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Abstract

Turbulence modeling is one of the most important and challenging scientific problems. One
significant development for theoretical turbulence is the fractional modeling, where the fractional
calculus is applied to describe the turbulence mixing. However, there are several issues in the
application of fractional models. First, the order of fractional operators and its coefficients are
unknown. Second, there are no efficient solvers for the Navier-Stokes equation with fractional oper-
ators. We propose methods of parameter estimation for the fractional operators for the stochastic
Navier-Stokes (SNS) equation from simulation data and some nonlinear methods for SNS, address-
ing mainly the aforementioned first issue.

Our first approach of parameter estimation is based on spectral methods for SNS. The key
of this method is splitting the SNS into two subproblems: one is a linear parabolic equation and
the other one corresponds to the nonlinear term in SNS. For the linear subproblem, we develop
consistent maximum likelihood estimators for the coefficients of fractional operators and prove the
convergence order when the frequency goes to infinity. We also develop estimators based on the
quadratic variation of the underlying stochastic process. For the nonlinear subproblem, we apply
the maximum likelihood estimations.

Though spectral methods work well in very regular domains, they are not flexible enough to
fit many applications, such as for problems in complex domains. For wider applications, we plan
to use the neural network approximation to solve the SNS and perform parameter estimation with
the network approximation. The key component is to develop a mesh-free network solver for the
SNS.

Positivity-preserving is critical to achieving efficient numerical methods with correct solutions,
such as in two-phase flow modeled together with stochastic phase-field models, e.g., stochastic
Allen-Cahn equations. The main issue we focus on here is to preserve the positivity, a property
that both analytical and numerical solutions should have. We investigate nonlinear schemes for
stochastic ordinary differential equations which have the similar nonlinearity as in the Allen-Cahn
equation. The nonlinearity has polynomial growth and thus can deteriorate the convergence of
numerical schemes. Several numerical schemes are developed to tame the polynomial growth and
guarantee the convergence.
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Chapter 1

Introduction

1.1 Motivation

Stochastic Partial differential equations are widely used to describe the evolution of dynamical
systems with spatial and temporal uncertainties in the field of pure and applied mathematics.
There are many important applications in physics and finance. Meanwhile, fractional calculus
arises in many fields of engineering and science. For example, the spatial fractional stochastic
Naiver-Stokes equation describes the fluid dynamics with turbulence mixing. The external force
acting on the fluid is randomly fluctuating [35, 61].

Given the observations, parameter estimation becomes a valuable problem to be considered. The
parameters in the models represent various physical phenomena. For example, the coefficient of
the Laplacian term in the Navier-Stokes equation represents the viscosity of fluid. This procedure
introduces a method to compare the estimated values with the physical quantities, and it can
also validate and test the correctness of these models. The second reason is to give more precise
information on the model, if we don’t have full knowledge of the model. This step provides a way
to measure these unknowns based on the observations mathematically.

Fractional calculus has several definitions introduced in the following section. In chapters 2
and 3, solutions are computed in various numerical methods, such as the spectral methods and
implicit Euler schemes. We derive the maximum likelihood estimators for the fractional stochastic
heat equations in 1D and fractional stochastic Navier Stokes equation in 2D. To solve the nonlinear
issues in the Navier-Stokes equation, we use the divergence-free operator. We present several
numerical examples to show the accuracy of estimators.

Furthermore, coefficients of stochastic differential equations (SDEs) grow nonlinearly in many
applications of SDEs. When these SDEs with coefficients of superlinear growth are solved using nu-
merical methods, explicit numerical schemes usually fail to converge in the sense of mean-square and
moments, e.g., [24, 41]. We introduce several modified Euler schemes with a half order convergence.
The numerical examples are presented to show the computational performance and convergence
order.
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1.2 Some preliminaries

1.2.1 Sobolev spaces

In this subsection, let’s introduce the Sobolev spaces and characterization of Sobolev spaces using
Fourier transform. [17]

Definition 1.2.1 (Definition of Sobolev spaces). Let k be a nonnegative integer and fix 1 ≤ p ≤ ∞.
The Sobolev space W k,p(U) consists of all locally summable functions u : U → R such that for each
multiindex α with |α| ≤ k, Dαu exists in the weak sense and belongs to Lp(U).

Definition 1.2.2. If u ∈W k,p(U), we define its norm to be

||u||Wk,p(U) :=



∑
|α|≤k

∫
U
|Dαu|pdx

 1
p

, 1 ≤ p <∞

∑
|α|≤k

ess sup
U
|Dαu|, p =∞.

(1.1)

Remark 1.2.3. We usually write Hk(U) = W k,2(U). The letter H stands for a Hilbert space.

Note that H0(U) = L2(U). The norm of Hk(U) is ||u||Hk(U) =

∑
|α|≤k

∫
U
|Dαu|2dx

 1
2

.

Remark 1.2.4. Introduce the multiindex notation: Given a multiindex α, define

Dαu(x) :=
∂|α|u(x)

∂xα1
1 ∂xα2

2 ...∂xαnn
= ∂α1

x1 ...∂
αn
xn u, where |α| = α1 + ...+ αn. (1.2)

The following functions in Theorem 1.2.5 are complex valued.

Theorem 1.2.5 (Characterization of Hk by Fourier Transform). Let k be a nonnegative integer.
(1) A function u ∈ L2(Rn) belongs to Hk(Rn) if and only if

(1 + |y|k)û ∈ L2(Rn). (1.3)

(2) In addition, there exists a positive constant C such that

1

C
||u||Hk(Rn) ≤ ||(1 + |y|k)û||L2(Rn) ≤ C||u||Hk(Rn). (1.4)

Proof. (1) Assume that u ∈ L2(Rn) ⊂ Hk(Rn). We want to show that (1 + |y|k)û ∈ L2(Rn). That
is to show ∫

Rn
(1 + |y|k)2|û|2dy <∞. (1.5)

Since u ∈ Hk(Rn), for each multiindex |α| ≤ k, we have Dαu ∈ L2(Rn). If u ∈ Ck has compact
support and properties of Fourier transform, we have

D̂αu = (iy)αû. (1.6)

2



According to the approximation theory by smooth functions, the Fourier transform (1.6) is true if
u ∈ Hk(Rn). Thus, |(iy)αû| ∈ L2(Rn) for each |α| ≤ k. Choose α = (k, 0, ..., 0), (0, k, ..., 0), ..., (0, ..., k).
We obtain that ∫

Rn
|iy|2k|û|2dy =

∫
Rn
|y|2k|û|2dy ≤ C

∫
Rn
|Dku|2dy <∞. (1.7)

Then, ∫
Rn

(1 + |y|k)2|û|2dy ≤ C
∫
Rn

(1 + |y|+ ...+ |y|2k)|û|2dy ≤ C||u||2Hk(Rn) <∞, (1.8)

so (1 + |y|k)|û| ∈ L2(Rn).
Conversely, we suppose that (1 + |y|k)|û| ∈ L2(Rn). For |α| ≤ k,

||(iy)αû||2L2(Rn) =

∫
Rn
|iy|2α|û|2dy ≤

∫
Rn
|y|2|α||û|2dy ≤ C

∫
Rn

(1+|y|k)2|û|2dy = C||(1+|y|k)û||2L2(Rn).

(1.9)
For each test function φ ∈ C∞c (Rn), denote uα := ˇ(iy)αû∫

Rn
(Dαφ)ūdx =

∫
Rn
D̂αφ¯̂u =

∫
Rn

(iy)αφ̂¯̂udy = (−1)|α|
∫
Rn
φuαdx. (1.10)

Thus, uα = Dαu in the weak sense. By (1.9), |Dαu| ∈ L2(Rn). Hence u ∈ Hk(Rn).

Remark 1.2.6. From Theorem 1.2.5 (2), these two norms are equivalent. Thus, the Sobolev space
Hk(Rn) can be equivalently defined by

Hk(Rn) := {u ∈ L2(Rn) : (1 + |y|k)|û| ∈ L2(Rn)} (1.11)

Remark 1.2.7. Assume that 0 < s < ∞ and u ∈ L2(Rn). Then u ∈ Hs(Rn), if (1 + |y|s)û ∈
L2(Rn). For noninteger s, we set

||u||Hs(Rn) := ||(1 + |y|s)|û|||L2(Rn). (1.12)

This is also called fractional Sobolev spaces.

When the domain D is regular, the Sobolev-Hilbert spaces can also be characterized by the
eigen-pairs of the operator −∆ with vanishing Dirichlet boundary conditions. For example, on the
interval [0, 1], the eigenfunctions are

ek(x) =
√

2 sin(kπx), k ≥ 1, (1.13)

and the corresponding eigenvalues λk = π2k2. The eigenfunctions {em}∞m=1 form an orthonormal
basis in L2(D).

For any s ≤ 2, we define

Ḣs = Ḣs(D) = D((−∆)s/2) =

{
v
∣∣∣ ‖v‖s =

∥∥∥(−∆)s/2v
∥∥∥ =

( ∞∑
k=1

λsk[(v, ek)]
2
)1/2

<∞

}
.

It is known (see e.g. [59]) that Ḣs = Hs(D), where Hs(D) is the classical Sobolev-Hilbert space
over D.
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1.2.2 Fractional Derivatives

The fractional differential operator is a nonlocal operator used in various real-world models, such
as fluid dynamics [40], finance [14], material science [4] etc. Let’s recall the definitions and some
useful properties. The first definition is related to spectral/Fourier representation.

Definition 1.2.8. Let α ∈ (0, 1), the fractional Laplacian of order α can be defined on functions
u : Rd → R as a Fourier multiplier given the formula

F((−∆)αu)(ξ) = |ξ|2αF(u)(ξ), (1.14)

where F is a Fourier transform.

The spectral representation is used in Chapter 2 and 3. One of another definition is related to
directional representation. The integral characterization of the fractional Laplacian can be found
in [56]. The operator is written as

(−∆)α/2u(x) = Cα,d

∫
|θ|=1

Dα
θ u(x)dθ, x, θ ∈ Rd, α ∈ (0, 2]\{1}, (1.15)

where Cα,d is a scaling constant related to Gamma function before the integral [56, 47].

Cα,d =
Γ(1−α

2 )Γ(d+α
2 )

2π
1+d
2

. (1.16)

The fractional Laplacian operator is consistent with the integer ones. In particular, we have the
following pointwise limits

lim
α→0

(−∆)α/2u(x) = u(x),

lim
α→2

(−∆)α/2u(x) = −∆u(x).

1.2.3 Parameter estimations for SDEs

In this section, we present the parameter estimation for SDEs. The main idea here is to apply
Girsanov’s theorem to connect two probability measures. Then the likelihood function is defined
by the Radon Nykodym derivatives. Consider the following two scalar diffusion processes Xt and
Yt driven by the same Brownian motion.

dX = A(t,X(t)) dt+ σ(t,X(t)) dw(t), X(0) = X0, (1.17)

dY = a(t, Y (t)) dt+ σ(t, Y (t)) dw(t), Y (0) = X0. (1.18)

Here the functions A, a and σ satisfy the conditions to ensure existence of a unique strong solution.
Assume that the initial conditions are independent of w(t) and σ ≥ σ0 > 0. Let

B(t, x) =
A(t, x)− a(t, x)

σ(t, x)
, (1.19)

then by Girsanov’s theorem (e.g., Theorem 8.6.8 of [45]),

w̃(t) = −
∫ t

0
B(s, Y (s)) ds+ w(t), 0 ≤ t ≤ T (1.20)

4



is a standard Brownian motion under P YT , where the measure P YT is defined by

P YT (A) = EP
[
1A exp

(∫ T

0
B(t, Y (t)) dw(t)− 1

2

∫ T

0
B2(t, Y (t)) dt

)]
. (1.21)

Here P or PXT is the measure generated by the process X on C([0, T ];R). We can write Y (t) 1 as

dY = A(t, Y (t)) dt+ σ(t, Y (t)) dw̃(t). (1.22)

Then we may define the likelihood (Radon-Nykodym derivative, see e.g. [32])

dPXT
dP YT

= exp

(∫ T

0
B(t, Y (t)) dw − 1

2

∫ T

0
B2(t, Y (t)) dt

)
= exp

(∫ T

0

A(t, Y (t))− a(t, Y (t))

σ2(t, Y (t))
dY (t)− 1

2

∫ T

0

A2(t, Y (t))− a2(t, Y (t))

σ2(t, Y (t))
dt

)
= exp

(∫ T

0

A(t,X(t))− a(t,X(t))

σ2(t,X(t))
dX(t)− 1

2

∫ T

0

A2(t,X(t))− a2(t,X(t))

σ2(t,X(t))
dt

)
.(1.23)

Consider the estimation of the parameter θ in the following scalar equation

dX(t) = θf(X(t)) dt+ σb(X(t)) dw(t), (1.24)

where w(t) is a standard Brownian motion and f(·), b(·) are suitable real-valued functions such
that a strong solution X is well-posed. Let A(t, x) = θf(x) and a(t, x) = θ0f(x). Then by taking
the logarithm of the likelihood (1.23) and letting the derivative of the log-likelihood be zero, we
have

θ̂ =

∫ T
0

f(X(t))
σ2(X(t))

dX(t)∫ T
0

f2(X(t))
σ2(X(t))

dt
. (1.25)

Multiplying f(X)/σ2(X) over both sides of the equation of X, we obtain that

θ =

∫ T
0

f(X(t))
σ2(X(t))

dX(t) +
∫ T

0
f(X(t))
σ(X(t)) dw(t)∫ T

0
f2(X(t))
σ2(X(t))

dt
. (1.26)

Thus, we have

θ̂ − θ =

∫ T
0

f(X(t))
σ(X(t)) dw(t)∫ T

0
f2(X(t))
σ2(X(t))

dt
. (1.27)

Under certain conditions on f and σ, we may obtain that θ̂−θ converges in distribution to a normal
random variable with zero mean and a certain variance. For convergence and its rate, we will defer
discussions to the next section, where we will use the Ornstein–Uhlenbeck process as an example.

1Here we then have a weak solution (Y (t), w̃(t)) to equation.
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1.2.4 Parameter estimations for SPDEs

Compared with stochastic differential equations, the SPDEs are driven by the Q-cylindrical Gaus-
sian process.

Definition 1.2.9. [35] Let X = X(t) be zero-mean Gaussian process with the covariance function
R(t, s) = E[X(t)X(s)]. A Q-cylindrical X-process on (or over) a Hilbert space H is a collection
XQ = {XQ

f (t), f ∈ H, t ∈ [0, T ]} of zero mean Gaussian random variables with the following
property: there exists a bounded linear non-negative self-adjoint operator Q : H → H such that

E[XQ
f (t)XQ

g (s)] = (Qf, g)HR(t, s)

for all f, g ∈ H and all t, s ∈ [0, T ]. If Q is the identity operator, then XQ is called a cylindrical
x-process and denoted simply by X.

In particular, a Q-cylindrical Brownian motion WQ = WQ(t), t ∈ [0, T ] on a Hilbert space H,
is a collection {WQ

f (t), f ∈ H, t ∈ [0, T ]} of zero-mean Gaussian random variables such that

E[WQ
f (t)WQ

g (s)] = (Qf, g)H min(t, s).

It can also be represented in the series form.

WQ(t) =

∞∑
k=1

√
qkmkWk(t),

where {mk} is a complete orthonormal basis. For θ ∈ R, consider the equation

u̇(t) + (A0 + θA1)u(t) = σẆQ(t), (1.28)

with initial condition u(0). Then, the dynamcis of the Fourier coefficients uk is

duk(t) = −µk(θ)uk(t)dt+ σ
√
qkdwk(t). (1.29)

Denote A(t, uk(t)) = −µk(θ)uk(t) and σ(t, uk(t)) = σ
√
qk. Regard U as the measure related to the

observations and V as the measure related to the exact value. By Girsanov’s theorem, we have the
log-likelihood function defined by Radon-Nykodym derivatives

dPU

dPV
= exp

(∫ T

0

A(t, uk(t))− a(t, uk(t))

σ2(t, uk(t))
duk(t)−

∫ T

0

A2(t, uk)− a2(t, uk(t))

σ2(t, uk(t))
dt

)
. (1.30)

With the same procedures as the estimation of SDEs, we have the maximum likelihood estimation
on θ. The consistency and asymptotic normality theorem are well-established in [35]. However,
the operator of A1 only includes the operators with integer orders. In my work, we consider
the parameter estimation in the stochastic heat equation with the fractional term. There are no
suggested estimators on the fractional order α in the existing literature.

There are extensive works on parameter estimations on SDEs. Nevertheless, the field of pa-
rameter estimations for stochastic partial differential equations is still developing. see e.g. [10] –
many important problems haven’t been resolved, see e.g. [11] for stochastic Navier-Stokes, where a
simple and seemingly working maximum likelihood estimation is proposed but the convergence and
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its convergence rate hasn’t been established. A new class of estimators, called trajectory fitting
estimators was introduced in [12]. The infinite dimensional parameter estimation for stochastic
heat diffusion equations is considered using the method of sieves and the consistency property
is also studied for the long run data in [1]. The traditional maximum likelihood estimations on
the diagonalizable stochastic parabolic equation with fractional noise with any Hurst parameter
H ∈ (0, 1) was investigated in [9]. A completely new closed-form exact estimator was constructed
in [13] for a stochastic parabolic equation with multiplicative noise under the assumption that the
SPDEs can be reduced to an infinite system of uncoupled diffusion processes.

Besides the maximum likelihood estimators, there are also different types of estimators intro-
duced in this field. Bayes estimation for some stochastic partial differential equations was introduced
in [49]. In this paper, the Bayes estimation is limited to the SPDEs with linear drift. Nonparametric
estimation was introduced in [50] based on the SPDEs with the same properties.

1.2.5 Neural networks approximation for fractional PDEs with inference on
parameters

Deep learning methods are efficient in solving the forward and inverse problems on PDEs. This is
still a fairly new research field. It connects the deep learning techniques and classic PDE. There
are still many problems to be solved.

Several works are done in the past few years. The physics-informed neural networks is introduced
in [52]. In this paper, they introduced the efficient mechanism for regularizing the training of deep
neural networks in small data regimes and put forth a deep learning framework on the combination
of data and mathematical models. In the paper, several classic problems are demonstrated including
the Navier-Stokes equation, reaction-diffusion systems and so on. The works in [63] consider the
parametric uncertainty as a stochastic process. It combines the arbitrary polynomial chaos with
PINNs for both forward and inverse problems. [48] worked on the fractional physics-informed neural
networks. In this paper, it applied the deep learning techniques to find the numerical solutions to
fractional PDEs in both forward and inverse problems. The fractional operator is defined by the
directional derivatives. To discretize the fractional operators, they employ the Grünwald-Letnikov
(GL) formula in one-dimensional fractional ADEs and the vector GL formula in conjunction with
the directional fractional Laplacian in two- and three-dimensional fractional ADEs. However, it
required more mesh points to get the accuracy of 10−3 ∼ 10−4. Our work is to evaluate the integral
by generalized Gauss-Laguerre quadrature rule. To get the same accuracy, it will require fewer
data points and save more computational cost.

1.3 Outline

The outline of this document is as follows:

In chapter 2, we discuss the parameter estimation for the stochastic heat equation. Thanks to
the Girsanov theorems and Radon Nykodym derivatives, we have the likelihood functions between
two probability measures and derive the analytic form of maximum likelihood estimations on these
parameters. We verify these estimators achieve its maximum value of the log-likelihood function by
the second-order derivative test. We state and prove the consistency and asymptotic normality for
estimators. We develop the estimators on the case of several parameters. The numerical examples
are provided.
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In chapter 3, we focus on the fractional Navier-Stokes equation with additive noise. We apply
the spectral method to solve this PDE numerically. We derive the maximum likelihood estimation
for the generalized viscosity. The related numerical examples are also demonstrated.

In chapter 4, we propose a neural network method to solve the fractional PDE. The fractional
Laplacian operator is defined by the directional derivatives. We apply the generalized Gauss-
Laguerre quadrature rule and derive the numerical schemes.

In chapter 5, we develop explicit schemes preserving the positivity of solutions to SDEs with
non-globally Lipschitz drift and Hölder continuous diffusion coefficients. We present five explicit
positivity-preserving schemes. These schemes are modified symmetrized Euler schemes. We discuss
several choices for non-globally Lipschitz drift among the state-of-the-art tamed schemes and trun-
cation schemes. We present several numerical examples using these schemes and make comparisons
in computational performance and convergence.
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Chapter 2

Parameter Estimation for Stochastic
Heat Equations

In this chapter, we will discuss the following problem

ut − β∆u+ θ(−∆)αu+ λu+ f = σẆQ, (t, x) ∈ (0, T ]×D, u(0, x) = u0(x), (2.1)

with periodic boundary conditions when D is a periodic domain or vanishing Dirichlet boundary
conditions when D is a bounded.

In numerous applications, we can measure u (observations data), while we have no knowledge of
the fractional order and coefficients in the PDE. Our goal is to estimate the parameters α, β, θ and
λ, given the observed data of the solution u. These coefficients have their own physical meanings.
In fluid applications, the coefficient of the laplacian term β represents the viscosity of the fluid and
α here represents the turbulence mixing [16, 57]; θ is the generalized kinematic viscosity and λ is
the friction coefficient.

Here we assume that

ẆQ =
∞∑
|k|=0

√
qkmk(x)Ẇk(t), k = (k1, k2, ..., kd) (2.2)

where {mk(x)}k is a complete orthonormal basis in L2(D) and Wk’s are independent standard
Brownian motions.

In this chapter, we first prove the regularity of the stochastic heat equations. With the problem
settings in (2.1), we derive the maximum likelihood estimation on each parameter. We also prove
the consistency and asymptotic normality of parameter θ in (2.1). Moreover, we also introduced
different types of estimators for α. The numerical examples are shown in Chapter 2.5. The detailed
calculations steps are listed in Chapter 2.6.

2.1 Regularity of the solution

Let’s consider the regularity of the solution when (−∆)α/2 is defined via eigen-pairs of −∆ on the
same domain.
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Lemma 2.1.1. For λ > 0 and t > 0,

E

[∣∣∣∣∫ t

0
e−λ(t−θ) dW (θ)−

∫ s

0
e−λ(s−θ) dW (θ)

∣∣∣∣2
]
≤ 1− e−2λ(t−s)

λ
. (2.3)

Proof. The inequality (2.3) holds, because by the convexity e−λ(t+s) ≤ 1

2
(e−2λt + e−2λs) and

E

[(∫ t

0
e−λ(t−θ)dW (θ)−

∫ s

0
e−λ(s−θ)dW (θ)

)2
]

= V ar

[(∫ t

0
e−λ(t−θ)dW (θ)−

∫ s

0
e−λ(s−θ)dW (θ)

)2
]

= E
(∫ t

0
e−2λ(t−θ)dθ

)
+ E

(∫ s

0
e−2λ(s−θ)dθ

)
− 2E

(∫ t

0
e−2λ(t−θ)dW (θ)

∫ s

0
e−2λ(s−θ)dW (θ)

)
=

1

2λ

(
1− e−2λt

)
+

1

2λ

(
1− e−2λs

)
− 2

2λ

(
e−λ|t−s| − e−λ(t+s)

)
=

1

λ
(1− e−2λ(t−s)) +

1

2λ
(2e−λ(t+s) − e−2λs − e−2λt) ≤ 1

λ
(1− e−2λ(t−s)).

Let {ek(x)}k be eigenfunctions of the laplacian operator −∆ with given boundary conditions
and the corresponding eigenvalues are λk:

−∆ek = λ∆
k ek (2.4)

and ek’s satisfy the given boundary conditions. For vanishing Dirichlet boundary conditions,

λ∆
k =

(π
l

)2
d∑
i=1

k2
i := |k|2

(π
l

)2
, ek(x) =

d∏
i=1

√
2

l
sin
(
ki
π

l
xi

)
, k = (k1, k2, ..., kd). (2.5)

For periodic boundary conditions, ek is the normalized exp(
√
−12π

l k>x). The eigenvalues λ∆
k ∼

|k|2. The eigenvalues of the operator (−∆) + (−∆)
α
2 + 1 are proportional to |k|2 + |k|α + 1. As

ek’s form an complete orthonormal basis on L2(D), we take mk = ek in (2.2).

Theorem 2.1.2. Let f = 0. Consider the problem (2.1) with the noise defined by (2.2). Let the
domain D be the periodic domain with periodicity l in each direction or the cube [0, l]d. When D is
the cube, we consider vanishing Dirichlet boundary conditions.

When

∞∑
|k|=0

qk <∞ and u0 ∈ L2(D), for p ≥ 1.

E

[
sup

0≤t≤T
|u(t, x)|p

]
<∞. (2.6)

When u0 ∈ Hγ(D) and
∞∑
|k|=0

qkλ
γ−1
k <∞ with 0 < γ ≤ 1, the solution is Hölder continuous in

time with exponent less than γ/2 and Hölder continuous in space with exponent less than γ.
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Proof. We apply the method of eigenfunction expansion, i.e., write the solution in the following
form

u(t,x) =
∞∑
|k|=0

uk(t)ek(x).

Plugging this eigen-expansion into (2.1) and multiplying by ei before integrating over both sides of
the equation, we have

duk(t) = −λkuk(t) dt+
√
qk dWk(t), uk(0) =

∫∫
D
u0(x)ek(x) dx.

Here λk = βλ∆
k + θ(λ∆

k )α/2 + λ. This is the Ornstein-Uhlenbeck process and its solution is

uk(t) = u0,ke
−λkt +

√
qk

∫ t

0
e−λk(t−s) dWk(s), u0,k =

∫∫
D
u0(x)ek(x) dx.

Thus the solution is

u(t, x) =

∞∑
|k|=0

[∫∫
D
u0(x)ek(x) dxe−λkt +

√
qk

∫ t

0
e−λk(t−s) dWk(s)

]
ek(x). (2.7)

By the Burkholder-Davis-Gundy inequality, we have for p ≥ 1,

E

 sup
0≤t≤T

∣∣∣∣∣∣u(t, x)−
∞∑
|k|=0

u0,kek(x)e−λkt

∣∣∣∣∣∣
p ≤ Cp

∣∣∣∣∣∣
∞∑
|k|=0

qke
2
k(x)

1− e−2λkT

2λk

∣∣∣∣∣∣
p/2

≤ Cp

∣∣∣∣∣∣T
∞∑
|k|=0

qke
2
k(x)

∣∣∣∣∣∣
p/2

.

