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Abstract 

The goal of this project was to determine how precisely temperature can be measured 

using rare-earth ion spectra, and to determine the Stark levels of the rare earth ion 

multiplets.  The absorption spectra of Er-doped silicate glass were studied, and a method 

was developed to determine temperature change.  Emission spectra were used and  was 

calculated from the absorption spectrum by the McCumber method.  An uncertainty in 

temperature of approximately ±10K was obtained, and a simplified Stark level model was 

constructed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 1



 

Table of Contents 

 

Introduction pg. 3   

Background pg. 3 

• Rare-Earth Elements pg. 3 

• Literary Review pg. 9 

Experimental Setup and Procedure pg. 14 

• Experimental Setup pg. 14 

• Preliminary Experiment pg. 16 

Experimental Results pg. 22 

• Results pg. 22 

Analysis and Conclusions pg. 32 

• Emission and Absorption Cross-Sections pg. 32 

• Precision in Temperature pg. 43 

• Stark Level Model pg. 48 

 

 

 

 

 

 

 

 2



 

Introduction 

 The following paper goes into detail in using the absorption and emission spectra 

of rare-earth elements to determine temperature.  In such experiments, thermometers or 

thermocouples could be used to record temperature.  However, in some applications, 

these methods could be detrimental to the experiment.  Thermometers and thermocouples 

are invasive methods and may affect the results.  Also, non-contact ways exist to measure 

temperature change involving blackbody radiation.  This is because blackbody radiation 

depends on temperature as stated by Wein’s displacement law.1 

6
max 10*898.2=λT nm K            (1) 

However the blackbody spectrum is very broad and not applicable in certain situations to 

measure temperature. Because of this, the absorption and emission spectra of rare-earth 

elements will be studied to determine a temperature change.  The goal of our experiment 

was to find the uncertainty of temperature change and determine the existing Stark levels 

of the rare-earth spectra. 

 

Background 

 

Rare-Earth Elements  

Before starting the experiment, a basic understanding of important concepts on the 

subject was crucial.  The rare-earths are broken into two groups; the first group is the 

lanthanides, and the second group is the actinides.  The lanthanides fill the 4f shell and 

range from atomic numbers 58 to 71, while the actinides fill the 5f shell and range from 
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atomic numbers 90-103. It is also important in understanding the quantum numbers 

associated with rare-earth elements.  The quantum numbers are L, S, and J, where L is the 

total orbital angular momentum, S is the total spin, and J is the total angular momentum.  

The notation for quantum numbers is 2S+1LJ.  The total orbital angular momentum is 

specified by letters S, P, D, F, G, H, I, K which are represented by L= 0,1,2,3,4,5,6,7 

respectively.2 

 The lanthanides and actinides experience special properties that are fundamental 

to understand before conducting the experiment.  One is the phenomenon of electron 

shielding.  Electron shielding occurs when the 5s and the 5p orbital are filled with 

electrons; however the 4f shell has not been completely filled.  The 5s and 5p orbitals act 

as a shield, causing the 4f shell electrons to interact very weakly with surrounding ions.3 

 Another important property these elements experience is known as Stark splitting.  

This can be viewed in Figure 1.  

 

Figure 1:  The different splitting interactions found for atoms 
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The splitting occurs when the presence of an electric field causes the splitting of spectral 

lines of atoms and molecules.  This is known as the Stark effect.   This then causes the 

energy manifolds to be separated into sub-energy levels.  Therefore, instead of emission 

and absorption only occurring between the energy manifolds, the individual Stark levels 

will experience these transitions.2 

 Another important factor to understand is the different types of transitions that 

may occur.  This comes in the form of radiative and nonradiative transitions.  There are 

three types of radiative transitions, spontaneous emission, absorption, and stimulated 

emission.  Spontaneous emission can be seen in Figure 2.   

 

Figure 2:  Spontaneous emission of an atom 

 

Figure 2 shows an atom in the excited states moving to the ground state.  The figure also 

shows that once the process is completed a photon is emitted after the emission.  If this 

were the only type of radiative transition, all excited state levels would always decay to 

the ground state.  However thermal equilibrium proves that this is not the case, shown by 

the Boltzmann factor.  The Boltzmann factor equation is4 
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Where N2 is the number of atoms in level 2, N1 is the number of atoms in level 1, E21 is 

the energy difference between the two levels, k is the Boltzmann constant and T is the 

absolute temperature.  Equation 2 proves atoms will exist in an excited state as long as 

the temperature is greater than absolute zero.  

 When atoms are in the excited state, there needs to be a radiative transition known 

as absorption.  Absorption is seen in Figure 3 and shows an incoming photon being 

absorbed therefore moving the atom from level 1 to an excited state (level 2 in this case).5 

 

Figure 3:  Absorption of an atom 

 

The final type of radiative transition is stimulated emission.  Figure 4 shows an example, 

where an atom in the excited state and incoming photon (photon 1) interact.   
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Figure 4:  Stimulated Emission of an atom 

 

As photon 1 passes through, the atom in the excited state decays to the ground state, 

releasing another photon (photon 2) with the same energy of the energy gap between the 

two states and photon 1.5 

 In our experiment, radiative transitions are needed to provide reliable data.  

