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Abstract 

 The intent of this MQP is to discuss the notion of Entropic Uncertainty Relations (EUR).  

The advantage of EUR over the Heisenberg and Robertson uncertainty relations, which are 

discussed in most quantum texts, will be discussed.  Examples of the relations will be described 

mathematically and graphically for 2- and 3-dimensional quantum systems (qubits and qutrits).  

These relations are of interest in the development of quantum cryptography, particularly in 

guaranteeing security in key distribution schemes. 
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  Introduction 

 Of all the ideas underlying quantum mechanics, the most well-known relation, in both 

core texts and pop culture, is the Heisenberg uncertainty relation [1].  This relation states that 

there is a limit to how precisely one can simultaneously determine both the position and 

momentum of a particle in a given quantum state. It does this by showing that the product of the 

position and momentum uncertainties must always exceed a certain minimum value. An 

important feature of quantum mechanics, reflected in the uncertainty principle, is that a 

measurement on a quantum system can cause disturbances to it, i.e., change its properties in an 

unpredictable way. Heisenberg’s uncertainty relation was later generalized by Robertson to 

include any two non-commuting observables [1].  The expanded scope of the Robertson 

uncertainty principle makes it applicable to a much wider range of problems than the Heisenberg 

relation, and it has been used to analyze the limits imposed by quantum mechanics on the 

operation of all sorts of devices.   

         In a parallel and unrelated development, Claude Shannon of Bell Labs developed the 

fundamental ideas of information theory in the 1940s [2].  He introduced a fundamental concept, 

known as the Shannon entropy, that can be used to quantify the amount of information in any 

bank of data, such as a music CD or a personal computer.  The value of Shannon’s theorems is 

that they allow us to determine the resources needed to encode and transmit information 

effectively, even in the presence of noisy channels.  

 In 1980 Maassen and Uffink [4] used the notion of Shannon entropy to quantify the 

uncertainty of observables in a quantum state, and they were thereby led to a new type of 

uncertainty relation known as the Entropic Uncertainty Relations (EUR).  The term EUR is now 

used to refer to a whole family of relations that all generalize the original relation of Maassen 

and Uffink in a variety of ways. These new relations are more powerful than the conventional 

uncertainty relations for the analysis of many problems, including ones in quantum information 

theory. 

 In 1984, well before the advent of quantum computing, Bennett and Brassard [5] 

proposed a secret key distribution scheme based on two-state systems or qubits. Their scheme 

involved using the polarization states of photons to transmit and generate the key. The novelty of 

their scheme was that its security is guaranteed by the laws of quantum mechanics. This makes it 

very different from classical encryption schemes, whose safety relies upon the near impossibility 

of a mathematical task that must be performed by an eavesdropper to break the key.  

         However, the safety of the scheme is more involved than may be gathered from the 

preceding remarks. A clever eavesdropper can intercept the quantum particles and therefore gain 

partial information about the key being generated by the two parties. The way the legitimate 

users can counter this threat is to use a suitable form of the EUR to infer the amount of 
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information that has leaked away to the eavesdropper. They can then take corrective steps to 

ensure that the useful information possessed by the eavesdropper is made as close to zero as 

desired. Because of the importance of EURs to quantum cryptography, it was chosen as the focus 

of this project. 

 In this report the Heisenberg and Robertson uncertainty principles will first be discussed, 

and their limitations will be pointed out.  The notion of Shannon entropy will then be introduced 

and some examples of it will be given. Then the simplest EURs for two-state systems (or qubits) 

and three-state systems (or qutrits) will be introduced and illustrated by means of some basic 

calculations. Finally, it will be pointed out how the EURs studied in this project need to be 

generalized to make them relevant to the analysis of security in quantum key distribution 

schemes.  
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Chapter 1 

  Heisenberg Uncertainty Principle 

 The relation that describes how precisely one can simultaneously determine the position 

and momentum of a particle is the Heisenberg Uncertainty Principle. It is described, for example, 

in the text by Schumacher and Westmoreland [6].  It was originally discovered by Heisenberg 

before a more general relation that provides a similar result for any two non-commuting 

observables.  The Heisenberg relation provides a lower limit to the product of the standard 

deviations of the position and momentum observables.  If Q and P are the position and 

momentum observables, and 𝜎(𝑄) and 𝜎(𝑃) are their standard deviations, then 

𝜎(𝑄) ∙ 𝜎(𝑃) ≥ ℏ 2⁄ = ℎ 4𝜋⁄     (1.1) 

