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ABSTRACT  

We present a new game, “MLA: Machine Learning Arena”, in which the player’s goal is 

to train a machine learning agent to win a boxing match. The game features multiple phases, 

fully animated characters for the player to control, and machine learning integration. We tackled 

several technical and design challenges in this MQP, including: 1) Communicating machine 

learning progress through UI elements to the user, 2) Training an effective model for the game 

agent despite poor training examples from users, 3) Explaining key ideas about machine learning 

to players with no background in the field. We conduct user testing with 27 human participants 

to determine if players feel that the ML is learning from them. We found that 85 percent of 

players were able to distinguish between a random agent and the trained agent. Finally, we offer 

suggestions for future development: 1) Find new ways to explain machine learning to players 

through either gameplay or UI metrics, 2) Sanitize the input to make machine learning feel more 

fulfilling to players, 3) Budget enough time to design, implement, and train machine learning 

models.  
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1 INTRODUCTION 

Machine learning (ML) is a subset of artificial intelligence which infers intelligent 

behavior from examples rather than from explicit instructions of what to do. There are several 

major categories of machine learning algorithms - supervised, unsupervised, and reinforcement 

learning - of which we explored both supervised and reinforcement learning. In reinforcement 

learning, an agent will learn how to take actions to maximize a reward. A reward is some value 

that can be mathematically calculated in a way determined by the developer. In supervised 

learning, the agent will derive a function to map the given inputs to their corresponding outputs. 

Then, once presented with new input, the agent can infer how to act from the connections taught 

to it. When used in video games, these techniques have distinct applications. Reinforcement 

learning can be used to create a mapping from observations to actions via agents playing a game 

repeatedly, such as in DeepMind’s “AlphaGo” program [34]. Supervised learning can be used to 

record gameplay from a human player and optimize a policy to mimic their behavior. This 

strategy was used to form the initial behaviors of “AlphaStar,” DeepMind’s AI designed to play 

Starcraft 2 [38]. 

In this project, the goal was to create a video game that was enhanced by interaction with 

a machine learning agent (called Roboxer). By making such an agent integral to the function of 

the game, the player’s experience will be defined by their interactions with Roboxer. To serve 

this goal, we sought to make the experience of training and interacting with Roboxer as 

enjoyable as possible, as well as to provide insight into the function of machine learning 

algorithms in video games.  

Our team faced multiple challenges in incorporating machine learning into a video game. 

Many of these difficulties had their roots in communicating information to the player. Informing 

the player what Roboxer was learning and guiding the player how best to teach Roboxer became 

heavily scrutinized problems. Because the player’s goal was to train a boxer to win a fight, we 

needed to develop a method of showing their progress. Simply showing that Roboxer was 

learning from player actions wasn’t enough when there was a chance that the player was training 

them to be a poor fighter. Not only did this information need to be brought across to the player, 

but it needed to be communicated clearly and efficiently during the middle of the game. Other 

difficulties arose while trying to make training Roboxer satisfying to the player. It was difficult 

at first for players to see their impact on the Roboxer’s behaviors, and their enjoyment dropped. 

https://paperpile.com/c/O5oCc4/me6F
https://paperpile.com/c/O5oCc4/F8Cd
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The discovery of and solutions to these problems are discussed in chapter five of the report, 

where we detail the development process.  
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2 BACKGROUND 

 

2.1 The Fighting Game Genre 

Fighting games are a genre of video games in which players control characters to 

compete in fighting matches against one another or against computer-controlled players. In 

fighting games, characters use a wide range of fighting styles from hand to hand combat, to 

weapon-based combat and also magic-based combat. Within the fighting game genre, there are 

multiple sub-genres such as arena fighters, tag-team fighters, 3D fighters, and 2D fighters. Arena 

fighters are fighting games in which the player-controlled characters can freely move in a 3D 

space to fight one another such as Dissidia Final Fantasy NT [36], and Naruto: Ultimate Ninja 

Storm [12]. Tag team fighters are fighting games in which the player controls a team of two or 

three characters that can be swapped out during the match. Notable tag team fighters include 

Marvel Vs Capcom 2: New Age of Heroes [9] and Dragon Ball FighterZ [2]. 3D fighters are 

fighting games in which the player-controlled characters move in a 2D plane for a majority of the 

match while having three-dimensional movement options such as sidestepping to avoid incoming 

attacks. 3D fighting games include Tekken [4] and Dead or Alive [37]. 2D fighters are fighting 

games in which the player-controlled character is locked in a 2D plane of movement, usually 

only being able to move left and right. Some 2D fighters are Mortal Kombat [3], Street Fighter 

[8], and Divekick [21]. We position our game as a 2D fighter because the game is confined to a 

2D movement plane. The 2D fighter game that has most inspired this project’s mechanics and 

style is Punch Out!! [41]. 

 

2.1.1 Punch Out!! 

 Punch Out!! is a game created by Nintendo in 1987 in which the player controls a boxer 

rising through the ranks of the world circuit boxing tournament. The game is played over 23 

matches with the player facing off against a wide range of characters each with different 

characteristics and fighting styles. In each match, the player will have three rounds to knock out 

the opponent. This can be achieved by using a combination of attacks including body blows, 

punches to the face, dodging, ducking, blocking and an uppercut [41]. The player performs these 

actions by pressing the A and B buttons and the directional pad on the Nintendo Entertainment 

https://paperpile.com/c/O5oCc4/saLD
https://paperpile.com/c/O5oCc4/VZE1
https://paperpile.com/c/O5oCc4/EdXj
https://paperpile.com/c/O5oCc4/VjUp
https://paperpile.com/c/O5oCc4/DM0Q
https://paperpile.com/c/O5oCc4/VsEA
https://paperpile.com/c/O5oCc4/FgLx
https://paperpile.com/c/O5oCc4/7Ujv
https://paperpile.com/c/O5oCc4/zVHH
https://paperpile.com/c/O5oCc4/4bom
https://paperpile.com/c/O5oCc4/4bom
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System controller to punch and dodge. The full controls of the game can be seen in Figure 1 

below. 

 

 

 Figure 1: Punch Out!! control page [41] 

 

Punch Out!! was used as the main source of inspiration for our project’s gameplay 

mechanics, style, and controls due to its simple, yet effective design that works well for training 

a boxer with machine learning. This is because in Punch Out!! players do not move around the 

ring which reduces the state space we need to consider for the machine learning system. This 

also allows us to have the players only focus on the core actions of the fight which are the 

punches and dodges. The gameplay mechanics are inspired by the multiple rounds the player 

would play through to win the tournament. This influenced our decision to use boxing as the 

fighting style for the project.  

 

2.2 Machine Learning Techniques in Video Games 

Machine learning (ML) can be used in many different components of a video game, such 

as human substitution, dynamic difficulty adjustment, player adapted game elements, and 

https://paperpile.com/c/O5oCc4/4bom
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enjoyable opponents [35]. Most games incorporating machine learning have done so by training 

an ML model with human examples (imitation learning) or via playing the game (reinforcement 

learning) rather than a developer needing to write a preset list of rules [24,25]. To add ML into a 

game, a developer must allow a game agent to collect state observations, perform actions, and 

have a predefined goal that it should reach [35]. A downside to using ML models is that they 

typically require a large amount of training data and training time to converge on an optimal 

solution [11]. 

Reinforcement learning involves an agent acting within the game environment to find 

optimal strategies that maximize a developer or player specified reward [35]. To tune the 

underlying ML model, an agent plays a game multiple times and converges upon a local 

maximum determined by positive and negative rewards. On the other hand, imitation learning 

(IL) is a form of supervised learning in which play traces from a human player are gathered and 

used as training data. When given enough play traces, imitation learning can train an agent to 

behave similarly to a human player [20]. Our game uses imitation learning as the primary 

learning technique, as it fits into the goal of having a human player teach an AI how to fight. 

Early versions of our game also contained a training phase that was created using reinforcement 

learning, so the boxer could pick up moves of its own; this phase was removed in later versions 

of the game in favor of only using IL (see Section 5.5). 

Human substitution has received a large amount of publicity in the past few years as 

algorithms such as Deep Reinforcement Learning have been able to produce agents with an 

expert-level performance for some games [34]. Researchers have used ML techniques to play 

games such as a variety of Atari games [27], DotA 2 [10], StarCraft [30,38], Go [34], capture 

the flag [23], and shooting games [31,32]. In the industry, human substitution can be seen in 

Forza Motorsport Drivatars, which use imitation learning to drive with the same style as the 

player and substitute for them [26].  

Dynamic difficulty adaptation (DDA) involves a game agent scaling its difficulty to meet 

the skill level of the player. ML researchers have found recent success by applying RL to the 

problem which will approximate the skill level of the player and adjust the game AIs accordingly 

[17,22]. Many production video games, including Crash Bandicoot [15,42] and Left 4 Dead [28], 

use a form of DDA which does not specifically use reinforcement learning algorithms but has the 

effect that the game’s difficulty fits the current player over time. Using ML in place of traditional 

https://paperpile.com/c/O5oCc4/Miq6
https://paperpile.com/c/O5oCc4/u1P1+HICs
https://paperpile.com/c/O5oCc4/Miq6
https://paperpile.com/c/O5oCc4/UoKX
https://paperpile.com/c/O5oCc4/Miq6
https://paperpile.com/c/O5oCc4/4soQ
https://paperpile.com/c/O5oCc4/me6F
https://paperpile.com/c/O5oCc4/59Ht
https://paperpile.com/c/O5oCc4/PBtL
https://paperpile.com/c/O5oCc4/F8Cd+kp0r
https://paperpile.com/c/O5oCc4/me6F
https://paperpile.com/c/O5oCc4/mdZL
https://paperpile.com/c/O5oCc4/U9t4+6FQz
https://paperpile.com/c/O5oCc4/NYdZ
https://paperpile.com/c/O5oCc4/4SYt+t6rm
https://paperpile.com/c/O5oCc4/TL6u+MTml
https://paperpile.com/c/O5oCc4/Gp5h
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DDA has the potential to produce a custom DDA for each player which can adapt to their skill 

level and behavior; there are not any prominent industry examples as it is still in the realm of 

research and many of the existing DDA algorithms are suitable for players [29]. On the other 

hand, ML has been used to adapt game elements to better fit the player, for example, Galactic 

Arms Race uses neural networks to create unique weapons for each player based on their 

playstyle [18].  

 Many video game developers have been researching ML approaches to make more 

interesting and enjoyable opponents. For example, Colin McRae's Rally 2 utilized imitation 

learning to control the driving of the other racers in the game, which allowed the cars to feel 

more challenging to players [6]. Race for the Galaxy is another example that uses a neural 

network that plays the card game as an opponent to the player to “offer new challenges over and 

over again” as its behavior is less predictable than that of an expert system [13]. Other large 

game developers are researching the improvements that ML could bring to their games, such as 

Battlefield’s efforts using imitation and reinforcement learning to create challenging enemies and 

Blade and Soul’s fighters which use reinforcement learning [11,14]. Overall, ML can make 

agents which make decisions that are less predictable/scripted than heuristic-based agents [13].  

 

2.2.1 Popular Video Game ML Algorithms 

 The Unity framework used by our game, ML Agents, provides several learning 

algorithms frequently used in games: Proximal Policy Optimization (PPO) [33] - a reinforcement 

learning algorithm - and two imitation learning algorithms: Generative Adversarial Imitation 

Learning (GAIL) [19] and Behavioral Cloning (BC) [40]. Effectively using these algorithms in 

relation to a boxing game was a major goal of our project, and we were able to experiment with 

all three.  

Proximal Policy Optimization (PPO) is a reinforcement learning algorithm that is used to 

train a neural network, known as the policy network. PPO uses a metric known as the Q-value, 

which is a prediction of the reward value at a state given that a specific action was taken [33]. At 

each timestep, a value, known as the advantage, is calculated as the difference between the 

predicted (Q-value) and actual rewards. A ratio is then calculated between the new and old 

policies’ outputs. The ratio and advantage are used to clip the objective function of the neural 

network, reducing the likelihood of the gradient steps from overshooting the goal. Stochastic 

https://paperpile.com/c/O5oCc4/56d3
https://paperpile.com/c/O5oCc4/k592
https://paperpile.com/c/O5oCc4/LhBs
https://paperpile.com/c/O5oCc4/0rSv
https://paperpile.com/c/O5oCc4/wghN+UoKX
https://paperpile.com/c/O5oCc4/0rSv
https://paperpile.com/c/O5oCc4/ksw5
https://paperpile.com/c/O5oCc4/Z07c
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gradient descent is then run on the policy network. This algorithm has been shown to outperform 

other gradient-based reinforcement learning methods [33]. OpenAI 5, the DotA playing RL 

agents, were trained using self-play and large-scale parallel PPO algorithm. The OpenAI 5 

researchers used PPO to deal with long time horizons and data from “180 years worth of games 

against itself every day” [10]. In early versions of our project, we used this algorithm along with 

GAIL to handle the training phases of the game (see Section 5.2 and 5.3).  

 Generative Adversarial Imitation Learning (GAIL) is an imitation learning algorithm that 

can train a neural network using reinforcement learning techniques. Agents trained using GAIL 

demonstrate human-like skills with far fewer play traces and training time than traditional 

reinforcement or imitation learning algorithms [25]. Internally, GAIL is based on a 

reinforcement learning algorithm and built on top of a neural network to act as a policy. GAIL 

works by training two neural networks. One network, the “discriminator,” is used to distinguish 

between the training agent and an expert agent (from a recorded demo) and will produce a real 

value that describes how much the two agents differ. The value from the discriminator is used as 

a reward signal to the policy network, which will use an algorithm such as PPO to train. As the 

policy network trains to match the expert agent, the discriminator will be training to better 

distinguish between the two agents using a supervised learning approach [19]. GAIL can be 

combined with other reinforcement learning approaches by using the value of the discriminator 

network as a reward during training. A downside of GAIL is that it requires play traces to train 

the discriminator network, which need to be recorded before it can train the policy network. We 

were unable to use GAIL in our final game because of its pre-recorded play trace requirement 

and we wanted our agent to learn in real-time for the player to see; instead, we used Behavioral 

Cloning.  

Behavioral Cloning (BC) is an imitation learning algorithm that can be used to copy the 

behavior of an agent in real-time. BC records input-output pairs from one agent (which may be 

human-controlled) and conducts supervised learning through mini-batch gradient descent on a 

neural network. BC can also work in real-time through the use of an experience buffer; the 

experience buffer is a collection of teacher input-output pairs. As a human plays the game, the 

experience buffer will grow, allowing BC to train on more data. If the experience buffer is 

cleared, BC can be used to learn a new behavior within a few training iterations (possibly 

forgetting the old behavior in the process) [40]. BC cannot be combined with reinforcement 

https://paperpile.com/c/O5oCc4/Z07c
https://paperpile.com/c/O5oCc4/PBtL
https://paperpile.com/c/O5oCc4/HICs
https://paperpile.com/c/O5oCc4/9tLK
https://paperpile.com/c/O5oCc4/ksw5
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learning approaches such as PPO. In earlier versions of our game, we were unable to use BC 

because it conflicted with PPO, but after we removed the defensive phase of training we found 

BC to be a good fit for our game (see Section 5.5).  