However, nonradiative transitions have a negative impact on the results.  Nonradiative 

transitions are observed when conducting an experiment with a rare-earth element doped 

in a type of solid.  When a rare-earth is doped in a solid, vibrations occur between the 

rare-earth and its host material.  These solid vibrations correspond to the emission of 

phonons.  A unique property that phonons acquire is in many cases one single phonon 

does not have enough energy to bridge the energy gap.  However, phonons have the 

property where energy of multiple phonons is able to bridge the energy gap if the energy 

of one phonon is not enough.  To avoid phonon interactions from predominately 

occurring, the energy between the levels needs to be greater than the energy of the 

phonons.  More phonons are then required to bridge the energy gap.  When radiative and 
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nonradiative transitions are comparable, the efficiency of the absorption/emission process 

is degraded.6 

 In addition, there are a number of equations important to understand the rare-earth 

spectra.  Equations 3 and 4 will be used to manipulate the raw data that is obtained into 

usable data for the analysis.  The first equation needed is Beer’s Law.3 

le
I
I α−=

0

1
          (3) 

where I1 is the intensity of light with a sample in the path of the beam, I0 is the intensity 

of light with sample removed from the path of the beam, α is the absorption coefficient, 

and l is the length needed for the beam to travel through the sample.  In our experiment, 

the sample used is erbium doped in a glass (Er:L22).  A halogen tungsten lamp produces 

the light source.   Equation 3 provides a solution for α since the other variables can be 

obtained from the experiment. 

 After calculating the absorption coefficient, it is possible to determine the 

absorption cross section from the following equation3 

Na
ασ =             (4) 

Where σa is the absorption cross section, α is the absorption coefficient, and N is the 

number of ions in the sample per unit volume.  The absorption cross section allowed us to 

compare other absorption cross sections of various temperatures, resulting in observing 

how the spectra of rare-earth elements changed with temperature. 

 A final important relationship involved the absorption cross section and its 

relationship to the emission cross section.  The emission cross section is able to be 

determined experimentally; however there is also a method to determine it theoretically if 
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the absorption cross section is known.  This allows time to be saved and is a fairly 

accurate representation of the emission spectrum.  The equation used is the McCumber 

relation and is7 

λλλσλσ
hchc

ae e
−

= 0)()(              (5) 

Where σe(λ) is the emission cross section, σa(λ) is the absorption cross section, h is 

Planck’s constant, c is the speed of light, λ0 is a constant wavelength chosen, and λ is the 

different wavelengths over the entire spectrum.  Equation 5 shows that the absorption 

spectrum for wavelengths longer than λ0 is amplified, while the absorption for shorter 

wavelengths λ0 is diminished.  This produces an accurate representation of the emission 

cross section when compared experimentally and has been proven in past research.7 

 

 

Literary Review  

After preliminary background research, various scientific journals were searched 

to gain an understanding on work that was accomplished on the topic.  Various articles 

already were published on the relationship between rare-earth emission and absorption 

spectra and the relationship to temperature.  One of the useful papers was by Nikonorov.8  

The experiment conducted relied on the fluorescence and absorption spectra of Er-doped 

in phosphate and silicate glasses.  These samples are similar to the one tested in our 

experiment.  The temperature range being investigated was between 20-300°C.  The 

motivation in conducting this experiment was to observe how the absorption and 

emission spectra change with temperature and to suggest a plausible explanation for this 

occurrence.  The conclusion was the absorption and emission spectra did vary with 
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temperature.  This observation was explained by the Stark sub-levels, as shown in Figure 

5.  For the erbium doped in a phosphate glass, the paper observed two transitions at 1534 

and 1542nm.  An older simplified model for these transitions (Figure 5a) proved to be 

inaccurate, and so an updated model was developed.  The new model (Figure 5b) 

replaced the upper manifold with two Stark levels, and the lower manifold with two Stark 

levels.  From the model the Stark levels were able to be determined and were 50cm-1 and 

100cm-1 for the 4I13/2 and the 4I15/2.8 

 

Figure 5:  Stark level model of Er-doped phosphate glass (a)model of Kuchma (b) new 
model (Taken From Nikonorov)8 

 
 

The next paper examined was by Zemon.9  The paper focused on relevant 

information of the energies in the Stark levels.  A problem that was presented in Zemon’s 

paper was homogeneous and inhomogeneous broadening in emission and absorption 
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spectra.9  In order to account for homogeneous broadening, very low temperatures were 

used to eliminate the vibrations of the solids.  For the inhomogeneous broadening, 

fluorescence line narrowing was used.  After using these methods and looking at a 

number of samples the Stark levels were determined for 4I15/2 and 4I13/2.9  Figure 6 shows 

an example of their model. 

 

Figure 6:  Energy level diagram at 4.2 K for luminescence transitions between of 4I13/2 
and of 4I15/2 due to laser pumping. (Taken from Zemon)9 

 

From Figure 6 the letter represent transition peaks where A is the shortest 

wavelength and H is the longest wavelength.  Another interesting figure presented in 

Zemon’s paper was the analysis of Stark energy levels of 4I15/2 and their energy in cm-1.  

