
Designing an Authentication System for

Augmented Reality Devices

Submitted to:
Professor Krishna Kumar VENKATASUBRAMANIAN

Submitted by:
Rushdi ABUALHAIJA

Meghana BHATIA
Nikolaos KALAMPALIKIS
Alejandro SOLER GAYOSO

MQP Proposal, 2018-2019

This report represents the work of WPI undergraduate students submitted to the faculty as

evidence of completion of a degree requirement. WPI routinely publishes these reports on its

website without editorial or peer review. For more information about the projects program at

WPI, please see http://www.wpi.edu/academics/ugradstudies/project-learning.html

Contents

1 Introduction 5

2 Background 6

3 Problem Statement 8

4 Approach 9
4.1 Data Collection . 9
4.2 Data Preprocessing . 10
4.3 Model Training . 10
4.4 Authentication . 11

5 Parameter Selection 12
5.1 Genetic Algorithm . 12
5.2 Parameter Validation . 13

5.2.1 Window Size . 13
5.2.2 Hyperparameters . 13

5.3 Final Models . 15
5.4 Number of Epochs . 15

6 Results 17
6.1 Metrics . 17
6.2 Model Performance Analysis BVP . 17
6.3 Model Performance Analysis BCG . 19

7 Discussion 21
7.1 Empirical Mode Decomposition . 21
7.2 BVP Results . 23

8 Related Work 25

9 Conclusion 26

10 Future Work 27

Bibliography 29

1

List of Figures

1 Typical BVP Waveform . 6
2 Authentication Model Overview . 9
3 Deriving BCG and BVP from Raw Sensor Data . 10
4 Overview of Genetic Algorithm Approach . 12
5 Boxplot for Window Size 5 BVP . 14
6 Boxplot for Window Size 5 BCG . 14
7 CNN Final Convolutional Layers set-up . 15
8 ROC Curves for Training of BVP (top) and BCG (bottom) Models 16
9 BVP Session 1 Validation (left) and External (right) Sets 18
10 BVP Session 2 Validation (left) and External (right) Sets 18
11 BVP Session 3 Validation (left) and External (right) Sets 19
12 BCG Session 1 Validation (right) and External (left) Sets 19
13 BCG Session 2 Validation (right) and External (left) Sets 20
14 BCG Session 3 Validation (right) and External (left) Sets 20
15 BVP IMFs for the Gyroscope X-Axis . 21
16 BVP IMF Combinations for Gyroscope X-Axis . 22
17 BCG IMFs for the Gyroscope Y-Axis . 22
18 BCG IMF Combinations for Gyroscope Y-Axis . 23
19 Typical BVP vs. Derived BVP . 24
20 Headmountable Device (left) and Side Profile of user wearing device (right) 27
21 AX IMF 1 . 29
22 AX IMF 1-2 . 29
23 AX IMF 1-3 . 30
24 AY IMF 1 . 30
25 AY IMF 1-2 . 31
26 AY IMF 1-3 . 31
27 GX IMF 1 . 32
28 GX IMF 1-2 . 32
29 GX IMF 1-3 . 33
30 GY IMF 1 . 33
31 GY IMF 1-2 . 34
32 GY IMF 1-3 . 34
33 GZ IMF 1 . 35
34 GZ IMF 1-2 . 35
35 GZ IMF 1-3 . 36

2

List of Tables

1 Top model accuracies by Window Size for BVP . 13
2 Top model accuracies by Window Size for BCG . 13
3 Hyperparameters for the dense Layers . 15

3

Abstract

The following report details the potential of using BVP and BCG waveforms as a biometrics
means for user authentication using a head-mounted device. As part of the research, we trained
a convolutional neural network to retrieve an optimal model that will allow for correct user
authentication. The genetic algorithm was utilized in order to find the optimal parameters to
be placed into the neural network. We analyzed the results using ROC curves to determine the
best and worst performing models from the neural network. Through the ROC curve analysis
we determined that there were errors with our BVP results and therefore we moved on with
only the BCG waveform. This research aimed to find alternative methods of authentication for
users while considering the security of their passwords. The waveforms help us achieve this
goal of authentication as users provide their subtle head movements which are much harder for
adversaries to mimic than a typed password.

4

1 Introduction

The secure implementation of biometric authentication methods is becoming a more prevalent
challenge in technology today. New ways of authenticating users are developing and are being
made more available to the public. This development can be seen with the advent of authentication
systems such as fingerprinting, retinal and face id scans. Primarily, the new technology is being
used to authenticate users on smartphones, however there are broader applications for this type of
technology. In this paper, we propose the idea of utilizing subtle head movements as a new kind of
biometric to authenticate a user through the use of machine learning.

