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Abstract

Accurate needle placement is critical to the success of needle-based interventions.

Needle deflection due to tissue non-homogeneity and dynamic forces results in tar-

geting error, potentially requiring repeated insertions. Real-time imaging enables

closed-loop control of the needle during insertion, improving insertion accuracy. The

needle localization algorithm proposed in this thesis models the needle as a paramet-

ric polynomial equation optimized to minimize beam bending energy relative to a set

of observed needle coordinates. Simulated insertions using an MRI dataset show that

the minimum bending energy model allows planning of subsequent imaging planes to

capture the moving needle while estimating the shape of the needle with low error.

iii



Acknowledgments

Extensive thanks to my thesis advisor Prof. Gregory Fischer and my committee

members, Prof. Loris Fichera and Prof. Jie Fu.

I really appreciate the help and support of the other students in the WPI AIM

Lab: Anna Novoseltseva, Marek Wartenberg, Katie Gandomi, Paulo Carvalho, Chris

Nycz, Chris Bove, and Nirav Patel.

iv



Dedication

This thesis is dedicated to my grandfather, Dr. Joseph Ravin M.D., who wanted

to see what I would become.

v



Contents

Abstract iii

Acknowledgments iv

List of Figures ix

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Thesis Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3.1 Minimum Bending Energy Model . . . . . . . . . . . . . . . . 4

1.3.2 Needle Localization Algorithm . . . . . . . . . . . . . . . . . . 4

1.3.3 MRI Data Collection . . . . . . . . . . . . . . . . . . . . . . . 5

1.3.4 Slicer Module . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 MRI Physics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.5 Tissue Phantoms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Review of Previous Work 8

vi



2.1 Needle Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Needle Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.1 Non-Holonomic Kinematics . . . . . . . . . . . . . . . . . . . 10

2.2.2 Finite Element Models . . . . . . . . . . . . . . . . . . . . . . 11

2.2.3 Mechanical Models . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 Needle Steering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4 Needle Localization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.4.1 Coronal and Sagittal Plane Imaging . . . . . . . . . . . . . . . 17

2.4.2 Transverse Plane Imaging . . . . . . . . . . . . . . . . . . . . 18

2.4.3 3D Imaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.4.4 Other Techniques . . . . . . . . . . . . . . . . . . . . . . . . . 20

3 Needle Model 22

3.1 Assumptions and Definitions . . . . . . . . . . . . . . . . . . . . . . . 24

3.2 Beam Bending Energy . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.3 Parametric Polynomial Space Curves . . . . . . . . . . . . . . . . . . 27

3.4 Curve Fitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.4.1 Cost Function . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.4.2 Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.5 Software Implementation . . . . . . . . . . . . . . . . . . . . . . . . . 31

4 Needle Localization in MR Images 35

vii



4.1 Software Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.1.1 Simulated MRI Scanner . . . . . . . . . . . . . . . . . . . . . 35

4.1.2 Needle Tracking Module . . . . . . . . . . . . . . . . . . . . . 36

4.2 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.2.1 MRI Data Collection . . . . . . . . . . . . . . . . . . . . . . . 38

4.2.2 Needle Localization . . . . . . . . . . . . . . . . . . . . . . . . 38

4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.3.1 Needle Localization at a Single Timestep . . . . . . . . . . . . 40

4.3.2 Needle Localization at Sequential Timesteps . . . . . . . . . . 41

5 Discussion and Conclusion 48

5.1 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.1.1 MRI Experiment . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.1.2 Needle Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

References 53

viii



List of Figures

1.1 A manual MRI-guided biopsy in progress (from Tokuda, 2012). . . . . 2
1.2 MRI scan of a gelatin tissue phantom undergoing needle insertion. The

needle enters the phantom at the right of the image. Note the artifact
around the needle tip. . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1 Free-body diagram depicting forces acting on an asymmetric beveled
needle tip during insertion into an elastic medium (from Misra, 2010). 9

2.2 Point and distributed forces acting on the needle during insertion (from
Roesthuis, 2012). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Nonholonomic model in which the needle tip is represented as a bicycle
with a fixed front-wheel steering angle (from Webster, 2006). . . . . . 11

2.4 Mechanical model of a needle in a two-bend configuration (from Roesthuis,
2012). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.5 Custom-manufactured steerable needle with an actuated tip and inte-
grated Fiber Bragg Grating strain gauges(from Roesthuis, 2015). . . . 15

2.6 Example of a steerable concentric-tube needle with three segments
(from Rucker, 2010). . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.7 Alternating-planes strategy to track the needle tip during insertion
(from Patel, 2015). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.8 Needle tracking in US via imaging in the transverse plane (from Vrooi-
jink, 2014). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.9 Catheters semi-automatically segmented in 3D MRI data using the
NeedleFinder Slicer extension (from Pernelle, 2013). . . . . . . . . . . 20

2.10 Placement of Fiber Bragg Grating sensors on a specially-modified nee-
dle (from Roesthuis, 2014). . . . . . . . . . . . . . . . . . . . . . . . . 21

3.1 Given a number of samples, the spacing between the samples d, the
offset distance from the needle tip δ, and a new needle base pose, the
expected coordinate of the needle pk is calculated at each sample point. 32

3.2 New imaging is collected at each needle coordinate, and the actual
position of the needle is observed. . . . . . . . . . . . . . . . . . . . . 33

ix



3.3 A new polynomial curve is calculated, optimized to minimize both the
cumulative bending energy in the needle and the error between the
curve and the observed points. . . . . . . . . . . . . . . . . . . . . . . 34