The photon energy can be expressed as a reciprocal wavelength according to1 

λλ
λ 1)( ∝=

hcE          (6) 

Where E is the photon energy at a particular wavelength, h is Planck’s constant, c is the 

speed of light, and λ is the wavelength.  The conversion factor between cm-1 and electron 

volts is 1cm-1 is 1.23*10-4 eV.  A chart of the transition energies can be viewed in Figure 

7. 
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Figure 7:  Comparison of Stark energy levels of 4I15/2 for a number of different samples.  
L22 was the sample used in our experiment. (Taken from Zemon)9 

 

The information from Figure 7 could prove useful when constructing the Stark level 

model. 

 Another paper examined was by Koroshez.10  This paper examined how the 

emission cross-section changed with temperature.  The method of obtaining the emission 

cross-section was similar to the approach we will use.  First Koroshetz took the 

absorption spectrum for Yb,Er: phosphate glass, then used the McCumber relation (Eq. 5) 

to produce an emission cross section.  The graph that was produced from his experiment 

can be seen in figure 8.10 
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Figure 8 :  Emission Cross-Section varying with temperature (Taken Directly from 
Koroshetz)10 

 

 

Figure 8 shows there is a noticeable change as the temperature changes over the 

temperature interval.  One of the important features of the graph is that at 1534nm and 

1541nm, when the temperature increases the emission cross-section decreases.  However, 

around 1560nm as the temperature increases the emission cross-section also increases.  

We expect to see a change similar to Koroshetz.10 
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Experimental Setup and Procedure 

 

Experimental Setup 

For the experimental part of the experiment, it was necessary to have equipment suitable 

to scan through a range of wavelengths 1200-1800 nm.  The light source for the 

experiments was a halogen tungsten lamp.  The lamp was set to a constant current value 

of 3 ampere which corresponded to a voltage of 5.45-5.46 Volts.  In order to collect the 

light from the halogen tungsten lamp, a set of lens were used.  To determine the 

positioning of the lens it was necessary to use equation 7 to find their focal lengths3 

ssf ′
+=

111           (7) 

where f is the focal length, s is the distance from the light source to lens, and s' is the 

distance from the lens to the image.  The focal length for the lenses used was 

approximately 5cm.  By knowing the focal length, the lens was positioned beyond 5cm to 

allow the light to form a small point that would allow the beam to entirely travel through 

the sample.  Next, a chopping wheel was required to send a reference signal to the lock-in 

amplifier.  The chopping wheel was set at a frequency of 80Hz in order for there to be no 

fluctuation in the data at a single wavelength.  Another lens was then needed to collect 

the light and have the beam pass through a 950nm long pass filter.  A long-pass filter acts 

as a cutoff that transmits longer wavelengths and blocks shorter wavelengths.  The reason 

the beam is needed to pass through a filter is to eliminate any second order spectra.  

Second order spectra occur at wavelengths approximately half the wavelength being 

testing in the scanning spectrometer.  For example, when measuring a signal at 1600nm, 

signal of a second order spectrum may occur because of the 800nm photons. 
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In our experiment a filter of cutoff wavelength 950nm was used.   Since the 

wavelength interval was from 1200-1800nm, this eliminated any present second order 

spectrum.  After passing through the filter the beam entered a scanning spectrometer to 

record data for various wavelengths.  The speed of the scanning spectrometer was set to 

50nm/min.  At the exit slit of the scanning spectrometer an InGaAs photon detector was 

placed and was connected to the lock-in amplifier also.  The lock-in amplifier settings 

were a time constant of 1 second and a sensitivity of 250mV.  The data was sent to a 

computer, where it was saved and stored.  The data interval was 0.5nm.  If the scanning 

speed was increased or data interval decreased, an anomaly in the data software occurred.   

The actual set up of the experiment can be seen in figure 9. 
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Figure 9:  Experimental setup for absorption measurements 

 

 

Preliminary Experiments 

With the experiment set-up, a few preliminary experiments were done to 

determine values for the entrance slit width and exit slit width, as well was what peak 

width was required to successfully see accurate peak structure.   First the experiment was 

run to see what peak width would be needed in order to see structure.  To accomplish this 

task the same experimental setup was used as in Figure 9, but instead of a halogen 

tungsten lamp, a helium neon laser was used.  With a helium neon laser an infinitely 
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narrow peak is expected at 632.8nm.  The results of this experiment can be seen in Figure 

10. 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

615 620 625 630 635 640 645 650 655
Wavelength (nm)

S
ig

na
l

 

Figure 10:  Testing scanning spectrometer for necessary scan-speed to observe accurate 
data, dashed line (25nm/min), dotted line (50nm/min), solid line (100nm/min) at slit-

width of 0.6mm 
 

 