 

2.3 Choosing Machine Learning Over Traditional AI 

There are many options for creating artificial intelligence agents for use in video games. 

Certain techniques are better suited than others for some tasks, but often multiple approaches are 

viable for any given task. This raises the question as to why our team decided to pursue machine 

learning over traditional game AI techniques. Because our team wanted to make interaction with 

an AI agent a central part of the gameplay mechanics, and because we focused on the idea of 

teaching an agent, a machine learning approach was selected. Arguably, other methods could 

have been used to replicate the experience of training an AI agent. A state machine could be used 

to switch the agent between levels of training depending on how long a player had spent with the 

agent. However, this approach would make it far more difficult to express each user’s unique 

method of training. Multiple end states could be programmed that match common strategies of 

playing, but the complexity of the state machine would rise as we tried to individualize the 

experience. Pursuing machine learning allowed us to create a system that could express 

individualized output for every user. 

Machine learning certainly has downsides compared to other techniques. While no AI 

system is completely predictable one hundred percent of the time, having a state-space hard 

coded by the developer limits the possibilities of what the agent could be “thinking.” If a 

machine learning agent does something unexpected, it can be more difficult to understand why it 

made the decisions it did, and at what point it learned to make those decisions. In addition, 

training time is an incredibly important factor. Depending on the method used, training an agent 

can take several hours, but even a few minutes spent doing nothing or doing something boring 

could kill a player’s investment in the game. The challenges we faced during the project were to 

maximize the benefits of choosing machine learning while minimizing the risks and drawbacks.  
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3 MACHINE LEARNING ARENA 

 This chapter describes the final game delivered as a result of this project. The final game 

executable can be installed by following the instructions in Appendix D. Certain terms are 

consistently used to describe aspects and components of the project. They are as follows: 

 

● Coach: The human player sitting at the computer 

● Roboxer: The ML Agent the coach is attempting to train 

● Enemy / Final Boss: The AI opponent that Roboxer will fight 

● Training Phase: Game time that the coach spends training Roboxer 

● Fighting Phase: Game time where Roboxer fights the Enemy 

 

A complete glossary of terms can be located in Appendix F. 

 

3.1 Experience Goal 

The intended player experience that we present here was developed through all of the 

design and development that will be described in the following sections.  

The experience that we seek to give players is the satisfaction of training a machine to 

fight. The way that we gave players that experience was by using machine learning to give an 

avenue for the computer to pick up on what the player is doing, as well as crafting a system 

around that machine learning component as a scaffold. The reason that we think this was the best 

way to give players this experience was that phrasing the learning as a game not only gets 

players invested and interested in machine learning, but also does it in a way that players can 

understand. The reason why this was the experience goal we set for ourselves and this project is 

that when we looked at what would make players interested in a game and in machine learning, 

we saw that different parts of real-life training would be the most adaptable to a video game. Of 

those types of real-life training, boxing training is one that is somewhat ingrained in the public 

area of knowledge, from movies and other older games that use boxing as a backdrop for their 

stories, not to mention the history of boxing as a sport.  
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3.2 Audience 

 Our final intended audience has two components, each we developed after our many 

rounds of testing and seeing who was interested in playing our game. The first segment of our 

audience is those who are knowledgeable about machine learning from an academic background. 

With our game having a focus on the machine learning element, having players who understand 

that on a deeper level helps to give them a better experience when playing. This segment of the 

audience was much smaller than the second grouping that we had during playtesting and 

iterating. 

 Our second segment of the intended audience is what we can call our general testing 

audience. This includes players who have played games or play games somewhat regularly, 

however, they do not have experience in developing AI or machine learning in other contexts. 

This audience includes the bulk of the testers that had played our iterations, and includes the 

majority of our expected audience for the game going forward. 

 

3.3 Gameplay 

3.3.1 Phases 

The main phases of the game include 4 parts;  

1. Tutorial. Takes the player through the basic concepts of the game as well as the 

basic controls. The players are given a screen to input each control once, to learn 

how to punch and dodge to each side. After those screens, the player is prompted 

to read through explanations of other game concepts, such as the learning 

mechanics and UI elements that show the learning components (see Figure 2). 
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 Figure 2: Training stage 

 

2. Guided Training. This includes a short section directly as the player enters this 

area, where the enemy training dummy will only punch for a short time, with a 

text box explaining to players to dodge these attacks without punching (see Figure 

3). After this, a similar text box will appear explaining that the players are to now 

throw sequences of punches at the training dummy. The training dummy does not 

punch back during this session.  

 

 

 Figure 3: Guided training stage 

 

3. Free-Play Training. The final part of the game is a free area for players to attempt 

to train Roboxer to the best of their ability, by both throwing punches and 

dodging incoming attacks. There is little explanation given during this section 



12 

relative to the guided phase. After the time runs out on this section, the players are 

prompted to either continue to the final area of the game or go back to train once 

again (see Figure 4).  

 

 

 Figure 4: Free-play training 

 

4. Match. The final area of the game is the match itself, where the player’s agent 

takes on the computer-controlled enemy AI (see Section 4.4.2) without input from 

the players during the fight. This serves as a capstone to the game to show what 

Roboxer has learned from the player. The match itself takes place on the final 

match location and each boxer has health bars, to make sure the players know 

clearly how well their bot is doing (see Figure 5). When the health of a boxer is 

depleted, they are knocked-out and the winner is declared, thus ending the game.  
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 Figure 5: Final fight stage 

 

3.3.2 Mechanics Design 

 Our game features four possible actions that a player can perform: a left and a right 

variant of punching and dodging. When hit by a punch, a boxer will take damage and flash red to 

indicate that they have taken a hit. All damage amounts are the same (10HP) in our game, and all 

players have 100HP, except for the final boss which has 400HP. The player can also attempt to 

dodge an incoming punch by dodging toward the opposite direction of the incoming punch. If the 

player dodges in the same direction as an incoming punch, then they will receive damage. We 

allow players to hold a dodge indefinitely to reduce the need for exact timing.  

 

3.3.3 Game Controls 

 The controls for the game use the D, F, J, and K keys on the keyboard to allow players to 

perform punches and dodges. The D and K keys are used for dodge left and right respectively 

(can also be held to extend the duration of a dodge) and the F and J keys are used to punch left 

and right respectively. Those keys were chosen because when a person uses a keyboard properly 

the hand resting position has the fingers over those keys. They were also chosen to help 

differentiate the left and right side actions by having the keys be separated on the left and right 

side of the keyboard. Also, most US keyboards have indentations on the F and J keys. We use 

this to have the players quickly get back into position if they need to remove their hands from the 

keyboard for any reason without needing to look away from the screen. 
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3.4 Narrative 

The narrative we constructed for the project was designed to serve the previously stated 

experience goal. In short, the intent was to provide the player with the experience of teaching a 

student and seeing their own strategies emerge in the actions of their trainee. To that end, a base 

narrative was created involving a robot boxer and their protégé (called Roboxer). The player 

controls a robotic fighter past their prime. They take up an apprentice and teach it to fight in their 

stead. After enough training, the apprentice attempts to win its first official fight. 

Due to a desire to focus on the technical nature of the project, less time was spent 

developing and communicating the narrative. We knew that the other aspects of the game would 

be far more demanding, so the narrative was kept light. However, we still wanted to make sure 

that a light narrative was communicated effectively and served the experience goal. The initial 

premise is explained during the tutorial that teaches the player the rules. The gym environment 

during the training phase helps to cement the idea of working out and training. The final arena 

suggests a climactic conclusion to the training given up to that point. 

In addition to the base narrative we laid out for the players, the machine learning aspect 

of the game would provide its own narrative elements. When an AI agent in a game takes an 

action, players tend to attribute that action to some underlying motivation or reasoning [16]. This 

is discussed in the article “Anthropomorphism and AI” as “The Mirror Effect.” Our thought was 

that by having the ML agent learn from the player and take actions that were noticeably inspired 

by the player’s training, the experience would tie into the narrative of training an apprentice. By 

seeing the Roboxer fail or succeed, the players could create a narrative in their heads as to the 

reason the Roboxer failed or succeeded. Thus, even though the player is only explicitly given a 

small bit of narrative, they can infer more from the state and progress of gameplay.  

 

3.5 UI Design 

The UI consists of the “Copy Meter”, the “Reward Meter”, and the “Train of Thought” 

on the left side of the training screen. The training screen has the player and the training dummy 

at the center of the screen as seen in Figure 6. This was done to give players the ability to focus 

on the fight at the center of the screen while being able to see the meters and information given 

on the left side of the screen. The training screen also contains a small set of icons on the bottom 

https://paperpile.com/c/O5oCc4/w2fS
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right of the screen that shows the controls of the game, with the keys and the icons that match 

those appearing in the train of thought element. 

 

 

 Figure 6: The training phase 

 

3.5.1 Copy Meter 

 The copy meter shows how much Roboxer has learned from the player (using cross-

entropy training loss - see Section 5.5.5). This is represented by a dial and a percentage as seen 

in Figure 7. The dial will light up when the percentage reaches a certain threshold. This was 

designed to allow the player to quickly glance over and see a general result while maintaining 

focus on the fight. 

 

 

 Figure 7: The copy meter 
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3.5.2 Reward Meter 

 The reward meter shows how much reward is given to Roboxer from the player’s 

inputted action. This is represented as a yellow meter that increases in length when the inputted 

player action gives a high reward value as seen in Figure 8. This was designed to allow the 

player to see how well Roboxer is learning from the player. 

 

 

 Figure 8: The reward meter 

 

3.5.3 Train of Thought 

 The train of thought shows the actions that Roboxer is thinking to perform. This is 

represented by four icons moving up on the screen as seen in Figure 9. The four icons are the 

icons used for the controls and represent the left and right variants of punching and dodging and 

can be seen in Figure 10. The left and right variants are organized based on the color: left is 

colored red and right is colored blue. They are also organized by the side the icons spawn on 

relative to the center of the train of thought. These icons were designed to allow the player to 

quickly recognize what type of action their agent is currently trying to use while not fully 

diverting the attention away from the training in the center of the screen. 

 

 

 Figure 9: The train of thought 
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 Figure 10: The train of thought and control icons 

 

3.5.4 Coach Dialog Box 

 To assist with the transitions between phases, a dialog box is shown, which allowed the 

coach to speak to Roboxer as seen in Figure 11. This gives players some context into what they 

are supposed to do during each phase of the game and avoids harsh transitions. The dialog box 

works in tandem with the training dummy (see Section 4.4.1).  

 

 

 Figure 11: The dialog box used to convey instructions to the player during the game 

 

3.6 Visual Design 

 To reflect the theme of the project, using machine learning to train a boxer to fight, we 

wanted to incorporate machines into the level and character designs. The usage of machines in 

our game visuals was a way to imply the use of machine learning within our game.  

 

3.6.1 Environment Art 

 To reflect the theme of the project, the environment art has been created to recreate what 

a robot boxing gym would look like. We used metal plates to simulate a training mat (see Figure 

12). We used existing assets for the metal floor textures1. The texture was then taken into 

Photoshop to be adjusted to create two different color tones to help differentiate the mat from the 

                                                
1 https://www.deviantart.com/tmm-textures/art/Metal-Floor-42059858 Freeware 

https://www.deviantart.com/tmm-textures/art/Metal-Floor-42059858
https://www.deviantart.com/tmm-textures/art/Metal-Floor-42059858


18 

normal gym floor. This was also used to create an area for our UI elements that do not interfere 

with the characters on screen. To increase the feeling of the area being a gym, we included free 

weights and dumbbells scattered around the area. We also used existing assets for the gym 

equipment models2. 

 

 

    Figure 12: The final release of the training area 

 

 For the final fight arena, we used a similar arena used in the training section of the game. 

The gym equipment was removed, and a lightning square was added to simulate a fighting ring. 

The lightning3 was used from existing assets along with the font4 used in the center logo of the 

ring. The final fighting arena can be seen in Figure 13. 

 

                                                
2 https://jprinsloo.itch.io/free-low-poly-gym-pack License: CC0: Public domain, completely free to use in both 

personal and commercial projects 
3 https://assetstore.unity.com/packages/tools/particles-effects/lightning-bolt-effect-for-unity-59471 (c) 2016 Digital 

Ruby, LLC 
4 https://www.fontspace.com/digital-graphics-labs/gunmetal Freeware 

https://jprinsloo.itch.io/free-low-poly-gym-pack
https://assetstore.unity.com/packages/tools/particles-effects/lightning-bolt-effect-for-unity-59471
https://www.fontspace.com/digital-graphics-labs/gunmetal
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 Figure 13: The final release of the fighting arena 

 

3.6.2 Character Art 

 The character art is using a package from the Unity Asset Store called “Armored Soldiers 

and Monsters 2D” 5, and uses a singular part of the asset package, being one of the armored 

soldiers, shown in Figure 14. This sprite group is used in all of the characters and is recolored for 

different uses. The coach uses a green material, Roboxer a blue one, and the enemies use a red 

material. These materials overlay on top of the sprite. The animations of punching, dodging, and 

idling were created with the Unity Animation window. Specific parts of the sprite could be 

manipulated along a timeline to create complete animations. Unity’s Animator window allowed 

for the construction of state machines that move from one animation to the other. The coach’s 

and Roboxer’s animations were meant to be quick, so a player would not be locked into them for 

long. The coach can dodge and immediately return to normal, or the coach can hold in the dodge 

position. This is because the animations for dodging out and returning were separated. The 

enemy dodge is one single animation, as the enemy never needs to hold its dodge position. In 

addition, the enemy punches were designed to be long and drawn out, with a large windup. This 

gives players ample opportunity to see the punch coming and react.  

 

                                                
5 https://assetstore.unity.com/packages/2d/characters/armored-soldiers-and-monsters-2d-top-down-133669 Unity 

Asset Store EULA 

https://assetstore.unity.com/packages/2d/characters/armored-soldiers-and-monsters-2d-top-down-133669
https://assetstore.unity.com/packages/2d/characters/armored-soldiers-and-monsters-2d-top-down-133669
https://assetstore.unity.com/packages/2d/characters/armored-soldiers-and-monsters-2d-top-down-133669
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 Figure 14: The character sprite 

 

3.7 Audio Design 

 Audio was designed to provide feedback and confirm what was happening for the player. 