4.1 System architecture for needle detection and modeling from MRI data. 37
4.2 User interface for MRINeedleTipTracker 3D Slicer module. . . . . . . 37
4.3 Example tissue phantom with the needle alignment frame and biopsy

needle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.4 Segmentation of needle artifact generated by thresholding MRI volume. 40
4.5 Baseline ground truth data, calculated from the centroids of the seg-

mented artifact sectioned in the X-Y plane. . . . . . . . . . . . . . . . 41
4.6 Magnitude of in-plane error over insertion for various degrees of poly-

nomial. Markers indicate the positions of the slices on the needle curve.
d = 26.0mm, k = 3, δ = 5.0mm . . . . . . . . . . . . . . . . . . . . . 42

4.7 Magnitude of in-plane error over insertion for a variable number of
sample points. Markers indicate slice positions. n = 5, δ = 5.0mm . . 43

4.8 Positions of 2D scan planes at each insertion step, with segmented
artifact. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.9 Modeled curve points at each insertion step, with segmented artifact. 45
4.10 Magnitude of error between the needle model and the artifact centroid

with fixed spacing between slices. Markers indicate slice positions.
d = 10mm, k = 3, δ = 5mm . . . . . . . . . . . . . . . . . . . . . . . 46

4.11 Magnitude of error between the needle model and the artifact centroid,
where the spacing between each slice increases with insertion depth.
Markers indicate slice positions. d = 10mm+ indexstep ∗ 4mm, k = 3,
δ = 5mm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

x



Chapter 1

Introduction

1.1 Motivation

Many interventional procedures rely on needle insertion, including biopsy and

brachytherapy [1]. Accurate needle placement is a critical factor in the success of

these procedures [2, 3]. Deflection of the needle tip during insertion and variation in

the mechanical properties of tissue can cause the needle to deviate from its expected

trajectory and miss the target. This can be mitigated by aligning the needle to

the target using a fixed structure and verifying that the correct position has been

reached in post-operative imaging [4]. Even with preoperative image-based planning

and careful alignment with the target, several insertions may be required to achieve

the desired needle placement [5].

Live intra-operative imaging of the needle during insertion reduces error caused
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by needle deflection by allowing the surgeon to see if the needle is deviating from

its trajectory and take corrective action. Ultrasound (US) and Magnetic Resonance

Imaging (MRI) are preferred imaging modalities. While US is portable and hand-

steerable, MRI offers superior resolution of soft tissues compared to both US and

CT [6]. Even with intraoperative imaging, manually-controlled needle insertion is a

challenging task. As shown in Figure 1.1, the confined space of the MRI scanner bore

limits the surgeon’s visibility and range of motion [7].

Figure 1.1: A manual MRI-guided biopsy in progress (from Tokuda, 2012).

Robotically-controlled needle insertion solves some of the challenges of live intra-
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operative MRI imaging by reducing the clinician’s workload and moving them out of

the scanner bore. Using live imaging, an insertion robot can correct for unmodeled

tip deflection and keep the needle on its expected trajectory, improving the accuracy

of needle placement.

Previous work has shown that closed-loop control of MRI [8] and US [9] coupled

with image analysis for needle localization can track the needle tip during insertion

with a useful degree of accuracy.

1.2 Problem Formulation

A key requirement for closed-loop image-guided needle insertion is the accurate

measurement of the 6-degree-of-freedom pose of the needle tip using data from the

imaging system. Accurate tip localization is required for the needle controller to

determine the correct control input to minimize the error between the current needle

tip pose and the desired trajectory. Searching for the needle in each image on an

individual basis introduces errors due to imaging artifacts, noise, and anatomical

features near the needle, contributing to reduced tip localization accuracy. A needle

model that could combine data from real-time imaging, from the robotic insertion

platform, and the mechanical properties of the needle would allow accurate estimation

of the pose of the needle tip from sparse observations of the needle position.
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1.3 Thesis Contributions

1.3.1 Minimum Bending Energy Model

This thesis presents an approach to needle modeling that uses the mechanical

bending properties of the needle, the pose of the needle base, and a set of observed

needle positions along the needle shaft to find a configuration of the needle that

minimizes its bending energy while meeting the observed constraints. In this model

the needle is represented by a three-dimensional parametric polynomial curve.

1.3.2 Needle Localization Algorithm

The needle model provides continuous needle pose estimates along its shaft, which

can be used to plan imaging to observe the needle position after motion. The expected

position of the needle informs the search for the actual position of the needle in

received images, which reduces localization error caused by noise near the needle.

Since the needle model is updated using a set of positions along the needle shaft

instead of the position of the needle tip, updates can be performed using imaging in

planes transverse to the needle rather than imaging in the coronal and sagittal planes.

This mitigates the risk of loss of needle tracking during insertion.
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1.3.3 MRI Data Collection

MRI scans were collected depicting the insertion of a biopsy needle into a gelatin

tissue phantom. An alignment structure restricted the pose of the needle base during

insertion, allowing scans taken at at regular insertion interval to be associated with

needle poses.

1.3.4 Slicer Module

An extension for 3D Slicer, an open-source medical imaging program [10,11], was

created to evaluate the needle model when applied to the MRI dataset. The user

interacts with the needle model through the Needle Tracking module, which accepts

inputs for the current needle base pose and the current 3D scan in the MRI dataset

and returns polynomial coefficients representing the current state of the needle. A

supporting MRI Reslicer module converts the 3D MRI scans into 2D slices at specified

depths, which simulates part of the functionality of an MRI machine.

1.4 MRI Physics

Magnetic Resonance Imaging (MRI) is used to image material containing hydrogen

ions, or protons, such as human tissue. The strong magnetic field of the MRI machine

causes the free protons to align along the axis of the field. A pulse of radiofrequency

(RF) radiation excites the protons, which subsequently emit RF energy as they return
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to a lower-energy state. The emitted energy is measured by the scanner to generate

and image of the tissue based on the intensity of the return from different areas.