From figure 10, the dashed line represented a scanning speed of 25nm/min with 

remaining settings being held constant (time constant (tc)=.3s, sensitivity: 100mV, 

wavelength interval 0.2nm) , the dotted line represented a scanning speed of 50nm/min, 

and solid line represented 100nm/min.  Figure 10 allows one to see that the helium neon 

laser is able to see the peak begin around 632-633nm, however it is not infinitely narrow, 

instead has peak width of approximately 5nm.  Also Figure 10 showed the optimal 
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scanning speed for our experiment.  For scanning speeds of 25nm/min and 50nm/min the 

results of the experiment were similar.  But for the scanning speed of 100nm/min, the 

data began to shift to longer wavelengths.  This observation does agree because of the 

value of our time constant, 0.3 seconds.  The theoretical wavelength shift with a scanning 

speed of 100nm/min and a time constant of 0.3 seconds is 0.5nm.  The experimental 

wavelength shift was 0.57nm (Figure 10).  The shift in the data is attributed to fast 

scanning speeds and slower time constants causing a shift in the data to longer 

wavelengths.  We concluded that a scanning speed of 50nm/min would be acceptable 

because it provided the fastest scanning speed with the data not beginning to shift 

towards longer wavelengths.  The following preliminary experiment shows that we want 

at least a width of 5nm for the peaks found and a scanning speed of 50nm/min, otherwise 

the data may be affected by the resolution and scanning speed of the scanning 

spectrometer. 

 Next an appropriate sample had to be chosen that would provide adequate peak 

structure (multiple well defined peaks).  The rare-earth chosen to use was Erbium.  The 

reason for choosing the sample of erbium is because the amount of research conducted 

with the sample in the past, as well as textbooks which provided example absorption and 

emission spectra of this rare-earth.  The first erbium tested was Er:ZBLAN and did 

provide two well defined peaks between the wavelengths  of 1450-1600nm for the 

absorption spectrum; however sources did not show an as strong peak structure for the 

emission spectrum.  Another sample was then tested, Er:L22 in a silicate glass.  An 

absorption spectrum can be seen in figure 11, and there are four well defined peaks for 

the absorption spectrum.  It was decided to use Er:L22 for the sample to be tested. 
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 The next preliminary experiment was to test various slit-widths and how they 

would affect the resolution of the scanning spectrometer.  Slit-widths of 0.2, 0.3, 0.4, 0.5, 

0.6, and 0.7mm were used in an experimental setup as seen previously in figure 9.  Scans 

using the setup with a sample in and out of the beam were conducted and the absorption 

cross section was calculated.  An example of an absorption cross section can be found in 

figure 11. 

 

Figure 11: Labeled peaks A, B, C, and D for reference in the paper: Er:silicate sample 

 

In figure 11, there are four distinct peaks that can be seen labeled respectively A, 

B, C, D.  Their wavelengths and energies are in Table 1. 
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Peak wavelength (nm) energy (cm-1)

A 1494 6693

B 1539 6498

C 1545 6472

D 1566 6386
 

Table 1: Peak heights with their wavelength and energy (Absorption) 

 

The ratio of peak heights B and C were compared for the slit widths listed above.  

The reason the ratio of peaks was compared because as the slit width increases, the two 

peaks would broaden and blend together, the ratio approaching unity.  For the best signal-

to-noise ratio the greatest slit width should be used to allow the most amount of signal 

into the scanning spectrometer while keeping a defined peak structure.  After the data 

was recorded it was able to be plotted and can be seen in figure 12. 
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Figure 12:  Determining necessary slit-width for experiment with ratio of peak heights 
B/C 

 
 

Figure 12 shows the ratio is approximately constant between the slit widths 0.3-0.6mm, 

however at 0.7mm it is observed that the structure of the two peaks becomes less defined.  

Therefore a slit width of 0.6mm was used for the entrance and exit slit widths since it 

would allow the most light into the scanning spectrometer and keep a defined shape of 

the peaks. 

 With the preliminary experiments finished, the final experiment setup was now 

finalized and remained throughout the experiment.  The setup can be seen in Figure 9.  

First, a halogen tungsten lamp, driven with a current of 3 ampere, provided light that was 

collected by a lens with focal length 5cm.  The beam then passed through an oven where 

Er:L22 would be located.  Within the oven, a thermocouple (made of copper-constantan) 
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was placed in the air to measure the increase of oven temperature.  Data from the 

thermocouple could be recorded from a voltmeter once the reading became constant.  

Next another lens, with focal length 5cm, collected the light and then passed the beam 

through a chopping wheel set at a frequency of 80 Hertz.  Then the beam of light passed 

through a 950nm long-pass filter and entered a scanning spectrometer through the 0.6mm 

slit.  Data is then recorded from a wavelength range of 1200-1800nm with a scanning 

speed of 50nm/min.  The light exits the scanning spectrometer through a 0.6mm slit and 

the amplified InGaAs photon detector connected to the lock-in amplifier records the data 

at a time constant of 1 second and a sensitivity of 250mV.  This procedure for the 

experiment was repeated twice, once without the sample and once with the sample in the 

path of the beam. 

 

 

Experimental Results 

 

Results 

 With a finalized procedure, it was now possible to begin to obtain raw data with 

the sample in and out the path of the beam.  However, certain steps were needed to obtain 

useable data in order to make an analysis of the readings.  Here are the steps that need to 

be taken before comparing the ratio of peak heights and how they vary over temperature.  

For the following absorption spectrum, the temperature remained constant at 300K.  