Our main goal for the project was to focus on developing a new authentication method using
a head-mounted device. To achieve this, we derived two different cardiac signals from a users’
involuntary head movements. The three parts to our work was data collection, data preprocessing,
and finally authentication as can be seen in Figure 2 in the Approach section.The signals we derived
were Blood Volume Pulse (BVP) and Ballistocardiogram (BCG). Both signals were measured with
two main sensors: an accelerometer, and a gyroscope. The accelerometer measures acceleration and
the gyroscope is used to measure angular velocity and orientation. This initial step was part of
the data collection phase, and then we had raw accelerometer and gyroscope signals to work with.
As part of data preprocessing, the raw signals were then filtered using bandpass, rolling average
and normalization filters. Filtering the raw signals is vital in order to reduce the noise to derive
meaningful waveforms. Next, we overlapped the data in order to create more data points that we
could use to train a convolutional neural network (CNN) in conjunction with the genetic algorithm
to retrieve an optimal model to help authenticate users with the greatest accuracy. We trained the
CNN, as part of our authentication phase, to perform binary classification to represent a yes or
no success of user authentication. As we were training and testing the CNN, we analyzed the
performance of users using Receiver Operating Characteristic (ROC) curves to determine the best
and worst performers in each of the models. This helped us distinguish the outliers and the success
rate with which our system was performing authentication. These results also helped us access the
success rate for each different user in the different sessions conducted. ROC curves help test the
validity of the models, and can be found in the Results section.

The following sections describe the whole process our team took in order to accomplish this
project. We first give a description of concepts that are vital to the project in the Background
section, and in the next section, Problem Statement, we explain the goals and motivations driving
this project. Following that, we lay out our Approach section. First, we provide details on how we
obtained the data in 4.1, and then the preprocessing steps in order to obtain the different waveforms
in 4.2. Then, section 4.3 explains the CNN and model training steps. Section 4.4 details the steps
for authentication. Then we describe all the details of the Parameter Selection process. First,
5.1 explains the different attributes of the genetic algorithm, and the neural network. Section 5.2
explains the different hyperparameters that were selected from the genetic algorithm. Then section
5.3 explains the details of model training and the process of evaluating the results. Finally, in
section 6 we present all our results, in 6.1 we first describe the metrics that were used for evaluating
the results. Then sections 6.2 and 6.3 present the results of BVP and BCG respectively. After the
last section, we present our discussion, related work, conclusion and future work sections.

5

2 Background

BVP is the measurement of “dynamic changes in blood volume underneath the surface” of the tissue
[?]. Gathering BVP is most commonly used in monitoring heart rate through intravenous perfusion
throughout the area where the sensor is placed. Sensors for measuring heart rate can be placed
anywhere on the body, although they are commonly clipped on the tip of the index finger to measure
BVP. Since the characteristics of a subject’s perfusion is unique, the BVP signal measurement
will provide different results per user. This important component allows for BVP to be a unique
identifier that can be utilized to authenticate a user, making it nearly impossible for an adversary to
replicate the same cardiac movements [?]. The biometric authentication technique greatly benefits
the handicapped users as they simply provide their cardiac movements to authenticate themselves
instead of openly telling people their password.

As mentioned earlier the BVP waveform varies by person as it is a unique identifier, however
it is important to familiarize ourselves with a typical BVP waveform first. As can be seen in
Figure 1, the BVP waveform consists of two peaks which define the pulses (P1 and P2) that is
the measurement of relative blood flow. The intervals between the two peaks is the measurement
of the heart rate in milliseconds, this is also called the pulse rate [?]. The V is the indicator of the
blood volume during the specific time. This waveform is measured with time as its x-axis and the
amplitude as its y-axis.

Figure 1: Typical BVP Waveform

To form unique BVP waveforms, we used data that was gathered in a previous project where
the ballistocardiogram was derived [?]. The authors of the paper gathered data from subjects
sitting still, while the sensors which were placed on a head-mounted device captured their subtle
head movements. With this data, we derived the BVP waveform for each axis of the accelerometer
and gyroscope for each fixed-length segment. Then, the BVP waveforms were used to train the
convolutional neural network. We employed a CNN for training the model as this allows us to
use raw data without extracting any of the features which then also helps prevent data loss [?].
A CNN also allows for a higher percentage of accuracy for our results analysis, and requires little
pre-processing as the network learns the filters instead of hardcoding themselves manually.

Prior to entry into the CNN discussed above, we first had to determine a method of processing
the raw accelerometer and gyroscope data we had available to us into the desired BVP signal. In
the paper [?] the researchers from Massachusetts Institute of Technology enumerated a method
for extracting heart rate accelerometer and gyroscope data. The first step to extract the desired

6

heart rate signal was to use an averaging filter to smooth the data. They determined empirically
that the window size for the rolling average should be 1/7th of a second for their data set. In [?],
the authors empirically determined that for the data collection method we used the window size
should be 0.06 seconds. Following the averaging filter, [?] mentioned that a “band-pass Butterworth
filter of order two, with high and low cut-off frequencies of 4 and 11 Hz respectively was applied to
isolate the BCG changes”. Finally they took the root sum square of the different sensor components
(accelerometer and gyroscope X, Y, and Z) and applied one more filter of “order two with cut-off
frequencies of 0.66 and 2.5 Hz (corresponding to 40 and 150 beats per minute)” [?]. Once these
filtering processes are complete the remaining waveform should be that of a normal heart rate and
ready for entry into the CNN.

Once the training component is completed, it is vital to choose an optimization technique which
will allow the top performers of each generation to proceed to the next round. To implement this, we
used the genetic algorithm, which is a search heuristic motivated by the theory on natural evolution
in which the fittest individuals are selected as the best performers to proceed to produce offsprings
in the next generations [?]. With many iterations, this method allows for us to find a generation
with the fittest individuals. There are five general phases that are implemented in the genetic
algorithm. The first one is the initial population, which is the original set of individuals where each
of the individuals can be a solution to the problem that is being solved using the algorithm. The
second phase is the fitness function in which a fitness score is given to determine how fit a given
individual is, this helps in ranking the population. The third phase is selection where we select the
fittest individuals from each of the generations to pass their genes onto the next one. The fourth
phase is called crossover, where a crossover point is chosen for each of the parents that will pass
their genes to the next generation. And, the final phase is mutation in which some of the genes of
the offspring are flipped bit strings in order to maintain diversity in the population [?].