Performing an MRI scan on a material that does not contain any free protons, such

as plastic or metal, produces a dark void in the image [12]. Metal objects distort the

magnetic field, producing susceptability artifacts around the objects. The shape and

extent of each artifact depends on the parameters of the MRI scan sequence the the

shape and composition of the object. Needles and wires behave like antennae in the

MRI environment, so they produce imaging artifacts around their tips. Determining

the position of the needle using its imaging artifact is the basis for needle tracking in

MRI [13].

Figure 1.2: MRI scan of a gelatin tissue phantom undergoing needle insertion. The
needle enters the phantom at the right of the image. Note the artifact around the
needle tip.
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1.5 Tissue Phantoms

Synthetic tissue phantoms are often used during needle insertion studies instead

of ex-vivo tissue specimens. These phantoms are manufactured so their mechanical

properties reflect those of human tissue. They offer several benefits over real tissue,

especially in the context of benchtop laboratory experiments.

1. Phantoms made of gelatin or plastic are transparent, so vision-based methods

can be used for needle tracking or for validation of other imaging modalities.

2. A needle inserted into a homogeneous tissue phantom will experience constant

cutting force throughout insertion.

3. Phantoms can include multiple regions with different mechanical properties sep-

arated by membranes.

4. Phantoms have a much longer shelf life than tissue, granting more flexibility to

studies.
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Chapter 2

Review of Previous Work

2.1 Needle Geometry

Beveled-tip needles deflect during insertion due to asymmetric cutting force at

the needle tip. The tip force, shown in Figure 2.1, can be modeled as a point load

with transverse and radial components relative to the needle shaft [14]. Friction and

fluid damping are transverse forces distributed along the needle shaft, while pushback

from deformed tissue is a distributed radial force. Figure 2.2 shows the point and

distributed loads on the needle shaft.
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Figure 2.1: Free-body diagram depicting forces acting on an asymmetric beveled
needle tip during insertion into an elastic medium (from Misra, 2010).

2.2 Needle Modeling

The goal of research in this area is to produce a model of needle behavior that accu-

rately predicts the motion of the needle tip during insertion. If the model accurately

represents the behavior of the needle, a trajectory can be planned and accurately

followed even when few or no needle tip observations can be made.
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Figure 2.2: Point and distributed forces acting on the needle during insertion (from
Roesthuis, 2012).

2.2.1 Non-Holonomic Kinematics

The non-holonomic kinematics of a beveled-tip needle can be represented by

modeling the needle as a bicycle with the front wheel fixed at a constant steering

angle [15, 16]. This model is illustrated in Figure 2.3. Since the steering angle is

determined by the shape of the needle, the stiffness of the tissue, and the velocity of

insertion, steering angles must be calculated for individual insertions.

Subsequent work accounts for forces on the needle that cannot be modeled as

components of the steering angle, such as dynamic friction and torsion in the needle

shaft [17, 18]. These improved models still assume a constant steering angle, which

implies that the needle is inserted into a homogeneous material. This assumption

does not apply for most insertions into tissue, limiting the utility of the nonholonomic

kinematic model for clinical applications.
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Figure 2.3: Nonholonomic model in which the needle tip is represented as a bicycle
with a fixed front-wheel steering angle (from Webster, 2006).

2.2.2 Finite Element Models

Finite Element (FE) models of the needle and surrounding medium address some

of the drawbacks of the kinematic needle model, such as the ability to model inconsis-

tent deflection when inserting through nonhomogeneous tissue [19]. FE model-based

approaches use several types of finite elements, including angular springs and beam

elements. While the needle and environment are often simplified as a 2D mesh in a

plane, the approach is extensible to 3D [20].

FE modeling requires an explicit definition of the sliding interface between the

needle shaft and the surrounding tissue and representation of the elastic mechanical

properties that govern the deformation of tissue during insertion [21]. Since the needle

is slender and the magnitude of deflection is large relative to the needle diameter,
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the assumption of linear displacement usually applied to FE analysis does not hold

and a computationally-intensive numerical solver is required to solve for nonlinear

displacement.

2.2.3 Mechanical Models

The needle can also be modeled as an Euler-Bernoulli beam, with the forces acting

on the needle divided into a force acting on the needle tip and a distributed load acting

on the needle shaft. The tip force is related to the force required to cut through

the tissue, which depends on the insertion velocity [22]. The distributed shaft load

depends on the stiffness and viscous coefficient of the tissue [23].

Another approach is to represent the shape of the needle as a polynomial and

use mechanical bending energy to choose the polynomial coefficients [14,23,24]. This

accounts for needle deflection and deformation of surrounding tissue, which allows

calculation of the force on the needle base.

Mechanical models require explicit definitions for the elastic modulus, stiffness,

and cutting force of the tissue and the elastic modulus of the needle. These properties

might be unknown during a clinical insertion, and it might not be possible to measure

them experimentally. The tissue is generally assumed to be homogeneous, which is

not always applicable.
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Figure 2.4: Mechanical model of a needle in a two-bend configuration (from Roesthuis,
2012).

2.3 Needle Steering

The different approaches to needle steering can be generalized as minimally-

invasive methods to guide a needle to a desired point in the body using control inputs

applied from outside the body. The various methods produced in this line of research

can be placed along a spectrum of mechanical complexity in the needle shaft and at

the needle tip, ranging from solid needles controlled only at the base, to needles with

actuation at the tip and along the shaft, to continuum robots.

Most needle steering strategies rely on the asymmetric force at the tip of a beveled
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needle as a control input to direct the needle along a desired trajectory. Rotating

the needle tip changes the direction of the force vector acting on the tip, allowing the

direction of deflection to be controlled. Steering algorithms that take advantage of

this behavior include duty cycle steering [25], CURV steering, and continuous-rotation

steering.

Symmetric-tip needles are not subject to significant asymmetric tip force during

insertion [26]. While the magnitude of deflection during insertion is reduced, the

direction of deflection is inconsistent, so symmetric-tipped needles cannot be steered

by rotating the needle tip. An alternative strategy steers the needle by moving its

base outside the tissue, which induces a bend in the needle shaft [27].