Figure 13 and figure 14 are two examples of the raw data for the sample out and sample 

in the beam respectively. 
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Figure 13:  Raw data with no sample, Er:silicate glass, in the path of the beam at room 
temperature 
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Figure 14:  Raw data with the sample, Er:silicate glass, in the path of the beam at room 
temperature 

 

As can be seen in figures 13 and 14, around 1350nm to 1400nm there is a fluctuation in 

data. This can be attributed to the light being absorbed by water vapor at these 

wavelengths.  However in the next step you will see that this fluctuation in signal will be 

cancelled out with each other.  To calculate the absorption spectrum, Beer’s Law is used, 

which is found in equation (3).  Using the graphs for the sample in and out the path of the 

beam we take the natural log of the ratio of these values, resulting in 

1

0ln
I
I

∝α           (8) 

Where α is the absorption coefficient, I0 is the intensity of light with the sample out of the 

path of the beam, and I1 is the intensity of light with the sample in the path of the beam.  
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This relationship results in figure 15 which is the log of the ratio over the wavelength 

range. 
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Figure 15:  Natural log of the ratio between sample out of the path of the beam and 
sample in the path of the beam 

 

In figure 15 the data has not yet been normalized.  In order to do so a best fit line needs to 

be plotted for the base-line.  At wavelengths shorter than 1450nm and longer than 

1600nm, the absorption cross-section should equal zero.  To accomplish this, a quadratic 

fit was used for the wavelengths around the two mentioned above.  However it is 

important to not include wavelengths at the beginning and end of the spectrum.  If these 

wavelengths are included, the signal to noise ration will have an effect on the results 

because of the noise present at the longer wavelengths.  Including the shortest and longest 
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wavelengths, the quadratic fit would not normalize the absorption spectrum at the range 

desired.  Figure 16 shows an example of how the best-fit line was obtained from Figure 

12.   
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Figure 16:  Determining best-fit line from neighboring points  
Equation: y = -1E-06x2 + 0.0044x - 3.045 

R2 = 0.9804 
 

Figure 16 shows a quadratic best fit line was used and the equation with the R2 value 

appears in the caption.  The R2 value determines how well the line fits the data-points.  A 

value of 1 is perfect, so R2=0.98 is satisfactory.  From the equation obtained, the data in 

figure 16 is subtracted from the data in figure 15 to normalize the graph.  For the final 

step, the absorption cross section is obtained by the new normalized graph and the ion 

density per unit volume of the Er:LG22 sample.  The values for the Er:L22 sample is a 
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length of 0.7cm and an N=2.46*1020 ion/cm3.  After this step the absorption cross section 

is obtained and can be viewed in figure 17. 
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Figure 17:  Absorption cross-section of Er:L22 at room temperature 

 

The next step was to enhance peak D (see Figure 11).  As mentioned in the background, 

the method to accomplish this was to use the McCumber Relation (Equation 5).  Using 

this relation a relative emission cross section is obtained, thus enhancing peak D.  A 

constant wavelength (λ0) had to be chosen, and in the case of this experiment the 

McCumber relation was normalized using the highest peak of the absorption spectrum 

(peak B).  Therefore any wavelength after peak B of the absorption spectrum in enhanced 
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and any wavelength before peak B is diminished due to the exponential.  The results of 

this process can be seen in figure 18. 
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Figure 18:  Absorption (solid) and normalized Emission (dashed) Cross-Sections plotted 
on same graph 

 

The solid line is the absorption cross section; the dashed line is the normalized emission 

cross section.  With the emission cross section it is observed that peak D appears to have 

more of a well-defined peak; therefore it is more applicable to apply a quadratic fit for the 

emission spectrum than the absorption spectrum. 

 Now with an absorption and emission cross section for room temperature the peak 

values need to be found for A, B, C, and D.  A similar method to the best-fit line in 

Figure 16 was applied.  Individual data points were taken around what appeared to be the 

peak, then a quadratic best-fit line is applied.  The reason for this method is that the 
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signal to noise ratio caused the highest cross section value not always being a peak value.  

An example can be seen in figure 19 for peak A. 
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Figure 19:  Determining peak value with quadratic fit for Peak A 

 

This procedure is repeated for the remaining peaks B and C.  Peak D required a similar 

method but not as many data points existed for the quadratic fit.  An example of peak D 

can be seen in figure 20.   

 29



0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

1564 1566 1568 1570 1572 1574 1576
Wavelength (nm)

A
bs

or
pt

io
n 

C
ro

ss
 S

ec
tio

n 
(1

0-
20

 c
m

2)

 

Figure 20:  Determining peak value with quadratic fit for Peak D 
 
 

Compared to Figure 19, Figure 20 does not show a definite peak height.  However, an 

approximate peak height can be determined from the quadratic fit.  The peak height value 

is where the absorption cross section becomes a constant. 

After obtaining peak values, the next step is determining the uncertainty in the 

values.  In figures 19 and 20, each data point has an uncertainty.  These uncertainties 

were obtained by repeating the measurement and observing how each individual data 

point changed.  An absolute value of uncertainty for the cross sections was ±0.0025.  