As long as
∞∑
|k|=0

qk converges, E

[
sup

0≤t≤T
|u(t, x)|p

]
<∞. Now, we show the regularity of the solution

in t. As |e−λkt − e−λks| ≤ 2β|λk(t− s)|β, for any β ∈ [0, 1]. Then, by the orthonormality of ek and
Lemma 2.1.1,

E
[
‖u(t, x)− u(s, x)‖2

]
=

∞∑
|k|=0

E[|uk(t)− uk(s)|2]

=

∞∑
|k|=0

∣∣∣u0,k

(
e−λkt − e−λks)

∣∣∣2 + qkE[

∣∣∣∣∫ t

0
e−λk(t−θ) dWk(θ)−

∫ s

0
e−λk(s−θ) dWk(θ)

∣∣∣∣2]

≤
∞∑
|k|=0

[22βλ2β
k |u0,k|2 (t− s)2β + qk

1− e−2λk(t−s)

λk
]

≤ 22β(t− s)2β
∞∑
|k|=0

|u0,k|2 λ2β
k + 2γ(t− s)γ

∞∑
|k|=0

qkλ
γ−1
k , γ ∈ [0, 1].

Taking 2β = γ, then

E
[
‖u(t, x)− u(s, x)‖2

]
≤ 2γ(t− s)γ(

∞∑
|k|=0

|u0,k|2 λγk +
∞∑
|k|=0

qkλ
γ−1
k ).
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Thus when the summation is valid (finite), we have

E
[
‖u(t, x)− u(s, x)‖2

]
≤ C(t− s)γ , 0 < γ ≤ 1.

Then, by Kolmogorov’s continuity theorem for Gaussian processes, the solution is Hölder continuous
in time with exponent less than γ/2.

Now, we show that the solution is Hölder continuous in x with exponent less than 1. By the

fact |ek(x)− ek(y)| ≤ Cλ
γ
2
k |x− y|

γ for any γ ∈ [0, 1], it can be readily checked that

E
[
|u(t, x)− u(t, y)|2

]
=

∞∑
|k|=0

E[|uk(t)|2] |ek(x)− ek(y)|2

≤ C|x− y|2γ
∞∑
|k|=0

E[|uk(t)|2]λγk

≤ C|x− y|2γ
∞∑
|k|=0

(
|u0,k|2 e−2λkt + qk

1− e−2λkt

2λk

)
λγk

≤ C|x− y|2γ
∞∑
|k|=0

(
|u0,k|2 λγk +

1

2
qkλ

γ−1
k

)

Recall the condition u0 ∈ Hγ(D) and
∑
|k| qkλ

γ−1
k <∞, we then have

E
[
|u(t, x)− u(t, y)|2

]
≤ C|x− y|2γ . (2.8)

Then, by Kolmogorov’s continuity theorem for Gaussian processes, the solution is Hölder continuous
in space with exponent less than γ.

Remark 2.1.3. The derivatives of the solution such as −∆u should be understood as a distribution
instead of a function. Let’s suppose that u0(x) = 0 and θ = λ = 0. The solution becomes

u(t, x) =

∞∑
|k|=0

√
qk

∫ t

0
e−λk(t−s) dWk(s)ek(x). (2.9)

Then,

−∆u(t, x) =

∞∑
|k|=0

λk
√
qk

∫ t

0
e−λk(t−s) dWk(s)ek(x). (2.10)

For this Gaussian process to have a a bounded second-order moment, we need

E[‖−∆u(t)‖2] =
∞∑
|k|=0

qkλk
1− e−2λkt

2
≥ 1− e

−2( min
k,|k|6=0

λk)t

2

∞∑
|k|=1

qkλk.

Thus if qk is proportional to
1

|k|p
, for p ≤ d,

∞∑
|k|=0

qkλk diverges. The condition on
∞∑
|k|=0

qk < ∞

will not give us second-order derivatives in a classical sense.
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Remark 2.1.4. With the deterministic function f 6= 0, assume further that f ∈ L2(D), to guar-
antee the existence of the solutions.

2.2 Parameter Estimation

Our goal is to estimate the parameter β, λ, θ, α for the fractional advection-diffusion-reaction equa-
tion (2.1). Let’s consider the periodic boundary condition in 1D with periodicity 2π: u(t, 0) =
u(t, 2π). Here f is a deterministic function for simplicity.

We apply the eigenfunction expansion u(x, t) =

∞∑
|k|=0

uk(t)ek(x), and then we have

duk(t) = −[µk(Θ)uk(t) + fk(t)]dt+ σ
√
qkdwk(t), (2.11)

where vk ≥ 0 is the eigenvalue of −∆ and its corresponding eigenfunction is ek(x). Here we denote

µk(Θ) = βvk + θ|vk|α + λ, where Θ = (β, λ, θ, α). (2.12)

Then we can apply the maximum log-likelihood method as in Section 1.2.3. The log-likelihood
function is

ln(LN,T (Θ)) = −
N∑
k=1

(
(µk(Θ)− µk(Θ0))(ak,T + ck,T ) +

1

2
(µ2
k(Θ)− µ2

k(Θ0))bk,T

)
, (2.13)

where Θ0 = (β0, λ0, θ0, α0) represents the true parameters and

ak,T =
1

σ2

∫ T

0
qρkuk(t)duk(t), bk,T =

1

σ2

∫ T

0
qρku

2
k(t)dt, ck,T =

1

σ2

∫ T

0
qρkuk(t)fk(t)dt.

(2.14)
Here ρ is a free parameter to be tuned for better convergence orders.

As this log-likelihood function is smooth, optimal parameters need to have vanishing first-order
partial derivative with respect to each parameter. Here we list these partial derivatives.

∂ ln(LN,T )

∂β
= −

N∑
k=1

vk(ak,T + ck,T + µk(Θ)bk,T ), (2.15)

∂ ln(LN,T )

∂λ
= −

N∑
k=1

(ak,T + ck,T + µk(Θ)bk,T ), (2.16)

∂ ln(LN,T )

∂θ
= −

N∑
k=1

|vk|α(ak,T + ck,T + µk(Θ)bk,T ), (2.17)

∂ ln(LN,T )

∂α
= −θ

N∑
k=1

|vk|α ln(|vk|)(ak,T + ck,T + µk(Θ)bk,T ). (2.18)

Due to the fact that bk,T > 0, for all k and T ,
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∂2 ln(LN,T )

∂β2
= −

N∑
k=1

v2
kbk,T < 0, (2.19)

∂2 ln(LN,T )

∂λ2
= −

N∑
k=1

bk,T < 0, (2.20)

∂2 ln(LN,T )

∂θ2
= −

N∑
k=1

v2α
k bk,T < 0, (2.21)

∂2 ln(LN,T )

∂α2
= −

N∑
k=1

{
θ|vk|α(ln(|vk|))2(ak,T + ck,T + µk(Θ)bk,T ) + θ2|vk|2α(ln(|vk|)2bk,T

}
.(2.22)

The mixed derivatives are all negative:

∂2 ln(LN,T )

∂β∂λ
= −

N∑
k=1

vkbk,T < 0, (2.23)

∂2 ln(LN,T )

∂β∂θ
= −

N∑
k=1

vα+1
k bk,T < 0, (2.24)

∂2 ln(LN,T )

∂θ∂λ
= −

N∑
k=1

vαk bk,T < 0, (2.25)

∂2 ln(LN,T )

∂α∂λ
= −

N∑
k=1

θ|vk|α ln(|vk|)bk,T < 0, (2.26)

∂2 ln(LN,T )

∂α∂β
= −

N∑
k=1

θ|vk|α+1 ln(|vk|)bk,T < 0. (2.27)

The above formulas show that each second order derivative on the log-likelihood function is
negative. The maximum can be achieved if we estimate these parameters individually with other
two parameters known. It remains to show the negative definiteness of the Hessian of the log-
likelihood function, assuming that β, θ and λ are all unknown.

2.3 Estimating β, θ, λ with given α

We will need to show that the following Hessian matrix associated with the log-likelihood function
is negative definite. ∣∣∣∣∣∣∣∣

∂2 ln(LN,T )
∂β2

∂2 ln(LN,T )
∂β∂λ

∂2 ln(LN,T )
∂β∂θ

∂2 ln(LN,T )
∂β∂λ

∂2 ln(LN,T )
∂λ2

∂2 ln(LN,T )
∂θ∂λ

∂2 ln(LN,T )
∂β∂θ

∂2 ln(LN,T )
∂θ∂λ

∂2 ln(LN,T )
∂θ2

∣∣∣∣∣∣∣∣ . (2.28)

We need the following theorem.
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Theorem 2.3.1 (Theorem for the totally positive matrix). If 0 < a1 < a2 < ... < an and
0 ≤ λ1 < λ2 < ... < λn. The determinant of the following matrix is positive.∣∣∣∣∣∣∣∣∣

aλ11 aλ12 · · · · · · aλ1n
aλ21 aλ22 · · · · · · aλ2n

...
... · · · · · ·

...

aλn1 aλn2 · · · · · · aλnn

∣∣∣∣∣∣∣∣∣ > 0. (2.29)

The detailed proof of theorem 2.3.1 is in Chapter 2.6.

Theorem 2.3.2. Let LN,T be the log-likelihood function defined in (2.13). Then its Hessian matrix
(2.28) is negative definite.

Proof. We want to show that the determinant of Hessian matrix (2.28) is negative definite. Clearly,
the Hessian matrix is symmetric due to the continuity of the log-likelihood function. A symmetric
matrix is negative definite if and only if all of its principal minors of even order are positive and all
of its principal minors of odd order are negative. Then, need to check the sign of leading principal

minors. It is straightforward that the first leading principal minor is negative:
∂2 ln(LN,T )

∂β2
=

−
N∑
k=1

v2
kbk,T < 0. The second leading principal minor is

∣∣∣∣∣
∂2 ln(LN,T )

∂β2

∂2 ln(LN,T )
∂β∂λ

∂2 ln(LN,T )
∂β∂λ

∂2 ln(LN,T )
∂λ2

∣∣∣∣∣
=

(
N∑
k=1

v2
kbk,T

)(
N∑
k=1

bk,T

)
−

(
N∑
k=1

vkbk,T

)2

=

N∑
k,l

(
v2
kbk,T bl,T − vkvlbk,T bl,T

)
=

N∑
k 6=l

(
v2
kbk,T bl,T − vkvlbk,T bl,T

)
=

N∑
k>l

(
v2
kbk,T bl,T − vkvlbk,T bl,T

)
+

N∑
k<l

(
v2
kbk,T bl,T − vkvlbk,T bl,T

)
=

N∑
k>l

(
v2
kbk,T bl,T − vkvlbk,T bl,T

)
+

N∑
k>l

(
v2
l bk,T bl,T − vkvlbk,T bl,T

)
=

N∑
k>l

(vk − vl)2 bk,T bl,T > 0. (2.30)

The third leading principal minor is the determinant of the Hessian matrix.∣∣∣∣∣∣∣∣
∂2 ln(LN,T )

∂β2

∂2 ln(LN,T )
∂β∂λ

∂2 ln(LN,T )
∂β∂θ

∂2 ln(LN,T )
∂β∂λ

∂2 ln(LN,T )
∂λ2

∂2 ln(LN,T )
∂θ∂λ

∂2 ln(LN,T )
∂β∂θ

∂2 ln(LN,T )
∂θ∂λ

∂2 ln(LN,T )
∂θ2

∣∣∣∣∣∣∣∣
15



= −

∣∣∣∣∣∣∣∣∣∣∣∣∣

N∑
k=1

v2
kbk,T

N∑
k=1

vkbk,T
N∑
k=1

vα+1
k bk,T

N∑
k=1

vkbk,T
N∑
k=1

bk,T
N∑
k=1

vαk bk,T

N∑
k=1

vα+1
k bk,T

N∑
k=1

vαk bk,T
N∑
k=1

v2α
k bk,T

∣∣∣∣∣∣∣∣∣∣∣∣∣
= −

N∑
k,l,m

(v2
kv

2α
m + vkv

α
l v

α+1
m + vlv

α
mv

α+1
k − vα+1

k vα+1
m − vkvlv2α

m − v2
kv
α
l v

α
m)bk,T bl,T bm,T

= −
N∑

k,l,m

∣∣∣∣∣∣
v2
k vk vα+1

k

vl 1 vαl
vα+1
m vαm v2α

m

∣∣∣∣∣∣ bk,T bl,T bm,T = −
N∑

k,l,m

vkv
α
m

∣∣∣∣∣∣
vk 1 vαk
vl 1 vαl
vm 1 vαm

∣∣∣∣∣∣ bk,T bl,T bm,T
= −

N∑
k,l,m

vkv
α
m

∣∣∣∣∣∣
1 vαk vk
1 vαl vl
1 vαm vm

∣∣∣∣∣∣ bk,T bl,T bm,T < 0. (2.31)

Since the matrix in the last step of (2.31) is a generalized Vandermonde matrix for 0 < α < 1, its
determinant is positive. By Theorem 2.3.1 on total positive matrices, the third leading principal
minor is negative. Thus, we have proved that the Hessian matrix is negative definite.

As the Hessian matrix is negative definite, the log-likelihood function can achieve its global
maximum.

2.3.1 Algorithm for estimation of β, θ, λ

Based on the negative definiteness of the Hessian matrix verified in the previous subsection, there
exists a global maximum for the log-likelihood function. Given the information on α, we now work
on the estimation of β, θ and λ. Construct the linear system on these three variables. We set the
first order partial derivatives (2.15), (2.18) and (2.16) to be zero. The solution to this linear system
is the critical point of the log-likelihood function.

(
N∑
k=1

v2
kbk,T

)
β +

(
N∑
k=1

vkbk,T

)
λ+

(
N∑
k=1

vα+1
k bk,T

)
θ =

N∑
k=1

−vk(ak,T + ck,T ),(
N∑
k=1

vkbk,T

)
β +

(
N∑
k=1

bk,T

)
λ+

(
N∑
k=1

vαk bk,T

)
θ =

N∑
k=1

−(ak,T + ck,T ),(
N∑
k=1

vα+1
k bk,T

)
β +

(
N∑
k=1

vαk bk,T

)
λ+

(
N∑
k=1

v2α
k bk,T

)
θ =

N∑
k=1

−vαk (ak,T + ck,T ).

(2.32)

Let’s denote the determinant of the coefficients matrix in (2.32) as DN,T , which is computed in
(2.31).

DN,T =

N∑
k,l,m

vkv
α
m

∣∣∣∣∣∣
1 vαk vk
1 vαl vl
1 vαm vm

∣∣∣∣∣∣ bk,T bl,T bm,T .
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Solving this system (2.32) by the Cramer rule, we obtain that

β̂N,T =
Dβ
N,T

DN,T
, λ̂N,T =

Dλ
N,T

DN,T
, θ̂N,T =

Dθ
N,T

DN,T
, (2.33)

where

Dβ
N,T = −

∣∣∣∣∣∣∣∣∣∣∣∣∣

N∑
k=1

vk(ak,T + ck,T )
N∑
k=1

vkbk,T
N∑
k=1

vα+1
k bk,T

N∑
k=1

(ak,T + ck,T )
N∑
k=1

bk,T
N∑
k=1

vαk bk,T

N∑
k=1

vαk (ak,T + ck,T )
N∑
k=1

vαk bk,T
N∑
k=1

v2α
k bk,T

∣∣∣∣∣∣∣∣∣∣∣∣∣
,

Dλ
N,T = −

∣∣∣∣∣∣∣∣∣∣∣∣∣

N∑
k=1

v2
kbk,T

N∑
k=1

vk(ak,T + ck,T )
N∑
k=1

vα+1
k bk,T

N∑
k=1

vkbk,T
N∑
k=1

(ak,T + ck,T )
N∑
k=1

vαk bk,T

N∑
k=1

vα+1
k bk,T

N∑
k=1

vαk (ak,T + ck,T )
N∑
k=1

v2α
k bk,T

∣∣∣∣∣∣∣∣∣∣∣∣∣
,

Dθ
N,T = −

∣∣∣∣∣∣∣∣∣∣∣∣∣

N∑
k=1

v2
kbk,T

N∑
k=1

vkbk,T
N∑
k=1

vk(ak,T + ck,T )

N∑
k=1

vkbk,T
N∑
k=1

bk,T
N∑
k=1

(ak,T + ck,T )

N∑
k=1

vα+1
k bk,T

N∑
k=1

vαk bk,T
N∑
k=1

vαk (ak,T + ck,T )

∣∣∣∣∣∣∣∣∣∣∣∣∣
.

2.3.2 Consistency and Asymptotic Normality of the estimator θ

In this subsection, we present the consistency of the estimator θ̂N (T ), and asymptotic normality
of the error. The consistency and asymptotic normality of other parameter λ can be achieved with
the same procedures as θ.

To derive the closed form of the error term, we first solve this SDE analytically by applying
Itô’s formula on this Ornstein–Uhlenbeck process (2.11) and obtain

uk(t) = uk(0)e−µk(Θ)t −
∫ t

0
e−µk(Θ)(t−s)fk(s)ds+ σ

√
qk

∫ t

0
e−µk(Θ)(t−s)dWk(s). (2.34)

We now find a closed form of the optimal value θ̂N,T , given the observed data. Let (2.17) be zero.
Then it gives

θ̂N (T ) = −

N∑
k=1

[
|vk|αak,T + (β|vk|α+1 + λ|vk|α)bk,T + |vk|αck,T

]
N∑
k=1

qρk|vk|
2αbk,T

(2.35)
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According to (2.33), derive the form of θ.

θ = −

N∑
k=1

[
|vk|αak,T + (β|vk|α+1 + λ|vk|α)bk,T + |vk|αck,T

]
N∑
k=1

qρk|vk|
2αbk,T

+

N∑
k=1

σ

∫ T

0
q
ρ+ 1

2
k |vk|αuk(t)dWk(t)

N∑
k=1

∫ T

0
qρk|vk|

2αu2
k(t)dt

, (2.36)

We then obtain that

θ̂N (T )− θ = −

σ
N∑
k=1

∫ T

0
q
ρ+ 1

2
k vαk uk(t)dWk(t)

N∑
k=1

∫ T

0
qρkv

2α
k u2

k(t)dt

. (2.37)

The error term above will be used to show the consistency and asymptotic normality. The following
part is to introduce the notations and basic settings for the main theorem on the consistency and
asymptotic normality.

We follow the idea of Chapter 6.3 of [35] to show the desired conclusion.
Consider the diagonal parabolic equation of order 2m

u̇+ (A0 + ΘA1)u = ẆQ. (2.38)

Denote ωα =
2(α−m)

d
. Here α is the order of the operator A1, 2m is the order of the operator

A0 + ΘA1.

Assumption 2.3.3 (Eigenvalues of operators). Assume that the following limits exist:

v̄ = lim
k→∞

vk
kα/d

6= 0, (2.39)

µ̄(Θ) = lim
k→∞

µk(Θ)

k2m/d
> 0, (2.40)

Moreover, the eigenvalues of the operators have a particular growth rate in k:

kth eigenvalue ∼ k order of the operator/d. (2.41)

Assumption 2.3.4 (Initial condition). Assume that the modes of the initial condition u0(x) satisfy
that uk(0) ∼ N (mk, σ

2
k) for k ≥ 1 and for some ρ ≥ −1,

lim
k→∞

(m2
k + σ2

k)q
ρ
k = 0, (2.42)

lim
k→∞

(m2
k + σ2

k)q
2ρ+1
k = 0, (2.43)

lim
k→∞

q2ρ
k µk(Θ)(σ2

k + 2m2
k) = 0. (2.44)

Here are some examples when the assumption is satisfied.

• When qk ≡ 1, uk(0) is a constant when k is large enough.

18



• When qk = k−1, ρ = −1, uk(0) is a normal distributed random variable with mean 0 and

variance
1

k4
, for k ≥ 1.

Define the number σ = σ(Θ) > 0 by

σ2(Θ) =


2(ωα + 1)µ̄(Θ)

σ2v̄2α
, if ωα > −1,

2µ̄(Θ)

σ2v̄2α
, if ωα = −1.

(2.45)

Theorem 2.3.5 (c.f.[10]). For equation 2.38, assume that Assumption (2.3.3) and (2.3.4) hold.

Define I(n) :=

n∑
k=1

qρ+1
k kωα and

∞∑
n=1

q2ρ+2
n nωα

I2(n)
<∞. (2.46)

Assumption 3:
∞∑
n=1

q2ρ+2
n n2ωα

I2(n)
<∞. (2.47)

If ωα ≥ −1, then the estimator θ̂N of θ is strongly consistent and asymptotically normal as N →∞.
More precisely,

lim
N→∞

θ̂N (T ) = θ, in probability, for every T > 0, (2.48)

and

lim
N→∞

√
I(N)(θ̂N − θ) = N (0,σ2(θ)/T ). (2.49)

2.3.3 Proof of the main theorem 2.3.5

In this subsection, we state and present the proof of consistency and asymptotic normality of
the parameters. In this proof, we will apply the strong law of large numbers and Martingale
Representation theorem. The main idea of the proof follows the step in [35].

Theorem 2.3.6 (The Strong Law of Large Numbers). Let ζn, n ≥ 1, be a sequence of independent
random variables and bn, n ≥ 1, a sequence of positive numbers such that bn+1 ≥ bn and lim

n→∞
bn =

+∞, and ∑
n≥1

Var(ζn)

b2n
<∞. (2.50)

Then,

lim
n→∞

n∑
k=1

(ζn − E[ζn])

bn
= 0 (2.51)

with probability one.
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Theorem 2.3.7 (Martingale Central Limit theorem). For t ≥ 0 and ε > 0, if Xε = Xε(t) and
X = X(t) are real-valued, continuous square-integrable martingales such that X is a Gaussian
process, Xε(0) = X(0) = 0, and, for some t0 > 0,

lim
ε→0
〈Xε〉 (t0) = 〈X〉 (t0)

in probability, then lim
ε→0

Xε(t0) = X(t0) in distribution.

Below is the proof of the main theorem. The detailed calculation steps are listed in Chapter
2.6.

Proof. From (2.37), let’s denote

ζk =

∫ T

0
q
ρ+ 1

2
k vαk uk(t)dWk(t), (2.52)

ηk =

∫ T

0
qρkv

2α
k u2

k(t)dt, (2.53)

and

bn =
n∑
k=1

E[ηk] =
n∑
k=1

qρkv
2α
k

∫ T

0
E[u2

k(t)]dt. (2.54)

With the notation (2.52) to (2.54), the error term (2.37) becomes

θ̂N − θ = −σ

N∑
k=1

ζk

bN
×

N∑
k=1

E[ηk]

N∑
k=1

ηk

=: −σI1I2. (2.55)

Consistency follows from Theorem 2.3.6. The only non-trivial conditions to check are the conver-
gence of the following series

∞∑
n=1

Var(ζn)

b2n
<∞,

∞∑
n=1

Var(ηn)

b2n
<∞, (2.56)

which will imply, respectively, that I1 → 0 a.s. and I2 → 1 a.s., as N → ∞, and by (2.55)
the consistency of θ̂N follows. To verify (2.56), it can be done by establishing precise asymptotic
behavior of V ar(ζn), V ar(ηn) and bn in Step 1 and 2. The asymptotic normality is shown in Step
3.
Step 1: Start with evaluating bn, the denominator in (2.56). For simplicity, we assume that
uk(0) = 0 is constant, the expectation mk and the variance σ2

k are 0. For fixed T > 0, using the
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explicit form of

∫ T

0
E[u2

k(t)]dt computed in Chapter 2.6,

bn =

n∑
k=1

v2α
k qρk

∫ T

0
E[u2

k(t)]dt

≈
n∑
k=1

v2α
k qρk

[
m2
k + σ2

k

2µk(Θ)
+

σ2qkT

2µk(Θ)

]

=

n∑
k=1

v2α
k T

2µk(Θ)

[
(m2

k + σ2
k)q

ρ
k

T
+ σ2qρ+1

k

]

=
n∑
k=1

σ2v2α
k qρ+1

k T

2µk(Θ)

≈ σ2T v̄2α

2µ̄(Θ)

n∑
k=1

qρ+1
k k2α/d

k2m/d

=
σ2T v̄2α

2µ̄(Θ)

n∑
k=1

qρ+1
k k

2(α−m)
d :=

σ2T v̄2α

2µ̄(Θ)
I(n).

(2.57)

Recall the definition of ζk =

∫ T

0
q
ρ+ 1

2
k vαk uk(t)dWk(t) and bn =

n∑
k=1

qρkv
2α
k

∫ T

0
E[u2

k(t)]dt ∼ I(n) in

(2.52) and (2.54).

Var(ζn) = q2ρ+1
n v2α

n

∫ T

0
E[u2

n(t)]dt ≈ q2ρ+1
n v2α

n

[
m2
n + σ2

n

2µn(Θ)
+

σ2qnT

2µn(Θ)

]
≈ σ2q2ρ+2

n v2α
n T

2µn(Θ)
≈ σ2Tq2ρ+2

n v̄2α

2µ̄(Θ)
n

2(α−m)
d ≈ q2ρ+2

n nωα .

(2.58)

It follows that
Varζn
b2n

∼ Varζn
I2(n)

∼ q2ρ+2
n nωα

I2(n)
. (2.59)

With the assumption that the series
∞∑
n=1

q2ρ+2
n nωα

I2(n)
converges for all ωα ≥ −1. We have I1 → 0 a.s.

as n→∞, that implies

lim
N→∞

N∑
k=1

σ

∫ T

0
q
ρ+ 1

2
k vαk uk(t)dWk(t)

N∑
k=1

∫ T

0
qρkv

2α
k E[u2

k(t)]dt

= 0 with probability one. (2.60)

Step 2: In this step, we want to prove the series

∞∑
n=1

Var(ηn)

b2n
converges. Recall the numerator

ηk = qρkv
2α
k

∫ T

0
u2
k(t)dt and bn =

n∑
k=1

E[ηk]. We know that bn ∼ I(n), from Step 1. It remains to
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show that
∞∑
n=1

Var(ηn)

I2(n)
<∞. (2.61)

To get bound on Var(ηn), note that

Var

(∫ T

0
u2
k(t)dt

)
= E

[(∫ T

0
u2
k(t)dt

)2
]
−
(
E
[∫ T

0
u2
k(t)dt

])2

= E

[(∫ T

0
(u2
k(t)− E[u2

k(t)])dt

)2
]
.