Curved- or kinked-tip needles use similar mechanical principles to steer as beveled-

tip needles, but the addition of a pre-bent section at the needle tip greatly increases

the asymmetric force applied to the needle tip during insertion [28]. This allows

the needle to achieve a tighter turning radius, especially if the needle shaft is thin

and made of a very flexible material such as nitinol. Kinked-tip needles cause more

tissue damage than beveled-tip needles when steered using a rotation-based strategy,

but needles with passively-actuated tips have been developed to mitigate this by

straightening during continuous rotation [29]. Needles with fully-actuated tips can be

steered along a trajectory without rotating the needle [24]. A disadvantage of curved-

tip needles is that the tip translates during rotation, which violates the nonholonomic

kinematic model’s assumption that the needle will only move along the tip vector [28].
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Figure 2.5: Custom-manufactured steerable needle with an actuated tip and inte-
grated Fiber Bragg Grating strain gauges(from Roesthuis, 2015).

Concentric-tube needles consist of several nested pre-bent tubes [30–32]. An ex-

ample with three concentric segments is shown in Figure 2.6. The needle can be

actively curved or straightened by rotating the tubes so their directions of curva-

ture are aligned or in opposition. These needles release energy when the concentric

elements snap between equilibrium states, which may be undesirable.

A problem with approaches based around specialized needles is that no clinically-

available biopsy needles of these types exist. With specialized needles there is an

increased risk of tissue damage along the insertion trajectory, especially if the needle

15



is rotated.

Figure 2.6: Example of a steerable concentric-tube needle with three segments (from
Rucker, 2010).

2.4 Needle Localization

Existing needle localization algorithms generally analyze individual scans or video

frames in isolation. It would be very useful to use the results from processing a

previous image to find the needle in the current image. The forward kinematics of

the insertion platform, especially the change between the current state and a previous

state, could also be used to find the new needle position in new images.
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2.4.1 Coronal and Sagittal Plane Imaging

Prior work by our research group demonstrated needle tip tracking using closed-

loop MR imaging in the coronal and sagittal planes [8]. As shown in Figure 2.7, the

needle tip is captured in each scan plane and the coordinate of the centroid of the tip

artifact is used to plan the pose of the subsequent scan in the perpendicular plane.

The field of view of each plane is sized based on the maximum anticipated deflection

of the needle between scans.

Figure 2.7: Alternating-planes strategy to track the needle tip during insertion (from
Patel, 2015).
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A major risk with this approach is the loss of tracking if the needle tip is not

found in one of the scans. The key piece of information used to plan the position of

each scan is the location of the needle tip in the immediately-previous scan. Since

the scan planes are parallel to the needle shaft and might be a few millimeters thick,

a small error in the placement of one scan plane could result in failure to capture the

needle. This risk can be mitigated by specifying a scan plane thickness sufficient to

capture the needle tip even if it deflects significantly between scans. However, thick

scan planes reduce the clarity of features in MR images, which would be detrimental

for identifying anatomical features near the needle.

2.4.2 Transverse Plane Imaging

Imaging in the plane normal to the needle shaft captures the needle in cross-

section. This reduces the risk of taking a scan in a plane that does not contain

the needle, but because of tip deflection it is more challenging to find the plane

containing the needle tip. For US scanning [9,33,34], the transducer can be mounted

on a motorized platform and moved in synchronization with the calculated out-of-

plane motion of the needle tip to capture the same point on the needle in cross-section

throughout insertion, as shown in Figure 2.8.
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Figure 2.8: Needle tracking in US via imaging in the transverse plane (from Vrooijink,
2014).

2.4.3 3D Imaging

NeedleFinder is a 3D Slicer extension for needle localization and segmentation [35].

Given a manually-selected tip position, NeedleFinder searches through sequential

axial scan planes and finds the cross-sections of the artifacts or voids in each layer.

An angular-spring finite element model defined by the shape and stiffness of the needle

is fit to the detected needle points. Figure 2.9 shows several catheters segmented using

NeedleFinder. Manual selection of each needle tip is required because of the difficulty

of automatically distinguishing each needle from anatomical features and noise in the

MR images.

Other research models susceptibility artifact shapes for metal fiducial markers in

MR data to automatically segment the markers and determine their poses [36]. This
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Figure 2.9: Catheters semi-automatically segmented in 3D MRI data using the
NeedleFinder Slicer extension (from Pernelle, 2013).

approach could probably be extended to detect needle tip poses from tip artifacts

with greater precision than thresholding by intensity, but the variation in the needle

artifact with the orientation of the needle relative to the direction of the magnetic

field would require experiments to characterize it in detail.

In both US and MR images, the time required to resolve a 3D volume is higher

than for a 2D plane, so 3D imaging is generally not suitable for real-time tracking or

control.

2.4.4 Other Techniques

An alternative method for detecting the position and shape of the needle is to

add sensors to the needle to directly measure its deflection. One approach, shown

in Figure 2.10 is to embed Fiber Bragg Grating optical sensors into the shaft of the
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needle [37]. These sensors measure the strain in the needle as it bends and allow the

shape of the needle to be calculated throughout insertion to achieve robotic steering.

This approach requires specially-modified needles, precluding the use of clinical-style

biopsy needles without modification.

Figure 2.10: Placement of Fiber Bragg Grating sensors on a specially-modified needle
(from Roesthuis, 2014).