7

3 Problem Statement

Modern technology is making information accessible electronically, and accordingly ease of user
authentication is becoming a more pertinent problem. Encumbering a user by forcing them to
use a long written password every time they need to access their personal information makes it
less convenient. Furthermore, for disabled users current authentication methods are prohibitive,
for example it is difficult for a handicapped person to enter a password and impossible for other
authentication methods such as fingerprint scanners. To address this problem our research explored
whether an accelerometer and gyroscope could be used to derive a BVP signal from a user and use
this user-unique signal to authenticate them. The successful implementation of this system would
allow for seamless authentication for any user with a heartbeat. Additionally, this method prevents
adversaries from gaining access to privileged accounts as mimicking cardiac rhythms of a subject
is nearly impossible.We then built a prototype in order to demonstrate the authentication system
which is described in the Future Work section below.

8

4 Approach

Our approach is broken up into four main stages. Data Collection describes the process through
which we obtained our data along with its format. Data Preprocessing explains how raw data from
different sensors was synchronize, as well as the different filtering techniques that were utilized to
obtain BVP and BCG signals. Model Training goes over the training specification for our model and
justifies the number of epochs that we train with. Finally, Authentication reveals the classification
process and its evaluation.

The purpose of the project was to create an authentication system based on the user’s head
movements caused by cardiac rhythm. In such a system, the initial input is filtered into a more
significant signal that can be used as the new input for a machine learning classifier that will
distinguish between different users. Our system design starts by obtaining raw data of the user’s
head movements, utilizing a gyroscope and an accelerometer. These raw signals are then filtered
using bandpass, rolling average and normalization filters which provide us with new and more
meaningful waveforms: BVP and BCG. Once the filtered data has been generated, it is divided into
overlapped groups or ‘windows’ of contiguous data points, a technique used to generate more data
points, thus increasing the size of the dataset. At this point, we proceed to the training of the CNN
classifier using the user’s data as positive points, and other user’s data as negative points. Once
the CNN classifier is trained for the specific user, it can take new data and determine whether or
not the signal belongs to the user. The overview and a visual representation of this process can be
seen in Figure 2 below.

Figure 2: Authentication Model Overview

4.1 Data Collection

The data used for this experiment was collected in a previous study [?] in which the researchers
recruited 12 able-bodied subjects and used a Smart Eyewear device (Google Glass) to collect ac-
celerometer and gyroscope data. From each subject, three sessions of 10 minute data were obtained,
which were broken down into two-minute segments of data to ensure the subject remains very still
for the recording period. The three different sessions for each user where collected 15 days apart
in order to later test the model’s classification accuracy over time. The accelerometer and gyro-
scope sensors on the Google Glass had a sampling rate of 50 Hz. Through the data collection,
the researchers obtained three accelerometer and three gyroscope raw sensor streams, each stream

9

corresponding to a different axis.

4.2 Data Preprocessing

After having acquainted ourselves with the data, we explored methods to produce a final model to
authenticate users based on their BVP and BCG signals. We first filtered the raw data collected from
[?] and applied filtering methods from [?] in which the researchers use a similar signal processing
to estimate heart rates from head motions in their subjects. The following steps were applied
differently to obtain BVP and BCG, and can be seen in Figure 3 below. (1) Rolling Average
Filter: We first implemented a rolling average filter that subtracts a 35 sample rolling average
for BCG, and 3 sample rolling average for BVP from each dimension of the vector, in order to
remove sensor shifts and potential signal trends. (2) Butterworth Band-pass Filter: To isolate BVP
changes, we used two butter bandpass filters. First, a 4th order filter with the high being 13 Hz
and low being 10 Hz, followed by a 2nd order bandpass filter with the high and low being 2.5 Hz
and 0.75 Hz respectively. Similarly, in order to isolate BCG changes, we added only one fourth
order butter bandpass filter with a high of 11 Hz and a low of 4 Hz. (3) Normalization: Finally,
each sensor stream was normalized to have unit variance within each window.

Figure 3: Deriving BCG and BVP from Raw Sensor Data

We then proceeded to prepare the processed data for training in the CNN. The first step in
preparing the data was to group it into windows of w length in seconds, also referred to as window
size. Two sequential segments have an overlap with each other of w - 1, as inspired by [?]. For
instance, two consequent segments of w = 5 seconds would share a total of 4 seconds. Overlapping
allowed us to create more data points for the CNN training, hence increasing the accuracy and
making overfitting less likely as discussed in [?], a paper in which the researchers train a CNN
for ballistocardiogram-based authentication. At this point, it was unclear which optimal segment
length would produce the best results, so as described in the Parameter Selection section, we tested
the performance of 2, 3, 4, and 5 second long segments respectively.

4.3 Model Training

At this point, we constructed a machine learning model that was capable of learning the unique
characteristics of each user’s BVP and BCG waveform, in order to be able to authenticate the
user at a later time. We implemented a CNN classifier as our authentication model. As studied
in [?], CNNs are precise models for effectively classifying time-series, such as the BVP and BCG
waveforms. By training the model for each user, we end up with a series of customized subject-
specific models that will differentiate the user they were trained for, from the rest. Hence, before
being authenticated, each new user will have to provide head motion data to create a trained CNN
that will then be utilized when such user attempts to authenticate. The model was trained for each
user using BCG and BVP data separately, in order to see which waveforms yields better results.