(2.62)

By Cauchy Schwartz inequality, we have

Var

(∫ T

0
u2
k(t)dt

)
≤ T

∫ T

0
E[(u2

k(t)− E[u2
k(t)])

2]dt = T

∫ T

0
Var(u2

k(t))dt. (2.63)

Here,

∫ T

0
Var(u2

k(t))dt is computed in Chapter 2.6. Rearrange the terms to find

Var(ηk) = v4α
k q2ρ

k

∫ T

0
Var(u2

k(t))dt

≈ v4α
k q2ρ

k

(
2σ2(σ2

k + 2m2
k)

4µk(Θ)
+

σ4q2
k

2µ2
k(Θ)

[
T − 3

4µk(Θ)

]
+

(m2
k + σ2

k)σ
2qk

2µ2
k(Θ)

)
=

σ2v4α
k

2µ2
k(Θ)

(
q2ρ
k µk(Θ)(σ2

k + 2m2
k) + σ2q2ρ+2

k

[
T − 3

4µk(Θ)

]
+ (m2

k + σ2
k)q

2ρ+1
k

)
.

(2.64)

As k →∞, with Assumptions 2.3.3 and 2.3.4,

v4l
k q

2ρ
k

∫ T

0
V ar(u2

k(t))dt ∼
σ4q2ρ+2

k v4α
k

2µ2
k(Θ)

[
T − 3

4µk(Θ)

]
∼
σ4q2ρ+2

k v̄4αT

2µ̄2
k2ωα , (2.65)

As a result,
∞∑
n=1

Var(ηn)

I2(n)
≈
∞∑
n=1

q2ρ+2
n n2ωα

I2(n)
, (2.66)

With the assumption that

∞∑
n=1

q2ρ+2
n n2ωα

I2(n)
< ∞ and by the strong law of large numbers, we obtain

that

lim
N→∞

N∑
k=1

∫ T

0
q2ρ+1
k v2α

k u2
k(t)dt

N∑
k=1

∫ T

0
qρkv

2α
k E[u2

k(t)]dt

= 1 with probability one. (2.67)

This completes the proof of consistency.
Step 3: Finally, we focus on the proof of the asymptotic normality using Martingale Central Limit
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Theorem (see Theorem 2.3.7). Thinking of
1

N
as ε to be consistent with the notations of theorem

2.3.7, define

XN (t) =
1√
I(N)

N∑
k=1

q
ρ+ 1

2
k vαk

∫ T

0
uk(t)dWk(t). (2.68)

Then XN is a continuous square-integrable martingale, and the quadratic variation of XN

〈XN 〉 (t) =
1

I(N)

N∑
k=1

q2ρ+1
k v2α

k

∫ T

0
u2
k(t)dt. (2.69)

From the error term between θN and θ (2.37), we have

√
I(N)(θ̂N − θ) = − σI(N)

N∑
k=1

qρkv
2α
k

∫ T

0
u2
k(t)dt

XN (t). (2.70)

By (2.57),

lim
N→∞

〈XN 〉 (t) =
t

σ2(Θ)
, (2.71)

where σ2(Θ) is defined in (2.45). Since
t

σ2(Θ)
= 〈X〉 (t), where X(t) =

W (t)

σ(Θ)
and W (t) is a

standard Brownian motion, the result follows:

lim
N→∞

XN (T ) = lim
N→∞

N∑
k=1

q
ρ+ 1

2
k vαk

∫ T

0
uk(t)dWk(t)√

I(N)
= N

(
0,

T

σ2(Θ)

)
in distribution (2.72)

and

lim
N→∞

I(N)
N∑
k=1

qρkv
2α
k

∫ T

0
u2
k(t)dt

=
σ2(Θ)

T
with probability one. (2.73)

This completes the proof of theorem 2.3.5.

2.3.4 Special case when qk = 1 for all k

When qk = 1 for all k, a Q−cylindrical Brownian motion becomes a cylindrical Brownian motion.
Here Q is an identity operator. bn in (2.57) becomes

σ2T v̄2α

2µ̄(Θ)

n∑
k=1

qρ+1
k k

2(α−m)
d =

σ2T v̄2α

2µ̄(Θ)

n∑
k=1

k
2(α−m)

d =
σ2T v̄2α

2µ̄(Θ)

n∑
k=1

kωα ≈ Ĩ(n)T

σ2(Θ)
, n→∞. (2.74)

where Ĩ(n) is defined as

Ĩ(n) =

{
nωα+1, if ωα > −1,

ln(n), if ωα = −1.
(2.75)
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Then, in Assumption 2.3.3,

q2ρ+2
n nωα

I2(n)
=

nωα

I2(n)
∼


n−2−ωα , if ωα > −1,

1

n(ln(n))2
, if ωα = −1.

As a result, by the integral test, the series
∞∑
n=1

nωα

I2(n)
< ∞, for all ωα ≥ −1. Similarly, for

Assumption 3,

∞∑
n=1

q2ρ+2
n nωα

I2(n)
=

∞∑
n=1

n2ωα

I2(n)
< ∞. Thus, in the case of qk = 1 for all k, Assumption

2.3.3 and 3 in Theorem 2.3.5 are automatically satisfied.

2.3.5 Several Parameters

In this subsection, we work on the multi-parameter cases given the value of α. Applying the
eigenfunction expansion, we have (2.11). Denote the vector

Θ = [β, θ, λ]T , and v = [vk, |vk|α, 1]T . (2.76)

The OU process (2.12) can be written into a vector form.

µk(Θ) = βvk + θ|vk|α + λ = ΘTv. (2.77)

Thanks to the Girsanov Theorem and Radon Nykodym derivatives, we derive the closed form of
parameters (2.33) from solving the linear system (2.32).

Theorem 2.3.8 (Martingale Central Limit Theorem). [35] Let M = (M1(t),M2(t), ...,Md(t)),
0 ≤ t ≤ T , be a d-dimensional continuous Gaussian martingale with M(0) = 0, and let Mε =
(Mε,1(t), ...,Mε,d(t)), ε ≥ 0, 0 ≤ t ≤ T , be a family of continuous square-integrable d-dimensional
martingales such that Mε(0) = 0 for all ε and, for some t0 ∈ [0, 1] and all i, j = 1, ..., d,

lim
ε→∞

〈Mε,i,Mε,j〉 (t) = 〈Mi,Mj〉 (t) (2.78)

in probability. Then lim
ε→∞

Mε(t0)
D
= M(t0).

Theorem 2.3.9. For every β, θ, λ ∈ R, in d = 2,

lim
N→∞

β̂Nθ̂N
λ̂N

 =

βθ
λ

 . (2.79)

with probability one and

lim
N→∞

 N(β̂N − β)

Nα(θ̂N − θ)√
ln(N)(λ̂N − λ)

 D=
ζ1

ζ2

ζ3

 , (2.80)

with the zero-mean Gaussian random variables ζ1, ζ2 and ζ3 independent.
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Proof. The idea of proof is similar with Theorem 2.3.5. Denote the following terms used in the
estimators (2.33).

Ap,N =
1

σ2

N∑
k=1

∫ T

0
qρkv

p
kuk(t)duk(t), Bp,N =

1

σ2

N∑
k=1

∫ T

0
qρkv

p
ku

2
k(t)dt, Cp,N =

1

σ2

N∑
k=1

∫ T

0
qρkv

p
kuk(t)fk(t)dt.

(2.81)
Denote

Ap,N =
1

σ

N∑
k=1

∫ T

0
q
ρ+ 1

2
k vpkuk(t)dWk(t). (2.82)

For simplicity, suppose that fk(t) = 0. The determinant of the coefficient matrix is

DN,T =
N∑

k,l,m

vkv
α
m

∣∣∣∣∣∣
1 vαk vk
1 vαl vl
1 vαm vm

∣∣∣∣∣∣ bk,T bl,T bm,T .
We obtain that

β̂N,T =
Dβ
N,T

DN,T
, λ̂N,T =

Dλ
N,T

DN,T
, θ̂N,T =

Dθ
N,T

DN,T
, (2.83)

where

Dβ
N,T = −

∣∣∣∣∣∣
A1,N B1,N Bα+1,N

A0,N B0,N Bα,N
Aα,N Bα,N B2α,N

∣∣∣∣∣∣ ,
Dλ
N,T = −

∣∣∣∣∣∣
B2,N A1,N Bα+1,N

B1,N A0,N Bα,N
Bα+1,N Aα,N B2α,N

∣∣∣∣∣∣ ,
Dθ
N,T = −

∣∣∣∣∣∣
B2,N B1,N A1,N

B1,N B0,N A0,N

Bα+1,N Bα,N Aα,N

∣∣∣∣∣∣ .

With the explicit form of

∫ T

0
E[u2

k(t)]dt computed in Chapter 2.6, we have

E
[∫ T

0
u2
k(t)dt

]
≈ σ2qkT

2µk(Θ)
. (2.84)
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By (2.84) and the strong law of large numbers, when ρ = −1,

Bp,N =
1

σ2

N∑
k=1

∫ T

0
q−1
k vpku

2
k(t)dt

≈ 1

σ2

N∑
k=1

q−1
k vpkE

[∫ T

0
u2
k(t)dt

]

≈



T

2
ln(N), p = 0

T

2
Np, p ∈ (0, 1)

T

2
N − lnN, p = 1

T

2
Np −Np−1, p ∈ (1, 2]

.

(2.85)

The determinant in the denominator of each estimator (2.33) is

DN,T =

∣∣∣∣∣∣
B2,N B1,N Bα+1,N

B1,N B0,N Bα,N
Bα+1,N Bα,N B2α,N

∣∣∣∣∣∣
= B2,NB0,NB2α,N + 2B1,NBα,NBα+1,N −B2

α+1,NB0,N −B2
1,NB2α,N −B2

α,NB2,N .

(2.86)

Take β̂N as example.

β̂N = −
A1,N (B0,NB2α,N −B2

α,N ) +Aα,N (B1,NBα,N −Bα+1,NB0,N ) +A0,N (Bα,NBα+1,N −B1,NB2α,N )

B2,NB0,NB2α,N + 2B1,NBα,NBα+1,N −B2
α+1,NB0,N −B2

1,NB2α,N −B2
α,NB2,N

.

(2.87)
Then, the error term is

β̂N−β = −
A1,N (B0,NB2α,N −B2

α,N ) +Aα,N (B1,NBα,N −Bα+1,NB0,N ) +A0,N (Bα,NBα+1,N −B1,NB2α,N )

B2,NB0,NB2α,N + 2B1,NBα,NBα+1,N −B2
α+1,NB0,N −B2

1,NB2α,N −B2
α,NB2,N

.

(2.88)
From the calculations in Chap 2.6, we have

lim
N→∞

2B1,NBα,NBα+1,N −B2
1,NB2α,N −B2

α,NB2,N

B2,NB0,NB2α,N −B2
α+1,NB0,N

= 0. (2.89)

Similarly, we can obtain that lim
N→∞

(θ̂N − θ) = 0 and lim
N→∞

(λ̂N − λ) = 0. The consistency follows

that

lim
N→∞

β̂Nθ̂N
λ̂N

 =

βθ
λ

 . (2.90)

Denote MN,1 := N(β̂N − β), MN,2 = Nα(θ̂N − θ), and MN,3 :=
√

ln(N)(λ̂N − λ). Due to the
distribution of Ap,N for p = 0, α, 1, MN,1,MN,2,MN,3 construct a three-dimensional continuous
Gaussian martingale MN = (MN,1,MN,2,MN,3)T . The cross variation is computed in Chap 2.6.

lim
N→0

〈MN,1,MN,2〉 (t) = 0. (2.91)
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The derivation for other cross variations is similar. This shows the independence between two
components. Thanks to Theorem 2.3.8, the asymptotic normality can be proved.

Remark 2.3.10. More generally, in a d dimensional space, the consistency still holds. The asymp-
totic normality is still true, but the rates depend on d.

2.4 Estimation of α with given β, θ and λ

With the estimation of β, θ and λ or the given information on these parameters, we estimate the
order of the fractional Laplacian α. Unlike the β, θ, λ, α is the power of vk in the log-likelihood
function, which is a nonlinear function with respect to α. Our goal is to solve the following equation:

∂ ln(LN,T )

∂α
=

N∑
k=1

−θ|vk|α ln(|vk|)(ak,T + ck,T + µk(Θ)bk,T ) = 0.

In order to determine that the maximum value is achievable, we now investigate the sign of the

second order derivative
∂2 ln(LN,T )

∂α2
. From (2.11), we have, for some fk(t) = 0,∫ T

0
qρkuk(t)duk(t) = −

∫ T

0
(βvk + θvαk + λ)u2

k(t)dt+ σ

∫ T

0
q
ρ+ 1

2
k uk(t)dWk(t)

=⇒ ak,T + µk(Θ)bk,T =
1

σ

∫ T

0
q
ρ+ 1

2
k uk(t)dWk(t).

(2.92)

With ck,T = 0 (i.e. fk(t) = 0), we have, using the definition of ak,T and bk,T from (2.14),

∂2 ln(LN,T )

∂α2
=

N∑
k=1

{
−θ|vk|α(ln(|vk|))2(ak,T + ck,T )− θ|vk|α(ln(|vk|))2µk(Θ)bk,T

−θ2|vk|2α(ln(|vk|)2bk,T
}

= −θ
N∑
k=1

|vk|α(ln(vk))
2 {(ak,T + µk(Θ)bk,T ) + θ|vk|αbk,T }

= −θ
N∑
k=1

|vk|α(ln(vk))
2

{
1

σ

∫ T

0
q
ρ+ 1

2
k uk(t)dWk(t) + θ|vk|αbk,T

}
.

(2.93)

Theorem 2.4.1 (Strong Law of Large Numbers for Martingales). [15, 31] Let Mt be a continuous

squared-integrable martingale with quadratic variation 〈M〉t. Then
Mt

〈M〉t
→ 0, a.s. on the event

{〈M〉∞ =∞}.

From the second order derivative with respect to α (2.93) and the notation bk,t introduced in

(2.14), we denote that Mt :=
1

σ

N∑
k=1

|vk|αq
ρ+ 1

2
k (ln(vk))

2

∫ t

0
uk(s)dWk(s). The quadratic variation of

Mt is

〈M〉t =
1

σ2

N∑
k=1

v2α
k q2ρ+1

k (ln(vk))
4

∫ t

0
u2
k(s)ds =

N∑
k=1

v2α
k qρ+1

k (ln(vk))
4bk,t.
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Since Mt is a squared-integrable martingale, by Theorem 2.4.1,
Mt

〈M〉t
→ 0 a.s., as t → ∞. It

follows that, for sufficient large t,

Mt . C

N∑
k=1

v2α
k qρ+1

k (ln(vk))
4bk,t, (2.94)

Now, the second order derivative (2.93) becomes,

N∑
k=1

v2α
k (ln(vk))

2bk,T

[
θ − Cqρ+1

k (ln(vk))
2
]
> 0 a.s. if ρ+ 1 > 0. (2.95)

Then,
∂2 ln(LN,T )

∂α2
< 0 a.s.. This implies that we can find the global maximum of log-likelihood

function for α, given the knowledge of β, θ and λ.
In the following subsections, we estimate the value of the fractional Laplacian order α, given

the value of other parameters β, θ, λ. The following suggested estimation are derived from the
properties of uk.

2.4.1 Find α by each k

Construct the nonlinear system using (2.15), (2.16), (2.17) and (2.18). Set them to be zero to figure
out the value of (α, β, θ, λ). For simplicity, let’s introduce some notations.

Ω1
k,T = ak,T + ck,T , Ω2

k,T = (βvk + θ|vk|α + λ)bk,T ,

N∑
k=1

(Ω1
k,T + Ω2

k,T ) = 0

N∑
k=1

vk(Ω
1
k,T + Ω2

k,T ) = 0

N∑
k=1

|vk|α(Ω1
k,T + Ω2

k,T ) = 0

N∑
k=1

|vk|α ln(|vk|)(Ω1
k,T + Ω2

k,T ) = 0

(2.96)

When N = 1, Ω1
1,T + Ω2

1,T = 0. It is easily to deduce by induction that

Ω1
k,T + Ω2

k,T = 0, for all k ∈ N. (2.97)

That means for k = 1, 2, ...

ak,T + ck,T = (βvk + θ|vk|α + λ)bk,T . (2.98)

Now, we could find the least square solutions numerically for

min
(α,β,θ,λ)

N∑
k=1

∣∣∣∣∣∣∣∣βvk + θ|vk|α + λ−
ak,T + ck,T

bk,T

∣∣∣∣∣∣∣∣2
2

(2.99)

As N goes to infinity, the objective function will go to infinity as well, due to the value of vk. Thus,
this objective function (2.99) cannot be used.
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2.4.2 Find α by using the log-likelihood function

Another possible way is to find the estimator of α, that is to minimize the first order derivatives of
log-likelihood function with respect to α defined in (2.18). Given the exact value of other parameters
θ, β, λ, we solve this equation below for α.

∂ ln(LN,T )

∂α
=

N∑
k=1

−|vk|α ln(|vk|)(ak,T + ck,T + µk(Θ)bk,T ) = 0.

The solution to the equation above is the estimation of α, used in the numerical example.

2.4.3 Find α by using the quadratic variation

Assume that we have the observations uk(ti). We set the difference between quadratic variations
as our new loss functions. By the definition of quadratic variation, based on the observation of uk,
we have

〈uk, uk〉t ≈
NT∑
i=1

(uk(ti)− uk(ti−1))2 . (2.100)

From the dynamics of (2.11), the quadratic variation of uk is

〈uk, uk〉t = σ2qkt. (2.101)

We then apply the optimization method to find the estimation of α. We define the loss function as
follows.

argminα
1

N

N∑
k=1

[
NT∑
i=1

(uk(ti)− uk(ti−1))2 − σ2qkT

]2

. (2.102)

or

argminα
1

N

N∑
k=1

[
NT∑
i=1

(uk(ti)− uk(ti−1))2 −
NT∑
i=1

(ũk(ti)− ũk(ti−1))2

]2

, (2.103)

where ũk(ti) depends on different α and probability spaces.

2.4.4 Find α by using the first moment

In this subsection, we estimate α by comparing the moments in the long term. With the ergodicity
of the process, the time average converges in squared mean to the ensemble average E[u2

k(t)]. Based
on the ergodicity, we can construct the loss function as follows.

argminα
1

N

N∑
k=1

[
1

T

∫ T

0
u2
k(t)dt− E[u2

k(∞)]

]2

, (2.104)

and due to µk(Θ) > 0, with the assumption u2
k(0) is finite,

E[u2
k(∞)] = lim

t→∞

{
E[u2

k(0)]e−µk(Θ)t +
σ2qk

2µk(Θ)

[
1− e−2µk(Θ)t

]}
=

σ2qk
2µk(Θ)

. (2.105)
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Based on (2.105) and the discretization of the integrals in (2.104), the loss function becomes

argminα
1

N

N∑
k=1

[
1

T

NT∑
i=1

(
u2
k(ti)− u2

k(ti−1)
)

∆t− σ2qk
2(βvk + θ|vk|α + λ)

]2

. (2.106)

The optimal value to this problem is the estimation of α.

2.4.5 Find α by using the trajectory fitting estimators

In this subsection, we consider to apply the trajectory fitting estimators for SPDEs [12], in order
to find the estimator α. Apply the Itô formula on the dynamic of uk(t) and find the u2

k(t).

u2
k(t) = u2

k(0) +

∫ t

0

[
σ2qk − 2(βvk + θvαk + λ)u2

k(t)− 2uk(s)fk(s)
]
ds+ 2σ

√
qk

∫ t

0
uk(s)dWk(s),

(2.107)
and we let

Vk(t, α) := u2
k(0) +

∫ t

0

[
σ2qk − 2(βvk + θvαk + λ)u2

k(s)− 2uk(s)fk(s)
]
ds. (2.108)

The trajectory fitting estimator (TFE) for the unknown parameter α is defined as

α̃TFEN := argminα

N∑
k=1

∫ T

0
(Vk(t, α)− u2

k(t))
2dt. (2.109)

Take the first order derivative with respect to α to find the critical points.

∂Vk
∂α

= −2θvαk ln(vk)

∫ t

0
u2
k(s)ds.

The loss function in (2.109) can be simplified into the following form.

2

N∑
k=1

∫ T

0
(Vk(t, α)− u2

k(t))
∂Vk
∂α

dt = 0,

2
N∑
k=1

∫ T

0
(Vk(t, α)− u2

k(t))

(
−2θvαk ln(vk)

∫ t

0
u2
k(s)ds

)
dt = 0,

N∑
k=1

{
vαk ln(vk)

∫ T

0
ξk(t)

(
u2
k(0) +

∫ t

0

[
σ2qk − 2(βvk + θvαk + λ)u2

k(s)− 2uk(s)fk(s)
]
ds− u2

k(t)

)
dt

}
= 0,

N∑
k=1

vαk ln(vk)
{
u2
k(0)Yk(T ) + σ2qkXk(T )− 2(βvk + θvαk + λ)Zk(T )

−2

∫ T

0
ξk(t)Fk(t)dt−

∫ T

0
ξk(t)u

2
k(t)dt

}
= 0,

(2.110)

where ξk(t) =

∫ t

0
u2
k(s)ds, Fk(t) :=

∫ t

0
uk(s)fk(s)ds,Xk(t) :=

∫ t

0
sξk(s)ds, Yk(t) :=

∫ t

0
ξk(s)ds and

Zk(t) :=

∫ t

0
ξ2
k(s)ds. The goal is to find α satisfying (2.110), a nonlinear equation of α.
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2.5 Numerical Examples

We work on the numerical simulations on MATLAB. We fix the random seed generator by Matlab
command rng(100,'twister') and work on the time period T = 1. Given the simulated data
with parameter settings, generate the OU process from (2.11). Due to the stiffness, we generate
the simulated data by using the implicit Euler schemes. We set the time increment ∆t = 10−3, and
we truncate N = 1024. For PDE settings, we consider the domain x ∈ [0, 2π]. To eliminate the
statistical error, we generate M = 1500 Monte Carlo paths. With the periodic boundary condition,
the eigenfunctions eikx are chosen for k = 1, 2, ..., where i is the imaginary unit

√
−1. Suppose that

u(t, x) =

∞∑
k=−∞

uk(t)e
ikx. Then, uxx(t, x) = −

∞∑
k=−∞

k2uk(t)e
ikx. Therefore, the eigenvalues vk are

k2 for each k.
Consider the following fractional advection-diffusion equation with the periodic boundary con-

dition u(t, 0) = u(t, 2π). In the numerical example, we set f = 0 and σ = 0.01.

ut − β∆u+ θ(−∆)αu+ λu = σẆQ, (2.111)

It follows the dynamics of Fourier frequency uk. Using the backward Euler schemes, (2.111) can
be discretized as follows. For j = 0, 1, ..., NT ,

uk(tj+1) = uk(tj)− [(βk2 + θ|k|2α +λ)uk(tj+1) + fk(tj+1)]∆t+σ
√
qk(Wk(tj+1)−Wk(tj)). (2.112)

Then ak,T , bk,T and ck,T can be discretized by the Ito-Riemann sum in the (2.14).

ak,T =
1

σ2

∫ T

0
qρkuk(t)duk(t) ≈

1

σ2

NT∑
p=1

qρkuk(tp)(uk(tp)− uk(tp−1)). (2.113)

Similarly, we have

bk,T =
1

σ2

∫ T

0
qρku

2
k(t)dt ≈

1

σ2

NT∑
p=1

qρku
2
k(tp)∆t. (2.114)

ck,T =
1

σ2

∫ T

0
qρkuk(t)fk(t)dt ≈

1

σ2

NT∑
p=1

qρkuk(tp)fk(tp)∆t. (2.115)

For simplicity, we set f in the PDE to be zero. Here, qk is pre-selected depending on the
frequency k. The frequency of Fourier expansion k is [0, 1, ..., N/2, 1 − N/2, ..,−1]. The length

of frequency is still N . In our numerical example, we set qk =
1

k2
, and ρ = −1. To avoid the

zero denominator, we use the Fourier frequency starting from 1. Suppose that uk(0) = 0, which is
deterministic and constant. Assumption 2.3.4 in Theorem 2.3.5 is satisfied. With the choice of qk
and ρ, from the (2.49) in the theorem 2.3.5, we have the convergence rate

lim
N→∞

√
I(N)(θ̂N − θ) = N (0,σ2(θ)/T ), (2.116)

where I(N) =
N∑
k=1

qρ+1
k kωα and ωα =

2(α−m)

d
. Recall that 2m is the order of the operator

A0 + ΘA1. As ωα ≥ −1 in Theorem 2.3.5 and α ∈ (0, 1), it follows that m − d
2 ≤ α < 1. In our
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case, suppose that β is known. A0 = β(−∆) and A1 = θ(−∆)α + λI. Thus, we have dimension
d = 1, so that ωα = 2α− 2. It follows that

I(N) =

N/2∑
k=1−N/2,k 6=0

k−2(ρ+1)+ωα =

N/2∑
k=1−N/2,k 6=0

k2α−2. (2.117)

We assume that ωα ≥ −1 in Theorem 2.3.5. It implies α ≥ 1

2
in our case. Thus, for a fixed α,

we obtain that

I(N) =

N/2∑
k=1−N/2,k 6=0

k2α−2 ≈ O(N2α−1). (2.118)

2.5.1 Case 0: Given α, θ, λ, estimate β

We start with the simple case. Consider the following stochastic heat equation driven by additive
noise problem. For x ∈ [0, π] and t ∈ [0, 1],

du(t, x)− β∆u(t, x)dt = σdW (t, x), (2.119)

with zero initial condition u(0, x) = 0, zero boundary conditions and driven by space-time white
noise. We assume the true but unknown parameter θ = 1. Based on the spectral method, we have
the dynamics of Fourier coefficients:

duk(t) = −βvkukdt+ σdWk(t). (2.120)

Compared with the dynamics (2.11), we set qk =
1

k2
, vk = k2, θ = λ = 0, α = 0, σ = 0.01 and

f = 0. With the different choice of qk, we will have different results. Discretize it by implicit Euler
schemes with time step ∆t, which is equal to 10−3. The MLE estimator derived from the first order
derivatives of log-likelihood functions (2.15) will be simplified as follows. With the notation of ak,T
and bk,T in (2.14),

∂ ln(LN,T )

∂β
= 0 =⇒

N∑
k=1

−vkak,T − βv2
kbk,T = 0 =⇒ β̂N = −

N∑
k=1

vkak,T

N∑
k=1

v2
kbk,T

= −

N∑
k=1

vk
∫ T

0 uk(t)duk(t)

N∑
k=1

v2
k

∫ T
0 u2

k(t)dt

.

