seems to be characterized by an exponentially decaying curve. Adding more 
robots will decrease the time required to build exponentially up until a threshold is 
reached, upon which adding additional robots will not produce any additional benefit.  
 

 
Figure 59: Graphs showing time required to build structures decrease when 

adding more robots 
 

Collaboration 
To analyze how the collaboration between robots affects performance, the 

behavior trees of each robot were timed. For each robot, it recorded the total amount of 
time spent in each behavior. The main behaviors tracked were receiving updates from 
other robots and the structure (Update), moving (Move), waiting (Wait), building (Build), 
and ferrying (Ferry). The results shown in Figure 60 were generated from the same 
experiment run above (a 10 by 10 plane made of 100 blocks). 

For the single robot experiment, the robot spends almost all its time either 
ferrying or building. Almost no time is spent waiting, and a very small portion of time is 
spent receiving updates. This makes sense as there are no other robots to coordinate 
with or wait on. While this means the efficiency of the single robot is very high, it also 
means that this is a very intensive and power hungry task for one robot to complete.  
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Figure 60: Graph showing time spent performing behaviors for a single robot 

 
For both the two robot and three robot experiments, the time spent in behaviors 

was much more divided as shown in Figure 61. One robot was shown to be doing a vast 
majority of the ferrying. This is most likely explained by the structure the robots were 
building, as the plane has only three divisions which require ferrying. The other robot(s) 
were shown to be carrying out more of the building. Notice that the waiting time and 
time spent receiving updates of all robots is significantly increased compared to the 
single robot experiment. This makes sense as by increasing the number of robots, the 
communication between the robots and the structure vastly increases, as it requires 
increased coordination. 

 

  
Figure 61: Graph showing time spent performing behaviors for two robots and 

three robots 
 

For the four robot experiments, the results were very similar to both the two robot 
and three robot experiments– the waiting time of the robots increased significantly as 
shown in Figure 62. What differed is that the building time was more evenly distributed 
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across the robots compared to the other experiments. The ferrying behavior also was a 
little more distributed between the robots.  

 
Figure 62: Graph showing time spent performing behaviors for four robots 

 
A comparison of all the experiments can be found in Figure 63. These results 

show that the building algorithm may favor certain robots to do more work than others. 
As such, future improvements could be made to this algorithm by analyzing these 
behavior times to more evenly distribute the distribution of tasks amongst the robots.  

 
Figure 63: Graph comparing the time spent performing behaviors for structures built 

with varying numbers of robots 
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Conclusion 
A robot (swarm) was developed that has a high degree of mobility and 

functionality. The robot was shown achieving the various configurations we desired, as 
well as demonstrated the capabilities of the robot in interacting with the building blocks. 
Smart blocks were developed that allowed a sense of virtual stigmergy wherein 
information could be left in the blocks and communicated to other entities, either other 
blocks or robots. The smart blocks could also detect when a block was removed from a 
connected element of a structure and determine their location within a connected 
element of a structure. Finally, a novel building algorithm was developed that allows 
multiple robots to work collaboratively. A proof was created to prove the correctness of 
the algorithm, and through simulation, the benefits of using the algorithm were shown, 
especially when considering how the algorithm highlights cooperation between robots to 
expedite construction. The results confirm that all the system level requirements were 
met with the exception of the ability to build a 4x4x4 cube. Due to time constraints and 
unforeseen circumstances (COVID-19 pandemic of 2020), the physical robot was not 
able to be thoroughly tested. Therefore, it has not been proven that it meets the 
requirement of constructing a 4x4x4 cube in real life. Despite this, the simulation has 
shown that this type of construction is possible with the system. 

The final products of this project include but are not limited to: the inchworm 
robot, the smart blocks, the building algorithm, the simulator, the dashboard, the 
blueprint creator, and the GUI controller for the robot.  
 