To that end, feedback sounds were created for punching and dodging. While the audio is sparse, 

and more time was spent developing the technical aspects of the game, the feedback given by 

these sounds is still important. For punching, a variety of hit sound effects were used. At any 

point, one of four sounds will be emitted on a successful impact. Dodging also has four different 

sound effects. As these actions were the most important actions that a player can perform, it was 

important that the sound effects would not be grating, as they will be played often. This is why 

four varieties of each sound were created. The sounds were sourced from sound effect collection 

videos on YouTube 6 7. 

 

3.8 Conclusion 

 This is the final build resulting from two terms of design and testing. It successfully 

utilizes machine learning to create an entertaining and unique experience. For the details of the 

technical implementation of the final build, readers can refer to chapter 4 of the report. To see 

the design process, and how the game has changed from the original proposal, readers can refer 

to chapter 5 of the report.  

  

                                                
6 https://www.youtube.com/watch?v=Gr2dxMzejQI YouTube 
7 https://www.youtube.com/watch?v=iPToKmyZi74 Free (Lukas Eriksen) 

https://www.youtube.com/watch?v=Gr2dxMzejQI
https://www.youtube.com/watch?v=iPToKmyZi74
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4 TECHNICAL IMPLEMENTATION 

 

4.1 Machine Learning 

Our game’s machine learning (ML) component was responsible for dictating the actions 

of our game’s main character, Roboxer. One of the goals of the ML was that the trained AI must 

behave like the player; if a player only did left punches, so should Roboxer. In order for the 

game to not feel dull, Roboxer must also be able to imitate the majority of the player’s behavior 

within one minute. With these goals in mind, we designed the inputs of the model to be able to 

tell the current state of Roboxer and the opponent and the recent punch history of Roboxer. 

Having access to the current state of the opponent will allow the player to sense when they are 

about to be punched and act accordingly. Roboxer’s current state may be used to see which 

actions are available to be performed while the recent punch history will allow it to learn a 

sequence of punches. The recent punch history is implemented as a finite state machine which 

encodes a sequence of punches up to a length of three (see Figure 15).  

 

 

 Figure 15: Punch combo FSM 

 

 The underlying machine learning model is a fully-connected feed-forward neural network 

with one hidden layer, which uses a softmax activation function on the output layer to act as a 

classifier (layer sizes: 36-128-5). The single hidden layer has 128 neurons, which was a value 



22 

that we determined to be optimal for this game (see section 4.5.4). The hyperparameters for the 

network can be found in Appendix H. Each output neuron corresponds to an action available in 

the game (left punch, right punch, left dodge, right dodge, and do nothing). Given that the 

softmax activation function is in use, we also have access to the confidence values for each 

action; at the start of training, low confidence actions are ignored to give the illusion of Roboxer 

knowing no moves until it is trained.  

To train the neural network, we are using Behavioral Cloning (BC) during the training 

phase with the coach set as the teacher and Roboxer as the student. There are two BC powered 

AIs in our game, one is visible to the player and the other is fighting a hidden training dummy to 

generate the “thought timeline”. The visible Roboxer does not fight until the final phase of 

training where it shows what it learned; both the visible and hidden Roboxer share the same 

brain. During the actual match, the teacher is disabled so Roboxer will stop training and use the 

latest trained model. 

We also sanitize the input from the player to avoid training on actions that would be 

harmful to our experience goals. The following scenarios are filtered out: throwing a punch 

while the opponent is punching, dodging while the opponent is doing nothing or dodging, and 

hitting a key while performing an action. The player is still able to perform the filtered moves 

during training, but the machine learning system will not use them for training data. 

 

4.2 Game Mechanics 

The number of mechanics in the game were deliberately kept small to make it easy for a 

machine learning agent to pick up and learn. The main script that handles the boxer mechanics is 

called “Boxer.” A boxer is capable of performing two major actions; punching or dodging. A 

boxer can choose to perform either of these actions to the left or right, giving a total of four 

action options at any given time. The boxer script has a function to take in and process input 

from a given source called “AgentAction()”. By interpreting the information given in 

AgentAction, the boxer knows to punch, dodge, or do nothing. Each boxer can have its input 

specified as either a machine learning agent, a scripted artificial intelligence, or the player’s 

keyboard. This allows all three different sources of input to operate on the same principles inside 

the boxer, without having to create individual functions for each. Each boxer also has a reference 

to the opponent it is currently fighting with, so it can tell when it has hit or been hit.  
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 The boxers also possess a pool of health for the final fight. Every time they take a hit 

from their opponent, either by not dodging or dodging in the wrong direction, their health pool is 

depleted. When their health pool reaches zero, they are unable to continue, and their adversary 

wins the fight. While this mechanic has no bearing during the training, it’s crucial during the 

fight so an outcome can be determined. Because a boxer has a reference to its opponent, it knows 

when its opponent is punching. It can thus determine the point at which damage is registered if it 

is not dodging in the correct direction, and deduct from its own health pool accordingly. The 

connection between the two boxers is done using a Match class, which allows fights to be started 

and stopped and connects the punch events. 

 

4.3 Phases 

 Because there are distinct mechanical phases of the game (see Section 3.3.1), handlers 

needed to be put in place to control the flow of game logic. Each phase was implemented as a 

game object in Unity to allow easy enabling/disabling while not active. In addition, an overall 

game handler was created to control the shifting of phases and the flow of control to each 

individual handler. The overall handler was referred to as the GameHandler. The 

GameHandler script acts as a state machine, keeping track of the current phase of the game and 

for how long the game should remain in that state (see Figure 16). Once the game timer reaches 

zero, the GameHandler moves to the next state, activating the appropriate phase handler.  

 

 

 Figure 16: GameHandler FSM 
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 Because the final game has two distinct phases, two phase handlers were created. These 

handler scripts were named OffensiveTrainingMatchHandler and MatchGameHandler. 

The first of these handled control of the initial phase of the game, when the player trains 

Roboxer. The script acts as another state machine that controls how the training phase of the 

game proceeds. The script’s initial state is to wait for a command by the player to begin training. 

Once the player hits the spacebar to begin training, the handler starts paying attention to how 

much time has passed during the phase. At designated times, the handler will show dialogue 

from the coach and adjust the behavior of the training dummy to guide the training process. Once 

the timer reaches zero, the handler demonstrates what the AI agent has managed to learn from 

the player. After demonstrating Roboxer’s capabilities, the player is offered a choice to continue 

training or proceed to the match. Should the player choose to continue training, the handler 

reverts its state to the beginning of training, and the process begins anew. If the player chooses to 

move to the final fight, a message is sent to the GameHandler script, which passes control over 

to the MatchGameHandler script. 

 In the MatchGameHandler script, the initial state is to wait for a prompt by the player, 

similar to the OffensiveTrainingMatchHandler script. After the player presses the 

spacebar, the handler begins the match. Instead of paying attention to the time, like the training 

handler did, the match handler pays attention to the health of each boxer. Once the health of 

either boxer is depleted, the match handler stops the fight and displays a corresponding victory 

message. Because the fight itself is less complicated than the training, the match handler can be a 

much simpler state machine, only needing to tell when an opponent is defeated. The completion 

of the match means that the game is over, and the player can quit. 

 

4.4 Training Dummy and Final Boss AIs 

 Our game features two opponents for the player / AI to face, the first is the training 

dummy which is present in the first phase of the game and the second is the final boss which is 

the second phase of the game. Both opponents use a state machine to determine their actions and 

follow a predetermined sequence of moves with some minor exceptions for the final boss.  
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4.4.1 Training Dummy 

 The training dummy is the main opponent of the first phase of our game. The dummy 

follows a scripted set of moves, does not adapt to any input from the player, and does not get 

knocked out. The dummy has three different move sequences that it can follow: left-right 

punches (sequence 1), left-right dodges (sequence 2), and left-right punches followed by a left 

dodge (sequence 3). The dummy starts in sequence 1 and the player is encouraged to only dodge 

the incoming punches. This trains the ML model to associate being punched with the need to 

dodge. After 30 seconds of dodging, the dummy switches to sequence 2 and the player is 

encouraged to perform punches. The dummy can dodge in this stage, but the dodge is time-based 

rather than sensing the player’s punches. This stage is useful for the ML model to learn 

sequences of punches and provides the highest level of player customization in our game. 

Sequence 2 lasts 30 seconds before switching to sequence 3. This final sequence provides a 

combination of punches and dodges and the player is encouraged to fight the dummy as if it were 

an opponent. This phase reinforces the punches and dodges that Roboxer learned in the previous 

sequences as well as how to prioritize dodges/punches when an incoming punch occurs while the 

player is trying to perform a punch combo. This sequence is interrupted after 30 seconds and the 

player is swapped out with Roboxer, which then fights the training dummy in sequence 3 to 

demonstrate to the player what it learned. Roboxer fights for 8 seconds before the inter-match 

screen appears.  

 Internally the training dummy is composed of two finite state machines (FSM) (see 

Figure 17), since FSMs make it possible to easily manage various AI behavior states [7]. The 

first FSM controls which sequence the training dummy is following and transitions based on 

time passed. The second FSM controls which action to take in a sequence. This FSM (referred to 

as the action FSM) takes a list of moves, including being inactive, to perform as input and cycles 

through it. The action FSM monitors the state of the boxer and will only perform the next move 

in the sequence if the previous move has finished and the next move isn’t on cooldown still; this 

ensures that the training dummy will cycle through all actions in the proper order.  

 

https://paperpile.com/c/O5oCc4/pBJx
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 Figure 17: The training dummy FSM 

 

 The class containing the training dummy’s logic inherits from the Decision class 

provided by ML Agents. This class can be used with a Heuristic Brain and attached to a Boxer 

in place of the learning or player brain. Because the training dummy only affects the brain of the 

Boxer, the game mechanics automatically apply to the dummy. During the training phase, there 

are also two training dummies following the same move sequences; one training dummy is 

visible to the player and the other is hidden and only used by the hidden Roboxer to generate the 

move timeline and reward meter.  

 

4.4.2 Final Boss 

 The final boss of the game is what the player’s AI agent fights during the final match. 

The boss is a buffed version of the training dummy which also gains the ability to dodge 

incoming punches with a small percent change and increased hit points. Like the training 

dummy, the boss follows a preset sequence of punches, but the boss has more sequences to 

choose from. The boss is designed so that it can beat poorly trained agents.  
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5 GAME DESIGN PROCESS 

 The ideas for our project were developed prior to its start, and after which we were able 

to work on the implementation of the game for close to six months. We created a timeline which 

detailed broke our project into two major milestones: Alpha and Beta release. We set the target 

for our Alpha release to be at the end of the first term of the project (7 weeks into the project). 

The goal of the Alpha release was to have all three game phases completed with working 

machine learning. The Beta release’s goal was to have all components functional and a polished 

UI and game experience. This release was set to be 4-5 weeks after our Alpha release. In 

between our two releases, we redesigned several of our UI elements related to displaying training 

progress, added audio, and redesigned our ML system to accommodate the removal of the 

defensive training phase.  

 Throughout the development of our project, the core gameplay mechanics (punches, 

dodges, damage) and environmental/character art stayed relatively unchanged. The ML system 

(and associated UI) on the other hand received significant changes multiple times a month in an 

attempt to make it learn faster while meeting the expectations of our playtesters. We were able to 

handle these changes and integrate them with the rest of the concurrent development because we 

followed a relatively fast 1 week iteration/sprint with development stand-ups nearly every day of 

the week. This chapter documents the major milestones of our project in which significant 

changes were made (see Table 1 for an overview).  
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Table 1: Milestone timeline 

Milestone Dates Major Changes 

Summer 5/24/2019 - 8/30/2019 The game idea was decided upon and a 

mechanics and ML prototype were created. 

First ML Build 8/30/2019 - 9/6/2019 Machine learning was incorporated into the 

boxing game prototype. 

Full Game Flow Build 9/6/2019 - 9/20/2019 All major phases were added, machine 

learning was improved, and training 

progress visualizations were added. 

Alpha Build 9/20/2019 - 10/4/2019 Training progress visualizations were 

added. 

Beta Build 10/4/2019 - 11/22/2019 Removed defensive training phase, added 

animations/audio, added a new training 

dummy and enemy AI, and improved 

machine learning.  

Post-Beta Build 11/22/2019 - 12/1/2019 Improved machine learning and enemy AI. 

 

5.1 Summer Milestone 

 During the several months leading up to our project, we generated game ideas, created 

concept art, and experimented with some game mechanics. 

 

5.1.1 Game Ideas 

 Before coming up with ideas for our project, we decided to do some research to see what 

types of games were being made using machine learning, both currently and in the future or 

coming up. One such game that we looked into was Hello Neighbor [39], a game that uses 

machine learning to create an ever-increasing maze for the player to have to navigate through, 

and that gets made precisely to counter the player’s previous strategies. This form of antagonistic 

machine learning we found interesting, however, we thought that a cooperative experience would 

suit our style of development better. 

We came up with a couple of ideas for what we wanted our project to be, but ultimately 

decided on creating a fighting game in which the player would train a boxer. We decided upon 

training a boxer because we believed that our other ideas were scoped too big or not interesting 

https://paperpile.com/c/O5oCc4/HrFY
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enough to stay motivated. The ideas can be found in Appendix A. We also believed that by 

training a boxer we would be able to use reinforcement learning, which we all wanted to do. 

 

5.1.2 Concept Art 

As we began to create the visual identity of the game, we brainstormed multiple ideas for 

what our game should look like. The first idea was to replicate the look of the game Punch Out!! 

This would have the game be isometric and show a lot of the details of the characters, as seen in 

Figure 18.  

 

 

 Figure 18: Isometric perspective based on Punch Out!! [41]  

 

The next idea would also follow the isometric approach but would deviate away from the 

visual style of Punch Out!! as seen in Figure 19. This helped us to start thinking of our own 

visual identity for the game without fully depending on the game that inspired the project. This 

version also allocated some space for where some basic UI could be included such as health bars 

and a timer, represented by the black boxes at the top of Figure 19. 

 

https://paperpile.com/c/O5oCc4/4bom
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 Figure 19: Isometric perspective idea 2 

 

The next idea deviated from the isometric view to switch to a top-down perspective as 

seen in Figure 20. This idea would be what the team prefers due to the ability to use simpler 

character art, focusing on the top of the heads of the fighters instead of the character’s face. This 

would allow the team to play to its strength with no artists on the team. 

 

 

 Figure 20: Top-down perspective 
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Once we finalized the idea of the game being about robotic boxers, we recreated the top-

down view to reflect a more dark and electric feeling arena as seen in Figure 21. This theming 

was selected because we originally thought about incorporating multiple fights into the game in 

which the player and Roboxer would start with underground street fights and work their way up 

to the top of the robot boxing scene. We eventually decided to cut the idea of multiple fights to 

keep our scope at a reasonable size for the project. As a result, this was the only fight stage 

created at this point and would be used as a placeholder asset. 