(2.121)
Then,

β̂N = −

N∑
k=1

k2
∫ T

0 uk(t)duk(t)

N∑
k=1

k4
∫ T

0 u2
k(t)dt

≈ −

N∑
k=1

k2
NT−1∑
j=0

uk(tj)(uk(tj+1)− uk(tj))

N∑
k=1

k4
NT−1∑
j=0

u2
k(tj)∆t

. (2.122)

Based on the simulations in MATLAB, we get the following relationship between the estimations
and the first 200 Fourier modes. As Figure 2.1 and Figure 2.2 shown below, when the number of
Fourier modes N increases, the error between the maximum likelihood estimator (MLE) and the
exact value are getting smaller. When N = 200, the error β̂N − β is equal to −1.0282× 10−5.
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Figure 2.1: The estimation β̂N on the coefficients of the Laplacian and different number of Fourier
modes N from 1 to 20 for the stochastic heat equation. The estimation β̂N is an ensemble average
of 100 simulations with different random paths.

2.5.2 Case 1: Given α, estimate θ and λ

In this case, we estimate the value of β, θ and λ, given the information of α. As the numerical setting
mentioned above, to eliminate the errors coming from the stochastic issues, we ran M = 100 paths,
and for each path, we computed its estimators respectively. We consider two different situations
when α is less than 0.5 and greater than 0.5. The following numerical results are derived from the
linear system (3.14). For solving this linear system, I used the backslash in Matlab. The initial
condition of u(t, x) is 0.

Suppose that α = 0.3, β = θ = λ = 1, and set the time step ∆t = 10−3. When N = 200, we
get the estimation θ̂n = 0.9587947. The error on this estimation is 4 × 10−2 . The estimations of
θ̂n versus the different number of Fourier modes N are in Figure 2.3. Based on these data, I fit one
linear regression line. We can observe from the orange line that the estimation is getting closer to
the exact value as the Fourier mode increases.

Run this test again with a smaller time step ∆t = 10−4, with the same settings. When N = 200,
we get the estimation θ̂n = 1.025071. The error is 2 × 10−2. When ∆t = 10−4, the estimation is
more accurate. From Figure 2.4, we observe that the estimation goes closer to the exact values as
the Fourier mode N increases. Compared with Figure 2.3, using the smaller time step, the slope of
the regression line is smaller, which means the smaller time step gives the more accurate estimation
with limited Fourier modes N .

With the different value of α = 0.8, the estimation θ̂n is 0.9985065. The error is 1.5 × 10−3.
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Figure 2.2: The estimation β̂N on the coefficients of the Laplacian and larger number of Fourier
modes N from 150 to 200 for the stochastic heat equation. The estimation β̂N is an ensemble
average of 100 simulations with different random paths.

When N is large, the estimation is less volatile than the case when α = 0.3. Since θ is the coefficient
of the fractional Laplacian term, so the estimation is dependent on the value of α. Again, when N
becomes larger, the estimation is still closer than the exact value. We can conclude that when α is
close to 1, i.e. the fractional Laplacian term becomes the ordinary Laplacian term, less N can be
used than the case when α is close to 0, to get the same accuracy.

2.5.3 Case 2: Given β, θ and λ, estimate α

In this case, we estimate the alpha, given the information β, θ and λ. The estimator value is

evaluated by solving a nonlinear equation
∂ ln(L)

∂α
= 0. In Matlab, we solve this one variable

nonlinear equation by the built-in function fsolve.
Suppose that θ = 1, β = λ = 0 and the exact value of α is 0.3. The estimation α̂N = 0.2986590.

The error is 1.3×10−3. We use the initial guess 0.4 when applying fsolve. In Figure 2.7, we observe
from the regression line that the estimation becomes closer to the exact value when N becomes
larger. With the same setting except the time step ∆t = 10−4, the estimation is 0.3002675, and the
error is −2.6750× 10−4. See Figure 2.9. We observe that the estimation with smaller time steps is
more accurate.
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Figure 2.3: The estimation θ̂N on the coefficients of the fractional Laplacian term and different
number of Fourier modes N for the stochastic heat equation with fractional derivatives ∆t = 10−3.
The estimation θ̂N is an ensemble average of 100 simulations with different random paths.

2.6 Appendix

2.6.1 Proof of the totally positive matrix

Proof of Theorem 2.3.1:

Proof. The proof follows the ideas in [8]. Recall the fact that the determinant of the ordinary
Vandermonde matrix is positive. There exists a continuous path that goes from the determinant
(2.29) stated in the theorem to the determinant of the ordinary Vandermonde matrix. A continuous
function can not go from a negative value to a positive value without vanishing some points. Hence,
the determinant of a generalized Vandermonde matrix is positive. It remains to show that the
determinant of it could not be zero.

Proof by induction. When n = 1, it is trivial, since aλ11 > 0.

Induction Hypothesis: Assume that det(An) 6= 0, for all n < N − 1.

Now, want to prove that det(AN ) 6= 0.. Arguing by contradiction, we assume that det(AN ) = 0,
which means that if we had a vanishing generalized Vandemonde determinant of size n, there
would be a linear combination of different powers of x vanishing at least n positive values of
x ∈ {a1, a2, ..., an}. That is to say that we would have coefficients ci (not all vanishing) for which

0 = c1x
λ1 + c2x

λ2 + ...+ cnx
λn , for at least n positive values of x.

35



Figure 2.4: The estimation θ̂N on the coefficients of the fractional Laplacian term and different
number of Fourier modes N for the stochastic heat equation with fractional derivatives ∆t = 10−4.
The estimation θ̂N is an ensemble average of 100 simulations with different random paths.

Since xλ1 is positive,

0 = c1 + c2x
λ2−λ1 + ...+ cnx

λn−λ1 , for those same values.

By Rolle’s theorem, we have

0 = c2(λ2 − λ1)xλ2−λ1 + ...+ cn(λn − λ1)xλn−λ1 , for at least n− 1 values of x > 0,

which contradicts with the induction hypothesis that det(AN−1) 6= 0. Thus, det(An) 6= 0, for all
n ∈ N.

2.6.2 Properties of OU process uk

In this subsection, we calculate the moments of the Fourier modes uk. These moments are used in
the proof of Theorem 2.3.5 to evaluate ηn, bn. Let the OU process be

uk(t) = uk(0)e−µk(Θ)t −
∫ t

0
e−µk(Θ)(t−s)fk(s)ds+ σ

√
qk

∫ t

0
e−µk(Θ)(t−s)dWk(s). (2.123)

With Assumption 2.3.4 that uk(0) ∼ N (mk, σ
2
k) and independence of Wk(t), denote Ik(t) :=
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Figure 2.5: The estimation θ̂N on the coefficients of the fractional Laplacian term and different
number of Fourier modes N for the stochastic heat equation with fractional derivatives ∆t = 10−3,
α = 0.8. The estimation θ̂N is an ensemble average of 100 simulations with different random paths.

∫ t

0
e−µk(Θ)(t−s)fk(s)ds. Then, we obtain that

E[u2
k(t)] = (m2

k + σ2
k)e
−2µk(Θ)t + I2

k(t) + σ2qk

∫ t

0
e−2µk(Θ)(t−s)ds− 2mkIk(t)e

−µk(Θ)t

= (m2
k + σ2

k)e
−2µk(Θ)t + I2

k(t) +
σ2qk

2µk(Θ)

[
1− e−2µk(Θ)t

]
− 2mkIk(t)e

−µk(Θ)t,

(2.124)

and∫ T

0
E[u2

k(t)]dt =
m2
k + σ2

k

−2µk(Θ)
e−2µk(Θ)t

∣∣∣∣T
0

+

∫ T

0
I2
k(t)dt+

σ2qkT

2µk(Θ)
+

σ2qk
4µ2

k(Θ)
e−2µk(Θ)t

∣∣∣∣T
0

− 2mk

∫ T

0
Ik(t)e

−µk(Θ)tdt

=
m2
k + σ2

k

2µk(Θ)

[
1− e−2µk(Θ)T

]
+

∫ T

0
I2
k(t)dt+

σ2qkT

2µk(Θ)
− σ2qk

4µ2
k(Θ)

[
1− e−2µk(Θ)T

]
− 2mk

∫ T

0
Ik(t)e

−µk(Θ)tdt.

(2.125)
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Figure 2.6: The error |θ̂N − θ| on the coefficients of the fractional Laplacian term and different
number of Fourier modes N for the stochastic heat equation with fractional derivatives ∆t = 10−3,
α = 0.8, The estimation θ̂N is an ensemble average of 100 simulations with different random paths.
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Figure 2.7: The estimation α̂N on the coefficients of the fractional Laplacian order and different
number of Fourier modes N for the stochastic heat equation with fractional derivatives ∆t = 10−3,
α = 0.3. The estimation α̂N is an ensemble average of 100 simulations with different random paths.

Here, we need that f ∈ L2((0,∞)). For simplicity, we set f to be zero. It follows that∫ T

0
E[u2

k(t)]dt =
m2
k + σ2

k

2µk(Θ)

[
1− e−2µk(Θ)T

]
+

σ2qkT

2µk(Θ)
− σ2qk

4µ2
k(Θ)

[
1− e−2µk(Θ)T

]
. (2.126)

Using (2.34), let uk(t) := A+B, where A := uk(0)e−µk(Θ)t, and with the assumption that f = 0,

B := −
∫ t

0
e−µk(Θ)(t−s)fk(s)ds+ σ

√
qk

∫ t

0
e−µk(Θ)(t−s)dWk(s) = σq

1
2
k

∫ t

0
e−µk(Θ)(t−s)dWk(s).

With the distribution on the initial data u(0), E[A] = mke
−µk(Θ)t, V ar(A) = σ2

ke
−2µk(Θ)t. Since

uk(0)−mk ∼ N (0, σ2
k), we similarly find that, using (a+ b)4 = a4 + 4a3b+ 6a2b2 + 4ab3 + b4,

E[A4] = E[(uk(0)e−µk(Θ)t)4] = e−4µk(Θ)tE[(uk(0)−mk +mk)
4]

= e−4µk(Θ)t
(
E[(uk(0)−mk)

4] + 6E[(uk(0)−mk)
2]m2

k +m4
k

)
= e−4µk(Θ)t

(
3σ4

k + 6m2
kσ

2
k +m4

k

)
.

(2.127)

Then,

V ar(A2) = E[A4]− (E[A2])2 = e−4µk(Θ)t
(
3σ4

k + 6m2
kσ

2
k +m4

k

)
−
[
(m2

k + σ2
k)e
−2µk(Θ)t

]2

= 2σ2
k(σ

2
k + 2m2

k)e
−4µk(Θ)t.

(2.128)
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Figure 2.8: The error |α̂N − α| on the coefficients of the fractional Laplacian order and different
number of Fourier modes N for the stochastic heat equation with fractional derivatives ∆t = 10−3,
α = 0.3. The estimation α̂N is an ensemble average of 100 simulations with different random paths.

For the term B, we have E[B] = E[B3] = 0, and V ar(B) = E[B2] =
σ2qk

2µk(Θ)
(1− e−2µk(Θ)t). Recall

that if X ∼ N (0, σ2), then E[X4] = 3σ2. Then,

E[B4] = 3

(
σ2qk

2µk(Θ)
(1− e−2µk(Θ)t)

)2

=
3σ4q2

k

4µ2
k(Θ)

(1− e−2µk(Θ)t)2.

Then,

V ar(B2) = E[B4]− (E[B2])2 =
3σ4q2

k

4µ2
k(Θ)

(1− e−2µk(Θ)t)2 −
[
σ2qk

2µk(Θ)
(1− e−2µk(Θ)t)

]2

=
σ4q2

k

2µ2
k(Θ)

(1− e−2µk(Θ)t)2.

(2.129)
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Figure 2.9: The estimation α̂N on the coefficients of the fractional Laplacian order and different
number of Fourier modes N for the stochastic heat equation with fractional derivatives ∆t = 10−4,
α = 0.3. The estimation α̂N is an ensemble average of 100 simulations with different random paths.

From (2.128), (2.129), since A and B are independent Gaussian distributed, we have

V ar(u2
k(t)) = V ar((A+B)2) = V ar(A2) + V ar(B2) + 4V ar(AB)

= V ar(A2) + V ar(B2) + 4(E[(AB)2]− (E[AB])2) = V ar(A2) + V ar(B2) + 4E(A2)E[B2]

= 2σ2
k(σ

2
k + 2m2

k)e
−4µk(Θ)t︸ ︷︷ ︸

I1

+
σ4q2

k

2µ2
k(Θ)

(1− e−2µk(Θ)t)2︸ ︷︷ ︸
I2

+ 4
[
(m2

k + σ2
k)e
−2µk(Θ)t

] [ σ2qk
2µk(Θ)

(1− e−2µk(Θ)t)

]
︸ ︷︷ ︸

I3

.

(2.130)

We split (2.130) into three parts. Integrating each term with respect to time on [0, T ], we have

I1 : 2σ2
k(σ

2
k + 2m2

k)

∫ T

0
e−4µk(Θ)tdt =

2σ2
k(σ

2
k + 2m2

k)

4µk(Θ)

(
1− e−4µk(Θ)T

)
≈

2σ2
k(σ

2
k + 2m2

k)

4µk(Θ)
, (2.131)
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I2 :
σ4q2

k

2µ2
k(Θ)

∫ T

0
(1− e−2µk(Θ)t)2dt =

σ4q2
k

2µ2
k(Θ)

∫ T

0
(1− 2e−2µk(Θ)t + e−4µk(Θ)t)dt

=
σ4q2

k

2µ2
k(Θ)

[
T − 2e−2µk(Θ)t

−2µk(Θ)

∣∣∣∣T
0

+
e−4µk(Θ)t

−4µk(Θ)

∣∣∣∣T
0

]

=
σ4q2

k

2µ2
k(Θ)

[
T − 1− e−2µk(Θ)T

µk(Θ)
+

1− e−4µk(Θ)T

4µk(Θ)

]

≈
σ4q2

k

2µ2
k(Θ)

[
T − 3

4µk(Θ)

]
,

(2.132)

I3 :

∫ T

0
4
[
(m2

k + σ2
k)e
−2µk(Θ)t

] [ σ2qk
2µk(Θ)

(1− e−2µk(Θ)t)

]
dt =

4(m2
k + σ2

k)σ
2qk

2µk(Θ)

∫ T

0

(
e−2µk(Θ)t − e−4µk(Θ)t

)
dt

=
4(m2

k + σ2
k)σ

2qk
2µk(Θ)

[
e−2µk(Θ)t

−2µk(Θ)
− e−4µk(Θ)t

−4µk(Θ)

]∣∣∣∣T
0

=
4(m2

k + σ2
k)σ

2qk
2µk(Θ)

[
1− e−2µk(Θ)T

2µk(Θ)
− 1− e−4µk(Θ)T

4µk(Θ)

]
≈

4(m2
k + σ2

k)σ
2qk

2µk(Θ)

[
1

2µk(Θ)
− 1

4µk(Θ)

]
=

(m2
k + σ2

k)σ
2qk

2µ2
k(Θ)

, when T is large enough.

(2.133)

The equations (2.131), (2.132) and (2.133) givens the variance of ηk in (2.64) in the proof of Theorem
2.3.5.

2.6.3 Error term β̂N − β

In this subsection, we compute the error term β̂N −β in (2.88). This error term is used in the proof
of convergence.

β̂N − β = −
A1,N (B0,NB2α,N −B2

α,N ) +Aα,N (B1,NBα,N −Bα+1,NB0,N ) +A0,N (Bα,NBα+1,N −B1,NB2α,N )

B2,NB0,NB2α,N + 2B1,NBα,NBα+1,N −B2
α+1,NB0,N −B2

1,NB2α,N −B2
α,NB2,N

− β

= −
(A1,N + βB2,N )(B0,NB2α,N −B2

α,N ) + (Aα,N + βBα+1,N )(B1,NBα,N −Bα+1,NB0,N )

B2,NB0,NB2α,N + 2B1,NBα,NBα+1,N −B2
α+1,NB0,N −B2

1,NB2α,N −B2
α,NB2,N

−
(A0,N + βB1,N )(Bα,NBα+1,N −B1,NB2α,N )

B2,NB0,NB2α,N + 2B1,NBα,NBα+1,N −B2
α+1,NB0,N −B2

1,NB2α,N −B2
α,NB2,N

.

(2.134)
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We compute the numerator of (2.134) into 3 parts. Recall the SDE (2.11). It follows that

1

σ2

N∑
k=1

∫ T

0
qρkvkuk(t)duk(t)︸ ︷︷ ︸
A1,N

= − β

σ2

N∑
k=1

∫ T

0
qρkv

2
ku

2
k(t)dt︸ ︷︷ ︸

−βB2,N

− θ

σ2

N∑
k=1

∫ T

0
qρkv

α+1
k u2

k(t)dt︸ ︷︷ ︸
−θBα+1,N

− λ

σ2

N∑
k=1

∫ T

0
qρkvku

2
k(t)dt︸ ︷︷ ︸

−λB1,N

+
1

σ

N∑
k=1

∫ T

0
q
ρ+ 1

2
k vku

2
k(t)dwk(t)︸ ︷︷ ︸

A1,N

,

A1,N + βB2,N = A1,N − θBα+1,N − λB1,N .

(2.135)

Similarly, we have other two terms.

Aα,N + βBα+1,N = Aα,N − θB2α,N − λBα,N .
A0,N + βB1,N = A0,N − θBα,N − λB0,N .

(2.136)

Then, (2.135) becomes

β̂N − β = −
(A1,N − θBα+1,N − λB1,N )(B0,NB2α,N −B2

α,N )

B2,NB0,NB2α,N + 2B1,NBα,NBα+1,N −B2
α+1,NB0,N −B2

1,NB2α,N −B2
α,NB2,N

−
(Aα,N − θB2α,N − λBα,N )(B1,NBα,N −Bα+1,NB0,N )

B2,NB0,NB2α,N + 2B1,NBα,NBα+1,N −B2
α+1,NB0,N −B2

1,NB2α,N −B2
α,NB2,N

−
(A0,N − θBα,N − λB0,N )(Bα,NBα+1,N −B1,NB2α,N )

B2,NB0,NB2α,N + 2B1,NBα,NBα+1,N −B2
α+1,NB0,N −B2

1,NB2α,N −B2
α,NB2,N

,

= −
A1,N (B0,NB2α,N −B2

α,N ) +Aα,N (B1,NBα,N −Bα+1,NB0,N ) +A0,N (Bα,NBα+1,N −B1,NB2α,N )

B2,NB0,NB2α,N + 2B1,NBα,NBα+1,N −B2
α+1,NB0,N −B2

1,NB2α,N −B2
α,NB2,N

.

(2.137)

It is similar to have the following error terms.

λ̂N,T − λ =
Dλ
N,T

DN,T
, θ̂N,T − θ =

Dθ
N,T

DN,T
, (2.138)

where

Dλ
N,T = −

∣∣∣∣∣∣
B2,N A1,N Bα+1,N

B1,N A0,N Bα,N
Bα+1,N Aα,N B2α,N

∣∣∣∣∣∣ ,
Dθ
N,T = −

∣∣∣∣∣∣
B2,N B1,N A1,N

B1,N B0,N A0,N

Bα+1,N Bα,N Aα,N

∣∣∣∣∣∣ .
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For sufficiently large T and µk(Θ) ∼ vk. When d = 2, eigenvalues vk ∼ k. More precisely, we
obtain that

Bp,N =
1

σ2

N∑
k=1

∫ T

0
q−1
k vpku

2
k(t)dt ≈

1

σ2
E

[
N∑
k=1

∫ T

0
q−1
k vpku

2
k(t)dt

]

≈ 1

σ2

N∑
k=1

q−1
k vpkE

[∫ T

0
u2
k(t)dt

]

≈ 1

σ2

N∑
k=1

q−1
k vpk

{
σ2qkT

2µk(Θ)
− σ2qk

4µ2
k(Θ)

[
1− e−2µk(Θ)T

]}

=
N∑
k=1

vp−1
k

{
T

2
− 1− e−2µk(Θ)T

4vk

}

≈



T

2
ln(N), p = 0

T

2
Np, p ∈ (0, 1)

T

2
N − lnN, p = 1

T

2
Np −Np−1, p ∈ (1, 2]

.

(2.139)

Compute the following limit used to prove the convergence.

lim
N→∞

2B1,NBα,NBα+1,N −B2
1,NB2α,N −B2

α,NB2,N

B2,NB0,NB2α,N −B2
α+1,NB0,N

. (2.140)

As N →∞, for α < 0.5, the denominator

B0,N

(
B2,NB2α,N −B2

α+1,N

)
≈ T

2
ln(N)

[(
T

2
N2 −N

)
T

2
N2α −

(
T

2
Nα+1 −Nα

)2
]

≈ 2T 2 − T 3

8
ln(N)N2α+2.

(2.141)

Then, we split the limit into three parts.

lim
N→∞

2B1,NBα,NBα+1,N

B0,N

(
B2,NB2α,N −B2

α+1,N

) = lim
N→∞

2
(
T
2N − lnN

)
T
2N

α(T2N
α+1 −Nα)

2T 2−T 3

8 ln(N)N2α+2
= 0. (2.142)

lim
N→∞

B2
1,NB2α,N

B0,N

(
B2,NB2α,N −B2

α+1,N

) = lim
N→∞

(
T
2N − lnN

)2 T
2N

2α

2T 2−T 3

8 ln(N)N2α+2
= 0, (2.143)

lim
N→∞

B2
α,NB2,N

B0,N

(
B2,NB2α,N −B2

α+1,N

) = lim
N→∞

T
2N

2α
(
T
2N

2 −N
)

2T 2−T 3

8 ln(N)N2α+2
= 0. (2.144)
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Thus, the limit (2.140) is equal to 0. We can get the results when α ≥ 0.5. Here are the computation
of cross variations used to show the asymptotic normality for several parameters (2.80).

lim
N→0

〈MN,1,MN,2〉 (t)

= lim
N→0

N
A1,N (B0,NB2α,N −B2

α,N ) +Aα,N (B1,NBα,N −Bα+1,NB0,N ) +A0,N (Bα,NBα+1,N −B1,NB2α,N )

B2,NB0,NB2α,N + 2B1,NBα,NBα+1,N −B2
α+1,NB0,N −B2

1,NB2α,N −B2
α,NB2,N

·Nα
Aα,N (B0,NB2,N −B2

1,N ) +A1,N (B1,NBα,N −Bα+1,NB0,N ) +A0,N (Bα,NB2,N −B1,NBα+1,N )

B2,NB0,NB2α,N + 2B1,NBα,NBα+1,N −B2
α+1,NB0,N −B2

1,NB2α,N −B2
α,NB2,N

= lim
N→∞

Nα+1 T1 · T2

(B2,NB0,NB2α,N + 2B1,NBα,NBα+1,N −B2
α+1,NB0,N −B2

1,NB2α,N −B2
α,NB2,N )2

.

(2.145)

Denote the numerator of β̂N − β and the numerator of θ̂N − θ as T1 and T2 respectively.

T1 = A1,N (B0,NB2α,N −B2
α,N ) +Aα,N (B1,NBα,N −Bα+1,NB0,N ) +A0,N (Bα,NBα+1,N −B1,NB2α,N )

≈ A1,N (ln(N)N2α −N2α) +Aα,N [(N − ln(N))Nα − (Nα+1 −Nα) ln(N)]

+A0,N [Nα(Nα+1 −Nα)− (N − ln(N))N2α]

≈ A1,NN
2α(ln(N)− 1) +Aα,NN

α(1− ln(N)) +A0,NN
2α(ln(N)− 1),

(2.146)

T2 = Aα,N (B0,NB2,N −B2
1,N ) +A1,N (B1,NBα,N −Bα+1,NB0,N ) +A0,N (Bα,NB2,N −B1,NBα+1,N )

≈ A1,N [(N − ln(N))Nα − (Nα+1 −Nα) ln(N)] +Aα,N [(ln(N))N2α −N2α]

+A0,N [Nα(N2 −N)− (N − ln(N))(Nα+1 −Nα)]

≈ A1,NN
α+1(1− ln(N)) +Aα,NN

2α(ln(N)− 1) +A0,N ln(N)Nα(N − 1)

(2.147)

The highest order of the denominator is ln(N)N2α+2 derived in (2.141). Thus,

lim
N→∞

〈MN,1,MN,2〉 (t) ≈ lim
N→∞

−N4α+2(ln(N)− 1)2

[ln(N)N2α+2]2
= 0. (2.148)

This shows the cross variation is 0, which implies the independence between MN,1 and MN,2.
Similarly, the components of the continuous Gaussian martingale are pairwise independent.
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Chapter 3

Parameter Estimation for Fractional
Navier-Stokes Equations

In this chapter, we consider the parameter estimation problem for the following fractional Navier-
Stokes equation with the additive noise in 2D. This equation describes the turbulence flow of a
viscous, incompressible fluid. We solve this PDE numerically by the spectral method. Based on
the log-likelihood function, we derive the analytic form of the coefficient of the Laplacian term
and fractional Laplacian term. The fundamental idea is to find the maximizer of the log-likelihood
function. Numerical simulations are presented in the last section in this chapter.

3.1 Parameter estimations on Fractional Navier-Stokes equation

3.1.1 Problem settings

In this subsection, we consider the fractional Navier-Stokes equations forced with the additive noise
in 2D.

dUt + (U,∇)U + β(−∆)u+ θ(−∆)αU +∇P = σWQ
t , (3.1)

∇ · U = 0, (3.2)

U(0) = U0, (3.3)

which describe the turbulence flow of a viscous, incompressible fluid. Here U = (u1, u2) represents
the velocity field and P represents the pressure.

Suppose that the flow occur over all of R2. We take D = [−L/2, L/2]2 for some L > 0 and the
periodic boundary condition is prescribed as

U(x + Lej , t) = U(x, t), for x ∈ R2, t ≥ 0;

∫
D
U(x)dx = 0. (3.4)

Let’s consider the spaces associated with the periodic boundary conditions. Define the space
L2
per(D)2 and H1

per(D)2 to be the families of vector fields U = U(x) which are L periodic in each
direction and which is the respective subset of L2(O)2 and H1(O)2, for every open bounded set
O ⊂ R2. We further define the spaces H and V based on the L2

per(D)2 and H1
per(D)2 with the

divergence free condition and zero mean condition as follows.

H :=

{
U ∈ L2

per(D)2 : ∇ · U = 0,

∫
D
U(x)dx = 0

}
, (3.5)
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and

V :=

{
U ∈ H1

per(D)2 : ∇ · U = 0,

∫
D
U(x)dx = 0

}
. (3.6)

The associated norm with H is |U | = (U,U)
1
2 =

(∫
D
U2(x)dx

) 1
2

, and the norm of V is

||U || = (∇U,∇U)
1
2 =

(∫
D
∇U(x) · ∇U(x)dx

) 1
2

. The linear portion of (3.1) in the Stokes operator

A1 = −PH∆, The Leray-Hopf operator PH is defined as the orthogonal projection of L2(D)2

onto H. Now let’s define A2 = −PH∆α = Aα1 , which is also unbounded. Given α > 0, take

D(Aα1 ) :=

{
U ∈ H :

∑
k

λ2α
k |uk|2 <∞.