10

For the training, we use the data obtained after the Data Processing stage, which is the original
raw data from the accelerometer and gyroscope, that has been synchronized, filtered and divided
into windows of w length, where w is the length of the window in seconds. Similar to [?], our CNN
topology is designed taking into account the relationship between the three axis of accelerometer
and the gyroscope derived waveform. For that reason, each window was rearranged as a 2 x 3 x (w
x 50) tensor that could be used an input to the CNN. This tensor is divided into three dimensions,
each one with a particular purpose. The first dimension is based on the number of measurement
sources, accelerometer and gyroscope are two different sources. The second represents the number
of axis per source, so x, y and z are the three axis provided by each sensor. Finally, the third
dimension is (w x 50) because it refers to the number of data points per segment, where w is the
length of each window in seconds, and 50 (in Hz) is the sampling rate of the sensors.

Only the first four segments of the first session were used to train the model for each user. As
described in [?], the data from the user’s own segments was labeled as positive, where the data
from all the other subjects was labeled as negative.

4.4 Authentication

Once the model was trained, we used it to perform the final authentication step. To authenticate
a user we collected raw accelerometer and gyroscope data in x-second segments. Each segment
represents one authentication attempt and we collected one or more of these. Once the accelerometer
and gyroscope data was collected, we processed it in the respective signal that we were trying to
authenticate for (BVP or BCG). Note that the authentication model must be trained for BVP
or BCG in the training step, they are separate models and are singular in purpose once trained.
Additionally each model was trained to authenticate a single user, so for example model A could
be trained to authenticate User 1 using the BCG signal. The processed signal of choice is then the
input into its corresponding model. The authentication model will take one of the segments and
output a confidence value c where 0 ≤ c ≤ 1 and c represents how confident the input signal belongs
to the user it has been trained for. If c = 1 then we can assume that the authentication model
is 100% sure that the signal belongs to the correct user. If c = 0, then that would indicate that
the model is 100% sure that the signal does not belong to the correct user. Once this confidence
value is calculated it is compared against a threshold value, T where 0 ≤ T ≤ 1 and describes the
minimum confidence value required to consider a user authenticated. High values of T will decrease
the chances of false positives but also increase the chance of a false negative. In other words the
higher the T value the more secure the system is but the more difficult it will be for the correct
user to be authenticated. Conversely low values of T are less secure but more forgiving of a user
whose data does not exactly match the model it has trained for. As mentioned above, each segment
of data counts as an authentication attempt and if any segment authenticates, then the user will
be authenticated. In order to test the validity of our models we used ROC curves, which measure
the false acceptance rate vs. the true acceptance rate across multiple values of T. The details of
this metric and the results that they produced are discussed later in section 6.2.

11

5 Parameter Selection

In order to determine the most appropriate window size, as well as the best CNN hyperparameters
for training, we created numerous different models and trained them against all our user data, for
different window sizes, using a genetic optimization method. Finally we chose the optimal number
of epochs to train the final model. The parameter selection section is broken up into four main
stages. Genetic Algorithm describes the process we took in generating the different models and
then applying the genetic algorithm in order to find an optimal parameters. Parameter validation
sections explains the different parameters that were set such as window size, and the neural network
attributes. Final Models, which explains in detail the final CNN models, which are built using the
the hyperparameters that were previously generated. the end of the section along with a detailed
analysis. Finally, Number of Epochs presents the number of epochs that the final models will be
trained for, as well as how we derived that number. Below in Figure 4, we can see an overview of
the genetic algorithm for parameter selection, which will be described later in greater detail.

Figure 4: Overview of Genetic Algorithm Approach

5.1 Genetic Algorithm

As described in the Background section, the genetic algorithm is an optimization technique that
consists of repeating a process over multiple generations or iterations, in which the top performers
of a generation will pass on to the next generation along with slightly mutated versions of other
models. We implemented this approach using the following procedure for parameter selection.

First the genetic algorithm generated 20 models, each with randomized parameters. We chose
to use 20 models because the genetic algorithm is considerably time intensive and proportional
to the number of models that are being used for training. Using 20 models is an artifact of our
computational and time restraints, ideally we would train with more models than this if we had
the resources to do so. The algorithm generates the parameters of the initial generation models
randomly. Once we had the 20 models with randomly generated parameters, for each of our 12 users
we trained each of the 20 models at 10 epochs per training using the first four segments of the first
session. Once the models were trained we used the fifth segment from the first session as positive
test points and the fifth segment of the first session from the other 11 users as negative points. Once
all the training and testing was completed each model received an aggregate score that indicates
how well it performed across all the users. From each test, we obtained the false acceptance and
rejection rate, as well as the true acceptance and rejection rate. This score is calculated by adding
the average false acceptance rate to the second power with the average false rejection rate to the
second power. This entire process of training, testing, and scoring the 20 models is known as a
generation. From the scored models the top five (Elitism) and the worst three models are passed
on for reuse in the next generation. The parameters of the remaining 12 models are mutated
randomly. After a finite number of iterations (when the algorithm terminates), the best model of
the last generation is saved, since it is the best model so far explored by the algorithm.