After finishing the procedure for measurements at room temperature, the experiment was 

repeated for a number of temperatures by using the hotplate.  The data from the 

experimental absorption and calculated emission cross section are shown in Tables 2 and 

3.  With the temperature dependence shown in these tables, the data could be analyzed.11 
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 Absorption Coefficient Peaks (10-20 cm2) 
Temp 

(°C) A B C D 

27 0.1255 0.501 0.427 0.083 

58 0.123 0.5035 0.425 0.0905 

80 0.1212 0.4848 0.4198 0.0965 

106 0.1131 0.4779 0.4068 0.097 

128 0.1108 0.4582 0.414 0.1075 

170 0.1088 0.4495 0.4063 0.1126 
Data of absorption cross-section peaks of various temperatures 

Table 2 

 Relative Emission Cross Section Peaks (10-20 cm2) 

Temp (°C) A B C D 

27 0.04625 0.501 0.489 0.1387 

58 0.0486 0.5035 0.464 0.1445 

80 0.052 0.4848 0.464 0.1535 

106 0.0518 0.4779 0.45 0.1505 

128 0.052 0.4582 0.45 0.16 

170 0.05575 0.4495 0.442 0.1671 
Data of emission cross-section peaks of various temperatures 

Table 3 
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Analysis and Conclusion 

 

Emission and Absorption Cross-Sections 

With the data for peak heights A, B, C, and D for absorption and emission, it is now 

possible to compare the absolute value of the peak heights and how they changed with 

temperature as well as ratios of two peak heights and how the ratios vary with 

temperature. 

 The first set of data that was examined was the absolute values of peak heights for 

emission and absorption cross section over the wavelength range of 1400-1600nm.  Six 

different temperatures were recorded for data, but only three were used in Figures 21 and 

22 (27 (solid line), 58, 80 (dashed line, 106, 128, 176 (dotted line) degrees Celsius).  

Figure 21 shows the absorption cross section and how it varies with temperature. 
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Figure 21:  Absorption spectrum observed at 27°C (solid), 80°C (dashed), 176°C (dotted)  

 

From looking at figure 21, it is noticeable that Peak B appears to be effected by 

temperature change and Peak C appears to experience the least amount of change with 

temperature.  Also as the temperature increased the absorption cross-section value 

decreased for peaks A, B, and C.  But as the temperature increased for peak D, the 

absorption cross-section began to increase.  The same analysis was then conducted on the 

emission cross section, figure 22. 
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Figure 22:  Emission spectrum calculated from absorption at 27°C (dotted), 80°C 
(dashed), 176°C (solid)  

 

In Figure 22, it is noticeable that for peaks B and C the emission cross-section decreases 

with temperature.  For peaks A and D, the emission cross-section increases with 

temperature.  A similar relationship for emission was found in an article, by Koroshetz, 

and a figure of his findings can be found in the background as Figure 8.10 

 From Tables 2 and 3, a ratio of the different peak heights was taken and plotted 

over the temperature interval.  The first peak height ratios tested were from the 

absorption cross section.  The ratios of all the peaks were calculated.  One example of the 

graphs plotted is Figure 23 

 34



0

0.05

0.1

0.15

0.2

0.25

0.3

0 20 40 60 80 100 120 140 160 180
Wavelength (nm)

P
ea

k 
R

at
io

 (D
/B

)

 

Figure 23:  Data plotted from Table 3 Peak Heights (D/B), displayed greatest percentage 
of temperature change (emission) 

 

 Next similar graphs as Figure 23 were created from the data of Table 2.  The 

percentage changes of the absorption cross-section ratio were then calculated as the 

temperature increased.  When peak D was calculated in a ratio with either peak A, B, or 

C, the change was around 45% with the ratio of D/A showing the greatest amount of 

change (≈55%).  For the ratios excluding D, the percent change was not as great (A/B≈ 

4%, B/C≈ 6%).  It still shows though peaks B and C experience a greater percent change 

with temperature than peak A.  A graph of for all the peak ratios was created and 

normalized to a value of 1 at room temperature.  The graph in Figure 24-27 shows a clear 

understanding in which ratios change the greatest as temperature changes.  The data for 

these figures can be viewed in Table 4. 
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Absorption Cross-Section Normalized Peak Values 
Temp 

(°C) A B C D 
27 1 1 1 1 
58 0.980079681 1.00499002 0.995316159 1.090361 
80 0.965737052 0.967664671 0.983138173 1.162651 

106 0.901195219 0.953892216 0.952693208 1.168675 
128 0.882868526 0.914570858 0.969555035 1.295181 
170 0.866932271 0.897205589 0.951522248 1.356627 

Table 4:  Normalized absorption cross-section peak values 
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Figure 24:  Ratio of peak heights A/B (solid line), A/C (dark dotted line), A/D (dashed 
line) normalized to room temperature (Absorption) 
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Figure 25:  Ratio of peak heights B/A (solid line), B/C (dashed line), B/D (dotted line) 
normalized to room temperature (Absorption) 
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Figure 26:  Ratio of peak heights C/A (solid line), C/B (dashed line), C/D (dotted line) 

normalized to room temperature (Absorption) 
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Figure 27: Ratio of peak heights D/A (solid line), D/B (dashed line), D/C (dotted line) 
normalized to room temperature (Absorption) 

 

The same process was carried out for the emission cross section and results can be seen in 

figures 28-31.  The data for these results can be viewed in Table 5. 