}
, where uk = (U, ek). The fraction power of A1 is defined

as follows, by using the same set of orthonormal basis.

Aα1U :=
∑
k

λαkukek. (3.7)

The stochastic setting is the same as ones in the previous chapter. Given the filtered probability
space (Ω,F , {Ft}t≥0 ,P). A Q-cylindrical Brownian motion can be represented as

σWQ(t) = σ

∞∑
|k|=1

√
qkek(x)Wk(t) =

∞∑
|k|=1

λ−γk qρkek(x)dWk(t). (3.8)

The range of γ is determined by the value of σ. The nonlinear part in the fractional NS equation
is defined as the operator

B(U, Y ) := PH((U · ∇)Y ) = PH(u1∂1Y + u2∂2Y ), for U ∈ V, Y ∈ D(A1) ∩D(Aα1 ). (3.9)

Based on the notation of operators, (3.1) can be rewritten as

dU + [(βA1 + θA2(α))U +B(U,U)]dt = σdWQ. (3.10)

3.1.2 Modified Estimations

In this section, we apply the estimators based on the specific version of the Girsanov theorem
between two different probability measures. Similar to the deviation in chapter 2, we truncate U
into the first N terms. Denote UN be the projection of the solution U to the original equation (3.1)
onto HN = PNH, which is isomorphic to RN . From (3.10), we apply the operator PN , then we get

dUk = −[(βA1 + θA2(α))Uk + ψk(U)]dt+ σPkW
Q, Uk(0) = Uk0 , for k = 1, 2, ..., N. (3.11)

where ψk(U) = Pk(B(U,U)). We compute the Radon-Nykodym derivative as the likelihood ratio
Lk,T . Denote G := (Pkσ)−1, and Aβ,θ,α = (βA1 + θA2(α))Uk + ψk(U), which is a vector. A′β,θ,α is
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the transpose of Aβ,θ,α.

Lk,T =
dPk,Tβ,θ (Uk)

dPk,Tβ0,θ0
= exp

(∫ T

0
(Aβ,θ,α −Aβ0,θ0,α0)′G2dUk(t)

−
∫ T

0
(A′β,θ,αG

2Aβ,θ,α −A′β0,θ0,α0
G2Aβ0,θ0,α0)dt

)
= exp

(
−
∫ T

0
[((β − β0)A1 + (θA2(α)− θ0A2(α0)))Uk]′G2dUk(t)

−1

2

∫ T

0

[
(βA1 + θA2(α))Uk

]′
G2
[
(βA1 + θA2(α))Uk

]
dt

+
1

2

∫ T

0

[
(β0A1 + θ0A2(α0))Uk

]′
G2
[
(β0A1 + θ0A2(α0))Uk

]
dt

−
∫ T

0
[((β − β0)A1 + (θA2(α)− θ0A2(α0))Uk]′G2ψk(U)dt

)
.

Take logarithm and compute its maximum likelihood estimators βk, θk, αk of parameters β, θ, α.
Define the log-likelihood function ln(LT (β, θ, α)), which is expressed by the operator form.

∂ ln(LT )

∂β
= −

N∑
k=1

∫ T

0
(A1U

k)′G2dUk(t)−
N∑
k=1

∫ T

0
(A1U

k)′G2(βA1+θA2(α))Ukdt−
N∑
k=1

∫ T

0
(A1U

k)′G2ψk(U)dt = 0.

(3.12)

∂ ln(LT )

∂θ
= −

N∑
k=1

∫ T

0
(A2(α)Uk)′G2dUk(t)−

N∑
k=1

∫ T

0
(A2(α)Uk)′G2(βA1 + θA2(α))Ukdt

−
N∑
k=1

∫ T

0
(A2(α)Uk)′G2ψk(U)dt = 0.

(3.13)

Then, we have a linear system for β and θ. We denote

a11 =
N∑
k=1

∫ T

0
(A1U

k)′G2(A1U
k)dt, and a22 =

∫ T

0
(A2(α)Uk)′G2A2(α)Ukdt,

a12 =

N∑
k=1

∫ T

0
(A1U

k)′G2A2(α)Ukdt = a21,

b1 =
N∑
k=1

∫ T

0
(A1U

k)′G2[dUk(t) + ψk(U)dt] and b2 =
N∑
k=1

∫ T

0
(A2(α)Uk)′G2[dUk(t) + ψk(U)dt].

Construct (3.12) and (3.13) into a linear system and write it into a matrix form,

−
(
a11 a12

a12 a22

)(
β
θ

)
=

(
b1
b2

)
. (3.14)

Solving this linear system, we have the closed form of the estimations for β and θ.(
β̂k,T
θ̂k,T

)
= −

(
a11 a12

a12 a22

)−1(
b1
b2

)
=

(
−a22b1−a12b2

a11a22−a212
−a11b2−a12b1

a11a22−a212

)
. (3.15)
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3.2 Numerical Implementations

In this section, we work on the numerical schemes on solving the fractional Navier Stokes equation.
The main steps to derive the numerical algorithms are to apply for the fast Fourier transform to
get the frequencies. Then use the frequency uk to compute the estimations. The section split into
two parts. The first part is to generate uk, and the second part is to use uk to get θ̂N and α̂N .

3.2.1 Numerical Implementations for ûk(t)

The solutions to the fractional Navier Stokes equations have the Fourier series representation

U(x, t) =
∞∑
|k|=1

ûk(t)eik·x, (3.16)

P (x, t) =
∞∑
|k|=1

p̂k(t)eik·x, (3.17)

WQ(t) = σ
∞∑
|k|=1

√
qke

ik·xWk(t). (3.18)

The power of qk in (3.18) can use either
1

2
or another free parameter ρ. Now, use the representation

(3.16), (3.17) and (3.18) into the equation (3.10). Then we have(
d

dt
+ β|k|2 + θ|k|α

)
ûk + ik · p̂k + ̂(u,∇)uk = σ

√
qkdWk(t). (3.19)

With the divergence free condition, we have

ik · ûk = 0. (3.20)

Dot product with ik on (3.19) and we get(
d

dt
+ β|k|2 + θ|k|α

)
ik · ûk − |k|2 · p̂k + ik · ̂(u,∇)uk = σik · √qkdWk(t). (3.21)

Due to the divergence free condition (3.20), we obtain that

−|k|2p̂k = ik · [− ̂(u,∇)uk + σ
√
qkdWk(t)] (3.22)

Denote
f̂k = − ̂(u,∇)uk + σ

√
qkdWk(t). (3.23)

Then, the Fourier coefficient p̂k can be expressed as

p̂k = − 1

|k|2
ik · f̂k. (3.24)

Hence, the Fourier representation of the equation becomes(
d

dt
+ β|k|2 + θ|k|α

)
ûk = f̂k − k

(k, f̂k)

|k|2
. (3.25)
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For a fixed frequency k = (kx, ky) =

(
2πi

L
Nx,

2πi

L
Ny

)
and i =

√
−1 the imaginary unit, we could

also set qk = |k|2. Then, we have

f̂k =

(
f̂1k

f̂2k

)
=

(
− ̂[u1(u1)x + u2(u1)y] + σ

√
qkdW1(t)

− ̂[u1(u2)x + u2(u2)y] + σ
√
qkdW2(t)

)
(3.26)

We can rewrite (3.19) into the linear system form,


d

dt
(û1)k + β(k2

x + k2
y)(û1)k + θ(k2

x + k2
y)

α
2 (û1)k = f̂1k − kx

kxf̂1k + kyf̂2k

k2
x + k2

y

,

d

dt
(û2)k + β(k2

x + k2
y)(û2)k + θ(k2

x + k2
y)

α
2 (û2)k = f̂2k − ky

kxf̂2k + kyf̂2k

k2
x + k2

y

. (3.27)

As mentioned in the previous section, discretize (3.27) by implicit Euler schemes for the derivatives
on time. For instance, the first equation in the (3.27) can be discretized as follows. We apply Fast
Fourier Transform (FFT) on u(t, x, y) to get the value of ûn(t). Conversely, we can apply inverse
Fourier transform to convert the frequency back to the function values, that is to say, given a
vector of ûn(t) at different n with a fixed time, we can derive u(t, x, y) by using the inverse Fourier
transform.

For the two dimensional case, we can use the built-in function fft2 for fast Fourier transform
and ifft2 for inverse fast Fourier transform. Suppose you have function values and N . The
frequency we get from fft2 is arranged in the order [0, 1, 2, ..., N/2, (1 − N/2), ...,−1]. In order
to get the normalized value, when applying fft2, we also need to divide N2. Similarly, applying
ifft2, we adjust it by multiplying N2. Introduce some notations: the Fourier operator F and the
inverse Fourier operator F−1. Set ξ as a standard normal distributed random variables. Denote
the time increment ∆t = tj+1 − tj .

f̂1k(tj+1) = −
[

̂u1(tj+1)(u1(tj+1))x + u2(tj+1)(u1(tj+1))y

]
+ σ

√
kx(W1(tj+1)−W1(tj))

= −F
[
F−1(ûn(tj+1)) · F−1 (kxûn(tj+1)) + F−1(v̂n(tk+1)) · F−1 (kyûn(tj+1))

]
+ σ

√
qkx∆tξ1j .

(3.28)

Then,

û1k(tj+1)− û1k(tj)

∆t
= −β(k2

x + k2
y)û1k(tj+1)− θ(k2

x + k2
y)

α
2 û1k(tj+1)

+ f̂1k(tj+1)− kx
kxf̂1k(tj+1) + kyf̂2k(tj+1)

k2
x + k2

y

.

(3.29)

This is a nonlinear equation for û1k(tj+1), which can be numerically solved by iteration methods.
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From (3.30), derive the form of û
(m+1)
k (tj+1) = G(û

(m)
k (tj+1)), where m is the number of iterations.

û1
(m+1)
k (tj+1)− û1k(tj)

∆t
= −β(k2

x + k2
y)û1

(m+1)
k (tj+1)− θ(k2

x + k2
y)

α
2 û1

(m+1)
k (tj+1)

+ f̂1
(m)

k (tj+1)− kx
kxf̂1

(m)

k (tj+1) + kyf̂2
(m)

k (tj+1)

k2
x + k2

y

,

û1
(m+1)
k (tj+1) =

(
1 + ∆tβ(k2

x + k2
y) + ∆tθ(k2

x + k2
y)

α
2

)−1 [
û1k(tj) + ∆tf̂1

(m)

k (tj+1)

−∆tkx
kxf̂1

(m)

k (tj+1) + kyf̂2
(m)

k (tj+1)

k2
x + k2

y

]
.

(3.30)

Based on (3.28) and (3.30), we can get the similar schemes for û2
(m+1)
k (tj+1) and then apply the

fixed point iterations to get û
(m+1)
k (tj+1), given û

(m)
k (tj+1).

3.2.2 Numerical Implementations for θ̂N and α̂N

Let’s rewrite the PDE systems (3.27) into the dynamics form of ûk For simplicity, let’s split f̂k into
two parts. Denote f̂k = ĝk + σ

√
qkdWk(t), where

ĝk =

(
− ̂[u1(u1)x + u2(u1)y]

− ̂[u1(u2)x + u2(u2)y]

)
, (3.31)

Based on (3.25) and (3.26) and the notation above, we have

dûk = −
(
β|k|2 + θ|k|α

)
ûkdt+ f̂k − k

(k, f̂k)

|k|2

= −
(
β|k|2 + θ|k|α

)
ûkdt+ ĝkdt+ σ

√
qkdWk(t)− k

(k, ĝkdt+ σ
√
qkdWk(t))

|k|2

= −
(
β|k|2 + θ|k|α

)
ûkdt+

(
ĝk − k

(k, ĝk)

|k|2

)
dt+ σ

(
√
qk − k

(k,
√
qk)

|k|2

)
dWk(t).

(3.32)

Though ûk(t) is equivalent to (3.30), it is easier to write its log-likelihood function using the form of
dynamics of OU process. We separate this into dt terms and dWk(t) terms. Similarly, we can define

the log-likelihood function. Denote µk(Θ) := β|k|2+θ|k|α and σ(t, ûk(t)) := σ

(
√
qk − k

(k,
√
qk)

|k|2

)
,

where Θ = (β, θ, α). We now introduce the following notations, and the dot product in these
notations is element-wise,

ak,T =
1

σ2(t, ûk)(t)

∫ T

0
ûk(t) · dûk(t), bk,T =

1

σ2(t, ûk)(t)

∫ T

0
(ûk(t))2dt, (3.33)

and

ck,T =
1

σ2(t, ûk)(t)

∫ T

0
ûk(t) ·

(
ĝk − k

(k, ĝk)

|k|2

)
dt, (3.34)
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ln(LN,k(β, θ, α)) = −
N∑
|k|=1

(µk(Θ)− µk(Θ0))(ak,T + ck,T ) +
1

2
(µ2

k(Θ)− µ2
k(Θ0))bk,T . (3.35)

Similarly, we take partial derivatives with respect to each variable β, θ and α.

∂ ln(LN,k)

∂β
= −

N∑
|k|=1

|k|2(ak,T + ck,T ) + µk(Θ)|k|2bk,T ,

∂ ln(LN,k)

∂θ
= −

N∑
|k|=1

|k|α(ak,T + ck,T ) + µk(Θ)|k|αbk,T ,

∂ ln(LN,k)

∂α
= −

N∑
|k|=1

|k|α(ln(|k|))(ak,T + ck,T ) + µk(Θ)|k|α(ln(|k|))bk,T .

We need to solve this system (3.36), (3.36) and (3.36) to find the estimation of these parameters.
The linear system have the similar form as in the previous chapter, except the notations of ak,T , bk,T
and ck,T . For given α, we get

 N∑
|k|=1

|k|4bk,T

β +

 N∑
|k|=1

|k|α+2bk,T

 θ = −
N∑
|k|=1

|k|2(ak,T + ck,T )

 N∑
|k|=1

|k|α+2bk,T

β +

 N∑
|k|=1

|k|2αbk,T

 θ = −
N∑
|k|=1

|k|α(ak,T + ck,T )

(3.36)

Applying the Cramer rule, we have the approximated values of β and θ as follows, given the value
of α.

β̂N,T =

(
−

N∑
|k|=1

|k|2(ak,T + ck,T )

)(
N∑
|k|=1

|k|2αbk,T

)
+

(
N∑
|k|=1

|k|α+2bk,T

)(
N∑
|k|=1

|k|α(ak,T + ck,T )

)
(

N∑
|k|=1

|k|4bk,T

)(
N∑
|k|=1

|k|2αbk,T

)
−

(
N∑
|k|=1

|k|α+2bk,T

)2

(3.37)

θ̂N,T =

(
−

N∑
|k|=1

|k|α(ak,T + ck,T )

)(
N∑
|k|=1

|k|4bk,T

)
+

(
N∑
|k|=1

|k|α+2bk,T

)(
N∑
|k|=1

|k|2(ak,T + ck,T )

)
(

N∑
|k|=1

|k|4bk,T

)(
N∑
|k|=1

|k|2αbk,T

)
−

(
N∑
|k|=1

|k|α+2bk,T

)2

(3.38)
Next, we estimate α, given the value of β and θ. Letting the first-order derivative in α be zero

gives

f(α) :=
N∑
|k|=1

|k|α(ln(|k|))(ak,T + ck,T ) +
(
β|k|2 + θ|k|α

)
|k|α(ln(|k|))bk,T = 0. (3.39)

From the first order derivatives (3.36), we get a nonlinear equation (3.39) with respect to α. The
solutions to this equation is the estimation of α.
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3.3 Numerical Simulations

Consider the following fractional Navier-Stokes equation in two dimensional spaces.
dut + uux + vuy − β(uxx + uyy) + θ(−∆)αu+ px = σdW

Q,(1)
t ,

dvt + uvx + vvy − β(vxx + vyy) + θ(−∆)αv + py = σdW
Q,(2)
t ,

ux + uy = 0.

(3.40)

The initial condition is

u(0, x, y) = v(0, x, y) = A sin

(
2πκx

L

)
cos

(
2πκy

L

)
, (3.41)

where A = 1, κ = 1 and the period L = 2π. In simulation we set the time increment ∆t = 0.005.
Apply the numerical schemes mentioned above. We applied the fixed point iteration in each time
step. To compute ûn(tk+1), the initial guess in the iteration method is set to be the frequency at

the time tk, i.e. û
(0)
n (tk+1) = ûn(tk). We set the maximum iteration number as 1000 and the error

tolerance to be 10−12 for the fixed point iteration. We then have the sequence of ûk and v̂k. Finally,
by solving the linear system (3.36), we then get the estimation of θ̂N and α̂N for a fixed number of
Fourier modes N .

3.3.1 Estimate the coefficient of the fractional Laplacian term: θ

Set the parameters in this equation (3.40): β = 1 and α = 0.2. The coefficient of the stochastic
term σ is set to be 0.01.

We obtain the data by letting θ = 1. The estimation θ̂N is 1.009509, and the error is around
9 × 10−3. When N goes close to 100 from a small number, the estimation is getting close to 1.
When N is greater than 100, the estimation of θ becomes relatively stable. Though the estimation
is still volatile when N increases, it can be seen the estimated value is volatile around 1. As N
becomes larger and time step ∆t becomes smaller, the estimation is much closer to the exact value.

When changing another set of parameters, we will get the similar results for θ. Suppose that
θ = 5, β = 1 and α = 0.2. The coefficient of the stochastic term σ is set to be 0.05. In this settings,
the stochastic term has a less impact on the solutions than the other terms. See Figures 3.4 and
3.5. The estimation θ̂N is 5.080691. The error is around 8× 10−2, when N = 256.

3.3.2 Estimate the fractional order α

In this subsection, we estimate of the fractional order α, by solving a nonlinear equation (3.36)
numerically. Consider the parameters β = 0.01, θ = 1, σ = 0.01 in the fractional Navier-Stokes
Equation. The exact value of the fractional order α is 0.8. In Matlab, we solve this one variable
nonlinear equation by the built-in function fsolve. The initial guess is 0.9. The performance of the
estimation depends on the choice of the initial guess. When the number of Fourier modes N = 200
and the time step ∆t = 10−3, the estimation α̂N = 0.8401927. The error is around 4 × 10−2. In
Figure 3.6, although the estimation α̂N is oscillating, they are getting closer to the exact value.
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Figure 3.1: Fractional NS Equations: MLE estimation for θ for different number of Fourier modes
N , θ = 1
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Figure 3.2: Fractional NS Equations: MLE estimation for θ for different number of Fourier modes
N between 100 and 256, θ = 1
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Figure 3.3: Fractional NS Equations: Error |θ̂N − θ| for different number of Fourier modes.
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Figure 3.4: Fractional NS Equations: MLE estimation θ for different number of Fourier modes,
θ = 5
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Figure 3.5: Fractional NS Equations: MLE estimation for θ MLE estimation θ for number of
Fourier modes N between 100 and 256, θ = 5
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Figure 3.6: Fractional NS Equations: MLE estimation for α for different number of Fourier modes
N
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Figure 3.7: Fractional NS Equations: Error |α̂N − α| for different number of Fourier modes N .

61



62



Chapter 4

Neural Networks

In this chapter, we work further on the numerical method of fractional Navier Stokes equation.
We apply the spectral method on solving the Navier Stokes equation with the periodic boundary
condition in the previous chapter. Physical-informed neural networks were first introduced in [52].
With the consideration of the fractional derivative terms, the fractional PINNs was introduced,
with shorthand fPINNs. In the first section, we first review the fractional PINNs. The fractional
Laplacian is defined by the directional derivative. It is approximated by using the generalized
Gauss-Laguerre quadrature rule.

4.1 Fractional Physics-informed Neural Networks

Physics-informed neural networks (PINNs) was a new way to solve a partial differential equation.
It convert a classic problem into an optimization problem. The solutions to the partial differential
equation can be regarded as a neural network. The weights of the points x1, x2, . . . , xn, and bias
in the neural networks are the parameters to be estimated. Let’s review the PINNs or FPINNs
briefly in the following subsection.

4.1.1 PINNs

To illustrate the mechanisms of PINNs, let’s consider the following PDE.

∂u(x, t)

∂t
=
∂2u(t, x)

∂x2
+ fBB(x, t), (x, t) ∈ (0, 1)× (0, 1],

u(x, 0) = g(x),

u(0, t) = u(1, t) = 0,

(4.1)

where fBB is a black-box forcing function. We approximate the solutions by uNN (x, t). The neural
network (NN) is parametrized by the weights w and biases b.
To guarantee that it satisfy the boundary condition. We select an auxiliary function ρ(x) such that
ρ(0) = ρ(1) = 0, and construct the solutions as ũ(x, t) = ρ(x)uNN (x, t). With the initial condition
u(x, 0) = g(x), the approximated solutions will be changed as

ũ(x, t) = tρ(x)uNN (x, t) + g(x). (4.2)

The neural network consists of three layers: input layers, hidden layers and output layers. From
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Figure 4.1: Framework of a simple neural network [52]

Figure 4.1, suppose that we have only one hidden layer. This is a fully connected neural networks
with 3 neurons. For example, the inputs are one location x and one time t. It follows that

x1 = w1x+ w4t

x2 = w2x+ w5t

x3 = w3x+ w6t

=⇒


y1 = φ(w1x+ w4t)

y2 = φ(w2x+ w5t)

y3 = φ(w3x+ w6t)

=⇒ ũ(x, t) = w7y1 + w8y2 + w9y3 + b4. (4.3)

Here, φ is an activation function, which is a nonlinear function. b1, b2, b3 are biases in the hidden
layer. b4 is the bias in the output layer. The parameters w1, ..., w9 and b1, ..., b4 are to be optimized
by minimizing the loss functions. There are several candidates for the activation function, such as
sigmoid functions, Rectified Linear Unit(ReLU) functions and hyperbolic function. Due to the auto
differentiation package used in the numerical simulation, hyperbolic function is recommended. We
denote the parameter µ := (w1, ..., w9, b1, ..., b4). Now we applied the neural network approximation
to the forward problem (4.1). The loss function is defined as follows by the mean-squared-error.

L(µ) =
1

N

N∑
k=1

(
∂ũ(xk, tk)

∂tk
− ∂2ũ(xk, tk)

∂x2
− fBB(xk, tk)

)2

, (4.4)

where (xk, tk) for k = 1, 2, ..., N areN training points. The training points are selected either lattice-
like or scatter grid points. The scatter grid points are drawn from the quasi-random sequences. We
employ auto differentiation to compute the spatial temporal derivatives in the loss function.

4.1.2 FPINNs

For the partial differential equation with fraction term, we apply FPINNs method to solve it
numerically. Let’s consider the following cases.

L(u(x, t)) = fBB(x, t), for (x, t) ∈ Ω× (0, T ]

u(x, 0) = g(x), x ∈ Ω

u(x, t) = 0, x ∈ ∂Ω,

(4.5)
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where g is a given function as the initial condition. As mentioned above, to satisfy the initial and
boundary condition, we construct the neural network solutions as above (4.2). The operator L can
either be a linear or nonlinear operator. Here, the fractional Navier Stokes equation is

L :=
∂

∂t
+ β(−∆) + θ(−∆)α/2 + (·,∇)·, (4.6)

This operator can be split by two parts. One is LAD := ∂
∂t + β(−∆), which can be applied by

auto differentiation and the other is LnonAD := θ(−∆)α/2 +(·,∇)·. For the non auto-differentiation
operator, we applied the classic numerical approximation, such as finite difference method [48] and
quadrature rule what we did here. Recall the definition of fractional laplacian operator in nonAD
operator [33, 51].

Definition 4.1.1. The directional representation of fractional laplacian is defined as follows.

(−∆)α/2u(x, t) =
Γ(1−α

2 )Γ(D+α
2 )

2(π)
D+1
2

∫
||θ||2=1

Dα
θ u(x, t)dθ, θ ∈ RD, 1 < α ≤ 2, (4.7)

where || · ||2 is the L2 norm of a vector. The symbol Dα
θ denotes the directional fractional differential

operator, where θ is the differentiation direction vector.

The definition of the Riemann-Liouville directional derivative of a sufficiently properly defined
function u(x) is (α ∈ (1, 2]) [33, 51]

Dα
θ u(x) =

1

Γ(2− α)
(θ · ∇)2

∫ +∞

0
ξ1−αu(x− ξθ)dξ, x, θ ∈ RD, (4.8)

where the differentiation direction θ is defined as follows.

θ =


cos θ = ±1, where θ = 0 or π, for D = 1

[cos θ, sin θ], where θ ∈ [0, 2π), for D = 2

[sinφ cos θ, sinφ sin θ, cosφ], where θ ∈ [0, 2π), φ ∈ [0, π], for D = 3

(4.9)

The symbol ∇ represents the gradient operator, and θ · ∇ represents the inner product of two

vectors. In one dimensional case, (θ · ∇)2 =
∂2

∂x2
. In the 2D case, θ · ∇ = cos θ

∂

∂x
+ sin θ

∂

∂y
.

Definition 4.1.2. The general Gauss-Laguerre quadrature rule in one dimensional space is defined
as follows. For γ > −1, ∫ ∞

0
xγe−xf(x)dx ≈

n∑
i=1

wif(xi), (4.10)

where the weights are given in the terms of the generalized Laguerre polynomials wi =
Γ(n+ γ + 1)xi

n!(n+ 1)2[L
(γ)
n+1(xi)]2

and xi are the ith root of Laguerre polynomials L(γ)
n =

x−γex

n!

dn

dxn
(e−xxn+γ).