 This is one of the most commonly known relations in quantum mechanics, if even just by 

name.  It is taught early on as it demonstrates how certain quantum measurements are not 

independent of each other but where the precision of one may disturb the precision of another.  

This result can be appreciated qualitatively by means of the following argument originally 

suggested by Heisenberg.  To measure the position accurately one might decide to scatter a lower 

wavelength photon off it which will provide higher spatial resolutions.  However, a low 

wavelength photon also has a high momentum and can impart some of its momentum to the 

particle thereby resulting in a greater error in the measurement of its momentum [6].  

Conversely, if one uses a low frequency photon to minimize the error in the momentum 

measurement, the longer wavelength will lead to an inaccuracy in the measurement of the 

particle’s position. It is this tradeoff between the accuracy of the two measurements that is 

captured by the principle. 

            We now introduce the definitions of some quantities that will be needed in the 

discussion below.  If A is an observable and a quantum system is in the state ψ, the average value 

and standard deviation of the observable in the state are given by the equations  

Expectation Value:                                 〈Ψ|𝐴|Ψ〉            (1.2) 

Standard Deviation:    𝜎(𝐴) = ∆(𝐴) = √〈𝐴2〉 − 〈𝐴〉2    (1.3) 

 Here standard deviation is defined similarly to the way it is in statistics, but instead of 

using averages it uses the expectation value of an operator, A.  In quantum mechanics 

expectation values refer to the average result one would measure on performing a large number 

of measurements on a specific state.  The average need not equal the actual value (an eigenvalue) 

that one would find in any measurement.  The standard deviation would then be computed from 

the data obtained in a large number of such trials. 
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The graph below plots the uncertainty of momentum on, the vertical axis, versus the 

position uncertainty, on the horizontal axis, for a minimum uncertainty state.  The 

complementary nature of the asymptotes is made clear by the relation since as one tends to zero 

the other tends to infinity. 

 

Fig. 1 Minimum uncertainty product as per Heisenberg Uncertainty Relation.  Here the 

hyperbolic curve shows the drastic changes in the minimum standard deviation values with 

respect to each other. 

 

 While this is an important and basic result, it is still not an effective tool for applications 

in quantum information.  The reason is that it is not possible to learn from it how much 

information can be stored in a variable utilizing position or momentum as a store for information.  

This shortfall makes it of limited value in problems connected with information storage and 

retrieval.  None of this is to say the relation is not important.  It still demonstrates fundamental 

limitations on what we can know and is an effective introduction to the idea of uncertainty 

principles. 

When finding the product of these uncertainties there is a well-known case where the 

minimum uncertainty product is achieved.  This case is for a wavefunction in the form of a 

Gaussian distribution.  This case is discussed in many quantum texts such as Griffiths 

introduction to quantum mechanics [3].  However, the time evolution of a Gaussian state 

generally leads to a new state that is not a minimum uncertainty state, but rather one whose 

uncertainty product grows with time. 
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  Robertson Uncertainty Principle 

 While Heisenberg was able to describe limitations on position and momentum 

measurements, Robertson was able to go further and describes limitations on any two non-

commuting observables being measured simultaneously.   His relation also differs from the 

Heisenberg relation in that it describes how the precision of the measurements is influenced by 

the particular state being measured [6]. 

 Here we consider X, Y, and Z, which are the Pauli observables of a qubit.  They represent 

measurements of the spin aligned with the X, Y, and Z axes in units of ℏ 2⁄  and can be 

represented by the 2x2 matrices. 