Emission Cross Section Normalized Peak Values 
Temp 

(°C) A B C D 
27 1 1 1 1 
58 1.050811 1.00499 0.948875 1.041817 
80 1.124324 0.967665 0.948875 1.106705 

106 1.12 0.953892 0.920245 1.085076 
128 1.124324 0.914571 0.920245 1.153569 
170 1.205405 0.897206 0.903885 1.204758 

Table 5:  Normalized emission cross-section peak values 
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Figure 28:  Ratio of peak heights A/B (solid line), A/C (dashed line), A/D (dotted line) 
normalized to room temperature (Emission) 
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Figure 29:  Ratio of peak heights B/A (solid line), B/C (dashed line), B/D (dotted line) 
normalized to room temperature (Emission) 
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Figure 30:  Ratio of peak heights C/A (solid line), C/B (dashed line), C/D (dotted line) 
normalized to room temperature (Emission) 
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Figure 31:  Ratio of peak heights D/A (solid line), D/B (dashed line), D/C (dotted line) 
normalized to room temperature (Emission) 

 

 

Precision in Temperature 

The non normalized graphs involving the peak ratios were also important in determining 

the uncertainty in temperature.  One example of the graphs is Figure 32. 
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Data plotted from Table 3 Peak Heights (B/C) (Emission) 

Figure 32 

 

When determining the ratio of the peak heights, it was also important to understand how 

to find their uncertainty.  Since we are taking the ratio of two cross sections that already 

have an uncertainty, the uncertainties rule in products and quotients must be used which 

is11 

22 )()(
z
z

x
x

q
q δ

+
∂

=
∂

            (9) 

here q is the ratio, x and z are two of the peaks.  By finding their percentage of 

uncertainty, one is able to then add them together to find the uncertainty for the ratio.11 
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 With graphs and uncertainties obtained, it was now possible to determine the 

uncertainty in temperature.  There were two methods in accomplishing this and both 

provided similar results.  The first method was to have a straight best fit line drawn 

through the data.  The equation for this line would be y=Ax+B.  The best fit line would 

have parameters A and B labeled as ABEST, and BBEST.  Then two extreme best fit lines 

could be drawn and the slope and y-intercept could be determined.  This then allowed 

two equations to be determined for A and B 

AAA BEST δ+=                           (10) 

and 

BBB BEST ∂+=                                                   (11) 

Figure 33 shows an example of how the lines were determined and drawn on the graph. 
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Determining Uncertainty in Temperature with multiple best fit lines  

Figure 33 

If we pretended to know the ratio of the peaks (D/B) exactly we could determine the 

uncertainty in the value of x (Temperature).  After applying this method an uncertainty of 

approximately ±7.915K is obtained by pretending the value 0.30 was known.  A line was 

drawn down from this y-value to the corresponding x-value.  The difference was then 

taken between the x-values.  This method was then repeated for all the ratios of the 

absorption cross-section and calculated emission cross-section.  The results can be 

viewed in Table 6.  In the article by Nikonorov, their uncertainty in temperature was 

approximately 5K.8 
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Ratio of Peak Heights (Calculated Emission) 
Peaks Temp Difference ±(Celsius)
A/B 16.67 8.335
A/C 27.5 13.75
B/A 17.5 8.75
B/D 20.83 10.415
C/A 33.33 16.665
C/D 16.67 8.335
D/B 15.83 7.915
D/C 25 12.5

Table 6:  Value for uncertainty in temperature using emission 

 

 The other method in obtaining the uncertainty in temperature is using the 

uncertainties found in the y-direction of peak ratios.  These error bars can then be 

transposed onto the y-axis.  Then by drawing a straight line across the graph from the 

points of uncertainty to the best fit line, a range of temperatures would be found that 

would correspond to the uncertainty in the y-direction.  The value of this uncertainty was 

found to be approximately 7K for peaks (D/B).  The method of obtaining this value can 

be seen in Figure 34 and values obtained in Table 7. 

Ratio of Peak Heights (Calculated Emission) 
Peaks Temp Difference ±(Celsius) 
A/B 20.83 10.415 
A/C 28.33 14.165 
B/A 19.16 9.58 
B/D 23.33 11.665 
C/A 30.83 15.415 
C/D 20 10 
D/B 18.33 9.165 
D/C 29.16 14.58 

Table 7:  Value for uncertainty in temperature using emission 
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Determining Uncertainty of temperature by using uncertainty in peak heights (D/B)  

Figure 34 

After comparing all the uncertainties in Tables 6 and 7, it was determined the ratio 

between peaks (D/B) provided the best ± for uncertainty in temperature.  

 

Stark Level Model 

The final part of the project was to predict the Stark levels for the sample Er:L22 

using a simplified model.  Two models were used for this part of the experiment.  The 

first model was similar to the one by Nikonorov, involving two manifolds, with the lower 

and upper manifold having two Stark levels.  Unlike Nikonorov’s model where there 

were only two transitions, our experiment produced four different transitions at 1494nm, 

1539nm, 1545nm, and 1566nm.   
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From equation 6, once the positions of the Stark levels were determined, it would 

be possible to determine the energy between these levels.  With the Nikonorov model, if 

correct, the peak energies should be consistent, and the difference between two levels 

should equal if a similar transition occurs.   