Instead of using the finite difference method and the shifted vector Grunwald-Letnikov (GL)
formula in [48], we apply the generalized Gauss-Laguerre quadrature rule to approximate the di-
rectional part in (4.8) [21]. The nodes and weights of Gauss Laguerre rule are derived from the
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Elhay-Kautsky method [29]. From the definition, the power of the integral variable γ should be
strictly greater than −1. In our problem settings, the fractional order α/2 of Laplacian operator
is in the range of (1/2, 1]. It follows that 1 − α ∈ [−1, 1), which means that it works only for
the fractional order if we want to apply for the generalized Gauss-Laguerre quadrature rule. Let’s
denote ũ(x) to be the neural networks solutions satisfying the initial and boundary conditions.
Then, the integral of ũ to be estimated in 2D is∫ ∞

0
ξ1−αũ

([
x
y

]
− ξ

[
cos θ
sin θ

])
dξ =

∫ ∞
0

ξ1−αe−ξ eξũ

([
x
y

]
− ξ

[
cos θ
sin θ

])
︸ ︷︷ ︸

:=f(x,y;ξ,θ)

dξ ≈
Nξ∑
i=1

wif(x, y; ξi, θ),

(4.11)

where the weights wi :=
Γ(n+ 2− α)ξi

n!(n+ 1)2[L
(1−α)
n+1 (ξi)]2

and ξi are the ith root of Laguerre polynomials

L
(1−α)
n+1 =

ξ−(1−α)eξ

(n+ 1)!

dn+1

dξn+1
(e−ξξn+2−α). We have estimated the integral part in the definition of

fractional Laplacian (4.8). Then, in 2D, it becomes

Dα
θ u(x) =

1

Γ(2− α)

Nξ∑
i=1

wi

(
cos2 θ

∂2

∂x2
+ 2 cos θ sin θ

∂2

∂x∂y
+ sin2 θ

∂2

∂y2

)
f(x, y; ξi, θ), x, θ ∈ RD,

(4.12)
where f is derived in (4.11). Then, the fractional term in 2D cases becomes

(−∆)α/2u(x, t) = C2,α

Nξ∑
i=1

wi

∫
||θ||2=1

(
cos2 θ

∂2

∂x2
+ 2 cos θ sin θ

∂2

∂x∂y
+ sin2 θ

∂2

∂y2

)
f(x, y; ξi, θ)dθ,

≈ C2,α

Nθ∑
j=1

J2νj

Nξ∑
i=1

wi

(
cos2 θj

∂2

∂x2
+ 2 cos θj sin θj

∂2

∂x∂y
+ sin2 θj

∂2

∂y2

)
f(x, y; ξi, θj), for θj ∈ (0, 2π].

(4.13)

where the constant C2,α =
Γ(1−α

2 )Γ(1 + α/2)

2(π)
3
2 Γ(2− α)

. The determinant of the Jacobian matrix is J2 = 1

for the polar-Cartesian coordinate transformation. νj are Gauss-Legendre quadrature weights and
θj are the corresponding quadrature nodes. (4.11) can be simplified in one dimensional case∫ ∞

0
ξ1−α[u (x+ ξ) + u(x− ξ)]dξ

=

∫ ∞
0

ξ1−αe−ξeξ[u (x+ ξ) + u(x− ξ)]dξ ≈
Nξ(x)∑
i=1

wie
ξi [u(x+ ξi) + u(x− ξi)].

(4.14)

(4.13) in one dimensional case becomes

(−∆)αu(x, t) ≈ 1

2 cos
(
πα
2

) Nξ(x)∑
i=1

wie
ξi

[
∂2u

∂x2

∣∣∣∣
(x+ξi)

+
∂2u

∂x2

∣∣∣∣
(x−ξi)

]
. (4.15)
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Again, ξi and wi are the nodes and weights of the generalized Gauss Laguerre quadrature rule.
Nξ(xj) is the number of nodes ξ used for xj . Similarly, xj and νj are the nodes and weights of
the Gauss Legendre rule. The differential operator can be applied in auto-differentiation package
in python. We want to optimize the weights and bias in the neural networks. These three parts in
(4.13) computed separately. The loss function of FPINNs for the forward problem is defined as

LFW (µ) =
1

|N |
∑

(x,t)∈N

[LNξ,NθAD {ũ(x, t)} − fBB(x, t)]2, (4.16)

where N is the set of all training points N ⊂ Ω × [0, T ] and |N | denotes the number of training
points. On the other hand, FPINNs can also be applied in the inverse problem to find the estimation
of the parameters α, β and θ in the Navier Stokes equation. Given the data at t = T ,

u(x, t) = hBB(x, t), (x, t) ∈ Ω× {t = T}. (4.17)

The loss function for this inverse problem is

LINV (µ) =
w1

|N1|
∑

(x,t)∈N1

[LNξ,NθAD {ũ(x, t)} − fBB(x, t)]2

+
w2

|N2|
∑

(x,T )∈N2

[ũ(x, T )− hBB(x, T )]2.
(4.18)

N1 and N2 are two distinct sets of data. w1 and w2 are two preselected weights. This loss function
is a weighted sum of two parts. The first part is a measurement on training a neural network and
the second part is to minimize the mean-squared error between the solutions and observations.

4.2 Numerical examples

In this section, we demonstrate the numerical simulations for the fractional laplacian equation using
FPINNs with the generalized Gauss Laguerre rule.

(−∆)
α
2 u(x) + β∆u(x) = f(x) x ∈ (0, 1), (4.19)

with the boundary condition u(0) = u(1) = 0. Suppose that the forcing term is [65]

f(x) =
1

2 cos(πα/2)

[
Γ(4)

Γ(4− α)
(x3−α + (1− x)3−α)− 3Γ(5)

Γ(5− α)
(x4−α + (1− x)4−α)

+
3Γ(6)

Γ(6− α)
(x5−α + (1− x)5−α)− Γ(7)

Γ(7− α)
(x6−α + (1− x)6−α)

]
.

(4.20)

Suppose that the coefficient of the Laplacian β is 0, the exact solutions to (4.19) is u(x) = x3(1−x)3.
Our goal is to estimate the parameter β. From (4.15), in order to evaluate the value u(xj), we
need to have the approximated solution ũ(xj) = x(1−x)uNN (x) and evaluations at some supported
points additionally. We construct it into a matrix form. The points are arranged in order. The first
part are the points ũ(xj) to be evaluated, and the remaining parts are the corresponding supporting
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points of ũ(xj). The following matrix is to evaluate ũ(xj)

1

2 cos
(
πα
2

) [0 . . . νjw1e
ξ1 . . . νjwNj,ξe

ξNj,ξ νjw1e
ξ1 . . . νjwNj,ξe

ξNj,ξ . . . 0
]


ũxx(xj)
ũxx(xj + ξ1)

...
ũxx(xj + ξN1,ξ

)

ũxx(xj − ξ1)
...

ũxx(xj − ξN1,ξ
)


(4.21)

Extend to the evaluation at different training points xj . The vector is arranged as follows.

ũ :=



ũxx(x1)
...

ũxx(xN )
ũxx(x1 + ξ1)

...
ũxx(x1 + ξN1,ξ

)

ũxx(x1 − ξ1)
...

ũxx(x1 − ξN1,ξ
)

...
ũxx(xN + ξ1)

...
ũxx(xN − ξNN,ξ)

(
N+2

N∑
j=1

Nj,ξ

)
×1

(4.22)

Then construct a corresponding sparse coefficient matrix A. The loss function of FPINNs evaluated
at x = [x1, ..., xN ]T is defined as

L(µ) = MSE (Aũ− f(x)) . (4.23)

Our goal is to find the estimation β such that it minimizes the loss function.(4.23). Unfortunately,
we have no numerical results on this example.

68



Chapter 5

Positivity-preserving Methods for
SDEs with Non-Lipschitz coefficients

In this chapter, we consider positivity-preserving explicit schemes for one-dimensional nonlinear
stochastic differential equations. The drift coefficients satisfy the one-sided Lipschitz condition,
and the diffusion coefficients are Hölder continuous. To control the fast growth of moments of
solutions, we introduce several explicit schemes including the tamed and truncated Euler schemes.
The fundamental idea is to guarantee the non-negativity of solutions. The proofs rely on the
boundedness for negative moments and exponential of negative moments. We present several
numerical schemes for a modified Cox-Ingersoll-Ross model and a two-factor Heston model and
demonstrate their half-order convergence rate.

5.1 Introduction

In many applications of stochastic differential equations (SDEs), coefficients of SDEs grow nonlin-
early. When these SDEs with coefficients of superlinear growth are solved using numerical methods,
explicit numerical schemes usually fail to converge in the sense of mean-square and moments, e.g.,
[24, 41]. The failure of explicit schemes lies in the fact that the moments of numerical solutions
explode. To control the fast explosion of these moments of solutions to SDEs with coefficients of
superlinear growth, several approaches have been proposed when the coefficients are assumed to
be one-sided Lipschitz continuous: a) Euler schemes with variable step sizes, b) implicit schemes
[20, 22, 39, 38, 60] instead of explicit schemes, c) balanced implicit schemes, d) tamed schemes
[23, 24, 26, 27, 55, 54, 58, 60, 62, 66, 64], e) truncated Euler schemes [34, 37, 42], f) semi-discrete
schemes [19]. A review of recent literature on this topic is presented in [25].

SDEs with coefficients of sublinear growth are also used in applications such as in finance. For
example, the Cox-Ingersoll-Ross (CIR) model and the Heston model have a Hölder continuous
diffusion coefficients. For these models, most explicit schemes converge very slowly. It was proved
in [18] that the Euler scheme for the CIR model converges at the rate of 1/ ln(n), where n is the
number of time steps. See a similar conclusion in [44] for an SDE with coefficients of both one-sided
Lipschitz and Hölder continuity. A standard solution to improve the convergence order is to ensure
the positivity of numerical solutions such that the negative moments of numerical solutions are
bounded, see e.g., [5, 7, 30].
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We consider the following one-dimensional Itô SDE

Xt = X0 +

∫ t

0
b(Xs) ds+

∫ t

0
σXγ

s dWs,
1

2
< γ < 1. (5.1)

where X0 ≥ 0 and σ ∈ R are given constants and (Wt)t≥0 is a standard one-dimensional Brownian
motion defined on a probability space (Ω,F ,P). Here, the drift coefficient is one-sided Lipschitz
continuous and grows polynomially at infinity. The diffusion coefficient is Hölder continuous when
1/2 < γ < 1, see Section 5.2 for detailed assumptions. When b(x) = 1− x3, it is shown in [44] that
the convergence order is γ − 1/2 if 1/2 < γ < 1. When γ is close to 1/2, the convergence order is
low. Moreover, if the solution is non-negative, the numerical solution of forward Euler scheme is
not positivity-preserving [53]. Inspired by the work in [5], we take the absolute value at each time
step so that the numerical solution is nonnegative if the solution to (5.1) is nonnegative.

To the best of our knowledge, explicit schemes of half-order convergence for Equation (5.1)
with a non-Lipschitz drift coefficient have not been investigated. In literature, positivity-preserving
explicit schemes are discussed either for SDEs with coefficients of superlinear growth such as in [58]
or for SDEs with Hölder continuous diffusion coefficients and Lipschitz continuous drift coefficients,
see a review in [30]. Also, positivity of numerical solutions by the forward Euler scheme for SDEs
with superlinearly growing locally Lipschitz coefficients is discussed in [53].

For Equation (5.1), we combine the tamed/balanced or projection schemes and positivity-
preserving scheme proposed in [5], see (5.9). In our setting, the tamed schemes are sufficient
to control the fast growth of moments of solutions caused by the drift coefficients of superlinear
growth as in [44] while the positivity of numerical solution is essential to recover the half-order
convergence as in numerical schemes for Hölder continuous coefficients, see e.g., [2, 3, 5, 19],

To prove the half-order convergence of our schemes, we follow ideas of the proofs in [5], where the
drift coefficients are assumed to be Lipschitz continuous. However, this assumption is violated in our
setting, and two technical issues arise. First, the drift coefficients with polynomial growth can not
be bounded linearly. For locally Lipschitz drift coefficients, we only have a Lipschitz-like condition
for the drift in the numerical scheme and the drift in absolute value can be bounded by (∆t)−1 |x|
or (∆t)−

1
2 |x| plus a constant proportional to some positive powers of ∆t, where ∆t is the time

step size. Second, due to the nonlinear growth of drift coefficients, the boundedness of exponential
moment of solutions cannot be proved via a known comparison theorem and by comparing with
solutions to a CIR model as in [5]. We prove the bounded exponential moment using a surprisingly
simple approach, which can significantly simplify the proof of bounded exponential moments in [5].
See details in Lemma 5.3.11.

The main contributions of this chapter are listed as follows.
• We develop explicit schemes preserving positivity of solutions to SDEs with non-globally

Lipschitz drift and Hölder continuous diffusion coefficients.
• We present five explicit positivity-preserving schemes. These schemes are modified sym-

metrized Euler schemes. We discuss several choices for non-globally Lipschitz drift among the
state-of-the-art tamed schemes and truncation schemes.
• We present several numerical examples using these schemes and make comparisons in com-

putational performance and convergence.
In this chapter, we only consider explicit schemes because the additional computational effort

is required for implicit schemes to solve nonlinear equations at each time step. Moreover, it is
unclear whether implicit schemes preserve positivity, although positivity-preserving is possible in
some special cases, e.g., backward (implicit) Euler scheme in [28, 39, 43].
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The rest of the chapter is organized as follows. In Section 5.2, we introduce the assumptions on
the coefficients of (5.1) and present positivity-preserving explicit schemes. We also state our main
result of this chapter on the half-order strong convergence. In Section 5.3, we present all proofs of
bounded moments and the strong convergence order. We provide some numerical experiments and
verify our prediction in Section 4.

5.2 Preliminaries and numerical scheme

Let Xt, 0 ≤ t ≤ T, be a strong solution of (5.1). We assume the following conditions.

Assumption 5.2.1. (i) The initial condition is such that

E[|X0|2p] ≤ K <∞, for all p ≥ 1. (5.2)

(ii) There is a positive constant β such that

(x− y)(b(x)− b(y)) ≤ β|x− y|2. (5.3)

(iii) There exist K1 > 0 and α ≥ 1 such that for t ∈ [0, T ]

|b(x)− b(y)|2 ≤ K1(1 + |x|2α−2 + |y|2α−2)|x− y|2, x, y ∈ R. (5.4)

(iv) The function b(x) is positive when x = 0, i.e., b(0) > 0.

We note that (5.3) implies that there exists a constant β1 such that

xb(x) ≤ xb(0) + βx2 ≤ β1(1 + x2), t ∈ [0, T ], x ∈ R. (5.5)

Also, this inequality implies that if x ≥ 0,

b(x) ≤ b(0) + βx, (5.6)

which is also observed in [58]. By Itô’s formula, there exists a constant C > 0 such that

E[|Xt|p] ≤ C(1 + E[|X0|p]) t ∈ [0, T ], p ≥ 2. (5.7)

From (5.4) and letting y = 0, we have |b(x) − b(0)| ≤
√
K1(1 + |x|2α−2)1/2 |x| and |b(x)| ≤√

K1(|x|+ |x|α) + b(0). Also, there exists a constant K2 > 0 such that

|b(x)|2 ≤ K2(1 + |x|2α) x ∈ R. (5.8)

5.2.1 Numerical schemes

Let N∆t = T and tk = k∆t where k = 0, 1, ..., N . Define Ytk by the following equation

Ytk+1
= |Ytk + b̄(Ytk)∆t+ σY γ

tk
(Wtk+1

−Wtk)|, k = 0, 1, ..., N − 1, (5.9)
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where Y0 = X0 > 0 and we consider five cases of b̄(x):

a) b̄(y) =
b(y)

1 + |y|α (∆t)1/2
, (5.10)

b) b̄(y) = b(ŷ), where ŷ = min(1, (∆t)−η |y|−1)y, 2η(α− 1) = 1, (5.11)

c) b̄(y) =
b(y)

1 + |y|α ∆t
, (5.12)

d) b̄(y) =
b(y)

1 + |b(y)|∆t
, (5.13)

e) b̄(y) =
tanh(b(y)∆t)

∆t
. (5.14)

We remark that these treatments of b(x) to control the growth of numerical solution are not new. In
literature, Cases a),c),d),e) are from tamed Euler schemes for SDEs with coefficients of superlinear
growth. Cases a),d),e) are from [55], [26], [64], respectively. Case b) is from the projection Euler
scheme in [6] (c.f. [34]).

Define θ(t) = supk∈{1,2,...,N}{tk : tk ≤ t}. Let

Zt = Yθ(t) + b̄(Yθ(t))(t− θ(t)) + σY γ
θ(t)(Wt −Wθ(t)), (5.15)

the numerical solution can be obtained by Yt = |Zt| for t ∈ [0, T ].

Theorem 5.2.2. Suppose that Assumption 5.2.1 holds and Xt > 0 when t ∈ [0, T ]. Suppose also
that X0 = x > 0. Then there exists a positive constant C depending on σ, p and T but not on ∆t
such that

sup
t∈[0,T ]

E[|Xt − Yt|2p] ≤ C∆tp, p ≥ 1.

5.3 Proof of Theorem 5.2.2

In this section, we present the proof of our main result Theorem 5.2.2. Before the proof, we show
the Lipschitz-like condition for the modified drift coefficient b̄ from (5.10) -(5.14) in Section 5.3.1.
We then prove the moment bounds of solutions to the numerical scheme (5.9) with (5.10)-(5.14)
in Section 5.3.2. In Section 5.3.3, we prove that expectations of negative powers of the solution
to (5.1) are bounded when the solution is nonnegative. At last, we present the proof of Theorem
5.2.2 in Section 5.3.4.

5.3.1 Properties of the modified drift coefficient b̄(x)

Let’s first present some properties of the modified drift coefficients.
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Lemma 5.3.1. Under Assumption 5.2.1, we have for (5.10) that

b̄(x) ≤ b(0) + βx, x > 0, (5.16)∣∣b̄(x)− b̄(0)
∣∣ ≤ |b(x)− b(0)|

1 + |x|α
√

∆t
+
b(0)|x|α

√
∆t

1 + |x|α
√

∆t
, (5.17)

∣∣b̄(x)
∣∣ =

|b(x)|
1 + |x|α

√
∆t
≤ C min(

1√
∆t

, 1 + |x|α), (5.18)∣∣b̄(x)− b(x)
∣∣ ≤ |b(x)| |x|α

√
∆t ≤ C(1 + |x|2α)

√
∆t, (5.19)

b̄(x) ≥ −
√
K1(|x|+ |x|α) + b̃, b̃ =

b(0)

1 + |x|α
√

∆t
. (5.20)

Proof. By the assumption (5.3), we have xb(x) ≤ b(0)x+ β |x|2. When x > 0, b̄(x) = b(x)

1+|x|α
√

∆t
≤

b(0) + βx which is (5.16).
The inequality (5.17) follows from (5.4) and b(0) > 0 as we have

∣∣b̄(x)− b̄(0)
∣∣ =

∣∣∣∣ b(x)

1 + |x|α
√

∆t
− b(0)

∣∣∣∣ =

∣∣∣∣∣ b(x)− b(0)

1 + |x|α
√

∆t
− b(0) |x|α

√
∆t

1 + |x|α
√

∆t

∣∣∣∣∣ .
By (5.17), we have

∣∣b̄(x)
∣∣ ≤ ∣∣b̄(x)− b̄(0)

∣∣+ b̄(0) ≤
√
K1(1 + |x|α−1)|x|

1 + |x|α
√

∆t
+
b(0)|x|α

√
∆t

1 + |x|α
√

∆t
+ b(0).

Then we obtain the upper bound (5.18). The inequality (5.19) follows from the definition of b̄
(5.10) and (5.8). The inequality (5.20) follows from (5.17) and (5.4).

Lemma 5.3.2. Consider α > 1. Under Assumption 5.2.1, we have for (5.10) that when
√

∆t ≤
((α−1
α+1)(α−1) + 1)−1,

√
∆t
∣∣b̄(x)− b̄(0)

∣∣ ≤ √
K1 |x|+

b(0)|x|α
√

∆t

1 + |x|α
√

∆t

√
∆t,

√
∆tb̄(x) ≥ −

√
K1 |x|+

b(0)
√

∆t

1 + |x|α
√

∆t
.

Proof. We have from (5.17) that

√
∆t
∣∣b̄(x)− b̄(0)

∣∣ ≤ √
K1(1 + |x|α−1)|x|

1 + |x|α
√

∆t

√
∆t+

b(0)|x|α
√

∆t

1 + |x|α
√

∆t

√
∆t,

It only requires to show that

(1 + |x|α−1)|x|
1 + |x|α

√
∆t

√
∆t ≤ |x| , when

√
∆t ≤ ((

α− 1

α+ 1
)(α−1) + 1)−1.

Denote g(z) = z(1 −
√

∆t) + zα(z − 1)
√

∆t. Then it suffices to show that g(|x|) ≥ 0 . Observe
that g(z) > 0 whenever

√
∆t ≤ 1 and z ≥ 1. We then focus on the case 0 < z < 1. Here
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g′(z) = (1−
√

∆t) + zα−1
√

∆t[(α+ 1)z − α] and g′′(z) = α
√

∆tzα−2(z(α+ 1)− (α− 1)). The only
nontrivial root of g′′(z∗) is z∗ = α−1

α+1 . Then g′′(z) < 0 when 0 < z < z∗ and g′′(z) > 0 when z > z∗.

Thus by g′(0) ≥ 1−
√

∆t (α > 1) and g′(1) = 1 > 0, we have, for any 0 < z < 1 and z 6= z∗,

g′(z) > g′(z∗) = (1−
√

∆t) + (z∗)α−1[(α+ 1)z∗ − α]
√

∆t = 1− (1 + (z∗)α−1)
√

∆t.

When
√

∆t ≤ [(α−1
α+1)(α−1) + 1]−1, i.e., (1 + (z∗)α−1)

√
∆t ≤ 1, we have g′(z) ≥ 0 and thus g(z) ≥

g(0) = 0. When α = 1, g(z) = z2
√

∆t−2z
√

∆t+z ≥ g(1) = 1−
√

∆t ≥ 0. This ends the proof.

Lemma 5.3.3. Suppose Assumption 5.2.1 holds and ∆t ∈ (0, 1], and α ≥ 1. For (5.11), we have
that

|x̂− ŷ| ≤ |x− y| , for any x, y ∈ R, (5.21)∣∣b̄(x)− b̄(y)
∣∣ ≤ √

K1(1 + 2(∆t)−η(α−1)) |x− y| , for any x, y ∈ R, (5.22)∣∣b̄(x)− b̄(y)
∣∣ ≤ √

K1(1 + |x̂|α−1 + |ŷ|α−1) |x− y| , for any x, y ∈ R, (5.23)

b̄(x) = b(x̂) ≤ b(0) + βx̂ ≤ b(0) + βx, x > 0, (5.24)∣∣b̄(x)− b(x)
∣∣ ≤ √

K1(1 + |x̂|α−1 + |x|α−1) |x̂− x| ≤
√
K1(1 + 2 |x|α−1) |x̂− x| , (5.25)

b̄(x) ≥ −
√
K1(|x|+ |x|α) + b̄(0), (5.26)

b̄(x) ≥ −
√
K1(1 + 2(∆t)−η(α−1))|x|+ b̄(0). (5.27)

The proof of first two properties can be found in [6]. The proof of the third, the fourth and
the fifth properties follows from Assumption 5.2.1 and (5.11). The inequality (5.26) follows from
(5.23) with y = 0 and the triangle inequality. The last inequality follows from (5.22) by letting
y = 0 when 2η(α− 1) = 1.

Lemma 5.3.4. Under Assumption 5.2.1, we have for (5.12) that

b̄(x) ≤ b(0) + βx, x > 0, (5.28)∣∣b̄(x)− b̄(0)
∣∣ ≤ |b(x)− b(0)|

1 + |x|α∆t
+
b(0)|x|α∆t

1 + |x|α∆t
, (5.29)

∣∣b̄(x)
∣∣ =

|b(x)|
1 + |x|α ∆t

≤ C min(
1

∆t
, 1 + |x|α), (5.30)∣∣b̄(x)− b(x)

∣∣ ≤ |b(x)| |x|α ∆t ≤ C(1 + |x|2α)∆t, (5.31)

∆tb̄(x) ≥ −
√
K1 |x|+

b(0)∆t

1 + |x|α ∆t
, when ∆t ≤

[
(
α− 1

α+ 1
)(α−1) + 1

]−1

, (5.32)

b̄(x) ≥ −
√
K1(|x|+ |x|α) + b̃, b̃ =

b(0)

1 + |x|α∆t
. (5.33)

Here we use the convention that 00 ≡ 0.

The proof is similar to those of Lemmas 5.3.1 and 5.3.2 and thus is omitted.
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Lemma 5.3.5. Under Assumption 5.2.1, we have for (5.13) that

b̄(x) ≤ b(0) + βx, x > 0, (5.34)∣∣b̄(x)− b̄(0)
∣∣ ≤ |b(x)− b(0)| , (5.35)∣∣b̄(x)
∣∣ =

|b(x)|
1 + |b(x)|∆t

≤ C min(
1

∆t
, 1 + |x|α), (5.36)∣∣b̄(x)− b(x)

∣∣ ≤ |b(x)|2 ∆t ≤ C(1 + |x|2α)∆t, (5.37)

∆tb̄(x) ≥ −2(
√
K1∆t)

1
α (|x|+ |x|

1
α ) + ∆tb̄(0), (5.38)

b̄(x) ≥ −
√
K1(|x|+ |x|α) + b̄(0). (5.39)

Proof. The proof of first four inequalities are similar to that in Lemmas 5.3.1 and 5.3.4. Since the
derivative of the function y/(1 + |y|∆t) is bounded by 1, we have from the mean value theorem
that

∣∣b̄(x)− b̄(0)
∣∣ ≤ |b(x)− b(0)|. Also,

∆t
∣∣b̄(x)− b̄(0)

∣∣ ≤ ∆t(
∣∣b̄(x)

∣∣+
∣∣b̄(0)

∣∣) =
|b(x)∆t|

1 + |b(x)|∆t
+
|b(0)|∆t

1 + |b(0)|∆t
≤ 2,

By convexity, we have (a+ b)x ≤ ax + bx, for a, b > 0 and 0 < x ≤ 1. It follows that for α ≥ 1,

∆t
∣∣b̄(x)− b̄(0)

∣∣ = (∆t
∣∣b̄(x)− b̄(0)

∣∣) 1
α · (∆t

∣∣b̄(x)− b̄(0)
∣∣)1− 1

α ≤ (∆t
∣∣b̄(x)− b̄(0)

∣∣) 1
α · 21− 1

α

≤ 2(∆t)
1
α (
∣∣b̄(x)− b̄(0)

∣∣) 1
α ≤ 2(∆t)

1
α (
√
K1(1 + |x|2α−2)

1
2 |x|)

1
α

= 2(∆t
√
K1)

1
α (|x|2 + |x|2α)

1
2α ≤ 2(∆t

√
K1)

1
α (|x|

1
α + |x|).

Then we have (5.38). The estimate (5.39) follows from (5.35) and (5.4).