 

 

 Figure 21: Robotic boxing fighting arena 

 

 The initial concept art for the characters, in Figure 22, illustrates the early ideas that we 

created for the characters and possible final looks for the game. These sprites were created in 

64x64 pixel space and attempted to showcase how some aspects of the game mechanics might 

have been developed. For instance, one of the fighters below has lightning for arms instead of 

metal, and that carried over into the final game. 

 

 

 Figure 22 : Old sprites 

 

5.1.3 Game Mechanics Prototype 

This version of the initial design of the game had a base set of moves that included a left 

and right punch, a left and right dodge, as well as a block. There were no animations in the 
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prototype, so the punches shoot straight out from the character and the dodges teleported the 

player to the side. The punches were also designed to broadcast an event when thrown so that it 

would be easier to add a damage mechanic in the future. The dodges and block could also be 

held so the player would stay in the dodge/block position. These mechanics served as the basis 

for our game in the later iterations.  

 

5.1.4 ML Agents Prototype 

We began our project by researching how to use machine learning within Unity and 

discovered the ML Agents toolkit. The toolkit provides a way to train in-game agents using 

reinforcement or imitation learning as well as using a pre-trained model. Internally, ML Agents 

uses TensorFlow and has implementations for a variety of algorithms such as PPO and GAIL. 

The Unity SDK for ML Agents is composed of several base classes and game assets which can 

be extended by the game developer.  

The core of ML Agents is the Brain object, which can be either a Player Brain, Heuristic 

Brain, or Learning Brain. The brain acts as a controller for an Agent object, which is the base 

class that needs to be extended by game agents. Agents collect observations about their 

environment and use their brain to determine the proper action to perform. For ML Agents to 

reset the game environment after completing a trial, the agent must be contained within an Area 

game object. The area contains all game objects that the agent can interact with during a single 

trial; for example, in our game, the area contains the ring, agent, and opponent. Finally, to train 

the brains, an Academy game object needs to be created at the root of the scene. The academy 

contains a list of the brains that will be used and it can mark which ones need to be controlled 

through the TensorFlow interface. Figure 23 shows the class diagram for ML Agents.  
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 Figure 23: ML Agents class diagram 

 

To learn how to use this toolkit, we created an archery game using ML Agents (see 

Figure 24). The demo game had a very limited action space and it was easy to derive a 

mathematical function between inputs and outputs. In our testing, we found that ML Agents 

requires an external script to be running prior to the start of the game, which will enable the 

training of the ML model. The training parameters were determined by a configuration file that 

we copied from the ML Agents examples. From creating this prototype, we learned that ML 

Agents makes it easy to integrate ML into a game, and it took only 3 minutes for the archer to 

perform without any noticeable flaws.  

 

 

 Figure 24: The archery prototype 
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5.2 First ML Build 

 This was the first version of our project which used ML Agents. The change to ML 

Agents required several code restructures (see Section 5.2.3) but was implemented in a few hours 

due to the previous testing with the archery game. This version proved that given enough time, 

an agent trained through RL could play the game, though there were still concerns about whether 

an AI could learn fast enough for a playable game. The first build can be seen in Figure 25. 

 

 

 Figure 25: The first build of the game with ML Agents 

 

5.2.1 Game Idea Changes 

 The layout document of how we imagined the game flow would be can be found in 

Appendix F. It outlines the 3 distinct phases that we wanted to create for our game: an offensive 

training phase, a defensive training phase, and a final boss fight. The offensive and defensive 

phases would consist of the player acting as the coach and teaching a robot fighter, called 

Roboxer (name decided on late in the project).  

 

5.2.2 Health and Damage Mechanic 

 Our previous build of the game featured the ability to punch and dodge, but neither had 

any effect in the game other than being visually different. We created a simple solution whereby 

an event was broadcast when a punch was thrown and the Arena (see Section 5.2.3) would listen 
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to the punch events of both fighting boxers. The Arena then calls the Boxer.OnPunched 

method would then be called on the recipient boxer and the damage logic determines the 

outcome of the punch. A punch can either deal full damage, be dodged or blocked, or result in a 

KO, depending on the current level of health and which direction the boxer is dodging. We also 

added support for different types of punches through a Punch class, though we only 

implemented a weak punch at this stage of the game.  

 

5.2.3 Adding Machine Learning 

 Using the ML Agents archery prototype as a template, we converted the Boxer into an 

Agent, added the Academy object, and made the Arena extend the Area class. By having the 

Boxer class extend Agent, it gained the ability to use a Brain to gather observations and decide 

on actions. Three Brains were created: a player brain, a learning brain, and a heuristic brain so 

we can simulate a player for testing purposes. The configuration file from the archery demo was 

copied over to this project without any changes. The AI collected 16 frames worth of the 

observations documented in Table 2, because we felt that this would be enough to capture the 

last move of both Roboxer and opponent. The model was trained using PPO. It used a feed-

forward neural network with two hidden layers, each containing 256 neurons and a softmax 

classifier on the output layer.  

The rewards were added within the Boxer class to give a positive reward when Roboxer 

lands a punch and a negative reward when it gets punched. Positive rewards were also given for 

when it successfully dodges and a negative reward was given if the opponent successfully 

dodges. We created the defensive training phase first, given that it would be a good way to test if 

the ML was working and it was relatively easy to create a mock player. The mock player brain 

was created using a simple state machine that cycled through a predetermined sequence of 

moves. The mock player and Roboxer were made opponents and the ML was allowed to train. In 

our testing, it took almost an hour for Roboxer to be able to perfectly dodge the mock player’s 

moves and to throw punches while not dodging. This duration was much too long for our game 

requirements, so reducing the training time became a focus of the next iteration.  
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Table 2: Observations collected by our original boxer agent 

Observation 

Agent’s health (between 0 and 1) 

Opponent’s health (between 0 and 1) 

Agent’s move state (Left punch, right punch, left dodge, right dodge, nothing) 

Opponent’s move state (Left punch, right punch, left dodge, right dodge, nothing) 

 

 

5.2.4 UI Design 

 The initial UI designs for the first ML build were minimal in terms of implemented 

assets, display elements, and concepts. The UI included the arms and hands of both the player 

and enemy as well as health displayed as a text field above and below the characters. The match 

was also displayed at the top of the screen. More elements would be added later, but at this point 

in development, more work was going into the planning for the coming stages than the 

implementation of UI elements. 

 

5.2.5 Early Character Designs 

At this stage of development, the characters were simply composed of the arms and 

hands (3D blocks), as seen in Figure 25, each moving forward on the screen to indicate the 

punch and back to indicate the dodge state. At this point, we decided to look at 2D sprite sheets 

to see if we could use premade assets for our game, given that we didn’t have an artist in our 

group and wanted all visual assets to look professional.  

 

5.3 Full Game Flow Build  

 This was the first version of our project which contained the offensive training, defensive 

training, and the match. This version proved that our game idea was viable and machine learning 

could be used during each training phase. 
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5.3.1 Game Flow 

 With the defensive training in place, we created the offensive training phase which added 

another two agents, one being the human-controlled coach and the other being a training dummy. 

The learning brain was also paired against a training dummy and its weights were updated every 

8 seconds, which was the duration of the training dummy’s move cycle. Roboxer was visible to 

the player for the duration of training and it could be seen performing its moves against its 

training dummy, as seen in Figure 26. The behavior controlling the training dummy was the 

same as the mock player in the previous build of the game. The changes to the ML system are 

documented in Section 5.3.4. We also added the final match, which paired Roboxer against the 

training dummy; this enemy AI would need to be changed in future iterations, we used the 

training dummy for development convenience. It was noted at this point in the project that the 

training dummy and enemy AI would need more complex behavior to enhance the playing 

experience. Our goal for the final training dummy was to give the players an enjoyable 

experience training their AI by fighting a realistic seeming opponent. The current training 

dummy (and the enemy AI) only performed a handful of moves and was very predictable. 

 

 

 Figure 26: The imitation learning stage of the first full game build 

 

5.3.2 Phase Swapping (Offensive, Defensive, Match) 

 In this stage of development, we added the different phases of training into the game, 

which includes an offensive training stage, a defensive training stage, and finally an actual match 
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against an AI enemy. We created this by making three game objects, representing each phase, 

and a camera that could move between them. This update allowed us to test how our ML system 

would perform with both the offensive and defensive training stages as well as the final match. 

We were able to experiment with both reinforcement learning and imitation learning as we now 

had both training sessions available to us. This would be updated further on in the alpha and beta 

versions of the game as well as changed later in the development cycle. 

 

5.3.3 Game Mechanics Changes 

 During our first few plays of the game, we found that the hold to dodge was a bit 

awkward since the player could not punch while dodging. We preferred that players remain 

unable to punch while dodging, so we removed the ability to hold a dodge for a variable length 

(added back in Section 5.5.2). To do this, we implemented the same logic as a punch whereby 

the action could only be performed for a set amount of time. We also implemented cooldowns on 

both dodging and punching to ensure the moves would not be performed too fast, through the use 

of a state machine. If a move is on cooldown and the boxer attempts to use it, their action will be 

ignored. 

 

5.3.4 Machine Learning Changes 

In an attempt to reduce the training time, we reduced the complexity of the training space 

by removing the continuous health inputs and stacked observation vectors. We wanted Roboxer 

to learn combos, so we created a state machine that tracked the player’s combo. The state 

machine is encoded into a bit array and used as input to the ML model. These changes led to a 

significant improvement in the learning time of Roboxer, learning to visually resemble the mock 

player in about 2 minutes as compared to over an hour with the previous ML inputs. 

The addition of the offensive training allowed us to experiment with imitation learning. 

We started with GAIL but soon realized that it would require a pre-saved play trace to function, 

which was not feasible for our game. A second solution was created which positively rewarded 

Roboxer every timestep that their actions matched that of the coach, and negatively rewarded 

them if they differed, as seen in Figure 27. We found that this approach led to Roboxer copying 

the behavior of the coach fairly quickly. 
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 Figure 27: A timeline of rewards given to Roboxer. The coach’s moves are shown on top while 

Roboxer’s moves are shown on the bottom. Green indicates the time when a positive reward was 

being given while red indicates a negative reward.  

 

5.3.5 Visualizing Training Progress 

 We decided that it would be beneficial for a player to see how much progress they have 

made in training, so they know whether they are actually training the AI or would need to modify 

their behavior (if the progress was not increasing). To do this, we created a 6 segment progress 

bar that was displayed on the side of the screen as seen in Figure 28. The value displayed by the 

progress bar is the normalized cumulative reward value calculated using Formula 1. This value 

was calculated at the end of each 8 second training period.  

 

 

 Figure 28: The six segment training progress bar 

 

Formula 1: The normalized reward based training  

(𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑅𝑒𝑤𝑎𝑟𝑑 −  𝑚𝑖𝑛𝑅𝑒𝑤𝑎𝑟𝑑) / (𝑚𝑎𝑥𝑅𝑒𝑤𝑎𝑟𝑑 −  𝑚𝑖𝑛𝑅𝑒𝑤𝑎𝑟𝑑) 

  

 We also decided that it may be helpful to see how the cumulative reward changed over 

time, so a graph was made and placed in the bottom left of the game’s UI during the training 

phases as seen in Figure 29. 
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 Figure 29: The training progress graph 

 

5.3.6 Art Changes 

We wanted different environments for the training phases to help differentiate the type of 

training the player will be doing. There would be three environments for the game: defensive 

training, offensive training, and the final fight environments. Figure 30 shows the first iteration 

of the defensive training environment. This rendition included a blue mat for the training ring 

and wires to connect to the boxer to track the training process. This design did not work out so 

well due to the conflicting color scheme resulting in some users feeling discomfort. 

 

 

 Figure 30: Defensive training environment iteration 1 

 

For the next iteration, shown in Figure 31, we changed the mat and color scheme to have 

more of a factory feel to it since heavy machinery would be using the space. We added some 

gym equipment to make the space feel more populated, however, the simplified art style of the 
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weights and tires conflicted with the semi-realistic background. Also added was a metal plate 

pattern that was found online8. 

 

 

 Figure 31: Factory defensive training arena 

 

In the next iteration, we improved upon the weights and equipment to make them more 

recognizable and made it feel more like a gym as seen in Figure 32. We found the assets online 

with the Low Poly Gym Pack9. We then rendered the assets into 2D via manipulation of the 

render camera angle. An issue with these assets was that the equipment is unrecognizable in the 

top-down view. We also removed the wires to prevent animation issues from having the boxer 

agent moving and become disconnected from the wires.  

 

 

                                                
8 https://www.deviantart.com/tmm-textures/art/Metal-Floor-42059858 Freeware 
9 https://jprinsloo.itch.io/free-low-poly-gym-pack License: CC0: Public domain, completely free to use in both 

personal and commercial projects 

https://www.deviantart.com/tmm-textures/art/Metal-Floor-42059858
https://jprinsloo.itch.io/free-low-poly-gym-pack
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 Figure 32: Updated gym equipment 

 

After this iteration, we altered the gameplay loop to remove the defensive training phase 

from the game.  

The offensive training area followed a similar iteration path as the defensive arena. In the 

first iteration, we tried to include an interconnected area between the offensive and defensive 

training areas. This iteration also included the blue training ring section and the wires from the 

first defensive training area iteration as seen in Figure 33 below.  

 

 

 Figure 33: Initial offensive training area 

 

This iteration included replacing the blue training mat ring with the steel plate floor to 

keep the environment consistent. We populated the gym with treadmills to add more gym 

equipment, however, the implementation would not work well due to the harsh difference in art 
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style between the floor and the hand-drawn treadmills. We then added some bolts to the metal 

plates to make the repeating pattern seem less jarring (see Figure 34). This would provide the 

opposite of what we wanted to achieve. 

 

 

 Figure 34: Updated offensive training area 

 

In the next iteration, we removed a majority of the conflicting art styles. The treadmills, 

wires, and bolts were removed and the 3D modeled weights would be added to the training area. 

The figure below (Figure 35) shows the iteration before the inclusion of the 3D modeled weights. 

 

 

 Figure 35: Offensive training area (no weights / wires) 
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5.3.7 Sprites 

 This version of the game finally included sprites that actually showed the body of the 

player and enemy inside of the unity project itself, but not in the game itself. Given that we 

didn’t have an artist on our team, we decided it would be best to use premade sprite assets for our 

characters. At this point in the game design process, we didn’t decide on a specific character 

sprite but decided to use something from the Armored Soldiers10 sprite sheet below in Figure 36. 

 

 Figure 36: The Armored Soldiers sprite sheet 

 

5.4 Alpha Build 

 The Alpha build of our game included most of our major game mechanics, phases, and 

fully working machine learning. This was the first version of the game that we conducted 

playtesting with.  

 

5.4.1 Machine Learning Changes  

 For the Alpha build, we experimented with several changes to how rewards were given 

during imitation learning to see if we could obtain any noticeable improvements in our training. 