Another option is to attach magnetic tracking coils to the needle shaft and use

an external sensor unit to measure their 6-DOF poses and compute the needle shape

[38, 39]. As the magnetic tracking sensor uses a sensitive magnetic field to measure

the poses of the fiducial markers, this is not compatible with the strong magnetic

field produced in the MRI environment.
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Chapter 3

Needle Model

The needle model presented in this thesis is based on minimizing the bending

energy in the needle, which is represented as a beam and characterized as a parametric

polynomial curve. The model is initialized with the mechanical properties of the

needle and updated throughout insertion with the most recent needle base pose and

the latest observed points on the needle shaft. This allows estimation of the shape

of the needle using only a few new images without requiring an explicit model of the

forces acting on the needle.

While other approaches to needle modeling account for bending energy, generally

to determine the equilibrium state between the needle and the surrounding elastically-

deformed tissue [14, 23, 24], they do not use bending energy to find the shape of the

needle from observations.

Mechanics-based models make restrictive assumptions about the trajectory of the

22



needle by limiting the number bends in the needle shaft [23]. Models that assume

a single direction of insertion [23, 40] cannot represent the trajectories achievable

with highly-flexible needles. By parameterizing the needle coordinates independently

of the insertion direction or depth, the model presented here can represent needles

inserted in any direction relative to the scanner coordinate frame.

Both nonholonomic kinematic models [15,17,18] and mechanics-based beam bend-

ing models [23, 40] require extensive characterization of the properties of the needle

and the tissue in order to accurately account for the tip and shaft loads placed on the

needle. Tissue properties vary between tissue types and patients, and characteriza-

tion of these properties to the extent required by the needle models would probably

not be practically achieveable during a procedure. In contrast, the model introduced

here does not require characterization of mechanical properties, since the constraints

imposed on the needle by its interaction with surrounding tissue are observed through

the shape of the needle during insertion.

In the context of needle localization in MRI, it would be very time-consuming to

completely and precisely evaluate the state of the needle using only observations from

imaging. The core idea of this model is to take a few observations in imaging and then

determine the shape of the needle through optimization that meets those constraints

as well as the constraints imposed by the mechanics of the needle. Provided that the

observations of the needle are distributed along the entire observable portion of its

length, the needle model will be representative of the actual state of the needle to a
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degree of accuracy useable for guiding insertion and planning future imagery.

3.1 Assumptions and Definitions

As currently formulated, this model only considers straight needles with uniform

stiffness and cross-section. Actuated devices such as flexible-tip needles and contin-

uum robots are not considered. It is also assumed that the state of the needle relative

to the camera frame is observable in imaging.

The model uses the following information about the composition and state of the

needle:

• 6-degree-of-freedom pose of the base of the needle, via the forward kinematics

of the insertion robot

• Length of the needle

• Diameter of the needle

• Elastic modulus of the needle

• Multiple observed coordinates on the needle shaft from a sparse set of cross-

sectional images

Definitions of the symbols used in the needle model are provided below.
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Symbol Description

C cumulative cost of the needle model configuration

d needle shaft diameter

δ needle tip offset

E needle shaft elastic modulus

ε needle curve RMSE threshold

I second area moment of inertia

k observation index

L needle length

n polynomial degree

ρ needle curvature

s parametric variable

UB transverse beam bending energy

v magnitude of deflection relative to the needle neutral axis

V vector, needle coordinate

Vobs vector, needle coordinate observed in imaging

x ∈ X X-component, set of X-components of needle coordinate

y ∈ Y Y-component, set of Y-components of needle coordinate

z ∈ Z Z-component, set of Z-components of needle coordinate
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3.2 Beam Bending Energy

The actual biopsy needle contains several components with different mechanical

properties, such as an inner rod that sides within an outer shell. Since these interac-

tions are computationally expensive to model exactly and unnecessary to account for

unless a very high degree of fidelity is desired, the model presented here simplifies the

needle as a solid cylindrical beam and neglects the change in cross-sectional area at

the needle tip. Under these assumptions, the area moment of inertia I of the needle

in cross-section is constant along the entire length of the needle, so the area moment

of inertial can be calculated using Equation 3.1.

I =
π

64
d4 (3.1)

Since the needle is assumed to have a constant diameter d along its entire length,

it can be represented as an Euler-Bernoulli beam with constant cross-sectional area.

The transverse bending energy in a straight beam with constant cross-section, shown

in Equation 3.2, is a function of the curvature in the beam integrated over its length.

Equation 3.3 shows the calculation of curvature in an arc. If the first derivative of the

needle deflection dv/dl is very small, the curvature can be approximated as Equation

3.4.

UB =
EI

2

∫ L

0

1

ρ2
dl (3.2)
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1

ρ
=

d2v/dl2

(1 + (dv/dl)2)3/2
(3.3)

1

ρ
' d2v

dl2
(3.4)

In a beam subject to zero load its cumulative curvature is zero, so its total bending

energy is also zero. Higher curvatures correspond to sharper bends, meaning that a

beam that is predominately straight with one very sharp bend will have a greater

bending energy than a beam of the same length where the bend is gentle and dis-

tributed along its entire length. Beams adopt shapes that minimize their cumulative

bending energy while meeting the constraints imposed by external fixtures.

3.3 Parametric Polynomial Space Curves

The needle curve is represented using an n-degree parametric polynomial function,

shown in Equation 3.5. In the context of representing a needle, n represents the

maximum number of inflection points in each axis. Under ideal conditions a needle

inserted without rotation would deflect in one direction with constant curvature, and

its shape could be represented using at minimum a 3rd-degree polynomial (n = 3).
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V =


x(s)

y(s)

z(s)

 =


ans

n + an−1s
n−1 + · · ·+ a1s+ a0

bns
n + bn−1s

n−1 + · · ·+ b1s+ b0

cns
n + cn−1s

n−1 + · · ·+ c1s+ c0

 s ∈ (0, 1) (3.5)

The three spatial coordinates x, y, and z are functions of a unitless parameter

s, which ranges from 0 at the needle base to 1 at the needle tip. Given sets of k

needle coordinates Vobs, the relationship between the values of s and the positions of

the needle coordinates is established by the distances between the needle coordinates,

calculated in Equation 3.6, and the proportion of each distance to the cumulative

distance between all the coordinates, calculated in Equation 3.7.


dk = 0 if k = 0

dk = |Vobs,k −Vobs,k−1| if k > 0

(3.6)


sk = 0 if k = 0

sk = sk−1 + dk
Lneedle

if k > 0

(3.7)

While an alternative implementation could represent the x- and y-components of

the coordinate as a function of its z-component, representing all three coordinates

as functions of an independent parameter allows the curve to represent torturous

trajectories without placing restrictions on the direction of needle insertion.