 

Figure 35:  Stark level model of transition peaks between 4I15/2 4I13/2 manifolds using 
Nikonorov’s model 

 

Figure 35 shows that the model of two upper and lower level Stark levels is not 

sufficient.  The reason is the energy gaps do not equal one another.  The difference 

between (A-B) and (C-D) should be equal.  The same is true with (B-D) and (A-C).  

Figure 35 gives the values of the photon energies and proves the model by Nikonorov is 

not suitable for our experiment.  Because of this a new model was constructed. 

 Our new model still consisted of two Stark levels in the higher energy manifold, 

but now three Stark levels existed for the lower energy manifold.  From the previous 
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model and information obtained, it was concluded that transitions for peaks A and B still 

occurred on the lowest Stark level for manifold 4I15/2.  Peak C and Peak D then have to 

occur on different Stark levels in order to account for the problem in Figure 35. 

First the absorption spectrum was examined.  By examining Table 4 and 5, it is 

possible to determine the peak that had the greatest fractional temperature change.  For 

absorption (Table 4 and Figures 24-27), peak D experienced the greatest fractional 

change of approximately 35.6%.  Since peak D showed a stronger dependence on 

temperature than the other peaks, it was concluded that peak D existed in a higher energy 

level than the other transitions.  Peaks A and B experience approximately the same 

fractional change as temperature increases for absorption.  This observation concluded 

that peaks A and B would start on the same Stark level in the lower manifold 4I15/2.   

For emission (Table 5 and Figures 28-31), peak A and D experienced the greatest 

fractional change of approximately 20.5%, while also peaks B and C experience a similar 

fractional change of approximately 10%.  This observation concluded that peaks A and D 

involve the same Stark levels in the upper manifold, and peaks B and C involve another 

common Stark level in the upper manifold. 

Another key piece of information was peak D experienced opposite changes (as 

seen in Figures 21 and 22 for absorption and emission respectively) than peaks B, and C 

as the temperature increased.  When looking at the photon energies and Stark levels in the 

background articles by Nikonorov8 and Koroshetz10, a similar observation was made.  

The Stark levels that were determined from their study, was the transition started at the 

highest Stark level for 4I15/2 and travel to upper manifold 4I13/2.  This can be seen in figure 
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5.8  As in Figure 35, it was important in the new model for the energy gaps to be 

consistent.  Our proposed model is shown in Figure 36. 

   

 

Figure 36:  Stark level model of transition peaks between 4I15/2 4I13/2 manifolds (Data 
taken from Table 1 for Absorption) 

 

When comparing the model in Figure 36 with the obtained data, it appears to be 

consistent.  To confirm that the model is correct the Boltzmann factor was calculated for 

the energy difference between the levels.  The Boltzmann factor (equation 2) shows the 
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probability of atoms per unit volume existing in the lower and upper energy levels when 

compared to the energy gaps.  When calculating the Boltzmann factor between two 

energies levels, we are able to prove that Figure 36 is consistent with previous figures.  

First we will look at Energy level 1 and 2.  The Boltzmann factor at room temperature for 

these levels is approximately 0.878.  As temperature increases the Boltzmann factor will 

not increase greatly because E2-E1<<kT.   A small Boltzmann factor change explains why 

the two energy levels have a small energy gap between the Stark levels.  For absorption 

cross-section, when looking at peaks A and B (Figure 21), as temperature increases, the 

absorption cross-section decreases.   The Boltzmann factor explains that as the 

temperature increases, the atoms would move to the upper Stark levels, thus decreasing 

the absorption cross-sections.  Therefore it is reasonable to place peaks A and B on the 

lowest Stark level in the lower manifold.  The Boltzmann factor for the energy gap 

between levels 3 and 1 will be greater than E2-E1 because E3-E1>kT.  Peak D is the most 

temperature dependent of all the peaks therefore would originate in the third Stark level 

for the lower manifold.  

Next the emission cross-section (Figure 22) was examined.  For peaks A and D, 

as the temperature increases, the emission cross-section increases.  The Boltzmann factor 

explains that for emission the atoms should exist primarily in the lowest Stark level for 

the upper manifold.  However, as the temperature increases, the emission cross-section 

originating from the higher Stark level should increase because of the increasing 

Boltzmann factor.  In the case of peaks A and D, they change by the same fractional 

percentage as seen in Figure 28-31.  As temperature increases for peaks B and C, the 
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emission cross-section decreases, as expected from the decreasing population in the 

lowest Stark level for the upper manifold. 

In conclusion, while the results of obtaining the best uncertainty of ±9K and ±7K 

(ratio of D/B) may be useful in some situations, it probably will not be for accurate 

measurements.  It is possible to improve upon this approach by increasing the signal to 

noise ratio.  This can be accomplished by a number of methods.  One way is to upgrade 

the equipment as technology continues to improve upon the signal to noise ratio.  

Another way is to run a slower scan multiple times.  As more scans are recorded, the 

noise in data becomes less noticeable.  For the Stark levels, the data manipulated in a way 

that told which peak in came from which Stark level.  Overall work can be continued in 

the future to expand upon this process as technology continues to advance and the signal 

to noise ratio is improved upon. 
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