The new reward functions included one that gave a reward based on the last move performed by 

the coach and Roboxer and the time since. The other gave a reward if the most probable action of 

the coach and Roboxer were the same. To measure any improvements, we used the DTW score 

with a mock player as the coach (see the following section). After repeated attempts, we noted 

that the DTW score varied too much and we would re-evaluate these when we came up with a 

                                                
10 https://assetstore.unity.com/packages/2d/characters/armored-soldiers-and-monsters-2d-top-down-133669 Unity 

Asset Store EULA 

https://assetstore.unity.com/packages/2d/characters/armored-soldiers-and-monsters-2d-top-down-133669
https://assetstore.unity.com/packages/2d/characters/armored-soldiers-and-monsters-2d-top-down-133669
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better metric. We also found that increasing the reward size at each timestep led to faster training 

times. 

 We also used this iteration to refactor some of our existing code. One notable 

improvement was the way we structured our ML system. Previously, the Arena controlled when 

all boxers would train as well as the logic in the match, but this functionality was split up. The 

Boxer class obtained the ability to train, but this logic was offset to the GameHandler classes 

which we made to control each phase of our game. The logic which connected the punches 

between the two boxers was moved into a separate Match class which extended ML Agent’s 

Area base class. The Match class also can start and stop fights, which made working on the 

imitation learning phase much easier as we could make Roboxer stay still while the coach 

fought.  

 From a gameplay perspective, we found that having Roboxer training on the screen next 

to the coach was visually distracting, so we created a hidden Roboxer and training dummy pair 

which were training in the background. The on-screen Roboxer was not fighting and positioned 

to watch the coach demonstrate moves. The player was given the option to press SPACE to let 

Roboxer fight to see how much they learned. 

 

5.4.2 Visualizing Training Progress 

 A major focus of the Alpha build of our game was how to visualize training progress in a 

way that is both accurate and easy to understand for players with no ML experience. The 

previous indicator in our game used the cumulative reward, which essentially measured a rough 

percentage of the time where the coach and Roboxer were performing the same moves during a 

cycle. This indicator had several drawbacks such as having inexact upper and lower bounds and 

the need for Roboxer and coach to be in perfect sync. To improve this progress indicator, several 

metrics were created to see how reliable and effective each was. 

 The first new metric was sequence matching, which just calculates the percentage of 

moves in a cycle the coach and Roboxer performed in common (see Figure 37). This metric was 

less reliant on time but was heavily dependant on the order of the coach’s and Roboxer’s moves 

being in order. We found that if the two boxers were out of sync the metric would report a score 

close to 0 even if both were doing the same move sequences. A potential solution for this was to 

factor in the possibility that the moves were out of sync because the Roboxer skipped a move 
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early on. This led to the next metric, dynamic time warping or DTW (see Figure 38). DTW is a 

technique to measure the distance between two time-ordered datasets, where the distance is a 

metric that factors in time differences, moves being skipped, or the wrong move being 

performed. This metric performed better than the sequence matching during our testing. When 

both the coach and Roboxer were performing the same move sequence, but not in perfect sync 

the sequence matching’s score varied from between 0 and 1 depending on how out of sync the 

two boxers were while the DTW score remained close to 1. This was the metric used during our 

Alpha testing. One drawback that we noticed with the DTW was that if given an AI which 

performs random moves, the metric varied dramatically, which could potentially confuse a 

player. A proposed solution to this which we implemented in the Beta release was to factor in the 

model’s action confidences through a metric such as cross-entropy. The training progress metric 

for the defensive training phase was not modified during this build. 

 

LP - RP - LD - RP 

LP - RP - RD - RP 

  Figure 37: Sequence matching showing a score of 0.75 

 

 

 Figure 38: Dynamic time warping in action 
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 Prior to our Alpha release, we also spent time determining how to best visualize the 

training progress metric. Through our playtesting, we determined that people were having a hard 

time understanding the graph and recognized that this visualization would need to be replaced, 

though this was held off until the Beta build for our testing purposes (the graph was useful when 

modifying the ML). The stacked progress lights developed as our first progress indicator was 

visually unappealing, so a progress bar was developed in the shape of a brain with the hope that 

players would see this as an indication of moves learned. The brain progress bar filled and 

changed color in relation to the DTW score during offensive training and the reward during 

defensive training, as seen in Figure 39.  

 

 

 Figure 39: The brain-shaped training progress indicator 

 

 In addition to this redesign, a new progress indicator was added: the train of thought 

(Figure 40). The train of thought is a series of bubbles on the right side of the screen that shows 

what action Roboxer is “thinking” about performing. The bubbles were made of four colors with 

two-letter initials to distinguish them. The colors were blue, green, purple and red with the 

initials LD, RD, LP, RP to represent left dodge, right dodge, left punch and right punch 

respectively. We wanted to include the train of thought so the player would be able to see a 

history of what Roboxer was thinking about instead of having the player to focus on Roboxer 

performing the moves and memorizing the order on top of performing the moves themselves. 
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The train of thought would begin by spawning the thought bubbles at the bottom of the screen 

and would shift up when a new thought bubble is added. When the bubble reaches the top of the 

screen the bubble would disappear. This would allow for 9 bubbles to appear at a time. 

 

 

 Figure 40: Train of thought initial design 

 

5.4.3 Adding Animations and Character Sprites 

 In the alpha build we were also able to add animations to properly convey the action in 

the game, based on some simple punching and dodging. We did this using the sprites we had 

decided on, being the Armored Soldiers pack referenced in the appendices. We added in 

punching and dodging animations using the assets, each taking approximately 1 second to 

complete so that people had to finish an action before attempting another.  

 The assets we decided on, from the pack described above (Figure 36), were a singular 

sprite section of the robots (Figure 14), and we then used materials to color them differently to 

distinguish the player from the training dummy from Roboxer. In this way, we created a sort of 

internal consistency with a lot of mirrored elements, so that no players would think that the 

enemies had any different abilities or moves than the player did. 

 

5.5 Beta Build 

 The Beta build of our game was the version we tested during AlphaFest. 
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5.5.1 Game Flow Changes 

 The first of the many large changes to the beta was the addition of a tutorial, which 

included instructions on how to control the character as well instructions on what the various 

aspects of the game were in relation to the icons and UI elements were seen on screen. We also 

added a dialog box that allows the coach to display text to the player, which we used to create a 

more guided training session (see Section 3.5.4). 

 During our Alpha playtesting, we observed that players threw punches randomly and 

missed many dodges during training. When asked to explain if they were trying to perform a 

specific punch combo, several playtesters stated that they were just trying to hit the dummy. 

With this in mind, we decided to remove health bars from the training scene so that players don’t 

have the goal of knocking out the dummy, but rather focus more on the progress meters. During 

this iteration, the dummy also underwent some drastic changes to enhance the play experience of 

our game. A major design goal of the new dummy was to ease the player into the game by 

focusing on specific moves in a way that the ML would be able to pick up quickly, which was 

done through the addition of multiple dummy states. The first state only punches and the player 

is told through the dialog box to perform dodges. This lasts for 30 seconds before the dummy 

starts performing only dodges with long periods of doing nothing. The player is encouraged to 

perform some punch combos during the next 30 seconds. After that stage, the dummy combines 

punches and dodges and the player is encouraged to continue performing their combos as well as 

dodging incoming punches. A complete move state diagram of the dummy can be seen in Figure 

17 (Section 4.4.1). The time between the dummy’s moves was significantly increased since the 

Alpha build as well to reduce the pace of training. 

 We received feedback from many players during testing that it was not obvious what they 

had managed to teach the Roboxer. Players felt as though they had an impact, but could not see 

the specifics of what they had done. We decided to re-evaluate the defensive training phase. The 

nature of the learning in this phase made it so the Roboxer would not learn to do what the player 

was doing, they would learn responses to what the player was doing. Thus when the game 

transitioned to the final fight, there was no obvious repetition of the player’s strategies. The 

decision was made to remove the defensive training entirely and focus on the offensive training. 

This way, training would shift towards copying the actions of the player, and players would be 

able to see their own actions present in the Roboxer with far greater clarity. 
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5.5.2 Hold to Dodge 

 After some more feedback from playtesters that the dodges were hard to perform 

properly because of timing as well as the feeling that they should be able to hold the keys to keep 

dodging, we decided to add the hold to dodge feature back. This required a slight change in the 

animation which locked the boxer in place while the key was held down. We also decided to 

only implement this for the player, so that we would not have to make any drastic changes to the 

ML system at this stage of the project.  

 

5.5.3 Machine Learning Changes 

 During our Alpha iteration, we determined that using the dynamic time warping score to 

evaluate our ML models was too inconsistent for any accurate measurements (see Section 5.4.2). 

A solution to this was to use cross-entropy, a standard in machine learning, to measure training 

loss. To implement cross-entropy, we needed to modify the source code of ML Agents to send 

the confidences and training loss to the Unity game. With access to the confidences, we also 

decided to ignore low confidence moves at the beginning of training to avoid confusion among 

players when Roboxer began to perform random moves. Using the cross-entropy performed 

much more stable measurements than the DTW scores and when comparing hyperparameters we 

were able to see performance differences over repeated trials.  

 Around the same time as the implementation of cross-entropy, we removed the defensive 

stage of training. This change meant that we would only be performing imitation learning in our 

game, so we decided to try out Behavioral Cloning (BC). BC is designed for imitation learning 

and once implemented it showed drastic improvements over our custom imitation learning 

solution. BC is a supervised learning algorithm, so it needs a collection of samples from the 

player to train on. With a supervised approach we faced two issues: punches tend to occur much 

more often than dodges and some players may hold keys down when performing an action while 

others may press only once. To handle these cases, we removed the Player Brain and created a 

new Heuristic Brain that mapped the keys to actions. In this new brain, we standardized the 

holding behavior of moves between all players as well as increased the number of dodge samples 

to roughly equal that of the punches.  
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5.5.4 Hyperparameter Tuning 

 Initial testing of the custom imitation learning algorithm showed that it would produce a 

cross-entropy of around 1.3 after 2000 training steps (see Table 2 for details on the test player 

agent). In our testing, Roboxer was unable to perform a combination of two or more punches and 

produced cross-entropy values over 6 in these cases. On the other hand, Behavior Cloning 

proved that Roboxer could learn sequences of punches while achieving cross-entropy values of 

less than 1. This algorithm better fit our gameplay design due to its ability to learn more complex 

moves, so we moved on to hyperparameter tuning.  

 Hyperparameters are variables in a machine learning algorithm that must be configured 

externally rather than learned from data [1]. To achieve the best performance from an ML model, 

hyperparameters must be tuned. To conduct hyperparameter tuning we needed a testing 

environment that would produce reproducible results and allow us to compare different 

combinations of hyperparameters. To eliminate human-introduced noise, we created an agent 

which would act as the player and perform a predetermined sequence of punches and dodges. 

Five variants of this agent were created as documented in Table 3. Cross-entropy was used to 

evaluate the performance of the model; this loss value was automatically generated by ML 

Agents. Training was run for 2000 steps and repeated on all variants of the player agent. The 

average cross-entropy of all five variants at the end of training was used to represent the 

performance of the model.  

 

Table 3: Test player agent variants 

Variant Behavior 

1 Left punch 

2 Right punch, dodges 

3 Left punch, right punch 

4 Right punch, left punch, dodges 

5 Left punch, right punch, left punch 

 

 The hyperparameters were tuned one by one, and a significance test was normally 

conducted with a relatively high or low parameter value to measure a significant change in 

https://paperpile.com/c/O5oCc4/RYEg
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performance. Our threshold for significance was a change of greater than +/- 0.1 for the average 

cross-entropy across all five variants. The hyperparameter values were selected by hand using 

recommendations from ML Agents documentation as starting points. Since the hyperparameters 

were tuned one after another, the previously tuned hyperparameter was brought along into the 

next test. Appendix C shows the detailed results of hyperparameter tuning and the graph in 

Figure 41 shows how the performance of our model was affected by the tuning. 

 

  

 Figure 41: The result of hyperparameter tuning on model loss 

 

5.5.5 Training Progress Visualization Changes 

 After completing our Alpha playtesting we determined that the current progress 

indicators were still confusing for players. Given that the ML subsystem now had access to the 

underlying action confidences, we were able to implement a cross-entropy based metric. This 

metric calculated the average cross-entropy of a cycle by calculating the negated log of the 

correct move’s confidence, where the correct move was decided to be the current move of the 

coach. This metric had similar drawbacks to that of the time matching score in our early game 

builds because it used the coach’s current move as the truth vector. ML Agents can generate a 

TensorBoard summary to display training loss, and it was noted that the cross-entropy loss 

presented there smoothly decreased to 0 as training progressed. This also proved to be a more 

accurate metric for hyperparameter tuning as the values were much more consistent and better-
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reflected training loss than the in-game calculated metric (see 4.1 for details on hyperparameter 

tuning). The source code for ML Agents was modified again to send the current training loss to 

the Unity client. Once the loss was obtained, it needed to be converted to a value between 0 and 

1 using Formula 2. This value was then used as the new metric for our progress bar, and it now 

provided an accurate representation of training progress from a machine learning standpoint.  

 

Formula 2: A conversion from loss to training progress 

𝑒−𝐿𝑜𝑠𝑠 

After our Alpha testing, there was some concern that the brain progress indicator did not 

fit the game’s theme and its descriptive text may be confusing to players. To make this progress 

indicator fit better with our theme, it was converted to a smoothed dial. As the training progress 

increases, the dial moves to the right and the light under the needle will turn on to be easier to 

see in a player’s peripheral vision, as seen in Figure 42. The text describing the dial was changed 

from “Moves Learned” to “Copy Meter”, which better reflected what the meter was attempting 

to convey to players. 

 

 

Figure 42: The copy meter 

 

 The other progress indicators also received some redesigns. This includes the train of 

thought which received an updated look and placement. As we tested with the train of thought 

some players expressed how difficult it was to quickly look over and understand the symbols. To 

alleviate this we created new symbols for the possible actions. To represent the dodges we 
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created arrows to point in a specific direction depending on the dodge. For the punches we used a 

boxing glove with an impact on the side that is used. To help differentiate the symbols from their 

left and right counterparts, we gave the left side icons a red color scheme and the right side icons 

a blue color scheme. We also separated the icons to be on a specific side of the area so the left 

icons would appear on the left side and the right icons would appear on the right side of the train 

of thought area as can be seen in Figure 43 below. The location was moved from the right side of 

the screen to the left side of the screen to reflect the updated Agent AI location. This would help 

us to try to connect the agent to its train of thought and to keep the UI Training visualizers closer 

together to prevent players from looking all over the screen to receive information. 

 

 

 Figure 43: Updated train of thought 

 

 The reward meter was added to show how much Roboxer was being rewarded. It went 

through several design iterations. The initial idea was to have something like a light bulb. As the 

reward increased, the lightbulb would increase in brightness, and slowly diminish over time. This 
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design wound up being too imprecise, as it was difficult to get a sense of context with the 

brightness. Instead, a design was chosen to represent the reward meter as a sort of bar graph. 