Lessons Learned 

A major lesson learned includes the importance of multiple iterations when 
designing. While this did occasionally slow down production towards the final product, it 
allowed all of the subteams to fail fast and early on. Having intermediate physical robots 
to interact with helped reduce errors, particularly for the electrical and software 
subteams. Having physical robots at early stages in the project allowed for teams to rely 
less on simulation as well as detect problems early on such as wiring concerns and 
sensor problems. Furthermore, this greatly helped when during the Covid-19 pandemic 
of 2020, the team quarantined at home and were not allowed on campus. When 
creating the final robot design, there were fewer errors as most had already been 
discovered and fixed with previous iterations.  
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Future Work 
Mechanical 

One possible area for future work is the development of a selective engagement 
block design. The attachment system presented in this work utilizes a gendered mating 
connection which imposes constraints on the order in which structures must be 
assembled and disassembled. The design of genderless mating connections that 
enable strong interface connections on all six sides of construction blocks would greatly 
improve the flexibility of the construction system and the strength of resulting structures.  

Another area for future work includes repeatability and lifecycle testing of the 
robot design. This might include a series of trials to show that the inchworm will be 
capable of building structures autonomously, with little or no human intervention.  

 
Electrical 

Future work of the smart blocks involves designing custom NFC antennas that 
are compatible with the PN532 NFC controller. Additionally, the antenna multiplexing 
circuit discussed in the methodology would be implemented using these antennas. This 
would enable the smart blocks to be manufactured at a much lower cost. This antenna 
design could also be used to integrate NFC into the end effector of the inchworm robot. 

Future work of the inchworm robot may involve adding sensors to monitor the 
internal components of the robot. For example, the operation time of the robot will be 
affected by its battery capacity, weight, motor efficiency, and the power consumption of 
its electrical components. Adding a sensor that monitors the battery capacity will allow 
the robot to exit the structure before its battery loses charge, preventing the robot from 
getting stuck on the structure. When adding components to the robot links it is important 
to take into consideration the form factor since the available space in each link is 
limited. Space could also be better allocated if a custom PCB is made to condense the 
electromechanical components within the links. 
 
Software 

Future work of the building algorithm involves expanding the algorithm to factor in 
other facets of the system such as the energy expenditure of the robots. In analyzing 
the behaviors of the robots when building, it was clear that some robots work harder 
than others. While infinite power was used for this project, it might be beneficial to factor 
in energy expenditure so that the workload is more evenly distributed amongst all of the 
robots, thus helping to extend the use of their batteries.  

Another area of future work for the building algorithm involves adding a module 
that can calculate support structures for overhangs and disconnected structures. For 
example, a temporary bridge could be created between two disconnected towers so that 
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the robots could traverse from one tower to the next. This temporary bridge could then 
be removed at the end of the algorithm.  
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Appendix A: Design Considerations 
This appendix details the considerations and analysis that went into the designs. 

It includes the evolution of intermediate designs so that readers may understand how 
the final design was achieved. Changes made from different iterations of the robot, 
smart blocks, and building algorithm will all be listed.  
 
Mechanical 
 
Design of First Iteration Robot 

It was important to design and manufacture a first iteration inchworm prototype 
that could be used as a simplified hardware platform to test the mechanical and 
electronic subsystems, and validate the simulation kinematics. It provides a proof of 
concept of a mobile inchworm that is able to traverse over a structure and place blocks. 
The first iteration inchworm will enable quicker development and validation of system 
level aspects necessary to complete the goals of this project while in parallel a fully 
functional inchworm can be properly designed and manufactured.  
 
The primary design requirements for this robot to support the goals discussed above is  
 

1. The robot should have 3 degrees of freedom to support development of inching 
motion in one plane 

2. The robot should be modular so that mechanical and electrical subsystems can 
be easily retrofitted and tested on the hardware 

3. The robot should be able to navigate a three dimensional structure in one plane 
of motion 

4. The robot will have joint motors that will allow it to support itself and hold one 
block  

 
The first iteration design that fulfils these requirements is shown in Figure 64. 
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Figure 64: Computer-Aided Design (CAD) model of first iteration robot prototype 

 Servo motors with a 25kg-cm stall torque rating were chosen to be the joint 
actuator because of the ease of use and form factor. The links of the robot were chosen 
to be plastic 20mm by 20mm profile 80/20 extrusions so that microcontrollers and other 
electronics could be easily attached. The joints were designed to be modular so that the 
robot links could be easily removed. The inchworm was 3D printed out of PLA material 
and the manufactured prototype is shown in Figure 65. 