𝑍 = (
1 0
0 −1

) , 𝑋 = (
0 1
1 0

) , 𝑌 = (
0 −𝑖
𝑖 0

)     (1.4) 

 Once more this principle allows a lower limit to be calculated for the product of 

uncertainties of the observables.  This lower limit need not be the one that is observed in any set 

of experiments, but it can never be violated.  The Robertson uncertainty principle is expressed in 

the equation 

𝜎(𝑋) ∙ 𝜎(𝑍) ≥ 〈ψ|[𝑋, 𝑍]|ψ〉 (1.5) 

 The left-hand side is the same as in the Heisenberg Uncertainty Principle in that it is the 

product of standard deviations.  These standard deviations can be of any two non-commuting 

observables, but in the case the observables X and Z are used for spin-1/2 particles [6].  The 

right-hand side is the average of the commutator of the two observables in the state being 

considered.  Standard deviation and expectation values are still defined the same way. 

  Examples 

 For this example, the Pauli observables X and Z will be used to demonstrate the lower 

limits given by the Robertson Uncertainty Principle. 

 

Given: 

 𝑋 = (
0 1
1 0

)          (1.6) 

 𝑍 = (
1 0
0 −1

)          (1.7) 

 |ψ⟩ = cos 𝜃 | 1 2⁄ ⟩ + sin 𝜃 | −
1
2⁄ ⟩ = ⟨

cos𝜃
sin𝜃

⟩      (1.8) 

 

 𝜎(𝑥) = √〈𝑋2〉 − 〈𝑋〉2         (1.9) 
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  〈𝑋2〉 = ⟨𝜓|𝑋2|𝜓⟩ = 1,    𝑏𝑒𝑐𝑎𝑢𝑠𝑒 𝑋2 = 1     (1.10) 

  〈𝑋〉2 = ⟨𝜓|𝑋|𝜓⟩2 = (2 sin 𝜃 cos 𝜃)2 = (sin 2𝜃)2    (1.11) 

  𝜎(𝑥) = √1 − sin2 2𝜃 = |cos 2𝜃|      (1.12) 

 𝜎(𝑍) = √〈𝑍2〉 − 〈𝑍〉2         (1.13) 

  〈𝑍2〉 = ⟨𝜓|𝑍2|𝜓⟩ = 1,    𝑏𝑒𝑐𝑎𝑢𝑠𝑒 𝑍2 = 1     (1.14) 

  〈𝑍〉2 = ⟨𝜓|𝑍|𝜓⟩2 = (cos2 𝜃 − sin2 𝜃)2 = (cos 2𝜃)2   (1.15) 

  𝜎(𝑍) = √1 − cos2 2𝜃 = |sin 2𝜃|      (1.16) 

 𝜎(𝑥) ∙ 𝜎(𝑍) = cos 2𝜃 sin 2𝜃 = 1 2⁄ |sin 4𝜃|      (1.17) 

 〈ψ|[𝑋, 𝑍]|ψ〉          (1.18) 

  [𝑋, 𝑍] = (
0 1
1 0

) (
1 0
0 −1

) − (
1 0
0 −1

) (
0 1
1 0

) = (
0 −2
2 0

)  (1.19) 

  〈ψ|[𝑋, 𝑍]|ψ〉 = 2 sin 𝜃 cos 𝜃 − 2 sin 𝜃 cos 𝜃 = 0    (1.20) 

𝜎(𝑋) ∙ 𝜎(𝑍) ≥ 〈ψ|[𝑋, 𝑍]|ψ〉  → 1 2⁄ |sin 4𝜃| ≥ 0       (1.21) 

 Graphs 

Shown below are graphs of the standard deviations 𝜎(𝑋), 𝜎(𝑍) and their uncertainty product. 