Rather than increasing in luminosity, the bar graph would elongate and shrink depending on how 

much Roboxer was being rewarded, as seen in Figure 34 above. Having a physical object change 

in size with an obvious maximum and minimum wound up being a far more effective design than 

a lightbulb changing its luminosity.  

 

5.5.6 Improved Enemy AI 

 The previous enemy AI was the same as what the player would see the training dummy 

perform in the training session. The enemy AI was improved to provide more of a challenge to 

the player. The final boss of the game is what Roboxer will fight during the final match. The 

boss follows a scripted series of actions with some input for dodges based on Roboxer’s actions. 

When the boss is a state in which the punch and dodge cooldowns are zero and the player’s agent 

is punching, the boss will have a 25% chance to dodge correctly, a 25% chance to dodge 

incorrectly and a 50% chance to ignore the incoming punch and perform the next action in the 

rotation. This was done to allow the enemy to appear to dodge naturally instead of using 

predetermined timings since we will not know when Roboxer will choose to attack and this may 

break the immersion of the player.  

The boss is programmed to follow a set series of actions and repeats after it has gone 

through all available actions. The series of actions taken is meant to mirror simple combos the 

player may have taught Roboxer. These include left punch, left punch, right punch; right punch, 

right punch, left punch; right punch, right punch, right punch; and left punch, left punch, left 

punch. These actions were chosen to mimic what some players may choose to train their ai agent 

with and to provide a variety of actions that appear to not be random. The enemy AI also 

received more hit points to have the fight last longer. The fights originally did not last long with 

the winner most of the time going to Roboxer. With increased health, the matches last 

significantly longer and are more interesting. 

 

5.5.7 Adding Audio 

 Audio feedback was an important part of the game to make actions feel more impactful. 

Before audio was added into the game, it wasn’t always clear when a punch made contact with 
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the enemy. The structure of the audio scripts allows for choices of a series of different audio cues 

for different game events, such as punching, dodging, or being hit. The combination of these 

sounds help the game world feel more realized. The specific sound choices are detailed in section 

3.7. 

 

5.5.8 UI Changes 

After receiving feedback from playtesting sessions we found out that some of the 

background is not needed and was causing confusion for some players. The main parts of 

concern were the PC desk area in the bottom left area of the stage and the defensive training ring 

in the top left. The PC desk area was removed and this allowed us to move Roboxer to that 

location along with the Train of Thought. Removing the ring in the top left corner allowed us to 

also place the copy meter and the reward meter (Figure 44).  

 

 

 Figure 44: Final training area with no UI elements 

 

The final match area was also changed to match the same art style as the training area. 

This also changed the logo in the middle of the stage to MLA to match the name of the game 

(Figure 45). 
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 Figure 45: The final release of the fighting arena 

 

 A new control panel was added to the game to remind the player of the keybindings as 

well as associate the timeline icons with actions. The panel replaced the text-based one and took 

visual inspiration from the popular video game Overwatch [5]. The updated control panel can be 

seen in Figure 46. 

 

 

 Figure 46: Updated control panel 

 

5.6 Final Build 

5.6.1 Machine Learning Input Sanitization 

 At AlphaFest, we noted that all of our playtesters were having trouble getting Roboxer to 

both dodge and punch. From our observations, the players did not provide consistent enough 

input for an ML model to properly learn a policy. For example, we observed that many players 

punched the training dummy while it was throwing punches and only occasionally dodged. This 

behavior seemed to cause Roboxer to only learn punches (and the opposite if players dodged too 

https://paperpile.com/c/O5oCc4/NVW3
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much), and our playtesters did not think it learned from them very much. Many of our playtesters 

also stated that they thought Roboxer should have dodged at least a few times, even though they 

only showed it a handful of successful dodges. To address this, we decided to filter the player’s 

input before training on the data. More details about the filter can be found in Section 4.1. After 

conducting several more playtests with the filter in place we determined that players enjoyed the 

experience and felt that Roboxer learned from them. By doing this, we discovered that a balance 

needs to be achieved between having a “pure” machine learning game, which trains off of 

anything the player does, and a fun game that allows for learning characters, but is a bit scripted.  

 

5.6.2 Final Boss Changes 

 At AlphaFest, we noted that our final boss would constantly dodge and perform a small 

number of punches. We also noticed that the final boss would perform these actions very quickly 

with little to no delay between each action. To remedy these issues, we changed the percentages 

for the final boss to dodge incoming punches. Now the final boss will dodge less often and punch 

more when it is being attacked. We also increased the duration of the final boss’s nothing action. 

This allows the Roboxer to get some hits in without needing to constantly dodge an incoming 

punch. The nothing action happens after a string of punches from the final boss. This creates a 

cycle of dodges and punches for Roboxer to navigate in order to defeat the final boss. 

 

5.7 Conclusion 

Over two terms, our game underwent significant development work and there were many 

major changes. The areas which changed the most were the machine learning system, the 

training phase, and the training progress indicators. The machine learning system changed every 

time we modified a game mechanic or changed the game flow. This ensured that the ML was 

optimized for the latest version of our game. We also made a lot of tweaks to how the ML 

system learned and how fast it could pick up moves from the players. Our training phase also 

saw a lot of changes, most importantly, we removed the defensive training session. Through 

playtesting, we found that this session caused Roboxer to learn moves that the player did not 

teach it and our testers did not believe it learned from them well. As we conducted more 

playtests, our visual progress indicators saw a significant amount of changes to become clearer to 

players.  
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While working on this project, our goals also evolved to reflect the feedback we received, 

as well as our timeline. We found that we spent a significant amount of effort trying to 

communicate ML concepts to players through our visual indicators. In total, we created eight UI 

elements to display progress, three of which made it into our final game. A goal of our project 

became creating a way to convey ML information to players who may not have an ML 

background. We also moved our focus to creating a technical demo rather than a game with a full 

story. This change was necessitated by our accelerated timeline and difficulties we were having 

with getting an ML system that players found enjoyable.  

We were faced with several challenges during our time developing this game, such as: 

players not understanding our training indicators, receiving poor training data, and speeding up 

the training time. Information about the challenges we faced regarding our training indicators can 

be found in Sections 5.3.5, 5.4.2, and 5.5.5. Our solution to receiving poor training data is 

documented in Section 5.6.1 and the process we used to speed up training time is seen in 

Sections 5.3.3, 5.3.4, 5.4.1, and 5.5.4. 
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6 TESTING 

 

6.1 Methodology 

 Our goals for the project are focused on creating a game that combines human interaction 

and artificial intelligence interaction through machine learning. The game is made in the Unity 

game engine and has the player training an artificial intelligence character to compete in boxing 

matches against other characters. The game is split into two gameplay phases: training phase and 

combat phase. During the training phase, the player trains Roboxer to perform boxing maneuvers 

by performing the actions themselves and then watches Roboxer perform the actions learned. 

The player will then have the opportunity to train Roboxer more or to send them to the final 

fight.  

When training is completed, the next gameplay phase will start. For this gameplay phase, 

Roboxer competes against an enemy in a boxing match. During this phase, the player takes a 

passive role and watches Roboxer compete. Roboxer’s performance will depend on the training 

it receives from the player. 

We obtained feedback on our game throughout the design process and started by 

receiving feedback on a basic UI mockup of the game which includes a storyboard for 

background details. We asked survey participants whether the game story and UI makes sense 

and if they would find the game interesting. This feedback was used when creating our initial 

prototype of the game.  

Once we had a working prototype, we conducted live gameplay testing with several 

students by holding a playtesting session in the Zoo Lab. This was promoted by sending an email 

to the WPI IMGD course mailing list and offered IMGD playtesting credit. We had several 

computers set up in a WPI computer lab with our game and asked the participants to play the 

game using only the game’s instructions. After completing the game, we conducted in-person 

surveys with the participants to get feedback on the experience. Some of the questions that were 

asked include:  

 

● Was the playing experience enjoyable? 

● How easy was it to train the fighter? 
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● Does the information on the screen clearly describe what to do? If not, what should be 

changed? 

● Did you like training the fighter? 

● Did the fighter seem intelligent? 

● Did the fighter do anything that you did not expect? Please describe. 

● Did you find the combat phase interesting to watch? 

● What would you recommend changing in the training phase of the game? 

● What would you recommend changing in the final fight phase of the game? 

 

We also asked some for further details on the responses to the above questions and 

recorded the responses through writing. The responses were analyzed after the testing was 

completed, and we made modifications to our game accordingly. We had multiple rounds of 

playtesting as we developed the game. Our goals for each playtesting session were different, and 

our objectives are detailed in the experiment subsections of the following sections. The testing 

took place throughout B term, and the UI mockup feedback took place in the middle of A term.  

 

6.2 UI Mockup Survey 

6.2.1 Experiment 

 The UI Mockup survey was given out over the course of a week. Participants were given 

a Google survey containing mockup images of each of the gameplay phases and questions. The 

survey can be seen in appendix G. 

 

6.2.2 Results 

 Most of the people queried found the idea of training a machine learning agent to be 

engaging. However, there were concerns about the UI elements presented. 50 percent of 

responders thought it wouldn’t overwhelming to divide their attention between the UI elements 

and the training of the Roboxer, while the other 50 percent thought it would either be 

overwhelming or were unsure either way. In addition, 71 percent of responders reported that they 

either had not or were not sure if they had ever played a game that involved taking player input 

and using it for some type of AI training. Our full findings, including graphs of the responses, 

can be found in Appendix B. 
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6.2.3 Discussion 

 For our UI Mockup Survey we wanted to see how some initial concepts thoughts for our 

game would appeal to players. For the main menu we found that players did not have a positive 

reception to it. They stated that the main menu would mostly tell the player about the game and 

not show what the game is about. For the offensive stage, surveyors liked the layout off the 

offensive stage but did not like the content that was shown. For example, surveyors did not like 

the phone UI to keep track of move combos and other information. For the defensive training, 

surveyors like the simplicity of the stage, but felt that the screen was too cluttered. For the 

Tournament Stage, players liked the shouting and tournament mechanics but found that the 

layout of the screen was too confusing. From these results we decided to do a full UI redesign. 

This included, removing the main menu, removing the reinforcement buttons and separate views 

from the gameplay area to the UI area. 

 

6.3 Alpha Playtesting 

6.3.1 Experiment 

 Alpha playtesting was conducted over the course of one week. Testers were given an 

explanation of how the game worked, as there was no tutorial implemented in the Alpha. Testers 

were told to attempt to train the Roboxer in the first two phases, then observe the results in the 

fighting phase. Following the conclusion of the fight, testers were asked whether they felt they 

felt as though they taught the Roboxer anything. Testers were also asked about the effectiveness 

of the UI elements, the layout of the controls, and the enjoyability of the experience.  

 

6.3.2 Results 

 We found that 80 percent of players felt as though they had an impact on the actions of 

the Roboxer. 40 percent of testers did not like or did not notice any of the UI elements, while 60 

percent like some or all of them. 80 percent of players found training the boxer to be enjoyable. 

When asked what they felt they managed to teach the Roboxer, testers responded that they 

recognized some of the actions they performed, but not others. 
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6.3.3 Discussion 

The results of Alpha playtesting left us with several key points to consider moving 

forward. Most pressing was the information that players weren’t entirely certain what they had 

managed to teach the Roboxer. Although they felt as though they had an impact on the actions 

the Roboxer performed, the exact effects of their training were not clear enough. As a result of 

this feedback, the decision was made to remove the second phase of training from the game. A 

full discussion of this decision can be found in section 5.5. The other biggest takeaway from 

alpha testing was that the UI needed to be improved. Forty percent of testers reported that they 

did not like any of the UI elements. When asked about their responses, some of those testers 

reported that they did not even notice the UI elements. Following Alpha testing, an effort was put 

into revisiting the UI of the game, also detailed in section 5.5. 

 

 

6.4 Post-Alpha playtesting 

6.4.1 Experiment 

 Post-Alpha playtesting was conducted over a week with changes being made to the game 

with each new session. For our testing sessions, we had playtesters play the game and asked 

them questions about certain game mechanics and features that we wanted to improve upon 

rapidly.  

 

6.4.2 Discussion 

 Post-Alpha playtesting occurred sporadically throughout the time period between Alpha 

and Beta testing. The main purpose of post-alpha testing was to determine the effectiveness of 

both the removal of the defensive training phase, as well as the effectiveness of the new UI 

designs. Each test would be followed by iterative updates, so no two testers during this time 

period received the same build. Over the course of testing, updates were made to the posit ion and 

style of the UI elements until they reached the design used in Beta Testing. In addition, a new 

tutorial was developed and tested during this time so that no explanations would need to be given 

to the testers.  
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6.5 Beta / Alphafest Playtesting 

6.5.1 Experiment 

Beta testing was conducted over the course of one week, and was concluded when we 

brought the build to Alphafest. We had several objectives for beta testing. As with our previous 

tests, we wanted to determine how much influence a player felt they had on the Roboxer. 

However, an effort was made specifically during beta testing to determine the effectiveness of 

the newly added UI elements, the tutorial section, and the coach’s dialogue throughout the 

training session. For the tests, two versions of the beta build were created. One contained coach 

dialogue throughout the training phase that encouraged specific training patterns while the other 

had no such direction. Testers would be given a build at random, and their actions during training 

would be watched closely. No instructions for the game were given to the testers, apart from an 

explanation that they were going to be attempting to train a machine learning agent to win a 

boxing match. 

 

6.5.2 Results 

 With a total of twelve testers, there was no discernible difference in the behavior of fully 

trained agents between testers who played the build with directed training and those that played 

without. During training, those with the directed training build either followed the training 

suggestions for only a few moments, or ignored the suggestions entirely. No testers followed the 

suggestions throughout the training process. None of the testers reported that they felt as though 

they had successfully trained Roboxer. All testers understood the controls after finishing the 

tutorial. 

 

6.5.3 Discussion 

We were very interested in seeing the responses to the UI elements during this round of 

testing, as serious effort had been made to improve them and provide more information to the 

player. We were very happy with the responses to the tutorial, as no one expressed or showed 

confusion with controls or objectives after the tutorial was completed. However, we were 

surprised at the results of the directed vs. non-directed training. We had originally introduced it 

as a way to guarantee some level of competence from a fully trained agent. We feared a possible 

downside of the directed training would be the removal of individual personality from full 
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trained agents, and that all testers who followed instructions would wind up with a very similar 

Roboxer. However, we were surprised to see that those given training suggestions almost 

completely ignored them. As a result, their Roboxers were very poorly trained at the end, similar 

to the testers who had played without training suggestions. This tied into the feedback players 

gave indicating that they felt they hadn’t trained the Roboxer at all. We deliberated several 

options to help guide players towards a well trained Roboxer. One of the options considered was 

to make the tutorial heavily guided, to the point where incorrect actions would be locked out to 

the player. This was deemed to be too restrictive, and instead, the decision was made to 

“sanitize” user input, so the Roboxer would only train off of good actions. This process is 

detailed in chapter 5.6 of the report. 