 

  
Figure 65: First iteration robot  
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Static Joint Torque Analysis  

A torque analysis of the inchworm robot was conducted to estimate the required 
motor torque needed to operate the robot. The robot model was simplified into a simple 
4 link arm carrying a block, as well as servo motors and a battery. The weight of the 
links were estimated by simplifying them to be plastic PLA cylindrical linkages with a 
density of 0.8 g/cm^3 and the lengths determined from the linkage length analysis. The 
mass of link A&D, link B&C, battery and a servo were estimated to be 110g, 70g,100 g 
and 70g respectively. Though the robot can operate in configurations that can minimize 
the applied torque on the robot, the analysis was conducted in the configuration shown 
in Figure 66. The robot is extended fully and the full weight of each component acts 
perpendicular to the lever arm. The torque applied at each joint if the motors were 
stalled can be calculated using equation X and the stall motor torque was found to be 
18.9 kg-cm for the outer motors of the robot.  

 

x x x∑
n

i=0
τ = m1 1 + m2 2 + .... m+  n n  

Figure 66: Free body diagram of worst case motor torque scenario 

Design of Second Iteration Robot 
Through a basic tolerance analysis, it was discovered that the resolution of the 

joint servos in a worst case scenario was insufficient to successfully align the end 
effector with the hole pattern for mating with the structure. In order to improve the 
resolution, the stock servo circuit was removed, and an external magnetic encoder was 
attached. The magnetic encoder has an improved resolution compared to the standard 
servos, and PID control was implemented. As a result of this change, the physical 
implementation of the robot had to be modified for the addition of the encoder. During 
initial testing it was found that accessibility to the servo motors was limited, so the joints 
were divided into multiple parts to support DFMA (Design for Manufacture and 
Assembly). The need to achieve greater accuracy, as well as the inaccessibility of 
critical components prompted the creation of a second robot iteration. 
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Figure 67: Second iteration robot traversing through playground 

Block Storage Mechanism 
Looking towards the future, a swarm of inchworm robots could have the potential 

to build structures much larger than itself. Based on the building algorithm or block 
starting location, it may be necessary for robots to traverse large sections of the 
structure before placing a block. With this consideration in mind, a block storage 
mechanism was designed and fabricated to enable the robot to maintain control of a 
block while traversing the structure. The three functional requirements for this system 
are listed below: 

(1) Maintain control of block while traversing a convex corner 
(2) Allow the robot to insert blocks into holes in the structure 
(3) Allow the robot to place blocks diagonally  

 
In addition to these functional requirements, the optimization criteria used to 

select the final design was to use the fewest number of motors, and the primary 
constraint was that the robot’s operation should be independent of the block storage 
system (ie. the block storage system can be removed without reducing the ability of the 
robot to traverse the structure or move blocks). The resulting design is a four bar 
linkage that attaches to the B and C links. This four bar linkage has a compliant, passive 
end effector attached to the coupler which is capable of maintaining control of the block 
regardless of robot orientation.  
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Figure 68: Block Placement Mechanism Prototype and CAD Model 

In its default state, the four bar linkage keeps the stored block flat against the B 
and C links to minimize the overall volume occupied by the robot. Upon actuation, the 
four bar linkage moves the block to a position within the range of motion of the A and D 
links of the robot. This allows the robot’s standard end effectors to control and place 
blocks that are stored using the four bar linkage, without requiring the end effectors to 
have any additional functionality. An image of the CAD model and block placement 
mechanism is shown below.  

The compliant aspect of the passive gripper was designed to handle the weight 
of the block, regardless of orientation in space. Each of the four dowel pins is divided 
into four arcs. These arcs are tapered outwards in order to contact the block at the 
bottom edge of each hole. The dowel pins are printed oversized, such that each arc 
must deflect inwards to allow the dowel pin to enter the hole. The reaction force from 
each arc of the dowel pins results in a normal force, and therefore a friction force, 
between the inside surface of the block and the dowel pins. This friction force enables 
the robot to maintain control of the block when in the storage position. A picture of the 
compliant gripping element is shown below in Figure 69.  
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Figure 69: CAD Model of 3D Printed Compliant Dowel Pins 

Gravity Compensation 
To enable smooth joint control of the robot, it was necessary to compensate for 

the torques applied to the joints due to the weight of the robot. The torques on each joint 
could be estimated by using the gravity matrix equations from the inchworm dynamical 
model and inputting the current angle configuration of the robot. The equations are 
presented in Figure 70. The PID + Gravity compensation controller is one possible 
solution that has been used to control the inchworm robot. This controller was 
implemented on the embedded controller, and is further discussed in the Electrical 
Design section. 