12

5.2 Parameter Validation

A convolutional neural network is composed of several layers, each one consisting of a number of
parameters that affect the way input data is processed as well as the performance of the resulting
model. A relevant portion of the cross validation process was selecting the best parameters such
that they were optimized for the correct classification. The length of the input data segments
(window size), as well as their overlapping window size, the number of convolutional and dense
layers, the activation function and number of neurons per layer, the dropout regularization values,
as well as the keras optimizers and loss functions were all included in the parameter selection.

5.2.1 Window Size

The window size is length of the data segments that are fed into the CNN, as well as the size of the
overlap that was performed in the preprocessing step. Indeed the size of the input data can affect
the overall performance of the neural network. For that reason, before even choosing the attributes
of the neural network itself, we focused on establishing which window size would yield the best
results. To determine this we ran the genetic algorithm for five generations, for window sizes 2
through 5. We chose five generations because each generation at 10 epochs takes approximately 12
-15 hours with the computational resources we had available to us. Moreover, five generations were
enough to get an early idea of which window size could potentially achieve the best scores. After
running the genetic algorithm for window sizes of length 2, 3, 4, and 5 seconds, we determined the
window size with the best performing model, for both signals.

It is shown in Table 1 below that the highest accuracy among the best performing models for
every window size is that of five seconds, for the BVP signal.

Window Size (seconds) 2 3 4 5
TAR 96.16 95.86 97.12 96.43
TRR 87.59 90.45 89.39 95.01

Accuracy (%) 91.875 93.155 93.255 95.72

Table 1: Top model accuracies by Window Size for BVP

It is shown in Table 2 below that the highest accuracy among the best performing models for
every window size is that of five seconds, for the BCG signal.

Window Size (seconds) 2 3 4 5
TAR 97.02 98.21 97.84 99.20
TRR 91.16 92.10 92.63 93.97

Accuracy (%) 94.09 95.15 95.23 96.58

Table 2: Top model accuracies by Window Size for BCG

5.2.2 Hyperparameters

Once the window size was selected, we repeated the process once more to determine the best CNN
attributes. As show below in both Figures 5 and 6, 10 generations of the genetic algorithm were
generated for window size 5, for each signal. Thus leading to the best topology parameters that
would be used to authenticate each user.

More specifically on the BVP signal we can see below in Figure 5, how we reach a peak on the
9th generation. This way the best model is produced using the topology of the of the specific (out
of 20) model which performed the best in the 9th generation.

Additionally in the BCG signal we can see below in Figure 6, how we reach a peak on the 7th
generation. This way the best model is produced using the topology of the of the specific (out of
20) model which performed the best in the 7th generation.

13

Figure 5: Boxplot for Window Size 5 BVP

Figure 6: Boxplot for Window Size 5 BCG

14

5.3 Final Models

After the final attributes of the CNN were selected, the last step in order to train the model was to
construct it with the previously selected parameters. Below in Figure 7, we can observe the how
the Convolutional layers are deployed, this set-up is actually identical for both the BVP and BCG,
showcasing that the classification methods of such signals are similar.

Figure 7: CNN Final Convolutional Layers set-up

We can also observe in Table 3 the hyper parameters for the Dense Layers, which also happen
to identical for the classification models of both signals. Finally it is worth mentioning that the
classifiers of both signals have a 20% dropout between the dense and the rest of the layers, while
the loss function is what differs between the two models. The BCG model uses the Mean Absolute
Error function, and the BVP model uses the Mean square error function.

Layer Neurons Activation Function Dropout
Dense 1 128 TANH 0.4
Dense 2 128 RELU 0
Dense 3 512 TANH 0.2
Dense 4 1 SIGMOID 0

Table 3: Hyperparameters for the dense Layers

5.4 Number of Epochs

After selecting the optimal hyperparameters for building the CNN, and the best window size, all
that is remaining in terms of parameter selection is the number of epochs that the CNN will be
trained for. In order to determine this parameter we decided to train for 100 epochs, a number that
was within our computing capabilities, while keeping track of the training accuracy of the models,
which we later plotted as shown in the Figure 8 below.

As seen in Figure 8 below, the training accuracy spikes up during the first 20 epochs, and then
starts to consolidate until it stabilizes at 50 epochs. Hence, training for 100 epochs yields a very
good accuracy.

15

Figure 8: ROC Curves for Training of BVP (top) and BCG (bottom) Models

16

6 Results

Our Results sections is broken into three subsections. Metrics describes how ROC curves are used
to evaluate models in order to determine a good one from a bad one. The Genetic Algorithm
Results Section describes and evaluates the performance of the genetic algorithm for all the window
sizes, as well as the whole performance of the full 10 generations of both the BVP and BGC. The
last two sections Model Performance Analysis BVP and Model Performance Analysis BCG present
our results for each of the waveforms along with an analysis on their performance. After the final
models have been optimally selected, the window size is chosen, and the models are trained for 100
epochs, using the first four segments of the first session, testing is the final step to be done. There is
a total of three sessions, and the first session is data collected from the participants on day one, the
second session is data collected on day 15 and the last session contains data collected 30 days after
the initial collection day. Other than the 12 participants shown for whom models were generated,
there were another 10 participants whose data was used to form the external sets. The purpose
behind that is to introduce some outliers to the system in order to more accurately describe the
authentication ability. Using both the external and validation sets we generated the results which
are described below.