The maximum number of inflection points in each axis, and consequently the
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maximum number of changes in needle direction that the curve can represent, is

limited by the degree of the polynomial.

3.4 Curve Fitting

The purpose of curve fitting is to choose coefficients of the parametric function

in Equation 3.5 given a number of observed needle cross section coordinates so that

the total bending energy in the curve and the error between the curve and the needle

coordinates are minimized.

Prior to optimization, initial coefficients for each curve are found by fitting a

polynomial of degree n to the needle coordinates using a least-squares fit. While this

initial solution is not representative of the actual mechanical factors that determine

the shape of the needle, it approximates the minimum bending energy curve and helps

prevent the optimization for reaching a local minimum or other failure condition.

The curve is optimized to minimize bending energy using Sequential Least SQuares

Programming (SLSQP), which is an iterative constrained Non-Linear Programming

(NLP) search algorithm [41].

3.4.1 Cost Function

The cost function subject to minimization is shown in Equation 3.8. It is a

modification of Equation 3.2 where the elastic modulus and area moment of inertia
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are omitted, since they are constant along the length of a straight needle with uniform

cross-section.

C =

∫ L

0

1

ρ2
dl (3.8)

3.4.2 Constraints

The optimization is constrained by Equation 3.9 such that the coordinates of the

curve at s = 0 matches the position of the base of the needle.

Vk=0 =


a0

b0

c0

 (3.9)

The optimization is further constrained by Equation 3.10 so that the length of the

curve between s = 0 and s = 1 is equal to the length of the needle, and by Equation

3.11 so that the root-mean-square error (RMSE) between the curve and the observed

points is below a specified threshold ε.

L =

∫ 1

0

|dV
ds
|ds (3.10)

ε ≥

√∑k
i=0(Vi − Vobs,i)2

k
(3.11)
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While equality constraints can also be used to guide the optimized curve to inter-

sect all the needle coordinates, this approach risks over-constraining the curve where

the degree of the polynomial is close to the number of equality constraints.

3.5 Software Implementation

Algorithm 1 shows the process of calculating polynomial coefficient to minimize

bending energy given a set of observed needle coordinates. Figures 3.1, 3.2, and 3.3

show the process of observing points near the modeled needle curve and optimizing

a new curve to match them.

Algorithm 1 Curve Optimization

1: procedure Update Curve Fit(coordsneedle, Lneedle, polyprev)
2: t← CalculateParameters(coordsneedle, Lneedle)
3: if polyprevisNone then
4: polyinit ← LeastSquares(coordsneedle)
5: else
6: polyinit ← polyprev

7: cons← DefineConstraints(t, coordsneedle, Lneedle)
8: polyopt ← DoOptimization(polyinit, cons)
9: return polyopt
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Figure 3.1: Given a number of samples, the spacing between the samples d, the offset
distance from the needle tip δ, and a new needle base pose, the expected coordinate
of the needle pk is calculated at each sample point.

32



Figure 3.2: New imaging is collected at each needle coordinate, and the actual position
of the needle is observed.
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Figure 3.3: A new polynomial curve is calculated, optimized to minimize both the
cumulative bending energy in the needle and the error between the curve and the
observed points.
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Chapter 4

Needle Localization in MR Images

The purpose of this experiment is to validate the needle model on imagery rep-

resentative of what would be available from intraoperative imagery during an MRI-

guided insertion and to demonstrate a workflow suitable for real-time needle tracking.

4.1 Software Architecture

4.1.1 Simulated MRI Scanner

Full 3D MRI volumes take a long time to produce, especially if high resolution

is desired: the scan time for each volume used in this thesis was approximately 5

minutes. This is a prohibitively long time in the context of real-time intraoperative

imaging, so the MRI would be configured to provide 2D scans in requested planes

with limited field of view. To simulate this functionality, a Slicer module was created
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to resection 2D slices from each 3D volumes at specified depths.

4.1.2 Needle Tracking Module

A second Slicer module manages the needle tracking process. Figure 4.1 shows

the architecture of this module relative to the Slicer environment and the needle

modeling utility. A linear transform node is set to match the pose of the needle base

in each saved volume. When commanded by the operator, the module requests slices

of the MRI volume at evenly-spaced coordinates along the shaft of the needle. The

thresholded image is grouped into contiguous regions, and the area and centroid are

calculated for each region. The region with the centroid closest to the estimated

position of the needle provided by the previous needle model curve is assumed to be

the needle artifact, and the position of its centroid determines the observed position

of the needle in this image. The position of the needle base is appended to this list of

needle coordinates, and the combined list is used as one of the inputs for the needle

curve optimization.

4.2 Experiment

Several assumptions made to reduce the complexity of the experiment and facili-

tate needle tracking are listed below.

• A single beveled-tip clinical-style biopsy needle is to be inserted and tracked.
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Figure 4.1: System architecture for needle detection and modeling from MRI data.

Figure 4.2: User interface for MRINeedleTipTracker 3D Slicer module.

• The initial vector of the needle is normal to the axial plane, and the actual pose

of the needle base exactly matches the recorded pose.

• Only homogeneous gelatin tissue phantoms are considered. The problem of

identifying the needle in the presence of anatomy or other clutter is not ad-

dressed.