 
  

Figure 70: Equations to calculate torque induced by gravity on joints 1,2 and 3 
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Electrical 
Additional Smart Structure Analysis and Design 

Analysis of Communication Interfaces for Smart Blocks 
To fulfill the requirement for block-to-block communication and block-to-robot 

communication, a communication protocol must be established (note that block in this 
context is used interchangeably with smart block). This protocol includes both the 
electrical standard used for communication as well as the structure of the data 
transmitted during the communication. This section will discuss the various electrical 
interfaces considered for the smart block communication protocols. 

The first consideration made was a similar implementation of the AprilTag 
system, used by the SRoCS platform, that would allow the current system to determine 
the direction the block is placed on the structure. Additionally, wireless communication 
like NFC would allow for the flexible positioning of the blocks and still enable the 
communication block-to-block and block-to-end effector. The block-to-block 
communication allows the structure to communicate its current configuration to the 
system. It also enables the individual blocks to communicate their relative position in the 
structure to the inchworm robot.  

The first synchronous communication interface considered, used flip-flops for 
counting each block placed on the structure on all three axes. As seen in Figure 71, the 
advantages of this design were the simplicity and minimal space used inside the blocks. 
Despite this design being simple, it did not enable the blocks to report their relative 
position within the structure. Researching the cost of the individual components 
revealed that the cost of this circuit would exceed the price of a simple Alf and Vegard's 
RISC (AVR) processor. Due to this circuit’s price and limited capabilities, it was not 
chosen for the final smart block implementation. 

 
Figure 71: Flip-Flop Communication Interface Diagram 

 
Serial Peripheral Interface (SPI) was the second synchronous communication 

interface considered as it provides high signal integrity, simplicity, and high-speed data 

93 



 

transfer, allowing for real-time communication. The physical limitation of SPI is that it 
requires more pins on the Integrated Circuit (IC) than other communication interfaces. 
Furthermore, SPI does not support dynamically adding slave nodes; therefore, 
removing blocks and adding them would interrupt hierarchy.13  

Inter-Integrated Circuit (I2C) was the third synchronous communication interface 
considered as it only uses two bidirectional lines, Serial Data Line (SDA) and a Serial 
Clock Line (SCL). For I2C to work each block would have to be dynamically allocated 
an address at the moment of placement which would allow it to communicate through 
the SDA line when selected. As with SPI, I2C also runs into the problem of adding and 
removing blocks as it interrupts hierarchy. Additionally, I2C may produce addressing 
errors at the instance of the removing of blocks.13  

Universal Asynchronous Receiver-Transmitter (UART) was the fourth 
communication interface considered as it allows for robust data transfer. Unlike the 
previous communication interfaces, UART does not require a master-slave setup. This 
means that data transfer uses a complex method (simplex, full or half duplex) for 
handling serial communication with data framing. UART would enable for the dynamic 
addition and removal of blocks as it does not need a shared clock as the previously 
mentioned communication methods. The limitations with UART is that it is a 
peer-to-peer (P2P) system which does not support multiple blocks. The transceiver and 
receiver physical connection crossover is also only possible in 2D since when 
introduced to three-dimensional it did not accomplish the genderless connection 
desired. 

One interface that was strongly considered for use in the smart blocks is NFC. 
NFC is a low power, wireless communication protocol commonly used in smart phones 
and wireless key-cards. NFC eliminates many of the downfalls of the previously 
mentioned electrical protocols. Most prevalently, NFC eliminates the need for 
symmetrical data connections on the faces of the smart blocks and it does not require 
the smart blocks to share a clock signal. NFC controllers also offer various modes of 
communication including peer-to-peer, card emulation, and card reader modes. 14-16 In a 
paper published by Texas Instruments, it was shown that multiple antennas can be 
connected to one NFC controller through an radio frequency (rf) multiplexer. 
Multiplexing multiple antennas allows the NFC controller to poll the antenna. 