  

6.6 Concluding Experiment 

6.6.1 Experiment 

For our concluding experiment, we tasked players to identify the difference between a 

random agent and a learning agent. This would give us insight into whether people could actually 

tell that Roboxer was learning from them rather than just coincidentally performing similar 

moves. Before playing, we gave our subjects tips on how to train Roboxer and told them that 

they would be playing two games: one with a random AI and one with a learning AI. We 

disabled the training progress indicators prior to having our subjects play the game, so that we 

could just focus their attention on Roboxer’s behavior. We then chose an AI (random or 

learning) at random for them to play with. After completing the first game, we had them play a 

game with the other AI and then asked them to identify which was random and which was 

learning from them. 

 

6.6.2 Results 

In total, we had 27 subjects for our concluding experiment. To know if our learning AI 

could be distinguished from a random agent, we conducted a significance test with the null 

hypothesis of P = 0.5 (randomly guessing). After completing the experiment, we had 23 out of 

27 correctly identify the learned agent and can reject the null hypothesis on a 0.01 significance 

level (P-Value = 0.0003). From the qualitative elaboration from players, we learned that they 

were able to tell which one is the learned agent because they recognized some of its moves as 
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their own. For those that incorrectly identified the random agent as the machine learning agent, 

different reasons were given. One player felt that the rapid, “twitchy” actions of the random 

agent were closer to how they played. Another player reported that the actions of the trained 

agent were “too good,” and so the random Roboxer must have been the one that learned from 

them. 

 

6.6.3 Discussion 

Our results indicate that players can tell the difference between a random and learned 

agent and feel that the learned agent picks up their moves. The reasons they gave occasionally 

varied, but by far the most common justification for their decision was recognizing their own 

behaviors in the Roboxer. However, the choice justifications given by the testers who guessed 

incorrectly bring up interesting points for discussion. One of the players found the actions of the 

random agent to match more with how they played during training. This could indicate that there 

are certain behaviors that our algorithm doesn’t replicate as well, such as the “twitchiness” 

described by the player. The player who reported the trained agent being “too good” tested the 

learned agent first, and the random agent second. They said that they were still getting used to 

the controls and concepts of the game in the first run, but the Roboxer won anyway. As a result, 

they felt as though the actions taken by the Roboxer did not reflect the (in their opinion) poor 

training given. This goes back to the problems posed by sanitizing input. By removing the bad 

training data, many more players wind up with a well-trained agent that can win a fight. While it 

is still possible to train the Roboxer to make mistakes, it is far more likely to succeed. For some 

players who do not feel as though their training strategies are adequate, it can be jarring to see a 

well trained Roboxer emerge regardless.  
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7 POST-MORTEM DISCUSSION AND RECOMMENDATIONS 

 If we could restart the project with the knowledge we have now, we would have done 

more research at the beginning of the project into imitation learning and ways to communicate 

and explain ML concepts to players. These areas turned out to be our biggest challenge in the 

later stages of our project. We also believe that we could have produced a more complete game if 

given another term or semester, as our timeline was rushed and we had to divert focus away from 

polishing our game’s details.  

 

7.1 Team Dynamics 

 We felt that our team dynamics were very successful throughout the length of the project. 

We constantly posted updates via text communication and in-person or online meetings on four 

days of the week. We were able to divide up the work in a way that was reasonable for everyone 

and their schedules. Kyle focused on implementing and refining the machine learning system. 

Jordan worked on the fighting mechanics and animations. Grant and Justin primarily focused on 

the UI elements and game flow. Everyone also contributed to systems outside of their primary 

focus areas such as creating the enemy AI and ML progress indicators. Overall, we felt that we 

had a strong team and were able to complete a lot of work in a limited time; it was useful to have 

everyone responsible for different focus areas.  

 We believe that our communication was great but it could be improved in several ways. 

One of our members was a commuter student, so it was harder to organize in-person meetings as 

we had to work around his schedule. For the most part, we conducted online meetings, but some 

things such as code reviews and collaborative coding would have been easier if everyone was 

available to meet on campus. Another area of improvement would be a better use of Trello to 

track tasks, as there were several points in the project where we were unsure of who, if anyone, 

was working on certain tasks. If we all had consistently used Trello to assign tasks and update 

their statuses, we could have mitigated this issue and been more knowledgeable about the status 

of our tasks.  

 For the most part, we all wrote clean code and made small commits often. But, during the 

end of our project, we began having multiple merge issues related to the main scene in Unity. 

This file is in a computer-readable format that is hard to interpret, so when merge conflicts arise 
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in this file, they are hard to manage. There were several times when we lost some work due to 

incorrect merges and we lost several hours trying to restore the changes. We believe that these 

conflicts could be reduced if we followed some of the best practices in Unity, such as creating 

more prefabs. We only used a single scene so that we could keep the Academy object alive for 

ML Agents to run, but there may be a way to retain a game object between scenes that would 

have allowed us to split our scene into sub-scenes. Other than that, we could have benefited from 

occasional refactors (which we did, but not often) that would have made our codebase easier to 

change.  

 

7.2 Time Management 

 Given that we were completing our project in an accelerated time frame, we were able to 

successfully manage our time to ensure that all major components were completed. We began at 

the start of the summer break so that we would be in a good starting place when we met with our 

advisors in A term. We decided that by the end of the summer we would have a finalized idea for 

our game and prototypes of the fighting mechanics and ML. Once the project was officially 

started, we used Trello to assign and manage tasks for the week and were on time with most of 

our iterations. At the start of the terms, we outlined deadlines for major releases of our game 

such as the Alpha and Beta releases. We were able to meet all of our deadlines and complete 

most of our major components. The only system we were unable to complete was the combo 

mechanic.  

 As stated in Section 7.1, we believe that using Trello to track all of our tasks would have 

made our time management a bit better. Doing a two-term MQP was challenging, and due to the 

time restrictions, we had to prioritize implementing certain features/story elements over others. 

We recommend outlining exactly what a project will accomplish and what will be left out at the 

start of a shortened MQP, rather than doing so as the project progresses. 

 

7.3 ML-Based Games 

 We learned that creating a machine learning based game is difficult. Implementing the 

actual ML into the game using ML Agents was very straightforward (took under an hour), but a 

lot of tuning and game design is needed to do this successfully. We spent well over 40 hours 
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tuning the ML hyperparameters and inputs to allow Roboxer to be trained in under 1 minute of 

gameplay. In order to get our ML system to train quickly, we also needed a reduced action space 

for our game, thus we gave Roboxer only five possible actions (2 punches, 2 dodges, and do 

nothing). Then, we were challenged with receiving poor input data from players and needed to 

design an input sanitization filter. On top of this, we needed to create ways to present the ML 

concepts to players without confusing them.  

 From creating our game, we recommend allocating a large chunk of time to tuning and 

refining the machine learning in a game. If training time is a factor in the game, then a simplified 

input/output space will be beneficial. We also recommend researching and experimenting with 

ways to convey ML concepts to players, as this took us weeks before we had players say that 

they were useful, and we still could make a lot of improvements to their understandability.  

 

7.4 Game Story 

 Our original game story was much more involved than the version unfolded by our game. 

The original story was about an older boxer (called Coach), who in a fight became injured and 

retired. A young boxer (called Al) came to Coach asking to become their student, and convinced 

Coach to mentor them. They schedule Al for a fight against a tough opponent and Coach begins 

the training sessions. During the training, Coach receives details about the upcoming fight, 

including what the opponent’s favorite combo is. Coach then uses this information to train Al 

how to defeat the opponent. None of this story made it into our final game, though we did settle 

for a stripped-down version (Coach teaches Roboxer during training, then Roboxer goes into the 

fight after).  

 We felt that the storyline of our game was lacking and it felt more like a tech demo than a 

normal video game. If we had more time, we could have refined the story and included more 

narrative elements into our game. We believed our characters lacked personalities and 

backgrounds, plus all the sprites were just different colors of the same asset. We would have 

liked each of our sprites to be different, so it would be easy for the player to identify them and it 

would give us a chance to add more personality to them; for example, we wanted to make the 

coach sprite look battle-worn and rusty. In our game, we were also missing content related to our 

game’s backstory, as stated earlier. If we had another term, we probably would have been able to 

give our game a story that would make it feel much more polished.  
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7.5 Playtesting 

 We found that it was very easy to get playtesters for our game, especially during the last 

few weeks of B term. We recruited playtesters by sending an email to the IMGD courses alias 

and asking them to show up in the Zoo Lab between 6 and 8 PM on weekdays. We believe it is a 

combination of the time of day and the newly added playtesting requirement for IMGD courses 

that allowed us to get many student testers.  

 Toward the end of the project, we began doing daily playtesting sessions which we found 

to be valuable for our development. Going back, it would have been beneficial to do multiple 

playtests a week throughout our entire project. There were several design issues and bugs that we 

would have been able to identify through early playtests which would have simplified future 

development. For example, most of the game was developed while we did not have the hold to 

dodge mechanic, but playtesters during the final months of our project felt that it was needed. 

This change took a while to implement and tune with the ML system because it was added so 

late in our project.  

 

7.6 Recommendations and Future Work 

 After the completion of our project, the following recommendations were created based 

on the challenges we faced during the implementation of a machine learning based game. Our 

recommendations include further study of conveying machine learning to players, improved 

algorithms for creating ML training data from inconsistent user input, and further exploration of 

how ML can be incorporated into video games. 

 

7.6.1 Conduct Further Research into Conveying ML Concepts to Players 

 We had mixed success when conveying how well training was going to players, and 

believe that further research is needed in this field. Throughout the course of our project, we 

experimented with visualizations of training loss which can be a good indicator of how well an 

ML model was made to fit the training data. We were able to create indicators that displayed a 

normalized version of training loss and players generally understood that they should try to 

maximize that. We struggled with letting players know how they could maximize those meters. 
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We added a tutorial and dialog box during gameplay that displayed tips on how to improve 

training but players did not read them, or only followed them for a short duration. We also 

attempted to convey what the ML model’s most probable actions were at each step of training 

through the thought timeline, but many players interpreted this as the moves they should be 

performing, rather than what Roboxer was thinking; this UI element could be improved through 

better explanatory text and a more descriptive title. Something that we also noted was that some 

of the visualizations that we, as developers, found most useful such as the graph were disliked by 

players because they were “confusing” or hard to keep track of. In all, we believe further studies 

are needed to better convey machine learning concepts to players unfamiliar with the field so that 

players can have a better understanding of how well they are training machine learning 

characters.  

 

7.6.2 Improve the Robustness of the ML System to Handle a Wider Variety of Player Behavior 

 Prior to filtering player-generated training data, many of our playtesters were unable to 

successfully teach Roboxer how to fight and they believed that it only learned a fraction of what 

they taught it. From this testing, we learned that a major factor in this issue was that players were 

not consistent with their moves and missed many dodges. To resolve this, we implemented a 

filter that removed training samples that we determined were harmful to successfully training an 

ML model. Upon testing this new filter, our players felt that they were able to successfully train 

Roboxer, though some felt that it learned to be too good at the game. We recommend researching 

better training data filters for video games to improve the AI’s ability to mimic the player.  

We also believe that the amount of poor training data can be reduced through improved 

onboarding and guided gameplay modes, such as our Beta build’s training dummy. We 

recommend that further work is conducted to identify and implement ways to encourage players 

to remain consistent with that moves and provide better training data overall. 

 

7.6.3 Explore Other Uses for Imitation Learning in Video Games 

 As we demonstrated in this project, ML can be used to imitate player behavior and create 

a unique character for them to interact with. Based on play traces collected from the player, an 

ML system could be used to improve NPC and opponent behavior for a more custom-tailored 

experience. For example, in a boxing game a strong opponent could train (with reinforcement 
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learning) using play traces collected from earlier fights to predict the player’s actions and 

provide a challenge. Another example could be an NPC that uses an ML based recommender 

system to sell the player in-game items based on their past transactions. We recommend that a 

game is created in which machine learning based opponents adapt to the way a user is playing.  

During our project, we noted that our game could be a good way to teach people about 

machine learning concepts such as input consistency/quality and training loss. Using a video 

game to teach ML concepts allows a player to experiment without fear of being penalized in real 

life - they can just restart the game if they train an AI with poor data. Our game encourages 

players to be consistent with their behavior, as this produces a better-trained model; other games 

could use similar approaches to teach players that ML algorithms work best with orderly training 

data. We recommend conducting further studies on how video games can be used to teach ML. 

 

7.6.4 Continue the Development of Machine Learning Arena 

 There were several features which we were unable to get in the game and a few that we 

feel could be improved. Our game has the code in place for a combo system, but there is no 

visual indicator for it or bonus for performing a combo. We recommend that this be added to the 

game to improve the gameplay experience. We also believe that our input sanitization can be 

improved to handle cases where the player does want to train Roboxer to perform poorly (punch 

while being punched or dodge when it is not necessary). We recommend that more development 

time is spent on this filter and how it impacts a player’s experience. Our game was also presented 

in a tech demo state, lacking most story elements. This makes it a less enjoyable experience for 

players, so we recommend that more time be dedicated to improving the gameplay experience. 

During our final presentation, we also noted that many people enjoyed watching other people 

play and try to train Roboxer. It may be beneficial to look into ways to make this game 

cooperative, or a spectator sport-like game to leverage the excitement we saw.  

 

7.6.5 Three Tips for Game Development 

 We all learned a decent amount about Unity during the course of this project. Several tips 

that we have for new developers are: 1) Use trigger events for animations, 2) Utilize prefabs and 

scenes, and 3) Modify ML Agents rather than implementing custom machine learning code. 

Animations can make a game feel more polished, and we found that development is much easier 
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when using events during animations to trigger actions in code. Having the animations trigger 

events ensures that the animations will stay in sync with the game logic and tweaks made to 

timing can be done in the Unity editor. Using prefabs allows developers to quickly modify game 

objects by modifying values in a single place. In our project, this was useful for our boxers, as 

we could just modify the prefab to change traits such as HP and damage. Prefabs also make it 

easier to use a source control system such as Git. Finally, we recommend that developers use ML 

Agents as a starting point for experimenting with different ML algorithms rather than creating 

something from scratch. The source code for ML Agents is easily accessible and relatively easy 

to modify. ML Agents handles the connection between Unity and an external Python/Tensorflow 

library for developers already. A downside of doing training in real-time is that having an 

external Python script makes creating an executable a non-trivial task. This is because the game 

needs to ensure that the correct version of Python is available with the necessary packages to run; 

on some users’ computers, Python may already exist and requesting a different version or that 

the user install packages may not be feasible. To install a game with an external script, we 

recommend finding a way to package Python with it and installing it in a way that it does not 

conflict with existing Python installs. ML Agents does not have a problem being packaged if a 

pre-trained model is being used. 
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8 CONCLUSION 

 The goal of this project was to create an experience for players in which they could train 

a boxer how to fight and defeat a simple AI boss. Machine learning can be used to learn unique 

behavior from each player and customize a gameplay experience to match how they play. Our 

project demonstrates that a game centered on machine learning can be a challenging, yet 

enjoyable experience for players. We were also faced with several challenges in creating a 

machine learning based game, such as communicating machine learning progress to players, and 

obtaining good training data during gameplay. This paper documents how we attempted to 

resolve these issues, and may serve as an inspiration to future projects wishing to explore similar 

topics.  