6.1 Metrics

In a Receiver Operating Characteristic (ROC) curve the true accept rate (TAR/ Sensitivity) is
plotted in function of the false accept rate (FAR/Specificity) for different cut-off points. Each point
on the ROC curve represents FAR/TAR pair corresponding to a particular decision threshold.
A test with perfect accuracy has a ROC curve that passes through the upper left corner (100%
TAR/Sensitivity, 100% FAR/Specificity). Therefore the closer the ROC curve is to the upper left
corner, the higher the overall accuracy of the experiment will be [?]. In order to consider the
accuracy in a more rational way we will be comparing the area-under-the-curve (AUC). Thus the
higher the AUC the higher the accuracy of the model.

Finally for the performance analysis of the model we will be comparing the the validation set
with the external set for both signals. The validation set refers to the set of data that is used for
training the neural network as opposed to the external set which is the set of data that is never
seen by the neural network until the very end, and it is then used to determine the final unbiased
accuracy of the model. Thus the comparison between the performances of the two sets is critical to
determine a reasonable performance of the model. This means that the accuracy of the external set
has to be slightly lower than the accuracy of the validation set. When the accuracy of the external
set is significantly less than the accuracy of the validation set, then we have overfitted, meaning
that the model is biased and will not be behaving as it was intended to. Whereas if the external
set has a higher accuracy than the validation set, that is simply irrational, and in such a case there
must be a mistake in our metric methods.

6.2 Model Performance Analysis BVP

In this section we will be testing the accuracy of the model that is using the BVP signal. For that
we are using all three sessions of data. For each test we have the validation set which is testing the
12 models using the first four segments of all the 12 “known” users, that is data that the models
were trained with. Whereas the external set consists of the data from the 5th segment of every
known user as well as all the “unknown” external users, that is data never seen by the models.

As seen in Figures 9, 10 and 15 below, the ROC curves are produced based on the performance
of the 12 different participants. Some specific observations are that participants 7 and 8 are outliers
in sessions 2 and 3 respectively, as can be seen in Figures 9 and 10 below, therefore we infer that
the participants did not meet the criteria of the data collection during their respective data collection
sessions.

Specifically in Figure 14 we can observe the ROC curves for the BVP Validation and External
Sets for the first session, the AUC of the external set is very high and also expectedly close to
the AUC validation set, since there is no overfitting. We can also observe that participant 16 is
outlying, thus we can conclude he or she did not meet the criteria of the data collection.

17

Figure 9: BVP Session 1 Validation (left) and External (right) Sets

In Figure 9 above we can observe that there is no overfitting as the accuracy of the external
set is not lower than the accuracy of the validation set. We can also observe that now there are
many participants that are outlying such as participant 7, 8, and 16 which are represented by the
purple line, the maroon dashed line, and finally the extremely dashed blue line. As we mentioned
above, outliers do not meet the criteria for many different reasons such as the days in between each
session, and if the participant was in a different mood than their later data collection sessions.

Figure 10: BVP Session 2 Validation (left) and External (right) Sets

Figure 10 shows that there is no overfitting similarly to Figure 9. We can also observe that
participant 8 is outlying in both validation and external set, thus judging from Figure 11 we can
hypothesize that the BCG signal extraction could not possibly work for participant 8 as they are
an extreme outlier and the authentication system would not correctly recognize them every time

We can see overall how the average AUC does not significantly drop from the first session up
until the third, displaying how such an authentication system can perform well over time.

18

Figure 11: BVP Session 3 Validation (left) and External (right) Sets

6.3 Model Performance Analysis BCG

Similarly as seen in the BVP results the average accuracy starts very high in the 1st session and
decreases as we move to the third session. Also the AUC of every user decreases from the validation
set to the external set (except for participant 19, who behaves abnormally in sessions 2 and 3
below). Finally we observe that the BCG results from session 1 have a higher AUC by 4% for the
BVP vs BCG results.

In Figure 12 below we observe the ROC curves for the BCP Validation and External Sets for
the first session, the AUC of the external set is very high and also expectedly close to the AUC
validation set, since there is no overfitting.

Figure 12: BCG Session 1 Validation (right) and External (left) Sets

In Figure 13 below we observe again that there is no overfitting. We can also observe that
now there are many participants that are outlying such as participant 7 with the purple line, and
participant 19 represented as the lime-green line.

19

Figure 13: BCG Session 2 Validation (right) and External (left) Sets

We observe in Figure 14 below again that there is no overfitting. Also there is a higher
variance between the users which is reasonable since the model is tested with Session 3 data which
was collected a lot later that the data the model was trained with.

Figure 14: BCG Session 3 Validation (right) and External (left) Sets

We can see overall how the average AUC does not significantly drop from the first session up
until the third, displaying how such an authentication system can perform well over time. Also in
comparison to the BVP model, the BCG model has higher accuracy and fewer outliers in general.

20

7 Discussion

In this section we discuss the validity of obtaining each signal (BVP and BCG) from accelerometer
and gyroscope data based on our results. This discussion is broken down into two parts (1) Empirical
Mode Decomposition which talks about the methods we used to process the raw data into more
complete signals, and (2) BVP Results in which we discuss why the BVP results were not fit for
continuing use whereas BCG was.