𝜎(𝑋) versus ψ 

 

Fig. 1.2 Plot of how the standard deviation of X varies with the input state ψ.  The curve shows 

how the standard deviation changes drastically over a period of π/2 
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𝜎(𝑍) versus ψ 

  

Fig. 1.3 Shows how the standard deviation of Z varies with the input state ψ.  The graph shows it 

is the same result as for the standard deviation of X, but with a π/4 phase shift. 

𝜎(𝑋) ∙ 𝜎(𝑍) versus ψ 

 

Fig. 1.4 demonstrates that the lower bound provided by the Robertson Uncertainty Principle is 

obeyed and the relation is saturated as it achieves equality when touching the ψ axis. 

Combination of the above graphs 

  

Fig. 1.5 allows one to more easily compare the values of the different graphs 
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 From the last graph showing the product of uncertainties in the two observables, one can 

see that the Robertson Uncertainty Principle becomes an equality for multiples of 𝜋 4⁄ .  When an 

uncertainty principle achieves equality it is said to have become saturated.  This indicates that the 

lower bound it provides for the uncertainty product is achieved.  If an uncertainty principle does 

not achieve equality then it is unsaturated and far less powerful.  The unsaturated ucertainty is 

not the greatest lower bound possible, which would imply another uncertainty principle could 

provide an even greater lower bound and achieve saturation.  

 Both of these uncertainty principles can be found in many texts such as Schumacher and 

Westmoreland’s Quantum Processes Systems, and Information [6], or the Introduction to 

quantum mechanics texts by Griffiths [3]. 
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 Chapter 2 

  Shannon Entropy 

 Shannon entropy is an important measure in information theory.  The Shannon entropy of 

a system characterizes the surprise of a random variable and is related to the information content 

of its outcome.  For an outcome that is guaranteed to occur there is no information gained in its 

measure, but for outcomes that are very unlikely there can be a much larger information content.  

Shannon entropy defines the average information content of some random variable [1]. 

𝐻(𝑋) = −∑𝑃𝑋(𝑥) log 𝑃𝑋(𝑥)   (2.1) 

 As can be observed from the equation, an event that always occurs will have a Shannon 

entropy of zero as the logarithm vanishes.  It is interesting to note that in attempting to maximize 

Shannon entropy, one should give every outcome an equal probability. 

 In information theory, entropy is important for describing how many bits are necessary to 

contain all the information of some data.  This helps in compression as given some information 

you can find the minimum number of bits that are required to send information.  One can use the 

Shannon entropy to quantify the information contained in quantum states and thereby be in a 

better position to explore issues related to the security of the quantum key distribution schemes 

[1]. 

 

H(X) Versus P(x1) 

 

 

Fig. 2.1 Plots all possible Shannon entropies on the vertical axis for a random variable with two 

possible outcomes by using the equation below. 

 

𝐻 = −𝑥 log 𝑥 − (1 − 𝑥) log(1 − 𝑥) (2.2) 
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H(X) versus P(x1) and P(x2) 

  

Fig. 2.2 Plots all possible Shannon entropies on the vertical axis for a random variable with two 

possible outcomes using the equation below.  The graph was made partially see through 

to allow all the surface to be seen. 

 

𝐻 = 𝑥 log 𝑥 − 𝑦 log 𝑦 − (1 − 𝑥 − 𝑦) log(1 − 𝑥 − 𝑦)    (2.3) 

 

 The above graphs show all possible Shannon entropies for two and three random 

variables respectively.  Below the graphs are the equations that specify the Shannon entropy 

plotted.  There is no need to have a graph in three dimensions for the two-outcome system since 

there is an easily defined relation between both probabilities, and likewise for the three-outcome 

system.  As can be seen there is a maximum where the probabilities of each event are equal.  

While these graphs show all possible values for the Shannon entropy of a system of two or three 

variables, one could calculate it for more random variables and find similar properties. 

 A more concrete example would be the roll of a six-sided die.  Again, its entropy is 

greatest due to equal probabilities. 

𝐻(𝐷6) = ∑1 6⁄ log 6 = log 6 = 0.778   (2.4) 

One could expand this to a 20-sided die in the shape of an icosahedron and find a similar 

result. 