Lemma 5.3.6. Under Assumption 5.2.1, we have for (5.14) that

b̄(x) ≤ b(0) + βx, x > 0, (5.40)∣∣b̄(x)− b̄(0)
∣∣ ≤ |b(x)− b(0)| , (5.41)∣∣b̄(x)
∣∣ =

|tanh(b(x)∆t)|
∆t

≤ C min(
1

∆t
, 1 + |x|α), (5.42)∣∣b̄(x)− b(x)

∣∣ ≤ |b(x)|2 ∆t ≤ C(1 + |x|2α)∆t, (5.43)

∆tb̄(x) ≥ −2(
√
K1∆t)

1
α (|x|+ |x|

1
α ) + b̄(0)∆t, (5.44)

b̄(x) ≥ −
√
K1(|x|+ |x|α) + b̄(0). (5.45)

Proof. To show the first inequality, we obtain from the monotonicity of tanh(·) and (5.6) that

b̄(x) =
tanh(b(x)∆t)

∆t
≤ tanh((b(0) + βx)∆t)

∆t
≤ (b(0) + βx)∆t

∆t
= b(0) + βx, x > 0. (5.46)

The inequality (5.41) follows from applying the mean value theorem:

|b̄(x)− b̄(0)| = 1

∆t
|tanh(b(x)∆t)− tanh(b(0)∆t)| ≤ |1− tanh2(ξ)||b(x)− b(0)| ≤ |b(x)− b(0)|,
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where ξ lies in between b(x)∆t and b(0)∆t. The inequality (5.42) follows from the fact that
|tanh(y)| ≤ |y| and (5.8):

|b̄(x)| = 1

∆t
|tanh(b(x)∆t)| ≤ |b(x)| ≤ C min(

1

∆t
, 1 + |x|α). (5.47)

By Taylor’s formula and |tanh(y)| ≤ |y|, we have |tanh(y)− y| ≤ tanh2(θy) |y| ≤ |y| for some
0 ≤ θ ≤ 1. We also have

|tanh(y)− y| ≤ |y|2 . (5.48)

By (5.48), we have ∆t
∣∣b̄(x)− b(x)

∣∣ =
∣∣tanh

(
b(x)∆t

)
− b(x)∆t

∣∣ ≤ b2(x)(∆t)2. Then (5.43) follows
from (5.8). Moreover, we can have (5.44) as in the proof of Lemma 5.3.5 since

∆t
∣∣b̄(x)− b(x)

∣∣ ≤ ∆t(
∣∣b̄(x)

∣∣+
∣∣b̄(0)

∣∣) = |tanh(b(x)∆t)|+ |tanh(b(0)∆t)| ≤ 2.

The inequality (5.45) follows from (5.41) and the local Lipschitz condition (5.4).

5.3.2 Properties of the solution to (5.9)

By Yt = |Zt| and (5.15), we have from Tanaka’s formula (See page 58 in [46]) from that

Yt = X0 +

∫ t

0
sgn(Zs)b̄(Yθ(s))ds+

∫ t

0
sgn(Zs)σY

γ
θ(s)dWs + Lt(Y ), (5.49)

where Yt is a continuous semimartingale with a continuous local time Lt(Y ) =
∫ t

0 δ(Ys)σ
2Y 2γ
θ(s) ds,

sgn(x) is the sign function, and δ(x) is the Dirac delta function. Moreover, we have

Yt = Yθ(t) +

∫ t

θ(t)
sgn(Zs)b̄(Yθ(s))ds+

∫ t

θ(t)
sgn(Zs)σ(Yθ(s))dWs +

∫ t

θ(t)
δ(Ys)σ

2Y 2γ
θ(s) ds. (5.50)

Lemma 5.3.7. Assume that {Zt}0≤t≤T is given by (5.15) and assumptions 5.2.1 holds. If 1
2 < γ <

1 and 2
√
K1∆t ≤ min (1, 2

√
K1), then for Zt from (5.15) with (5.10)-(5.14),

sup
t∈[0,T ]

P(Zt ≤ 0) ≤ C exp(−∆t1−2γ).

Proof. We first prove the desired conclusion for the scheme (5.9) with (5.11) or (5.13) or (5.14).
From Lemmas 5.3.3, 5.3.5 and 5.3.6, we have b̄(y) ≥ b̄(0)−

√
K1(|y|+ |y|α). Then by (5.9), we have

P(Zt ≤ 0) ≤ P(Yθ(t) + b̄(Yθ(t))(t− θ(t)) + σY γ
θ(t)(Wt −Wθ(t)) ≤ 0)

= P

(
Wt −Wθ(t) ≤

−Yθ(t) − b̄(Yθ(t))(t− θ(t))
σY γ

θ(t)

, Yθ(t) > 0

)

≤ P

(
Wt −Wθ(t) ≤

−Yθ(t) +
√
K1(Yθ(t) +

∣∣Yθ(t)∣∣α)(t− θ(t))− b̄(0)(t− θ(t))
σY γ

θ(t)

, Yθ(t) > 0

)

≤ P

(
Wt −Wθ(t) ≤

(
√
K1∆t− 1)Yθ(t) +

√
K1Y

α
θ(t)∆t− b̄(0)(t− θ(t))

σY γ
θ(t)

, Yθ(t) > 0

)
.
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By conditioning on the natural filtration at θ(t), i.e., FWθ(t) that

P(Zt ≤ 0) ≤ P

(
Wt −Wθ(t) ≤

(
√
K1∆t− 1)Yθ(t) +

√
K1Y

α
θ(t)∆t− b̄(0)(t− θ(t))

σY γ
θ(t)

, Yθ(t) > 0

)

= E[P

(
Wt −Wθ(t) ≤

(
√
K1∆t− 1)Yθ(t) +

√
K1Y

α
θ(t)∆t− b̄(0)(t− θ(t))

σY γ
θ(t)

, Yθ(t) > 0|FWθ(t)

)
]

Then by the facts that P(ξ ≤ k) ≤ 1
2 exp(− k2

2Var[ξ]) for a centered Gaussian random variable ξ and

0 < t− θ(t) ≤ ∆t, we have

P(Zt ≤ 0) ≤ 1

2
E[exp(−f(Yθ(t))1Yθ(t)>0] ≤ 1

2
E[exp(−g(Yθ(t))1Yθ(t)>0], (5.51)

where

g(y) =
C1

∆t
y2−2γ + C2∆ty2α−2γ − C3∆tyα−2γ + C4y

1−2γ − C5y
α+1−2γ , y > 0,

and

f(y) =
(
√
K1∆t− 1)2y2 +K1∆t2y2α + b̄2(0)(t− θ(t))2

2σ2y2γ(t− θ(t))

+
2
√
K1∆t(

√
K1∆t− 1)yα+1 − 2b̄(0)

√
K1∆tyα(t− θ(t))− 2b̄(0)(

√
K1∆t− 1)y(t− θ(t))

2σ2y2γ(t− θ(t))

≥ g(y) +
b̄2(0)(t− θ(t))

2σ2
y−2γ , y > 0.

Here we denote

C1 =
(
√
K1∆t− 1)2

2σ2
, C2 =

K1

2σ2
, C3 =

b̄(0)
√
K1

σ2
, C4 =

b̄(0)(1−
√
K1∆t)

σ2
, C5 =

√
K1(1−

√
K1∆t)

σ2
. (5.52)

By calculations, in what follows, we prove that g(y) ≥ C(∆t)1−2γ for all y > 0.
If 0 < y ≤ 1, we have −yα−1 ≥ −1 and thus

g(y) ≥ C1
∆ty

2−2γ − (C3∆t− C4)y1−2γ − C5 = y1−2γ
(
C1
∆ty − (C3∆t− C4)

)
− C5 =: h(y)− C5.

The only root of h′(y) is y∗ = (C3∆t−C4)(1−2γ)
C1(2−2γ) ∆t as C3∆t − C4 = b̄(0)(2

√
K1∆t−1)
σ2 < 0 by the

assumption. Then the minimum of h(y) is the minimum of h(1) = C1
∆t − (C3∆t− C4) and h(y∗) =

C∆t1−2γ for some C > 0. Thus g(y) ≥ C∆t1−2γ .
If y ≥ 1, then −yα−2γ ≥ −yα+1−2γ and thus

g(y) =
(√C1

∆t
y1−γ −

√
C2∆tyα−γ

)2 − C3∆tyα−2γ + C4y
1−2γ

≥
(√C1

∆t
y1−γ −

√
C2∆tyα−γ

)2 − C3∆tyα+1−2γ =: h(y)

Observe that h′(y) = y1−2γ(C1
∆t(2−2γ)+C2∆t(2α−2γ)y2α−2−2(

√
C1C2 +C3∆t)(α+1−2γ)yα−1)

and then the only zero of h′(y) on [1,∞) satisfies that (y∗)α−1 is at the order of
√
C1C2
C2∆t . Then,
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h(y∗) is at the order of ∆t
2γ−α−1
α−1 . Since 2γ−α−1

α−1 < −1, g(y) ≥ h(y) ≥ min(h(y∗), h(1)) ≥ C(∆t)−1.

In conclusion, g(y) ≥ C∆t1−2γ when 0 < y ≤ 1, while g(y) ≤ C∆t−1 when y ≥ 1. By the fact that
∆t1−2γ < ∆t−1 (−1 < 1− 2γ < 0), we have that g(y) ≥ C(∆t)1−2γ .

Then by (5.51) and that that g(y) ≥ C(∆t)1−2γ for y > 0, we have

P(Zt ≤ 0) ≤ 1

2
E[exp(−g(Yθ(t))1Yθ(t)>0] ≤ 1

2
E[exp(−C(∆t)1−2γ)].

We now prove the desired conclusion for the scheme (5.9) with (5.10) or (5.12). We claim that
an inequality similar to (5.51) still holds. In fact,

P(Zt ≤ 0) ≤ 1

2
E[exp(−g(Yθ(t))1Yθ(t)>0], (5.53)

where

g(y) =
C1

∆t
y2−2γ + C2∆ty2α−2γ − C̃3∆tyα−2γ + C̃4y

1−2γ − C5y
α+1−2γ , y > 0,

Here C1, C2, C5 are from (5.52) and C̃3 =
b̃
√
K1

σ2
, C̃4 =

b̃(1−
√
K1∆t)

σ2
. Recall that b̃ = b(0)

1+|y|α
√

∆t

or b(0)
1+|y|α∆t

from Lemmas 5.3.1 and 5.3.4, and b̄(0) = b(0). Similar to the above discussion, we can

readily show that when ∆t ≤ 1,

g(y) ≥

{
y1−2γ

(
C1
∆ty −

1
1+∆t(C3∆t− C4)

)
− C5, 0 < y ≤ 1(√

C1
∆ty

1−γ −
√
C2∆tyα−γ

)2 − C3∆tyα+1−2γ , y ≥ 1
,

where C3, C4 are from (5.52) (b̄(0) may vary with the considered schemes though). We then can
conclude as above that g(y) ≥ C∆t1−2γ when 0 < y ≤ 1, and g(y) ≥ C∆t−1 when y ≥ 1, which
implies that g(y) ≥ C(∆t)1−2γ . Then (5.53) leads to the desired conclusion.

Throughout the paper, we denote a ∧ b = min{a, b}.

Lemma 5.3.8. Let p ≥ 1. Then the numerical scheme Yt = |Zt| has bounded positive moments.
i.e. E[|Yt|p] <∞, for 0 ≤ t ≤ T . Here Zt is defined in (5.15).

Proof. Here we prove the conclusion when p > 2. For any 1 ≤ p ≤ 2, the conclusion follows from
Hölder’s inequality. Define ζn = T ∧ inf{t ∈ [0, T ] : Yt ≥ n} (n ≥ 1), where we set inf ∅ = +∞.
Then 0 ≤ Yt ≤ n on [0, ζn]. By Yt = |Zt|, (5.15), and Itô’s formula, we have

E
[
Y p
t∧ζn

]
= E

[
Xp

0 +

∫ t∧ζn

0
pY p−1

s sgn(Zs)b̄(Yθ(s))ds+
p(p− 1)

2
Y p−2
s σ2Y 2γ

θ(s) ds

]
.

Here we have used the fact that E[
∫ t∧ζn

0 sgn(Zs)σY
γ
θ(s)dWs] = 0. Then by the Young’s inequality

and the fact that E[Y q
θ(s)] ≤ sups∈[0,T ] E[Y q

s ] (q > 0), we have

E
[
Y p
t∧ζn

]
≤ E

[
Xp

0 +

∫ t∧ζn

0
pY p−1

s sgn(Zs)b̄(Yθ(s))ds

]
+ σ2 p(p− 1)

2
E
[∫ t∧ζn

0
Y p−2
s (1 + Y 2

θ(s)) ds

]
≤ E

[
Xp

0 +

∫ t∧ζn

0
pY p−1

s sgn(Zs)b̄(Yθ(s))ds

]
+ σ2 p(p− 1)

2

∫ t

0
sup
u∈[0,s]

E[Y p
u∧ζn ]ds+ Ct.
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By Lemmas 5.3.1–5.3.6, we have b̄(Yθ(s)) ≤ b(0)+βYθ(s) when Yθ(s) > 0. The same inequality holds
for Yθ(s) = 0 as the inequality becomes b̄(0) ≤ b(0) (recall that b̄(0), b(0) > 0) which can be readily
verified for all our schemes. Then we have

E
[
Y p
t∧ζn

]
≤ E

[
Xp

0 +

∫ t∧ζn

0
pY p−1

s sgn(Zs)b̄(Yθ(s))ds

]
+ C

∫ t

0
sup
u∈[0,s]

E[Y p
u∧ζn ]ds+ Ct

≤ E
[
Xp

0 +

∫ t∧ζn

0
pY p−1

s 1{Zs≥0}(b(0) + βYθ(s)) ds

]
+ C

∫ t

0
sup
u∈[0,s]

E[Y p
u∧ζn ]ds

−pE
[∫ t∧ζn

0
Y p−1
s 1{Zs<0}b̄(Yθ(s)) ds

]
+ Ct. (5.54)

By Young’s inequality and the fact that E[Y q
θ(s)] ≤ sups∈[0,t] E[Y q

s ] (q > 0, s ≤ t), we have∣∣∣∣E[

∫ t∧ζn

0
Y p−1
s 1{Zs≥0}(b(0) + βYθ(s)) ds]

∣∣∣∣ ≤ C ∫ t

0
sup
u∈[0,s]

E[Y p
u∧ζn ] ds+ Ct. (5.55)

To estimate
∣∣∣E [∫ t∧ζn0 Y p−1

s 1{Zs<0}b̄(Yθ(s)) ds
]∣∣∣, we need to discuss cases of b̄.

Case I,
∣∣b̄(x)

∣∣√∆t ≤ C, which holds for (5.10) by Lemma 5.3.1. By the Young’s inequality∣∣∣∣E [∫ t∧ζn

0
Y p−1
s 1{Zs<0}b̄(Yθ(s)) ds

]∣∣∣∣ ≤ CE
[∫ t∧ζn

0
Y p−1
s 1{Zs<0}∆t

− 1
2 ds

]
(5.56)

≤ CE[

∫ t∧ζn

0
Y p
s ds] +

∫ t

0
CP(Zs∧ζn ≤ 0) ds∆t−

p
2 .

Case II, for the scheme (5.11), we have (5.8) that
∣∣b̄(x)

∣∣ = |b(x̂)| ≤ C(1+|x̂|α) ≤ C(1+(∆t)−ηα).
Thus by the Young’s inequality, we have∣∣∣∣E[

∫ t∧ζn

0
Y p−1
s 1{Zs<0}b̄(Yθ(s)) ds]

∣∣∣∣ ≤ C

∣∣∣∣E[

∫ t∧ζn

0
Y p−1
s 1{Zs<0}(1 + (∆t)−ηα) ds]

∣∣∣∣
≤ CE[

∫ t∧ζn

0
Y p
s ds] + C

∫ t

0
P(Zs∧ζn ≤ 0) ds(1 + (∆t)−pηα).

As we take 2η(α− 1) = 1, we have∣∣∣∣E[

∫ t∧ζn

0
Y p−1
s 1{Zs<0}b̄(Yθ(s)) ds]

∣∣∣∣ ≤ CE[

∫ t∧ζn

0
Y p
s ds] + C

∫ t

0
P(Zs∧ζn ≤ 0) ds(1 + (∆t)

− pα
2(α−1) ).

(5.57)

Case III,
∣∣b̄(x)

∣∣∆t ≤ C, which is valid for (5.12)-(5.14). For (5.12), b̄(x) =
b(x)

1 + |x|α ∆t
. From

Lemma 5.3.4, we have that
∣∣b̄(x)

∣∣∆t ≤ C. For (5.13), we have b̄(x) =
b(x)

1 + |b(x)|∆t
and by

Lemma 5.3.5,
∣∣b̄(x)

∣∣∆t ≤ C. From Lemma 5.3.6, we have that
∣∣b̄(x)

∣∣∆t ≤ C for (5.14), i.e.,

b̄(x) =
tanh(b(x)∆t)

∆t
. By Young’s inequality, we have∣∣∣∣E [∫ t∧ζn

0
Y p−1
s 1{Zs<0}b̄(Yθ(s)) ds

]∣∣∣∣ ≤ CE
[∫ t∧ζn

0
Y p−1
s 1{Zs<0}∆t

−1 ds

]
(5.58)

≤ CE[

∫ t∧ζn

0
Y p
s ds] +

∫ t

0
CP(Zs∧ζn ≤ 0) ds∆t−p.
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Then by (5.54), (5.55) and (5.57)-(5.58), we obtain

E
[
Y p
t∧ζn

]
≤ E[Xp

0 ] + Ct+ C

∫ t

0
sup
u∈[0,s]

E[Y p
u∧ζn ] ds+ C

∫ t

0
P(Zs∧ζn ≤ 0) ds∆t−p

∗
,

where p∗ = p/2 for (5.10), p∗ = pα
2(α−1) for (5.11) and p∗ = p for (5.12)-(5.14). Thus by Lemma

5.3.7, we have
∫ t

0 P(Zs∧ζn ≤ 0) ds∆t−p
∗ ≤

∫ t
0 supu∈[0,s] P(Zu ≤ 0) ds∆t−p

∗ ≤ C and thus

E
[
Y p
t∧ζn

]
≤ E[Xp

0 ] + C

∫ t

0
sup
u∈[0,s]

E[Y p
u∧ζn ] ds+ Ct.

Then the Gronwall inequality leads to E
[
Y p
t∧ζn

]
≤ CeCt. The conclusion then follows from Fatou’s

lemma.

Lemma 5.3.9. For all p ≥ 1 , there exists a positive constant C depending on σ, p and T but not
on ∆t such that

E[|Yθ(t) − Yt|2p] ≤ C∆tp.

Proof. By the scheme (5.9) and the fact that Yθ(s) is independent of Ws −Wθ(s), we have

E[|Yθ(s) − Ys|2p] = E
[∣∣∣∣∣∣Yθ(s) + b̄(Yθ(s))(s− θ(s)) + σY γ

θ(s)(Ws −Wθ(s))
∣∣∣− Yθ(s)∣∣∣2p]

≤ CE[(
∣∣b̄(Yθ(s))∣∣2p ∆t2p +

∣∣Yθ(s)∣∣2γp |Ws −Wθ(s)|2p)]

≤ CE[
∣∣b̄(Yθ(s))∣∣2p]∆t2p + CE[

∣∣Yθ(s)∣∣2γp]∆tp
≤ CE[1 +

∣∣Yθ(s)∣∣2αp]∆t2p + CE[
∣∣Yθ(s)∣∣2γp]∆tp.

In the last step, we applied
∣∣b̄(x)

∣∣ ≤ C(1 + |x|α) and (1 + |a|)2p ≤ C(1 + |a|2p). Here the fact that∣∣b̄(x)
∣∣ ≤ C(1 + |x|α) holds, according to Lemmas 5.3.1 and 5.3.3-5.3.6.

5.3.3 Bounded moments for Xt

We first show bounded moments of the solution to (5.1).

Lemma 5.3.10 (Bounded moments for the solution to (5.1)). Assume Xt is the solution to (5.1)
and Assumption 5.2.1 hold. For p ≥ 1, there exists a positive constant C1, depending on p, σ and
T > 0, such that

E

[
sup

0≤t≤T
|Xt|p

]
≤ C1(1 + E[Xp

0 ]). (5.59)

If Xt > 0 holds for t ∈ [0, T ], then there is a positive constant C2 depending on σ, p and T such
that

sup
0≤t≤T

E[|Xt|−p] ≤ C2(1 + E[X−p0 ]), p > 0. (5.60)

Proof. The conclusion (5.59) can be proved by Itô’s formula, see e.g. [36]. Here we only prove
(5.60).
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Let τn = inf{0 < s ≤ T ;Xs ≤ 1
n}. It follows from (5.4) that b(Xs)− b(0) ≥ −

√
K1(Xs +Xα

s ).
For any p > 0, apply the Itô’s formula,

E[X−pt∧τn ] = E[X−p0 ]− pE
[∫ t∧τn

0
b(Xs)X

−p−1
s ds

]
+
p(p+ 1)σ2

2
E
[∫ t∧τn

0
X−p−1+(2γ−1)
s ds

]
≤ E[X−p0 ]− pE

[∫ t∧τn

0
[−
√
K1(Xs +Xα

s ) + b(0)]X−p−1
s ds

]
+
p(p+ 1)σ2

2
E
[∫ t∧τn

0
X−p−1+(2γ−1)
s ds

]
= E[X−p0 ] + p

√
K1E

[∫ t∧τn

0
X−ps ds

]
+ E

[∫ t∧τn

0
f(Xs)ds

]
, (5.61)

where we define f(x) = px−p−1(
√
K1x

α + (p+1)σ2

2 x2γ−1 − b(0)), where x > 0, α ≥ 1, b(0) > 0 and
1
2 < γ < 1. When p + 1 ≥ α, we claim that there exists a constant C such that f(x) ≤ C, for all
x > 0. It follows that when p+ 1 ≥ α,

E[X−pt∧τn ] ≤ E[X−p0 ] + CT + p
√
K1E

[∫ t∧τn

0
X−ps ds

]
≤ E[X−p0 ] + CT + p

√
K1E

[∫ t

0
X−ps∧τn ds

]
.

Apply the Gronwall inequality, then we have

E[|Xt∧τn |−p] ≤ (E[|X0|−p] + CT ) exp(p
√
K1T ).

By Fatou’s Lemma, E[|Xt|−p] = E[limn→∞ |Xt∧τn |−p] ≤ C2(E[|X0|−p] + 1), where C2 is a positive
constant. For 0 < p ≤ α− 1, E[X−pt ] <∞, since E[X−αt ] <∞.

It remains to prove that f(x) ≤ C, for all x > 0. When x ≥ 1, it is ready to see that

f(x) < p
√
K1 + p(p+1)

2 σ2. Let ε > 0 be an arbitrary small number. For x ∈ (0, ε), f is
bounded from above in this case since f(0+) = −∞. When x ∈ (ε, 1], xα ≤ 1 and f(x) ≤
px−p

(
(p+1)σ2

2 x2γ−2 +
[√
K1 − b(0)

]
x−1

)
=: g(x). Observe that g′(x) = −(p+2−2γ)p(p+1)

2 σ2x2γ−p−3+

p(p+ 1)[b(0)−
√
K1]x−p−2 and the only possible root x∗ satisfies that (x∗)2γ−1 = 2[b(0)−

√
K1]

(p+2−2γ)σ2 . The

maximum value of g(x) can be achieved only when x = ε, x = 1 or x = x∗ and thus we ob-

tain that g(x) ≤ C. In fact, g(x∗) ≤ p(x∗)−p−1
(

p+1
p+2−2γ [b(0)− C

√
K1]− b(0)

)
if x∗ ∈ (ε, 1),

g(1) = p
(

(p+1)σ2

2 +
√
K1 − b(0)

)
, and g(ε) is a finite number.

When Xt ≥ 0, we define the following process (η(t))t≥0 by

χ(t) :=

∫ t

0

ds

(Y 1−γ
θ(s) +X1−γ

s )2
. (5.62)

Lemma 5.3.11. Suppose that Assumption 5.2.1 holds and Xt > 0 almost everywhere in t and
that X0 > 0 is a constant. Then there exist positive constants µ and C such that

E[exp(µχ(T ))] ≤ exp(CT ). (5.63)
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Proof. We prove the conclusion when µ = 1. By (5.62) and Jensen’s inequality, we have

E[exp(µχ(T ))] ≤ E[exp(

∫ T

0
X2γ−2
s ) ds] ≤ E[

1

T

∫ T

0
exp(TX2γ−2

s ) ds].

Thus we only need to check that E[exp(TX2γ−2
s )] ≤ exp(CT ) for all s ∈ [0, T ]. We will show this

desired result in two steps.
First, we show the boundedness of E[X−pt ] for any p > 0 with the dependence on p. By (5.61),

(5.60) and Fatou’s lemma, we have for any fixed p > 0,

E[X−pt ] ≤ E[X−p0 ] + E
[∫ t

0
F (Xs)ds

]
, (5.64)

where F (x) = px−p−1(
√
K1x

α +
√
K1x + (p+1)σ2

2 x2γ−1 − b(0)) = f(x) + p
√
K1x

−p, where x > 0,
α ≥ 1 and b(0) > 0. Here f is the same as in (5.61). We claim that when p+ 1 > α,

F (x) ≤ C(pε−1−p+α + pε−p + p2ε−2−p+2γ). (5.65)

In fact, F (0+) = −∞ if p + 1 > α and thus there exists 0 < ε < 1 such that F (x) ≤ 0, when
0 < x ≤ ε < 1. When x ≥ ε, F (x) ≤ G(x, p) ≤ G(ε, p), where G(x, p) = px−p−1(

√
K1x

α +
√
K1x+

(p+1)σ2

2 x2γ−1). For large enough p (p+ 1 ≥ α), G(ε, p) ≤ C(pε−1−p+α + pε−p + p2ε−2−p+2γ). Then
by (5.64) and (5.65), we have that for any large enough p,

E[X−pt ] ≤ E[X−p0 ] + tG(ε, p). (5.66)

For a small p, E[X−pt ] ≤ 1 + E[X−p0t ] where p0 is large enough such that (5.66) holds.
Second, we show the boundedness of the desired exponential moment. For a large integer k0

(2k0(1− γ) ≥ p0), we have from E[X
−2k(1−γ)
t ] ≤ E[1 +X

−2(k0+1)(1−γ)
t ] (k ≤ k0) and (5.66) that

∞∑
k=0

1

k!
E[X

−2k(1−γ)
t ] ≤

k0∑
k=0

1

k!
E[1 +X

−2(k0+1)(1−γ)
t ] +

∞∑
k=k0+1

1

k!
E[X

−2k(1−γ)
t ]

≤ C(1 + E[X
−2(k0+1)(1−γ)
t ]) +

∞∑
k=k0+1

1

k!
E[X

−2k(1−γ)
0 ]

+Ct

∞∑
k=k0+1

1

k!
(kε−1−2k(1−γ)+α + kε−2k(1−γ) + k2ε−2(k+1)(1−γ)).