7.1 Empirical Mode Decomposition

In order to analyze the signal and ensure that the filtering produced the desired waveform (BVP or
BCG) we made empirical comparisons to a ‘typical’ example of the desired waveform. To accomplish
this, we first had to filter out all the noise in raw data. For noise filtering we used a technique
called Empirical Mode Decomposition (EMD). EMD is a method for breaking down a waveform
into its component functions, while remaining in the time domain [?]. The constituent functions
known as Intrinsic Mode Functions (IMF) represent filters applied at different frequencies, thus
by combining all the IMFs together, the original signal is formed. After running the EMD on the
signals, we manually combined IMFs with similar frequencies to produce new signals. We then
qualitatively compared the newly produced signal to the characteristic desired signal to find the
most promising combination of IMFs. The matlab code we used to perform the EMD was provided
by Rice University.

To produce the BVP IMFs for each axis and each sensor we decomposed the signal into its
constituent IMFs and an observation we made was that the lower frequency IMFs (IMF 4 - 9)
represented mostly noise as the frequency bands they occupied were well below that of a normal
heart rate. These IMFs can be seen in the second and third rows of Figure 15 below.

Figure 15: BVP IMFs for the Gyroscope X-Axis

Due to this observation we were able to determine that only the first three IMFs (the first row of
IMFs in Figure 15) were relevant to the noise filtering of our signal. To find the best combination
of IMFs we empirically compared the combinations to that of a heartbeat. Below in Figure 16 we

21

can see IMF 1, and the combinations of IMFs 1-2, and IMFs 1-3. We found that the combination
of IMFs 1-3 produced the closest waveform to BVP with some portions of the graph imitating a
typical BVP signal. We found that the gyroscope X-axis best represents the desired signal.

Figure 16: BVP IMF Combinations for Gyroscope X-Axis

Although this best exhibits BVP from the data we collected, as can be seen in the above graphs
there is not a clear heartbeat-like pattern that would discern these results as strictly BVP. Although
the basic shape of the signal is correct, the intervals at which they occur do not make sense given
that BVP is meant to model a heartbeat. The complete set of decomposed and recombined signals
can be found in Appendix 10.

Similarly to BVP, for each axis for each sensor we decomposed the signal into its constituent
IMFs for the BCG signal. Additionally, just like BVP, the best IMFs for use in creation of a cleaner
signal were the lower frequency IMFs (IMF 4 - 9). These IMFs can be seen in the second and third
rows of Figure 17 below.

Figure 17: BCG IMFs for the Gyroscope Y-Axis

Due to this observation we were able to determine that only the first three IMFs (the first row of
IMFs in Figure 17) were relevant to the noise filtering of our signal. To find the best combination
of IMFs we empirically compared the combinations to that of a heartbeat. Below in Figure 18 you

22

can see IMF 1, and the combinations of IMFs 1-2, and IMFs 1-3. We found that the combination
of IMFs 1-3 produced the closest waveform to BCG with large portions of the graph imitating a
typical BCG signal. We found that the gyroscope Y-axis best represents the desired signal.

Figure 18: BCG IMF Combinations for Gyroscope Y-Axis

This best exhibits BCG from the data we collected, as can be seen above in Figure 18there
is a clear heartbeat-like pattern that would discern these results as strictly BCG. The basic shape
of the signal is correct, and they occur at approximately one second intervals corresponding to a
heartbeat of 60 BPM which is relatively standard for a resting heart rate. These results combined
with the BVP results allowed us to determine that using this method of filtering and cleaning of
the signals, only BCG will be viable for our model going forward. While the BVP data acquired
us fairly good results for the CNN, the results from this section show that the neural network is
in fact fitting the specific noise produced by the Google Glass and each individual using it. The
goal of this paper is not to fit noise but rather a unique cardiac related signal, therefore BCG is
the appropriate signal to use going forward.

7.2 BVP Results

As seen in our results section and in Figure 19 below, our BVP waveform does not reflect a typical
BVP signal. The derived BVP waveform is seen in blue, and a typical BVP waveform is represented
with the red overlapping signal. As seen above, the BVP signal that we derived very loosely matches
the patterns represented in the typical BVP waveform. We deduce that this could be due to the
data that was collected in the previous study using the Google Glass device. We also used a filtering
technique that was gathered from a previous study which might not have been the optimal way to
filter the signal to produce a BVP waveform. After implementing the filtering we also empirically
decided on the axis that we would be using, and such studies have never been presented before.
Also, the EMDs and IMFs produced by the raw BVP data did not give us appropriate results
to derive a typical BVP waveform which further helps us deduce that we did not acquire a BVP
waveform.