𝐻(𝐷20) =  log 20 = 1.301   (2.5) 

What this means is it would take one base ten digit to describe the six-sided die, and two 

base ten digits to describe the 20-sided die.  One could expect this because of the number of 

sides each die has combined with the equal probabilities.  Now if one were to change this to be in 

the context of a computer, base two would be far more effective. 

𝐻(𝐷6) = log2 6 = 2.585    (2.6) 

𝐻(𝐷20) = log2 20 = 4.322  (2.7) 

From these examples in base two, it is clear we would need at least three bits to describe 

the six-sided die without any loss of information.  We would also need five bits to describe the 
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twenty-sided die.  One could again predict this as the 23=8 is the smallest power of two greater 

than six and 25=32 is the smallest power of two greater than twenty. 

Now if we changed the relative size of the sides such that one side had an 81% 

probability of being chosen and the rest had a 1% chance each, we would find very different 

results for the twenty-sided die. 

𝐻(𝑀𝑜𝑑𝑖𝑓𝑖𝑒𝑑 𝐷20) = −0.19 log 0.01 − 0.81 log 0.81 = 0.454  (2.8) 

𝐻(𝑀𝑜𝑑𝑖𝑓𝑖𝑒𝑑 𝐷20) = −0.19 log2 0.01 − 0.81 log2 0.81 = 1.509  (2.9) 

This suggests we could somehow describe the die with as few as one base ten digit or two 

bits. 

From these examples with dice we can also see the maximum value of Shannon entropy 

for any given system of N variables.  It is only left to decide which base is best for the given 

scenario, such as base ten or binary. 

𝐻𝑀𝑎𝑥 = log𝑁   (2.10) 

Why one would prefer to use Shannon entropy as opposed to the Heisenberg Uncertainty 

Principle or even the Robertson Uncertainty Principle should be growing clearer.  The 

uncertainty principles thus far described will only tell you how precisely one can know two 

given observables at once.  The Heisenberg Uncertainty only depending on the standard 

deviations of the observables and Robertson Uncertainty on the standard deviations and given 

state.  These are both powerful tools but tell very little about the information content of a system 

and will not assist in testing the capabilities of a quantum key distribution method. 

Shannon entropy also does not have the ability to provide one with the information 

needed, but from it a new analogous relation called the entropic uncertainty relation can be 

derived.  This relation will characterize the entropy of a system allowing one to see a value 

analogous to classical information theory’s Shannon entropy but evolved into the new Quantum 

Information world. 
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 Chapter 3 

  Entropic Uncertainty Relation 

The Entropic Uncertainty Relation for a qubit (or two-state quantum system) provides a 

lower bound on the sum of the Shannon entropies of two non-commuting observables of the 

qubit. The bound depends on the observables being considered, and how closely it is approached 

depends on the state of the qubit being considered. These points will be made clear by means of 

an example below.  The work by Maassen and Uffink [4] provides the foundation for this 

section. 

 The Entropic Uncertainty Relation provides a lower bound for the sum of Shannon 

entropies of a quantum state and observables.  This means that the amount of information stored 

in a quantum system has a lower bound that can be calculated.  In the case of this relation the 

lower bound depends only on the maximum overlap of any two eigenstates in the observables 

under consideration, and hence it is independent of the given input state [1]. 

 This entropic uncertainty relation is very powerful with regards to quantum key 

distribution.  If one is to be sure they securely delivered the key, they will need to know about 

how much information is available to an eavesdropper.  If the eavesdropper has access to enough 

information the encrypted message could be deciphered.  The importance of the Entropic 

Uncertainty Relation rises when one needs to prove the security of their key distribution method.  

With the lower bound it provides it is possible to show that given protocol does will allow the 

eavesdropping attack to succeed [4]. 

 With any tool it is important to understand how to use it.  In this case a new interpretation 

of Shannon entropy is needed with regards to quantum mechanics.  The answer is simply to use 

the eigenstates of the observable as the possible events and the probability of collapsing into any 

of these states as the probabilities.  This gives us a value for the Shannon entropies of a quantum 

system. 