Then by the facts that
∑∞

n=0
xn

n! = ex,
∑∞

n=1
nxn

n! = xex, and
∑∞

n=1
n2xn

n! = (x2 + x)ex, we have

∞∑
k=0

1

k!
E[X

−2k(1−γ)
t ] ≤ C(1 + E[X

−2(k0+1)(1−γ)
t ]) + Ctε−2(1−γ)(εα−1 + 1) exp(ε−2(1−γ))

+Ct(ε6γ−6 + ε4γ−4) exp(ε−2(1−γ))

≤ C(1 + E[X
−2(k0+1)(1−γ)
t ]) + Ct exp(2ε−2(1−γ)) ≤ exp(Ct). (5.67)

Then the fact that E[exp(TX2γ−2
t )] =

∞∑
k=0

T k

k!
E[X

−2k(1−γ)
t ] and Lemma 5.3.10 lead to the desired

conclusion.
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5.3.4 Proof of Theorem 5.2.2

We follow the idea of the proof for the positivity-preserving scheme for SDEs with Lipschitz drift
and Hölder diffusion coefficients in [5]. Denote the error process εt := Yt −Xt and it satisfies

εt =

∫ t

0
[b̄(Yθ(s)) sgn(Zs)− b(Xs)]ds+ σ

∫ t

0
(Y γ
θ(s) sgn(Zs)−Xγ

s )dWs + Lt(Y ).

For an arbitrary stopping time τ valued in [0, T ], we apply the Itô’s formula to ε2pt , between 0 and
τ , where p ≥ 2 is an integer. For any other values of p (p ≥ 1), the desired conclusion follows from

Hölder’s inequality. As

∫ τ

0
(εs)

2p−1dLs(Y ) =

∫ τ

0
(−Xs)

2p−1δ(Ys)σ
2Y 2γ
θ(s)ds ≤ 0, we obtain

E[|ετ |2p] ≤ 2pE
[∫ τ

0
(εs)

2p−1(b̄(Yθ(s)) sgn(Zs)− b(Xs))ds

]
+p(2p− 1)σ2E

[∫ τ

0
(εs)

2p−2(Y γ
θ(s) sgn(Zs)−Xγ

s )2ds

]
≤ 2pE

[∫ τ

0
(εs)

2p−1(b̄(Yθ(s))− b(Xs))ds

]
+ σ2p(2p− 1)E

[∫ τ

0
(εs)

2p−2(Y γ
θ(s) −X

γ
s )2ds

]
+2E

[∫ τ

0

{
2p(εs)

2p−1(−b̄(Yθ(s))) + σ2p(2p− 1)(εs)
2p−2(Y 2γ

θ(s) + Y γ
θ(s)X

γ
s )
}
1{Zs<0}ds

]
=: I + II + III. (5.68)

Let’s consider the term I first in (5.68). We split b̄(Yθ(s))− b(Xs) into three parts:

b̄(Yθ(s))− b(Xs) = [b̄(Yθ(s))− b(Yθ(s))] + [b(Yθ(s))− b(Ys)] + [b(Ys)− b(Xs)].

We denote the corresponding integral by I1, I2 and I3.

I1 = E
[∫ τ

0
(εs)

2p−1[b̄(Yθ(s))− b(Yθ(s))]ds
]
,

I2 = E
[∫ τ

0
(εs)

2p−1[b(Yθ(s))− b(Ys)]ds
]
,

I3 = E
[∫ τ

0
(εs)

2p−1[b(Ys)− b(Xs)]ds

]
.

Now we consider the bound for I1 for all schemes (5.10)-(5.14).
Case A. Scheme (5.49) with (5.10). We have from Lemma 5.3.1 that∣∣b̄(x)− b(x)

∣∣ ≤ C(1 + |x|2α)
√

∆t. (5.69)

Then by Young’s inequality and Lemma 5.3.8, we have

I1 ≤ E
[∫ τ

0

∣∣(εs)2p−1[b̄(Yθ(s))− b(Yθ(s))]
∣∣ ds]

≤ CE
[∫ τ

0
(εs)

2pds

]
+ C

∫ T

0
E[1 + (Yθ(s))

4αp]ds∆tp ≤ CE
[∫ τ

0
(εs)

2pds

]
+ C∆tp. (5.70)

83



Case B. Scheme (5.49) with (5.11). We have from Lemma 5.3.3 that∣∣b̄(x)− b(x)
∣∣ ≤ K1(1 + 2 |x|α−1) |x̂− x| . (5.71)

Then by Young’s inequality, Hölder’s inequality and Lemma 5.3.8, we have

I1 ≤ E
[∫ τ

0

∣∣(εs)2p−1(b̄(Yθ(s))− b(Yθ(s)))
∣∣ ds]

≤ CE
[∫ τ

0
(εs)

2pds

]
+ C

∫ T

0

(
E[(Yθ(s) − Ŷθ(s))4p

1{|Yθ(s)|≥(∆t)−η}]
)1/2

ds

≤ CE
[∫ τ

0
(εs)

2pds

]
+ CT

(
P(
∣∣Yθ(s)∣∣ ≥ (∆t)−η

)1/2
.

By Markov inequality and Lemma 5.3.8, P(
∣∣Yθ(s)∣∣ ≥ (∆t)−η) ≤ C(∆t)2p. Then we have

I1 ≤ CE
[∫ τ

0
(εs)

2pds

]
+ CT

√
P(
∣∣Yθ(s)∣∣ ≥ (∆t)−η) ≤ CE

[∫ τ

0
(εs)

2pds

]
+ C(∆t)p. (5.72)

Case C. Scheme (5.49) with (5.12) or (5.13) or (5.14). We have from Lemmas 5.3.4, 5.3.5, 5.3.6
that ∣∣b̄(x)− b(x)

∣∣ ≤ C(1 + |x|2α)∆t. (5.73)

The proof is similar to that for Scheme (5.49) with (5.10). From the discussions in cases A-C, we
then conclude that

|I1| ≤ E
[∫ τ

0
(εs)

2p ds

]
+ C(∆t)p. (5.74)

By Young’s inequality, Hölder’s inequality and Lemma 5.3.8, we have

I2 = E
[∫ τ

0
(εs)

2p−1(b(Yθ(s))− b(Ys))ds
]
≤ E

[∫ τ

0
|εs|2p−1 |b(Yθ(s))− b(Ys)|ds

]
≤ CE

[∫ τ

0
(εs)

2pds

]
+ CE

[∫ τ

0
(1 + |Yθ(s)|2α−2 + |Ys|2α−2)p|Yθ(s) − Ys|2pds

]
≤ CE

[∫ τ

0
(εs)

2pds

]
+ C

∫ T

0
E
[
|Yθ(s) − Ys|4p

] 1
2 ds

≤ CE
[∫ τ

0
(εs)

2pds

]
+ C∆tp. (5.75)

In the last step, we have applied Lemma 5.3.9. With Assumption 5.2.1 (to be precise, (5.3)),

I3 = E
[∫ τ

0
(εs)

2p−2(εs)(b(Ys)− b(Xs))ds

]
≤ βE

[∫ τ

0
(εs)

2pds

]
. (5.76)

Combining (5.74), (5.75) and (5.76), we have

I = 2pE
[∫ τ

0
(εs)

2p−1(b̄(Yθ(s))− b(Xs))ds

]
= I1 + I2 + I3 ≤ CE

[∫ τ

0
(εs)

2pds

]
+ C∆tp. (5.77)
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For III, we have from Assumption 5.2.1 and from Lemmas 5.3.1-5.3.6 that
∣∣b̄(x)

∣∣ + |b(x)| ≤
C(1 + |x|α). Then by Young’s inequality twice and bounded moments (Lemmas 5.3.8 and 5.3.10),
we have

III = 2E
[∫ τ

0

{
2p|εs|2p−1(−b̄(Yθ(s))) + σ2p(2p− 1)(εs)

2p−2(Y 2γ
θ(s) + Y γ

θ(s)X
γ
s )
}
1{Zs<0}ds

]
≤ CE

[∫ τ

0

{
|εs|2p−1(1 + (Yθ(s))

α) + (εs)
2p−2(Y 2γ

θ(s) + Y γ
θ(s)X

γ
s )
}
1{Zs<0}ds

]
≤ CE

[∫ τ

0
|εs|2p ds

]
+ CE

[∫ τ

0
1{Zs<0} ds

]
.

Then by Lemma 5.3.7, we have when ∆t is sufficiently small,

III ≤ CE
[∫ τ

0
|εs|2p ds

]
+ CE

[∫ τ

0
1{Zs<0} ds

]
≤ CE

[∫ τ

0
|εs|2p ds

]
+ C exp(−C(∆t)1−2γ)

≤ CE
[∫ τ

0
|εs|2p ds

]
+ C∆tp. (5.78)

Now let’s consider the term II. Recall the definition of (η(t))t≥0 in (5.62). Then we have

E
[∫ τ

0
(εs)

2p−2(Y γ
θ(s) −X

γ
s )2ds

]
= E

[∫ τ

0
(εs)

2p−2(Y γ
θ(s) −X

γ
s )2(Y 1−γ

θ(s) +X1−γ
s )2dη(s)

]
≤ 4γ2E

[∫ τ

0
(εs)

2p−2(Yθ(s) −Xs)
2dη(s)

]
≤ 8γ2E

[∫ τ

0
(εs)

2p−2[(Yθ(s) − Ys)2 + (εs)
2]dη(s)

]
,

where we have applied the following inequality in the second line, for 1
2 < γ < 1,

∀x ≥ 0, y ≥ 0, |xγ − yγ |(x1−γ + y1−γ) ≤ 2γ|x− y|.

Then by Young’s inequality we have

E[

∫ τ

0
(εs)

2p−2(Y γ
θ(s) −X

γ
s )2ds]

≤ CE
[∫ τ

0
|εs|2pdη(s)

]
+ CE

[∫ τ

0
(Yθ(s) − Ys)2pdη(s)

]
≤ CE

[∫ τ

0
(εs)

2pd(s+ η(s))

]
+ CE

[∫ τ

0
(Yθ(s) − Ys)2pd(s+ η(s))

]
. (5.79)

The second term in last inequality can be estimated as follows. By (5.62), Hölder’s inequality,
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Lemma 5.3.9, and Lemma 5.3.10, we have

E
[∫ τ

0
(Yθ(s) − Ys)2pd(s+ η(s))

]
= E

[∫ τ

0
(Yθ(s) − Ys)2p

(
1 +

1

(Y 1−γ
θ(s) +X1−γ

s )2

)
ds

]

≤ E
[∫ T

0
|Yθ(s) − Ys|2p

(
1 +

1

X2−2γ
s

)
ds

]
≤ C∆tp+C

(∫ T

0
E[|Yθ(s) − Ys|3p]

2
3 (E[X(6γ−6)

s ]
1
3 )ds

)
≤ C∆tp

(
1 + sup

s∈[0,T ]

(
E[X(6γ−6)

s ]
) 1

3

)
. (5.80)

Then by (5.68), (5.77), (5.79) (with (5.80)), and (5.78), we have

E[ε2pτ ] ≤ CE
[∫ τ

0
(εs)

2pds

]
+ CE

[∫ τ

0
(εs)

2pd(s+ η(s))

]
+ C∆tp. (5.81)

The inequality (5.81) does not lead to our conclusion. Then similar to the proof of the Theorem
2.2 in [5], we reach the desired conclusion. Here we present the detailed proof for completeness.
Define a stopping time τv = inf {s ∈ [0, T ], η(s) + s ≥ v}, where v ∈ R+ and inf ∅ = T , where η(t)
is defined in (5.62). Observing that τv + η(τv) = v, we apply the change of time u = s + η(s) to
obtain that E

[∫ τv
0 (εs)

2pd(s+ η(s))
]
≤
∫ v

0 sups≤uE[(ετs)
2p]du. Then by (5.81), we have

E[|ετv |2p] ≤ C
∫ v

0
sups≤uE[|ετs |2p]du+ C(∆t)p. (5.82)

By the Gronwall inequality, we have

E[|ετv |2p] ≤ C(∆t)p exp(Cv). (5.83)

It follows from (5.81) that

E[|εt|2p] ≤ CE

[∫ η(T )+T

0
(ετu)2pdu

]
+ C(∆t)p. (5.84)

By (5.83) and the Cauchy-Schwartz inequality, we obtain that

E

[∫ η(T )+T

0
(ετu)2pdu

]
=

∫ +∞

0
E
[
1{η(T )+T≥u}(ετu)2p

]
du

=

∫ T

0
E
[
(ετu)2p

]
du+

∫ +∞

T
E
[
1{η(T )+T≥u}(ετu)2p

]
du

≤ C(∆t)p
[
1 +

∫ ∞
0

P(η(T ) ≥ u)
1
2 exp(Cu)du

]
.

(5.85)

The proof is complete if we can show that
∫∞

0 P(χ(T ) ≥ u)
1
2 exp(Cu)du < ∞, where C depends

on T , X0 and coefficients of the SDE (5.1). In fact, by Markov inequality, we observe that for any
µ > 0 (

P(χ(T ) ≥ u)
) 1

2 ≤ exp(−µu)(E[exp(2µχ(T ))])
1
2 . (5.86)
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By Lemma 5.3.11, we have E[exp(2µχ(T ))] ≤ Cµ, where Cµ > 0 depends on µ, T , X0 and also on the

coefficients of the SDE (5.1). Then
∫∞

0 P(χ(T ) ≥ u)
1
2 exp(Cu)du ≤ C

1
2
µ

∫∞
0 exp((C − µ)u)du < ∞

when µ is larger than C.

5.4 Numerical Examples

In this section, we test the schemes (5.9) with (5.10)-(5.14) using two examples. One is a scalar
equation of the form (5.1). The other is two-dimensional SDE including (5.1) as its first dimension.

To test accuracy, we ran M independent trajectories X(i)(t) and computed the mean squared
error

(E[|XT −XtN |
2])

1
2 =

(
1

M

M∑
i=1

[X
(i)
T −X

(i)
tN

]2

) 1
2

, (5.87)

where M = 104. The reference solutions are computed by small time steps h = 10−4 using the
same numerical scheme. The number of trajectories M = 104 is sufficiently large for the statistical
errors not to hinder the mean squared errors significantly. In our numerical test, Monte Carlo
errors are computed with 95% confidence level and are at least 10 times smaller than the reported
mean-squared errors. All experiments are performed using Matlab R2017a and random numbers
are generated by Matlab command rng(100,'twister').

In both examples, we test two cases for the power of diffusion coefficients, γ = 0.5 or 0.8. While
we only have a proof for the case 0.5 < γ < 1, we expect the convergence order for γ = 0.5 will be
half as in [5], where the drift coefficient b(Xt) is Lipschitz continuous.

Example 1. Let b(x) = 1− x3 in (5.1) and σ = 1. The SDE then reads

dXt = (1−X3
t )dt+Xγ

t dWt, X0 = 0.5. (5.88)

Here α = 3 in (5.4). To compare with the schemes (5.10)-(5.14), we also consider the backward
Euler scheme

Xtk+1
= Xtk + ∆t(1−X3

tk+1
) + σXγ

tk

√
∆tξk, (5.89)

where ξk’s are i.i.d. standard normal random variables. In the following, we present the schemes
(5.10)-(5.14) for the equation in the example.

Xtk+1
=

∣∣∣∣∣Xtk +
(1−X3

tk
)∆t

1 + |Xtk |3
√

∆t
+ σXγ

tk

√
∆tξk

∣∣∣∣∣ , (5.90)

Xtk+1
=

∣∣∣Xtk + ∆t(1− X̂tk

3
) + σXγ

tk

√
∆tξk

∣∣∣ , X̂tk =
Xtk

|Xtk |
min

(
|Xtk | ,∆t

− 1
4

)
, (5.91)

Xtk+1
=

∣∣∣∣∣Xtk +
(1−X3

tk
)∆t

1 + |Xtk |3∆t
+ σXγ

tk

√
∆tξk

∣∣∣∣∣ , (5.92)

Xtk+1
=

∣∣∣Xtk + tanh(∆t(1−X3
tk

)) + σXγ
tk

√
∆tξk

∣∣∣ , (5.93)

Xtk+1
=

∣∣∣∣∣Xtk +
(1−X3

tk
)∆t

1 + ∆t|1−X3
tk
|

+ σXγ
tk

√
∆tξk

∣∣∣∣∣ . (5.94)
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In Table 5.1, we test the case γ = 0.5. The numerical results suggest that the mean-square
convergence order is one half. For a fixed time step h, mean-square errors are at the same order
of magnitude, while the scheme (5.90) produces the largest errors. It is not clear why the scheme
(5.90) is less accurate in this example. From Table 5.1, if we want to have an accuracy of 10−2 , we
can take h to be 0.005 for most schemes above except (5.90). For (5.90), we need a smaller time
step size, at least h = 0.001.

Table 5.1: Mean-square errors of the scheme (5.9) with (5.10)-(5.14) for Equation (5.88) and
convergence rates when γ = 0.5 at T = 1.

h (5.90) rate (5.91) rate (5.92) rate

0.05 1.26e-01 6.00e-02 6.28e-02

0.02 7.77e-02 0.53 3.25e-02 0.67 3.35e-02 0.69

0.01 5.29e-02 0.56 2.17e-02 0.58 2.21e-02 0.60

0.005 2.03e-02 0.60 9.14e-03 0.54 9.16e-03 0.55

0.001 1.29e-02 0.65 6.31e-03 0.53 6.32e-03 0.54

h (5.93) rate (5.94) rate (5.89) rate

0.05 5.98e-02 6.30e-02 5.49e-02

0.02 3.25e-02 0.67 3.37e-02 0.68 3.13e-02 0.61

0.01 2.17e-02 0.58 2.22e-02 0.60 2.13e-02 0.56

0.005 9.14e-03 0.54 9.18e-03 0.55 9.12e-03 0.53

0.001 6.31e-03 0.53 6.33e-03 0.54 6.31e-03 0.52

We present the mean-square errors for the aforementioned scheme in Table 5.2 when γ = 0.8.
We observe similar effects of mean-square errors as in Table 5.1.

Table 5.2: Mean-square errors of the scheme (5.9) with (5.10)-(5.14) for Equation (5.88) and
convergence rates when γ = 0.8 at T = 1.

h (5.90) rate (5.91) rate (5.92) rate

0.05 1.57e-01 6.87e-02 7.26e-02

0.02 9.98e-02 0.49 3.59e-02 0.71 3.72e-02 0.73

0.01 6.70e-02 0.58 2.39e-02 0.59 2.44e-02 0.61

0.005 2.42e-02 0.63 9.93e-03 0.54 9.96e-03 0.56

0.001 1.52e-02 0.67 6.80e-03 0.54 6.82e-03 0.55

h (5.90) rate (5.91) rate (5.92) rate

0.05 6.83e-02 7.19e-02 5.81e-02

0.02 3.59e-02 0.70 3.70e-02 0.72 3.37e-02 0.59

0.01 2.39e-02 0.59 2.43e-02 0.60 2.31e-02 0.54

0.005 9.93e-03 0.54 9.97e-03 0.55 9.90e-03 0.53

0.001 6.81e-03 0.54 6.82e-03 0.55 6.81e-03 0.54

Example 2. Consider the following test model

dXt = (1−X3
t )dt+Xγ

t dW
1
t ,

dSt = µStdt+
√
XtSt(ρdW

1
t +

√
1− ρ2dW 2

t ), (5.95)
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where W 1
t and W 2

t are two independent standard Brownian motions, µ = 0.5, ρ = −0.7 and initial
values are S0 = 1, X0 = 0.5.

Here we test two cases again: γ = 0.5 and γ = 0.8. For Xt, we used the same set of schemes
(5.10)-(5.14) as in the previous example. For St, we used the forward Euler scheme. For this
example, we expect that Xt and St both converge in the mean-square sense at the order 1/2
as we proved the half-order mean-square convergence of schemes (5.10)-(5.14) and it is known
that the forward Euler scheme has a half-order mean-square convergence for SDEs with Lipschitz
continuous coefficients. In this example, we consider a two-factor Heston model. We compute both

Table 5.3: Mean-square errors of St, using the scheme the scheme (5.9) with (5.10)-(5.14) for Xt

plus forward Euler scheme for St in Equation (5.95) and convergence rates when γ = 0.5 at T = 1.

h (5.90) rate (5.91) rate (5.92) rate

0.05 3.26e-01 3.31e-01 3.27e-01

0.02 2.14e-01 0.46 2.17e-01 0.46 2.14e-01 0.46

0.01 1.54e-01 0.47 1.56e-01 0.48 1.54e-01 0.47

0.005 6.94e-02 0.50 7.03e-02 0.49 6.93e-02 0.50

0.001 4.81e-02 0.53 4.89e-02 0.53 4.81e-02 0.53

h (5.93) rate (5.94) rate (5.89) rate

0.05 3.27e-01 3.27e-01 3.25e-01

0.02 2.14e-01 0.46 2.13e-01 0.46 2.13e-01 0.46

0.01 1.54e-01 0.48 1.54e-01 0.47 1.54e-01 0.47

0.005 6.93e-02 0.50 6.94e-02 0.50 6.93e-02 0.49

0.001 4.81e-02 0.53 4.81e-02 0.53 4.80e-02 0.53

mean-square errors and statistical errors. For γ = 0.5, the rate of convergence for St is close to
one half as indicated in Table 5.3, which matches our expectations on the convergence order. We
also observe that the accuracy of all schemes for St is at the same magnitude when γ = 0.5 and
γ = 0.8, see Tables 5.3 and 5.4.
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Table 5.4: Mean-square errors of St using the scheme (5.9) with (5.10)-(5.14) for Xt plus forward
Euler scheme for St in Equation (5.95) and convergence rates when γ = 0.8 at T = 1.

h (5.90) rate (5.91) rate (5.92) rate

0.05 3.46e-01 3.50e-01 3.47e-01

0.02 2.25e-01 0.47 2.27e-01 0.47 2.25e-01 0.47

0.01 1.62e-01 0.47 1.63e-01 0.47 1.62e-01 0.47

0.005 7.25e-02 0.49 7.34e-02 0.50 7.25e-02 0.50

0.001 5.05e-02 0.52 5.11e-02 0.52 5.04e-02 0.53

h (5.93) rate (5.94) rate (5.89) rate

0.05 3.46e-01 3.50e-01 3.47e-01

0.02 2.25e-01 0.47 2.27e-01 0.47 2.25e-01 0.47

0.01 1.62e-01 0.47 1.63e-01 0.47 1.62e-01 0.47

0.005 7.25e-02 0.49 7.34e-02 0.50 7.25e-02 0.50

0.001 5.05e-02 0.52 5.11e-02 0.52 5.04e-02 0.53
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

We work on the parameter estimation on fractional stochastic heat equations in one-dimensional
space and fractional Navier Stokes equations driven by additive noise in two-dimensional space.
We also investigated several positivity-preserving numerical schemes on solving the SDEs with
non-Lipschitz coefficients.

In chapter 2, we derived the closed-form of parameters in the fractional heat equation, including
the coefficient of the fractional terms, and order of fractional Laplacian term. We state and prove
the consistency and asymptotic normality for the parameters. The proof mainly relies on the strong
law of large numbers and martingale representation theorem. We verified that the global maximum
of the log-likelihood function exists. It is checked by the negative definiteness of its Hessian matrix,
the negative definiteness is proved by verifying the sign of principal minors, by using properties of
the total positive matrix. As a preview on the parameter estimation, I showed an example of the
stochastic heat equations with the error of 10−5. Moreover, we present several numerical examples
on the coefficient of the fractional Laplacian terms θ and fractional order α respectively. In the
estimation of θ, the estimation is close to the exact value with an accuracy of 4× 10−2. With the
decrease of the time step ∆t, the error decreases to 2 × 10−2. Given the same number of Fourier
modes, the error is less volatile when the fractional order α is close to 1. The estimation of the
fractional order α is solved by finding zeros of the first order derivative of the log-likelihood function
with respect to α. The accuracy is around 1 × 10−3 with a good choice of the initial guess when
the Fourier mode N is 200. The accuracy of the estimation depends on the size of time steps and
initial guess on the iteration methods.

In chapter 3, we worked on the stochastic fractional Navier-Stokes Equation with the periodic
boundary condition. The goal is to estimate the coefficient of the fractional Laplacian θ and
fractional order α. We applied the divergence-free projection and spectral methods on solving the
fractional Navier-Stokes equation numerically and computed the Fourier coefficients using the fast
Fourier transform and fixed point iterations. We constructed the analytic form of the fractional
Laplacian coefficients. The error of θ is around 1 × 10−3. The fractional order α is estimated by
the same procedures in chapter 2. The error of α is around 4× 10−2.

In chapter 4, we applied the neural networks techniques on the inverse problem of PDEs with
fractional Laplacian terms. The fractional Laplacian term is defined as the directional derivatives.
Compared with the current research work, we applied the generalized Gauss-Laguerre quadrature
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rule instead of using the finite difference schemes and shifted.
In chapter 5, we developed explicit schemes preserving the positivity of solutions to SDEs

with non-globally Lipschitz drift and Hölder continuous diffusion coefficients. We present five
explicit positivity-preserving schemes. These schemes are modified symmetrized Euler schemes. We
discussed several choices for non-globally Lipschitz drift among the state-of-the-art tamed schemes
and truncation schemes. We present several numerical examples using these numerical schemes in
both 1D and 2D cases and make comparisons in computational performance to show the half-order
convergence.

6.2 Future Work

This work is the very first step to what applications of fractional Navier-Stokes equation. There
are a lot of issues to explore.

In chapters 2 and 3, we have derived the maximum likelihood estimators for parameters in
the fractional heat and fractional Navier-Stokes equations driven by additive noise. However,
parameters α and β, θ, λ are estimated separately. Combining the estimator for α and the estimators
for β, θ, λ, use alternating direction method to estimate all parameters. This method would require
a good initial guess from either α or β, θ, λ. The further numerical study should be investigated
before convergence analysis.

In chapter 3, error estimates on the modified estimations for the coefficient of fractional Lapla-
cian θ should be provided.

In both chapters, estimators based on other metrics, such as KL divergence, may be developed,
especially the most important parameter α.

In chapter 4, numerical simulations for FPINNs should be performed to obtain the numerical
solutions as well as the parameter estimation.

In chapter 5, we have introduced several positivity preserving numerical schemes and proved

the half-order convergence for these schemes when
1

2
< γ < 1. The case when γ =

1

2
should be

analyzed as well, which is used in the classic interest rate CIR model.
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