Another electrical interface evaluated for use in the smart blocks is the Controller 
Area Network (CAN) bus. CAN is similar to I2C in the fact that many devices can be 
connected to the same bus and communicate using unique addresses. The main 
appeal of CAN bus for this system is its use of differential pairs for communication. 
According to some sources, it may be possible to convert CAN to a one wire interface 
using diodes and termination resistors. This configuration sacrifices the range and 
stability of the CAN protocol. Using a one wire interface would eliminate the need for 
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any data line crossover. A one wire CAN interface would be implemented by using one 
can controller IC per block face.17,18  

First Iteration Smart Block and Home Block Electrical Design  
For the first iteration of the smart block design, two types of smart blocks are 

required to build a structure. The first type of block is the regular smart blocks, which 
are the main structural elements used while building. These blocks have two major 
electrical requirements; they must determine and store their position within the structure 
and they must transmit their position within the structure to the home block when they 
are inserted into the structure. The second type of block is the home block. The smart 
block is in charge of powering all the other smart blocks, storing the positions of all the 
smart blocks within the structure, and transmitting the structure’s configuration to the 
robots. In order to communicate the structure’s status with the home block, the smart 
blocks within the structure must relay messages from newly attached blocks to the 
home block. Each smart block will contain an Atmel AVR processor responsible for 
determining and storing the position of the block within the structure. Five electrical 
connections electrical connections link each block to the next; one for power, one for 
ground, and three for communicating between blocks. Two of the communication pins 
are for UART connection between blocks and the other communication pin is for 
determining the direction of a newly placed block. 

The concept of genderless electrical connections and communication between 
the smart blocks is reliant, in part, on the smart blocks possessing the mechanical 
abiliity to connect in any direction. For the first mechanical iteration of the smart block 
design, the smart block has one male block face and five female block faces. To match 
the physical capabilities of the first block iteration, the electrical communication system 
on the smart block will also contain one male face and five female faces. In order to 
mechanically attach the first-iteration block to another block, the male side of the block 
must be inserted to another block. As a result, the male side of the smart block will 
always be connected to another smart block. Because the male face of each block in 
the structure will always be attached to another block, the male face of each block 
initiates any communication with another block. When a block is inserted into the 
structure, the male face communicates with the female face of the block it is attached 
to. Using UART and the addition I/O pin the female block face communicates the 
newly-placed block position to the block. Then, the position of the newly-placed block is 
transmitted block to block using the male face as the communication initiator. Following 
the male faces, the data containing the position of the newly-placed block eventually 
reaches the home block. The home block can then store the position of the 
newly-placed block and update the model of the structure. 
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Figure 72: “Basic” block design with UART pins 

 
 
Additional Inchworm Robot Electromechanical Components and Design 

Inchworm Custom PCB Version 1 
Inchworm Board V1 board, is a 80mm x 37.250 mm x 10mm custom PCB board 

for the first version of the inchworm robot. This custom PCB allows to cut down the wire 
usage from the prototype inchworm and smaller design. 

 

 
Figure 73: Kicad custom PCB via view with board  dimensions 

 
The first version of the IW board uses the AVR ATmega 328 with a 16MHz 

crystal to run the various electrical components. The AVR processor has a total of 6 
PWM outputs which allows 3 to be used for the joint motors and 2 for the gripper 
motors. This AVR processor also includes an I2C bus which connects to the 3 joint 
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encoders of the robot. Power on the board is divided in two: the right portion of the 
board is powered through the USB 5V connection which powers the AVR processor and 
all components that use a 5V input, the left side of the board supplies power to the 3 
joint BECs through a barrel jack connector. The barrel jack connector can handle a 12 V 
wall adapter power supply with an amperage of around 10 A. The board has female 
header pins for access to the analog input pins on the AVR processor.  