𝐻(𝑋) = −∑ 𝑃(𝑥𝑖) log 𝑃(𝑥𝑖)𝑖    (3.1) 

𝑃(𝑥𝑖) = |⟨𝜓|𝑥𝑖⟩|
2   (3.2) 

 With the Shannon entropies of a quantum system defined, the lower bound of the 

uncertainty relation needs to be found.  To find this, the maximum value for the probability of an 

eigenstate of one observable collapsing into the eigenstate of another observable upon 

measurement in the latter is needed.  Expanding this method for multiple observables and higher-

dimensional systems simply requires testing more pairs of eigenstates [1]. 

𝑐 = max
𝑖,𝑗
𝑀𝑖,𝑗 = max

𝑖,𝑗
(|⟨𝑥𝑖|𝑧𝑗⟩|

2
)    (3.3) 

 Now that all the pieces necessary to construct the relation have been defined, one simply 

needs to put them together in such a way a lower bound is provided that does always work. 

𝐻(𝑋) + 𝐻(𝑍) ≥ log 1 𝑐⁄     (3.4) 
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 In the case of qubits an important piece of information can be noticed to simplify parts of 

the analysis involved in the application of EUR.  All possible values of c can be made to depend 

on one parameter inside the matrix Mi,j. 

𝑀𝑖,𝑗 = (
𝑝 1 − 𝑝

1 − 𝑝 𝑝
)   (3.4) 

 Example 

  Qubit 

 Another example of the analysis of the Entropic Uncertainty Relation with regards to 

qubits is described by Durt [2]. 

 The bases X and Z will be used in this example of the application of EUR.  Basis X will 

be a copy of Z rotated counterclockwise by an angle α.  Then there will be the input state |𝜓⟩ 
which will vary in its superposition. 

|𝜓⟩ = cos 𝜃 2⁄ | + 𝑍⟩ + sin 𝜃 2⁄ | − 𝑍⟩   (3.5) 

To begin the Shannon entropy for Z is calculated 

𝐻(𝑍) = −(cos 𝜃 2⁄ )
2
log(cos 𝜃 2⁄ )

2
− (sin 𝜃 2⁄ )

2
log(sin 𝜃 2⁄ )

2
    (3.6) 

Now we notice we can perform a transformation by rotating X by -α to get Z 

𝐻(𝑋) = −(cos [
(𝜃−𝛼)

2
])
2

log (cos [
(𝜃−𝛼)

2
])
2

− (sin [
(𝜃−𝛼)

2
])
2

log (sin [
(𝜃−𝛼)

2
])
2

  (3.7) 

Finally, the lower bound 

𝑀𝑖,𝑗 = (
cos2 𝛼 2⁄ sin2 𝛼 2⁄

sin2 𝛼 2⁄ cos2 𝛼 2⁄
)          (3.8) 

The maximum swaps when α = π/2 

To demonstrate the effectiveness of the lower bound, it is subtracted from the Shannon entropy 

𝐻(𝑋) + 𝐻(𝑍) − log 1 𝑐⁄     (3.9) 
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Shannon entropy (H(X) +H(Z)) versus input state ψ 

 

𝛼 =  𝜋 2⁄ , 𝜋 3⁄ , 𝜋 4⁄ , 𝜋 6⁄ , 𝜋 12⁄  

Fig. 3.1 Shows all possible Shannon entropies H(X) +H(Z) for a qubit measured on two 

observables offset by angle 𝛼.  The entropy values at 0 decrease as the offset decreases.  It is 

interesting to note that with mutually unbiased bases the entropy varies very little, but as they get 

closer the entropy varies drastically with the input state. 

 

 𝐻(𝑋) + 𝐻(𝑍) − log 1 𝑐⁄     versus input state ψ 

 

Fig. 3.2 demonstrates that the lower bound works as the curves never cross the ψ axis after the 

lower bound is subtracted 
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  Qutrit 

 Further analysis of a qutrit system is provided by Rudnicki in his work [5]. 