• New MR data is acquired and transmitted instantaneously.
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4.2.1 MRI Data Collection

The set of MRI volumes used in this experiment was captured in the 3T scanner at

UMass Medical Center using a 3D Fast Field Echo protocol. The dimensions of each

voxel are 0.4mm x 0.4mm x 0.5mm. The phantom used was made of agar gelatin. The

needle was a 150mm stainless steel (E = 200 GPa) clinical-style biopsy needle with

a beveled tip and a diameter of 2mm. Removable plastic spacers with a thickness of

5.95mm regulated the insertion distance. Two spacers were removed between scans,

so the needle moves in increments of 11.9mm. Five scans were collected in total. The

plastic alignment frame shown in Figure 4.3 kept the needle aligned along a known

vector relative to the phantom. When used in conjunction the alignment frame and

spacers allow the 6-DOF pose of the needle base to be calculated in each scan without

the use of a Z-frame or external tracking equipment.

4.2.2 Needle Localization

Each volume was thresholded at intensity 1500 to isolate the needle artifact. The

segmentation labelmap was exported and processed separately.

The MRI volumes for each insertion step were loaded in sequence and a linear

transform was set to match the pose of the needle base at each step. The needle

localization algorithm was run on each dataset in turn to generate an array of points

representing the simulated needle.
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Figure 4.3: Example tissue phantom with the needle alignment frame and biopsy
needle.

4.3 Results

The baseline for the position of the needle shaft in the phantom was established

by segmenting the needle artifact by intensity and computing the centroid of its cross

section in every axial scan slice. Figure 4.4 shows the segmentation for the final step

of the insertion, and Figure 4.5 shows the positions of the centroids in successive axial

planes. The error for each model is computed as the difference between the centroid

coordinate and the modeled coordinate in each slice.
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Figure 4.4: Segmentation of needle artifact generated by thresholding MRI volume.

4.3.1 Needle Localization at a Single Timestep

At the start of curve optimization using data from a single 3D scan in isolation the

needle is assumed to be a vector with magnitude matching the length of the needle.

The sampling locations are placed along the needle shaft starting from the needle tip

and are offset from the estimated position of the tip by a user-configurable distance

to avoid sampling points within the tip artifact.

Figure 4.6 shows the relative error using a 1st-, 3rd-, 5th-, and 7th-degree polyno-

mials. In this experiment the tip offset δ = 5.0mm, the sample spacing d = 26.0mm,

and the number of observed slices k = 3.

Figure 4.7 shows the effect on error relative to baseline as the number of slices

observed over the length of the needle is increased.
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Figure 4.5: Baseline ground truth data, calculated from the centroids of the segmented
artifact sectioned in the X-Y plane.

4.3.2 Needle Localization at Sequential Timesteps

Needle tracking in a sequence of images consists of repeated application of the

method for an individual timestep described in 4.3.1. The optimized curve from the

previous localization step is used as the initial estimate for the next localization step.

Figure 4.8 shows the positions of the scan planes and Figure 4.9 shows points along

the optimized curve for each insertion interval. Figure 4.10 shows the magnitude of
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Figure 4.6: Magnitude of in-plane error over insertion for various degrees of polyno-
mial. Markers indicate the positions of the slices on the needle curve. d = 26.0mm,
k = 3, δ = 5.0mm

error relative to the baseline for the optimized curve at each interval. Figure 4.11

shows the magnitude of error when the spacing between the slices is increased as the

needle is inserted.
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Figure 4.7: Magnitude of in-plane error over insertion for a variable number of sample
points. Markers indicate slice positions. n = 5, δ = 5.0mm
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Figure 4.8: Positions of 2D scan planes at each insertion step, with segmented artifact.
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Figure 4.9: Modeled curve points at each insertion step, with segmented artifact.

45



Figure 4.10: Magnitude of error between the needle model and the artifact centroid
with fixed spacing between slices. Markers indicate slice positions. d = 10mm, k = 3,
δ = 5mm
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Figure 4.11: Magnitude of error between the needle model and the artifact centroid,
where the spacing between each slice increases with insertion depth. Markers indicate
slice positions. d = 10mm+ indexstep ∗ 4mm, k = 3, δ = 5mm
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Chapter 5

Discussion and Conclusion

5.1 Discussion

5.1.1 MRI Experiment

The experimental results show that the key components of closed-loop model-

guided needle localization all work in conjunction. The needle artifact centroids are

all correctly identified by thresholding the image and identifying the region with the

centroid closest to the estimated needle position in the scan. Needle cross-section

identification finds the correct artifact even when other large non-needle artifacts are

present.

The error relative to the artifact cross-section centroid outside the tip artifact

region is less than 0.5mm, which is comparable to other work in needle localization in
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US [34] and MRI [13]. The length constraint allows the needle curve to extend beyond

the furthest sampled point into the tip artifact region, but the error is high in the tip

artifact region because the artifact is lopsided and its centroid is not located on the

needle shaft. This is a shortcoming in the baseline dataset and does not reflect the

error relative to the actual position of the needle. Extending the dataset to include a

CT scan at each needle insertion step would provide a superior baseline for the entire

needle. Since the image of the needle in the CT scan would show the actual shape of

the needle, a curve could be fit to this ground truth data to determine the polynomial

degree n that best characterizes the shape of the needle.

The linear model exhibits significant error relative to the baseline and misrepre-

sents the shape of the needle for a majority of its length. Choosing a polynomial with

degree n = 3 reduces the error. For k = 3 sample points, choosing a higher-degree

polynomial does not produce a further reduction in error because the polynomial is

underconstrained with only k = 3 observations. Possible further reduction in error

if a higher-degree polynomial is used and a greater number of points on the needle

are observed should be explored further, especially if the needle bends in multiple

directions throughout insertion.