To keep the size of the board within the maximum size constraints the board 
allows for the 3 pololu motor controllers to be plugged on the bottom layer of the board 
as if they were "sandwiched." This allows for more wires to be eliminated as it acts as a 
shield of the motor controllers to be directly plugged into the board. 

For debugging purposes the board counts with a set of green LEDs. The "Power 
LED" turns on when the board is powered and the "Test LED" is used to light up when 
pin 12 is set with the blynk arduino sketch. The reset button allows the board AVR and 
USB to UART Bridge to be reset. For this iteration it is important to mention that only 
one USB to UART SDM bridge was ordered, the team was unable to get it working as in 
the processes of soldering this small component there might have been a problem. But 
this problem was fixed by using an external USB to UART Breakout Board (FTDI Basic 
Breakout Board). For the second version of the IW board this will be taken into account 
and the second iteration will include extra connection pins for external Serial Bridges. 

 

 
Figure 74: Kicad PCB 3D viewer 

 
Figure 75: Inchworm Custom PCB Version 1 
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IR End Effector Alignment Electrical Design Concept 
Alignment between the end effector and smart block is crucial as previously 

mentioned in the mechanical sections: “End effector design” and “Basic Block Design.” 
The mechanical solution mentioned in the previous mechanical section allows for 
mating despite lateral misalignments. On the electrical side another explored solution 
for this alignment was using infrared (IR) LEDs on the smart blocks and robot end 
effectors. It is important to note that the implementation of IR LEDs for alignment will 
only be used if it is not accurate enough in the next iterations.  

The concept of using infrared LEDs as a method of alignment relies on the 
property that LEDs can use current to produce light and can also act as a photodiode 
and use light energy to create an electrical current. To utilize this property in an 
alignment system, each set of four alignment LED needs a corresponding emitter LED. 
The basic concept of this alignment circuit is that each block face will have a series of 
LEDs emitting light. The robot’s end effector will have a series of matching sets of LEDs 
acting as photodiodes. When the emitter LED is centered within the four receiving 
LEDs, the end effector’s LEDs will reach their maximum voltage output. As the 
alignment LEDs move out of alignment the output voltage decreases. The comparing 
the voltages of the four receiving LEDs in each set will determine which direction the 
end effector needs to be moved in order to be aligned with the alignment LED. To 
minimize interference from other infrared light sources, the emitter LEDs will emit a 
square wave at a frequency of 200kHz. Additionally, the receiver LEDs will use a series 
of band pass and low pass filters to turn the 200kHz square wave into a smooth DC 
voltage. The receiving LED circuit can be seen in Figure 76. 
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Figure 76: Infrared alignment receiver LED circuit. 
 

A test rig was made to test this system as seen in Figure 77 below. Four IR LEDs 
would be placed on the smart block and eight IR LEDs would be placed on the end 
effector as seen in Figure 77. This, in theory, would allow for a precise alignment of the 
end effector with the smart block. To determine if the end effector was aligned with the 
smart block the eight IR LEDs on the end effector would have to read around the same 
voltage value. If one of them or multiple read different voltage values they would signal 
the end effector to re-adjust accordingly. Furthermore, using IR LEDs on the smart 
blocks would also allow the blocks to communicate between each other. A protocol 
would have to be established and tested to determine if this feature could be added to 
the smart blocks, robot, and the system.  

 
Figure 77: Right) Angled view of the IR alignment testing rig.  Left) Front view of 

the IR rig with the end effector aligned with Smart Block (end effector perspective). 

Additional Low-Level PID Controller with Gravity Compensation 
The PID controller with gravity compensation shown below was implemented in 

the first iteration of the inchworm robot. It proved to not be needed as a simple PID loop 
allowed for proper control of the robot without the need of the extra processing needed 
for the gravity compensation. Additionally, disabling the gravity compensation allowed 
for the controller to run faster. 
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Figure 78: PID with Gravity Compensation controller diagram 

 
 
Software 
Additional Control Algorithms Developed 

To simplify the control of the robot, the inchworm design can be considered a 
standard three degree of freedom robot arm. While the robot is a dual end effector 
design, only one end effector will need to move at a time. As such, the end effector that 
is not moving can be considered a fixed base. This allowed the use of a numerical 
inverse kinematics algorithm for moving the inchworm to certain positions in 
three-dimensional space: 

  
While this algorithm allowed for the robot to move to any configuration within its 

workspace, constraints needed to be imposed so that the robot’s gripper can insert 
correctly into the building materials. When inserting, the end effector must insert 
completely perpendicular to the surface of the building material, otherwise it will not 
attach correctly. The same is true for placing and removing blocks; the final motion of 
the robot must be perpendicular and a linear movement so as not to hit other blocks.  