A Qutrit is a quantum state with 3 dimensions. The math is similar and demonstrated 

below for state |𝜓⟩ with observables X and Z.  Eigenstates without subscripts are in basis Z. 

 

|𝜓⟩ = cos𝛼 |0⟩ + sin 𝛼 cos 𝛽 |1⟩ + sin 𝛼 sin 𝛽 |2⟩ (3.10) 

|0⟩𝑥 =
1

√2
(−|0⟩ + |2⟩)  (3.11) 

|1⟩𝑥 =
1

2
(|0⟩ +

1

√2
|1⟩ + |2⟩)  (3.12) 

|2⟩𝑥 =
1

2
(|0⟩ −

1

√2
|1⟩ + |2⟩)  (3.13) 

 

Now P(X) 

𝑃(|0⟩𝑥) =
1

2
(cos 𝛼 + sin 𝛼 sin 𝛽)2  (3.13) 

𝑃(|1⟩𝑥) =
1

4
(cos 𝛼 + √2 sin 𝛼 cos 𝛽 + sin 𝛼 sin 𝛽)

2
  (3.14) 

𝑃(|2⟩𝑥) =
1

4
(cos 𝛼 − √2 sin 𝛼 cos 𝛽 + sin 𝛼 sin 𝛽)

2
  (3.15) 

 

Then P(Z) 

𝑃(|0⟩) =  cos2 𝛼   (3.16) 

𝑃(|1⟩) = sin2 𝛼 cos2 𝛽  (3.17) 

𝑃(|2⟩) = sin2 𝛼 sin2 𝛽  (3.18) 

 

Finally, the lower bound 

𝑀𝑖,𝑗 =

(

 

1
2⁄

1
4⁄

1
4⁄

0 1
2⁄

1
2⁄

1
2⁄

1
4⁄

1
4⁄ )

   (3.19) 

Thus, the bound is 1 2⁄  
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Sum of Shannon entropies minus lower bound versus input state ψ 

 

Fig. 3.3 plots all possible Shannon entropies for a qutrit and the given observables on the vertical 

axis and the two parameters defining the input state on the horizontal axis.  The lower bound of 

½ is subtracted to demonstrate that the EUR provides a lower bound to the relation. Where the 

surface approaches the horizontal plane, the inequality gets close to being saturated, whereas 

where it is high above that plane, there the uncertainties in both observables is large and one is 

far away from making the best possible measurements. 
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Conclusion 

 While the Heisenberg and Robertson uncertainty principles allow us to analyze the 

precision of measurements in quantum systems, they fail in certain applications where the 

measure they use (the standard deviation) does not capture the information needed for the 

application. This question is of far more consequence in quantum information theory. The 

problem of key distribution using quantum systems is one such application in which a different 

approach is needed. 

          The EURs, which use the Shannon entropy to quantify quantum information, meet the 

necessary requirements to investigate questions of security in quantum key distribution 

protocols. 

         This MQP has introduced the notion of Shannon information, EURs for qubits and qutrits 

and then illustrated them by means of simple calculations that show that the EURs are always 

satisfied. Further they also illustrate situations in which the EURs come close to being saturated 

(i.e. the equality is almost achieved). 

       The EURs studied here must be extended in at least three ways before they become relevant 

to the analysis of quantum key distribution protocols: 

 

(1) They must be generalized to entangled quantum states shared by two parties, rather than 

just the states of a single party. This is of import as entanglement could be utilized by an 

eavesdropper to bypass any security one might have. 

(2) They must be generalized to cover the measurements of three parties. Two of the parties 

are the ones exchanging the key, and the third is the eavesdropper. 

(3) The notion of the Shannon entropy might have to be replaced by a more general measure 

known as the Renyi entropy in some cases, which would allow security protocols to be 

analyzed with the necessary degree of accuracy. 

However, these goals go beyond the scope of this project and will have to be pursued elsewhere. 
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