23

Figure 19: Typical BVP vs. Derived BVP

24

8 Related Work

Head mounted authentication methods using head-motion derived biometric signals have already
been attempted. In [?] Hernandez et. al show a new method of collecting real-time cardiac biomet-
rics from a head mounted device, Google Glass in their case. Their study shows the high accuracy
of such methods and details the methods with which they are able to filter the signal into useful
biometric signals such as BVP and BCG. This is closely related to our work as we use their method
for filtering signals to produce BVP and BCG. However, while their work proves this method is
possible and lays out usages such as monitoring biometrics in healthcare, our study addresses the
possibility of using biometric signals to authenticate individuals in a passive real time and persistent
manner. [?] by Schneegass et. al describes a method of authentication that uses bone conduction
speakers to authenticate users. While this method is accurate, it takes 23 seconds to authenticate,
which is unrealistically long to be a useful authentication method. Additionally, some users find the
experience of bone conduction speakers playing white noise into their skull uncomfortable. In [?],
the authors develop a method for authentication that involves tracking a users eye motions as they
watch a video. This authentication method is accurate and reliable, however it requires 34 seconds
of data to complete the authentication process making it cumbersome when authentication should
be as close to a real time process as possible. In [?] the anonymous authors develop a method
for authenticating a user using accelerometer and gyroscope data collected from a google glass to
produce a BCG signal and train a model to authenticate users with this model. While the work
done here is superior to its competitors in terms of speed of authentication (2-5 seconds) and ob-
trusiveness, it limits the authentication signal to BCG and does not implement the authentication
model on a wearable device. Our work expands on the potential available authentication biometrics
by looking at BVP as well as BCG. Additionally, we verified BCG results translate to a wearable
device that we developed that is much cheaper than the Google Glass.

25

9 Conclusion

In this paper we showed that deriving a user’s BVP signal from a head mounted accelerometer and
gyroscope does not produce the desired results. The resulting signal is not BVP but rather just
erroneous noise that our CNN managed to fit. The fact that this is not a BVP signal invalidates the
results despite the fact that the CNN was performing well with low EERs of 6.5% and 11% after 30
days. Once we discovered the inviability of BVP as an authentication signal, we used results from
[?] to move forward with BCG as an authentication method. We showed that the accelerometer and
gyroscope data can be successfully filtered into a characteristic BCG signal and that the models
trained from this signal have good EERs of 1% and 12% after 30 days. Additionally, we developed a
wearable device to perform the accelerometer and gyroscope data collection and user authentication.
Finally, we showed that the data collected on this device can be filtered into a characteristic BCG
signal. If the EERs on the models trained on this data are acceptably low, our approach shows
promise for a low-cost method to authenticate users using a wearable device such as the one we
developed. In the future we intend to continue this work by using the device we developed to: (1)
collect more data use that data to train a CNN authentication model, (2) develop a method to store
the trained model directly on the wearable device so only the device is necessary for authentication,
and (3) test the accuracy of this device, especially with relation to how its performance changes
over time.

26

10 Future Work

Due to time constraints on our project, we were unable to complete training for our hardware setup.
Regardless, we continued collecting data to in order to plot the results to see if we obtain some
significant observations in order to move forward with our setup. We will continue fine tuning the
hardware even after the completion of our original project. For the hardware setup, we configured
a Raspberry Pi Zero W microprocessor running the Raspbian operating system due to its reduced
size and ease of programming. Also, the Raspberry Pi allowed us to run our existing python code
without much change. In order to record changes in acceleration and angular velocity, we used
the SunFounder MPU6050 sensor which includes an accelerometer (16 g’s) and gyroscope (2000
degree/second). The primary reason from choosing this sensor was the size which is 4.10mm X
4.10mm X 0.95mm and the ranges that it supports for acceleration and velocity, which is adequate
to capture miniscule head movements on the user. The sensor is connected to the Raspberry Pi
through a I2C serial interface. This connection is made up mostly by four connections which are a
3V VCC, ground, SCL, and SDA. Once they were all connected to the microprocessor we soldered
the connections to make them as stable and reliable as possible, hence avoiding potential noise that
could be caused from a weak connection. Once the hardware was configured and ready to read
data, we proceeded by setting up the sensor in a container that can be placed on a person’s head.
To record data we wrapped the head mountable device around a headband to secure it with the
wire on the head, as can be seen in Figure 20 below. We then placed this device onto a users head
with the wire connected to the Raspberry Pi on one end, and a general homeplug on the other, this
is also shown in Figure 20.

Figure 20: Headmountable Device (left) and Side Profile of user wearing device (right)

Once the device was secure on the head, we asked the user to remain still while we initially
collected one session worth data of 2 minutes. We used the ‘ssh’ command to connect to the sensor
to record the data. One person was handling the stopwatch, and another one was recording the
data on a laptop while the third person sat still for data collection. We followed the same protocol
of placing hands on lap, feet planted on the ground, and user staring ahead at a red dot placed on
the wall for each of the data collection sessions. After the two minute segment was over, we saved

27

the data into a comma-separated values format (CSV file) in order to use this data for training.
In the future, we aim to finish configuring the hardware by training models based on users and

perform the authentication process. The aim of this hardware setup is to allow users to use this
physical device in order to authenticate themselves by training the CNN. In order to optimize the
hardware we also will need to add a battery with the board as this will allow us to remove the cable
wire that is attached to the container, as seen in Figure 20. The final step would be to load the
final neural network model that will be used in order to authenticate a user into a system. After
that, we will need to train and test the model until we have successful authentication.

28

Appendix A: IMF Decompositions of the BVP Signal

Figure 21: AX IMF 1

Figure 22: AX IMF 1-2

29

Figure 23: AX IMF 1-3

Figure 24: AY IMF 1

30

Figure 25: AY IMF 1-2

Figure 26: AY IMF 1-3

31

Figure 27: GX IMF 1

Figure 28: GX IMF 1-2

32

Figure 29: GX IMF 1-3

Figure 30: GY IMF 1

33

Figure 31: GY IMF 1-2

Figure 32: GY IMF 1-3

34

Figure 33: GZ IMF 1

Figure 34: GZ IMF 1-2

35

Figure 35: GZ IMF 1-3

36