For the first iteration of the robot design, a lookup table was created to impose 
these constraints. For different orientations of the robot end effector, the angle of the 
end effector can be determined by consulting the lookup table. The values of the lookup 
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table were derived based on placing the robot in different configurations and manually 
determining the optimal angle. 

The second iteration of the motion planning algorithm involved using the natural 
geometry of the robot to derive the final angle. When both end effectors are coplanar, 
as shown below, the robot creates a pentagon. Both end effectors create a 90º angle 
with the surface below. As the angles of a trapezoid sum to 540º and theta one and two 
are solved for using numerical inverse kinematics, the final angle theta three can be 
found by subtracting these angles from 540º. For changing this motion to accommodate 
other planes, the same motion can be found by solving for the angles within the 
pentagon and then offsetting the last angle theta three by +90º, -90º, or +180º. This 
method allows for immediate and precise calculation of the last angle while at the same 
time accommodating the perpendicular constraint needed by this type of robot.  

 
Figure 79: Method used to solve for the final angle of the robot 

 
In order to support inching movements in different planes and improve the 

perforcement of the inverse kinematics calculation, a third iteration of the motion 
planning was implemented, as described in the Control Algorithms section.  
 
Additional Techniques of Robot Navigation 

The first iteration navigation algorithm was an implementation of the A* algorithm 
that was scaled to three dimensions. Each block is considered as a node in a graph, 
which can then be traversed as in a typical A* algorithm. With this, the robot can 
determine which blocks it needs to traverse in order to reach its desired location. The 
data for the position of each block comes from the blocks themselves. The blocks 
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communicate their locations in three-dimensional space to the robot, which is then able 
to use this information to create the necessary graph needed for path planning. 
 
 
Other Techniques of Blueprint Creation 

In order to generate a blueprint, or template for building the structure, a blueprint 
is first created by a human operator. Software was developed that allows an STL file to 
be uploaded containing the desired structure. The software then slices the STL file into 
rectangles according to the width and height of the building blocks. Effectively, this 
allows any building configuration to be built with the slicer tool and smart blocks by 
discretizing the structure. This discretization means the robot can consider each block 
as a point in three-dimensional space. The slicer tool writes the id, position, and 
orientation of all blocks to a file that is then uploaded to the home block of the structure 
as the structure blueprint. The slicer also creates a level by level view of the structure 
for manual inspection by a human.  

 
Figure 80: Structure discretizer, shown here discretizing a cube into smart blocks  

 
Additional Decentralized Division Claiming 

For the final iteration, in order to have the robots determine which divisions they 
should claim, it is expected the bully algorithm will be used. This algorithm is a leader 
election algorithm in which a robot with the highest “robot id” in a group of robots is 
elected as a “leader.” The leader will claim a section and set that information to the 
other “followers,” who will acknowledge that the leader has claimed that section as well 
as that they are no longer allowed to claim that section. This process will repeat where 
the next highest id will then be elected leader and claim a section, until a consensus 
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within the network has been reached. The id the robots will send to compare with will be 
their distance from the centroid of each division. Each robot will calculate its distance to 
all the centroids and select the minimum distance. Of all the minimum distances, the 
robot with the largest (worst) distance will be able to pick first, in order to minimize the 
displacement of all robots.  

 
Figure 81: Demonstration of bully algorithm. When Node 3 is added and is the highest 
node, the other nodes elect the highest node id, Node 3, as the new leader. 
 
Appendix B: TB9051FTG Truth Tables 

 
Table 5: TB9051FTG Control Pins Configuration 1 

 

103 



 

 
Table 6: TB9051FTG Control Pins Configuration 2  
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