Increasing the number of observation points along the length of the needle does

not reduce the error relative to the baseline. The error in the model is high at base of

the need+le when the observation points are clustered near the needle tip, as shown in

Figure4.10, and low when the observations are evenly distributed along the observable
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portion of the needle, as shown in Figure 4.11. This shows that sampling along the

entire needle is important for accurate characterization of the needle.

In general, the concept of modeling the needle shape by sampling needle cross-

sections in MRI is sound and could be extended for real-time applications.

5.1.2 Needle Model

The bending energy model is able to produce a good fit for the needle with very

few sampled points. It does not over-fit, even when the small number of sample

points would otherwise underconstrain the model. The curve between sample points

approximately matches the actual position of the needle, and the estimated shape of

the needle lies within the artifact region.

Optimization takes between 5 and 10 seconds (Lenovo ThinkPad P50, Intel Xeon

CPU E3-1505M v5 @ 2.80GHz, 16 GB RAM) to converge to a solution depending on

the constraints. The constraints on the needle length and the average error contribute

to increased processing time. This is not an obstacle for an offline experiment, but

it would present issues for real-time imaging. The choice of optimization algorithm

likely has a significant impact on the total processing time. SLSQP performs the op-

timization sequentially, and an NLP optimizer designed to take advantage of parallel

processing would probably complete the computation in a much shorter time.

The bending energy minimization approach is not guaranteed to provide a feasible

solution for every possible combination of constraints an sample points. Even if a
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solution is found, it is also not guaranteed to finish the optimization within a constant

time, which might complicate integration into a real-time system.

5.2 Future Work

An important piece of follow-on work will be to demonstrate real-time tracking

using live MR imaging. This will require implementation of a communication protocol

that transmits scan plane poses to the MRI controller and listens for new image data.

Precedent exists for controlling an MRI scanner in this way [8].

The time required to compute the needle curve optimization is very high and not

currently suited for real-time operation. Possible solutions to reduce the computa-

tional load include reducing the number of numerical approximations in the optimiza-

tion function, choosing a more efficient NLP optimization algorithm, and rewriting

the needle modeling Python packages in C++.

5.3 Conclusion

This thesis presented a closed-loop model-based needle localization strategy ag-

nostic to the imaging modality and independent of tissue mechanical properties. A

simulated multi-step needle insertion in MRI was tracked, and the error between the

estimated position of the needle shaft from the model and the measured position of

the centroid of the needle artifact was comparable to previously-published needle lo-
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calization approaches. The bending energy minimization approach produces accurate

curve fits using a small number of images by also considering the kinematics of the

insertion platform. While not extensively explored in this work, the parametric poly-

nomial needle curve and the concept of planning scan planes using the curve could

work for a very wide array of needle trajectories, including loops and other paths

rarely explored in other literature.
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“Fast Fourier-based simulation of off-resonance artifacts in steady-state gradient

echo MRI applied to metal object localization,” Magnetic Resonance in Medicine,

vol. 78, no. 5, pp. 2035–2041, Nov. 2017.

[37] R. J. Roesthuis, M. Kemp, J. J. van den Dobbelsteen, and S. Misra, “Three-

Dimensional Needle Shape Reconstruction Using an Array of Fiber Bragg Grat-

ing Sensors,” IEEE/ASME Transactions on Mechatronics, vol. 19, no. 4, pp.

1115–1126, Aug. 2014.

[38] S. Patil, J. Burgner, R. J. Webster, and R. Alterovitz, “Needle Steering in 3-D

Via Rapid Replanning,” IEEE transactions on robotics : a publication of the

IEEE Robotics and Automation Society, vol. 30, no. 4, pp. 853–864, Aug. 2014.

[39] W. Wang, C. L. Dumoulin, A. N. Viswanathan, Z. T. H. Tse, A. Mehrtash,

W. Loew, I. Norton, J. Tokuda, R. T. Seethamraju, T. Kapur, A. L. Damato,

R. A. Cormack, and E. J. Schmidt, “Real-time active MR-tracking of metal-

lic stylets in MR-guided radiation therapy,” Magnetic resonance in medicine :

official journal of the Society of Magnetic Resonance in Medicine / Society of

Magnetic Resonance in Medicine, vol. 73, no. 5, pp. 1803–1811, May 2015.

57



[40] R. J. Roesthuis, M. Abayazid, and S. Misra, “Mechanics-based model for pre-

dicting in-plane needle deflection with multiple bends,” in 2012 4th IEEE RAS

EMBS International Conference on Biomedical Robotics and Biomechatronics

(BioRob), Jun. 2012, pp. 69–74.

[41] D. Kraft, A Software Package for Sequential Quadratic Programming. Koln:

DFVLR, 1988, open Library ID: OL18926873M.

58


	Abstract
	Acknowledgments
	List of Figures
	Introduction
	Motivation
	Problem Formulation
	Thesis Contributions
	Minimum Bending Energy Model
	Needle Localization Algorithm
	MRI Data Collection
	Slicer Module

	MRI Physics
	Tissue Phantoms

	Review of Previous Work
	Needle Geometry
	Needle Modeling
	Non-Holonomic Kinematics
	Finite Element Models
	Mechanical Models

	Needle Steering
	Needle Localization
	Coronal and Sagittal Plane Imaging
	Transverse Plane Imaging
	3D Imaging
	Other Techniques


	Needle Model
	Assumptions and Definitions
	Beam Bending Energy
	Parametric Polynomial Space Curves
	Curve Fitting
	Cost Function
	Constraints

	Software Implementation

	Needle Localization in MR Images
	Software Architecture
	Simulated MRI Scanner
	Needle Tracking Module

	Experiment
	MRI Data Collection
	Needle Localization

	Results
	Needle Localization at a Single Timestep
	Needle Localization at Sequential Timesteps


	Discussion and Conclusion
	Discussion
	MRI Experiment
	Needle Model

	Future Work
	Conclusion

	References