From our project, we learned that imitation learning can provide players with a unique 

gameplay experience. We experimented with multiple imitation learning algorithms and found 

the best results with Behavioral Cloning. We also learned that conveying ML information to 

users is vital, and as a result, we created multiple UI elements related to training progress. The 

techniques used by our team to create a machine learning based game can be built upon by other 

projects. We recommend that further research is conducted to explore imitation learning within 

video games and how to convey the underlying ML to players. 

Overall, this project explored building a game focused on machine learning and how to 

convey that to players. Machine learning is relatively new to video games, and there are plenty of 

unexplored areas that have the potential to impact the future of how we interact with video 

games. We hope to see more video games that utilize machine learning in innovative and 

entertaining ways.  
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10 APPENDICES 

 

Appendix A: List of Project Ideas 

● A prison escape game 

○ Co-op with an RL agent 

● Keep balls in the air with two paddles, one being AI controlled 

● A fighting game where you train an AI 

● An endless runner game 

● A battle royale with the player vs ML agents 

 

Appendix B: UI Mockup Survey Results 

Main Menu 

● Main menu not that popular, only a few are positive about it 

● The explanation does help manage expectations though  

● Having more to work with on the menu would give people more definite opinions 

●  However when asked if they dislike it, most said they did not like the “telling and 

not showing” 

● People want the mechanics explained, some story as well as other info on the 

main menu rather than an explanation of the game. 

Offensive Stage 

● Most people like aspects of the page, the only thing was keeping track of doing 

the moves and also the reinforcement buttons being too much 

● What people don't like: a couple didn't like the phone, some said having the phone 

being too far away from the screen and reinforcement buttons, too cluttered. 

● People want more info on what the AI was learning and how it's doing. 

Defensive Stage 

● People liked the centered part of this stage as well as the more simplistic graphics 

● People really want the phone to stay a consistent size. 

● People also still felt that the screen was cluttered 
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● Some fixes are probably going to be implemented with more graphics and more 

spaced out UI 

Tournament Stage 

● The shouting and tournament mechanics are both well received. 

● Some of the things that need to be made clearer 

○ The two timers 

○ The radio buttons vs. keys 

○ How the AI is doing in its internals 

○ Also making the fight area bigger 

● People also wanted a way to see who is winning more clearly than just the health 

bar 

Overall Notes 

● Many of the people have played fighting games before 

● And most have not played something with an AI component 

● The games include Super Smash Bros (I'm assuming the amiibos) as well as 

Samurai Showdown 

 

 

 Figure 47: UI survey: game enjoyable 
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 Figure 48: UI survey: training progress graph 

 

 

 Figure 49: UI survey: reinforcement buttons 
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 Figure 50: UI survey: games played 

 

Appendix C: Hyperparameter Tuning 

 Table 4 documents the results of hyperparameter tuning on each hyperparameter.  

Table 4: Hyperparameter tuning results 

Number of layers       

Parameter value 1 2 3 10   

Average loss 0.064265 0.064027582 0.166018602 4.984400088   

       

Learning rate       

Parameter value 0.0003 0.001 0.01 10   

Average loss 0.0719788 0.064265 0.772394348 368   

       

Hidden units       

Parameter value 4 32 64 128 256 2048 

Average loss 0.333 0.153 0.083 0.083 0.064 0.054 

       

Batch size       

Parameter value 8 16 32 128   
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Average loss 0.044 0.083 0.115 2.454   

       

Buffer size       

Parameter value 100 200 400 600 1200  

Average loss 0.022 0.044 0.032 0.030 0.051  

       

Batches per epoch       

Parameter value 5 10 20    

Average loss 0.032 0.031 0.026    

       

Stacked vectors       

Parameter value 1 2 16    

Average loss 0.044 0.031 0.013    

       

Time horizon       

Parameter value 16 32 64 2048   

Average loss 0.021 0.014 0.031 0.733   

 

 

Appendix D: Installation Procedure 

The current build of our game requires Windows.  

1. Download the game from https://github.com/jacattelona/PunchOut/releases/tag/v1.0 

2. Install the required Python version: 

a. Python 3.5.X - 3.7.X 

b. Ensure python is added to the path 

c. You can also run the install-python.bat script from the zip file 

3. (Optional) Create a virtual environment within Python for ML Agents 

4. Install ML Agents 

https://github.com/jacattelona/PunchOut/releases/tag/v1.0
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a. Run the install.bat file from the downloaded zip 

5. Run the game 

a. Run the play.bat file from the downloaded zip 

Appendix E: IRB Application 

Machine Learning Techniques for Game Artificial Intelligence 

9/2/19 

 

Mission Statement and Objectives 

Our project is to create a video game that uses machine learning as a primary gameplay 

mechanic. The game will involve the player training an artificial intelligence character to 

compete in virtual, low-fidelity boxing matches against other artificial intelligence characters. 

 

Methods Listing 

● Observe testers to see their behaviors during play 

● Survey of playtesters to obtain players’ opinions about our game. 

 

Notes on IRB Application 

No risk to human subjects 

 

Methodology Chapter Draft 

Our goals for the project are focused on creating a game that combines human interaction 

and artificial intelligence interaction through machine learning. The game will be made in the 

Unity game engine and will have the player training an artificial intelligence character to 

compete in boxing matches against other characters. This will be split into two gameplay phases: 

training phase and combat phase. During the training phase, the player will be training an 

artificial intelligence character to perform boxing maneuvers by performing the actions 

themselves and then watching the artificial intelligence character attempt to perform the actions 

the player inputted. The player will then have the opportunity to approve or disapprove the 
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action(s) the artificial intelligence character performed. This will allow the machine learning 

algorithm to apply a reward to the artificial intelligence character to remember the maneuvers.  

Afterward, the game will transition into the defensive training phase. For this portion of 

gameplay, the player will be attacking the artificial intelligence character to teach it to defend 

and dodge against certain moves. The artificial intelligence character will learn to dodge against 

attack by not taking damage. Successfully defending the attacks will apply a reward to the 

artificial intelligence character to favor certain defensive techniques. 

When training is completed, the next gameplay phase will start. For this gameplay phase, 

the artificial intelligence character will compete against another artificial intelligence character in 

a boxing match. During this phase the player will be taking a passive role and watching the 

artificial intelligence character they trained to compete. The artificial intelligence character will 

either win or lose depending on how it performs and the player’s training regiment. 

We plan on getting feedback on our game throughout the design process and will start by 

receiving feedback on a basic UI mockup of the game which will include a storyboard for 

background details. We will be asking survey participants whether the game story and UI makes 

sense and if they would find the game interesting. This feedback will be used when creating our 

initial prototype of the game.  

Once we have a working prototype, we will conduct live gameplay testing with several 

students via tabling in the Campus Center. This will be promoted with flyers and we may have 

candy present for study participants. We will have several computers set up in a WPI computer 

lab with our game and ask the participants to play the game using only the game’s instructions. 

After completion of the game, we will conduct in-person surveys with the participants to get 

feedback on the experience. Some of the questions that would be asked are the following:  

 

● Was the playing experience enjoyable? 

● How easy was it to train the fighter? 

● Does the information on the screen clearly describe what to do? If not, what should be 

changed? 

● Did you like training the fighter? 

● Did the fighter seem intelligent? 

● Did the fighter do anything that you did not expect? Please describe. 
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● Was the fighter able to defend itself during the training phase? 

● Did you find the combat phase interesting to watch? 

● What would you recommend changing in the training phase of the game? 

● What would you recommend changing in the combat phase of the game? 

 

We may ask for further details on the responses to the above questions and will record the 

responses through writing. The responses will be analyzed after the testing is complete, and we 

will make modifications to our game accordingly. We expect to have one or two rounds of this 

testing as our game becomes more complete. The testing will take place at both the start and end 

of B term, and the UI mockup feedback will take place mid to late A term.  

 

Sample Questions 

● Was the playing experience enjoyable? 

● How easy was it to train the fighter? 

● Does the information on the screen clearly describe what to do? If not, what should be 

changed? 

● Did you like training the fighter? 

● Did the fighter seem intelligent? 

● Did the fighter do anything that you did not expect? Please describe. 

● Was the fighter able to defend itself during the training phase? 

● Did you find the combat phase interesting to watch? 

● What would you recommend changing in the training phase of the game? 

● What would you recommend changing in the combat phase of the game? 

 

Appendix F: Original Game Structure 

Glossary of Terms 

Coach: The human player sitting at the computer 

Roboxer: The ML Agent the coach is attempting to train 

Enemy / Final Boss: The AI opponent that Roboxer will fight 

  

Training Phase: Game time that the coach spends training Roboxer 



86 

Fighting Phase: Game time where Roboxer fights the Enemy 

  

Training Phase (AKA Phase 1) 

● Coach is given information (in the form of text or a video) about the Enemy that Roboxer 

will fight in the next phase 

○ Patterns the Enemy follows in attacking or defending 

● Coach can use this information to better train Roboxer 

● Training Phase A (Imitation) 

○ Coach will perform maneuvers, agent will attempt to replicate them 

○ “Remember these techniques during the fight!” 

○ Coach informs agent when they are imitating correctly (positive and negative 

reinforcement) 

● Training Phase B 

○ Coach acts as a mock enemy, repeating a sequence of attacks 

○ “Learn how to defend yourself against these moves!” 

○ Agent is reinforced automatically. They know getting hit is bad, and that blocking 

or dodging is good 

  

Fighting Phase (AKA Phase 2) 

● Agent is placed against an Enemy, the fight begins 

● The Coach has no direct control over the fight 

● Three Design Options 

○ Design 1 (Passive) 

■ Each fight is split into multiple “rounds”, like a real boxing match 

■ In between rounds, the coach can instruct Roboxer to follow a different 

preset strategy 

■ “The Enemy looks very aggressive, you should block a lot to tire them 

out” 

■ “The Enemy looks tired, now you should go on the offensive” 

○ Design 2 (Active) 

■ There are no rounds in the fight 
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■ Coach can shout instructions from the sidelines, telling Roboxer to follow 

a different preset strategy 

■ Put a cooldown on this ability, so it can’t be used every moment 

○ Design 3 (Powerless) 

■ The Coach has no way to impact the fight whatsoever 

■ The Coach simply watches the fight play out 

  Upon Completion of the Fighting Phase, we go back to Training Phase, with information 

for a new Enemy. The pattern of the game is (Training, Fighting), (Training, Fighting), 

(Training, Fighting) 

 

Appendix G: UI Mockup Survey 

Introduction 

The following images you are about to see are mockups for the UI for a new game. This game 

will be based on the idea of training an Artificial Intelligence to fight in a fighting game. There 

will be 3 distinct phases shown here, the two training phases as well as the final fighting phase. 

There will also be a main menu mockup that will have some base questions. 

 

Main Menu 

The first page that we have as a mock-up is the Main Menu. This will be the first screen that the 

players seen upon booting up the first versions of the game. It will give a brief description of the 

game as well as what the player should expect while playing the tech demo. 
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 Figure 51: UI mockup survey main menu 

 

● Do you like the idea of an explanation of the game rather than the standard main menu? 

● Does an explanation help manage your expectations about the game? 

● Does having a singular image help direct your expectations toward the game? 

● What design choices do you particularly like about the page?  

● What design choices do you particularly dislike? 

● What design choices do you particularly dislike? 

 

Offensive Stage 

The second page that we have as a mock-up is the Offensive Stage. This will be the player 

(labeled "Coach" here) showing the Artificial Intelligence (labeled "Fighter") some basic moves. 

This will entail the player doing a move, the AI mimicking that move, and then the player hitting 

either "Good Job" or "Not Quite". The phone on the left-hand side will be a set of moves for the 

player to do, and for the AI to react to.  
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 Figure 52: UI mockup survey offensive training screen 

 

● Do you like the idea of getting the directions from a phone? 

● Does training a fighter seem like an enjoyable experience? 

● Will alternating between performing the moves and clicking the two reinforcement 

buttons be too much to keep track of? 

● Will the graph at the bottom, which shows the success rate of the training, be a good 

indicator about the progress you are making? 

● Does the central arrow clearly depict whose turn it is? 

● What design choices did you particularly like about the page?  

● What design choices did you particularly dislike about the page? 

● What information would you like to see when training an AI to attack? 

 

Defensive Stage 

The third page we have is the Defensive Stage. In this stage, rather than the player doing moves 

and the AI emulating them, the AI will be attempting to learn how to block or dodge moves the 

player throws at them. The moves will once again come in through the phone on the left, and the 

graph will show the same data as above. 
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 Figure 53: UI mockup survey defensive training screen 

● Does training a fighter by sparring with it seem appealing? 

● Will getting the instructions via phone be as effective in this stage vs the previous stage? 

● Is giving the player training the AI the data still a useful idea in this instance? 

● What design choices did you particularly like about the page? 

● What design choices did you particularly dislike about the page? 

● What pieces of information would you also like to see when training an AI to defend? 

 

Tournament Phase 

The final page we have a mock-up of is the tournament stage. In this stage, the player will take a 

back seat and let the AI take on the fight. The only interactions the player will have is to give 

some vague commands from the sidelines about general fighting style, which is the timer on the 

far right( a cool down for this ability). The AI will be at the bottom left of the screen with the 

enemy on the top left. 
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 Figure 54: UI survey mockup tournament phase screen 

 

● Will watching an AI that you trained to fight be a rewarding or boring experience? 

● Is the shouting mechanic something that you think would be helpful to have some agency 

in the fight? 

● What design choices did you particularly like about the page? 

● What design choices did you particularly dislike? 

● What pieces of information would you also like to see when watching an AI fight? 

 

UI Testing Questions - MQP 

After looking at the UI mockups provided please review and answer these questions. 

 

● Have you played a fighting game or a game similar to "Punch Out", "Mortal Kombat", or 

"Street Fighter" before? 

● Have you worked or interacted with any games that used a component where the 

computer learns either the players behaviors or the game took player input into some type 

of training? 

● If you answered yes to the question above, what game was it? 
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Appendix H: Training Hyperparameters 

Table 5: Final hyperparameters 

Hyperparameter Value 

Batch size 16 

Time horizon 32 

Batches per epoch 10 

Learning rate 0.001 

Epochs Determined by training duration 

Max epochs 5000000 

 


